Sample records for tatb based explosives

  1. Shock Initiation of Wedge-shaped Explosive Measured with Smear Camera and Photon Doppler Velocimetry

    NASA Astrophysics Data System (ADS)

    Gu, Yan

    2017-06-01

    Triaminotrinitrobenzene (TATB) is an important insensitive high explosive in conventional weapons due to its safety and high energy. In order to have an insight into the shock initiation performance of a TATB-based insensitive high explosive (IHE), experimental measurements of the particle velocity histories of the TATB-based Explosive using Photon Doppler Velocimetry and shock wave profile of the TATB-based explosive using High Speed Rotating Mirror Smear Camera had been performed. In this paper, we would describe the shock initiation performance of the TATB-based explosive by run-to-detonation distance and the particle velocity history at an initialization shock of about 7.9 GPa. The parameters of hugoniot of unreacted the TATB-based explosive and Pop relationship could be derived with the particle velocity history obtained in this paper.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritter, Boyd

    Insensitive high explosives (IHEs) based on 1,3,5-triamino 2,4,6-trinitro-benzene (TATB) are the IHEs of choice for use in nuclear warheads over conventional high explosives when safety is the only consideration, because they are very insensitive to thermal or mechanical initiation stimuli. It is this inherent insensitivity to high temperatures, shock, and impact, which provides detonation design challenges when designing TATB explosive systems while at the same time providing a significant level of protection against accidental initiation. Although classified as IHE, over the past few years the focus on explosive safety has demonstrated that the shock sensitivity of TATB is influenced withmore » respect to temperature. A number of studies have been performed on TATB and TATB formulations, plastic bonded explosives (PBX) 9502, and LX-17-01 (LX-17), which demonstrates the increase in shock sensitivity of the explosive after it has been preheated or thermally cycled over various temperature ranges. Many studies suggest the change in sensitivity is partly due to the decomposition rates of the temperature elevated TATB. Others point to the coefficient of thermal expansion, the crystalline structures of TATB and/or the combination of all factors, which create voids which can become active hot spots. During thermal cycling, TATB is known to undergo an irreversible increase in specific volume called ratchet growth. This increase in specific volume correlates to a decrease in density. This decrease in density and increase in volume, demonstrate the creations of additional void spaces which could serve as potential new initiation hot spots thus, increasing the overall sensitivity of the HE. This literature review evaluates the published works to understand why the shock sensitivity of TATB-based plastic bonded explosives (PBXs) changes with temperature.« less

  3. Numerical study on tailoring the shock sensitivity of TATB-based explosives using mesostructural features

    NASA Astrophysics Data System (ADS)

    Springer, H. Keo

    2017-06-01

    Advanced manufacturing techniques offer control of explosive mesostructures necessary to tailor its shock sensitivity. However, structure-property relationships are not well established for explosives so there is little material design guidance for these techniques. The objective of this numerical study is to demonstrate how TATB-based explosives can be sensitized to shocks using mesostructural features. For this study, we use LX-17 (92.5%wt TATB, 7.5%wt Kel-F 800) as the prototypical TATB-based explosive. We employ features with different geometries and materials. HMX-based explosive features, high shock impedance features, and pores are used to sensitive the LX-17. Simulations are performed in the multi-physics hydrocode, ALE3D. A reactive flow model is used to simulate the shock initiation response of the explosives. Our metric for shock sensitivity in this study is run distance to detonation as a function of applied pressure. These numerical studies are important because they guide the design of novel energetic materials. This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-724986.

  4. Ultrasonic approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity.

    PubMed

    Huang, Bing; Hao, Xiaofei; Zhang, Haobin; Yang, Zhijian; Ma, Zhigang; Li, Hongzhen; Nie, Fude; Huang, Hui

    2014-07-01

    To improve the safety of sensitive explosive HMX while maintaining explosion performance, a moderately powerful but insensitive explosive TATB was used to coat HMX microparticles via a facile ultrasonic method. By using Estane as surface modifier and nano-sized TATB as the shell layer, the HMX@TATB core-shell microparticles with a monodisperse size and compact shell structure were successfully constructed. Both scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of perfect core-shell structured composites. Based on a systematic and comparative study of the effect of experimental conditions, a possible formation mechanism of core-shell structure was proposed in detail. Moreover, the perfect core-shell HMX@TATB microparticles exhibited a unique thermal behavior and significantly improved mechanical sensitivity compared with that of the physical mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The thermal response of HMX-TATB charges

    NASA Astrophysics Data System (ADS)

    Drake, R. C.

    2017-01-01

    One approach to achieving charge safety and performance requirements is to prepare formulations containing two (or more) explosives. The intention of this approach is that by judicious choice of explosives and binder the formulation will have the desirable features of the constituent materials. HMX and TATB have very different properties. In an attempt to achieve a formulation which has the safety and performance characteristics of TATB and HMX, respectively, a range of formulations were prepared. The thermal response of the formulations were measured in the One-Dimensional Time To Explosion (ODTX) configuration and compared to those of formulations containing only HMX and TATB. The response of the mixed formulations was found to be largely determined by the HMX component with the binder making a small contribution. A formulation with a Kel-F 800 binder had a much higher critical temperature than would have been expected based on the critical temperatures of formulations with HTPB-IPDI as the binder.

  6. Jack Rabbit Pretest Data For TATB Based IHE Model Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M M; Strand, O T; Bosson, S T

    The Jack Rabbit Pretest series consisted of 5 focused hydrodynamic experiments, 2021E PT3, PT4, PT5, PT6, and PT7. They were fired in March and April of 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory, Livermore, California. These experiments measured dead-zone formation and impulse gradients created during the detonation of TATB based insensitive high explosive. This document contains reference data tables for all 5 experiments. These data tables include: (1) Measured laser velocimetry of the experiment diagnostic plate (2) Computed diagnostic plate profile contours through velocity integration (3) Computed center axis pressures through velocity differentiation. All timesmore » are in microseconds, referenced from detonator circuit current start. All dimensions are in millimeters. Schematic axi-symmetric cross sections are shown for each experiment. These schematics detail the materials used and dimensions of the experiment and component parts. This should allow anyone wanting to evaluate their TATB based insensitive high explosive detonation model against experiment. These data are particularly relevant in examining reactive flow detonation model prediction in computational simulation of dead-zone formation and resulting impulse gradients produced by detonating TATB based explosive.« less

  7. Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives.

    PubMed

    Manaa, M Riad; Reed, Evan J; Fried, Laurence E; Goldman, Nir

    2009-04-22

    We report the first quantum-based multiscale simulations to study the reactivity of shocked perfect crystals of the insensitive energetic material triaminotrinitrobenzene (TATB). Tracking chemical transformations of TATB experiencing overdriven shock speeds of 9 km/s for up to 0.43 ns and 10 km/s for up to 0.2 ns reveal high concentrations of nitrogen-rich heterocyclic clusters. Further reactivity of TATB toward the final decomposition products of fluid N(2) and solid carbon is inhibited due to the formation of these heterocycles. Our results thus suggest a new mechanism for carbon-rich explosive materials that precedes the slow diffusion-limited process of forming the bulk solid from carbon clusters and provide fundamental insight at the atomistic level into the long reaction zone of shocked TATB.

  8. Multi-shock experiments on a TATB-based composition

    NASA Astrophysics Data System (ADS)

    Sorin, Remy

    2017-06-01

    Temperature based models for condensed explosive need an unreacted equation of state (EOS) that allows a realistic estimation of the temperature for a shock compression driven at detonation velocity. To feed the detonation models, we aim at exploring the high pressure shock Hugoniot of unreacted TATB composition up to 30 GPa with both hydrodynamic and temperature measurements. We performed on the gas gun facility ARES, multi-shock experiments where the first shock is designed to desensitize the explosive and inhibit the reactivity of the composition. The hydrodynamic behavior was measured via the velocity of a TATB/LiF interface with PDV probes. We attempted to measure the temperature of the shocked material via surface emissivity with a pyrometer calibrated to the expected low temperature range. Based on single shock experiments and on ab-initio calculation, we built a complete EOS for the unreacted phase of the TATB explosive. The hydrodynamic data are in good agreement with our unreacted EOS. Despite the record of multi-stage emissivity signals, the temperature measurements were difficult to interpret dur to high-luminisity phenomena pertubation. In collaboration with: Nicolas Desbiens, Vincent Dubois and Fabrice Gillot, CEA DAM DIF.

  9. Neutron diffraction measurements and micromechanical modelling of temperature-dependent variations in TATB lattice parameters

    DOE PAGES

    Yeager, John D.; Luscher, Darby J.; Vogel, Sven C.; ...

    2016-02-02

    Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. TATB-based explosives exhibit irreversible volume expansion (“ratchet growth”) when thermally cycled. A theoretical understanding of the relationship between anisotropy of the crystal, crystal orientation distribution (texture) of polycrystalline aggregates, and the intergranular interactions leading to this irreversible growth is necessary to accurately develop physics-based predictive models for TATB-based PBXs under various thermal environments. In this work, TATB lattice parameters were measured using neutron diffraction during thermal cycling of loose powder and a pressed pellet. The measured lattice parameters help clarify conflicting reports in the literaturemore » as these new results are more consistent with one set of previous results than another. The lattice parameters of pressed TATB were also measured as a function of temperature, showing some differences from the powder. This data is used along with anisotropic single-crystal stiffness moduli reported in the literature to model the nominal stresses associated with intergranular constraints during thermal expansion. The texture of both specimens were characterized and the pressed pellet exhibits preferential orientation of (001) poles along the pressing direction, whereas no preferred orientation was found for the loose powder. Lastly, thermal strains for single-crystal TATB computed from lattice parameter data for the powder is input to a self-consistent micromechanical model, which predicts the lattice parameters of the constrained TATB crystals within the pellet. The agreement of these model results with the diffraction data obtained from the pellet is discussed along with future directions of research.« less

  10. Comparison of detonation spreading in pressed ultra-fine and nano-TATB

    NASA Astrophysics Data System (ADS)

    Olles, Joseph; Wixom, Ryan; Knepper, Robert; Yarrington, Cole; Patel, Rajen; Stepanov, Victor

    2017-06-01

    Detonation spreading behavior in insensitive high explosives is an important performance characteristic for initiation-train design. In the past, several variations of the floret test have been used to study this phenomenon. Commonly, dent blocks or multi-fiber optical probes were employed for reduced cost and complexity. We devised a floret-like test, using minimal explosive material, to study the detonation spreading in nano-TATB as compared to ultra-fine TATB. Our test uses a streak camera, combined with photonic Doppler velocimetry, to image the breakout timing and quantify the output particle velocity. The TATB acceptor pellets are initiated using an explosively-driven aluminum flyer with a well characterized velocity. We characterized the two types of TATB by assessing purity, particle morphology, and the microstructure of the consolidated pellets. Our results align with published data for ultra-fine TATB, however the nano-TATB shows a distinct difference where output has a strong dependence on density. The results indicate that control over pellet pore size and pressing density may be used to optimize detonation spreading behavior.

  11. Synthesis and purification of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)

    DOEpatents

    Mitchell, Alexander R [Livermore, CA; Coburn, Michael D [Santa Fe, NM; Lee, Gregory S [San Ramon, CA; Schmidt, Robert D [Livermore, CA; Pagoria, Philip F [Livermore, CA; Hsu, Peter C [Pleasanton, CA

    2006-06-06

    A method to convert surplus nitroarene explosives (picric acid, ammonium picrate,) into TATB is described. The process comprises three major steps: conversion of picric acid/ammonium picrate into picramide; conversion of picramide to TATB through vicarious nucleophilic substitution (VNS) of hydrogen chemistry; and purification of TATB.

  12. Shock initiation of 2,4-dinitroimidazole (2,4-DNI)

    NASA Astrophysics Data System (ADS)

    Urtiew, P. A.; Tarver, C. M.; Simpson, R. L.

    1996-05-01

    The shock sensitivity of the pressed solid explosive 2,4-dinitroimidazole (2,4-DNI) was determined using the embedded manganin pressure gauge technique. At an initial shock pressure of 2 GPa, several microseconds were required before any exothermic reaction was observed. At 4 GPa, 2,4-DNI reacted more rapidly but did not transition to detonation at the 12 mm deep gauge position. At 6 GPa, detonation occurred in less than 6 mm of shock propagation. Thus, 2,4-DNI is more shock sensitive than TATB-based explosives but is considerably less shock sensitive than HMX-based explosives. An Ignition and Growth reactive flow model for 2,4-DNI based on these gauge records showed that 2,4-DNI exhibits shock initiation characteristics similar to TATB but reacts faster. The chemical structure of 2,4-DNI suggests that it may exhibit thermal decomposition reactions similar to nitroguanine and explosives with similar ring structures, such as ANTA and NTO.

  13. Characterization and Thermal Decomposition of Nanometer 2,2', 4,4', 6,6'-Hexanitro-Stilbene and 1,3,5-Triamino-2,4,6-Trinitrobenzene Fabricated by a Mechanical Milling Method

    NASA Astrophysics Data System (ADS)

    Song, Xiaolan; Wang, Yi; Zhao, Shanshan; An, Chongwei; Wang, Jingyu; Zhang, Jinglin

    2018-04-01

    Nanometer 2,2', 4,4', 6,6'-hexanitro-stilbene (HNS) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were fabricated on a high-energy ball mill. The particle sizes of nano-HNS and nano-TATB were 98.4 and 57.8 nm, respectively. An SEM analysis was employed to image the micron morphology of nano-explosives. The particle size distribution was calculated by measuring the size of 300 particles in SEM images. XRD, IR, and XPS analyses were used to confirm whether the crystal phase, molecule structure, and surface elements were changed by the milling process. Thermal decomposition of nano-HNS and nano-TATB was investigated by differential scanning calorimetry (DSC) and thermal-infrared spectrometry online (DSC-IR) analyses. Using DSC traces collected from different heating rates, the kinetic and thermodynamic parameters of thermolysis of raw and nano-explosives were calculated (activation energy (EK), pre-exponential factor (lnAK), rate constant (k), activation heat (ΔH≠), activation free energy (ΔG≠), activation entropy (ΔS≠), critical temperature of thermal explosion (Tb), and critical heating rate of thermal explosion (dT/dt)Tb). The results indicated that nano-explosives were of different kinetic and thermodynamic properties from starting explosives. In addition, the gas products for thermal decomposition of nano-HNS and nano-TATB were detected. Although HNS and TATB are both nitro explosives, the decomposition products of the two were different. A mechanism to explain the difference is proposed.

  14. Spot test for 1,3,5-triamino-2,4,6-trinitrobenzene, TATB

    DOEpatents

    Harris, Betty W.

    1986-01-01

    A simple, sensitive and specific spot test for 1,3,5-triamino-2,4,6-trinitrobenzene, TATB, is described. Upon the application of the composition of matter of the present invention to samples containing in excess of 0.1 mg of this explosive, a bright orange color results. Interfering species such as TNT and Tetryl can be removed by first treating the sample with a solvent which does not dissolve much of the TATB, but readily dissolves these explosives.

  15. Spot test for 1,3,5-triamino-2,4,6-trinitrobenzene, TATB

    DOEpatents

    Harris, B.W.

    1984-11-29

    A simple, sensitive and specific spot test for 1,3,5-triamino-2,4,6-trinitrobenzene, TATB, is described. Upon the application of the composition of matter of the subject invention to samples containing in excess of 0.1 mg of this explosive, a bright orange color results. Interfering species such as TNT and Tetryl can be removed by first treating the sample with a solvent which does not dissolve the TATB, but readily dissolves these interfering explosives.

  16. Chemistry resolved kinetic flow modeling of TATB based explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark

    2012-03-01

    Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.

  17. Determination of the radiation resistance order of high explosives by the two dimensional correlation X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Sui, Heliang; Hao, Xiaofei; Luo, Yiwei; Xu, Jinjiang; Zhong, Fachun; Xu, Ruijuan

    2017-09-01

    Two-dimensional X-ray photoelectron spectroscopy (2DXPS) was employed to obtain the radiation resistance order of high explosives. Mixed hexanitrohexaazaisowurtzitane (CL-20) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were irradiated by X-ray radiation. The time-dependent N1s XPS spectra were collected. 2DXPS was used to analyze the variation of the binding energy peaks. The main degradation time of TATB was longer than that of CL-20. CL-20 changes occurred prior to that of TATB during radiation. These changes suggest that TATB exhibited higher radiation resistance property than CL-20. 2DXPS is a very useful method to distinguish the radiation resistance orders of materials.

  18. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P A; Fried, L E; Howard, W M

    2011-07-21

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonationmore » wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.« less

  19. A small-scale experiment using microwave interferometry to investigate detonation and shock-to-detonation transition in pressed TATB

    NASA Astrophysics Data System (ADS)

    Renslow, Peter John

    A small-scale characterization test utilizing microwave interferometry was developed to dynamically measure detonation and run to detonation distance in explosives. The technique was demonstrated by conducting two experimental series on the well-characterized explosive triaminotrinitrobenzene (TATB). In the first experiment series, the detonation velocity was observed at varying porosity. The velocity during TATB detonation matched well with predictions made using CHEETAH and an empirical relation from the Los Alamos National Laboratory (LANL). The microwave interferometer also captured unsteady propagation of the reaction when a low density charge was near the failure diameter. In the second experiment series, Pop-plots were produced using data obtained from shock initiation of the TATB through a polymethyl methacrylate (PMMA) attenuator. The results compared well to wedge test data from LANL despite the microwave interferometer test being of substantially smaller scale. The results showed the test method is attractive for rapid characterization of new and improvised explosive materials.

  20. Synthesis of trinitrophloroglucinol and triaminotrinitrobenzene (TATB)

    DOEpatents

    Mitchell, Alexander R [Livermore, CA; Coburn, Michael D [Santa Fe, NM; Lee, Gregory S [San Ramon, CA; Schmidt, Robert D [Livermore, CA; Pagoria, Philip F [Livermore, CA; Hsu, Peter C [Pleasanton, CA

    2006-06-06

    A method to convert surplus nitroarene explosives into trinitrophloroglucinol and triaminotrinitrobenzene (TATB) is described. Picric acid is directly aminated to diaminopicric acid, which is converted to trinitrophloroglucinol and triaminotrinitrobenzene.

  1. Anisotropy in the Ratchet Growth of PBX 9502

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Ricardo Blum; Liu, Cheng; Thompson, Darla Graff

    2015-03-12

    TATB-based compactions and composites are known to undergo “ratchet growth”, an irreversible volume increase that occurs upon heating or cooling of a specimen. Ratchet growth likely arises because the coefficient of thermal expansion of the TATB crystals is strongly anisotropic, but the exact mechanism is not well-understood. TATB crystals in solid, plastic-bonded, explosive PBX 9502 parts can have a preferred crystallographic orientation (texture) caused by the compaction process. As a result, the irreversible strain associated with PBX 9502 ratchet growth is anisotropic. The present paper relates the magnitude of ratchet growth to the crystalline anisotropy of the TATB crystals. Themore » crystalline anisotropy is measured by x-ray diffraction and the ratchet growth is measured by a digital image-correlation technique.« less

  2. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codesmore » (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the reactivity of TATB well into the formation of several stable gas products, such as H{sub 2}O, N{sub 2}, and CO{sub 2}. Although complex chemical transformations are occurring continuously in the dynamical, high temperature, reactive environment of our simulations, a simple overall scheme for the decomposition of TATB emerges: Water is the earliest decomposition products to form, followed by a polymerization (or condensation) process in which several TATB remaining fragments are joined together, initiating the early step in the formation of high-nitrogen clusters, along with stable products such as N{sub 2} and CO{sub 2}. Remarkably, these clusters with high concentration of carbon and nitrogen (and little oxygen) remain dynamically stable for the remaining period of the simulations. Our simulations, thus, reveal a hitherto unidentified region of high concentrations of nitrogen-rich heterocyclic clusters in reacting TATB, whose persistence impede further reactivity towards final products of fluid N{sub 2} and solid carbon. These simulations also predict significant populations of charged species such as NCO{sup -}, H{sup +}, OH{sup -}, H{sub 3}O{sup +}, and O{sup -2}, the first such observation in a reacting explosive. Finally, A reduced four steps, global reaction mechanism with Arrhenius kinetic rates for the decomposition of TATB, along with comparative Cheetah decomposition kinetics at various temperatures has been constructed and will be discussed.« less

  3. Performance and Shock Sensitivity Evaluations of Reduced Sensitivity Explosives

    NASA Astrophysics Data System (ADS)

    Bowden, Patrick; Tappan, Bryce; Schmitt, Matthew; Lichthardt, Joseph; Hill, Larry

    2017-06-01

    Making high explosives that possess insensitivity on par with TATB-based plastic bonded explosives (PBXs), while outperforming them, has proven to be a difficult challenge. Many molecules that have challenged TATB have fallen short in either small-scale sensitivity (impact, friction), thermal stability, or possessing a shock sensitivity that is either too high or too low. Recently, an alternative approach to single-molecule-based PBXs has been blending and/or co-crystallizing explosive molecules to address shortcomings of individual components. With this approach in mind, formulations have been prepared containing 1,1-diamino-2,2-dinitroethene (DADNE or FOX-7) or 3,3'-diamino-4,4'-azoxyfurazan (DAAF) with 3-nitro-1,2,4-triazole-5-one (NTO). Detailed characterization of these mixtures has been described in a concurrent study. Here we focus on in depth performance metrics such as cylinder wall expansion and CJ pressure (via free surface velocity) and shock sensitivity, by small-scale gap-testing, were investigated as a function of weight percentages of the components. Results will be contrasted with known insensitive high explosives.

  4. Ultrafast Shock Compression Hugoniot Data of beta-CL-20 and TATB Thin Films

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Armstrong, Michael; Grivickas, Paulius; Tappan, Alexander; Kohl, Ian; Rodriguez, Mark; Knepper, Robert; Crowhurst, Jonathan; Stavrou, Elissaios; Bastea, Sorin

    2017-06-01

    The shock induced initiation threshold of two energetic materials, CL-20 and TATB are remarkably different; CL-20 is a relatively shock sensitive energetic material and TATB is considered an insensitive high explosive (IHE). Here we report ultrafast laser-based shockwave hydrodynamic data on the 100 ps timescale with 10 ps time resolution to further develop density dependent unreacted shock Hugoniot equations of state (UEOS) and to elucidate ultrafast timescale shock initiation processes for these two vastly different HEs. Thin film samples were made by vacuum thermal evaporation of the explosive on a deposited aluminum ablator layer. The deposited explosives were characterized by scanning electron microscopy, surface profilometry, and x-ray diffraction. Our preliminary UEOS results (up range of 1.3 - 1.8 km/s) from shock compressed beta-CL-20 agree reasonably well with extrapolated pseudo-velocities computed from epsilon-CL-20 isothermal diamond-anvil cell EOS measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporati.

  5. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Lawrence; Howard, Mike; Levesque, George; Souers, Clark

    2011-06-01

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to ALE hydrodynamics codes to model detonations. We term our model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculate EOS values based on the concentrations. A validation suite of model simulations compared to recent high fidelity metal push experiments at ambient and cold temperatures has been developed. We present here a study of multi-time scale kinetic rate effects for these experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.

  6. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparisonmore » of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.« less

  7. On the Explicit Determination of the Chapman-Jouguet Parameters for an Explosive Compound

    DTIC Science & Technology

    2014-11-19

    relations were tested for the very well characterise explosives PETN, HMX , RDX, TATB, TNT and the calculated values obtained for the C-J parameters...Cyclotrimethylenetrinitramine (RDX), Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine ( HMX ), Pentaerythritol tetranitrate (PETN) and Triamino...the Chapman-Jouguet parameters of PETN, HMX , RDX and TATB Table 1 below provides a summary of the relations in order of requirement to obtain the C

  8. Studying multiply shocked states in HMX and TATB based explosives with a gas gun ring up geometry

    NASA Astrophysics Data System (ADS)

    Ferguson, James; Finnegan, Simon; Millett, Jeremy; Goff, Michael

    2017-06-01

    A series of ring up shots investigating partially reacted and multiply shocked states in both HMX and TATB based explosives are reported on. Results of experiments using PCTFE and LiF in place of the explosives are also described. The experiments were performed using 50 mm diameter bore and 70 mm diameter bore single stage gas guns. By locating the target between a high impedance copper flyer and sapphire window, shocks of increasing magnitude are reflected into the target at each interface. The particle velocity at the target-window interface was measured using multiple points of HetV reflected from an 800 nm layer of gold sputtered onto the sapphire. The stress state at the target-flyer interface were observed using manganin gauges. A range of different input pressures were investigated, these were picked to either allow a comparison to double shock and particle velocity work, or to provide the maximum number of rings within the one dimensional time. For the inert shots input pressures matched the explosive shots.

  9. Using Neutron Diffraction to Investigate Texture Evolution During Consolidation of Deuterated Triaminotrinitrobenzene (d-TATB) Explosive Powder

    DOE PAGES

    Luscher, Darby J.; Yeager, John D.; Clausen, Bjørn; ...

    2017-05-14

    Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. A complete understanding of the orientation distribution of TATB particles throughout a PBX charge is required to understand spatially variable, anisotropic macroscale properties of the charge. Although texture of these materials can be measured after they have been subjected to mechanical or thermal loads, measuring texture evolution in situ is important in order to identify mechanisms of crystal deformation and reorientation used to better inform thermomechanical models. Neutron diffraction measurements were used to estimate crystallographic reorientation while deuterated TATB (d-TATB) powder was consolidated into amore » cylindrical pellet via a uniaxial die-pressing operation at room temperature. Both the final texture of the pressed pellet and the in situ evolution of texture during pressing were measured, showing that the d-TATB grains reorient such that (001) poles become preferentially aligned with the pressing direction. A compaction model is used to predict the evolution of texture in the pellet during the pressing process, finding that the original model overpredicted the texture strength compared to these measurements. The theory was extended to account for initial particle shape and pore space, bringing the results into good agreement with the data.« less

  10. Using Neutron Diffraction to Investigate Texture Evolution During Consolidation of Deuterated Triaminotrinitrobenzene (d-TATB) Explosive Powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luscher, Darby J.; Yeager, John D.; Clausen, Bjørn

    Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. A complete understanding of the orientation distribution of TATB particles throughout a PBX charge is required to understand spatially variable, anisotropic macroscale properties of the charge. Although texture of these materials can be measured after they have been subjected to mechanical or thermal loads, measuring texture evolution in situ is important in order to identify mechanisms of crystal deformation and reorientation used to better inform thermomechanical models. Neutron diffraction measurements were used to estimate crystallographic reorientation while deuterated TATB (d-TATB) powder was consolidated into amore » cylindrical pellet via a uniaxial die-pressing operation at room temperature. Both the final texture of the pressed pellet and the in situ evolution of texture during pressing were measured, showing that the d-TATB grains reorient such that (001) poles become preferentially aligned with the pressing direction. A compaction model is used to predict the evolution of texture in the pellet during the pressing process, finding that the original model overpredicted the texture strength compared to these measurements. The theory was extended to account for initial particle shape and pore space, bringing the results into good agreement with the data.« less

  11. Compatibility of 2, 4, 6, 8, 10,12-Hexanitrohexaazaisowurtzitane with a Selection of Insensitive Explosives

    NASA Astrophysics Data System (ADS)

    Li, Xi; Lin, Qiu-han; Zhao, Xin-Ying; Han, Zhi-Wei; Wang, Bo-liang

    2017-04-01

    Thermal techniques (differential scanning calorimetry (DSC) and the vacuum stability test (VST)), according to STANAG 4147, and non-thermal techniques (Fourier transform infrared (FTIR) spectrometry and X-ray diffractometry (XRD)) were used to examine compatibility issues for 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) with a selection of insensitive explosives, including nitroguanidine (NQ), 2,4,6-trinitrotoluene (TNT), 2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO), 2,4,6-triamino-1,3,5-trinitrobenzene (TATB), 3-nitro-1,2,4-triazol-5-one (NTO) and 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105). DSC measurements showed that ANPyO, TATB, NTO and LLM-105 were compatible with CL-20. The compatibility of CL-20/NQ, CL-20/TNT, CL-20/ANPyO, CL-20/TATB, CL-20/NTO and CL-20/LLM-105 mixtures was further explored using the VST, which revealed that all the selected insensitive explosives were compatible with CL-20. Possible chemical interactions were suspected for CL-20/TATB from the FTIR results and for CL-20/NTO from XRD analysis. In summary, ANPyO and LLM-105 demonstrated the optimal compatibility with CL-20.

  12. Effect of microwave irradiation on TATB explosive (II): temperature response and other risk.

    PubMed

    Yu, Weifei; Zhang, Tonglai; Zuo, Jun; Huang, Yigang; Li, Gang; Han, Chao; Li, Jinshan; Huang, Hui

    2010-01-15

    TATB (1,3,5-triamino-2,4,6-trinitrobenzene) explosives were safely irradiated with microwave and showed no visible change according to XPS and XRD spectra. Temperature of TATB sample increased quickly at the beginning and gently during sequent continuous irradiation with temperature less than 140 degrees C after 60 min, 480 W irradiation, and increased more quickly in 300 g at 480 W than in 150 g at 480 W, both implied that heat dissipation was in the majority of microwave energy. Two major risk factors in microwave irradiation were concerned including overheating which should be avoidable with temperature monitor and microwave discharge which should be controllable experimentally though dielectric breakdown mechanism was not elucidated theoretically yet.

  13. Shock temperature dependent rate law for plastic bonded explosives

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq D.

    2018-04-01

    A reactive flow model for the tri-amino-tri-nitro-benzene (TATB) based plastic bonded explosive PBX 9502 (95% TATB, 5% polymeric binder Kel-F 800) is presented. This newly devised model is based primarily on the shock temperature of the material, along with local pressure, and accurately models a broader range of detonation and initiation scenarios. Specifically, sensitivity changes to the initial explosive temperature are accounted for naturally and with a single set of parameters. The equation of state forms for the reactants and products, as well as the thermodynamic closure of pressure and temperature equilibration, are carried over from the Wescott-Stewart-Davis (WSD) model [Wescott et al., J. Appl. Phys. 98, 053514 (2005) and "Modeling detonation diffraction and dead zones in PBX-9502," in Proceedings of the Thirteenth International Detonation Symposium (2006)]. This newly devised model, with Arrhenius state dependence on the shock temperature, based on the WSD equation of states, is denoted by AWSD. Modifying an existing implementation of the WSD model to the AWSD model in a hydrocode is a rather straightforward procedure.

  14. Establishment of a Super Small-Scale Cookoff Bomb (SSCB) Test Facility at MRL

    DTIC Science & Technology

    1989-01-01

    major areas of interest are cookoff of explosives and PBX formulations. CONTENTS Page 1. INTRODUCTION 7 2. EXPERIMENTAL 8 2.1 Description of SSCB Test...the slow heating rate than at the fast heating rate, in accordance with the generally accepted belief. Similarly, as the TATB content increased, the...correlation with TATB content ), and explosive surface temperatures of 187-246 *C were found at the slow heating rate, with a marked increase in the temperature

  15. Ignition and growth reactive flow modeling of recent HMX/TATB detonation experiments

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2017-01-01

    Two experimental studies in which faster HMX detonation waves produced oblique detonation waves in adjoining slower detonating TATB charges were modeled using the Ignition and Growth (I&G) reactive flow detonation model parameters for PBX 9501 (95% HMX / 2.5% Estane / 2.5% BDNPA/F) and PBX 9502 (95% TATB / 5% Kel-F binder). Matignon et al. used X1 explosive (96% HMX / 4% binder) to drive an oblique detonation wave into an attached charge of T2 explosive (97% TATB / 3% binder). The flow angles were measured in the T2 shock initiation region and in steady T2 detonation. Anderson et al. used detonating PBX 9501 slabs of various thicknesses ranging from 0.56 mm to 2.5 mm to create oblique detonation waves in 8 mm thick slabs of PBX 9502. Several diagnostics were employed to: photograph the waves; measure detonation velocities and flow angles; and determine the output of the PBX 9501 slabs, the PBX 9502 slabs, and the "initiation regions" using LiF windows and PDV probes.

  16. A novel method for the measurement of the von Neumann spike in detonating high explosives

    NASA Astrophysics Data System (ADS)

    Sollier, A.; Bouyer, V.; Hébert, P.; Doucet, M.

    2016-06-01

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressure lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.

  17. Detonation Reaction Zones in Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2006-07-01

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich - von Neumann - Doling (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes are discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).

  18. LX-17-1 Stockpile Returned Material Lot Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagliardi, F.; Pease, S.; Willey, T.

    2015-02-18

    Many different lots of LX-17 have been produced over the years. Two varieties of LX-17, LX-17-0 and LX-17-1, have at one point or another been a part of the Livermore stockpile systems. LX-17-0 was made with dry-aminated TATB whereas LX-17-1 was made with wet-aminated TATB. Both versions have the same TATB to Kel-F 800 mass ratio of 92.5%/7.5%. Both kinds of LX-17 were formulated at Holston during the late 1970s or early to mid-1980s and were certified to have met the necessary specifications that cover the purity, particle size range, explosive to binder ratio, etc. In recent years, Trevor Willymore » and others have performed a detailed evaluation of solid parts made from each of the LX-17 lots manufactured at Holston. Using the Advanced Light Source at LBNL, Willey and his colleagues radiographed many samples from isostatic pressings using the same scanning conditions. In their investigation they identified that even though the bulk composition can be the same, there may exist a large spread in how smoothly the TATB and binder were distributed within the radiographed volume of different lots of material.1 Overall, the dry-aminated TATB-based material, LX-17-0, had a smooth TATB and binder distribution, whereas the wet-aminated TATB-based LX-17-1 showed a wide range of binder distributions. The results for five different LX-17-1 lots are shown in Figure 1. The wide variation in material distribution has raised the question about whether or not this sort variability will cause significant differences in mechanical behavior.« less

  19. Recent Progress on the Conversion of Surplus Picric Acid/Explosive D to Higher Value Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.Mitchell, A; Hsu, P C; Coburn, M D

    2004-07-06

    The global demilitarization of nuclear and conventional munitions is producing millions of pounds of surplus energetic materials. Historically, energetic materials (high explosives, propellants, and pyrotechnics) have been disposed of by open burning/open detonation (OB/OD). The use of OB/OD is becoming unacceptable due to public concerns and increasingly stringent environmental regulations. Clearly, there is a great need to develop environmentally sound and cost-effective alternatives to OB/OD. The conversion of surplus picric acid and/or ammonium picrate (Explosive D) to1,3,5-triamino-2,4,6- trinitrobenzene (TATB) has been subject of extensive process development studies at Lawrence Livermore National Laboratory (LLNL). LLNL, under the direction and sponsorship ofmore » the U.S. Army Defense Ammunition Center (DAC), is developing a process for the conversion of picric acid to TATB on a larger scale. In FY 03, a 10 g per batch process was developed with good results. Development for a one pound per batch system is required as part of overall scale up process for producing TATB from the surplus feedstocks.« less

  20. Evaluation of One-Sided Nuclear Magnetic Resonance for Remote Detection of Explosives

    DTIC Science & Technology

    1987-07-01

    chemical structure indicated in Figure -11-3 (18). The proton NMR relaxation properties of TATB were determined by Garroway and Resing (2i). At a Larmor...Pergamon, Oxford, 21. A. N. Garroway -and H. A. Resing, "Proton Relaxat_,on_ :n ,.’,3, 5--Tri~amino-2,4,6-Trinitrobenzene (TATB)", Naval Researon

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sollier, A., E-mail: arnaud.sollier@cea.fr; Bouyer, V.; Hébert, P.

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressuremore » lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.« less

  2. SURFplus Model Calibration for PBX 9502

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2017-12-06

    The SURFplus reactive burn model is calibrated for the TATB based explosive PBX 9502 at three initial temperatures; hot (75 C), ambient (23 C) and cold (-55 C). The CJ state depends on the initial temperature due to the variation in the initial density and initial specific energy of the PBX reactants. For the reactants, a porosity model for full density TATB is used. This allows the initial PBX density to be set to its measured value even though the coeffcient of thermal expansion for the TATB and the PBX differ. The PBX products EOS is taken as independent ofmore » the initial PBX state. The initial temperature also affects the sensitivity to shock initiation. The model rate parameters are calibrated to Pop plot data, the failure diameter, the limiting detonation speed just above the failure diameters, and curvature effect data for small curvature.« less

  3. Cluster Evolution at Early Stages of 1,3,5-Triamino-2,4,6-trinitrobenzene under Various Heating Conditions: A Molecular Reactive Force Field Study.

    PubMed

    Wen, Yushi; Xue, Xianggui; Long, Xinping; Zhang, Chaoyang

    2016-06-09

    We carried out reactive molecular dynamics simulations by ReaxFF to study the initial events of an insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) against various thermal stimuli including constant-temperature heating, programmed heating, and adiabatic heating to simulate TATB suffering from accidental heating in reality. Cluster evolution at the early stage of the thermal decomposition of condensed TATB was the main focus as cluster formation primarily occurs when TATB is heated. The results show that cluster formation is the balance of the competition of intermolecular collision and molecular decomposition of TATB, that is, an appropriate temperature and certain duration are required for cluster formation and preservation. The temperature in the range of 2000-3000 K was found to be optimum for fast formation and a period of preservation. Besides, the intra- and intermolecular H transfers are always favorable, whereas the C-NO2 partition was favorable at high temperature. The simulation results are helpful to deepen the insight into the thermal properties of condensed TATB.

  4. On the violence of thermal explosion in solid explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chidester, S.K.; Tarver, C.M.; Green, L.G.

    Heavily confined cylinders of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and triaminotrinitrobenzene (TATB) were heated at rates varying from 2 C/min to 3.3 C/h. Fourteen of the cylinders were hollow, and inner metallic liners with small heaters attached were used to produce uniform temperatures just prior to explosion. A complex thermocouple pattern was used to measure the temperature history throughout the charge and to determine the approximate location where the runaway exothermic reaction first occurred. The violence of the resulting explosion was measured using velocity pin arrays placed inside and outside of the metal confinement cylinders, flash x-rays, overpressure gauges, and fragment collection techniques.more » Five cylinders were intentionally detonated for violence comparisons. The measured temperature histories, times to explosion, and the locations of first reaction agreed closely with those calculated by a two-dimensional heat transfer code using multistep chemical decomposition models. The acceleration of the confining metal cylinders by the explosion process was accurately simulated using a two-dimensional pressure dependent deflagration reactive flow hydrodynamic mode. The most violent HMX thermal explosions gradually accelerated their outer cases to velocities approaching those of intentional detonations approximately 120 {micro}m after the onset of explosion. The measured inner cylinder collapse velocities from thermal explosions were considerably lower than those produced by detonations. In contrast to the HMX thermal reactions, no violent thermal explosions were produced by the TATB-based explosive LX-17. A heavily confined, slowly heated LX-17 test produced sufficient pressure to cause a 0.1 cm bend in a 2 cm thick steel plate.« less

  5. The role of viscosity in TATB hot spot ignition

    NASA Astrophysics Data System (ADS)

    Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.

    2012-03-01

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

  6. Vicarious nucleophilic substitution to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene

    DOEpatents

    Mitchell, A.R.; Pagoria, P.F.; Schmidt, R.D.

    1996-10-29

    The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0 and 50 C for between about 0.1 and 24 hr, a trinitroaromatic compound of the structure shown within where X, Y, and Z are each independently selected from --H, or --NH{sub 2}, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen, with an amount effective to produce DATB or TATB, or 1,1,1-trialkylhydrazinium halide wherein alkyl is selected from methyl, ethyl, propyl or butyl and halide is selected from chloride, bromide or iodide, in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulfoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present primarily DATB and picramide is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are useful specialty explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  7. Cluster evolution during the early stages of heating explosives and its relationship to sensitivity: a comparative study of TATB, β-HMX and PETN by molecular reactive force field simulations.

    PubMed

    Wen, Yushi; Zhang, Chaoyang; Xue, Xianggui; Long, Xinping

    2015-05-14

    Clustering is experimentally and theoretically verified during the complicated processes involved in heating high explosives, and has been thought to influence their detonation properties. However, a detailed description of the clustering that occurs has not been fully elucidated. We used molecular dynamic simulations with an improved reactive force field, ReaxFF_lg, to carry out a comparative study of cluster evolution during the early stages of heating for three representative explosives: 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), β-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and pentaerythritol tetranitrate (PETN). These representatives vary greatly in their oxygen balance (OB), molecular structure, stability and experimental sensitivity. We found that when heated, TATB, HMX and PETN differ in the size, amount, proportion and lifetime of their clusters. We also found that the clustering tendency of explosives decreases as their OB becomes less negative. We propose that the relationship between OB and clustering can be attributed to the role of clustering in detonation. That is, clusters can form more readily in a high explosive with a more negative OB, which retard its energy release, secondary decomposition, further decomposition to final small molecule products and widen its detonation reaction zone. Moreover, we found that the carbon content of the clusters increases during clustering, in accordance with the observed soot, which is mainly composed of carbon as the final product of detonation or deflagration.

  8. Insensitive fuze train for high explosives

    DOEpatents

    Cutting, Jack L.; Lee, Ronald S.; Von Holle, William G.

    1994-01-01

    A generic insensitive fuze train to initiate insensitive high explosives, such as PBXW-124. The insensitive fuze train uses a slapper foil to initiate sub-gram quantities of an explosive, such as HNS-IV or PETN. This small amount of explosive drives a larger metal slapper onto a booster charge of an insensitive explosive, such as UF-TATB. The booster charge initiates a larger charge of an explosive, such as LX-17, which in turn, initiates the insensitive high explosive, such as PBXW-124.

  9. Insensitive fuze train for high explosives

    DOEpatents

    Cutting, J.L.; Lee, R.S.; Von Holle, W.G.

    1994-01-04

    A generic insensitive fuze train to initiate insensitive high explosives, such as PBXW-124 is described. The insensitive fuze train uses a slapper foil to initiate sub-gram quantities of an explosive, such as HNS-IV or PETN. This small amount of explosive drives a larger metal slapper onto a booster charge of an insensitive explosive, such as UF-TATB. The booster charge initiates a larger charge of an explosive, such as LX-17, which in turn, initiates the insensitive high explosive, such as PBXW-124. 3 figures.

  10. New Approach to Predict Hugoniot Properties of Explosives Materials

    DTIC Science & Technology

    2015-03-12

    Cyclotrimethylenetrinitramine (RDX), Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine ( HMX ), Pentaerythritol tetranitrate (PETN) and Triamino-trinitrobenzene...experimental values. The four materials chosen are RDX, HMX , PETN and TATB. The detonation velocity is one of the key performance characteristics of energetic...were used and the gas products of reaction were assumed as an ideal gas. The four materials to be characterised are RDX, HMX , PETN and TATB and their

  11. The Role of Viscosity in TATB Hot Spot Ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, L E; Zepeda-Ruis, L; Howard, W M

    2011-08-02

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse ismore » closest to the viscous limit.« less

  12. Amination of electrophilic aromatic compounds by vicarious nucleophilic substitution

    DOEpatents

    Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.

    2000-01-01

    The present invention relates to a process to aminate electrophilic aromatic compounds by vicarious nucleophilic substitution of hydrogen using quaternary hydrazinium salts. The use of trialkylhydrazinium halide, e.g., trimethylhydrazinium iodide, as well as hydroxylamine, alkoxylamines, and 4-amino-1,2,4-triazole to produce aminated aromatic structures, such as 1,3-diamino-2,4,6-trinitrobenzene (DATB), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 3,5-diamino-2,4,6-trinitrotoluene (DATNT), is described. DATB and TATB are useful insensitive high explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  13. Charge transfer in TATB and HMX under extreme conditions.

    PubMed

    Zhang, Chaoyang; Ma, Yu; Jiang, Daojian

    2012-11-01

    Charge transfer is usually accompanied by structural changes in materials under different conditions. However, the charge transfer in energetic materials that are subjected to extreme conditions has seldom been explored by researchers. In the work described here, the charge transfer in single molecules and unit cells of the explosives TATB and HMX under high temperatures and high pressures was investigated by performing static and dynamic calculations using three DFT methods, including the PWC functional of LDA, and the BLYP and PBE functionals of GGA. The results showed that negative charge is transferred from the nitro groups of molecular or crystalline TATB and HMX when they are heated. All DFT calculations for the compressed TATB unit cell indicate that, generally, negative charge transfer occurs to its nitro groups as the compression increases. PWC and PBE calculations for crystalline HMX show that negative charge is first transferred to the nitro groups but, as the compression increases, the negative charge is transferred from the nitro groups. However, the BLYP calculations indicated that there was gradual negative charge transfer to the nitro groups of HMX, similar to the case for TATB. The unrelaxed state of the uniformly compressed TATB causes negative charge to be transferred from its nitro groups, in contrast to what is seen in the relaxed state. Charge transfer in TATB is predicted to occur much more easily than in HMX.

  14. Propagation of Axially Symmetric Detonation Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druce, R L; Roeske, F; Souers, P C

    2002-06-26

    We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakoutmore » time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.« less

  15. Temperature of shocked plastic bonded explosive PBX 9502 measured with spontaneous Stokes/anti-Stokes Raman

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn D.; Aslam, Tariq D.; Pierce, Timothy H.; Hare, Steven J.; Byers, Mark E.

    2018-01-01

    Raman spectra and velocimetry of shocked PBX 9502 (plastic bonded explosive composed of 95% triaminotrinitrobenzene (TATB) and 5% 3M Company Kel F-800 polymer binder) are reported with the Stokes/anti-Stokes ratio used to determine temperature after the shock reflects from a lithium fluoride window. Final pressures up to 14.5 GPa were tested, but the pressure induced absorption of TATB caused the Raman signal to decrease exponentially with pressure. The reflected shock temperature could be determined to 7 GPa, with an average increase of 14.9 K/GPa. Suggestions to adapt the technique to permit thermometry at higher temperatures are discussed, as are comparisons to a recently proposed equation of state for PBX 9502.

  16. Vicarious nucleophilic substitution to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene

    DOEpatents

    Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.

    1996-01-01

    The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,-trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0.degree. and 50.degree. C. for between about 0.1 and 24 hr, a trinitroaromatic compound of structure V: ##STR1## wherein X, Y, and Z are each independently selected from --H, or --NH.sub.2, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen, with an amount effective to produce DATB or TATB of 1,1,1-trialkylhydrazinium halide wherein alkyl is selected from methyl, ethyl, propyl or butyl and halide is selected from chloride, bromide or iodide. in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulphoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present primarily DATB and picramide is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are useful specialty explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  17. Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives.

    PubMed

    Bernstein, Jonathan

    2018-02-28

    Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.

  18. Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives

    NASA Astrophysics Data System (ADS)

    Bernstein, Jonathan

    2018-02-01

    Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.

  19. Influence of Small Change of Porosity on Shock Initiation of an HMX/TATB/Viton Explosive and Ignition and Growth Modeling

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Hussain, Tariq; Huang, Fenglei; Duan, Zhuoping

    2016-07-01

    All solid explosives in practical use are more or less porous. Although it is known that the change in porosity affects the shock sensitivity of solid explosives, the effect of small changes in porosity on the sensitivity needs to be determined for safe and efficient use of explosive materials. In this study, the influence of a small change in porosity on shock initiation and the subsequent detonation growth process of a plastic-bonded explosive PBXC03, composed of 87% cyclotetramethylene-tetranitramine (HMX), 7% triaminotrinitrobenzene (TATB), and 6% Viton by weight, are investigated by shock to detonation transition experiments. Two explosive formulations of PBXC03 having the same initial grain sizes pressed to 98 and 99% of theoretical mass density (1.873 g/cm3) respectively are tested using the in situ manganin piezoresistive pressure gauge technique. Numerical modeling of the experiments is performed using an ignition and growth reactive flow model. Reasonable agreement with the experimental results is obtained by increasing the growth term coefficient in the Lee-Tarver ignition and growth model with porosity. Combining the experimental and simulation results shows that the shock sensitivity increases with porosity for PBXC03 having the same explosive initial grain sizes for the pressures (about 3.1 GPa) applied in the experiments.

  20. In-Situ X-ray Tomography Observation of Structure Evolution in 1,3,5-Triamino-2,4,6-Trinitrobenzene Based Polymer Bonded Explosive (TATB-PBX) under Thermo-Mechanical Loading.

    PubMed

    Yuan, Zeng-Nian; Chen, Hua; Li, Jing-Ming; Dai, Bin; Zhang, Wei-Bin

    2018-05-04

    In order to study the fracture behavior and structure evolution of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB)-based polymer bonded explosive in thermal-mechanical loading, in-situ studies were performed on X-ray computed tomography system using quasi-static Brazilian test. The experiment temperature was set from −20 °C to 70 °C. Three-dimensional morphology of cracks at different temperatures was obtained through digital image process. The various fracture modes were compared by scanning electron microscopy. Fracture degree and complexity were defined to quantitatively characterize the different types of fractures. Fractal dimension was used to characterize the roughness of the crack surface. The displacement field of particles in polymer bonded explosive (PBX) was used to analyze the interior structure evolution during the process of thermal-mechanical loading. It was found that the brittleness of PBX reduced, the fracture got more tortuous, and the crack surface got smoother as the temperature rose. At lower temperatures, especially lower than glass transition temperature of binders, there were slipping and shear among particles, and particles tended to displace and disperse; while at higher temperatures, especially above the glass transition temperature of binders, there was reorganization of particles and particles tended to merge, disperse, and reduce sizes, rather than displacing.

  1. High explosive corner turning performance and the LANL Mushroom test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, L.G.; Seitz, W.L.; Forest, C.A.

    1997-09-01

    The Mushroom test is designed to characterize the corner turning performance of a new generation of less insensitive booster explosives. The test is described in detail, and three corner turning figures-of-merit are examined using pure TATB (both Livermore`s Ultrafine and a Los Alamos research blend) and PBX9504 as examples.

  2. Anisotropic Energy Transport Properties of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB)

    NASA Astrophysics Data System (ADS)

    Kroonblawd, Matthew P.

    Anisotropic energy transport properties were determined theoretically for crystals of the insensitive explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) using molecular dynamics simulations. Determination of these properties is necessary for the analysis and interpretation of molecular dynamics predictions of transient processes such as shock response and hot spot formation/relaxation and is similarly important for the accurate parameterization of meso- and continuum-scale engineering models aimed at understanding complex processes such as ignition and growth leading to detonation. TATB crystal exhibits a graphitic-like layered packing structure with a two-dimensional hydrogen-bonding network that forms within, but not between, the molecule-thick layers that comprise the crystal. This structure is thought to be the primary factor behind the significant anisotropy in many physical properties of TATB crystals. Anisotropic thermal conductivity coefficients were determined for initially defect-free and defective TATB crystals and isotropic values were determined for the liquid at temperatures and pressures up to (1800 K, 2.0 GPa). The room temperature, atmospheric pressure thermal conductivity for TATB is predicted to be generally greater and more anisotropic than the thermal conductivities of other molecular explosives; conduction within the layers is approximately 70% greater than conduction between the layers. The conductivity is predicted to decrease with temperature approximately as λ ∝ 1/T over the interval 200 K ≤ T ≤ 700 K and to linearly increase with pressure up to 2.5 GPa. Direction-dependent relaxation of idealized one-dimensional hot spots was studied. Results from hot spot relaxation simulations were compared with and fit to solutions for the one-dimensional diffusive heat equation by treating the thermal di.usivity as a parameter to assess the validity of using continuum models to describe heat transport in TATB on length scales below 10 nm. A dissipative particle dynamics (DPD) at constant energy (DPDE) coarsegrained model is developed for TATB and applied to micron-scale shock simulations wherein the predicted shock response is shown to be highly sensitive to a model parameter controlling kinetics of energy transport between inter- and intramolecular degrees of freedom. A generalized crystal-cutting method is developed that enables facile construction of three-dimensionally periodic simulation cells containing arbitrarily oriented single crystals and crystal-crystal interfaces for materials of arbitrary symmetry class. Strategies for non-uniform sampling of molecular dynamics simulations of transient phenomena are proposed that have the potential to drastically reduce data storage costs.

  3. Modeling initiation trains based on HMX and TATB

    NASA Astrophysics Data System (ADS)

    Drake, R. C.; Maisey, M.

    2017-01-01

    There will always be a requirement to reduce the size of initiation trains. However, as the size is reduced the performance characteristics can be compromised. A detailed science-based understanding of the processes (ignition and growth to detonation) which determine the performance characteristics is required to enable compact and robust initiation trains to be designed. To assess the use of numerical models in the design of initiation trains a modeling study has been undertaken, with the aim of understanding the initiation of TATB and HMX charges by a confined, surface mounted detonator. The effect of detonator diameter and detonator confinement on the formation of dead zones in the acceptor explosives has been studied. The size of dead zones can be reduced by increasing the diameter of the detonator and by increasing the impedance of the confinement. The implications for the design of initiation trains are discussed.

  4. Dependence of Plastic TATB Shock-Wave Sensitivity on Temperature, Density and Technology Factors

    NASA Astrophysics Data System (ADS)

    Vlasov, Yu. A.; Kosolapov, V. B.; Fomicheva, L. V.; Khabarov, I. P.

    1999-06-01

    Mixed TATB-based HE is the most perspective because of the manufacture and exploitation safety of its items. At the same time the safety of these explosive, at high temperatures, which take place at emergencies, causes the certain anxiety. Plastic TATB shock-wave sensitivity (SWS) researches has shown that temperature as one of the important factors of external influence is not always the determining reason of SWS change. It is known that density influence on SWS significantly. At the same time density depends on temperature and technology of details manufacturing. In this connection in this work the temperature dependence of plastic TATB SWS was studied in view of convertible and irreversible changes of density (p) under heating at -50[C up to 90[C . It is shown that during these influences the dependence of threshold pressure of initiation (P) from temperature is explained, first of all, by change of HE density, caused by its thermal expansion (compression), and also by irreversible changes of p and HE structure, arising at heating. It is found also that the share of irreversible change of density depends on technology of HE details manufacturing and is explained by relaxation of residual pressure in them. The mentioned relaxation is finished after the first cycles of thermal influence. The value of density change, caused by this factor, depends on temperature and duration of heating.

  5. Vicarious nucleophilic substitution using 4-amino-1,2,4-triazole, hydroxylamine or O-alkylhydroxylamine to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene

    DOEpatents

    Mitchell, A.R.; Pagoria, P.F.; Schmidt, R.D.

    1997-05-27

    The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0 and 50 C for between about 0.1 and 24 hr, a trinitroaromatic compound of the structure shown where X, Y, and Z are each independently selected from the group consisting of -H and -NH{sub 2}, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen; with an effective amount of 1-amino-1,2,4-triazole, hydroxylamine or O-alkylhydroxamine to produce DATB or TATB; in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulphoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present or when hydroxylamine or its O-alkyl derivatives replace ATA primarily DATB is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are important and useful specialty explosives and intermediates for other materials.

  6. Vicarious nucleophilic substitution using 4-amino-1,2,4-triazole, hydroxylamine or O-alkylhydroxylamine to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene

    DOEpatents

    Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.

    1997-01-01

    The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,-trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0.degree. and 50.degree. C. for between about 0.1 and 24 hr, a trinitroaromatic compound of structure V: ##STR1## wherein X, Y, and Z are each independently selected from the group consisting of --H and --NH.sub.2, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen; with an effective amount of 1-amino-1,2,4-triazole, hydroxylamine or O-alkylhydroxamine to produce DATB or TATB; in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulphoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present or when hydroxylamine or its O-alkyl derivatives replace ATA primarily DATB is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are important and useful specialty explosives and intermediates for other materials.

  7. Large Area and Short-Pulse Shock Initiation of a Tatb/hmx Mixed Explosive

    NASA Astrophysics Data System (ADS)

    Guiji, Wang; Chengwei, Sun; Jun, Chen; Cangli, Liu; Jianheng, Zhao; Fuli, Tan; Ning, Zhang

    2007-12-01

    The large area and short-pulse shock initiation experiments on the plastic bonded mixed explosive of TATB(80%) and HMX(15%) have been performed with an electric gun where a Mylar flyer of 10-19 mm in diameter and 0.05˜0.30 mm in thickness was launched by an electrically exploding metallic bridge foil. The cylindrical explosive specimens (Φ16 mm×8 mm in size) were initiated by the Mylar flyers in thickness of 0.07˜0.20 mm, which induced shock pressure in specimen was of duration ranging from 0.029 to 0.109 μs. The experimental data were treated with the DRM(Delayed Robbins-Monro) procedure and to provide the initiation threshold of flyer velocities at 50% probability are 3.398˜1.713 km/s and that of shock pressure P 13.73˜5.23 GPa, respectively for different pulse durations. The shock initiation criteria of the explosive specimen at 50% and 100% probabilities are yielded. In addition, the 30° wedged sample was tested and the shock to detonation transition (SDT) process emerging on its inclined surface was diagnosed with a device consisting of multiple optical fiber probe, optoelectronic transducer and digital oscilloscope. The POP plot of the explosive has been gained from above SDT data.

  8. Shock-wave initiation of heated plastified TATB detonation

    NASA Astrophysics Data System (ADS)

    Kuzmitsky, Igor; Rudenko, Vladimir; Gatilov, Leonid; Koshelev, Alexandr

    1999-06-01

    Explosive, plastified TATB, attracts attention with its weak sensitivity to shock loads and high temperature stability ( Pthreshold ? 6.5 GPa and Tcrit ? 250 0Q). However, at its cooling to T 250 0Q plastified TATB becomes as sensitive to shock load as octogen base HE: the excitation threshold reduces down to Pthreshold 2.0 GPa. The main physical reason for the HE sensitivity change is reduction in density at heating and, hence, higher porosity of the product (approximately from 2Moreover, increasing temperature increases the growth rate of uhotf spots which additionally increases the shock sensitivity [1]. Heated TATB experiments are also conducted at VNIIEF. The detonation excitation was computed within 1D program system MAG using EOS JWL for HE and EP and LLNL kinetics [1,2,3]. Early successful results of using this kinetics to predict detonation excitation in heated plastified TATB in VNIIEF experiments with short and long loading pulses are presented. Parameters of the chemical zone of the stationary detonation wave in plastified TATB (LX-17) were computed with the data from [1]. Parameters Heated In shell Cooled Unheated ?0 , g/cm3 1.70 1.81 1.84 1.905 D , km/s 7.982 7.764 7.686 7.517 PN, GPa 45.4 45.8 35.7 32.9 PJ, GPa 27.0 27.3 27.2 26.4 ?x , mm 0.504 0.843 1.041 2.912 ?t , ns 63.1 108.6 135.5 387.4 [1] Effect of Confinement and Thermal Cycling on the Shock Initiation of LX-17 P.A. Urtiew, C.M. Tarver, J.L. Maienschein, and W.C. Tao. LLNL. Combustion and Flame 105: 43-53 (1996) [2] C.M. Tarver, P.A. Urtiew and W.C. Tao (LLNL) Effects of tandem and colliding shock waves on initiation of triaminotrinitrobenzene. J.Appl. Phys. 78(5), September 1995 [3] Craig M. Tarver, John W. Kury and R. Don Breithaupt Detonation waves in triaminotrinitrobenzene J. Appl. Phys. 82(8) , 15 October 1997.

  9. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.

    PubMed

    Zhang, Luzheng; Zybin, Sergey V; van Duin, Adri C T; Dasgupta, Siddharth; Goddard, William A; Kober, Edward M

    2009-10-08

    We report molecular dynamics (MD) simulations using the first-principles-based ReaxFF reactive force field to study the thermal decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at various densities and temperatures. TATB is known to produce a large amount (15-30%) of high-molecular-weight carbon clusters, whereas detonation of nitramines such as HMX and RDX (1,3,5-trinitroperhydro-1,3,5-triazine) generate predominantly low-molecular-weight products. In agreement with experimental observation, these simulations predict that TATB decomposition quickly (by 30 ps) initiates the formation of large carbonaceous clusters (more than 4000 amu, or approximately 15-30% of the total system mass), and HMX decomposition leads almost exclusively to small-molecule products. We find that HMX decomposes readily on this time scale at lower temperatures, for which the decomposition rate of TATB is about an order of magnitude slower. Analyzing the ReaxFF MD results leads to the detailed atomistic structure of this carbon-rich phase of TATB and allows characterization of the kinetics and chemistry related to this phase and their dependence on system density and temperature. The carbon-rich phase formed from TATB contains mainly polyaromatic rings with large oxygen content, leading to graphitic regions. We use these results to describe the initial reaction steps of thermal decomposition of HMX and TATB in terms of the rates for forming primary and secondary products, allowing comparison to experimentally derived models. These studies show that MD using the ReaxFF reactive force field provides detailed atomistic information that explains such macroscopic observations as the dramatic difference in carbon cluster formation between TATB and HMX. This shows that ReaxFF MD captures the fundamental differences in the mechanisms of such systems and illustrates how the ReaxFF may be applied to model complex chemical phenomena in energetic materials. The studies here illustrate this for modestly sized systems and modest periods; however, ReaxFF calculations of reactive processes have already been reported on systems with approximately 10(6) atoms. Thus, with suitable computational facilities, one can study the atomistic level chemical processes in complex systems under extreme conditions.

  10. Theoretical insights into the stabilities, detonation performance, and electrostatic potentials of cocrystals containing α- or β-HMX and TATB, FOX-7, NTO, or DMF in various molar ratios.

    PubMed

    Song, Ken-Peng; Ren, Fu-de; Zhang, Shu-Hai; Shi, Wen-Jing

    2016-10-01

    A molecular dynamics method was employed to study the binding energies associated with the cocrystallization (at selected crystal planes) of either 1,3,5-triamino-2,4,6-trinitro-benzene (TATB), 1,1-diamino-2,2-dinitroethylene, 3-nitro-1,2,4-triazol-5-one (TATB, FOX-7, and NTO, respectively, all of which are explosives), or N,N-dimethylformamide (DMF, a nonenergetic solvent) in various molar ratios with 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane in its α and β conformations (α-HMX and β-HMX, respectively). The results showed that the cocrystals with low molar ratios (2:1, 1:1, 1:2, and 1:3) were the most stable. The binding energies of HMX/NTO and HMX/DMF were larger than those of HMX/TATB and HMX/FOX-7. According to the calculated stabilities, HMX prefers to adopt its α form in HMX/TATB and its β form in HMX/NTO, whereas the two forms coexist in HMX/FOX-7. For HMX/TATB, HMX/NTO, and α-HMX/FOX-7, increasing the proportion of the cocrystal component with the highest detonation heat (HMX in the first two cases, FOX-7 in the latter) increases the detonation heat, velocity, and pressure of the cocrystal. However, increasing the proportion of the component with the highest detonation heat in β-HMX/FOX-7 and γ-CL-20/FOX-7 increases the detonation heat of the cocrystal but decreases its detonation velocity. An investigation of the surface electrostatic potential revealed how the sensitivity changes upon cocrystal formation. Graphical Abstract Surface electrostatic potential of HMX/TATB.

  11. High explosive corner turning performance and the LANL mushroom test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, L.G.; Seitz, W.L.; Forest, C.A.

    1998-07-01

    The Mushroom test is designed to characterize the corner turning performance of a new generation of less sensitive booster explosives. The test is described in detail, and three corner turning figures-of-merit are examined using pure TATB (both Livermore{close_quote}s Ultrafine and a Los Alamos research blend) and PBX9504 as examples. {copyright} {ital 1998 American Institute of Physics.}

  12. The reactants equation of state for the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq D.

    2017-07-01

    The response of high explosives (HEs), due to mechanical and/or thermal insults, is of great importance for both safety and performance. A major component of how an HE responds to these stimuli stems from its reactant equation of state (EOS). Here, the tri-amino-tri-nitro-benzene based explosive PBX 9502 is investigated by examining recent experiments. Furthermore, a complete thermal EOS is calibrated based on the functional form devised by Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. It is found, by comparing to earlier calibrations, that a variety of thermodynamic data are needed to sufficiently constrain the EOS response over a wide range of thermodynamic state space. Included in the calibration presented here is the specific heat as a function of temperature, isobaric thermal expansion, and shock Hugoniot response. As validation of the resulting model, isothermal compression and isentropic compression are compared with recent experiments.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    Previously the SURFplus reactive burn model was calibrated for the TATB based explosive PBX 9502. The calibration was based on fitting Pop plot data, the failure diameter and the limiting detonation speed, and curvature effect data for small curvature. The model failure diameter is determined utilizing 2-D simulations of an unconfined rate stick to find the minimum diameter for which a detonation wave propagates. Here we examine the effect of mesh resolution on an unconfined rate stick with a diameter (10mm) slightly greater than the measured failure diameter (8 to 9 mm).

  14. Relationship between pressure and reaction violence in thermal explosions

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Rodriguez, G.; Remelius, D.; Baca, E.; Oschwald, D.; Suvorova, N.

    2017-01-01

    Reaction violence of a thermal explosion is determined by the energy release rate of the explosive and the coupling of that energy to the case and surroundings. For the HMX and TATB based secondary high explosives studied, we have observed that temperature controls the time to explosion and pressure controls the final energy release rate subsequent to ignition. Pressure measurements in the thermal explosion regime have been notoriously difficult to make due to the extreme rise in temperature which is also occurring during a thermal explosion. We have utilized several different pressure measurement techniques for several different secondary high explosives. These techniques include commercially available piezoelectric and piezoresistive sensors which we have utilized in the low pressure (sub 30 MPa) range of PBX 9502 thermal explosions, and fiber Bragg grating sensors for the higher pressure range (up to GPa) for PBX9501 experiments. In this talk, we will compare the measurement techniques and discuss the pressures measured for the different formulations studied. Simultaneous x-ray radiography measurements of burn velocity will also be shown and correlations between pressure, burn velocity, and reaction violence will be discussed.

  15. Shock initiation and detonation properties of bisfluorodinitroethyl formal (FEFO)

    NASA Astrophysics Data System (ADS)

    Gibson, L. L.; Sheffield, S. A.; Dattelbaum, Dana M.; Stahl, David B.

    2012-03-01

    FEFO is a liquid explosive with a density of 1.60 g/cm3 and an energy output similar to that of trinitrotoluene (TNT), making it one of the more energetic liquid explosives. Here we describe shock initiation experiments that were conducted using a two-stage gas gun using magnetic gauges to measure the wave profiles during a shock-to-detonation transition. Unreacted Hugoniot data, time-to detonation (overtake) measurements, and reactive wave profiles were obtained from each experiment. FEFO was found to initiate by the homogeneous initiation model, similar to all other liquid explosives we have studied (nitromethane, isopropyl nitrate, hydrogen peroxide). The new unreacted Hugoniot points agree well with other published data. A universal liquid Hugoniot estimation slightly under predicts the measured Hugoniot data. FEFO is very insensitive, with about the same shock sensitivity as the triamino-trinitro-benzene (TATB)-based explosive PBX9502 and cast TNT.

  16. Deflagration Rates and Molecular Bonding Trends of Statically Compressed Secondary Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaug, J M; Foltz, M F; Hart, E

    2010-03-09

    We discuss our measurements of the chemical reaction propagation rate as a function of pressure. Materials investigated have included CL-20, HMX, TATB, and RDX crystalline powders, LX-04, Comp B, and nitromethane. The anomalous correspondence between crystal structure, including in some instances isostructural phase transitions, on pressure-dependant RPRs of TATB, HMX, Nitromethane, CL-20, and PETN have been elucidated using micro-IR and -Raman spectroscopies. Here we specifically highlight pressure-dependent physicochemical mechanisms affecting the deflagration rate of nitromethane and epsilon-CL-20. We find that pressure induced splitting of symmetric stretch NO{sub 2} vibrations can signal the onset of increasingly more rapid combustion reactions.

  17. Evolution of Carbon Clusters in the Detonation Products of the Triaminotrinitrobenzene (TATB)-Based Explosive PBX 9502

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Erik B.; Velizhanin, Kirill A.; Dattelbaum, Dana M.

    Here, the detonation of carbon-rich high explosives yields solid carbon as a major constituent of the product mixture and, depending on the thermodynamic conditions behind the shock front, a variety of carbon allotropes and morphologies may form and evolve. We applied time-resolved small angle x-ray scattering (TR-SAXS) to investigate the dynamics of carbon clustering during detonation of PBX 9502, an explosive composed of triaminotrinitrobenzene (TATB) and 5 wt% fluoropolymer binder. Solid carbon formation was probed from 0.1 to 2.0 μs behind the detonation front and revealed rapid carbon cluster growth which reached a maximum after ~200 ns. The late-time carbonmore » clusters had a radius of gyration of 3.3 nm which is consistent with 8.4 nm diameter spherical particles and matched particle sizes of recovered products. Simulations using a clustering kinetics model were found to be in good agreement with the experimental measurements of cluster growth when invoking a freeze-out temperature, and temporal shift associated with the initial precipitation of solid carbon. Product densities from reactive flow models were compared to the electron density contrast obtained from TR-SAXS and used to approximate the carbon cluster composition as a mixture of 20% highly ordered (diamond-like) and 80% disordered carbon forms, which will inform future product equation of state models for solid carbon in PBX 9502 detonation product mixtures.« less

  18. Evolution of Carbon Clusters in the Detonation Products of the Triaminotrinitrobenzene (TATB)-Based Explosive PBX 9502

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Erik B.; Velizhanin, Kirill A.; Dattelbaum, Dana M.

    The detonation of carbon-rich high explosives yields solid carbon as a major constituent of the product mixture and, depending on the thermodynamic conditions behind the shock front, a variety of carbon allotropes and morphologies may form and evolve. We applied time-resolved small angle x-ray scattering (TR-SAXS) to investigate the dynamics of carbon clustering during detonation of PBX 9502, an explosive composed of triaminotrinitrobenzene (TATB) and 5 wt% fluoropolymer binder. Solid carbon formation was probed from 0.1 to 2.0 μs behind the detonation front and revealed rapid carbon cluster growth which reached a maximum after ~200 ns. The late-time carbon clustersmore » had a radius of gyration of 3.3 nm which is consistent with 8.4 nm diameter spherical particles and matched particle sizes of recovered products. Simulations using a clustering kinetics model were found to be in good agreement with the experimental measurements of cluster growth when invoking a freeze-out temperature, and temporal shift associated with the initial precipitation of solid carbon. Product densities from reactive flow models were compared to the electron density contrast obtained from TR-SAXS and used to approximate the carbon cluster composition as a mixture of 20% highly ordered (diamond-like) and 80% disordered carbon forms, which will inform future product equation of state models for solid carbon in PBX 9502 detonation product mixtures.« less

  19. Evolution of Carbon Clusters in the Detonation Products of the Triaminotrinitrobenzene (TATB)-Based Explosive PBX 9502

    DOE PAGES

    Watkins, Erik B.; Velizhanin, Kirill A.; Dattelbaum, Dana M.; ...

    2017-08-15

    Here, the detonation of carbon-rich high explosives yields solid carbon as a major constituent of the product mixture and, depending on the thermodynamic conditions behind the shock front, a variety of carbon allotropes and morphologies may form and evolve. We applied time-resolved small angle x-ray scattering (TR-SAXS) to investigate the dynamics of carbon clustering during detonation of PBX 9502, an explosive composed of triaminotrinitrobenzene (TATB) and 5 wt% fluoropolymer binder. Solid carbon formation was probed from 0.1 to 2.0 μs behind the detonation front and revealed rapid carbon cluster growth which reached a maximum after ~200 ns. The late-time carbonmore » clusters had a radius of gyration of 3.3 nm which is consistent with 8.4 nm diameter spherical particles and matched particle sizes of recovered products. Simulations using a clustering kinetics model were found to be in good agreement with the experimental measurements of cluster growth when invoking a freeze-out temperature, and temporal shift associated with the initial precipitation of solid carbon. Product densities from reactive flow models were compared to the electron density contrast obtained from TR-SAXS and used to approximate the carbon cluster composition as a mixture of 20% highly ordered (diamond-like) and 80% disordered carbon forms, which will inform future product equation of state models for solid carbon in PBX 9502 detonation product mixtures.« less

  20. Oblique impact and friction of HMX and/or TATB-based PBXs

    NASA Astrophysics Data System (ADS)

    Picart, Didier; Junqua-Moullet, Alexandra

    2017-06-01

    Transportation, handling, vibrations can lead to moderate compressive but dynamic loadings requiring the characterization of the safety of PBXs submitted to such scenarios. Knowing that ignition can occur at a lower critical height during a fall on an inclined surface than a normal impact, the attention is focused in this paper on the heating due to the friction between PBXs and surfaces. A lot of experiments have been made using free-falling samples in vertical drop configurations on inclined targets or pendulum (skid) drop configurations (Green et al. 1971; Randolph et al. 1976). Data obtained on our HMX and/or TATB-based plastic-bonded explosives using pendulum drop configurations will be detailed. Evaluation of the heating due to friction requires the determination of the tangential projectile/target relative displacement and the contact pressure. The pressure is related to the normal force during the impact and the evolving contact surface, the latter being evaluated using a series of normal impacts. The aim of our paper is to compare the experimental diameter of the contact zones to (i) the classical Hertz's theory of contacting elastic solids and (ii) a spring-mass description of the impact. Data and models are then used to evaluate the increase of the temperature at the projectile/target interface for our explosives. We highlight the experimental bias which has already been attributed to the grits used to mimic the roughness of the surfaces.

  1. Ultraviolet Resonance Raman Enhancements in the Detection of Explosives

    DTIC Science & Technology

    2009-06-01

    nitramines (e.g., RDX , HMX ) and aromatic compounds (e.g., DNT, TATB, TNT). 1. Types of Explosives and Chemical Composition Due to stability...resonance Raman spectra of TNT, RDX , HMX , and PETN using 40 UV wavelengths from 210 to 280 nm using a 90 collection geometry [32]. This study includes...Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition . Other than

  2. 300 K Isothermal Equations of State of DADNE, DNAN, and LX-17

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Stavrou, Elissaios; Grivickas, Paulius; Pagoria, Phil; Hansen, Donald; Gagliardi, Franco; Sain, John; Bastea, Sorin

    2017-06-01

    Using a direct optical-based measurement approach, we report 10 GPa scale, 300 K isothermal equations of state (EOS) of single crystal 1,1-Diamino-2,2-dinitroethylene (DADNE, FOX-7), single crystal 2,4, Dintrosoanisole (DNAN) and a polymer blended explosive (PBX) composite LX-17 (92.5% triamino trinitro benzene (TATB), and 7.5% KEL-F 800). Results from quasi-statically compressed LX-17 represent the first-ever isothermal EOS measurements of a PBX. Recently, we published a paper outlining the utility of using in-house optical microscopy and interferometry (OMI) diagnostics to directly measure pressure dependent sample volumes of single crystals TATB and alpha-NTO compressed within diamond-anvil cell sample chambers. (Our TATB OMI results agree remarkably well with two independent powder x-ray diffraction EOS studies.) In addition, here we report single crystal pressure dependent indices of refraction from DADNE that clearly signal the onset of electronic and/or molecular (structural) transitions that are otherwise indistinguishable in 300 K plotted pressure-volume EOS isotherms. EOS model parameters are reported from weighted and unweighted fits to the OMI experimental data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  3. A method for fast safety screening of explosives in terms of crystal packing and molecular stability.

    PubMed

    Hu, Xiaohua; Chen, Nana; Li, Weichen

    2016-07-01

    Safety prediction is crucial to the molecular design or the material design of explosives, and the predictions based on any single factor alone will cause much inaccuracy, leading to a desire for a method on multi-bases. The presented proposes an improved method for fast screening explosive safety by combining a crystal packing factor and a molecular one, that is, steric hindrance against shear slide in crystal and molecular stability, denoted by intermolecular friction symbol (IFS) and bond dissociation energy (BDE) of trigger linkage respectively. Employing this BDE-IFS combined method, we understand the impact sensitivities of 24 existing explosives, and predict those of two energetic-energetic cocrystals of the observed CL-20/BTF and the supposed HMX/TATB. As a result, a better understanding is implemented by the combined method relative to molecular stability alone, verifying its improvement of more accurate predictions and the feasibility of IFS to graphically reflect molecular stacking in crystals. Also, this work verifies that the explosive safety is strongly related with its crystal stacking, which determines steric hindrance and influences shear slide.

  4. Shock Initiation of Thermally Expanded TATB

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta; Swift, Damian

    2011-06-01

    The plastic-bonded explosive PBX-9502 undergoes unusual hysteretic thermal expansion, or ``ratchet growth'' as a consequence of the uniaxial thermal expansion of the graphitic structure of the major component, TATB explosive. Upon thermal cycling, the density of the material can be reduced by as much as 9%, resulting in a distinct increase in the shock sensitivity of the solid. Run distances to detonation have been measured in thermally expanded samples of PBX-9502, using embedded particle velocity gauges and shock tracker gauges. Uniaxial shocks were generated using a light gas gun, to provide a repeatable stimulus for initiation of detonation. We have applied a porosity model to adjust standard Pop plot data to the reduced density of our samples, to investigate whether the sensitivity of the PBX 9502 increases ideally with the decreasing density, or whether the microscopically non-uniform expansion that occurs during ``ratchet growth'' leads to abnormal sensitivity, possibly as a result of cracking or debonding from the binder, as observed in micrographs of the sample.

  5. Large-Amplitude Deformation and Bond Breakage in Shock-Induced Reactions of Explosive Molecules

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey

    The response of explosive molecules to large-amplitude mechanical deformation plays an important role in shock-induced reactions and the initiation of detonation in explosive materials. In this presentation, the response of a series of explosive molecules (nitromethane, 2,4,6-trinitrotoluene [TNT], and 2,4,6-triamino-1,3,5-trinitrobenzene [TATB]) to a variety of large-amplitude deformations are examined using ab initio quantum chemical calculations. Large-amplitude motions that result in bond breakage are described, and the insights these results provide into both previous experimental observations and previous theoretical predictions of shock-induced reactions are discussed.

  6. Method of making fine-grained triaminotrinitrobenzene

    DOEpatents

    Benziger, T.M.

    1983-07-26

    A method is given for forming a fine-grained species of the insensitive high explosive sym-triaminotrinitrobenzene (TATB) without grinding. In accordance with the method, 1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB) is aminated by reaction with gaseous ammonia in an emulsion of toluene in water. The ratio of water to toluene in the emulsion is selected so that toluene is the dispersed phase in the emulsion. The size of the dispersed TCTNB-containing toluene droplets determines the particle size of the resulting TATB. The emulsion is preferably formed with an emulsifier such as ammonium oleate, which may be generated in situ from oleic acid, and stabilized with a protective colloid such as polyvinyl alcohol.

  7. Method of making fine-grained triaminotrinitrobenzene

    DOEpatents

    Benziger, Theodore M.

    1984-01-01

    A method of forming a fine-grained species of the insensitive high explosive sym-triaminotrinitrobenzene (TATB) without grinding. In accordance with the method, 1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB) is aminated by reaction with gaseous ammonia in an emulsion of toluene in water. The ratio of water to toluene in the emulsion is selected so that toluene is the dispersed phase in the emulsion. The size of the dispersed TCTNB-containing toluene droplets determines the particle size of the resulting TATB. The emulsion is preferably formed with an emulsifier such as ammonium oleate, which may be generated in situ from oleic acid, and stabilized with a protective colloid such as polyvinyl alcohol.

  8. Detection mechanism of perovskite BFO (1 1 1) membrane for FOX-7 and TATB gases: molecular-scale insight into sensing ultratrace explosives

    NASA Astrophysics Data System (ADS)

    Bian, Liang; Li, Hai-long; Song, Mian-Xin; Dong, Fa-Qin; Zhang, Xiao-yan; Hou, Wen-ping

    2017-03-01

    Perovskite bismuth ferrite-BFO (1 1 1) membranes, as potential-sensitive electrochemical sensors, are investigated for the detection of high-energy-density materials by molecular dynamics (MD) and density functional theory (DFT) calculations. For the detection mechanism of the sensitive 1, 1-diamino-2, 2-dinitroethylene (FOX-7) gases, both a cation bridge and electrostatic models can be used to explain the STM signatures as 0.02-0.04 V (single) and 0.03~0.05 V (coverage) over a wide range (0-0.1 V) of bias voltages. For insensitive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) gases interacting with the surface of a BFO (1 1 1) membrane, the charge signature can be as high as 0.08 V (coverage: 0.06 V). Analysis indicates a significant difference from the detection mechanism observed for FOX-7 gases; that is, the molecularly intact bidentate bridge configuration with only -\\text{NO}2- bonds binds to both Fe and Bi atoms. These differences are attributed so that the surface O2- of BFO will capture a part of the surface electron of the -NO2 group, creating a 2p-hole defect (h+) which annihilates a spinning upward (↑) Fe3+, forming a spinning downward (↓) Fe2+. The -NO2 electron decreases 0.35 e (single FOX-7; coverage FOX-7: 0.24 e) and 0.56 e (single TATB; coverage TATB: 0.06 e). Such a system could open up new ideas in the design and application of BFO-based sensors.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luscher, Darby J.

    We detail a modeling approach to simulate the anisotropic thermal expansion of polycrystalline (1,3,5-triamino-2,4,6-trinitrobenzene) TATB-based explosives that utilizes microstructural information including porosity, crystal aspect ratio, and processing-induced texture. This report, the first in a series, focuses on nonlinear thermal expansion of “neat-pressed” polycrystalline TATB specimens which do not contain any binder; additional complexities related to polymeric binder and irreversible ratcheting behavior are briefly discussed, however detailed investigation of these aspects are deferred to subsequent reports. In this work we have, for the first time, developed a mesoscale continuum model relating the thermal expansion of polycrystal TATB specimens to their microstructuralmore » characteristics. A self-consistent homogenization procedure is used to relate macroscopic thermoelastic response to the constitutive behavior of single-crystal TATB. The model includes a representation of grain aspect ratio, porosity, and crystallographic texture attributed to the consolidation process. A quantitative model is proposed to describe the evolution of preferred orientation of graphitic planes in TATB during consolidation and an algorithm constructed to develop a discrete representation of the associated orientation distribution function. Analytical and numerical solutions using this model are shown to produce textures consistent with previous measurements and characterization for isostatic and uniaxial “die-pressed” specimens. Predicted thermal strain versus temperature for textured specimens are shown to be in agreement with corresponding experimental measurements. Using the developed modeling approach, several simulations have been run to investigate the influence of microstructure on macroscopic thermal expansion behavior. Results from these simulations are used to identify qualitative trends. Implications of the identified trends are discussed in the context of thermal deformation of engineered components whose consolidation process is generally more complex than isostatic or die-pressed specimens. Finally, an envisioned application of the modeling approach to simulating thermal expansion of weapon systems and components is outlined along with necessary future work to introduce the effects of binder and ratcheting behavior. Key conclusions from this work include the following. Both porosity and grain aspect ratio have an influence on the thermal expansion of polycrystal TATB considering realistic material variability. Thepreferred orientation of the single crystal TATB [001] poles within a polycrystal gives rise to pronounced anisotropy of the macroscopic thermal expansion. The extent of this preferred orientation depends on the magnitude of deformation, and consequently, is expected to vary spatially throughout manufactured components much like porosity. The modeling approach presented here has utility toward bringing spatially variable microstructural features into macroscale system engineering modelsAbstract Not Provided« less

  10. Bullet Impact Safety Study of PBX-9502

    NASA Astrophysics Data System (ADS)

    Ferranti, Louis

    2013-06-01

    A new small arms capability for performing bullet impact testing into energetic materials has recently been activated at Lawrence Livermore National Laboratory located in the High Explosives Applications Facility (HEAF). The initial capability includes 0.223, 0.30, and 0.50 testing calibers with the flexibility to add other barrels in the near future. An initial test series has been performed using the 0.50 caliber barrel shooting bullets into targets using the TATB based explosive PBX-9502 and shows an expected non-violent reaction. Future experiments to evaluate the safety of new explosive formulations to bullet impact are planned. A highlight of the new capability along with discussion of the initial experiments to date will be presented including future areas of research. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Growth and defects of explosives crystals

    NASA Astrophysics Data System (ADS)

    Cady, H. H.

    Large single crystals of PETN, RDX, and TNT can be grown easily from evaporating ethyl acetate solutions. The crystals all share a similar type of defect that may not be commonly recognized. The defect generates conical faces, ideally mosaic crystals, and may account for the 'polymorphs' of TNT and detonator grades of PETN. TATB crystals manufactured by the amination of trichlorotrinitrobenzene in dry toluene entrain two forms of ammonium chloride. One of these forms causes 'worm holes' in the TATB crystals that may be the reason for its unusually low failure diameters. Strained HMX crystals form mechanical twins that can spontaneously revert back to the untwinned form when the straining force is removed. Large strains or temperatures above 100 C lock in the mechanical twins.

  12. Evaluation of One-Sided Nuclear Magnetic Resonance for Remote Detection of Explosives.

    DTIC Science & Technology

    1987-10-01

    compound with the chemical structure indicated in Figure 111-5 (18). The proton NMR relaxation properties of TATB were determined b% Garroway and Resing...Jurecki, ed., S. Laverton, transl., Pera7amon, Oxford, 21. A. N. Garroway and H. A. Resina, "Proton Relaxation in I,,-riaminc-2,4,6-Trinitrobenzene

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarver, C M

    Recent laser ignition experiments on octahydro-1,3,5,7-tetranitro-1,3,5,7-terrazocine (HMX) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) subjected to laser fluxes ranging from 10 to 800 W/cm{sup 2} produced ignition times from seconds to milliseconds. Global chemical kinetic thermal decomposition models for HMX and TATB have been developed to calculate times to thermal explosion for experiments in the seconds to days time frame. These models are applied to the laser ignition experimental data in this paper. Excellent agreement was obtained for TATB, while the calculated ignition times were longer than experiment for HMX at lower laser fluxes. At the temperatures produced in the laser experiments, HMX melts.more » Melting generally increases condensed phase reaction rates so faster rates were used for three of the HMX reaction rates. This improved agreement with experiments at the lower laser fluxes but yielded very fast ignition at high fluxes. The calculated times to ignition are in reasonable agreement with the laser ignition experiments, and this justifies the use of these models for estimating reaction times at impact and shock ''hot spot'' temperatures.« less

  14. Shock, release and reshock of PBX 9502: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq; Gustavsen, Richard; Whitworh, Nicholas; Menikoff, Ralph; Tarver, Craig; Handley, Caroline; Bartram, Brian

    2017-06-01

    We examine shock, release and reshock into the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502 (95% TATB, 5% Kel-F 800) from both an experimental and modeling point of view. The experiments are performed on the 2-stage light gas gun at Los Alamos National Laboratory and are composed of a multi-layered impactor impinging on PBX 9502 backed by a polymethylmethacrylate window. The objective is to initially shock the PBX 9502 in the 7 GPa range (too weak to start significant reaction), then allow a rarefaction fan to release the material to a lower pressure/temperature state. Following this release, a strong second shock will recompress the PBX. If the rarefaction fan releases the PBX to a very low pressure, the ensuing second shock can increase the entropy and temperature substantially more than in previous double-shock experiments without an intermediate release. Predictions from a variety of reactive burn models (AWSD, CREST, Ignition and Growth, SURF) demonstrate significantly different behaviors and thus the experiments are an excellent validation test of the models, and may suggest improvements for subsequent modeling efforts.

  15. The Equation of State of Triamino-Trinitrobenzene from Density Functional Theory Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Wixom, Ryan R.

    2017-06-01

    The US-uP shock Hugoniot has long been the fundamental relationship used to experimentally define the unreacted equations of state of explosives. These experiments are typically performed on porous or composite samples, providing data that is specific to the density of the samples being tested. However, If the crystalline Hugoniot is known, analytical or numerical methods can be used to transform the US-uP relationship to describe the shock response of the porous material. To obtain an accurate crystalline equation of state for TATB, density functional theory based molecular dynamics were used to map out points on the Hugoniot. Since this method provides the pressure, temperature, density, and internal energy at each point on the Hugoniot, a complete equation of state can be constructed. Isotropic, uniaxial, hydrostatic, and isothermal compression of the simulation cell were used to examine TATB under different thermodynamic conditions. A cusp is observed in the Hugoniot that correlates to loss of aromaticity of the molecule. Results of the calculations will be presented and compared to the available experimental data. Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque NM.

  16. A Recipe for implementing the Arrhenius-Shock-Temperature State Sensitive WSD (AWSD) model, with parameters for PBX 9502

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslam, Tariq Dennis

    2017-10-03

    A reactive ow model for the tri-amino-tri-nitro-benzene (TATB) based plastic bonded explosive PBX 9502 is presented. This newly devised model is based primarily on the shock temperature of the material, along with local pressure, and accurately models a broader range of detonation and initiation scenarios. The equation of state for the reactants and products, as well as the thermodynamic closure of pressure and temperature equilibration are carried over from the Wescott-Stewart-Davis (WSD) model7,8. Thus, modifying an existing WSD model in a hydrocode should be rather straightforward.

  17. Subnanosecond measurements of detonation fronts in solid high explosives

    NASA Astrophysics Data System (ADS)

    Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.

    1984-04-01

    Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.

  18. Detonation shock dynamics with an acceleration relation for nitromethane and TATB

    NASA Astrophysics Data System (ADS)

    Swift, Damian; Kraus, Richard; Mulford, Roberta; White, Stephen

    2015-06-01

    The propagation of curved detonation waves has been treated phenomenologically through models of the speed D of a detonation wave as a function of its curvature K, in the Whitham-Bdzil-Lambourn model, also known as detonation shock dynamics. D(K) relations, and the edge angle with adjacent material, have been deduced from the steady shape of detonation waves in long rods and slabs of explosive. Nonlinear D(K) relations have proven necessary to interpret data from charges of different diameter, and even then the D(K) relation may not transfer between diameters. This is an indication that the D(K) relation oversimplifies the kinematics. It is also possible to interpret wave-shape data in terms of an acceleration relation, as used in Brun's Jouguet relaxe model. One form of acceleration behavior is to couple an asymptotic D(K) relation with a time-dependent relaxation toward it from the instantaneous, local speed. This approach is also capable of modeling overdriving of a detonation by a booster. Using archival data for the TATB-based explosive EDC35 and for nitromethane, we found that a simple linear asymptotic D(K) relation with a constant relaxation rate was able to reproduce the experimental wave-shapes better, with fewer parameters, than a nonlinear instantaneous D(K) relation. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. A complete equation of state for non-ideal condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Wilkinson, S. D.; Braithwaite, M.; Nikiforakis, N.; Michael, L.

    2017-12-01

    The objective of this work is to improve the robustness and accuracy of numerical simulations of both ideal and non-ideal explosives by introducing temperature dependence in mechanical equations of state for reactants and products. To this end, we modify existing mechanical equations of state to appropriately approximate the temperature in the reaction zone. Mechanical equations of state of the Mie-Grüneisen form are developed with extensions, which allow the temperature to be evaluated appropriately and the temperature equilibrium condition to be applied robustly. Furthermore, the snow plow model is used to capture the effect of porosity on the reactant equation of state. We apply the methodology to predict the velocity of compliantly confined detonation waves. Once reaction rates are calibrated for unconfined detonation velocities, simulations of confined rate sticks and slabs are performed, and the experimental detonation velocities are matched without further parameter alteration, demonstrating the predictive capability of our simulations. We apply the same methodology to both ideal (PBX9502, a high explosive with principal ingredient TATB) and non-ideal (EM120D, an ANE or ammonium nitrate based emulsion) explosives.

  20. Band gaps and the possible effect on impact sensitivity for some nitro aromatic explosive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Cheung, Frankie; Zhao, Feng; Cheng, Xin-Lu

    The first principle density functional theory method SIESTA has been used to compute the band gap of several polynitroaromatic explosives, such as TATB, DATB, TNT, and picric acid. In these systems, the weakest bond is the one between an NO2 group and the aromatic ring. The bond dissociation energy (BDE) alone cannot predicate the relative sensitivity to impact of these four systems correctly. It was found that their relative impact sensitivity could be explained by considering the BDE and the band gap value of the crystal state together.

  1. Experimental and computational investigation of microwave interferometry (MI) for detonation front characterization

    NASA Astrophysics Data System (ADS)

    Mays, Owen; Tringe, Joe; Souers, Clark; Lauderbach, Lisa; Baluyot, Emer; Converse, Mark; Kane, Ron

    2017-06-01

    Microwave interferometry (MI) presents several advantages over more traditional existing shock and deflagration front diagnostics. Most importantly, it directly interrogates these fronts, instead of measuring the evolution of containment surfaces or explosive edges. Here we present the results of MI measurements on detonator-initiated cylinder tests, as well as on deflagration-to-detonation transition experiments, with emphasis on optimization of signal strength through coupling devices and through microwave-transparent windows. Full-wave electromagnetic field finite element simulations were employed to better understand microwave coupling into porous and near full theoretical maximum density (TMD) explosives. HMX and TATB-based explosives were investigated. Data was collected simultaneously at 26.5 GHz and 39 GHz, allowing for direct comparison of the front characteristics and providing insight into the dielectric properties of explosives at these high frequencies. MI measurements are compared against detonation velocity results from photonic Doppler velocimetry probes and high speed cameras, demonstrating the accuracy of the MI technique. Our results illustrate features of front propagation behavior that are difficult to observe with other techniques. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Initial assembly steps of a translocase for folded proteins

    PubMed Central

    Blümmel, Anne-Sophie; Haag, Laura A.; Eimer, Ekaterina; Müller, Matthias; Fröbel, Julia

    2015-01-01

    The so-called Tat (twin-arginine translocation) system transports completely folded proteins across cellular membranes of archaea, prokaryotes and plant chloroplasts. Tat-directed proteins are distinguished by a conserved twin-arginine (RR-) motif in their signal sequences. Many Tat systems are based on the membrane proteins TatA, TatB and TatC, of which TatB and TatC are known to cooperate in binding RR-signal peptides and to form higher-order oligomeric structures. We have now elucidated the fine architecture of TatBC oligomers assembled to form closed intramembrane substrate-binding cavities. The identification of distinct homonymous and heteronymous contacts between TatB and TatC suggest that TatB monomers coalesce into dome-like TatB structures that are surrounded by outer rings of TatC monomers. We also show that these TatBC complexes are approached by TatA protomers through their N-termini, which thereby establish contacts with TatB and membrane-inserted RR-precursors. PMID:26068441

  3. Elasticity of crystalline molecular explosives

    DOE PAGES

    Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; ...

    2015-04-14

    Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less

  4. Kinetic Modeling of Slow Energy Release in Non-Ideal Carbon Rich Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P; Fried, L; Glaesemann, K

    2006-06-20

    We present here the first self-consistent kinetic based model for long time-scale energy release in detonation waves in the non-ideal explosive LX-17. Non-ideal, insensitive carbon rich explosives, such as those based on TATB, are believed to have significant late-time slow release in energy. One proposed source of this energy is diffusion-limited growth of carbon clusters. In this paper we consider the late-time energy release problem in detonation waves using the thermochemical code CHEETAH linked to a multidimensional ALE hydrodynamics model. The linked CHEETAH-ALE model dimensional treats slowly reacting chemical species using kinetic rate laws, with chemical equilibrium assumed for speciesmore » coupled via fast time-scale reactions. In the model presented here we include separate rate equations for the transformation of the un-reacted explosive to product gases and for the growth of a small particulate form of condensed graphite to a large particulate form. The small particulate graphite is assumed to be in chemical equilibrium with the gaseous species allowing for coupling between the instantaneous thermodynamic state and the production of graphite clusters. For the explosive burn rate a pressure dependent rate law was used. Low pressure freezing of the gas species mass fractions was also included to account for regions where the kinetic coupling rates become longer than the hydrodynamic time-scales. The model rate parameters were calibrated using cylinder and rate-stick experimental data. Excellent long time agreement and size effect results were achieved.« less

  5. Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.

    2012-03-01

    High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.

  6. Deflagration rates of secondary explosives under static MPa - GPa pressure

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Young, Christopher; Glascoe, Elizabeth; Maienschein, Jon; Hart, Elaine; Long, Gregory; Black, Collin; Sykora, Gregory; Wardell, Jeffrey

    2009-06-01

    We discuss our measurements of the chemical reaction propagation rate (RPR) as a function of pressure using diamond anvil cell (DAC) and strand burner technologies. Materials investigated include HMX and RDX crystalline powders, LX-04 (85% HMX and 15% Viton A), and Comp B (63% RDX, 36% TNT, 1% wax). The anomalous correspondence between crystal structure, including in some instances isostructural phase transitions, on pressure dependant RPRs of TATB, HMX, Nitromethane, and Viton are elucidated using micro -IR and -Raman spectroscopies. The contrast between DAC GPa and strand burner MPa regime measurements yields insight into explosive material burn phenomena. Here we highlight pressure dependent physicochemical mechanisms that appear to affect the deflagration rate of precompressed energetic materials.

  7. Proceedings of the International Symposium on Detonation (9th) Held in Portland, Oregon on 28 August - 1 September 1989. Volume 2,

    DTIC Science & Technology

    1989-09-01

    Excited Ram. in Spectra of Shock-Compressed Triaminotrinitrobenzene W. M. Trott and A, M,Renlund................................................. 153...Cochairmen: Paul Cooper and Hyla Napaden sky Physical and Chemical Nature of Hot Spots in TATB and HMX J, Sharma, B, C. Beard, J. Forbes, C. S. Coffey...Secondary Explosives A. M. Renlund, P. L. Stanton, and W . M. Trott ..... ................................. 1118 POSTER PAPERS Organizer and Chairman: Robert

  8. Predicting the crystalline and porous equations of state for secondary explosives

    NASA Astrophysics Data System (ADS)

    Wixom, Ryan; Damm, David

    2013-06-01

    Accurate simulations of energetic material response necessitate accurate unreacted equations of state at pressures much higher than even the C-J state. Unfortunately, for reactive materials, experimental data at high pressures may be unattainable, and extrapolation from low-pressure data results in unacceptable uncertainty. In addition to being low-pressure, the available data is typically limited to the porous state. The fully-dense, or crystalline, equation of state is required for building mesoscale simulations of the dynamic response of energetic materials. We have used quantum molecular dynamics to predict the Hugoniots and 300 K isotherms of crystalline PETN, HNS, CL-20 and TATB up to pressures not attainable in experiments. The porous Hugoniots for these materials were then analytically obtained and are validated by comparison with available data. Our calculations for TATB confirm the presence of a kink in the Hugoniot, and the softening of the shock response is explained in terms of a change in molecular conformation and the loss of aromaticity.

  9. Detonation in TATB Hemispheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druce, B; Souers, P C; Chow, C

    2004-03-17

    Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54{sup o} at ambient temperatures and 42{sup o} at -54 C, where the axis of rotation is 0{sup o}. The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. Themore » problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably there but it cannot be quantified.« less

  10. Detonation Shock Dynamics (DSD) Calibration for LX-17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslam, Tariq D

    2012-04-24

    The goal of this report is to summarize the results of a Detonation shock dynamics (DSD) calibration for the explosive LX-17. Considering that LX-17 is very similar to PBX 9502 (LX-17 is 92.5% TATB with 7.5% Kel-F 800 binder, while PBX 9502 is 95% TATB with 5% Kel-F 800 binder), we proceed with the analysis assuming many of the DSD constants are the same. We only change the parameters D{sub CJ}, B and {bar C}{sub 6} ({bar C}{sub 6} controls the how D{sub CJ} changes with pressing density). The parameters D{sub CJ} and {bar C}{sub 6} were given by Joshmore » Coe and Sam Shaw's EOS. So, only B was optimized in fitting all the calibration data. This report first discusses some general DSD background, followed by a presentation of the available dataset to perform the calibration, and finally gives the results of the calibration and draws some conclusions. A DSD calibration of LX-17 has been conducted using the existing diameter effect data and shock shape records. The new DSD fit is based off the current PBX 9502 calibration and takes into account the effect of pressing density. Utilizing the PBX 9502 calibration, the effects of initial temperature can also be taken into account.« less

  11. Computer code for the optimization of performance parameters of mixed explosive formulations.

    PubMed

    Muthurajan, H; Sivabalan, R; Talawar, M B; Venugopalan, S; Gandhe, B R

    2006-08-25

    LOTUSES is a novel computer code, which has been developed for the prediction of various thermodynamic properties such as heat of formation, heat of explosion, volume of explosion gaseous products and other related performance parameters. In this paper, we report LOTUSES (Version 1.4) code which has been utilized for the optimization of various high explosives in different combinations to obtain maximum possible velocity of detonation. LOTUSES (Version 1.4) code will vary the composition of mixed explosives automatically in the range of 1-100% and computes the oxygen balance as well as the velocity of detonation for various compositions in preset steps. Further, the code suggests the compositions for which least oxygen balance and the higher velocity of detonation could be achieved. Presently, the code can be applied for two component explosive compositions. The code has been validated with well-known explosives like, TNT, HNS, HNF, TATB, RDX, HMX, AN, DNA, CL-20 and TNAZ in different combinations. The new algorithm incorporated in LOTUSES (Version 1.4) enhances the efficiency and makes it a more powerful tool for the scientists/researches working in the field of high energy materials/hazardous materials.

  12. Proceedings of the International Symposium on Detonation (9th) Held in Portland, Oregon on 28 August - 1 September 1989. Volume 1

    DTIC Science & Technology

    1989-09-01

    damp TATB, and water is sprayed onto the mixture while it is heated to drive off the EXPLOSIVE MANUFACTURE solvent. Charge fabrication is then carried...Foil Gauge S Y Song and J . W . L ee ..... .... ..... ............ ..................... ........ 47 1 ix VOLUME I CONTENTS (Cont.) Page Heat of...deformed. During shear, materials may be ignition thresholds, and to characterize the heated by viscoplastic work. Shear plays a role relative shear

  13. Manipulating explosive sensitivity through structural modifications in a nitrate ester system

    NASA Astrophysics Data System (ADS)

    Manner, Virginia

    2017-06-01

    Understanding how condensed phase effects influence sensitivity is essential for developing next generation insensitive high explosives. However, the ability to predictably manipulate explosive sensitivity remains an elusive goal. Explosive sensitivity has been suggested to be governed by multiple factors, from intramolecular effects such as bond dissociation energy, oxygen balance, and the electrostatic potential of reactive functional groups, to larger scale effects, such as crystal structure and hot spot formation. We have developed derivatives of the explosive pentaerythritol tetranitrate (PETN) and examined them experimentally and theoretically, in order to better understand which properties influence sensitivity. With this molecular framework, we can evaluate how small changes to the structure of the molecule influence qualities such as oxygen balance, heat of formation, heat capacity, compressibility, crystal packing, and hydrogen bonding, through techniques such as differential scanning calorimetry, x-ray crystallography, and atomistic simulation. We have also used small-scale sensitivity testing as an initial tool to screen for large and consistent differences in handling sensitivity. We will discuss the many factors that contribute to sensitivity in this series of systematically-modified molecules as well as in existing well-studied explosive systems, such as triaminotrinitrobenzene (TATB) and nitroglycerin (NG). In collaboration with: Thomas Myers, Marc Cawkwell, Edward Kober, Bryce Tappan, Geoffrey Brown, Mary Sandstrom, LOS ALAMOS NATL LAB.

  14. Equations of State and High-Pressure Phases of Explosives

    NASA Astrophysics Data System (ADS)

    Peiris, Suhithi M.; Gump, Jared C.

    Energetic materials, being the collective name for explosives, propellants, pyrotechnics, and other flash-bang materials, span a wide range of composite chemical formulations. Most militarily used energetics are solids composed of particles of the pure energetic material held together by a binder. Commonly used binders include various oils, waxes, and polymers or plasticizers, and the composite is melt cast, cured, or pressed to achieve the necessary mechanical properties (gels, putties, sheets, solid blocks, etc.) of the final energetic material. Mining, demolition, and other industries use liquid energetics that are similarly composed of an actual energetic material or oxidizer together with a fuel, that is to be mixed and poured for detonation. Pure energetic materials that are commonly used are nitroglycerine, ammonium nitrate, ammonium or sodium perchlorate, trinitrotoluene (TNT), HMX, RDX, and TATB. All of them are molecular materials or molecular ions that when initiated or insulted undergoes rapid decomposition with excessive liberation of heat resulting in the formation of stable final products. When the final products are gases, and they are rapidly produced, the sudden pressure increase creates a shock wave. When decomposition is so rapid that the reaction moves through the explosive faster than the speed of sound in the unreacted explosive, the material is said to detonate. Typically, energetic materials that undergo detonation are known as high explosives (HEs) and energetic materials that burn rapidly or deflagrate are known as low explosives and/or propellants.

  15. Science and technology in the stockpile stewardship program, S & TR reprints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storm, E

    This document reports on these topics: Computer Simulations in Support of National Security; Enhanced Surveillance of Aging Weapons; A New Precision Cutting Tool: The Femtosecond Laser; Superlasers as a Tool of Stockpile Stewardship; Nova Laser Experiments and Stockpile Stewardship; Transforming Explosive Art into Science; Better Flash Radiography Using the FXR; Preserving Nuclear Weapons Information; Site 300Õs New Contained Firing Facility; The Linear Electric Motor: Instability at 1,000 gÕs; A Powerful New Tool to Detect Clandestine Nuclear Tests; High Explosives in Stockpile Surveillance Indicate Constancy; Addressing a Cold War Legacy with a New Way to Produce TATB; JumpinÕ Jupiter! Metallic Hydrogen;more » Keeping the Nuclear Stockpile Safe, Secure, and Reliable; The Multibeam FabryÐPerot Velocimeter: Efficient Measurements of High Velocities; Theory and Modeling in Material Science; The Diamond Anvil Cell; Gamma-Ray Imaging Spectrometry; X-Ray Lasers and High-Density Plasma« less

  16. Characteristics of energy exchange between inter- and intramolecular degrees of freedom in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) with implications for coarse-grained simulations of shock waves in polyatomic molecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroonblawd, Matthew P.; Sewell, Thomas D., E-mail: sewellt@missouri.edu; Maillet, Jean-Bernard, E-mail: jean-bernard.maillet@cea.fr

    2016-02-14

    In this report, we characterize the kinetics and dynamics of energy exchange between intramolecular and intermolecular degrees of freedom (DoF) in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). All-atom molecular dynamics (MD) simulations are used to obtain predictions for relaxation from certain limiting initial distributions of energy between the intra- and intermolecular DoF. The results are used to parameterize a coarse-grained Dissipative Particle Dynamics at constant Energy (DPDE) model for TATB. Each TATB molecule in the DPDE model is represented as an all-atom, rigid-molecule mesoparticle, with explicit external (molecular translational and rotational) DoF and coarse-grained implicit internal (vibrational) DoF. In addition to conserving linearmore » and angular momentum, the DPDE equations of motion conserve the total system energy provided that particles can exchange energy between their external and internal DoF. The internal temperature of a TATB molecule is calculated using an internal equation of state, which we develop here, and the temperatures of the external and internal DoF are coupled using a fluctuation-dissipation relation. The DPDE force expression requires specification of the input parameter σ that determines the rate at which energy is exchanged between external and internal DoF. We adjusted σ based on the predictions for relaxation processes obtained from MD simulations. The parameterized DPDE model was employed in large-scale simulations of shock compression of TATB. We show that the rate of energy exchange governed by σ can significantly influence the transient behavior of the system behind the shock.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steward, G.; Mays, R. O.; Converse, M.

    Microwave Interferometry (MI) offers the advantage of a continuous time measurement of detonation front velocity from detonation initiation to disassembly, which is an important step to assure the quality of stockpile high explosives. However, the method is currently characterized by areas of poor signal strength, which lead to low confidence measurements. Experiments in inert materials were conducted to determine if reflective hot spots, pockets of plasma that form during detonation, are responsible due to varying hot spot concentrations. Instead, it was found that the copper tube used in a range of standard HE test configurations is the cause of themore » poor signal reception. Hot spots were represented by microwave reflective aluminum particles. The aluminum was mixed with Titanium Dioxide, a material electrically similar to the insensitive high explosive, triaminotrinitrobenzene (TATB), in volume percent fractions (VPFs) between 0 and 100% aluminum, in increments of 10%. Reflectivity was measured based on input and reflection received from a test apparatus with a layer representing undetonated explosive and another representing an approaching shockwave. The results showed no correlation between VPF and measured reflectivity test cases while enclosed in the standard copper tube. Upon further testing, each sample’s measured reflectivity independent of the copper enclosure did correlate with VPF. This revealed that the test enclosure currently used for MI measurements is causing poor MI signal reception, and new methods must be developed to account for this aberration in MI measurements.« less

  18. Impact of surface energy on the shock properties of granular explosives.

    PubMed

    Bidault, X; Pineau, N

    2018-01-21

    This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.

  19. Impact of surface energy on the shock properties of granular explosives

    NASA Astrophysics Data System (ADS)

    Bidault, X.; Pineau, N.

    2018-01-01

    This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.

  20. Preparation of 1,3,5-triamino-2,4,6-trinitrobenzene from 3,5-dichloranisole

    DOEpatents

    Ott, Donald G.; Benziger, Theodore M.

    1990-01-01

    Preparation of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) from 3,5-dichloroanisole. Nitration of 3,5-dichloroanisole under relatively mild conditions gave 3,5-dichloro-2,4,6-trinitroanisole in high yield and purity. Ammonolysis of this latter compound gave the desired TATB. Another route to TATB was through the treatment of the 3,5-dichloro-2,4,6-trinitroanisole with thionyl chloride and dimethylformamide to yield 1,3,5-trichloro-2,4,6-trinitrobenzene. Ammonolysis of this product produced TATB.

  1. Preparation of 1,3,5-triamino-2,4,6-trinitrobenzene from 3,5-dichloroanisole

    DOEpatents

    Ott, Donald G.; Benziger, Theodore M.

    1991-01-01

    Preparation of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) from 3,5-dichloroanisole. Nitration of 3,5-dichloroanisole under relatively mild conditions gave 3,5-dichloro-2,4,6-trinitroanisole in high yield and purity. Ammonolysis of this latter compound gave the desired TATB. Another route to TATB was through the treatment of the 3,5-dichloro-2,4,6-trinitroanisole with thionyl chloride and dimethylformamide to yield 1,3,5-trichloro-2,4,6-trinitrobenzene. Ammonolysis of this product produced TATB.

  2. Preparation of 1,3,5-triamino-2,4,6-trinitrobenzene from 3,5-dichloroanisole

    DOEpatents

    Ott, D.G.; Benziger, T.M.

    1991-03-05

    Preparation of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) from 3,5-dichloroanisole is described. Nitration of 3,5-dichloroanisole under relatively mild conditions gave 3,5-dichloro-2,4,6-trinitroanisole in high yield and purity. Ammonolysis of this latter compound gave the desired TATB. Another route to TATB was through the treatment of the 3,5-dichloro-2,4,6-trinitroanisole with thionyl chloride and dimethylformamide to yield 1,3,5-trichloro-2,4,6-trinitrobenzene. Ammonolysis of this product produced TATB. 8 figures.

  3. Modeling Hemispheric Detonation Experiments in 2-Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, W M; Fried, L E; Vitello, P A

    2006-06-22

    Experiments have been performed with LX-17 (92.5% TATB and 7.5% Kel-F 800 binder) to study scaling of detonation waves using a dimensional scaling in a hemispherical divergent geometry. We model these experiments using an arbitrary Lagrange-Eulerian (ALE3D) hydrodynamics code, with reactive flow models based on the thermo-chemical code, Cheetah. The thermo-chemical code Cheetah provides a pressure-dependent kinetic rate law, along with an equation of state based on exponential-6 fluid potentials for individual detonation product species, calibrated to high pressures ({approx} few Mbars) and high temperatures (20000K). The parameters for these potentials are fit to a wide variety of experimental data,more » including shock, compression and sound speed data. For the un-reacted high explosive equation of state we use a modified Murnaghan form. We model the detonator (including the flyer plate) and initiation system in detail. The detonator is composed of LX-16, for which we use a program burn model. Steinberg-Guinan models5 are used for the metal components of the detonator. The booster and high explosive are LX-10 and LX-17, respectively. For both the LX-10 and LX-17, we use a pressure dependent rate law, coupled with a chemical equilibrium equation of state based on Cheetah. For LX-17, the kinetic model includes carbon clustering on the nanometer size scale.« less

  4. Plate impact experiments on the TATB based explosive PBX 9502 at pressures near the Chapman-Jouguet state

    NASA Astrophysics Data System (ADS)

    Gustavsen, R. L.; Aslam, T. D.; Bartram, B. D.; Hollowell, B. C.

    2014-05-01

    A series of two-stage gus-gun driven plate impact experiments on PBX 9502 (95 wt.% tri-amino-trinitro-benzene, 5 wt.% Kel-F800 plastic binder) was completed in the 28-34 GPa pressure range. This is just above the Chapman-Jouguet state of ≈ 28 GPa. The experiments consisted of a thick oxygen free high conductivity copper (OFHC Cu) flyer plate impacting a PBX 9502 sample backed by a Lithium Fluoride (LiF) window. Photonic Doppler Velocimetry (PDV) was used to measure velocity histories (wave profiles) at the PBX 9502/LiF interface. Shock transit times and sample thicknesses were converted to shock velocities, Us. Particle velocities, up, were calculated by way of impedance matching. Lastly, the measured wave profiles were compared with numerical simulations of the experiments using the Wescott-Stewart-Davis reactive-burn model.

  5. Small scale thermal violence experiments for combined insensitive high explosive and booster materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rae, Philip J; Bauer, Clare L; Stennett, C

    A small scale cook-off experiment has been designed to provide a violence metric for both booster and IHE materials, singly and in combination. The experiment has a simple, axisymmetric geometry provided by a 10 mm internal diameter cylindrical steel confinement up to 80 mm in length. Heating is applied from one end of the sample length creating pseudo 1-D heating profile and a thermal gradient across the sample(s). At the opposite end of the confinement to the heating block, a machined groove provides a point of rupture that generates a cylindrical fragment. The displacement of the external face of themore » fragment is detected by Heterodyne Velocimetry. Proof of concept experiments are reported focusing on HMX and TATB formulations, and are described in relation to confinement, ullage and heating profile. The development of a violence metric, based upon fragment velocity records is discussed.« less

  6. Self-deflagration rates of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). [burning tate, thermal stability

    NASA Technical Reports Server (NTRS)

    Boggs, T. L.; Price, C. F.; Zurn, D. E.; Atwood, A. I.; Eisel, J. L.

    1980-01-01

    The thermal stability and resistance to impact was investigated for the ingredient TABA. Particular attention was given to determining the use of TABA as a possible alternative ingredient or substitute for HMX in explosives and high energy propellants. The burn rate of TABA was investigated as a function of pressure. It was concluded that the self deflagration rate of TABA is an order of magnitude lower than HMX over the range 2000-15000 psi; TABA will not sustain self deflagration at low pressures (less than or equal to 1500 psi) in the sample configuration and apparatus used.

  7. Mesoscale Modeling of LX-17 Under Isentropic Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, H K; Willey, T M; Friedman, G

    Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weightedmore » specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.« less

  8. Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB

    PubMed Central

    Fröbel, Julia; Rose, Patrick; Lausberg, Frank; Blümmel, Anne-Sophie; Freudl, Roland; Müller, Matthias

    2012-01-01

    The twin-arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates the transmembrane transport of folded proteins, which harbour signal sequences with a conserved twin-arginine motif. Many Tat translocases comprise the three membrane proteins TatA, TatB and TatC. TatC was previously shown to be involved in recognizing twin-arginine signal peptides. Here we show that beyond recognition, TatC mediates the transmembrane insertion of a twin-arginine signal sequence, thereby translocating the signal sequence cleavage site across the bilayer. In the absence of TatB, this can lead to the removal of the signal sequence even from a translocation-incompetent substrate. Hence interaction of twin-arginine signal peptides with TatB counteracts their premature cleavage uncoupled from translocation. This capacity of TatB is not shared by the homologous TatA protein. Collectively our results suggest that TatC is an insertase for twin-arginine signal peptides and that translocation-proficient signal sequence recognition requires the concerted action of TatC and TatB. PMID:23250441

  9. Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB.

    PubMed

    Fröbel, Julia; Rose, Patrick; Lausberg, Frank; Blümmel, Anne-Sophie; Freudl, Roland; Müller, Matthias

    2012-01-01

    The twin-arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates the transmembrane transport of folded proteins, which harbour signal sequences with a conserved twin-arginine motif. Many Tat translocases comprise the three membrane proteins TatA, TatB and TatC. TatC was previously shown to be involved in recognizing twin-arginine signal peptides. Here we show that beyond recognition, TatC mediates the transmembrane insertion of a twin-arginine signal sequence, thereby translocating the signal sequence cleavage site across the bilayer. In the absence of TatB, this can lead to the removal of the signal sequence even from a translocation-incompetent substrate. Hence interaction of twin-arginine signal peptides with TatB counteracts their premature cleavage uncoupled from translocation. This capacity of TatB is not shared by the homologous TatA protein. Collectively our results suggest that TatC is an insertase for twin-arginine signal peptides and that translocation-proficient signal sequence recognition requires the concerted action of TatC and TatB.

  10. Linking nanoscale mechanical behavior to bulk physical properties and phenomena of energetic materials

    NASA Astrophysics Data System (ADS)

    Taw, Matthew R.

    The hardness and reduced modulus of aspirin, RDX, HMX, TATB, FOX-7, ADAAF, and TNT/CL-20 were experimentally measured with nanoindentation. These values are reported for the first time using as-received micron sized crystals of energetic materials with no additional mechanical processing. The results for TATB, ADAAF, and TNT/CL-20 are the first of their kind, while comparisons to previous nanoindentation studies on large, carefully grown single crystals of the other energetic materials show that mechanical properties of the larger crystals are comparable to crystals in the condition they are practically used. Measurements on aspirin demonstrate the variation that can occur between nanoindentation indents based on the orientation of a Berkovich tip relative to the surface of the sample. The Hertzian elastic contact model was used to analyze the materials initial yield, or pop-in, behavior. The length, energy, indentation load, and shear stress at initial yielding were used to characterize each material. For the energetic materials the length and energy of the yield excursions were compared to the drop weight sensitivity. This comparison revealed a general trend that more impact sensitive materials have longer, more severe pop-in excursions. Hot spot initiation mechanisms involving crystal defects such as void collapses and dislocation pile-up followed by avalanche are supported by these trends. While this only takes one aspect of impact sensitivity into consideration, if this trend is observed in a larger range of energetics these methods could possibly be used to great advantage in the early stages of new explosives synthesis to obtain an estimation of drop weight sensitivity.

  11. Machine Learning Intermolecular Potentials for 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) Using Symmetry-Adapted Perturbation Theory

    DTIC Science & Technology

    2018-04-25

    unlimited. NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so...this report, intermolecular potentials for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) are developed using machine learning techniques. Three...potentials based on support vector regression, kernel ridge regression, and a neural network are fit using symmetry-adapted perturbation theory. The

  12. Detection of plasticity mechanisms in an energetic molecular crystal through shock-like 3D unidirectional compressions: A Molecular Dynamics study

    NASA Astrophysics Data System (ADS)

    Lafourcade, Paul; Denoual, Christophe; Maillet, Jean-Bernard

    2017-06-01

    TATB crystal structure consists in graphitic-like sheets arranged in the a-b plane where a, b and c define the edge vectors of the unit cell. This type of stacking provides the TATB monocrystal very anisotropic physical, chemical and mechanical properties. In order to explore which mechanisms are involved in TATB plasticity, we use a Molecular Dynamics code in which the overall deformation is prescribed as a function of time, for any deformation path. Furthermore, a computation of the Green-Lagrange strain tensor is proposed, which helps reveal various defects and plasticity mechanisms. Through prescribed large strain of shock-like deformations, a three-dimensional characterization of TATB monocrystal yield stress has been obtained, confirming the very anisotropic behavior of this energetic material. Various plasticity mechanisms are triggered during these simulations, including counter intuitive defects onset such as gliding along transveral planes containing perfect dislocations and twinning. Gliding in the a-b plane occurs systematically and does not lead to significant plastic behavior, in accordance with a previous study on dislocation core structures for this plane, based on a coupling between the Peierls-Nabarro-Galerkin method and Molecular Dynamics simulations.

  13. Campaign 2 Level 2 Milestone Review 2009: Milestone # 3131 Grain Scale Simulation of Pore Collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, A J

    2009-09-28

    The milestone reviewed on Sept. 16, 2009 was 'High-fidelity simulation of shock initiation of high explosives at the grain scale using coupled hydrodynamics, thermal transport and chemistry'. It is the opinion of the committee that the team has satisfied the milestone. A detailed description of how the goals were met is provided. The milestone leveraged capabilities from ASC Physics and Engineering Materials program combined with experimental input from Campaign 2. A combined experimental-multiscale simulation approach was used to create and validate the various TATB model components. At the lowest length scale, quantum chemical calculations were used to determine equations ofmore » state, thermal transport properties and reaction rates for TATB as it is decomposing. High-pressure experiments conducted in diamond anvil cells, gas guns and the Z machine were used to validate the EOS, thermal conductivity, specific heat and predictions of water formation. The predicted reaction networks and chemical kinetic equations were implemented in Cheetah and validated against the lower length scale data. Cheetah was then used within the ASC code ALE3D for high-resolution, thermo-mechanically coupled simulations of pore collapse at the micron size scale to predict conditions for detonation initiation.« less

  14. Crystal structure and texture changes during thermal cycling of TATB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Sven C.; Yeager, John David

    2015-02-20

    Goals: Understand crystal structure and micro-structure changes during thermal cycling, understand reasons for ratcheting of TATB during thermal cycling, and Support of B61 LEP. Deliverables achieved: Completed in situ thermal cycling of loose powder and pressed pellet TATB on HIPPO, Quantified preferred orientation of pressed pellet, and quantified relative change of each of the six lattic parameters.

  15. Ignition and Growth Modeling of Shock Initiation of Different Particle Size Formulations of PBXC03 Explosive

    NASA Astrophysics Data System (ADS)

    Hussain, Tariq; Liu, Yan; Huang, Fenglei; Duan, Zhuoping

    2016-01-01

    The change in shock sensitivity of explosives having various explosive grain sizes is discussed. Along with other parameters, explosive grain size is one of the key parameters controlling the macroscopic behavior of shocked pressed explosives. Ignition and growth reactive flow modeling is performed for the shock initiation experiments carried out by using the in situ manganin piezoresistive pressure gauge technique to investigate the influences of the octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) particle size on the shock initiation and the subsequent detonation growth process for the three explosive formulations of pressed PBXC03 (87% HMX, 7% 1,3,5-trichloro-2,4,6-trinitrobenzene (TATB), 6% Viton by weight). All of the formulation studied had the same density but different explosive grain sizes. A set of ignition and growth parameters was obtained for all three formulations. Only the coefficient G1 of the first growth term in the reaction rate equation was varied with the grain size; all other parameters were kept the same for all formulations. It was found that G1 decreases almost linearly with HMX particle size for PBXC03. However, the equation of state (EOS) for solid explosive had to be adjusted to fit the experimental data. Both experimental and numerical simulation results show that the shock sensitivity of PBXC03 decreases with increasing HMX particle size for the sustained pressure pulses (around 4 GPa) as obtained in the experiment. This result is in accordance with the results reported elsewhere in literature. For future work, a better approach may be to find standard solid Grüneisen EOS and product Jones-Wilkins-Lee (JWL) EOS for each formulation for the best fit to the experimental data.

  16. Laser machining of explosives

    DOEpatents

    Perry, Michael D.; Stuart, Brent C.; Banks, Paul S.; Myers, Booth R.; Sefcik, Joseph A.

    2000-01-01

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  17. Detonation propagation in annular arcs of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Ioannou, Eleftherios; Schoch, Stefan; Nikiforakis, Nikolaos; Michael, Louisa

    2017-11-01

    We present a numerical study of detonation propagation in unconfined explosive charges shaped as an annular arc (rib). Steady detonation in a straight charge propagates at constant speed, but when it enters an annular section, it goes through a transition phase and eventually reaches a new steady state of constant angular velocity. This study examines the speed of the detonation wave along the annular charge during the transition phase and at steady state, as well as its dependence on the dimensions of the annulus. The system is modeled using a recently proposed diffuse-interface formulation which allows for the representation of a two-phase explosive and of an additional inert material. The explosive considered is the polymer-bonded TATB-based LX-17 and is modeled using two Jones-Wilkins-Lee (JWL) equations of state and the ignition and growth reaction rate law. Results show that steady state speeds are in good agreement with experiment. In the transition phase, the evolution of outer detonation speed deviates from the exponential bounded growth function suggested by previous studies. We propose a new description of the transition phase which consists of two regimes. The first regime is caused by local effects at the outer edge of the annulus and leads to a dependence of the outer detonation speed on the angular position along the arc. The second regime is induced by effects originating from the inner edge of the annular charge and leads to the deceleration of the outer detonation until steady state is reached. The study concludes with a parametric study where the dependence of the steady state and the transition phase on the dimensions of the annulus is investigated.

  18. Development of a reactive burn model based on an explicit viscoplastic pore collapse model

    NASA Astrophysics Data System (ADS)

    Bouton, E.; Lefrançois, A.; Belmas, R.

    2017-01-01

    The aim of this study is to develop a reactive burn model based upon a microscopic hot spot model to compute the shock-initiation of pressed TATB high explosives. Such a model has been implemented in a lagrangian hydrodynamic code. In our calculations, 8 pore radii, ranging from 40 nm to 0.63 μm, have been taken into account and the porosity fraction associated to each void radius has been deduced from the Ultra-Small-Angle X-ray Scattering measurements (USAXS) for PBX-9502. The last parameter of our model is a burn rate that depends on three variables. The first two are the reaction progress variable and the lead shock pressure, the last one is the chemical reaction site number produced in the flow and calculated by the microscopic model. This burn rate has been calibrated by fitting pressure, velocity profiles and run distances to detonation. As the computed results are in close agreement with the measured ones, this model is able to perform a wide variety of numerical simulations including single, double shock waves and the desensitization phenomenon.

  19. Behavior of Explosives Under Pressure in a Diamond Anvil Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, M F

    2006-06-20

    Diamond anvil cell (DAC) studies can yield information about the pressure dependence of materials and reactions under conditions comparable to shock loading. The pressure gradient across the face of the diamonds is often deliberately minimized to create uniform pressure over much of the sample and a simplified data set. To reach very high pressures (30-40 GPa), however, it may be necessary to use ''softer'', high nitrogen content diamonds that are more susceptible to bending under pressure. The resulting enhanced pressure gradient then provides a view of high-pressure behavior under anisotropic conditions similar to those found at the burn front inmore » a bulk sample. We discuss visual observations of pressure-induced changes relative to variations in burn rate of several explosives (Triaminotrinitrobenzene, Nitromethane, CL-20) in the DAC. The burn rate behavior of both Nitromethane (NM) and Triaminotrinitrobenzene (TATB) were previously reported for pressures up to {approx}40 GPa. Nitromethane showed a near monotonic increase in burn rate to a maximum at {approx}30 GPa after which the burn rate decreased, all without color change. At higher pressures, the TATB samples had shiny (metallic) polycrystalline zones or inclusions where the pressure was highest in the sample. Around the shiny zones was a gradation of color (red to yellow) that appeared to follow the pressure gradient. The color changes are believed related to disturbances in the resonance structure of this explosive as the intermolecular separations decrease with pressure. The color and type of residue found in unvented gaskets after the burn was complete also varied with pressure. The four polymorphs of CL-20 ({alpha}, {beta}, {gamma}, {var_epsilon}-Hexanitrohexaazaisowurtzitane, HNIW) did not change color up to the highest pressure applied ({approx}30 GPa), and each polymorph demonstrated a distinctly different burn rate signature. One polymorph {beta} was so sensitive to laser ignition over a narrow pressure range that the sample could not be aligned with a low power laser without ignition. The burn rate for that one polymorph could only be measured at pressures above and below that unique pressure. This anomalous ignition threshold is discussed with respect to the matrix of possible polymorphs, most of which have not been isolated in the laboratory. The changes in behavior, color and reaction rates of all samples are discussed with respect to possible implications to chemistry at high pressure.« less

  20. High-speed velocity measurements on an EFI-system

    NASA Astrophysics Data System (ADS)

    Prinse, W. C.; van't Hof, P. G.; Cheng, L. K.; Scholtes, J. H. G.

    2007-01-01

    For the development of an Exploding Foil Initiator for Insensitive Munitions applications the following topics are of interest: the electrical circuit, the exploding foil, the velocity of the flyer, the driver explosive, the secondary flyer and the acceptor explosive. Several parameters of the EFI have influences on the velocity of the flyer. To investigate these parameters a Fabry-Perot Velocity Interferometer System (F-PVIS) has been used. The light to and from the flyer is transported by a multimode fibre terminated with a GRIN-lens. By this method the velocity of very tiny objects (0.1 mm), can be measured. The velocity of flyer can be recorded with nanosecond resolution, depending on the Fabry-Perot etalon and the streak camera. With this equipment the influence of the dimensions of the exploding foil and the flyer on the velocity and the acceleration of the flyer are investigated. Also the integrity of the flyer during flight can be analyzed. To characterize the explosive material, to be used as driver explosive in EFI's, the initiation behaviour of the explosive has been investigated by taking pictures of the explosion with a high speed framing and streak camera. From these pictures the initiation distance and the detonation behaviour of the explosive has been analyzed. Normally, the driver explosive initiates the acceptor explosive (booster) by direct contact. This booster explosive is embedded in the main charge of the munitions. The combination of initiator, booster explosive and main charge explosive is called the detonation train. In this research the possibility of initiation of the booster by an intermediate flyer is investigated. This secondary flyer can be made of different materials, like aluminium, steel and polyester with different sizes. With the aid of the F-PVIS the acceleration of the secondary flyer is investigated. This reveals the influence of the thickness and density of the flyer on the acceleration and final velocity. Under certain circumstances the flyer breaks up in several parts and several velocities at the same time have been recorded. Several flyer materials and dimensions exist that are able to initiate very insensitive explosives like TATB.

  1. Characteristics code for shock initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partom, Y.

    1986-10-01

    We developed SHIN, a characteristics code for shock initiation studies. We describe in detail the equations of state, reaction model, rate equations, and numerical difference equations that SHIN incorporates. SHIN uses the previously developed surface burning reaction model which better represents the shock initiation process in TATB, than do bulk reaction models. A large number of computed simulations prove the code is a reliable and efficient tool for shock initiation studies. A parametric study shows the effect on build-up and run distance to detonation of (1) type of boundary condtion, (2) burning velocity curve, (3) shock duration, (4) rise timemore » in ramp loading, (5) initial density (or porosity) of the explosive, (6) initial temperature, and (7) grain size. 29 refs., 65 figs.« less

  2. Properties of the dead zone due to the gas cushion effect in PBX 9502

    NASA Astrophysics Data System (ADS)

    Anderson, William

    2017-06-01

    The gas cushion effect is a well-known phenomenon in which gas trapped between an impactor and an explosive precompresses and deadens a layer of the explosive. We have conducted a series of impact experiments, with and without a trapped gas layer, on the plastic bonded explosive PBX 9502 (95% TATB and 5% Kel-F 800). In each experiment, a 100-oriented LiF window was glued, with an intervening Al foil (a reflector for VISAR), to the surface of a thin (2.5-3.3 mm) PBX 9502 sample and the opposite surface impacted by an impactor at a velocity sufficient to produce an overdriven detonation. VISAR was used to observe arrival of the resulting shock wave and reverberations between the LiF window and the impactor. In three experiments, a gap of 25-38 mm, filled with He gas at a pressure of 0.79 bar, existed between the impactor and the sample at the beginning of the experiment. In these three experiments, a low-amplitude wave reflected from the interface between the reacted explosive and the dead zone was observed to precede the reflection from the impactor. We have used the observed wave amplitudes and arrival times to quantify the properties of the dead zone and, by comparison to existing EOS data for reacted and unreacted PBX 9502, estimate the extent of reaction in the dead zone. This work was supported by the US Department of Energy under contract DE-AC52-06NA25396.

  3. Molecular Dynamics Studies of Thermal Induced Chemistry in Tatb

    NASA Astrophysics Data System (ADS)

    Quenneville, J.; Germann, T. C.; Thompson, A. P.; Kober, E. M.

    2007-12-01

    A reactive force field (ReaxFF) is used with molecular dynamics to probe the chemistry induced by intense heating (`accelerated cook-off') of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Large-system simulations are desired for TATB because of the high degree of carbon clustering expected in this material. Using small, 32-molecule simulations, we calculate the reaction rate as a function of temperature and compare the Arrhenius-predicted activation energy with experiment. Decomposition product evolution (mainly N2, H2O, CO2 and graphitic carbon clusters) is followed using a 576-molecule larger simulation, which also illustrates the effect of system size on both carbon clustering and reaction rate.

  4. Computational Study of 3-D Hot-Spot Initiation in Shocked Insensitive High-Explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.

    2011-06-01

    High explosive shock sensitivity is controlled by a combination of mechanical response, thermal properties, and chemical properties. The interplay of these physical phenomena in realistic condensed energetic materials is currently lacking. A multiscale computational framework is developed investigating hot spot (void) ignition in a single crystal of an insensitive HE, TATB. Atomistic MD simulations are performed to provide the key chemical reactions and these reaction rates are used in 3-D multiphysics simulations. The multiphysics code, ALE3D, is linked to the chemistry software, Cheetah, and a three-way coupled approach is pursued including hydrodynamics, thermal and chemical analyses. A single spherical air bubble is embedded in the insensitive HE and its collapse due to shock initiation is evolved numerically in time; while the ignition processes due chemical reactions are studied. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a ``secondary'' jet. Results obtained with hydro-thermo-chemical processes leading to ignition growth will be discussed for various pore sizes and different shock pressures. LLNL-ABS-471438. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  5. Particle size and surface area effects on the thin-pulse shock initiation of Diaminoazoxyfurazan (DAAF)

    NASA Astrophysics Data System (ADS)

    Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David

    2017-06-01

    Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.

  6. Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli.

    PubMed

    Lausberg, Frank; Fleckenstein, Stefan; Kreutzenbeck, Peter; Fröbel, Julia; Rose, Patrick; Müller, Matthias; Freudl, Roland

    2012-01-01

    The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D(+2))-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D(+2)) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D(+2))-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment.

  7. Jack Rabbit Pretest Shadowplate Drawings For TATB IHE Model Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M M; McDaniel, D W

    The Jack Rabbit Pretest (PT) series consisted of 5 focused hydrodynamic experiments 2021E PT3, PT4, PT5, PT6, and PT7. They were fired in March and April of 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory, Livermore, California. These experiments measured deadzone formation and impulse gradients created during the detonation of TATB based insensitive high explosive. When setting up computer simulations of the Jack Rabbit Pretest series, the modeler or code developer can execute simulations with increasing degrees of refinement using detail found in the shadowplate design. The easiest way to get started is by treating themore » shadowplate in each experiment as a monolithic homogeneous piece of stainless steel. The simulation of detonation would begin as a point initiation below the center, bottom surface of the shadowplate. The detonation running through the ultrafine TATB booster can be simulated using program burn and then switched over to a reactive flow detonation model as the detonation front crosses the boundary into the main charge LX-17 IHE. A modeler wanting to further refine the simulation and progression of shock through the shadowplate can use the more detailed shadowplate design information presented in this document. The source drawings are included in Appendix A of this document. Their titles and drawing numbers are listed. Each experiment's shadowplate consists of two major components. A 303 stainless steel shape that defines the outer dimensions of shadowplate and a cylindrical 303 stainless steel detonator housing that is located in a closely machined pocket in the shape. The SIMPLE ASSY drawing accurately represents the dimensions of the outer shape, it's machined cylindrical pocket, and detonator body which is treated as a monolithic, homogeneous piece of stainless steel. The detonator body cross section shows an accurately dimensioned void where the slapper flyer barrel, LX-16 (pressed PETN) pellet, and pellet can flyer barrel are located. The FULL ASSY drawing accurately represents the dimensions of the outer shadowplate shape and it's machined pocket. The detonator dimensions and materials are detailed in cross section and exploded view. All diameters, thicknesses, and materials are called out in the drawing. You will notice that the detonator includes a multilayer slapper assembly with two layers of electrically insulating Kapton sandwiching the copper foil bridge circuit. The Kapton insulated circuit is sandwiched between two thin stainless steel sheets. This slapper assembly is secured to the detonator body with two screws. There is a 0.25 mm gap between the slapper assembly and the outer shadowplate shape. The stainless steel detonator body contains an off-center titanium wheel. This titanium wheel is secured to the detonator body with one screw and two pins to maintain position and orientation of the pellet can assembly in the center of the detonator body. The titanium wheel contains a tantalum/tungsten washer and pellet can assembly. The pellet can assembly consists of a pressed LX-16 initiator pellet contained in an extruded aluminum foil can. It may be useful for the modeler to include some of the details of the shadowplate and detonator design to further refine simulations of the Jack Rabbit Pretest experiments. These details may be relevant to the progression of shock originating from the PETN initiation pellet and ultrafine TATB booster that propagates through the shadowplate.« less

  8. Genetic Evidence for a Tight Cooperation of TatB and TatC during Productive Recognition of Twin-Arginine (Tat) Signal Peptides in Escherichia coli

    PubMed Central

    Lausberg, Frank; Fleckenstein, Stefan; Kreutzenbeck, Peter; Fröbel, Julia; Rose, Patrick; Müller, Matthias; Freudl, Roland

    2012-01-01

    The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D+2)-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D+2) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D+2)-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment. PMID:22761916

  9. Preparation of 1,3,5-triamo-2,4,6-trinitrobenzene of submicron particle size

    DOEpatents

    Rigdon, Lester P [Livermore, CA; Moody, Gordon L [Tracy, CA; McGuire, Raymond R [Brentwood, CA

    2001-05-01

    A method is disclosed for the preparation of very small particle size, relatively pure 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Particles of TATB prepared according to the disclosed method are of submicron size and have a surface area in the range from about 3.8 to 27 square meters per gram.

  10. Preparation of 1,3,5-triamino-2,4,6-trinitrobenzene of submicron particle size

    DOEpatents

    Rigdon, Lester P.; Moody, Gordon L.; McGuire, Raymond R.

    2001-01-01

    A method is disclosed for the preparation of very small particle size, relatively pure 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Particles of TATB prepared according to the disclosed method are of submicron size and have a surface area in the range from about 3.8 to 27 square meters per gram.

  11. Influence of exothermic chemical reactions on laser-induced shock waves.

    PubMed

    Gottfried, Jennifer L

    2014-10-21

    Differences in the excitation of non-energetic and energetic residues with a 900 mJ, 6 ns laser pulse (1064 nm) have been investigated. Emission from the laser-induced plasma of energetic materials (e.g. triaminotrinitrobenzene [TATB], cyclotrimethylene trinitramine [RDX], and hexanitrohexaazaisowurtzitane [CL-20]) is significantly reduced compared to non-energetic materials (e.g. sugar, melamine, and l-glutamine). Expansion of the resulting laser-induced shock wave into the air above the sample surface was imaged on a microsecond timescale with a high-speed camera recording multiple frames from each laser shot; the excitation of energetic materials produces larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface), results in the formation of additional shock fronts, and generates faster external shock front velocities (>750 m s(-1)) compared to non-energetic materials (550-600 m s(-1)). Non-explosive materials that undergo exothermic chemical reactions in air at high temperatures such as ammonium nitrate and magnesium sulfate produce shock velocities which exceed those of the inert materials but are less than those generated by the exothermic reactions of explosive materials (650-700 m s(-1)). The most powerful explosives produced the highest shock velocities. A comparison to several existing shock models demonstrated that no single model describes the shock propagation for both non-energetic and energetic materials. The influence of the exothermic chemical reactions initiated by the pulsed laser on the velocity of the laser-induced shock waves has thus been demonstrated for the first time.

  12. The Nominal/Generic Specific Heat per Average Atom Concept for CHNO Energetic Materials

    DTIC Science & Technology

    2006-07-01

    Heat Per Average Atom for TATB. RDX . TNT. HMX . and HNS... HMX can exist in different solid polymorphic forms. At a certain temperature, TT, one form may change to another form if the heat energy of...densities ( p. ) up to, and including, crystals at TMD for TNT, RDX , HMX , and TATB. The presently proposed N/G CP magnitude, in certain temperature

  13. Proton Relaxation in 1, 3, 5-Triamino-2, 4, 6-Trinitrobenzene (TATB).

    DTIC Science & Technology

    1980-06-16

    AD-AO? 209 NAVAL RESEARCH LAB WASHINGTON DC F/G 7/4 PROTON RELAXATION IN 1. 3, 5-TRIAMINO-2, 4. 6-TRINITROBENZENE C-ETC(Ul~JUN A0 A N GARROWAY , H A...TATB) 1 April - 31 September 1979 S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(@) A.N. Garroway and H.A. Resing DE-AP-03

  14. Sensitivity of PBX-9502 after ratchet growth

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta N.; Swift, Damian

    2012-03-01

    Ratchet growth, or irreversible thermal expansion of the TATB-based plastic-bonded explosive PBX-9502, leads to increased sensitivity, as a result of increased porosity. The observed increase of between 3.1 and 3.5 volume percent should increase sensitivity according to the published Pop-plots for PBX-9502 [1]. Because of the variable size, shape, and location of the increased porosity, the observed sensitivity of the ratchet-grown sample is less than the sensitivity of a sample pressed to the same density. Modeling of the composite, using a quasi-harmonic EOS for unreacted components [2] and a robust porosity model for variations in density [3], allowed comparison of the initiation observed in experiment with behavior modeled as a function of density. An Arrhenius model was used to describe reaction, and the EOS for products was generated using the CHEETAH code [4]. A 1-D Lagrangian hydrocode was used to model in-material gauge records and the measured turnover to detonation, predicting greater sensitivity to density than observed for ratchet-grown material. This observation is consistent with gauge records indicating intermittent growth of the reactive wave, possibly due to inhomogeneities in density, as observed in SEM images of the material [5].

  15. Molecular Dynamics Studies of Thermal Induced Chemistry in TATB

    NASA Astrophysics Data System (ADS)

    Quenneville, Jason; Germann, Timothy

    2007-06-01

    A reactive force field (ReaxFF^2) is used with molecular dynamics to probe the chemistry induced by intense heating (accelerated `cook-off') of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Large-system simulations are desired for TATB because of the high degree of carbon clustering expected in this material. Using small, 800-atom, simulations, we will show the reaction rate as a function of temperature and density as well as the time evolution of reaction products. A larger simulation (with 14,000 atoms) will illustrate the effect of system size on both carbon clustering and reaction rate. Insight into the mechanisms of product formation will be given, as well as the chemical structure (graphitic or diamond-like) of the carbon clusters obtained. ^2 A. C. T. Van Duin, et al, J. Phys. Chem. A, 1005, 9396 (2001).

  16. Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies

    NASA Astrophysics Data System (ADS)

    Wang, Kuaibing; Wang, Zikai; Wang, Xin; Zhou, Xueqin; Tao, Yuehong; Wu, Hua

    2018-02-01

    Two novel and isostructural Ni-based MOFs with topological symbol of 422·54·62, namely [Ni2(TATB)2(L)2(H2O)], have successfully synthesized, where L is the flexibly N-donor bid (1,10-bisimidazoledecane) or btd (1,10-bistriazoledecane) linker and TATB is the deprotonation mode from 4,4‧,4″-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB). Two types of left- and right-handed helical channels with mean diameter of 11 Å results in large void space in 3D network. When directly use as electrode materials, the as-synthesized Ni-MOFs single-crystal electrodes behave as pseudo-capacitor and deliver high gravimetric capacitance with superior energy deliverable ability and cycling stability. For example, the maximum gravimetric capacitance is 705 F g-1 with the energy density of 29.6 Wh kg-1 at a current density of 1 A g-1. Even after 5000 continuous cycles, the capacitance retention maintains at 92.1%. The good electrochemical performance should be ascribed to the 1D helical channels facilitating the diffusion of OH-. Furthermore, the low bulk solution (0.46 and 0.50 Ω) and charge-transfer resistances accelerate the contact between OH- and active species in the electrode, and consequently result in efficiency Faradaic reaction. This work opens a new way for the directly application of 3D topological MOFs single-crystal with novel interior structures especially porous and channel-like architectures in electronic energy storage field.

  17. Metabolic Engineering of Plants to Produce Precursors (Phloroglucinol and 1,2,4-butanetriol) of Energetic Materials

    DTIC Science & Technology

    2015-01-02

    phloroglucinol, which are precursors of energetic materials butanetriol trinitrate (BTTN) and l ,3,5-triamino-2,4,6 trinitrobenzene (TATB), respectively, in...of energetic materials butanetriol trinitrate (BTTN) and l ,3,5-triamino-2,4,6 trinitrobenzene (TATB), respectively, in plants. The strategy was to... phenylalanine , valine and hexose sugars. On the other hand the metabolites that are completely depleted in the chloroplastic lines and partially in

  18. Functional Analysis of the Twin-Arginine Translocation Pathway in Corynebacterium glutamicum ATCC 13869▿

    PubMed Central

    Kikuchi, Yoshimi; Date, Masayo; Itaya, Hiroshi; Matsui, Kazuhiko; Wu, Long-Fei

    2006-01-01

    Compared to those of other gram-positive bacteria, the genetic structure of the Corynebacterium glutamicum Tat system is unique in that it contains the tatE gene in addition to tatA, tatB, and tatC. The tatE homologue has been detected only in the genomes of gram-negative enterobacteria. To assess the function of the C. glutamicum Tat pathway, we cloned the tatA, tatB, tatC, and tatE genes from C. glutamicum ATCC 13869 and constructed mutants carrying deletions of each tat gene or of both the tatA and tatE genes. Using green fluorescent protein (GFP) fused with the twin-arginine signal peptide of the Escherichia coli TorA protein, we demonstrated that the minimal functional Tat system required TatA and TatC. TatA and TatE provide overlapping function. Unlike the TatB proteins from gram-negative bacteria, C. glutamicum TatB was dispensable for Tat function, although it was required for maximal efficiency of secretion. The signal peptide sequence of the isomaltodextranase (IMD) of Arthrobacter globiformis contains a twin-arginine motif. We showed that both IMD and GFP fused with the signal peptide of IMD were secreted via the C. glutamicum Tat pathway. These observations indicate that IMD is a bona fide Tat substrate and imply great potential of the C. glutamicum Tat system for industrial production of heterologous folded proteins. PMID:16997984

  19. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.

    2015-06-28

    The dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity overmore » a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about −3, which is consistent with a complex disordered, irregular, or folded sp{sup 2} sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  20. Measurement of carbon condensation using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge-Hansen, M.; Lauderbach, L. M.; Hodgin, R.

    2015-06-24

    The dynamics of carboncondensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity overmore » a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. As a result, the power-law slope is about –3, which is consistent with a complex disordered, irregular, or folded sp 2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  1. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE PAGES

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; ...

    2015-06-24

    In this study, the dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation end station has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution,more » provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about -3, which is consistent with a complex disordered, irregular, or folded sp 2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  2. Re-examining the tetraphenyl-arsonium/tetraphenyl-borate (TATB) hypothesis for single-ion solvation free energies

    NASA Astrophysics Data System (ADS)

    Pollard, Travis P.; Beck, Thomas L.

    2018-06-01

    Attempts to establish an absolute single-ion hydration free energy scale have followed multiple strategies. Two central themes consist of (1) employing bulk pair thermodynamic data and an underlying interfacial-potential-free model to partition the hydration free energy into individual contributions [Marcus, Latimer, and tetraphenyl-arsonium/tetraphenyl-borate (TATB) methods] or (2) utilizing bulk thermodynamic and cluster data to estimate the free energy to insert a proton into water, including in principle an interfacial potential contribution [the cluster pair approximation (CPA)]. While the results for the hydration free energy of the proton agree remarkably well between the three approaches in the first category, the value differs from the CPA result by roughly +10 kcal/mol, implying a value for the effective electrochemical surface potential of water of -0.4 V. This paper provides a computational re-analysis of the TATB method for single-ion free energies using quasichemical theory. A previous study indicated a significant discrepancy between the free energies of hydration for the TA cation and the TB anion. We show that the main contribution to this large computed difference is an electrostatic artifact arising from modeling interactions in periodic boundaries. No attempt is made here to develop more accurate models for the local ion/solvent interactions that may lead to further small free energy differences between the TA and TB ions, but the results clarify the primary importance of interfacial potential effects for analysis of the various free energy scales. Results are also presented, related to the TATB assumption in the organic solvents dimethyl sulfoxide and 1,2-dichloroethane.

  3. Assembling the Tat protein translocase

    PubMed Central

    Alcock, Felicity; Stansfeld, Phillip J; Basit, Hajra; Habersetzer, Johann; Baker, Matthew AB; Palmer, Tracy; Wallace, Mark I; Berks, Ben C

    2016-01-01

    The twin-arginine protein translocation system (Tat) transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membranes of plant chloroplasts. The Tat transporter is assembled from multiple copies of the membrane proteins TatA, TatB, and TatC. We combine sequence co-evolution analysis, molecular simulations, and experimentation to define the interactions between the Tat proteins of Escherichia coli at molecular-level resolution. In the TatBC receptor complex the transmembrane helix of each TatB molecule is sandwiched between two TatC molecules, with one of the inter-subunit interfaces incorporating a functionally important cluster of interacting polar residues. Unexpectedly, we find that TatA also associates with TatC at the polar cluster site. Our data provide a structural model for assembly of the active Tat translocase in which substrate binding triggers replacement of TatB by TatA at the polar cluster site. Our work demonstrates the power of co-evolution analysis to predict protein interfaces in multi-subunit complexes. DOI: http://dx.doi.org/10.7554/eLife.20718.001 PMID:27914200

  4. Development of a reactive burn model based upon an explicit visco-plastic pore collapse model

    NASA Astrophysics Data System (ADS)

    Bouton, Eric; Lefrançois, Alexandre; Belmas, Robert

    2015-06-01

    Our aim in this study is to develop a reactive burn model based upon a microscopic hot spot model to compute the initiation and shock to detonation of pressed TATB explosives. For the sake of simplicity, the hot spots are supposed to result from the viscoplastic collapse of spherical micro-voids inside the composition. Such a model has been incorporated in a lagrangian hydrodynamic code. In our calculations, 8 different pore diameters, ranging from 100 nm to 1.2 μm, have been taken into account and the porosity associated to each pore size has been deduced from the PBX-9502 void distribution derived from the SAXS. The last ingredient of our model is the burn rate that depends on two main variables. The first one is the shock pressure as proposed by the developers of the CREST model. The second one is the number of effective chemical reaction sites calculated by the microscopic model. Furthermore, the function of the reaction progress variable of the burn rate is similar to that in the SURF model proposed by Menikoff. Our burn rate has been calibrated by using pressure profile, material velocities wave forms obtained with embedded particle velocity gauges and run distance to detonation. The comparison between the numerical and experimental results is really good and sufficient to perform a wide variety of simulations including single, double shock waves and the desensitization phenomenon. In conclusion, future works are described.

  5. Picosecond Vibrational Spectroscopy of Shocked Energetic Materials

    NASA Astrophysics Data System (ADS)

    Franken, Jens; Hare, David; Hambir, Selezion; Tas, Guray; Dlott, Dana

    1997-07-01

    We present a new technique which allows the study of the properties of shock compressed energetic materials via vibrational spectroscopy with a time resolution on the order of 25 ps. Shock waves are generated using a near-IR laser at a repetition rate of 80 shocks per second. Shock pressures up to 5 GPa are obtained; shock risetimes are as short as 25 ps. This technique enables us to estimate shock pressures and temperatures as well as to monitor shock induced chemistry. The shock effects are probed by ps coherent anti-Stokes Raman spectroscopy (CARS). The sample consists of four layers, a glass plate, a thin polycrystalline layer of an energetic material, a buffer layer and the shock generating layer. The latter is composed of a polymer, a near-IR absorbing dye and a high explosive (RDX) as a pressure booster. The main purpose of the buffer layer, which consists of an inert polymer, is to delay the arrival of the shock wave at the sample by more than 1 ns until after the shock generating layer has ablated away. High quality, high resolution (1 cm-1) low-background vibrational spectra could be obtained. So far this technique has been applied to rather insensitive high explosives such as TATB and NTO. In the upcoming months we are hoping to actually observe chemistry in real time by shocking more sensitive materials. This work was supported by the NSF, the ARO and the AFOSR

  6. Understanding the scale of the single ion free energy: A critical test of the tetra-phenyl arsonium and tetra-phenyl borate assumption

    NASA Astrophysics Data System (ADS)

    Duignan, Timothy T.; Baer, Marcel D.; Mundy, Christopher J.

    2018-06-01

    The tetra-phenyl arsonium and tetra-phenyl borate (TATB) assumption is a commonly used extra-thermodynamic assumption that allows single ion free energies to be split into cationic and anionic contributions. The assumption is that the values for the TATB salt can be divided equally. This is justified by arguing that these large hydrophobic ions will cause a symmetric response in water. Experimental and classical simulation work has raised potential flaws with this assumption, indicating that hydrogen bonding with the phenyl ring may favor the solvation of the TB- anion. Here, we perform ab initio molecular dynamics simulations of these ions in bulk water demonstrating that there are significant structural differences. We quantify our findings by reproducing the experimentally observed vibrational shift for the TB- anion and confirm that this is associated with hydrogen bonding with the phenyl rings. Finally, we demonstrate that this results in a substantial energetic preference of the water to solvate the anion. Our results suggest that the validity of the TATB assumption, which is still widely used today, should be reconsidered experimentally in order to properly reference single ion solvation free energy, enthalpy, and entropy.

  7. Improved Reactive Flow Modeling of the LX-17 Double Shock Experiments

    NASA Astrophysics Data System (ADS)

    Rehagen, Thomas J.; Vitello, Peter

    2017-06-01

    Over driven double shock experiments provide a measurement of the properties of the reaction product states of the insensitive high explosive LX-17 (92.5% TATB and 7.5% Kel-F by weight). These experiments used two flyer materials mounted on the end of a projectile to send an initial shock through the LX-17, followed by a second shock of a higher magnitude into the detonation products. In the experiments, the explosive was initially driven by the flyer plate to pressures above the Chapman-Jouguet state. The particle velocity history was recorded by Photonic Doppler Velocimetry (PDV) probes pointing at an aluminum foil coated LiF window. The PDV data shows a sharp initial shock and decay, followed by a rounded second shock. Here, the experimental results are compared to 2D and 3D Cheetah reactive flow modeling. Our default Cheetah reactive flow model fails to accurately reproduce the decay of the first shock or the curvature or strength of the second shock. A new model is proposed in which the carbon condensate produced in the reaction zone is controlled by a kinetic rate. This allows the carbon condensate to be initially out of chemical equilibrium with the product gas. This new model reproduces the initial detonation peak and decay, and matches the curvature of the second shock, however, it still over-predicts the strength of the second shock. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  8. Vibrational and thermal properties of β-HMX and TATB from dispersion corrected density functional theory

    NASA Astrophysics Data System (ADS)

    Landerville, Aaron C.; Oleynik, Ivan I.

    2017-01-01

    Dispersion Corrected Density Functional Theory (DFT+vdW) calculations are performed to predict vibrational and thermal properties of the bulk energetic materials (EMs) β-octahydrocyclotetramethylene-tetranitramine (β-HMX) and triaminotrinitrobenzene (TATB). DFT+vdW calculations of pressure-dependent crystal structure and the hydrostatic equation of state are followed by frozen-phonon calculations of their respective vibration spectra at each pressure. These are then used under the quasi-harmonic approximation to obtain zero-point and thermal free energy contributions to the pressure, resulting in pressure-volume-temperature (PVT) EOS for each material that are in excellent agreement with experiment. Heat capacities, and coefficients of thermal expansion as functions of temperature are also calculated and compared with experiment.

  9. Instrumented Pressing of HE and Inert Materials to Study the Effect of Particle Size

    NASA Astrophysics Data System (ADS)

    Stull, Jamie; Woznick, Caitlin; Deluca, Racci; Patterson, Brain; Thompson, Darla Graff

    2017-06-01

    It is well known that detonation and mechanical properties of high explosives (HE) depend on density. Computationally it has been shown that specific particle-size distributions will lead to better pressed parts. Theoretically this should improve moderate compaction conditions, uniform density and strength. There are many other powder characteristics that are important such as crystal shape and strength. We are interested to explore the role of HE powder characteristics on compaction properties and pellet integrity. We have used an instrumented compaction instrument to press inert and HE powders such as TATB and HMX, which have very different crystal structures. The force and displacement measurements from the instrumented press provide information on the quality of compaction of the specimen in the form of Heckel plots, etc. We have evaluated the thermal and mechanical integrity of resultant pellets by measuring the coefficient of thermal expansion and the compressive strength and strain at failure. We have employed micro x-ray computed tomography (CT) to characterize the microstructure and to quantify the number, the size, and the location of voids. The lack of binder in these specimens greatly simplifies the microstructure analysis and makes the data more amenable to modeling and interpretation.

  10. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding.

    PubMed

    Ulfig, Agnes; Freudl, Roland

    2018-05-11

    The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial membranes. Tat precursor proteins possess a conserved twin-arginine (RR) motif in their signal peptides that is involved in the binding of the proteins to the membrane-associated TatBC receptor complex. In addition, the hydrophobic region in the Tat signal peptides also contributes to TatBC binding, but whether regions beyond the signal-peptide cleavage site are involved in this process is unknown. Here, we analyzed the contribution of the early mature protein part of the Escherichia coli trimethylamine N -oxide reductase (TorA) to productive TatBC receptor binding. We identified substitutions in the 30 amino acids immediately following the TorA signal peptide (30aa-region) that restored export of a transport-defective TorA[KQ]-30aa-MalE precursor, in which the RR residues had been replaced by a lysine-glutamine pair. Some of these substitutions increased the hydrophobicity of the N-terminal part of the 30aa-region and thereby likely enhanced hydrophobic substrate-receptor interactions within the hydrophobic TatBC substrate-binding cavity. Another class of substitutions increased the positive net charge of the region's C-terminal part, presumably leading to strengthened electrostatic interactions between the mature substrate part and the cytoplasmic TatBC regions. Furthermore, we identified substitutions in the C-terminal domains of TatB following the transmembrane segment that restored transport of various transport-defective TorA-MalE derivatives. Some of these substitutions most likely affected the orientation or conformation of the flexible, carboxy-proximal helices of TatB. Therefore, we propose that a tight accommodation of the folded mature region by TatB contributes to productive binding of Tat substrates to TatBC. © 2018 Ulfig and Freudl.

  11. Summary of Booster Development and Qualification Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francois, Elizabeth G.; Harry, Herbert H.; Hartline, Ernest L.

    2012-06-21

    This report outlines booster development work done at Los Alamos National Laboratory from 2007 to present. The booster is a critical link in the initiation train of explosive assemblies, from complex devices like nuclear weapons to conventional munitions. The booster bridges the gap from a small, relatively sensitive detonator to an insensitive, but massive, main charge. The movement throughout the explosives development community is to use more and more insensitive explosive components. With that, more energy is needed out of the booster. It has to initiate reliably, promptly, powerfully and safely. This report is divided into four sections. The firstmore » provides a summary of a collaborative effort between LANL, LLNL, and AWE to identify candidate materials and uniformly develop a testing plan for new boosters. Important parameters and the tests required to measure them were defined. The nature of the collaboration and the specific goals of the participating partners has changed over time, but the booster development plan stands on its own merit as a complete description of the test protocol necessary to compare and qualify booster materials, and is discussed in its entirety in this report. The second section describes a project, which began in 2009 with the Department of Defense to develop replacement booster formulations for PBXN-7. Replacement of PBXN-7 was necessary because it contained Triaminotrinitrobenzene (TATB), which was becoming unavailable to the DoD and because it contained Cyclotrimethylenetrinitramine (RDX), which was sensitive and toxic. A LANL-developed explosive, Diaminoazoxyfurazan (DAAF), was an important candidate. This project required any replacement formulation be a drop-in replacement in existing munitions. This project was timely, in that it made use of the collaborative booster development project, and had the additional constraint of matching shock sensitivity. Additionally it needed to be a safety improvement, and a performance improvement, especially at cold temperatures. The requirements of this project necessitated novel test development and a different approach to ranking booster qualities. Results of this project have been documented to the DoD and the relevant portions are included within. The third section of this booster report outlines testing related to main charge initiation merit. Initiability can be evaluated by looking at critical diameter, run distance, and shock sensitivity. Once a booster is initiated, it needs to be powerful enough to initiate the main charge symmetrically and evenly. Main charge initiability is evaluated directly by observing detonation wave symmetry, curvature, and first break out over the surface of a charge. Furthermore it must be insensitive to accidents and insults, and safe and reliable across a range of temperatures. These effects, tests, and results will be discussed individually in the context of DAAF and other explosives similarly tested. The last section provides a conclusion and summary of our experimental work and recommendations for the path forward. References and additional supporting documentation and results are provided in the appendices at the end of this report.« less

  12. Elongated and substituted triazine-based tricarboxylic acid linkers for MOFs.

    PubMed

    Klinkebiel, Arne; Beyer, Ole; Malawko, Barbara; Lüning, Ulrich

    2016-01-01

    New triazine-based tricarboxylic acid linkers were prepared as elongated relatives of triazinetribenzoic acid (TATB). Additionally, functional groups (NO 2 , NH 2 , OMe, OH) were introduced for potential post-synthetic modification (PSM) of MOFs. Functionalized tris(4-bromoaryl)triazine "cores" ( 3a , 3b ) were obtained by unsymmetric trimerization mixing one equivalent of an acid chloride (OMe or NO 2 substituted) with two equivalents of an unsubstituted nitrile. Triple Suzuki coupling of the cores 3 with suitable phenyl- and biphenylboronic acid derivatives provided elongated tricarboxylic acid linkers as carboxylic acids 17 and 20 or their esters 16 and 19 . Reduction of the nitro group and cleavage of the methoxy group gave the respective amino and hydroxy-substituted triazine linkers.

  13. Elongated and substituted triazine-based tricarboxylic acid linkers for MOFs

    PubMed Central

    Klinkebiel, Arne; Beyer, Ole; Malawko, Barbara

    2016-01-01

    New triazine-based tricarboxylic acid linkers were prepared as elongated relatives of triazinetribenzoic acid (TATB). Additionally, functional groups (NO2, NH2, OMe, OH) were introduced for potential post-synthetic modification (PSM) of MOFs. Functionalized tris(4-bromoaryl)triazine “cores” (3a,3b) were obtained by unsymmetric trimerization mixing one equivalent of an acid chloride (OMe or NO2 substituted) with two equivalents of an unsubstituted nitrile. Triple Suzuki coupling of the cores 3 with suitable phenyl- and biphenylboronic acid derivatives provided elongated tricarboxylic acid linkers as carboxylic acids 17 and 20 or their esters 16 and 19. Reduction of the nitro group and cleavage of the methoxy group gave the respective amino and hydroxy-substituted triazine linkers. PMID:28144293

  14. Application of Van Der Waals Density Functional Theory to Study Physical Properties of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Conroy, M. W.; Budzevich, M. M.; Lin, Y.; Oleynik, I. I.; White, C. T.

    2009-12-01

    An empirical correction to account for van der Waals interactions based on the work of Neumann and Perrin [J. Phys. Chem. B 109, 15531 (2005)] was applied to density functional theory calculations of energetic molecular crystals. The calculated equilibrium unit-cell volumes of FOX-7, β-HMX, solid nitromethane, PETN-I, α-RDX, and TATB show a significant improvement in the agreement with experimental results. Hydrostatic-compression simulations of β-HMX, PETN-I, and α-RDX were also performed. The isothermal equations of state calculated from the results show increased agreement with experiment in the pressure intervals studied.

  15. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    PubMed

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models.

  16. Double-HE-Layer Detonation-Confinement Sandwich Tests: The Effect of Slow-Layer Density

    NASA Astrophysics Data System (ADS)

    Hill, Larry

    2013-06-01

    Over a period of several years, we have explored the phenomenon in which slabs of high explosives (HEs) with differing detonation speeds are joined along one of their faces. Both are initiated (usually by a line-wave generator) at one edge. If there were no coupling between the layers, the detonation in the fast HE would outrun that in the slow HE. In reality, the detonation in the fast HE transmits an oblique shock into the slow HE, the phase speed of which is equal to the speed of the fast HE. This has one of two effects depending on the particulars. First, the oblique shock transmitted to the slow HE can pre-shock and deaden it, extinguishing the detonation in the slow HE. Second, the oblique shock can transversely initiate the slow layer, pulling its detonation along at the fast HE speed. When the second occurs, it does so at the ``penalty'' of a nominally dead layer, which forms in the slow HE adjacent to the material interface. We present the results of tests in which the fast layer was 3-mm-thick PBX 9501 (95 wt% HMX), and the slow layer was 8-mm-thick PBX 9502 (95 wt% TATB). The purpose was to observe the effect of slow layer density on the ``dead'' layer thickness. Very little effect was observed across the nominal PBX 9502 density range, 1.885-1.895 g/cc.

  17. Manufacture of TATB and TNT from Biosynthesized Phloroglucinols

    DTIC Science & Technology

    2010-07-01

    the microbial synthesis of mono-O-methylphloroglucinols, phloroglucinol O-methyl transferase (POMT) from Rosa chinensis var. spontanea has been...successfully de novo synthesized in codon-optimized form for expression in E. coli, which is the host currently used for microbial synthesis of...efforts had been made in both strain development and optimizing fermentation conditions for microbial phloroglucinol synthesis . Under optimized resin

  18. Porous anionic indium-organic framework with enhanced gas and vapor adsorption and separation ability.

    PubMed

    Huang, Yuanbiao; Lin, Zujin; Fu, Hongru; Wang, Fei; Shen, Min; Wang, Xusheng; Cao, Rong

    2014-09-01

    A three-dimensional microporous anionic metal-organic framework (MOF) (Et4N)3[In3(TATB)4] (FJI-C1, H3TATB=4,4',4''-s-triazine-2,4,6-triyltribenzoic acid) with large unit cell volume has been synthesized. Assisted by the organic cation group Et4N in the pores of the compound, FJI-C1 not only shows high adsorption uptakes of C2 and C3 hydrocarbons, but also exhibits highly selective separation of propane, acetylene, ethane, and ethylene from methane at room temperature. Furthermore, it also exhibits high separation selectivity for propane over C2 hydrocarbons and acetylene can be readily separated from their C2 hydrocarbons mixtures at low pressure due to the high selectivity for C2H2 in comparison to C2H4 and C2H6. In addition, FJI-C1 with hydrophilic internal pores surfaces shows highly efficient adsorption separation of polar molecules from nonpolar molecules. Notably, it exhibits high separation selectivity for benzene over cyclohexane due to the π-π interactions between benzene molecules and s-triazine rings of the porous MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Fundamental Chemistry and Physics of Munitions under Extreme Conditions

    DTIC Science & Technology

    2011-02-01

    I. I. Oleynik, S. V. Zybin, and C. T. White, “Density Functional Theory Calculations of Solid Nitromethane under Hydrostatic and Uniaxial...White (NRL), Ivan Oleynik (USF): anisotropic nonlinear elasticity and equations of states of crystalline EM (PETN, RDX, HMX, TATB, nitromethane ...and nitromethane ;  Aidan Thompson (SNL): shock-to-detonation transition in PETN and CL-20;  Ronnie Kosloff (Hebrew University of Jerusalem

  20. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    NASA Astrophysics Data System (ADS)

    Jiao, Qingjie; Wang, Qiushi; Nie, Jianxin; Guo, Xueyong; Zhang, Wei; Fan, Wenqi

    2018-03-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX) based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm) grows gradually; shock wave energy (Es) continues increasing, bubble energy (Eb) increases then decreases peaking at 15% for both formulas, and the total energy (E) and energy release rate (η) peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  1. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P C; Hernandez, A; Cabacungen, C

    2007-05-30

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred ormore » not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in the Linked Cheetah V4.0 reactive flow code at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. A report card of 25 tests run with the same settings on LX-17 is shown, possibly the most extensive simultaneous calibration yet tried with an explosive. The physical basis of some of the input parameters is considered.« less

  2. Quantum Mechanical Predictions Of Energetic Materials: When Good Theories Go Bad

    DTIC Science & Technology

    2008-12-01

    pressures. The systems studied were nitromethane, 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane ( HMX ), cyclotrimethylenetrinitramine ( RDX ...degrees of compression. The systems are RDX , HMX , CL-20, nitromethane, PETN, and TATB. The GGA DFT Perdew-Burke-Ernzerhof (PBE) [Perdew et al., 1996...nitromethane, HMX , RDX and CL-20). At higher degrees of compression, planewave kinetic energy cut- offs (Ecut) were restricted to either 396 eV and/or

  3. Thermal Explosion Violence of HMX-Based and RDX-Based Explosives - Effects of Composition, Confinement, and Solid Phase Using the Scaled Thermal Explosion Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L; Wardell, J F

    The Scaled Thermal Explosion Experiment (STEX) has been developed to quantify the violence of thermal explosion under well defined and carefully controlled initial and boundary conditions. Here we present results with HMX-based explosives (LX-04 and PBX-9501) and with Composition B. Samples are 2 inches (50 mm) in diameter and 8 inches (200 mm) in length, under confinement of 7,500-30,000 psi (50-200 MPa), with heating rates of 1-3 C/hr. We quantify reaction violence by measuring the wall velocity in the ensuing thermal explosion, and relate the measured velocity to that expected from a detonation. Results with HMX-based explosives (LX-04 and PBX-9501)more » have shown the importance of confinement and HMX solid phase, with reaction violence ranging from mild pressure bursts to near detonations. By contrast, Composition B has shown very violent reactions over a wide range of conditions.« less

  4. Thermal explosion violence of HMX-based explosives -- effect of composition, confinement and phase transition using the scaled thermal explosion experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L; Wardell, J F; Reaugh, J E

    We developed the Scaled Thermal Explosion Experiment (STEX) to provide a database of reaction violence from thermal explosion of explosives of interest. A cylinder of explosive, 1, 2 or 4 inches in diameter, is confined in a steel cylinder with heavy end caps, and heated under controlled conditions until it explodes. Reaction violence is quantified by micropower radar measurement of the cylinder wall velocity, and by strain gauge data at reaction onset. Here we describe the test concept and design, show that the conditions are well understood, and present initial data with HMX-based explosives. The HMX results show that anmore » explosive with high binder content yields less-violent reactions that an explosive with low binder content, and that the HMX phase at the time of explosion plays a key role in reaction violence.« less

  5. Safe Deactivation of Energetic Materials and Use of By-products as Epoxy Curing Agents

    DTIC Science & Technology

    2001-11-01

    National Laboratory has developed a lab- scale synthesis to convert TNT to higher value products such as TATB. 3.2 Firing Range Clean-Up Due to...1000 2000 3000 4000 5000 TCD1 , of Nitrogen Nitric Oxide Nitrous oxide ammonia Water Figure 1. Reactant Products for the Reaction of...SAND2001-3344 Unlimited Release Printed November 2001 Safe Deactivation of Energetic Materials and Use of By- products as Epoxy Curing

  6. DMSO/base hydrolysis method for the disposal of high explosives and related energetic materials

    DOEpatents

    Desmare, Gabriel W.; Cates, Dillard M.

    2002-05-14

    High explosives and related energetic materials are treated via a DMSO/base hydrolysis method which renders them non-explosive and/or non-energetic. For example, high explosives such as 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX), 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX), 2,4,6-trinitrotoluene (TNT), or mixtures thereof, may be dissolved in a polar, aprotic solvent and subsequently hydrolyzed by adding the explosive-containing solution to concentrated aqueous base. Major hydrolysis products typically include nitrite, formate, and nitrous oxide.

  7. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Standoff laser-based spectroscopy for explosives detection

    NASA Astrophysics Data System (ADS)

    Gaft, M.; Nagli, L.

    2007-10-01

    Real time detection and identification of explosives at a standoff distance is a major issue in efforts to develop defense against so-called Improvised Explosive Devices (IED). It is recognized that the only technique, which is potentially capable to standoff detection of minimal amounts of explosives is laser-based spectroscopy. LDS activity is based on a combination of laser-based spectroscopic methods with orthogonal capabilities. Our technique belongs to trace detection, namely to its micro-particles variety. It is based on commonly held belief that surface contamination was very difficult to avoid and could be exploited for standoff detection. We has applied optical techniques including gated Raman and time-resolved luminescence spectroscopy for detection of main explosive materials, both factory and homemade. We developed and tested a Raman system for the field remote detection and identification of minimal amounts of explosives on relevant surfaces at a distance of up to 30 meters.

  9. Dependence of Raman Spectral Intensity on Crystal Size in Organic Nano Energetics.

    PubMed

    Patel, Rajen B; Stepanov, Victor; Qiu, Hongwei

    2016-08-01

    Raman spectra for various nitramine energetic compounds were investigated as a function of crystal size at the nanoscale regime. In the case of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), there was a linear relationship between intensity of Raman spectra and crystal size. Notably, the Raman modes between 120 cm(-1) and 220 cm(-1) were especially affected, and at the smallest crystal size, were completely eliminated. The Raman spectral intensity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), like that of CL-20's, depended linearly on crystal size. The Raman spectral intensity of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), however, was not observably changed by crystal size. A non-nitramine explosive compound, 2,4,6-triamino-1,3,5- trinitrobenzene (TATB), was also investigated. Its spectral intensity was also found to correlate linearly with crystal size, although substantially less so than that of HMX and CL-20. To explain the observed trends, it is hypothesized that disordered molecular arrangement, originating from the crystal surface, may be responsible. In particular, it appears that the thickness of the disordered surface layer is dependent on molecular characteristics, including size and conformational flexibility. Furthermore, as the mean crystal size decreases, the volume fraction of disordered molecules within a specimen increases, consequently, weakening the Raman intensity. These results could have practical benefit for allowing the facile monitoring of crystal size during manufacturing. Finally, these findings could lead to deep insights into the general structure of the surface of crystals. © The Author(s) 2016.

  10. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.

    PubMed

    Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M

    2007-01-01

    The detection of explosive material is at the forefront of current analytical problems. A detection method is desired that is not restricted to detecting only explosive materials, but is also capable of identifying the origin and type of explosive. It is essential that a detection method have the selectivity to distinguish among compounds in a mixture of explosives. The nitro compounds found in explosives have low fluorescent yields or are considered to be non-fluorescent; however, after reduction, the amino compounds exhibit relatively high fluorescence. We discuss how to increase selectivity of explosive detection using fluorescence; this includes synchronous luminescence and derivative spectroscopy with appropriate smoothing. By implementing synchronous luminescence and derivative spectroscopy, we were able to resolve the reduction products of one major TNT-based explosive compound, 2,4-diaminotoluene, and the reduction products of other minor TNT-based explosives in a mixture. We also report for the first time the quantum yields of these important compounds. Relative quantum yields are useful in establishing relative fluorescence intensities and are an important spectroscopic measurement of molecules. Our approach allows for rapid, sensitive, and selective detection with the discrimination necessary to distinguish among various explosives.

  11. "Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.

    PubMed

    Kranz, William D; Strange, Nicholas A; Goodpaster, John V

    2014-12-01

    Genuine explosive materials are traditionally employed in the training and testing of explosive-detecting canines so that they will respond reliably to these substances. However, challenges arising from the acquisition, storage, handling, and transportation of explosives have given rise to the development of "pseudo-explosive" training aids. These products attempt to emulate the odor of real explosives while remaining inert. Therefore, a canine trained on a pseudo-explosive should respond to its real-life analog. Similarly, a canine trained on an actual explosive should respond to the pseudo-explosive as if it was real. This research tested those assumptions with a focus on three explosives: single-base smokeless powder, 2,4,6-trinitrotoluene (TNT), and a RDX-based plastic explosive (Composition C-4). Using gas chromatography-mass spectrometry with solid phase microextraction as a pre-concentration technique, we determined that the volatile compounds given off by pseudo-explosive products consisted of various solvents, known additives from explosive formulations, and common impurities present in authentic explosives. For example, simulated smokeless powders emitted terpenes, 2,4-dinitrotoluene, diphenylamine, and ethyl centralite. Simulated TNT products emitted 2,4- and 2,6-dinitrotoluene. Simulated C-4 products emitted cyclohexanone, 2-ethyl-1-hexanol, and dimethyldinitrobutane. We also conducted tests to determine whether canines trained on pseudo-explosives are capable of alerting to genuine explosives and vice versa. The results show that canines trained on pseudo-explosives performed poorly at detecting all but the pseudo-explosives they are trained on. Similarly, canines trained on actual explosives performed poorly at detecting all but the actual explosives on which they were trained.

  12. Initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds with fast semiconductor switches and energy-releasing elements

    NASA Astrophysics Data System (ADS)

    Savenkov, G. G.; Kardo-Sysoev, A. F.; Zegrya, A. G.; Os'kin, I. A.; Bragin, V. A.; Zegrya, G. G.

    2017-10-01

    The first findings concerning the initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds via the electrical explosion of a semiconductor bridge are presented. The obtained results indicate that the energy parameters of an explosive conversion depend on the mass of a combustible agent—namely, nanoporous silicon—and the silicon-doping type.

  13. Computer simulation of explosion crater in dams with different buried depths of explosive

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichao; Ye, Longzhen

    2018-04-01

    Based on multi-material ALE method, this paper conducted a computer simulation on the explosion crater in dams with different buried depths of explosive using LS-DYNA program. The results turn out that the crater size increases with the increase of buried depth of explosive at first, but closed explosion cavity rather than a visible crater is formed when the buried depth of explosive increases to some extent. The soil in the explosion cavity is taken away by the explosion products and the soil under the explosion cavity is compressed with its density increased. The research can provide some reference for the anti-explosion design of dams in the future.

  14. Laser-based standoff detection of explosives: a critical review.

    PubMed

    Wallin, Sara; Pettersson, Anna; Ostmark, Henric; Hobro, Alison

    2009-09-01

    A review of standoff detection technologies for explosives has been made. The review is focused on trace detection methods (methods aiming to detect traces from handling explosives or the vapours surrounding an explosive charge due to the vapour pressure of the explosive) rather than bulk detection methods (methods aiming to detect the bulk explosive charge). The requirements for standoff detection technologies are discussed. The technologies discussed are mostly laser-based trace detection technologies, such as laser-induced-breakdown spectroscopy, Raman spectroscopy, laser-induced-fluorescence spectroscopy and IR spectroscopy but the bulk detection technologies millimetre wave imaging and terahertz spectroscopy are also discussed as a complement to the laser-based methods. The review includes novel techniques, not yet tested in realistic environments, more mature technologies which have been tested outdoors in realistic environments as well as the most mature millimetre wave imaging technique.

  15. Unreacted equation of states of typical energetic materials under static compression: A review

    NASA Astrophysics Data System (ADS)

    Zhaoyang, Zheng; Jijun, Zhao

    2016-07-01

    The unreacted equation of state (EOS) of energetic materials is an important thermodynamic relationship to characterize their high pressure behaviors and has practical importance. The previous experimental and theoretical works on the equation of state of several energetic materials including nitromethane, 1,3,5-trinitrohexahydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), hexanitrostilbene (HNS), hexanitrohexaazaisowurtzitane (HNIW or CL-20), pentaerythritol tetranitrate (PETN), 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), triamino-trinitrobenzene (TATB), 1,1-diamino-2,2-dinitroethene (DADNE or FOX-7), and trinitrotoluene (TNT) are reviewed in this paper. The EOS determined from hydrostatic and non-hydrostatic compressions are discussed and compared. The theoretical results based on ab initio calculations are summarized and compared with the experimental data. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174045 and 11404050).

  16. Ignition and Growth Reactive Flow Modeling of Shock Initiation of PBX 9502 at -55∘C and -196∘C

    NASA Astrophysics Data System (ADS)

    Chidester, Steven; Tarver, Craig

    2015-06-01

    Recently Gustavsen et al. and Hollowell et al. published two stage gas gun embedded particle velocity gauge experiments on PBX 9502 (95%TATB, 5% Kel-F800) cooled to -55°C and -196°C, respectively. At -196°C, PBX 9502 was shown to be much less shock sensitive than at -55°C, but it did transition to detonation. Previous Ignition and Growth model parameters for shock initiation of PBX 9502 at -55°C are modified based on the new data, and new parameters for -196°C PBX 9502 are created to accurately simulate the measured particle velocity histories and run distances to detonation versus shock pressures. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  17. Satellite-based constraints on explosive SO2 release from Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Carn, Simon A.; Prata, Fred J.

    2010-09-01

    Numerous episodes of explosive degassing have punctuated the 1995-2009 eruption of Soufrière Hills volcano (SHV), Montserrat, often following major lava dome collapses. We use ultraviolet (UV) and infrared (IR) satellite measurements to quantify sulfur dioxide (SO2) released by explosive degassing, which is not captured by routine ground-based and airborne gas monitoring. We find a total explosive SO2 release of ˜0.5 Tg, which represents ˜6% of total SO2 emissions from SHV since July 1995. The majority of this SO2 (˜0.4 Tg) was vented following the most voluminous SHV dome collapses in July 2003 and May 2006. Based on our analysis, we suggest that the SO2 burden measured following explosive disruption of lava domes depends on several factors, including the instantaneous lava effusion rate, dome height above the conduit, and the vertical component of directed explosions. Space-based SO2 measurements merit inclusion in routine gas monitoring at SHV and other dome-forming volcanoes.

  18. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices.

    PubMed

    Brewer, R L; Dunn, W L; Heider, S; Matthew, C; Yang, X

    2012-07-01

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of "signatures" obtained from a test target to a collection of "templates", sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8L and larger. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Explosion risk evaluation during production of coating powder.

    PubMed

    Li, Gang; Yuan, Chunmiao; Chen, Baozhi

    2007-10-22

    Powder coating is widely used in industry to prevent equipment corrosion. More than 600 companies produce coating powder in China, but most do not understand the explosion hazard of such products. In the present investigation the explosibility parameters of a coating powder were determined. Results showed that the coating powder is explosible, though the ignition energy is higher than those of normal dusts such as coal powder and corn starch. Based on these experimental findings, a systematic explosion protection method is proposed, with explosion isolation and explosion venting being adopted as the main protective methods.

  20. Study New Pregress on Volcanic Phreatomagmatic Eruption

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Fan, Q.; Li, N.

    2007-12-01

    As an essential and important type of volcanic eruption on earth, phreatomagmatic eruption is characterized by groundwater-related explosive eruption and subsequent base surge deposit and maar lakes. Base surge deposit and maar lakes are widely distributed all over the world, and also in the Northeast China and the southern China. Study of phreatomagmatic eruption maybe dated back to 1921, and in the following over 80 years, many works have been done on phreatomagmatic eruption, using various of methods of volcanic geology, petrology, sedimentology, physical volcanology and digital modeling, to discuss its origin and mechanism. In this paper, we focus on the geological feature of the base surge deposit and dynamic mechanism of the phreatomagmatic eruption. When ascending basaltic magma meets with ground ( surface ) water, violent explosion would occur, this action was called phreatomagmatic eruption. The main product of this kind of eruption are maars and base surge. As to the base surge, it has long been treated as sedimentary tuff by mistake. Usually, base surge is distributed around maar, different from the distribution of sedimentary tuff. Typical phenomena of base surge caused by phreatomagmatic eruption can be observed through the detail field work, such as large-scale and low-angle cross-bedding, slaty-bedding, current-bedding and distal facies accretionary lapilli. In order to explain the dynamic mechanism of phreatomagmatic eruption thoroughly, we propose a simple model in this paper in light of the elasticity theory. Some conclusions can be drawn as follows: the larger the radius of maar, the larger the explosive wallop needed for the formation of maar is; provided that the radius of maar and depth of explosive point are limited, then the larger the area of contact surface between magma and groundwater, the stronger the explosive energy will be; if the explosive energy and area of explosive point are restricted, the larger the radius of maar, the greater the depth of explosive point can be inferred; when the explosive energy and radius of maar are qualified, the depth of explosive point decreases with increasing of the area of contact surface between magma and groundwater. As for the maximum stress, undoubtedly it should occur on the surface of the overlying formation.

  1. Artificial Olfactory System for Trace Identification of Explosive Vapors Realized by Optoelectronic Schottky Sensing.

    PubMed

    Guo, Linjuan; Yang, Zheng; Dou, Xincun

    2017-02-01

    A rapid, ultrasensitive artificial olfactory system based on an individual optoelectronic Schottky junction is demonstrated for the discriminative detection of explosive vapors, including military explosives and improvised explosives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Explosives Detection: Exploitation of the Physical Signatures

    NASA Astrophysics Data System (ADS)

    Atkinson, David

    2010-10-01

    Explosives based terrorism is an ongoing threat that is evolving with respect to implementation, configuration and materials used. There are a variety of devices designed to detect explosive devices, however, each technology has limitations and operational constraints. A full understanding of the signatures available for detection coupled with the array of detection choices can be used to develop a conceptual model of an explosives screening operation. Physics based sensors provide a robust approach to explosives detection, typically through the identification of anomalies, and are currently used for screening in airports around the world. The next generation of detectors for explosives detection will need to be more sensitive and selective, as well as integrate seamlessly with devices focused on chemical signatures. An appreciation for the details of the physical signature exploitation in cluttered environments with time, space, and privacy constraints is necessary for effective explosives screening of people, luggage, cargo, and vehicles.

  3. 77 FR 29620 - Notice of Availability of Record of Decision for TRIDENT Support Facilities Explosives Handling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... TRIDENT Support Facilities Explosives Handling Wharf at Naval Base Kitsap at Bangor, Kitsap County, WA... existing Explosives Handling Wharf in Hood Canal on the waterfront of Naval Base Kitsap (NBK) at Bangor, WA... Stevenson, Naval Facilities Engineering Command Northwest, 1101 Tautog Circle, Silverdale, WA 98315-1101...

  4. Metallic glass coating on metals plate by adjusted explosive welding technique

    NASA Astrophysics Data System (ADS)

    Liu, W. D.; Liu, K. X.; Chen, Q. Y.; Wang, J. T.; Yan, H. H.; Li, X. J.

    2009-09-01

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  5. UV gated Raman spectroscopy for standoff detection of explosives

    NASA Astrophysics Data System (ADS)

    Gaft, M.; Nagli, L.

    2008-07-01

    Real-time detection and identification of explosives at a standoff distance is a major issue in efforts to develop defense against so-called improvised explosive devices (IED). It is recognized that the only method, which is potentially capable to standoff detection of minimal amounts of explosives is laser-based spectroscopy. LDS technique belongs to trace detection, namely to its micro-particles variety. It is based on commonly held belief that surface contamination was very difficult to avoid and could be exploited for standoff detection. We have applied gated Raman spectroscopy for detection of main explosive materials, both factory and homemade. We developed and tested a Raman system for the field remote detection and identification of minimal amounts of explosives on relevant surfaces at a distance of up to 30 m.

  6. Organic nanofibrils based on linear carbazole trimer for explosive sensing.

    PubMed

    Zhang, Chengyi; Che, Yanke; Yang, Xiaomei; Bunes, Benjamin R; Zang, Ling

    2010-08-14

    Organic fluorescent nanofibrils were fabricated from a linear carbazole trimer and employed for expedient detection of nitroaromatic explosives (DNT and TNT) and highly volatile nitroaliphatic explosives (nitromethane).

  7. Toward an Empirically-Based Parametric Explosion Spectral Model

    DTIC Science & Technology

    2010-09-01

    estimated (Richards and Kim, 2009). This archive could potentially provide 200 recordings of explosions at Semipalatinsk Test Site of the former Soviet...estimates of explosion yield, and prior work at the Nevada Test Site (NTS) (e.g., Walter et al., 1995) has found that explosions in weak materials have...2007). Corner frequency scaling of regional seismic phases for underground nuclear explosions at the Nevada Test Site , Bull. Seismol. Soc. Am. 97

  8. Thermally stable, plastic-bonded explosives

    DOEpatents

    Benziger, Theodore M.

    1979-01-01

    By use of an appropriate thermoplastic rubber as the binder, the thermal stability and thermal stress characteristics of plastic-bonded explosives may be greatly improved. In particular, an HMX-based explosive composition using an oil-extended styrene-ethylenebutylene-styrene block copolymer as the binder exhibits high explosive energy and thermal stability and good handling safety and physical properties.

  9. Detection of residues from explosive manipulation by near infrared hyperspectral imaging: a promising forensic tool.

    PubMed

    Fernández de la Ossa, Mª Ángeles; Amigo, José Manuel; García-Ruiz, Carmen

    2014-09-01

    In this study near infrared hyperspectral imaging (NIR-HSI) is used to provide a fast, non-contact, non-invasive and non-destructive method for the analysis of explosive residues on human handprints. Volunteers manipulated individually each of these explosives and after deposited their handprints on plastic sheets. For this purpose, classical explosives, potentially used as part of improvised explosive devices (IEDs) as ammonium nitrate, blackpowder, single- and double-base smokeless gunpowders and dynamite were studied. A partial-least squares discriminant analysis (PLS-DA) model was built to detect and classify the presence of explosive residues in handprints. High levels of sensitivity and specificity for the PLS-DA classification model created to identify ammonium nitrate, blackpowder, single- and double-base smokeless gunpowders and dynamite residues were obtained, allowing the development of a preliminary library and facilitating the direct and in situ detection of explosives by NIR-HSI. Consequently, this technique is showed as a promising forensic tool for the detection of explosive residues and other related samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. GAP/CL-20-Based Compound Explosive: A New Booster Formulation Used in a Small-Sized Initiation Network

    NASA Astrophysics Data System (ADS)

    Yanju, Wei; Jingyu, Wang; Chongwei, An; Hequn, Li; Xiaomu, Wen; Binshuo, Yu

    2017-01-01

    With ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and glycidyl azide polymer (GAP) as the solid filler and binder, respectively, GAP/CL-20-based compound explosives were designed and prepared. Using micro injection charge technology, the compound explosives were packed into small grooves to explore their application in a small-sized initiation network. The detonation reliability, detonation velocity, mechanical sensitivity, shock sensitivity, and brisance of the explosive were measured and analyzed. The results show that when the solid content of CL-20 is 82 wt%, the explosive charged in the groove has a smooth surface from a macroscopic view. From a microscopic view, a coarse surface is bonded with many CL-20 particles by GAP binder. The GAP/CL-20-based explosive charge successfully generates detonation waves in a groove larger than 0.6 mm × 0.6 mm. When the charge density in the groove is 1.68 g.cm-3 (90% theoretical maximum density), the detonation velocity reaches 7,290 m.s-1. Moreover, this kind of explosive is characterized by low impact and shock sensitivity.

  11. Design optimization of Cassegrain telescope for remote explosive trace detection

    NASA Astrophysics Data System (ADS)

    Bhavsar, Kaushalkumar; Eseller, K. E.; Prabhu, Radhakrishna

    2017-10-01

    The past three years have seen a global increase in explosive-based terror attacks. The widespread use of improvised explosives and anti-personnel landmines have caused thousands of civilian casualties across the world. Current scenario of globalized civilization threat from terror drives the need to improve the performance and capabilities of standoff explosive trace detection devices to be able to anticipate the threat from a safe distance to prevent explosions and save human lives. In recent years, laser-induced breakdown spectroscopy (LIBS) is an emerging approach for material or elemental investigations. All the principle elements on the surface are detectable in a single measurement using LIBS and hence, a standoff LIBS based method has been used to remotely detect explosive traces from several to tens of metres distance. The most important component of LIBS based standoff explosive trace detection system is the telescope which enables remote identification of chemical constituents of the explosives. However, in a compact LIBS system where Cassegrain telescope serves the purpose of laser beam delivery and light collection, need a design optimization of the telescope system. This paper reports design optimization of a Cassegrain telescope to detect explosives remotely for LIBS system. A design optimization of Schmidt corrector plate was carried out for Nd:YAG laser. Effect of different design parameters was investigated to eliminate spherical aberration in the system. Effect of different laser wavelengths on the Schmidt corrector design was also investigated for the standoff LIBS system.

  12. Toward wearable sensors: optical sensor for detection of ammonium nitrate-based explosives, ANFO and ANNM.

    PubMed

    Sheykhi, Sara; Mosca, Lorenzo; Anzenbacher, Pavel

    2017-05-04

    Increasing security needs require compact and portable detection tools for the rapid and reliable identification of explosives used in improvised explosive devices (IEDs). We report of an easy-to-use optical sensor for both vapour-phase and solution-phase identification of explosive mixtures that uses a cross-reactive fluorimetric sensor array comprising chemically responsive fluorimetric indicators composed of aromatic aldehydes and polyethyleneimine. Ammonium nitrate-nitromethane (ANNM) was analyzed by paper microzone arrays and nanofiber sensor mats. Progress toward wearable sensors based on electrospun nanofiber mats is outlined.

  13. Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil.

    PubMed

    Ueland, Maiken; Blanes, Lucas; Taudte, Regina V; Stuart, Barbara H; Cole, Nerida; Willis, Peter; Roux, Claude; Doble, Philip

    2016-03-04

    A novel microfluidic paper-based analytical device (μPAD) was designed to filter, extract, and pre-concentrate explosives from soil for direct analysis by a lab on a chip (LOC) device. The explosives were extracted via immersion of wax-printed μPADs directly into methanol soil suspensions for 10min, whereby dissolved explosives travelled upwards into the μPAD circular sampling reservoir. A chad was punched from the sampling reservoir and inserted into a LOC well containing the separation buffer for direct analysis, avoiding any further extraction step. Eight target explosives were separated and identified by fluorescence quenching. The minimum detectable amounts for all eight explosives were between 1.4 and 5.6ng with recoveries ranging from 53-82% from the paper chad, and 12-40% from soil. This method provides a robust and simple extraction method for rapid identification of explosives in complex soil samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Non-explosive actuation for the ORBCOMM (TM) satellite

    NASA Technical Reports Server (NTRS)

    Robinson, Anthony; Courtney, Craig; Moran, Tom

    1995-01-01

    Spool-based non-explosive actuator (NEA) devices are used for three important holddown and release functions during the establishment of the ORBCOMM (TM) constellation. Non-explosive separation nuts are used to restrain and release the 26 individual satellites into low earth orbit. Cable release mechanisms based on the same technology are used to release the solar arrays and antenna boom.

  15. Understanding and Predicting the Thermal Explosion Violence of HMX-Based and RDX-Based Explosives - Experimental Measurements of Material Properties and Reaction Violence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L; Wardell, J F; Weese, R K

    The violence of thermal explosions with energetic materials is affected by many material properties, including mechanical and thermal properties, thermal ignition kinetics, and deflagration behavior. These properties must be characterized for heated samples as well as pristine materials. We present available data for these properties for two HMX-based formulations--LX-04 and PBX-9501, and two RDX-based formulations--Composition B and PBXN-109. We draw upon separately published data on the thermal explosion violence with these materials to compare the material properties with the observed violence. We have the most extensive data on deflagration behavior of these four formulations, and we discuss the correlation ofmore » the deflagration data with the violence results. The data reported here may also be used to develop models for application in simulation codes such as ALE3D to calculate and Dredict thermal explosion violence.« less

  16. Energy Partitioning of Seismic Phases: Current Datasets and Techniques Aimed at Improving the Future of Event Identification

    NASA Astrophysics Data System (ADS)

    Bonner, J.

    2006-05-01

    Differences in energy partitioning of seismic phases from earthquakes and explosions provide the opportunity for event identification. In this talk, I will briefly review teleseismic Ms:mb and P/S ratio techniques that help identify events based on differences in compressional, shear, and surface wave energy generation from explosions and earthquakes. With the push to identify smaller yield explosions, the identification process has become increasingly complex as varied types of explosions, including chemical, mining, and nuclear, must be identified at regional distances. Thus, I will highlight some of the current views and problems associated with the energy partitioning of seismic phases from single- and delay-fired chemical explosions. One problem yet to have a universally accepted answer is whether the explosion and earthquake populations, based on the Ms:mb discriminants, should be separated at smaller magnitudes. I will briefly describe the datasets and theory that support either converging or parallel behavior of these populations. Also, I will discuss improvement to the currently used methods that will better constrain this problem in the future. I will also discuss the role of regional P/S ratios in identifying explosions. In particular, recent datasets from South Africa, Scandinavia, and the Western United States collected from earthquakes, single-fired chemical explosions, and/or delay-fired mining explosions have provide new insight into regional P, S, Lg, and Rg energy partitioning. Data from co-located mining and chemical explosions suggest that some mining explosions may be used for limited calibration of regional discriminants in regions where no historic explosion data is available.

  17. System for fracturing an underground geologic formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Jonathan L.; Tappan, Bryce C.; Seitz, Gerald J.

    2017-03-14

    An explosive system for fracturing an underground geologic formation adjacent to a wellbore can comprise a plurality of explosive units comprising an explosive material contained within the casing, and detonation control modules electrically coupled to the plurality of explosive units and configured to cause a power pulse to be transmitted to at least one detonator of at least one of the plurality of explosive units for detonation of the explosive material. The explosive units are configured to be positioned within a wellbore in spaced apart positions relative to one another along a string with the detonation control modules positioned adjacentmore » to the plurality of explosive units in the wellbore, such that the axial positions of the explosive units relative to the wellbore are at least partially based on geologic properties of the geologic formation adjacent the wellbore.« less

  18. Toward an Empirically-Based Parametric Explosion Spectral Model

    DTIC Science & Technology

    2011-09-01

    Site (NNSS, formerly the Nevada Test Site ) with data from explosions at the Semipalatinsk Test ...Nevada Test Site ) with data from explosions at the Semipalatinsk Test Site recorded at the Borovoye Geophysical Observatory (BRV). The BRV data archive...explosions at Semipalatinsk Test Site of the former Soviet Union (Figure 4). As an example, we plot the regional phase spectra of one of

  19. Parameterization of strombolian explosions: constraint from simultaneous physical and geophysical measurements (Invited)

    NASA Astrophysics Data System (ADS)

    gurioli, L.; Harris, A. J.

    2013-12-01

    Strombolian activity is the most common type of explosive eruption (by frequency) experienced by Earth's volcanoes. It is commonly viewed as consisting of a succession of short discrete explosions where fragments of incandescent magma are ejected a few tens to hundreds meters into the air. This kind of activity is generally restricted to basaltic or basaltic-andesitic magmas because these systems have the sufficiently low viscosities so as to allow gas coalescence and decoupled slug ascent. Mercalli (1907) proposed one of the first formal classifications of explosive activity based on the character of the erupted products and descriptions of case-type eruptions. Later, Walker (1973) devised a classification based on grain size and dispersion, within which strombolian explosions formed the low-to-middle end of the classification. Other classifications have categorized strombolian activity on the basis of erupted magnitude and/or intensity, such as Newhall and Self's (1982) Volcanic Explosivity Index (VEI). Classification can also be made on the basis of explosion mechanism, where strombolian eruptions have become associated with bursting of large gas bubbles, as opposed to release of locked in bubble populations in rapidly ascending magma that feed sustained fountains. Finally, strombolian eruptions can be defined on the basis of geophysical metrics for the explosion source and plume ascent dynamics. Recently, the volcanology community has begun to discuss the difficulty of actually placing strombolian explosions within the compartments defined by each scheme. New sampling strategies in active strombolian volcanic fields have allowed us to parameterize these mildly explosive events both physically and geophysically. Our data show that individual 'normal' and "major" explosions at Stromboli are extremely small, meaning that the classical deposit-based classification thresholds need to be reduced, or a new category defined, if the 'strombolian' eruption style at Stromboli, and other volcanoes like it, are to plot in the strombolian fields of deposit-based classifications. We also quenched a number of bombs soon explosion at Stromboli. This enabled us to quantify the degassing history and rheology of the magma(s) resident in the shallow, near-surface, system. The different textural facies observed in these bombs showed that fresh magma, mingled with partially or completely degassed, oxidized, re-crystallized, evolved and high viscosity magma, was ejected. The degassed magma appears to sit at the top of the conduit, playing only a passive role in the explosive process. Our best model, is that the degassed, oxidized magma forms a plug, or rheologically defined layer, at the top of the conduit, through which the fresh magma bursts. Integration of geophysical measurements with sample analyses, indicates that popular (bubble-bursting) models may not fit this case, thus also changeling the model-based definition of this eruption type.

  20. Apparatus and method for explosive bonding to edge of flyer plate

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Kushnick, Anne C. (Inventor)

    1991-01-01

    The invention is an apparatus and a process for the explosive joining of a flyer plate and a base plate. The apparatus consists of a flyer plate positioned over a base plate. The flyer plate has a notch containing a filler material in intimate contact with the flyer plate. An adhesive means holds a ribbon explosive partially overlapping the notch in the flyer plate. A detonating means initiates the ribbon explosive that drives the flyer plate to accomplish a high velocity, angular collision between the mating surfaces. This collision creates surface melts and effacing bonding, resulting in electron sharing linkups between the plates. An unbonded tab fractures at a base of the notch leaving a bond to an edge of the attached flyer plate.

  1. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    PubMed

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  2. Haptics-based immersive telerobotic system for improvised explosive device disposal: Are two hands better than one?

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lambert, Jason Michel; Mantegh, Iraj; Crymble, Derry; Daly, John; Zhao, Yan

    2012-06-01

    State-of-the-art robotic explosive ordnance disposal robotics have not, in general, adopted recent advances in control technology and man-machine interfaces and lag many years behind academia. This paper describes the Haptics-based Immersive Telerobotic System project investigating an immersive telepresence envrionment incorporating advanced vehicle control systems, Augmented immersive sensory feedback, dynamic 3D visual information, and haptic feedback for explosive ordnance disposal operators. The project aim is to provide operatiors a more sophisticated interface and expand sensory input to perform complex tasks to defeat improvised explosive devices successfully. The introduction of haptics and immersive teleprescence has the potential to shift the way teleprescence systems work for explosive ordnance disposal tasks or more widely for first responders scenarios involving remote unmanned ground vehicles.

  3. Embedded fiber Bragg grating pressure measurement during thermal ignition of a high explosive

    DOE PAGES

    Rodriguez, George; Smilowitz, Laura Beth; Henson, Bryan Fayne

    2016-10-17

    A high-speed fiber Bragg grating based pressure-only measurement is reported for the high explosive PBXN-9 under thermal initiation conditions. During exothermic thermal runaway, an explosion rise time of 500 μs reaching a peak pressure of 660 MPa is measured. Lastly, the approach offers a direct measure pressure diagnostic useful for quantifying reaction violence for high explosive chemistry.

  4. Embedded fiber Bragg grating pressure measurement during thermal ignition of a high explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, George; Smilowitz, Laura Beth; Henson, Bryan Fayne

    A high-speed fiber Bragg grating based pressure-only measurement is reported for the high explosive PBXN-9 under thermal initiation conditions. During exothermic thermal runaway, an explosion rise time of 500 μs reaching a peak pressure of 660 MPa is measured. Lastly, the approach offers a direct measure pressure diagnostic useful for quantifying reaction violence for high explosive chemistry.

  5. Raman scattering spectroscopy for explosives identification

    NASA Astrophysics Data System (ADS)

    Nagli, L.; Gaft, M.

    2007-04-01

    Real time detection and identification of explosives at a standoff distance is a major issue in efforts to develop defense against so-called Improvised Explosive Devices (IED). It is recognized that the only technique, which is potentially capable to standoff detection of minimal amounts of explosives is laser-based spectroscopy. LDS technique belongs to trace detection, namely to its micro-particles variety. We applied gated Raman and time-resolved luminescence spectroscopy for detection of main explosive materials, both factory and homemade. Raman system was developed and tested by LDS for field remote detection and identification of minimal amounts of explosives on relevant surfaces at a distance of up to 30 meters.

  6. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covert, Timothy Todd

    2014-09-01

    The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into themore » experiment configuration has been explored.« less

  7. Yield Estimation for Semipalatinsk Underground Nuclear Explosions Using Seismic Surface-wave Observations at Near-regional Distances

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.

    - A statistical procedure is described for estimating the yields of underground nuclear tests at the former Soviet Semipalatinsk test site using the peak amplitudes of short-period surface waves observed at near-regional distances (Δ < 150 km) from these explosions. This methodology is then applied to data recorded from a large sample of the Semipalatinsk explosions, including the Soviet JVE explosion of September 14, 1988, and it is demonstrated that it provides seismic estimates of explosion yield which are typically within 20% of the yields determined for these same explosions using more accurate, non-seismic techniques based on near-source observations.

  8. Ultrasensitive, Real-time and Discriminative Detection of Improvised Explosives by Chemiresistive Thin-film Sensory Array of Mn2+ Tailored Hierarchical ZnS

    NASA Astrophysics Data System (ADS)

    Zhou, Chaoyu; Wu, Zhaofeng; Guo, Yanan; Li, Yushu; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun

    2016-05-01

    A simple method combing Mn2+ doping with a hierarchical structure was developed for the improvement of thin-film sensors and efficient detection of the explosives relevant to improvised explosive devices (IEDs). ZnS hierarchical nanospheres (HNs) were prepared via a solution-based route and their sensing performances were manipulated by Mn2+ doping. The responses of the sensors based on ZnS HNs towards 8 explosives generally increase firstly and then decrease with the increase of the doped Mn2+ concentration, reaching the climate at 5% Mn2+. Furthermore, the sensory array based on ZnS HNs with different doping levels achieved the sensitive and discriminative detection of 6 analytes relevant to IEDs and 2 military explosives in less than 5 s at room temperature. Importantly, the superior sensing performances make ZnS HNs material interesting in the field of chemiresistive sensors, and this simple method could be a very promising strategy to put the sensors based on thin-films of one-dimensional (1D) nanostructures into practical IEDs detection.

  9. Ultrasensitive, Real-time and Discriminative Detection of Improvised Explosives by Chemiresistive Thin-film Sensory Array of Mn2+ Tailored Hierarchical ZnS

    PubMed Central

    Zhou, Chaoyu; Wu, Zhaofeng; Guo, Yanan; Li, Yushu; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun

    2016-01-01

    A simple method combing Mn2+ doping with a hierarchical structure was developed for the improvement of thin-film sensors and efficient detection of the explosives relevant to improvised explosive devices (IEDs). ZnS hierarchical nanospheres (HNs) were prepared via a solution-based route and their sensing performances were manipulated by Mn2+ doping. The responses of the sensors based on ZnS HNs towards 8 explosives generally increase firstly and then decrease with the increase of the doped Mn2+ concentration, reaching the climate at 5% Mn2+. Furthermore, the sensory array based on ZnS HNs with different doping levels achieved the sensitive and discriminative detection of 6 analytes relevant to IEDs and 2 military explosives in less than 5 s at room temperature. Importantly, the superior sensing performances make ZnS HNs material interesting in the field of chemiresistive sensors, and this simple method could be a very promising strategy to put the sensors based on thin-films of one-dimensional (1D) nanostructures into practical IEDs detection. PMID:27161193

  10. The Twin-Arginine Translocation Pathway in α-Proteobacteria Is Functionally Preserved Irrespective of Genomic and Regulatory Divergence

    PubMed Central

    Nuñez, Pablo A.; Soria, Marcelo; Farber, Marisa D.

    2012-01-01

    The twin-arginine translocation (Tat) pathway exports fully folded proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Although much progress has been made in unraveling the molecular mechanism and biochemical characterization of the Tat system, little is known concerning its functionality and biological role to confer adaptive skills, symbiosis or pathogenesis in the α-proteobacteria class. A comparative genomic analysis in the α-proteobacteria class confirmed the presence of tatA, tatB, and tatC genes in almost all genomes, but significant variations in gene synteny and rearrangements were found in the order Rickettsiales with respect to the typically described operon organization. Transcription of tat genes was confirmed for Anaplasma marginale str. St. Maries and Brucella abortus 2308, two α-proteobacteria with full and partial intracellular lifestyles, respectively. The tat genes of A. marginale are scattered throughout the genome, in contrast to the more generalized operon organization. Particularly, tatA showed an approximately 20-fold increase in mRNA levels relative to tatB and tatC. We showed Tat functionality in B. abortus 2308 for the first time, and confirmed conservation of functionality in A. marginale. We present the first experimental description of the Tat system in the Anaplasmataceae and Brucellaceae families. In particular, in A. marginale Tat functionality is conserved despite operon splitting as a consequence of genome rearrangements. Further studies will be required to understand how the proper stoichiometry of the Tat protein complex and its biological role are achieved. In addition, the predicted substrates might be the evidence of role of the Tat translocation system in the transition process from a free-living to a parasitic lifestyle in these α-proteobacteria. PMID:22438962

  11. A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion.

    PubMed

    Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-12-01

    A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.

  12. A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion

    NASA Astrophysics Data System (ADS)

    Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-12-01

    A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.

  13. Theoretical Investigation of Calculating Temperatures in the Combining Zone of Cu/Fe Composite Plate Jointed by Explosive Welding

    NASA Astrophysics Data System (ADS)

    Qu, Y. D.; Zhang, W. J.; Kong, X. Q.; Zhao, X.

    2016-03-01

    The heat-transfer behavior of the interface of Flyer plate (or Base Plate) has great influence on the microcosmic structures, stress distributions, and interface distortion of the welded interface of composite plates by explosive welding. In this paper, the temperature distributions in the combing zone are studied for the case of Cu/Fe composite plate jointed by explosive welding near the lower limit of explosive welding. The results show that Flyer plate (Cu plate) and Base Plate (Fe plate) firstly almost have the same melting rate in the explosive welding process. Then, the melting rate of Cu plate becomes higher than that of Fe plate. Finally, the melt thicknesses of Cu plate and Fe plate trend to be different constants, respectively. Meanwhile, the melting layer of Cu plate is thicker than that of Fe plate. The research could supply some theoretical foundations for calculating the temperature distribution and optimizing the explosive welding parameters of Cu/Fe composite plate to some extent.

  14. Fluorescence based explosive detection: from mechanisms to sensory materials.

    PubMed

    Sun, Xiangcheng; Wang, Ying; Lei, Yu

    2015-11-21

    The detection of explosives is one of the current pressing concerns in global security. In the past few decades, a large number of emissive sensing materials have been developed for the detection of explosives in vapor, solution, and solid states through fluorescence methods. In recent years, great efforts have been devoted to develop new fluorescent materials with various sensing mechanisms for detecting explosives in order to achieve super-sensitivity, ultra-selectivity, as well as fast response time. This review article starts with a brief introduction on various sensing mechanisms for fluorescence based explosive detection, and then summarizes in an exhaustive and systematic way the state-of-the-art of fluorescent materials for explosive detection with a focus on the research in the recent 5 years. A wide range of fluorescent materials, such as conjugated polymers, small fluorophores, supramolecular systems, bio-inspired materials and aggregation induced emission-active materials, and their sensing performance and sensing mechanism are the centerpiece of this review. Finally, conclusions and future outlook are presented and discussed.

  15. Microscale Electromagnetic Heating in Heterogeneous Energetic Materials Based on X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.

    2016-04-01

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  16. OPERATION WIGWAM. Scientific Director’s Summary Report

    DTIC Science & Technology

    1980-02-01

    Base, Albuquerque, N. Mex. 1. Objectives Measure air pressures from the deep underwater nuclear explosion at the surface and at altitudes approaching...arrangpd as to take advan- tap of opportunities to obtain the effects of atomic explosives against ground and air tairgett and to acquire sclentific...atomic explosives in air and water; target response to underwater explosives ; and model scaling techniques. 3. Dr. W. 0. Penney of the Armament Research

  17. Towards an Empirically Based Parametric Explosion Spectral Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, S R; Walter, W R; Ruppert, S

    2009-08-31

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before been tested. The focus of our work is on the local and regional distances (< 2000 km) and phases (Pn, Pg, Sn, Lg) necessary to see small explosions. We are developing a parametric model of the nuclear explosion seismic source spectrum that is compatible with the earthquake-based geometrical spreading and attenuation models developed using the Magnitude Distance Amplitude Correction (MDAC) techniques (Walter and Taylor, 2002). The explosion parametric model will be particularly important in regions without any priormore » explosion data for calibration. The model is being developed using the available body of seismic data at local and regional distances for past nuclear explosions at foreign and domestic test sites. Parametric modeling is a simple and practical approach for widespread monitoring applications, prior to the capability to carry out fully deterministic modeling. The achievable goal of our parametric model development is to be able to predict observed local and regional distance seismic amplitudes for event identification and yield determination in regions with incomplete or no prior history of underground nuclear testing. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.« less

  18. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    PubMed

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Contributed review: quantum cascade laser based photoacoustic detection of explosives.

    PubMed

    Li, J S; Yu, B; Fischer, H; Chen, W; Yalin, A P

    2015-03-01

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.

  20. Contributed Review: Quantum cascade laser based photoacoustic detection of explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. S., E-mail: jingsong-li@ahu.edu.cn; Yu, B.; Fischer, H.

    2015-03-15

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacousticmore » spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.« less

  1. A portable fluorescence detector for fast ultra trace detection of explosive vapors

    NASA Astrophysics Data System (ADS)

    Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu

    2011-10-01

    This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.

  2. Detonation Characteristics of Plastic Explosives Based on Attractive Nitramines with Polyisobutylene and Poly(methyl methacrylate) Binders

    NASA Astrophysics Data System (ADS)

    Elbeih, Ahmed; Pachman, Jiri; Zeman, Svatopluk; Vávra, Pavel; Trzciński, Waldemar A.; Akštein, zbyněk

    2012-10-01

    Four highly brisant nitramines, RDX (1,3,5-trinitro-1,3,5-triazinane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), BCHMX (cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole), and ɛ-HNIW (ɛ-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), were studied as extruded plastic explosives bonded by two plastic matrices based on polyisobutylene (C4 matrix) and poly-methylmethacrylate (plasticized by dioctyl-adipate) binders. The detonation velocities, D, were measured experimentally. Detonation parameters were also calculated by means of the Kamlet and Jacobs method and CHEETAH and EXPLO5 codes. These detonation parameters showed that plastic-bonded explosives (PBXs) based on BCHMX are more powerful explosives than those based on RDX. The Urizar coefficient for poly(methyl methacrylate) binder was also calculated.

  3. A portable fluorescence detector for fast ultra trace detection of explosive vapors.

    PubMed

    Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu

    2011-10-01

    This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.

  4. Wireless sensor for detecting explosive material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberti, Vincent E; Howell, Jr., Layton N; Mee, David K

    Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  5. Improvements to a Major Digital Archive of Seismic Waveforms from Nuclear Explosions: Borovoye Seismogram Archive

    DTIC Science & Technology

    2008-09-30

    coda) meet expectations. We are also interpreting absolute amplitudes, for those underground nuclear explosions at the Semipalatinsk Test Site (STS...waves, coda) meet expectations. We are also interpreting absolute amplitudes, for those underground nuclear explosions at the Semipalatinsk Test Site ...Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies 4.0- Balapan Subregion Semipalatinsk Test Site n- 3.5 - (U CIO ’-3.0 ES UI

  6. Microscale electromagnetic heating in heterogeneous energetic materials based on x-ray computed tomography

    DOE PAGES

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; ...

    2016-04-01

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  7. Microscale electromagnetic heating in heterogeneous energetic materials based on x-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  8. Detection of nitro-based and peroxide-based explosives by fast polarity-switchable ion mobility spectrometer with ion focusing in vicinity of Faraday detector.

    PubMed

    Zhou, Qinghua; Peng, Liying; Jiang, Dandan; Wang, Xin; Wang, Haiyan; Li, Haiyang

    2015-05-29

    Ion mobility spectrometer (IMS) has been widely deployed for on-site detection of explosives. The common nitro-based explosives are usually detected by negative IMS while the emerging peroxide-based explosives are better detected by positive IMS. In this study, a fast polarity-switchable IMS was constructed to detect these two explosive species in a single measurement. As the large traditional Faraday detector would cause a trailing reactant ion peak (RIP), a Faraday detector with ion focusing in vicinity was developed by reducing the detector radius to 3.3 mm and increasing the voltage difference between aperture grid and its front guard ring to 591 V, which could remove trailing peaks from RIP without loss of signal intensity. This fast polarity-switchable IMS with ion focusing in vicinity of Faraday detector was employed to detect a mixture of 10 ng 2,4,6-trinitrotoluene (TNT) and 50 ng hexamethylene triperoxide diamine (HMTD) by polarity-switching, and the result suggested that [TNT-H](-) and [HMTD+H](+) could be detected in a single measurement. Furthermore, the removal of trailing peaks from RIP by the Faraday detector with ion focusing in vicinity also promised the accurate identification of KClO4, KNO3 and S in common inorganic explosives, whose product ion peaks were fairly adjacent to RIP.

  9. Source spectral variation and yield estimation for small, near-source explosions

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Mayeda, K. M.

    2012-12-01

    Significant S-wave generation is always observed from explosion sources which can lead to difficulty in discriminating explosions from natural earthquakes. While there are numerous S-wave generation mechanisms that are currently the topic of significant research, the mechanisms all remain controversial and appear to be dependent upon the near-source emplacement conditions of that particular explosion. To better understand the generation and partitioning of the P and S waves from explosion sources and to enhance the identification and discrimination capability of explosions, we investigate near-source explosion data sets from the 2008 New England Damage Experiment (NEDE), the Humble-Redwood (HR) series of explosions, and a Massachusetts quarry explosion experiment. We estimate source spectra and characteristic source parameters using moment tensor inversions, direct P and S waves multi-taper analysis, and improved coda spectral analysis using high quality waveform records from explosions from a variety of emplacement conditions (e.g., slow/fast burning explosive, fully tamped, partially tamped, single/ripple-fired, and below/above ground explosions). The results from direct and coda waves are compared to theoretical explosion source model predictions. These well-instrumented experiments provide us with excellent data from which to document the characteristic spectral shape, relative partitioning between P and S-waves, and amplitude/yield dependence as a function of HOB/DOB. The final goal of this study is to populate a comprehensive seismic source reference database for small yield explosions based on the results and to improve nuclear explosion monitoring capability.

  10. Sensitivity of energy-packed compounds based on superfine and nanoporous silicon to pulsed electrical treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zegrya, G. G.; Savenkov, G. G.; Morozov, V. A.

    2017-04-15

    The sensitivity of an energy-packed compound based on nanoporous silicon and calcium perchlorate to a high-current electron beam is studied. The initiation of explosive transformations in a mixture of potassium picrate with a highly dispersed powder of boron-doped silicon by means of a high-voltage discharge is examined. It is shown that explosive transformation modes (combustion and explosion) appear in the energy-packed compound under study upon its treatment with an electron beam. A relationship is established between the explosive transformation modes and the density of the energy-packed compound and between the breakdown (initiation) voltage and the mass fraction of the siliconmore » powder.« less

  11. Reactive Behavior of Explosive Billets in Deflagration Tube of Varied Confinements

    NASA Astrophysics Data System (ADS)

    Hu, Haibo; Guo, Yingwen; Li, Tao; Fu, Hua; Shang, Hailin; Wen, Shanggang; Qiu, Tian; LaboratoryShock Wave; Detonation Physics Research Team

    2017-06-01

    The deflagration process of small size cylinder billets of pressed HMX-based explosive JO-9159 and the deflagration tube wall deformation is recorded by combined pressure velocity-meter high-speed frame photographic and radiographic diagnostic system. The influence of confinement structure strength on deflagration evolution behavior is compared with analysis of convective flame propagation along the slot between explosive billet and confinement wall.The follow-up reaction inside the cracks on the initiation site end surface on the side surfaces and between the end surfaces of explosive billets is restored with the analysis results of post experimental explosive billet remains.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manaa, M. Riad; Fried, Laurence E.; Kuo, I-Feng W.

    We report gas-phase enthalpies of formation for the set of energetic molecules NTO, DADE, LLM-105, TNT, RDX, TATB, HMX, and PETN using the G2, G3, G4, and ccCA-PS3 quantum composite methods. Calculations for HMX and PETN hitherto represent the largest molecules attempted with these methods. G3 and G4 calculations are typically close to one another, with a larger difference found between these methods and ccCA-PS3. Furthermore there is significant uncertainty in experimental values, the mean absolute deviation between the average experimental value and calculations are 12, 6, 7, and 3 kcal/mol for G2, G3, G4, and ccCA-PS3, respectively.

  13. Research on Equation of State For Detonation Products of Aluminized Explosive

    NASA Astrophysics Data System (ADS)

    Yue, Jun-Zheng; Duan, Zhuo-Ping; Zhang, Zhen-Yu; Ou, Zhuo-Cheng

    2017-10-01

    The secondary reaction of the aluminum powder contained in an aluminized explosive is investigated, from which the energy loss resulted from the quantity reduce of the gaseous products is demonstrated. Moreover, taking the energy loss into account, the existing improved Jones-Wilkins-Lee (JWL) equation of state for detonation products of aluminized explosive is modified. Furthermore, the new modified JWL equation of state is implemented into the dynamic analysis software (DYNA)-2D hydro-code to simulate numerically the metal plate acceleration tests of the Hexogen (RDX)-based aluminized explosives. It is found that the numerical results are in good agreement with previous experimental data. In addition, it is also demonstrated that the reaction rate of explosive before the Chapman-Jouget (CJ) state has little influence on the motion of the metal plate, based on which a simple approach is proposed to simulate numerically the products expansion process after the CJ state.

  14. Communication: Determining the structure of the N{sub 2}Ar van der Waals complex with laser-based channel-selected Coulomb explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chengyin, E-mail: cywu@pku.edu.cn; Liu, Yunquan; Gong, Qihuang

    2014-04-14

    We experimentally reconstructed the structure of the N{sub 2}Ar van der Waals complex with the technique of laser-based channel-selected Coulomb explosion imaging. The internuclear distance between the N{sub 2} center of mass and the Ar atom, i.e., the length of the van der Waals bond, was determined to be 3.88 Å from the two-body explosion channels. The angle between the van der Waals bond and the N{sub 2} principal axis was determined to be 90° from the three-body explosion channels. The reconstructed structure was contrasted with our high level ab initio calculations. The agreement demonstrated the potential application of laser-basedmore » Coulomb explosion in imaging transient molecular structure, particularly for floppy van der Waals complexes, whose structures remain difficult to be determined by conventional spectroscopic methods.« less

  15. Computer simulation of metal wire explosion under high rate heating

    NASA Astrophysics Data System (ADS)

    Zolnikov, K. P.; Kryzhevich, D. S.; Korchuganov, A. V.

    2017-05-01

    Synchronous electric explosion of metal wires and synthesis of bicomponent nanoparticles were investigated on the base of molecular dynamics method. Copper and nickel nanosized crystallites of cylindrical shape were chosen as conductors for explosion. The embedded atom approximation was used for calculation of the interatomic interactions. The agglomeration process after explosion metal wires was the main mechanism for particle synthesis. The distribution of chemical elements was non-uniform over the cross section of the bicomponent particles. The copper concentration in the surface region was higher than in the bulk of the synthesized particle. By varying the loading parameters (heating temperature, the distance between the wires) one can control the size and internal structure of the synthesized bicomponent nanoparticles. The obtained results showed that the method of molecular dynamics can be effectively used to determine the optimal technological mode of nanoparticle synthesis on the base of electric explosion of metal wires.

  16. Accuracy and Calibration of High Explosive Thermodynamic Equations of State

    NASA Astrophysics Data System (ADS)

    Baker, Ernest L.; Capellos, Christos; Stiel, Leonard I.; Pincay, Jack

    2010-10-01

    The Jones-Wilkins-Lee-Baker (JWLB) equation of state (EOS) was developed to more accurately describe overdriven detonation while maintaining an accurate description of high explosive products expansion work output. The increased mathematical complexity of the JWLB high explosive equations of state provides increased accuracy for practical problems of interest. Increased numbers of parameters are often justified based on improved physics descriptions but can also mean increased calibration complexity. A generalized extent of aluminum reaction Jones-Wilkins-Lee (JWL)-based EOS was developed in order to more accurately describe the observed behavior of aluminized explosives detonation products expansion. A calibration method was developed to describe the unreacted, partially reacted, and completely reacted explosive using nonlinear optimization. A reasonable calibration of a generalized extent of aluminum reaction JWLB EOS as a function of aluminum reaction fraction has not yet been achieved due to the increased mathematical complexity of the JWLB form.

  17. Double Shock Experiments on PBX Explosive JOB-9003

    NASA Astrophysics Data System (ADS)

    Zhang, Xu

    2017-06-01

    One-dimensional plate impact experiments have been performed to study the double shock to detonation transition and Hugoniot state in the HMX-based explosive JOB-9003. The flyer was a combination with sapphire and Kel-F which could pass two different pressure waves into PBX Explosive JOB-9003 sample after impact. The particle velocities at interface and different depths in the PBX JOB-9003 sample were measured with Al-based electromagnetic particle velocity gauge technique, thus obtaining particle velocity - time diagram. According to the diagram, the corresponding Hugoniot state can be determined based on the particle velocity and shock wave velocity in the sample. Comparing with the single shock experiments, PBX Explosive JOB-9003 shows desensitization features due to the pre-pressed shock wave, the shock to detonation transition distance is longer than those single shock experiments.

  18. A non-imaging polarized terahertz passive system for detecting and identifying concealed explosives

    NASA Astrophysics Data System (ADS)

    Karam, Mostafa A.; Meyer, Doug

    2011-06-01

    Existing terahertz THz systems for detecting concealed explosives are not capable of identifying explosive type which leads to higher false alarm rates. Moreover, some of those systems are imaging systems that invade personal privacy, and require more processing and computational resources. Other systems have no polarization preference which makes them incapable of capturing the geometric features of an explosive. In this study a non-imaging polarized THz passive system for detecting and identifying concealed explosives overcoming the forgoing shortcomings is developed. The system employs a polarized passive THz sensor in acquiring emitted data from a scene that may have concealed explosives. The acquired data are decomposed into their natural resonance frequencies, and the number of those frequencies is used as criteria in detecting the explosive presence. If the presence of an explosive is confirmed, a set of physically based retrieval algorithms is used in extracting the explosive dielectric constant/refractive index value from natural resonance frequencies and amplitudes of associated signals. Comparing the refractive index value against a database of refractive indexes of known explosives identifies the explosive type. As an application, a system having a dual polarized radiometer operating within the frequency band of 0.62- 0.82 THz is presented and used in detecting and identifying person borne C-4 explosive concealed under a cotton garment. The system showed higher efficiencies in detecting and identifying the explosive.

  19. Flash Radiographic Studies of Hypervelocity Projectile Interactions with Explosives

    DTIC Science & Technology

    1992-07-01

    radiography . Explosive/metal target assemblies were designed to be representative of various aspects of explosive filled ordnance or components. The...with Explosives 1. Introduction Flash radiography (flash X-ray) is an effective instrumentation technique that can be used to record ultra high speed...firing chamber and provide a stable mount for the X-ray tubehead. i_ 11 611 Fmim A \\.\\\\ / \\,\\\\ // "-.. .•\\ /i--" " "’ ’i Xray source ColliatorBase X-ray

  20. Wavelength-Dependence on the Initiation of Iron-Based Photoactive Explosives

    NASA Astrophysics Data System (ADS)

    Brown, Kathryn; Myers, Thomas; Clarke, Steven

    2017-06-01

    Photoactive explosives show promise to be relatively insensitive to impact and friction compared to PETN and other detonator materials, but can be more easily initiated with laser light. Metal-ligand charge transfer (MLCT) complexes have been shown to have tunable explosive properties and absorption profiles, making them strong candidates for laser detonator material. Here, we discuss the synthesis and characterization of several iron-based MLCT complexes, as well as results from recent experiments on their sensitivity to initiation from different wavelengths of laser light.

  1. Hazards from the Detonation of Buried Explosive Ordnance: Literature Survey

    DTIC Science & Technology

    1993-09-01

    Quantification of Particle Motion 4.9.1. Kuzmina , et al. provided a rather massive data base for describing peak particle velocity versus reduced...explosives present in an area, not just that present in one bay. Kuzmina , N. V., et al.; "Seismic Effect of Eruptive Explosions in Nonrock Coherent Ground

  2. Explosion and/or fire risk assessment methodology: a common approach, structured for underground coalmine environments / Metoda szacowania ryzyka wybuchu i pożarów: podejście ogólne, dostosowane do środowiska kopalni podziemnej

    NASA Astrophysics Data System (ADS)

    Cioca, Ionel-Lucian; Moraru, Roland Iosif

    2012-10-01

    In order to meet statutory requirements concerning the workers health and safety, it is necessary for mine managers within Valea Jiului coal basin in Romania to address the potential for underground fires and explosions and their impact on the workforce and the mine ventilation systems. Highlighting the need for a unified and systematic approach of the specific risks, the authors are developing a general framework for fire/explosion risk assessment in gassy mines, based on the quantification of the likelihood of occurrence and gravity of the consequences of such undesired events and employing Root-Cause analysis method. It is emphasized that even a small fire should be regarded as being a major hazard from the point of view of explosion initiation, should a combustible atmosphere arise. The developed methodology, for the assessment of underground fire and explosion risks, is based on the known underground explosion hazards, fire engineering principles and fire test criteria for potentially combustible materials employed in mines.

  3. Discrimination of non-explosive and explosive samples through nitrocellulose fingerprints obtained by capillary electrophoresis.

    PubMed

    Fernández de la Ossa, Ma Ángeles; Ortega-Ojeda, Fernando; García-Ruiz, Carmen

    2013-08-09

    This work is focused on a novel procedure to discriminate nitrocellulose-based samples with non-explosive and explosive properties. The nitrocellulose study has been scarcely approached in the literature due to its special polymeric properties such as its high molar mass and complex chemical and structural characteristics. These properties require the nitrocellulose analysis to be performed by using a few organic solvents and in consequence, they limit the number of adequate analytical techniques for its study. In terms of identification of pre-blast explosives, mass spectrometry is one of the most preferred technique because it allows to obtain structural information. However, it has never been used to analyze polymeric nitrocellulose. In this study, the differentiation of non-explosive and explosive samples through nitrocellulose fingerprints obtained by capillary electrophoresis was investigated. A batch of 30 different smokeless gunpowders and 23 different everyday products were pulverized, derivatized with a fluorescent agent and analyzed by capillary electrophoresis with laser-induced fluorescence detection. Since this methodology is specific to d-glucopyranose derivatives (cellulosic and related compounds), and paper samples could be easily found in explosion scenes, 11 different paper samples were also included in the study as potential interference samples. In order to discriminate among samples, multivariate analysis (principal component analysis and soft independent modeling of class analogy) was applied to the obtained electrophoretic profiles. To the best of our knowledge, this represents the first study that achieve a successful discrimination between non-explosive and explosive nitrocellulose-based samples, as well as potential cellulose interference samples, and posterior classification of unknown samples into their corresponding groups using CE-LIF and chemometric tools. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Evaluation of sulfur dioxide emissions from explosive volcanism: the 1982-1983 eruptions of Galunggung, Java, Indonesia

    USGS Publications Warehouse

    Bluth, G.J.S.; Casadevall, T.J.; Schnetzler, C.C.; Doiron, S.D.; Walter, Louis S.; Krueger, A.J.; Badruddin, M.

    1994-01-01

    Galunggung volcano, Java, awoke from a 63-year quiescence in April 1982, and erupted sporadically through January 1983. During its most violent period from April to October, the Cikasasah Volcano Observatory reported 32 large and 56 moderate to small eruptions. From April 5 through September 19 the Total Ozone Mapping Spectrometer (TOMS), carried on NASA's Nimbus-7 satellite, detected and measured 24 different sulfur dioxide clouds; an estimated 1730 kilotons (kt) of SO2 were outgassed by these explosive eruptions. The trajectories, and rapid dispersion rates, of the SO2 clouds were consistent with injection altitudes below the tropopause. An additional 300 kt of SO2 were estimated to have come from 64 smaller explosive eruptions, based on the detection limit of the TOMS instrument. For the first time, an extended period of volcanic activity was monitored by remote sensing techniques which enabled observations of both the entire SO2 clouds produced by large explosive eruptions (using TOMS), and the relatively lower levels of SO2 emissions during non-explosive outgassing (using the Correlation Spectrometer, or COSPEC). Based on COSPEC measurements from August 1982 to January 1983, and on the relationship between explosive and non-explosive degassing, approximately 400 kt of SO2 were emitted during non-explosive activity. The total sulfur dioxide outgassed from Galunggung volcano from April 1982 to January 1983 is calculated to be 2500 kt (?? 30%) from both explosive and non-explosive activity. While Galunggung added large quantities of sulfur dioxide to the atmosphere, its sporadic emissions occurred in relatively small events distributed over several months, and reached relatively low altitudes, and are unlikely to have significantly affected aerosol loading of the stratosphere in 1982 by volcanic activity. ?? 1994.

  5. Development of a portable non-contact optical diagnostic system for the detection of δ-HMX

    NASA Astrophysics Data System (ADS)

    Dale, Andrew J.; Wright, Mark W.; Hughes, Christopher T.; Bowden, Mike D.

    2007-09-01

    If a HMX-based explosive is subjected to an insult then there is a potential for the insulted β-HMX to undergo a phase change to the more sensitive δ form. AWE has an ongoing programme to develop a science-based model of the response of HMX-based explosives to potential insults. As part of this programme there is a need to identify whether δ-HMX has been formed, as this would subsequently affect the intrinsic safety properties of the formulation. δ-HMX, unlike the more stable β form, exhibits unusual optical properties for an explosive, as it acts as a frequency-doubling material. When illuminated by a high-energy laser pulse areas of the explosive charge that contain δ-HMX emit frequency doubled light. This non-linear optical phenomenon allows for a non-invasive diagnostic to be developed to study creation of the more sensitive δ phase within HMX based formulations. AWE has developed a portable diagnostic system based on this concept to investigate the behaviour of HMX-based explosives after low-speed impacts. The results of the commissioning trials are presented; using both an inert simulant, KDP, to align and prove the system and HMX samples from low-speed impact experiments. The results of these experiments are compared to initial calculations using the Hydrocode EDEN.

  6. Base surge in recent volcanic eruptions

    USGS Publications Warehouse

    Moore, J.G.

    1967-01-01

    A base surge, first identified at the Bikini thermonuclear undersea explosion, is a ring-shaped basal cloud that sweeps outward as a density flow from the base of a vertical explosion column. Base surges are also common in shallow underground test explosions and are formed by expanding gases which first vent vertically and then with continued expansion rush over the crater lip (represented by a large solitary wave in an underwater explosion), tear ejecta from it, and feed a gas-charged density flow, which is the surge cloud. This horizontally moving cloud commonly has an initial velocity of more than 50 meters per second and can carry clastic material many kilometers. Base surges are a common feature of many recent shallow, submarine and phreatic volcanic eruptions. They transport ash, mud, lapilli, and blocks with great velocity and commonly sandblast and knock down trees and houses, coat the blast side with mud, and deposit ejecta at distances beyond the limits of throw-out trajectories. Close to the eruption center, the base surge can erode radial channels and deposit material with dune-type bedding. ?? 1967 Stabilimento Tipografico Francesco Giannini & Figli.

  7. Studies on the detection and identification of the explosives in the terahertz range

    NASA Astrophysics Data System (ADS)

    Zhou, Qing-li; Zhang, Cun-lin; Li, Wei-Wei; Mu, Kai-jun; Feng, Rui-shu

    2008-03-01

    The sensing of the explosives and the related compounds is very important for homeland security and defense. Based on the non-invasive terahertz (THz) technology, we have studied some pure and mixed explosives by using the THz time-domain spectroscopy and have obtained the absorption spectra of those samples. The obtained results show that those explosives can be identified due to their different characterized finger-prints in the terahertz frequency region of 0.2-2.5 THz. Furthermore, the spectra analyses indicate that the shape and peak positions of the spectra for these mixed explosive are mainly determined by their explosive components. In order to identify those different kinds of explosives, we have applied the artificial neural network, which is a mathematical device for modeling complex and non-linear functionalities, to our present work. After the repetitive modeling and adequate training with the known input-output data, the identification of the explosive is realized roughly on a multi-hidden-layers model. It is shown that the neural network analyses of the THz spectra would positively identify the explosives and reduce false alarm rates.

  8. [Aging explosive detection using terahertz time-domain spectroscopy].

    PubMed

    Meng, Kun; Li, Ze-ren; Liu, Qiao

    2011-05-01

    Detecting the aging situation of stock explosive is essentially meaningful to the research on the capability, security and stability of explosive. Existing aging explosive detection techniques, such as scan microscope technique, Fourier transfer infrared spectrum technique, gas chromatogram mass spectrum technique and so on, are either not able to differentiate whether the explosive is aging or not, or not able to image the structure change of the molecule. In the present paper, using the density functional theory (DFT), the absorb spectrum changes after the explosive aging were calculated, from which we can clearly find the difference of spectrum between explosive molecule and aging ones in the terahertz band. The terahertz time-domain spectrum (THz-TDS) system as well as its frequency spectrum resolution and measured range are analyzed. Combined with the existing experimental results and the essential characters of the terahertz wave, the application of THz-TDS technique to the detection of aging explosive was demonstrated from the aspects of feasibility, veracity and practicability. On the base of that, the authors advance the new method of aging explosive detection using the terahertz time-domain spectrum technique.

  9. Explosive Welding of Aluminum, Titanium and Zirconium to Copper Sheet Metal

    NASA Technical Reports Server (NTRS)

    Hegazy, A. A.; Mote, J. D.

    1985-01-01

    The main material properties affecting the explosive weldability of a certain metal combination are the yield strength, the ductility, the density and the sonic velocity of the two metals. Successful welding of the metal combination depends mainly on the correct choice of the explosive welding parameters; i.e., the stand off distance, the weight of the explosive charge relative to the weight of the flyer plate and the detonation velocity of the explosive. Based on the measured and the handbook values of the properties of interest, the explosive welding parameters were calculated and the arrangements for the explosive welding of the Al alloy 6061-T6, titanium and zirconium to OFHC copper were determined. The relatively small sheet metal thickness (1/8") and the fact that the thickness of the explosive layer must exceed a certain minimum value were considered during the determination of the explosive welding conditions. The results of the metallographic investigations and the measurements of the shear strength at the interface demonstrate the usefulness of these calculations to minimize the number of experimental trials.

  10. Behavioural and Genetic Evidence for C. elegans' Ability to Detect Volatile Chemicals Associated with Explosives

    PubMed Central

    Liao, Chunyan; Gock, Andrew; Michie, Michelle; Morton, Bethany; Anderson, Alisha; Trowell, Stephen

    2010-01-01

    Background Automated standoff detection and classification of explosives based on their characteristic vapours would be highly desirable. Biologically derived odorant receptors have potential as the explosive recognition element in novel biosensors. Caenorhabditis elegans' genome contains over 1,000 uncharacterised candidate chemosensory receptors. It was not known whether any of these respond to volatile chemicals derived from or associated with explosives. Methodology/Principal Findings We assayed C. elegans for chemotactic responses to chemical vapours of explosives and compounds associated with explosives. C. elegans failed to respond to many of the explosive materials themselves but showed strong chemotaxis with a number of compounds associated with commercial or homemade explosives. Genetic mutant strains were used to identify the likely neuronal location of a putative receptor responding to cyclohexanone, which is a contaminant of some compounded explosives, and to identify the specific transduction pathway involved. Upper limits on the sensitivity of the nematode were calculated. A sensory adaptation protocol was used to estimate the receptive range of the receptor. Conclusions/Significance: The results suggest that C. elegans may be a convenient source of highly sensitive, narrowly tuned receptors to detect a range of explosive-associated volatiles. PMID:20830309

  11. On the prompt identification of traces of explosives

    NASA Astrophysics Data System (ADS)

    Trobajo, M. T.; López-Cabeceira, M. M.; Carriegos, M. V.; Díez-Machío, H.

    2014-12-01

    Some recent results in the use of Raman spectroscopy for recognition of explosives are reviewed. Experimental study using spectra data base has been developed. In order to simulate a more real situation, both blank substances and explosives substances have been considered in this research. Statistic classification techniques have been performed. Estimations of prediction errors were obtained by cross-validation methods. These results can be applied in airport security systems in order to prevent terror acts (by the detection of explosive/flammable substances).

  12. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite.

    PubMed

    Gunawan, Richard; Zhang, Dongke

    2009-06-15

    The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol(-1) and 4.55 x 10(7)s(-1) without the presence of pyrite and 101.8 kJ mol(-1) and 2.57 x 10(9)s(-1) with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments.

  13. Seismic Analysis of Three Bomb Explosions in Turkey

    NASA Astrophysics Data System (ADS)

    Necmioglu, O.; Semin, K. U.; Kocak, S.; Destici, C.; Teoman, U.; Ozel, N. M.

    2016-12-01

    Seismic analysis of three vehicle-installed bomb explosions occurred on 13 March 2016 in Ankara, 12 May 2016 in Diyarbakır and 9 July 2016 in Mardin have been conducted using data from the nearest stations (LOD, DYBB and MAZI) of the Boğaziçi University - Kandilli Observatory and Earthquake Research Institute's (KOERI) seismic network and compared with low-magnitude earthquakes in similar distance based on phase readings and frequency content. Amplitude spectra has been compared through Fourier transformation and earthquake-explosion frequency discrimination has been performed using various filter bands. Time-domain and spectral analysis have been performed using Geotool software provided by CTBTO. Local magnitude (ML) values have been calculated for each explosion by removing instrument-response and adding Wood-Anderson type instrument response. Approximate amount of explosives used in these explosions have been determined using empirical methods of Koper (2002). Preliminary results indicated that 16 tons TNT equivalent explosives have been used in 12 May 2016 Diyarbakır explosion, which is very much in accordance with the media reports claiming 15 tons of TNT. Our analysis for 9 July 2016 Mardin explosion matched the reported 5 tons of explosives. Results concerning 13 March 2016 Ankara explosion indicated that approximately 1,7 ton of TNT equivalent explosives were used in the attack whereas security and intelligence reports claimed 300 kg explosives as a combination of TNT, RDX and ammonium nitrate. The overestimated results obtained in our analysis for the Ankara explosion may be related due to i) high relative effectiveness factor of the RDX component of the explosive ii) inefficiency of Koper (2002) method in lower yields (since the method was developed using explosions with yields of 3-12 tons of TNT), iii) combination of both.

  14. Explosive detection technology

    NASA Astrophysics Data System (ADS)

    Doremus, Steven; Crownover, Robin

    2017-05-01

    The continuing proliferation of improvised explosive devices is an omnipresent threat to civilians and members of military and law enforcement around the world. The ability to accurately and quickly detect explosive materials from a distance would be an extremely valuable tool for mitigating the risk posed by these devices. A variety of techniques exist that are capable of accurately identifying explosive compounds, but an effective standoff technique is still yet to be realized. Most of the methods being investigated to fill this gap in capabilities are laser based. Raman spectroscopy is one such technique that has been demonstrated to be effective at a distance. Spatially Offset Raman Spectroscopy (SORS) is a technique capable of identifying chemical compounds inside of containers, which could be used to detect hidden explosive devices. Coherent Anti-Stokes Raman Spectroscopy (CARS) utilized a coherent pair of lasers to excite a sample, greatly increasing the response of sample while decreasing the strength of the lasers being used, which significantly improves the eye safety issue that typically hinders laser-based detection methods. Time-gating techniques are also being developed to improve the data collection from Raman techniques, which are often hindered fluorescence of the test sample in addition to atmospheric, substrate, and contaminant responses. Ultraviolet based techniques have also shown significant promise by greatly improved signal strength from excitation of resonance in many explosive compounds. Raman spectroscopy, which identifies compounds based on their molecular response, can be coupled with Laser Induced Breakdown Spectroscopy (LIBS) capable of characterizing the sample's atomic composition using a single laser.

  15. Explosive materials equivalency, test methods and evaluation

    NASA Technical Reports Server (NTRS)

    Koger, D. M.; Mcintyre, F. L.

    1980-01-01

    Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.

  16. Studies on formation of unconfined detonable vapor cloud using explosive means.

    PubMed

    Apparao, A; Rao, C R; Tewari, S P

    2013-06-15

    Certain organic liquid fuels like hydrocarbons, hydrocarbon oxides, when dispersed in air in the form of small droplets, mix with surrounding atmosphere forming vapor cloud (aerosol) and acquire explosive properties. This paper describes the studies on establishment of conditions for dispersion of fuels in air using explosive means resulting in formation of detonable aerosols of propylene oxide and ethylene oxide. Burster charges based on different explosives were evaluated for the capability to disperse the fuels without causing ignition. Parameters like design of canister, burster tube, burster charge type, etc. have been studied based on dispersion experiments. The detonability of the aerosol formed by the optimized burster charge system was also tested. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Research on the analytical method about influence of gas leakage and explosion on subway

    NASA Astrophysics Data System (ADS)

    Ji, Wendong; Yang, Ligong; Chen, Lin

    2018-05-01

    With the construction and development of city subway, the cross impact of underground rail transit and gas pipe network is becoming more and more serious, but there is no analytical method for the impact of gas explosions on the subway. According to this paper, the gas leakage is equivalent to the TNT explosion equivalent, based on which, the calculation of the explosive impact load is carried out. On the basis of the concrete manifestation of gas explosion, it is more convenient to carry out the subsequent calculation by equivalently treating the explosive impact load as a uniform load within a certain range. The overlying soil of the subway station has played a protective role for the subway, making the displacement of the subway structure in the explosion process significantly reduced. The analysis on the actual case shows that this method can be successfully applied to the quantitative analysis of such accidents.

  18. Characterization of detonation products of RSI-007 explosive

    NASA Astrophysics Data System (ADS)

    Ager, Timothy; Neel, Christopher; Breaux, Bradley; Vineski, Christopher; Welle, Eric; Lambert, David; Chhabildas, Lalit

    2012-03-01

    PDV and VISAR have been employed to characterize the detonation products of a high-purity CL-20 based explosive. The explosive was part of an exploding foil initiator (EFI) detonator assembly in which the explosive was contained within a Kovar (Fe-Ni-Co alloy) cup. The back surface of the Kovar serves as the witness plate for interferometry measurements. Detailed reverberations corresponding to shock arrival and release are recorded on the witness plate and the isentropic release path of the explosive is inferred though the velocity history. Two separate window materials are bonded to the Kovar cup in subsequent experiments and are used to further refine the release states.

  19. Application of high explosion cratering data to planetary problems

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1977-01-01

    The present paper deals with the conditions of explosion or nuclear cratering required to simulate impact crater formation. Some planetary problems associated with three different aspects of crater formation are discussed, and solutions based on high-explosion data are proposed. Structures of impact craters and some selected explosion craters formed in layered media are examined and are related to the structure of lunar basins. The mode of ejection of material from impact craters is identified using explosion analogs. The ejection mode is shown to have important implications for the origin of material in crater and basin deposits. Equally important are the populations of secondary craters on lunar and planetary surfaces.

  20. Propulsion of space ships by nuclear explosion

    NASA Astrophysics Data System (ADS)

    Linhart, J. G.; Kravárik, J.

    2005-01-01

    Recent progress in the research on deuterium-tritium (D-T) inertially confined microexplosions encourages one to reconsider the nuclear propulsion of spaceships based on the concept originally proposed in the Orion project. We discuss first the acceleration of medium-sized spaceships by D-T explosions whose output is in the range of 0.1 10 t of TNT. The launching of such a ship into an Earth orbit or beyond by a large nuclear explosion in an underground cavity is sketched out in the second section of the paper, and finally we consider a hypothetical Mars mission based on these concepts. In the conclusion it is argued that propulsion based on the Orion concept only is not the best method for interplanetary travel owing to the very large number of nuclear explosion required. A combination of a super gun and subsequent rocket propulsion using advanced chemical fuels appears to be the best solution for space flights of the near future.

  1. Reaction Buildup of PBX Explosives JOB-9003 under Different Initiation Pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Yan-fei; Hung, Wen-bin; Gu, Yan; Zhao, Feng; Wu, Qiang; Yu, Xin; Yu, Heng

    2017-04-01

    Aluminum-based embedded multiple electromagnetic particle velocity gauge technique has been developed in order to measure the shock initiation behavior of JOB-9003 explosives. In addition, another gauge element called a shock tracker has been used to monitor the progress of the shock front as a function of time, thus providing a position-time trajectory of the wave front as it moves through the explosive sample. The data are used to determine the position and time for shock to detonation transition. All the experimental results show that: the rising-up time of Al-based electromagnetic particle velocity gauge was very fast and less than 20 ns; the reaction buildup velocity profiles and the position-time for shock to detonation transition of HMX-based PBX explosive JOB-9003 with 1-8 mm depth from the origin of impact plane under different initiation pressures are obtained with high accuracy.

  2. Modeling Explosion Induced Aftershocks

    NASA Astrophysics Data System (ADS)

    Kroll, K.; Ford, S. R.; Pitarka, A.; Walter, W. R.; Richards-Dinger, K. B.

    2017-12-01

    Many traditional earthquake-explosion discrimination tools are based on properties of the seismic waveform or their spectral components. Common discrimination methods include estimates of body wave amplitude ratios, surface wave magnitude scaling, moment tensor characteristics, and depth. Such methods are limited by station coverage and noise. Ford and Walter (2010) proposed an alternate discrimination method based on using properties of aftershock sequences as a means of earthquakeexplosion differentiation. Previous studies have shown that explosion sources produce fewer aftershocks that are generally smaller in magnitude compared to aftershocks of similarly sized earthquake sources (Jarpe et al., 1994, Ford and Walter, 2010). It has also been suggested that the explosion-induced aftershocks have smaller Gutenberg- Richter b-values (Ryall and Savage, 1969) and that their rates decay faster than a typical Omori-like sequence (Gross, 1996). To discern whether these observations are generally true of explosions or are related to specific site conditions (e.g. explosion proximity to active faults, tectonic setting, crustal stress magnitudes) would require a thorough global analysis. Such a study, however, is hindered both by lack of evenly distributed explosion-sources and the availability of global seismicity data. Here, we employ two methods to test the efficacy of explosions at triggering aftershocks under a variety of physical conditions. First, we use the earthquake rate equations from Dieterich (1994) to compute the rate of aftershocks related to an explosion source assuming a simple spring-slider model. We compare seismicity rates computed with these analytical solutions to those produced by the 3D, multi-cycle earthquake simulator, RSQSim. We explore the relationship between geological conditions and the characteristics of the resulting explosion-induced aftershock sequence. We also test hypothesis that aftershock generation is dependent upon the frequency content of the passing dynamic seismic waves as suggested by Parsons and Velasco (2009). Lastly, we compare all results of explosion-induced aftershocks with aftershocks generated by similarly sized earthquake sources. Prepared by LLNL under Contract DE-AC52-07NA27344.

  3. Explosion probability of unexploded ordnance: expert beliefs.

    PubMed

    MacDonald, Jacqueline Anne; Small, Mitchell J; Morgan, M G

    2008-08-01

    This article reports on a study to quantify expert beliefs about the explosion probability of unexploded ordnance (UXO). Some 1,976 sites at closed military bases in the United States are contaminated with UXO and are slated for cleanup, at an estimated cost of $15-140 billion. Because no available technology can guarantee 100% removal of UXO, information about explosion probability is needed to assess the residual risks of civilian reuse of closed military bases and to make decisions about how much to invest in cleanup. This study elicited probability distributions for the chance of UXO explosion from 25 experts in explosive ordnance disposal, all of whom have had field experience in UXO identification and deactivation. The study considered six different scenarios: three different types of UXO handled in two different ways (one involving children and the other involving construction workers). We also asked the experts to rank by sensitivity to explosion 20 different kinds of UXO found at a case study site at Fort Ord, California. We found that the experts do not agree about the probability of UXO explosion, with significant differences among experts in their mean estimates of explosion probabilities and in the amount of uncertainty that they express in their estimates. In three of the six scenarios, the divergence was so great that the average of all the expert probability distributions was statistically indistinguishable from a uniform (0, 1) distribution-suggesting that the sum of expert opinion provides no information at all about the explosion risk. The experts' opinions on the relative sensitivity to explosion of the 20 UXO items also diverged. The average correlation between rankings of any pair of experts was 0.41, which, statistically, is barely significant (p= 0.049) at the 95% confidence level. Thus, one expert's rankings provide little predictive information about another's rankings. The lack of consensus among experts suggests that empirical studies are needed to better understand the explosion risks of UXO.

  4. Investigation of explosives mechanic impact sensitivity on the samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loboyko, B.G.; Alekseev, A.V.; Litvinov, B.V.

    1996-05-01

    Several results of investigation into HMX-based explosive compound sensitivity to mechanic impact on the samples are presented. Mechanic loading of samples was effected by dynamic insertion of a pin. Alternation of physical state of explosive compound on account of preliminary thermal treatment or destruction of samples increased their sensitivity considerably. {copyright} {ital 1996 American Institute of Physics.}

  5. Effectiveness of quality-control aids in verifying K-9-team explosive detection performance

    NASA Astrophysics Data System (ADS)

    Hallowell, Susan F.; Fischer, Douglas S.; Brasher, Jeffrey D.; Malone, Robert L.; Gresham, Garold L.; Rae, Cathy

    1997-02-01

    The Federal Aviation Administration (FAA) and supporting agencies conducted a developmental test and evaluation (DTE) to determine if quality control aids (QCAs) could be developed that would provide effective surrogates to actual explosives used for training and testing K-9 explosives detection teams. Non-detonable surrogates are required to alleviate logistics and contamination issues with explosives used sa training aids. Comparative K-9 team detection performance for explosives used as training aids and QCAs configurations of each explosive type were evaluated to determine the optimal configuration for the QCA configuration of each explosive type were evaluated to determine the optimal configuration for the QCAs. The configurations were a paper patch impregnated with a solution of the explosive, a cloth pouch filed with small amounts of solid explosive, and the non-hazardous explosive for security training and testing material. The DTE was conducted at Lackland Air Force Base in San Antonio, Texas, where the K-9 teams undergo initial training. Six FAA certified operational teams participated. All explosives and QCAs were presented to the K-9 teams using a 10 scent box protocol. The results show that K-9 team as are more sensitive to explosives than the candidate QCAs. More importantly, it was discovered that the explosives at Lackland AFB are cross-contaminated, meaning that explosives possessed volatile artifacts from other explosives. There are two potential hypotheses explaining why the dogs did not detect the QCAs. First, the cross-contamination of Lackland training explosives may mean that K-9 teams are only trained to detect the explosives with the most volatile chemical signatures. Alternatively, the QCA configurations may have been below the trained detection threshold of the K-9s. It is recommended that K-9 teams train on uncontaminated odors from properly designed QCAs to ensure that dogs respond to the appropriate explosive components, and not some other constituent or contaminant.

  6. Fire and explosion hazards to flora and fauna from explosives.

    PubMed

    Merrifield, R

    2000-06-30

    Deliberate or accidental initiation of explosives can produce a range of potentially damaging fire and explosion effects. Quantification of the consequences of such effects upon the surroundings, particularly on people and structures, has always been of paramount importance. Information on the effects on flora and fauna, however, is limited, with probably the weakest area lying with fragmentation of buildings and their effects on different small mammals. Information has been used here to gain an appreciation of the likely magnitude of the potential fire and explosion effects on flora and fauna. This is based on a number of broad assumptions and a variety of data sources including World War II bomb damage, experiments performed with animals 30-40 years ago, and more recent field trials on building break-up under explosive loading.

  7. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    PubMed

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An Experimental Study of Corner Turning in a Granular Ammonium Nitrate Based Explosive

    NASA Astrophysics Data System (ADS)

    Sorber, S.; Taylor, P.; Burns, M.

    2007-12-01

    A novel experimental geometry has been designed to perform controlled studies of corner turning in a "tap density" granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionisation probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive and is initiated on axis from below by a smaller diameter cylinder of granular explosive or a booster charge. Four experiments were performed on a granular Ammonium Nitrate based non-ideal explosive (NIE). Two experiments were initiated directly with the PE4 booster and two were initiated from a train including a booster charge and a 1″ diameter copper cylinder containing the same NIE. Experimental data from the four experiments was reproducible and the observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster-initiated geometries with a higher input shock pressure into the granular explosive gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.

  9. Analysis of dynamics of vulcanian activity of Ubinas volcano, using multicomponent seismic antennas

    NASA Astrophysics Data System (ADS)

    Inza, L. A.; Métaxian, J. P.; Mars, J. I.; Bean, C. J.; O'Brien, G. S.; Macedo, O.; Zandomeneghi, D.

    2014-01-01

    A series of 16 vulcanian explosions occurred at Ubinas volcano between May 24 and June 14, 2009. The intervals between explosions were from 2.1 h to more than 6 days (mean interval, 33 h). Considering only the first nine explosions, the average time interval was 7.8 h. Most of the explosions occurred after a short time interval (< 8 h) and had low energy, which suggests that the refilling time was not sufficient for large accumulation of gas. A tremor episode followed 75% of the explosions, which coincided with pulses of ash emission. The durations of the tremors following the explosions were longer for the two highest energy explosions. To better understand the physical processes associated with these eruptive events, we localized the sources of explosions using two seismic antennas that were composed of three-component 10 and 12 sensors. We used the high-resolution MUSIC-3C algorithm to estimate the slowness vector for the first waves that composed the explosion signals recorded by the two antennas assuming propagation in a homogeneous medium. The initial part of the explosions was dominated by two frequencies, at 1.1 Hz and 1.5 Hz, for which we identified two separated sources located at 4810 m and 3890 m +/- 390 altitude, respectively. The position of these two sources was the same for the full 16 explosions. This implies the reproduction of similar mechanisms in the conduit. Based on the eruptive mechanisms proposed for other volcanoes of the same type, we interpret the position of these two sources as the limits of the conduit portion that was involved in the fragmentation process. Seismic data and ground deformation recorded simultaneously less than 2 km from the crater showed a decompression movement 2 s prior to each explosion. This movement can be interpreted as gas leakage at the level of the cap before its destruction. The pressure drop generated in the conduit could be the cause of the fragmentation process that propagated deeper. Based on these observations, we interpret the position of the highest source as the part of the conduit under the cap, and the deeper source as the limit of the fragmentation zone.

  10. Reaction of Shocked but Undetonated HMX-Based Explosive

    NASA Astrophysics Data System (ADS)

    Taylor, P.; Salisbury, D. A.; Markland, L. S.; Winter, R. E.; Andrew, M. I.

    2002-07-01

    Cylindrical samples of the pressed plastic bonded HMX based explosive EDC37, backed by metal discs, were shocked through a stainless steel attenuator by an explosive donor. Reaction of the EDC37 sample was diagnosed with embedded PVDF pressure gauges and a distance to detonation for the geometry was determined. Sample length was then reduced to less than the observed detonation distance and laser interferometry was used to record the free surface velocity of the metal backing disc. The results provide data on the metal driving energy liberated by explosive which is shocked and reacting but not detonated. The results are compared with 2-D Eulerian calculations incorporating a 3-term ignition and growth reactive burn model with desensitisation. It is found that a parameter set for the reaction model which replicates the PVDF pressure profiles before reflection also gives good agreement to the metal disc velocity history at early times. The results show that an appreciable fraction of the metal driving potential of an explosive can be released without detonation being established.

  11. Toward Improved Fidelity of Thermal Explosion Simulations

    NASA Astrophysics Data System (ADS)

    Nichols, Albert; Becker, Richard; Burnham, Alan; Howard, W. Michael; Knap, Jarek; Wemhoff, Aaron

    2009-06-01

    We present results of an improved thermal/chemical/mechanical model of HMX based explosives like LX04 and LX10 for thermal cook-off. The original HMX model and analysis scheme were developed by Yoh et.al. for use in the ALE3D modeling framework. The improvements were concentrated in four areas. First, we added porosity to the chemical material model framework in ALE3D used to model HMX explosive formulations to handle the roughly 2% porosity in solid explosives. Second, we improved the HMX reaction network, which included the addition of a reactive phase change model base on work by Henson et.al. Third, we added early decomposition gas species to the CHEETAH material database to improve equations of state for gaseous intermediates and products. Finally, we improved the implicit mechanics module in ALE3D to more naturally handle the long time scales associated with thermal cookoff. The application of the resulting framework to the analysis of the Scaled Thermal Explosion (STEX) experiments will be discussed.

  12. Simulations of Si-PIN photodiode based detectors for underground explosives enhanced by ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Yücel, Mete; Bayrak, Ahmet; Yücel, Esra Barlas; Ozben, Cenap S.

    2018-02-01

    Massive Ammonium Nitrate (NH4-NO3) based explosives buried underground are commonly used in terror attacks. These explosives can be detected using neutron scattering method with some limitations. Simulations are very useful tools for designing a possible detection system for these kind of explosives. Geant4 simulations were used for generating neutrons at 14 MeV energy and tracking them through the scattering off the explosive embedded in soil. Si-PIN photodiodes were used as detector elements in the design for their low costs and simplicity for signal readout electronics. Various neutron-charge particle converters were applied on to the surface of the photodiodes to increase the detection efficiency. Si-PIN photodiodes coated with 6LiF provided the best result for a certain energy interval. Energy depositions in silicon detector from all secondary particles generated including photons were taken into account to generate a realistic background. Humidity of soil, one of the most important parameter for limiting the detection, was also studied.

  13. A Photoluminescence-Based Field Method for Detection of Traces of Explosives

    PubMed Central

    Menzel, E. Roland; Menzel, Laird W.; Schwierking, Jake R.

    2004-01-01

    We report a photoluminescence-based field method for detecting traces of explosives. In its standard version, the method utilizes a commercially available color spot test kit for treating explosive traces on filter paper after swabbing. The colored products are fluorescent under illumination with a laser that operates on three C-size flashlight batteries and delivers light at 532 nm. In the fluorescence detection mode, by visual inspection, the typical sensitivity gain is a factor of 100. The method is applicable to a wide variety of explosives. In its time-resolved version, intended for in situ work, explosives are tagged with europium complexes. Instrumentation-wise, the time-resolved detection, again visual, can be accomplished in facile fashion. The europium luminescence excitation utilizes a laser operating at 355 nm. We demonstrate the feasibility of CdSe quantum dot sensitization of europium luminescence for time-resolved purposes. This would allow the use of the above 532 nm laser. PMID:15349512

  14. Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane.

    PubMed

    Zarei, Ali Reza; Ghazanchayi, Behnam

    2016-04-01

    The present study developed a new optical chemical sensor for detection of nitroaromatic explosives in liquid phase. The method is based on the fluorescence quenching of phenol red as fluorophore in a poly(vinyl alcohol) (PVA) membrane in the presence of nitroaromatic explosives as quenchers, e.g., 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 4-nitrotoluene (4-NT), 2,4,6-trinitrobenzene (TNB), and nitrobenzene (NB). For chemical immobilization of phenol red in PVA, phenol red reacted with formaldehyde to produce hydroxymethyl groups and then attached to PVA membrane through the hydroxymethyl groups. The optical sensor showed strong quenching of nitroaromatic explosives. A Stern-Volmer graph for each explosive was constructed and showed that the range of concentration from 5.0 × 10(-6) to 2.5 × 10(-4) mol L(-1) was linear for each explosive and sensitivity varied as TNB >TNT>2,4-DNT>NB>4-NT. The response time of the sensor was within 1 min. The proposed sensor showed good reversibility and reproducibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Simulations of multi-component explosives using simplified geometric arrangements of their constituents

    NASA Astrophysics Data System (ADS)

    Butler, George; Pemberton, Steven

    2017-06-01

    Modeling and simulation is extremely important in the design and formulation of new explosives and explosive devices due to the high cost of experiment-based development. However, the efficacy of simulations depends on the accuracy of the equations of state (EOS) and reactive burn models used to characterize the energetic materials. We investigate the possibility of using the components of an explosive fill as discrete elements in a simulation, based on the relative amounts of the constituents. This is accomplished by assembling a mosaic, or ``checkerboard'', in which each cell comprises the relative amounts of the constituents as in the mixture; it is assumed that each constituent has a well-defined set of simulation parameters. We do not consider the underlying microstructure, and recognize there will be limitations to the usefulness of this technique. We are interested in determining whether there are applications for this technique that might prove useful. As a test of the concept, two binary explosives were considered. We considered shapes for a periodic cellular structure and compared results from the checkerboards with those of the baseline explosives; detonation rates, cylinder expansion, and gap test predictions were compared.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandersall, K S; Tarver, C M; Garcia, F

    Shock initiation experiments on the HMX based explosives LX-10 (95% HMX, 5% Viton by weight) and LX-07 (90% HMX, 10% Viton by weight) were performed to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive samples with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments and prior experiments on another HMX based explosive LX LX-04 (85% HMX, 15% Viton by weight) will be shown, discussed, and compared as a function of themore » binder content. This parameter set will provide additional information to ensure accurate code predictions for safety scenarios involving HMX explosives with different percent binder content additions.« less

  17. Dissipative rogue waves induced by soliton explosions in an ultrafast fiber laser.

    PubMed

    Liu, Meng; Luo, Ai-Ping; Xu, Wen-Cheng; Luo, Zhi-Chao

    2016-09-01

    We reported on the observation of dissipative rogue waves (DRWs) induced by soliton explosions in an ultrafast fiber laser. It was found that the soliton explosions could be obtained in the fiber laser at a critical pump power level. During the process of the soliton explosion, the high-amplitude waves that fulfill the rogue wave criteria could be detected. The appearance of the DRWs was identified by characterizing the intensity statistics of the time-stretched soliton profile based on the dispersive Fourier-transform method. Our findings provide the first experimental demonstration that the DRWs could be observed in the soliton explosion regime and further enhance the understanding of the physical mechanism of optical RW generation.

  18. Numerical Simulation of the Detonation of Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Ye, Ting; Ning, Jianguo

    Detonation process of a condensed explosive was simulated using a finite difference method. Euler equations were applied to describe the detonation flow field, an ignition and growth model for the chemical reaction and Jones-Wilkins-Lee (JWL) equations of state for the state of explosives and detonation products. Based on the simple mixture rule that assumes the reacting explosives to be a mixture of the reactant and product components, 1D and 2D codes were developed to simulate the detonation process of high explosive PBX9404. The numerical results are in good agreement with the experimental results, which demonstrates that the finite difference method, mixture rule and chemical reaction proposed in this paper are adequate and feasible.

  19. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    PubMed Central

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumway, R.H.; McQuarrie, A.D.

    Robust statistical approaches to the problem of discriminating between regional earthquakes and explosions are developed. We compare linear discriminant analysis using descriptive features like amplitude and spectral ratios with signal discrimination techniques using the original signal waveforms and spectral approximations to the log likelihood function. Robust information theoretic techniques are proposed and all methods are applied to 8 earthquakes and 8 mining explosions in Scandinavia and to an event from Novaya Zemlya of unknown origin. It is noted that signal discrimination approaches based on discrimination information and Renyi entropy perform better in the test sample than conventional methods based onmore » spectral ratios involving the P and S phases. Two techniques for identifying the ripple-firing pattern for typical mining explosions are proposed and shown to work well on simulated data and on several Scandinavian earthquakes and explosions. We use both cepstral analysis in the frequency domain and a time domain method based on the autocorrelation and partial autocorrelation functions. The proposed approach strips off underlying smooth spectral and seasonal spectral components corresponding to the echo pattern induced by two simple ripple-fired models. For two mining explosions, a pattern is identified whereas for two earthquakes, no pattern is evident.« less

  1. CFD analysis of gas explosions vented through relief pipes.

    PubMed

    Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G

    2006-09-21

    Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization.

  2. Detection of vehicle-based improvised explosives using ultra-trace detection equipment

    NASA Astrophysics Data System (ADS)

    Fisher, Mark; Sikes, John; Prather, Mark; Wichert, Clint

    2005-05-01

    Vehicle-borne improvised explosive devices (VBIEDs) have become the weapon of choice for insurgents in Iraq. At the same time, these devices are becoming increasingly sophisticated and effective. VBIEDs can be difficult to detect during visual inspection of vehicles. This is especially true when explosives have been hidden behind a vehicle"s panels, inside seat cushions, under floorboards, or behind cargo. Even though the explosive may not be visible, vapors of explosive emanating from the device are often present in the vehicle, but the current generation of trace detection equipment has not been sensitive enough to detect these low concentrations of vapor. This paper presents initial test results using the Nomadics Fido sensor for detection of VBIEDs. The sensor is a small, explosives detector with unprecedented levels of sensitivity for detection of nitroaromatic explosives. Fido utilizes fluorescence quenching of novel polymer materials to detect traces of explosive vapor emanating from targets containing explosives. These materials, developed by collaborators at the Massachusetts Institute of Technology (MIT), amplify the quenching response that occurs when molecules of explosive bind to films of the polymer. These materials have enabled development of sensors with performance approaching that of canines trained to detect explosives. The ability of the sensor to detect explosives in vehicles and on persons who have recently been in close proximity to explosives has recently been demonstrated. In these tests, simulated targets were quickly and easily detected using a Fido sensor in conjunction with both direct vapor and swipe sampling methods. The results of these tests suggest that chemical vapor sensing has utility as a means of screening vehicles for explosives at checkpoints and on patrols.

  3. Saturn Hot Plasma Explosions

    NASA Image and Video Library

    2010-12-14

    This frame from an animation based on data obtained by NASA Cassini spacecraft shows how the explosions of hot plasma on the night side orange and white periodically inflate Saturn magnetic field white lines.

  4. Investigating ground effects on mixing and afterburning during a TNT explosion

    NASA Astrophysics Data System (ADS)

    Fedina, E.; Fureby, C.

    2013-05-01

    In this paper, the unconfined and semi-confined condensed phase explosions of TNT will be studied using large eddy simulations based on the unsteady, compressible, reacting, multi-species Navier-Stokes equations to gain further understanding of the physical processes involved in a condensed phase explosion and the effect of confinement on the physical processes involved. The analysis of the mixing and afterburning of TNT explosions in free air (unconfined) and near the ground (semi-confined) indicates that the combustion region of detonation products and air is determined by the vorticity patterns, which are induced by the Richtmeyer-Meshkov instabilities that arise during the explosion. When the explosive is detonated in the vicinity of a surface, the surface affects the shock propagation by creating complex shock systems, thereby changing the orientation of the vorticity, giving the afterburning a mushroom shape, and increasing performance of an explosive charge by prolonging the existence of the mixing layer and thereby the afterburning.

  5. TIME-SEQUENCED X-RAY OBSERVATION OF A THERMAL EXPLOSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J. W.; Molitoris, J. D.; Kercher, J. R.

    The evolution of a thermally-initiated explosion is studied using a multiple-image x-ray system. HMX-based PBX 9501 is used in this work, enabling direct comparison to recently-published data obtained with proton radiography [1]. Multiple x-ray images of the explosion are obtained with image spacing of ten microseconds or more. The explosion is simultaneously characterized with a high-speed camera using an interframe spacing of 11 mus. X-ray and camera images were both initiated passively by signals from an embedded thermocouple array, as opposed to being actively triggered by a laser pulse or other external source. X-ray images show an accelerating reacting frontmore » within the explosive, and also show unreacted explosive at the time the containment vessel bursts. High-speed camera images show debris ejected from the vessel expanding at 800-2100 m/s in the first tens of mus after the container wall failure. The effective center of the initiation volume is about 6 mm from the geometric center of the explosive.« less

  6. Atmospheric emission of NOx from mining explosives: A critical review

    NASA Astrophysics Data System (ADS)

    Oluwoye, Ibukun; Dlugogorski, Bogdan Z.; Gore, Jeff; Oskierski, Hans C.; Altarawneh, Mohammednoor

    2017-10-01

    High-energy materials such as emulsions, slurries and ammonium-nitrate fuel-oil (ANFO) explosives play crucial roles in mining, quarrying, tunnelling and many other infrastructure activities, because of their excellent transport and blasting properties. These explosives engender environmental concerns, due to atmospheric pollution caused by emission of dust and nitrogen oxides (NOx) from blasts, the latter characterised by the average emission factor of 5 kg (t AN explosive)-1. This first-of-its-kind review provides a concise literature account of the formation of NOx during blasting of AN-based explosives, employed in surface operations. We estimate the total NOx emission rate from AN-based explosives as 0.05 Tg (i.e., 5 × 104 t) N per annum, compared to the total global annual anthropogenic NOx emissions of 41.3 × 106 t N y-1. Although minor in the global sense, the large localised plumes from blasting exhibit high NOx concentration (500 ppm) exceeding up to 3000 times the international standards. This emission has profound consequences at mining sites and for adjacent atmospheric environment, necessitating expensive management of exclusion zones. The review describes different types of AN energetic materials for civilian applications, and summarises the essential properties and terminologies pertaining to their use. Furthermore, we recapitulate the mechanisms that lead to the formation of the reactive nitrogen species in blasting of AN-based explosives, review their implications to atmospheric air pollution, and compare the mechanisms with those experienced in other thermal and combustion operations. We also examine the mitigation approaches, including guidelines and operational-control measures. The review discusses the abatement technologies such as the formulation of new explosive mixtures, comprising secondary fuels, spin traps and other additives, in light of their effectiveness and efficiency. We conclude the review with a summary of unresolved problems, identifying possible future developments and their impacts on the environment with emphasis on local and workplace loads.

  7. Laboratory evaluation of detectors of explosives' effluents

    DOT National Transportation Integrated Search

    1972-11-30

    This document contains the classification, technical description and laboratory evaluation of five commercial detectors for explosives' effluents. It includes an outline of operating principles, test and evaluation procedures. The evaluation is based...

  8. Forensic analysis of explosions: Inverse calculation of the charge mass.

    PubMed

    van der Voort, M M; van Wees, R M M; Brouwer, S D; van der Jagt-Deutekom, M J; Verreault, J

    2015-07-01

    Forensic analysis of explosions consists of determining the point of origin, the explosive substance involved, and the charge mass. Within the EU FP7 project Hyperion, TNO developed the Inverse Explosion Analysis (TNO-IEA) tool to estimate the charge mass and point of origin based on observed damage around an explosion. In this paper, inverse models are presented based on two frequently occurring and reliable sources of information: window breakage and building damage. The models have been verified by applying them to the Enschede firework disaster and the Khobar tower attack. Furthermore, a statistical method has been developed to combine the various types of data, in order to determine an overall charge mass distribution. In relatively open environments, like for the Enschede firework disaster, the models generate realistic charge masses that are consistent with values found in forensic literature. The spread predicted by the IEA tool is however larger than presented in the literature for these specific cases. This is also realistic due to the large inherent uncertainties in a forensic analysis. The IEA-models give a reasonable first order estimate of the charge mass in a densely built urban environment, such as for the Khobar tower attack. Due to blast shielding effects which are not taken into account in the IEA tool, this is usually an under prediction. To obtain more accurate predictions, the application of Computational Fluid Dynamics (CFD) simulations is advised. The TNO IEA tool gives unique possibilities to inversely calculate the TNT equivalent charge mass based on a large variety of explosion effects and observations. The IEA tool enables forensic analysts, also those who are not experts on explosion effects, to perform an analysis with a largely reduced effort. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.

    2017-12-01

    A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.

  10. School-Based Cognitive-Behavioral Therapy for an Adolescent Presenting with ADHD and Explosive Anger: A Case Study

    ERIC Educational Resources Information Center

    Parker, Janise; Zaboski, Brian; Joyce-Beaulieu, Diana

    2016-01-01

    This case demonstrates the efficacy of utilizing an intensive, multi-faceted behavioral intervention paradigm. A comprehensive, integrative, school-based service model was applied to address attention deficit hyperactivity disorder symptomology, oppositional behaviors, and explosive anger at the secondary level. The case reviews a multi-modal…

  11. A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed μPADs.

    PubMed

    Taudte, Regina Verena; Beavis, Alison; Wilson-Wilde, Linzi; Roux, Claude; Doble, Philip; Blanes, Lucas

    2013-11-07

    A new technique for the detection of explosives has been developed based on fluorescence quenching of pyrene on paper-based analytical devices (μPADs). Wax barriers were generated (150 °C, 5 min) using ten different colours. Magenta was found as the most suitable wax colour for the generation of the hydrophobic barriers with a nominal width of 120 μm resulting in fully functioning hydrophobic barriers. One microliter of 0.5 mg mL(-1) pyrene dissolved in an 80:20 methanol-water solution was deposited on the hydrophobic circle (5 mm diameter) to produce the active microchip device. Under ultra-violet (UV) illumination, ten different organic explosives were detected using the μPAD, with limits of detection ranging from 100-600 ppm. A prototype of a portable battery operated instrument using a 3 W power UV light-emitting-diode (LED) (365 nm) and a photodiode sensor was also built and evaluated for the successful automatic detection of explosives and potential application for field-based screening.

  12. Completely explosive ultracompact high-voltage nanosecond pulse-generating system

    NASA Astrophysics Data System (ADS)

    Shkuratov, Sergey I.; Talantsev, Evgueni F.; Baird, Jason; Rose, Millard F.; Shotts, Zachary; Altgilbers, Larry L.; Stults, Allen H.

    2006-04-01

    A conventional pulsed power technology has been combined with an explosive pulsed power technology to produce an autonomous high-voltage power supply. The power supply contained an explosive-driven high-voltage primary power source and a power-conditioning stage. The ultracompact explosive-driven primary power source was based on the physical effect of shock-wave depolarization of high-energy Pb (Zr52Ti48)O3 ferroelectric material. The volume of the energy-carrying ferroelectric elements in the shock-wave ferroelectric generators (SWFEGs) varied from 1.2 to 2.6cm3. The power-conditioning stage was based on the spiral vector inversion generator (VIG). The SWFEG-VIG system demonstrated successful operation and good performance. The amplitude of the output voltage pulse of the SWFEG-VIG system exceeded 90kV, with a rise time of 5.2ns.

  13. Recent advances and remaining challenges for the spectroscopic detection of explosive threats.

    PubMed

    Fountain, Augustus W; Christesen, Steven D; Moon, Raphael P; Guicheteau, Jason A; Emmons, Erik D

    2014-01-01

    In 2010, the U.S. Army initiated a program through the Edgewood Chemical Biological Center to identify viable spectroscopic signatures of explosives and initiate environmental persistence, fate, and transport studies for trace residues. These studies were ultimately designed to integrate these signatures into algorithms and experimentally evaluate sensor performance for explosives and precursor materials in existing chemical point and standoff detection systems. Accurate and validated optical cross sections and signatures are critical in benchmarking spectroscopic-based sensors. This program has provided important information for the scientists and engineers currently developing trace-detection solutions to the homemade explosive problem. With this information, the sensitivity of spectroscopic methods for explosives detection can now be quantitatively evaluated before the sensor is deployed and tested.

  14. Stronger or longer: Discriminating between Hawaiian and Strombolian eruption styles

    USGS Publications Warehouse

    Houghton, Bruce F.; Taddeucci, Jacopo; Andronico, D.; Gonnerman, H; Pistolesi, M; Patrick, Matthew R.; Orr, Tim R.; Swanson, Don; Edmonds, M; Carey, Rebecca J.; Scarlato, P.

    2016-01-01

    The weakest explosive volcanic eruptions globally, Strombolian explosions and Hawaiian fountaining, are also the most common. Yet, despite over a hundred years of observations, no classifications have offered a convincing, quantitative way of demarcating these two styles. New observations show that the two styles are distinct in their eruptive timescale, with the duration of Hawaiian fountaining exceeding Strombolian explosions by about 300 to 10,000 seconds. This reflects the underlying process of whether shallow-exsolved gas remains trapped in the erupting magma or whether it is decoupled from it. We propose here a classification scheme based on the duration of events (brief explosions versus prolonged fountains) with a cutoff at 300 seconds that separates transient Strombolian explosions from sustained Hawaiian fountains.

  15. Detonation Velocity-Diameter Relation in Gelled Explosive with Inert Inclusions

    NASA Astrophysics Data System (ADS)

    Higgins, Andrew; Loiseau, Jason; Mi, Xiaocheng

    2017-06-01

    The detonation velocity is measured in a gelled explosive that has been sensitized via the addition of glass microballoons (GMBs) and additionally diluted via the inclusion of large scale (300-700 micron) inert inclusions. The base explosive is nitromethane that has been gelled via the addition of poly(methyl methacrylate) and then sensitized via hot-spot inducing glass microballoons. Inert inclusions (e.g., glass, steel beads) are then added to the explosive to make a heterogeneous explosive with heterogeneities that are at a scale disparate from those of the microballoons. This system has the potential to be a synthetic explosive that can be tuned to have the properties of more complex commercial blasting agents. The velocity-diameter relation is studied using weak confinement (polyvinyl chloride) and time-of-arrival gages. The results are also used to further explore the phenomenon of anomalous scaling between axisymmetric charges (cylinders) and two-dimensional (slab) charges.

  16. Standoff detection of explosives: a challenging approach for optical technologies

    NASA Astrophysics Data System (ADS)

    Désilets, S.; Hô, N.; Mathieu, P.; Simard, J. R.; Puckrin, E.; Thériault, J. M.; Lavoie, H.; Théberge, F.; Babin, F.; Gay, D.; Forest, R.; Maheux, J.; Roy, G.; Châteauneuf, M.

    2011-06-01

    Standoff detection of explosives residues on surfaces at few meters was made using optical technologies based on Raman scattering, Laser-Induced Breakdown Spectroscopy (LIBS) and passive standoff FTIR radiometry. By comparison, detection and analysis of nanogram samples of different explosives was made with a microscope system where Raman scattering from a micron-size single point illuminated crystal of explosive was observed. Results from standoff detection experiments using a telescope were compared to experiments using a microscope to find out important parameters leading to the detection. While detection and spectral identification of the micron-size explosive particles was possible with a microscope, standoff detection of these particles was very challenging due to undesired light reflected and produced by the background surface or light coming from other contaminants. Results illustrated the challenging approach of detecting at a standoff distance the presence of low amount of micron or submicron explosive particles.

  17. Updates to concepts on phreatomagmatic maar-diatremes and their pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.; White, James D. L.; Ross, Pierre-Simon; Graettinger, Alison H.; Sonder, Ingo

    2017-08-01

    Recent work is changing our understanding of phreatomagmatic maar-diatreme eruptions and resulting deposits. In previous models, explosions were often inferred to take place only at the base of a diatreme, with progressive downward migration due to a cone of depression in the host aquifer. However, diatremes themselves contain much water that is heterogeneously distributed, and field evidence supports the existence of explosion sites at many vertical and lateral locations within them. Crater sizes have been used to estimate explosion energies, but this only works for single-explosion craters where the depth of explosion is independently known, and has limited value for multi-explosion maar-diatremes. Deep-seated lithic clasts in tephra ring beds have been taken to indicate the depth of the explosion that produced that bed. However, only relatively shallow explosions actually vent to the surface, and deep-seated lithics are gradually brought to shallow depths through step-wise mixing of multiple subsurface explosions. Grain-size of tephra-ring deposits is often inferred to indicate fragmentation efficiency. However, other factors strongly influence deposit grain size, including the scaled depth of an explosion and the interaction of an erupting jet with topography around a vent (e.g., crater), along with long recognized effects of mechanical properties of host rocks and recycling within the vent/diatreme. These insights provide a foundation for future research into this important volcano type.

  18. Can North Korean Nuclear Explosions Stir Baekdu (Changbai) Volcano to be Erupted?

    NASA Astrophysics Data System (ADS)

    Hong, T. K.; Choi, E.; Park, S.; Shin, J. S.

    2015-12-01

    Potential volcanic eruption in Mt. Baekdu (Changbai) hasbeen a long-lasting concern in the far-eastern Asia.There were several explosive eruptions historically. Themost recent eruption was made in 1903. The eruption in969 is believed to be the most violent with volcanicexplosivity index of 7. The volcano is located in ~130 kmaway from the North Korean nuclear explosion test sitewhere three moderate-size nuclear explosions withmagnitudes of 4.3, 4.7 and 5.1 were conducted in 2006,2009 and 2013. There is increasing concern that a largenuclear explosion may trigger volcanic eruption. Seismicwaveforms are subtle to vary with the crustal structure.The strong ground motions generated by a potential largenuclear explosion are difficult to be simulated forvolcanic regions where complex crustal structures areexpected. We calculate the ground motions by hypotheticallarge nuclear explosions using a nuclear-explosion sourcemodel and the seismic waveforms of prior nuclearexplosions. The validity of the method is examined bycomparing the observed and quasi-synthetic seismicwaveforms of prior nuclear explosions. The peak groundaccelerations (PGA) around the volcano are estimated froma PGA attenuation equation that was determined based onseismic waveforms from natural earthquakes. Thehorizontal and vertical PGAs by an M7.0 undergroundnuclear explosion are expected to reach 0.14 and 0.11m/s2 at the volcano, inducing a dynamic stress in themagma chamber. The induced pressure change in the magmachamber is verified by numerical modeling of dynamicstress changes.

  19. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    DOEpatents

    Schultz, F.J.; Caldwell, J.T.

    1993-04-06

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

  20. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    DOEpatents

    Schultz, Frederick J.; Caldwell, John T.

    1993-01-01

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

  1. Evaluation of Various Organic Fertilizer Substrates and Hydraulic Retention Times for Enhancing Anaerobic Degradation of Explosives-Contaminated Groundwater While Using Constructed Wetlands at the Milan Army Ammunition Plant, Milan, Tennessee.

    DTIC Science & Technology

    1998-05-01

    CODES FIELD GROUP SUB-GROUP 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Phytoremediation of Explosives... phytoremediating explosives-contaminated groundwater. A typical gravel-based wetland consists of an anaerobic cell for removing the bulk of the explosive...11 4-1 4-1 4-3 Phytoremediation Study Milan AAP SECTION TABLE OF CONTENTS (Continued) TITLE PAGE 4.0 4.3 4.4 4.5 5.0 6.0 RESULTS AND

  2. Analysis of Ground Motion from An Underground Chemical Explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitarka, Arben; Mellors, Robert J.; Walter, William R.

    Here in this paper we investigate the excitation and propagation of far-field seismic waves from the 905 kg trinitrotoluene equivalent underground chemical explosion SPE-3 recorded during the Source Physics Experiment (SPE) at the Nevada National Security Site. The recorded far-field ground motion at short and long distances is characterized by substantial shear-wave energy, and large azimuthal variations in P-and S-wave amplitudes. The shear waves observed on the transverse component of sensors at epicentral distances <50 m suggests they were generated at or very near the source. The relative amplitude of the shear waves grows as the waves propagate away frommore » the source. We analyze and model the shear-wave excitation during the explosion in the 0.01–10 Hz frequency range, at epicentral distances of up to 1 km. We used two simulation techniques. One is based on the empirical isotropic Mueller–Murphy (MM) (Mueller and Murphy, 1971) nuclear explosion source model, and 3D anelastic wave propagation modeling. The second uses a physics-based approach that couples hydrodynamic modeling of the chemical explosion source with anelastic wave propagation modeling. Comparisons with recorded data show the MM source model overestimates the SPE-3 far-field ground motion by an average factor of 4. The observations show that shear waves with substantial high-frequency energy were generated at the source. However, to match the observations additional shear waves from scattering, including surface topography, and heterogeneous shallow structure contributed to the amplification of far-field shear motion. Comparisons between empirically based isotropic and physics-based anisotropic source models suggest that both wave-scattering effects and near-field nonlinear effects are needed to explain the amplitude and irregular radiation pattern of shear motion observed during the SPE-3 explosion.« less

  3. Analysis of Ground Motion from An Underground Chemical Explosion

    DOE PAGES

    Pitarka, Arben; Mellors, Robert J.; Walter, William R.; ...

    2015-09-08

    Here in this paper we investigate the excitation and propagation of far-field seismic waves from the 905 kg trinitrotoluene equivalent underground chemical explosion SPE-3 recorded during the Source Physics Experiment (SPE) at the Nevada National Security Site. The recorded far-field ground motion at short and long distances is characterized by substantial shear-wave energy, and large azimuthal variations in P-and S-wave amplitudes. The shear waves observed on the transverse component of sensors at epicentral distances <50 m suggests they were generated at or very near the source. The relative amplitude of the shear waves grows as the waves propagate away frommore » the source. We analyze and model the shear-wave excitation during the explosion in the 0.01–10 Hz frequency range, at epicentral distances of up to 1 km. We used two simulation techniques. One is based on the empirical isotropic Mueller–Murphy (MM) (Mueller and Murphy, 1971) nuclear explosion source model, and 3D anelastic wave propagation modeling. The second uses a physics-based approach that couples hydrodynamic modeling of the chemical explosion source with anelastic wave propagation modeling. Comparisons with recorded data show the MM source model overestimates the SPE-3 far-field ground motion by an average factor of 4. The observations show that shear waves with substantial high-frequency energy were generated at the source. However, to match the observations additional shear waves from scattering, including surface topography, and heterogeneous shallow structure contributed to the amplification of far-field shear motion. Comparisons between empirically based isotropic and physics-based anisotropic source models suggest that both wave-scattering effects and near-field nonlinear effects are needed to explain the amplitude and irregular radiation pattern of shear motion observed during the SPE-3 explosion.« less

  4. Numerical Experiments Investigating the Source of Explosion S-Waves

    DTIC Science & Technology

    2007-09-01

    simulations in this study are based on the well-recorded 1993 Nonproliferation experiment (NPE) ( chemical kiloton). A regional 3-dimensional model...1-kiloton chemical explosion at the NTS. NPE details and research reports can be found in Denny and Stull (1994). Figure 3 shows the extensive...T., D. Helmberger, and G. Engen (1985). Evidence for tectonic release from underground nuclear explosions in long period S waves, Bull. Seismol. Soc

  5. Safety issues of high-concentrated hydrogen peroxide production used as rocket propellant

    NASA Astrophysics Data System (ADS)

    Romantsova, O. V.; Ulybin, V. B.

    2015-04-01

    The article dwells on the possibility of production of high-concentrated hydrogen peroxide with the Russian technology of isopropyl alcohol autoxidation. Analysis of fire/explosion hazards and reasons of insufficient quality is conducted for the technology. Modified technology is shown. Non-standard fire/explosion characteristics required for integrated fire/explosion hazards rating for modified hydrogen peroxide production based on the autoxidation of isopropyl alcohol are defined.

  6. Dust Explosion Characteristics of Aluminum, Titanium, Zinc, and Iron-Based Alloy Powders Used in Cold Spray Processing

    NASA Astrophysics Data System (ADS)

    Sakata, K.; Tagomori, K.; Sugiyama, N.; Sasaki, S.; Shinya, Y.; Nanbu, T.; Kawashita, Y.; Narita, I.; Kuwatori, K.; Ikeda, T.; Hara, R.; Miyahara, H.

    2014-01-01

    Compared to conventional thermal spray coating, cold spray processing typically employs finer, smaller-diameter metal powders. Furthermore, cold-sprayed particles exhibit fewer surface oxides than thermally sprayed particles due to the absence of particle melting during spraying. For these reasons, it is important to consider the potential for dust explosions or fires during cold spray processing, for both industrial and R&D applications. This work examined the dust explosion characteristics of metal powders typically used in cold spray coating, for the purpose of preventing dust explosions and fires and thus protecting the health and safety of workers and guarding against property damage. In order to safely make use of the new cold spray technology in industrial settings, it is necessary to manage the risks based on an appropriate assessment of the hazards. However, there have been few research reports focused on such risk management. Therefore, in this study, the dust explosion characteristics of aluminum, titanium, zinc, carbonyl iron, and eutectoid steel containing chromium at 4 wt.% (4 wt.% Cr-eutectoid steel) powders were evaluated according to the standard protocols JIS Z 8818, IEC61241-2-3(1994-09) section 3, and JIS Z 8817. This paper reports our results concerning the dust explosion properties of the above-mentioned metal powders.

  7. Sorbent Film-Coated Passive Samplers for Explosives Vapour Detection Part A: Materials Optimisation and Integration with Analytical Technologies.

    PubMed

    McEneff, Gillian L; Murphy, Bronagh; Webb, Tony; Wood, Dan; Irlam, Rachel; Mills, Jim; Green, David; Barron, Leon P

    2018-04-11

    A new thin-film passive sampler is presented as a low resource dependent and discrete continuous monitoring solution for explosives-related vapours. Using 15 mid-high vapour pressure explosives-related compounds as probes, combinations of four thermally stable substrates and six film-based sorbents were evaluated. Meta-aramid and phenylene oxide-based materials showed the best recoveries from small voids (~70%). Analysis was performed using liquid chromatography-high resolution accurate mass spectrometry which also enabled tentative identification of new targets from the acquired data. Preliminary uptake kinetics experiments revealed plateau concentrations on the device were reached between 3-5 days. Compounds used in improvised explosive devices, such as triacetone triperoxide, were detected within 1 hour and were stably retained by the sampler for up to 7 days. Sampler performance was consistent for 22 months after manufacture. Lastly, its direct integration with currently in-service explosives screening equipment including ion mobility spectrometry and thermal desorption mass spectrometry is presented. Following exposure to several open environments and targeted interferences, sampler performance was subsequently assessed and potential interferences identified. High-security building and area monitoring for concealed explosives using such cost-effective and discrete passive samplers can add extra assurance to search routines while minimising any additional burden on personnel or everyday site operation.

  8. Advances in Raman spectroscopy for explosive identification in aviation security

    NASA Astrophysics Data System (ADS)

    Santillán, Javier D.; Brown, Christopher D.; Jalenak, Wayne

    2007-04-01

    In the operational airport environment, the rapid identification of potentially hazardous materials such as improvised explosive devices, chemical warfare agents and flammable and explosive liquids is increasingly critical. Peroxide-based explosives pose a particularly insidious threat because they can be made from commonly available and relatively innocuous household chemicals, such as bleach and hydrogen peroxide. Raman spectroscopy has been validated as a valuable tool for rapid identification of chemicals, explosives, and narcotics and their precursors while allowing "line-of-sight" interrogation through bottles or other translucent containers. This enables safe identification of both precursor substances, such as acetone, and end-products, such as TATP, without direct sampling, contamination and exposure by security personnel. To date, Raman systems have been laboratory-based, requiring careful operation and maintenance by technology experts. The capital and ongoing expenses of these systems is also significant. Recent advances in Raman component technologies have dramatically reduced the footprint and cost, while improving the reliability and ease of use of Raman spectroscopy systems. Such technologies are not only bringing the lab to the field, but are also protecting civilians and security personnel in the process.

  9. Explosion Generated Seismic Waves and P/S Methods of Discrimination from Earthquakes with Insights from the Nevada Source Physics Experiments

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Ford, S. R.; Pitarka, A.; Pyle, M. L.; Pasyanos, M.; Mellors, R. J.; Dodge, D. A.

    2017-12-01

    The relative amplitudes of seismic P-waves to S-waves are effective at identifying underground explosions among a background of natural earthquakes. These P/S methods appear to work best at frequencies above 2 Hz and at regional distances ( >200 km). We illustrate this with a variety of historic nuclear explosion data as well as with the recent DPRK nuclear tests. However, the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of path, frequency and event properties such as size, depth, and geology, remains incompletely understood. A goal of current research, such as the Source Physics Experiments (SPE), is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. The SPE conducted six chemical explosions between 2011 and 2016 in the same borehole in granite in southern Nevada. The explosions were at a variety of depths and sizes, ranging from 0.1 to 5 tons TNT equivalent yield. The largest were observed at near regional distances, with P/S ratios comparable to much larger historic nuclear tests. If we control for material property effects, the explosions have very similar P/S ratios independent of yield or magnitude. These results are consistent with explosion S-waves coming mainly from conversion of P- and surface waves, and are inconsistent with source-size based models. A dense sensor deployment for the largest SPE explosion allowed this conversion to be mapped in detail. This is good news for P/S explosion identification, which can work well for very small explosions and may be ultimately limited by S-wave detection thresholds. The SPE also showed explosion P-wave source models need to be updated for small and/or deeply buried cases. We are developing new P- and S-wave explosion models that better match all the empirical data. Historic nuclear explosion seismic data shows that the media in which the explosion takes place is quite important. These material property effects can surprisingly degrade the seismic waveform correlation of even closely spaced explosions in different media. The next phase of the SPE will contrast chemical explosions in dry alluvium with the prior SPE explosions in granite and historic nuclear tests in a variety of media.

  10. Detection of explosives using negative ion mobility spectrometry in air based on dopant-assisted thermal ionization.

    PubMed

    Shahraki, Hassan; Tabrizchi, Mahmoud; Farrokhpor, Hossein

    2018-05-26

    The ionization source is an essential component of most explosive detectors based on negative ion mobility spectrometry. Conventional ion sources suffer from such inherent limitations as special safety regulations on radioactive sources or generating interfering ions (for non-radioactive sources) such as corona discharge operating in the air. In this study, a new negative ion source is introduced for ion mobility spectrometry that is based on thermal ionization and operates in the air, applicable to explosives detection. Our system consists of a heating filament powered by an isolated power supply connected to negative high voltage. The ionization is assisted by doping chlorinated compounds in the gas phase using chlorinated hydrocarbons in contact with the heating element to yield Cl - reactant ions. Several chlorinated hydrocarbons are evaluated as the reagent chemicals for providing Cl- reactant ions, of which CCl 4 is identified as the best ionizing reagent. The ion source is evaluated by recording the ion mobility spectra of common explosives, including TNT, RDX, and PETN in the air. A detection limit of 150 pg is obtained for TNT. Compared to other ionization sources, the new source is found to be low-cost, simple, and long-lived, making it suited to portable explosives detection devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.

    PubMed

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-12-30

    The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Fluorescence quenching as an indirect detection method for nitrated explosives.

    PubMed

    Goodpaster, J V; McGuffin, V L

    2001-05-01

    A novel approach based on fluorescence quenching is presented for the analysis of nitrated explosives. Seventeen common explosives and their degradation products are shown to be potent quenchers of pyrene, having Stern-Volmer constants that generally increase with the degree of nitration. Aromatic explosives such as 2,4,6-trinitrotoluene (2,4,6-TNT) are more effective quenchers than aliphatic or nitramine explosives. In addition, nitroaromatic explosives are found to have unique interactions with pyrene that lead to a wavelength dependence of their Stern-Volmer constants. This phenomenon allows for their differentiation from other nitrated explosives. The fluorescence quenching method is then applied to the determination of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine(HMX), 2,4,6-TNT, nitromethane, and ammonium nitrate in various commercial explosive samples. The samples are separated by capillary liquid chromatography with post-column addition of the pyrene solution and detection by laser-induced fluorescence. The indirect fluorescence quenching method shows increased sensitivity and selectivity over traditional UV-visible absorbance as well as the ability to detect a wider range of organic and inorganic nitrated compounds.

  13. Direct real-time detection of vapors from explosive compounds.

    PubMed

    Ewing, Robert G; Clowers, Brian H; Atkinson, David A

    2013-11-19

    The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX, and nitroglycerine along with various compositions containing these substances was demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a nonradioactive ionization source coupled to a mass spectrometer. Direct vapor detection was accomplished in less than 5 s at ambient temperature without sample preconcentration. The several seconds of residence time of analytes in the AFT provided a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3(-) and NO3(-)·HNO3), enabled highly sensitive explosives detection from explosive vapors present in ambient laboratory air. Observed signals from diluted explosive vapors indicated detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284, and 289 for tetryl, PETN, RDX, and NG, respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations sampled in ambient laboratory air, including double base propellants, plastic explosives, and commercial blasting explosives using SIM for the NG, PETN, and RDX product ions.

  14. Optical measurements of flyer plate acceleration by emulsion explosive

    NASA Astrophysics Data System (ADS)

    Kubota, Shiro; Shimada, Hideki; Matsui, Kikuo; Ogata, Yuji; Seto, Masahiro; Masui, Akira; Wada, Yuji; Liu, Zhi-Yue; Itoh, Shigeru

    2001-04-01

    This paper presents the study on the application of explosive welding technique to the field of the urgent repair of the gas and water pipe networks. The essential parameters related to the explosive welding are scrutinized from the point of view of the minimizing the damage to the steel pipe after welded explosively with a flyer plate. The emulsion explosive is contained in a rectangular hard-paper box whose bottom is the flyer plate with 100 mm length, 25 mm width and 1.5 mm thickness. The flyer motions of the flyer plates accelerated by emulsion explosive are observed by high-speed photography from the side and front view of the flyer plate. The damage to the pipe by the flyer plate is discussed with the results of the observation of flyer motion and explosive welding test under various experimental conditions. Moreover, one way to control the motion of the flyer plate is proposed. We put a PMMA buffer block into the explosive. The flying process of flyer plate is calculated by the finite different scheme based on the ALE method. The effectiveness of this method is demonstrated by the experimental and numerical studies.

  15. An AIEE fluorescent supramolecular cross-linked polymer network based on pillar[5]arene host-guest recognition: construction and application in explosive detection.

    PubMed

    Shao, Li; Sun, Jifu; Hua, Bin; Huang, Feihe

    2018-05-08

    Here a novel fluorescent supramolecular cross-linked polymer network with aggregation induced enhanced emission (AIEE) properties was constructed via pillar[5]arene-based host-guest recognition. Furthermore, the supramolecular polymer network can be used for explosive detection in both solution and thin films.

  16. Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection.

    PubMed

    Wang, Jin

    2018-06-01

    A near infrared (NIR) optical biosensor based on peptide functionalized single-walled carbon nanotubes (SWCNTs) hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection was developed. The TNT binding peptide was directly anchored on the sidewall of the SWCNTs using the π-π interaction between the aromatic amino acids and SWCNTs, forming the peptide-SWCNTs hybrids for near infrared absorption spectra measurement. The evidence of the morphology of peptide-SWCNTs hybrids was obtained using atomic force microscopy (AFM). The results demonstrated that peptide-SWCNTs hybrids based NIR optical biosensor exhibited sensitive and highly selective for TNT explosive determination, addressing a promising optical biosensor for security application. Copyright © 2018. Published by Elsevier Inc.

  17. Solid state gas sensors for detection of explosives and explosive precursors

    NASA Astrophysics Data System (ADS)

    Chu, Yun

    The increased number of terrorist attacks using improvised explosive devices (IEDs) over the past few years has made the trace detection of explosives a priority for the Department of Homeland Security. Considerable advances in early detection of trace explosives employing spectroscopic detection systems and other sensing devices have been made and have demonstrated outstanding performance. However, modern IEDs are not easily detectable by conventional methods and terrorists have adapted to avoid using metallic or nitro groups in the manufacturing of IEDs. Instead, more powerful but smaller compounds, such as TATP are being more frequently used. In addition, conventional detection techniques usually require large capital investment, labor costs and energy input and are incapable of real-time identification, limiting their application. Thus, a low cost detection system which is capable of continuous online monitoring in a passive mode is needed for explosive detection. In this dissertation, a thermodynamic based thin film gas sensor which can reliably detect various explosive compounds was developed and demonstrated. The principle of the sensors is based on measuring the heat effect associated with the catalytic decomposition of explosive compounds present in the vapor phase. The decomposition mechanism is complicated and not well known, but it can be affected by many parameters including catalyst, reaction temperature and humidity. Explosives that have relatively high vapor pressure and readily sublime at room temperature, like TATP and 2, 6-DNT, are ideal candidate for vapor phase detection using the thermodynamic gas sensor. ZnO, W2O 3, V2O5 and SnO2 were employed as catalysts. This sensor exhibited promising sensitivity results for TATP, but poor selectivity among peroxide based compounds. In order to improve the sensitivity and selectivity of the thermodynamic sensor, a Pd:SnO2 nanocomposite was fabricated and tested as part of this dissertation. A combinatorial chemistry techniques were used for catalyst discovery. Specially, a series of tin oxide catalysts with continuous varying composition of palladium were fabricated to screen for the optimum Pd loading to maximize specificity. Experimental results suggested that sensors with a 12 wt.% palladium loading generated the highest sensitivity while a 8 wt.% palladium loading provided greatest selectivity. XPS and XRD were used to study how palladium doping level affects the oxidation state and crystal structure of the nanocomposite catalyst. As with any passive detection system, a necessary theme of this dissertation was the mitigation of false positive. Toward this end, an orthogonal detection system comprised of two independent sensing platforms sharing one catalyst was demonstrated using TATP, 2, 6-DNT and ammonium nitrate as target molecules. The orthogonal sensor incorporated a thermodynamic based sensing platform to measure the heat effect associated with the decomposition of explosive molecules, and a conductometric sensing platform that monitors the change in electrical conductivity of the same catalyst when exposed to the explosive substances. Results indicate that the orthogonal sensor generates an effective response to explosives presented at part per billion level. In addition, with two independent sensing platforms, a built-in redundancy of results could be expected to minimize false positive.

  18. Advances in explosives analysis—part II: photon and neutron methods

    DOE PAGES

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; ...

    2015-10-07

    The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245–246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. Our review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. In Part II, we review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less

  19. Spectral signatures for RDX-based explosives in the 3 micron region

    NASA Astrophysics Data System (ADS)

    Osborn, Tabetha; Kaimal, Sindhu; Reeve, Scott W.; Burns, William

    2008-04-01

    Explosive compounds such as RDX, and HMX present significant challenges to optically based sensors. This difficulty is due in part to the low vapor pressures these compounds possess. One approach for sensing explosives that circumvents the low explosive vapor pressure problem, involves focusing on the trace amounts of relatively high vapor pressure impurities that will be present in the vapor signature. In order to effectively detect these volatile impurities, the spectral signature databases must be readily available. One of our goals therefore, is the generation of a database of high resolution spectral signatures for these volatile organic impurities. Some rather formidable spectroscopic measurement challenges have been encountered while working to extend the spectral signature effort to the 3 micron region. Here we will outline progress to date, with a focus on the volatile organic compounds formaldehyde, acetaldehyde, nitromethane, acetone, isobutene, and cyclohexanone.

  20. Advances in explosives analysis—part I. animal, chemical, ion, and mechanical methods

    DOE PAGES

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; ...

    2015-10-13

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). We review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Moreover, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less

  1. Thin film sensor materials for detection of Nitro-Aromatic explosives

    NASA Astrophysics Data System (ADS)

    Ramdasi, Dipali; Mudhalwadkar, Rohini

    2018-03-01

    Many countries have experienced terrorist activities and innocent people have suffered. Timely detection of explosives can avoid this situation. This paper targets the detection of Nitrobenzene and Nitrotoluene, which are nitroaromatic compounds possessing explosive properties. As direct sensors for detecting these compounds are not available, Polyaniline based thin film sensors doped with palladium are developed using the spin coating technique. The response of the developed sensors is observed for varying concentrations of explosives. It is observed that zinc oxide based sensor is more sensitive to Nitrotoluene exhibiting a relative change in resistance of 0.78. The tungsten oxide sensor is more sensitive to Nitrobenzene with a relative change in resistance of 0.48. The sensor performance is assessed by measuring the response and recovery time. The cross sensitivity of the sensors is evaluated for ethanol, acetone and methanol which was observed as very low.

  2. A Study of Energy Partitioning Using A Set of Related Explosive Formulations

    NASA Astrophysics Data System (ADS)

    Lieber, Mark; Foster, Joseph C., Jr.; Stewart, D. Scott

    2011-06-01

    Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to kinetic energy during the detonation process. This energy is manifest in the internal thermodynamic energy and the translational flow of the products. Historically, the explosive design problem has focused on intramolecular stoichiometry providing prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employee intermolecular ingredients to alter the spatial and temporal distribution of energy release. CHEETA has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and flow energy in the detonation. The equation of state information from CHEETA has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.

  3. Distribution of Ejecta in Analog Tephra Rings from Discrete Single and Multiple Subsurface Explosions

    NASA Astrophysics Data System (ADS)

    Graettinger, A. H.; Valentine, G. A.; Sonder, I.; Ross, P. S.; White, J. D. L.

    2015-12-01

    Buried-explosion experiments were used to investigate the spatial and volumetric distribution of extra-crater ejecta resulting from a range of explosion configurations with and without a crater present. Explosion configuration is defined in terms of scaled depth, the relationship between depth of burial and the cube root of explosion energy, where an optimal scaled depth explosion produces the largest crater diameter for a given energy. The multiple explosion experiments provide an analog for the formation of maar-diatreme ejecta deposits and the deposits of discrete explosions through existing conduits and hydrothermal systems. Experiments produced meter-sized craters with ejecta distributed between three major facies based on morphology and distance from the crater center. The proximal deposits form a constructional steep-sided ring that extends no more than two-times the crater radius away from center. The medial deposits form a low-angle continuous blanket that transitions with distance into the isolated clasts of the distal ejecta. Single explosion experiments produce a trend of increasing volume proportion of proximal ejecta as scaled depth increases (from 20-90% vol.). Multiple explosion experiments are dominated by proximal deposits (>90% vol.) for all but optimal scaled depth conditions (40-70% vol.). In addition to scaled depth, the presence of a crater influences jet shape and how the jet collapses, resulting in two end-member depositional mechanisms that produce distinctive facies. The experiments use one well-constrained explosion mechanism and, consequently, the variations in depositional facies and distribution are the result of conditions independent of that mechanism. Previous interpretations have invoked variations in fragmentation as the cause of this variability, but these experiments should help with a more complete reconstruction of the configuration and number of explosions that produce a tephra ring.

  4. Low Frequency Electromagnetic Pulse and Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, J J

    2011-02-01

    This paper reviews and summarizes prior work related to low frequency (< 100 Hz) EMP (ElectroMagnetic Pulse) observed from explosions. It focuses on how EMP signals might, or might not, be useful in monitoring underground nuclear tests, based on the limits of detection, and physical understanding of these signals. In summary: (1) Both chemical and nuclear explosions produce an EMP. (2) The amplitude of the EMP from underground explosions is at least two orders of magnitude lower than from above ground explosions and higher frequency components of the signal are rapidly attenuated due to ground conductivity. (3) In general, inmore » the near field, that is distances (r) of less than 10s of kilometers from the source, the amplitude of the EMP decays approximately as 1/r{sup 3}, which practically limits EMP applications to very close (<{approx}1km) distances. (4) One computational model suggests that the EMP from a decoupled nuclear explosion may be enhanced over the fully coupled case. This has not been validated with laboratory or field data. (5) The magnitude of the EMP from an underground nuclear explosion is about two orders of magnitude larger than that from a chemical explosion, and has a larger component of higher frequencies. In principle these differences might be used to discriminate a nuclear from a chemical explosion using sensors at very close (<{approx}1 km) distances. (6) Arming and firing systems (e.g. detonators, exploding bridge wires) can also produce an EMP from any type of explosion. (7) To develop the understanding needed to apply low frequency EMP to nuclear explosion monitoring, it is recommended to carry out a series of controlled underground chemical explosions with a variety of sizes, emplacements (e.g. fully coupled and decoupled), and arming and firing systems.« less

  5. Time-sequenced X-ray Observation of a Thermal Explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J W; Molitoris, J D; Smilowitz, L

    The evolution of a thermally-initiated explosion is studied using a multiple-image x-ray system. HMX-based PBX 9501 is used in this work, enabling direct comparison to recently-published data obtained with proton radiography [1]. Multiple x-ray images of the explosion are obtained with image spacing of ten microseconds or more. The explosion is simultaneously characterized with a high-speed camera using an interframe spacing of 11 {micro}s. X-ray and camera images were both initiated passively by signals from an embedded thermocouple array, as opposed to being actively triggered by a laser pulse or other external source. X-ray images show an accelerating reacting frontmore » within the explosive, and also show unreacted explosive at the time the containment vessel bursts. High-speed camera images show debris ejected from the vessel expanding at 800-2100 m/s in the first tens of {micro}s after the container wall failure. The effective center of the initiation volume is about 6 mm from the geometric center of the explosive.« less

  6. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover.

    PubMed

    Baral, Nawa Raj; Shah, Ajay

    2017-05-01

    Pretreatment is required to destroy recalcitrant structure of lignocelluloses and then transform into fermentable sugars. This study assessed techno-economics of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments, and identified bottlenecks and operational targets for process improvement. Techno-economic models of these pretreatment processes for a cellulosic biorefinery of 113.5 million liters butanol per year excluding fermentation and wastewater treatment sections were developed using a modelling software-SuperPro Designer. Experimental data of the selected pretreatment processes based on corn stover were gathered from recent publications, and used for this analysis. Estimated sugar production costs ($/kg) via steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological methods were 0.43, 0.42, 0.65 and 1.41, respectively. The results suggest steam explosion and sulfuric acid pretreatment methods might be good alternatives at present state of technology and other pretreatment methods require research and development efforts to be competitive with these pretreatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fatal and non-fatal injuries due to intentional explosions in Nepal, 2008-2011: analysis of surveillance data

    PubMed Central

    2013-01-01

    Background Nepal is one of the post-conflict countries affected by violence from explosive devices. We undertook this study to assess the magnitude of injuries due to intentional explosions in Nepal during 2008-2011 and to describe time trends and epidemiologic patterns for these events. Methods We analyzed surveillance data on fatal and non-fatal injuries due to intentional explosions in Nepal that occurred between 1 January 2008 and 31 December 2011. The case definition included casualties injured or killed by explosive devices knowingly activated by an individual or a group of individuals with the intent to harm, hurt or terrorize. Data were collected through media-based and active community-based surveillance. Results Analysis included 437 casualties injured or killed in 131 intentional explosion incidents. A decrease in the number of incidents and casualties between January 2008 and June 2009 was followed by a pronounced increase between July 2010 and June 2011. Eighty-four (19.2%) casualties were among females and 40 (9.2%) were among children under 18 years of age. Fifty-nine (45.3%) incidents involved one casualty, 47 (35.9%) involved 2 to 4 casualties, and 6 involved more than 10 casualties. The overall case-fatality ratio was 7.8%. The highest numbers of incidents occurred in streets or at crossroads, in victims’ homes, and in shops or markets. Incidents on buses and near stadiums claimed the highest numbers of casualties per incident. Socket, sutali, and pressure cooker bombs caused the highest numbers of incidents. Conclusions Intentional explosion incidents still pose a threat to the civilian population of Nepal. Most incidents are caused by small homemade explosive devices and occur in public places, and males aged 20 to 39 account for a plurality of casualties. Stakeholders addressing the explosive device problem in Nepal should continue to use surveillance data to plan interventions. PMID:23514664

  8. Bomb swab: Can trace explosive particle sampling and detection be improved?

    PubMed

    Fisher, Danny; Zach, Raya; Matana, Yossef; Elia, Paz; Shustack, Shiran; Sharon, Yarden; Zeiri, Yehuda

    2017-11-01

    The marked increase in international terror in recent years requires the development of highly efficient methods to detect trace amounts of explosives at airports, border crossings and check points. The preferred analytical method worldwide is the ion mobility spectrometry (IMS) that is capable of detecting most explosives at the nano-gram level. Sample collection for the IMS analysis is based on swabbing of a passenger's belongings to collect possible explosive residues. The present study examines a wide range of issues related to swab-based particle collection and analysis, in the hope of gaining deeper understanding into this technique that will serve to improve the detection process. The adhesion of explosive particles to three typical materials, plastic, metal and glass, were measured using atomic force microscopy (AFM). We found that a strong contribution of capillary forces to adhesion on glass and metal surfaces renders these substrates more promising materials upon which to find and collect explosive residues. The adhesion of explosives to different swipe materials was also examined. Here we found that Muslin, Nomex ® and polyamide membrane surfaces are the most promising materials for use as swipes. Subsequently, the efficiency of multiple swipe use - for collecting explosive residues from a glass surface using Muslin, Nomex ® and Teflon™ swipes - was examined. The study suggests that swipes used in about 5-10 "sampling and analysis cycles" have higher efficiency as compared to new unused swipes. The reason for this behavior was found to be related to the increased roughness of the swipe surface following a few swab measurements. Lastly, GC-MS analysis was employed to examine the nature of contaminants collected by the three types of swipe. The relative amounts of different contaminants are reported. The existence and interference of these contaminants have to be considered in relation to the detection efficiency of the various explosives by the IMS. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Shock and Vibration Bulletin. Part 4. Impact, Packaging and Shipping, Blast and Impulsive Loading

    DTIC Science & Technology

    1975-06-01

    Explosive forces are completely through undisturbed air where appreciable dominant and the plate is rotated through an aerodynamic forces retard its...are relatively of the explosive system drops rapidly with dense compared to air , do produce sufficient flyer thickness, little is gained by increasing...impulsive loadings generated by a fuel air explosive . A membrane model based on a total plastic strain energy function, a rigid strain hardening

  10. TNT and RDX degradation and extraction from contaminated soil using subcritical water.

    PubMed

    Islam, Mohammad Nazrul; Shin, Moon-Su; Jo, Young-Tae; Park, Jeong-Hun

    2015-01-01

    The use of explosives either for industrial or military operations have resulted in the environmental pollution, poses ecological and health hazard. In this work, a subcritical water extraction (SCWE) process at laboratory scale was used at varying water temperature (100-175 °C) and flow rate (0.5-1.5 mL min(-1)), to treat 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated soil, to reveal information with respect to the explosives removal (based on the analyses of soil residue after extraction), and degradation performance (based on the analyses of water extracts) of this process. Continuous flow subcritical water has been considered on removal of explosives to avoid the repartitioning of non-degraded compounds to the soil upon cooling which usually occurs in the batch system. In the SCWE experiments, near complete degradation of both TNT and RDX was observed at 175 °C based on analysis of water extracts and soil. Test results also indicated that TNT removal of >99% and a complete RDX removal were achieved by this process, when the operating conditions were 1 mL min(-1), and treatment time of 20 min, after the temperature reached 175 °C. HPLC-UV and ion chromatography analysis confirmed that the explosives underwent for degradation. The low concentration of explosives found in the process wastewater indicates that water recycling may be viable, to treat additional soil. Our results have shown in the remediation of explosives contaminated soil, the effectiveness of the continuous flow SCWE process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Quantum Cascade Laser (QCL) based sensor for the detection of explosive compounds

    NASA Astrophysics Data System (ADS)

    Normand, Erwan; Howieson, Iain; McCulloch, Michael; Black, Paul

    2006-09-01

    Following Cascade Technologies first success at using Quantum Cascade Lasers (QCL) for trace gas detection in the continuous emission monitoring market, the core technology platform is now being developed towards homeland security applications. This paper will highlight the potential of QCL based trace gas sensor for detecting vapours of explosives. Furthermore we will present results that let foresee the use of such technologies at addressing security gaps for protection against terrorism in infrastructures where high throughput screening of individuals or items is required. Preliminary measurements have shown that rapid identification, or fingerprinting, of explosive is achievable in 10ms at extrapolated sensitivities in the sub-part per billion range. The experiments were carried out with support form the Home Office Scientific Development Branch (HOSDB) in the UK and were focused at selecting a variety of explosive compounds and showing their detection using a novel sniffer platform system based on the use of quantum cascade lasers. Preliminary studies on the technology have indicated that direct fingerprinting (detection - identification) of explosive compounds such as NG and tagging agents such as EGDN by sniffing surrounding ambient air is achievable. Furthermore these studies have also indicated that detection of such compounds on packaging used to ship the sealed compounds is possible, making this platform a strong contender for detection through cross contamination on material that have been in contact with each other. Additionally, it was also possible to detect breakdown products associated with sample material NG providing a further capability that could be exploited to enhance the detection and identification of explosive compounds.

  12. Infrasound Waveform Inversion and Mass Flux Validation from Sakurajima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Fee, D.; Kim, K.; Yokoo, A.; Izbekov, P. E.; Lopez, T. M.; Prata, F.; Ahonen, P.; Kazahaya, R.; Nakamichi, H.; Iguchi, M.

    2015-12-01

    Recent advances in numerical wave propagation modeling and station coverage have permitted robust inversion of infrasound data from volcanic explosions. Complex topography and crater morphology have been shown to substantially affect the infrasound waveform, suggesting that homogeneous acoustic propagation assumptions are invalid. Infrasound waveform inversion provides an exciting tool to accurately characterize emission volume and mass flux from both volcanic and non-volcanic explosions. Mass flux, arguably the most sought-after parameter from a volcanic eruption, can be determined from the volume flux using infrasound waveform inversion if the volcanic flow is well-characterized. Thus far, infrasound-based volume and mass flux estimates have yet to be validated. In February 2015 we deployed six infrasound stations around the explosive Sakurajima Volcano, Japan for 8 days. Here we present our full waveform inversion method and volume and mass flux estimates of numerous high amplitude explosions using a high resolution DEM and 3-D Finite Difference Time Domain modeling. Application of this technique to volcanic eruptions may produce realistic estimates of mass flux and plume height necessary for volcanic hazard mitigation. Several ground-based instruments and methods are used to independently determine the volume, composition, and mass flux of individual volcanic explosions. Specifically, we use ground-based ash sampling, multispectral infrared imagery, UV spectrometry, and multigas data to estimate the plume composition and flux. Unique tiltmeter data from underground tunnels at Sakurajima also provides a way to estimate the volume and mass of each explosion. In this presentation we compare the volume and mass flux estimates derived from the different methods and discuss sources of error and future improvements.

  13. Metal explosion chambers: designing, manufacturing, application

    NASA Astrophysics Data System (ADS)

    Stoyanovskii, O. I.; Zlobin, B. S.; Shtertser, A. A.; Meshcheryakov, Y. P.

    2017-10-01

    Designing of explosion chambers is based on research investigations of the chamber body stress-strain state, which is determined by numerical computation and experimentally by the strain gage technique. Studies show that chamber bottoms are the most loaded elements, and maximal stresses arise in chamber poles. Increasing the shell thickness around poles by welding-in an insert is a simple and saving way to solve this problem. There are structural solutions, enabling reliable hermetic closure and preventing leakage of detonation products from the chamber. Explosion chambers are employed in scientific research and in different industrial applications: explosive welding and hardening, synthesis of new materials, disposal of expired ammunition, and etc.

  14. Smart phones: platform enabling modular, chemical, biological, and explosives sensing

    NASA Astrophysics Data System (ADS)

    Finch, Amethist S.; Coppock, Matthew; Bickford, Justin R.; Conn, Marvin A.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Reliable, robust, and portable technologies are needed for the rapid identification and detection of chemical, biological, and explosive (CBE) materials. A key to addressing the persistent threat to U.S. troops in the current war on terror is the rapid detection and identification of the precursor materials used in development of improvised explosive devices, homemade explosives, and bio-warfare agents. However, a universal methodology for detection and prevention of CBE materials in the use of these devices has proven difficult. Herein, we discuss our efforts towards the development of a modular, robust, inexpensive, pervasive, archival, and compact platform (android based smart phone) enabling the rapid detection of these materials.

  15. Plasmonic enhanced terahertz time-domain spectroscopy system for identification of common explosives

    NASA Astrophysics Data System (ADS)

    Demiraǧ, Yiǧit; Bütün, Bayram; Özbay, Ekmel

    2017-05-01

    In this study, we present a classification algorithm for terahertz time-domain spectroscopy systems (THz-TDS) that can be trained to identify most commonly used explosives (C4, HMX, RDX, PETN, TNT, composition-B and blackpowder) and some non-explosive samples (lactose, sucrose, PABA). Our procedure can be used in any THz-TDS system that detects either transmission or reflection spectra at room conditions. After preprocessing the signal in low THz regime (0.1 - 3 THz), our algorithm takes advantages of a latent space transformation based on principle component analysis in order to classify explosives with low false alarm rate.

  16. Explosion Source Model Development in Support of Seismic Monitoring Technologies: Apparent Explosion Moment and Prospects for Moment-Based Yield Estimation

    DTIC Science & Technology

    2010-09-01

    and R. G. Warren (1994). A geophysical-geological transect of the Silent Canyon  caldera complex, Pahute Mesa, Nevada, J. Geophys. Res. 99: 4323–4339...Velocity structure of Silent Canyon caldera , Nevada Test Site, Bull.  Seismol. Soc. Am. 77: 597–613. 2010 Monitoring Research Review: Ground-Based

  17. Non-lead, environmentally safe projectiles and explosives containers

    DOEpatents

    Lowden, Richard A.; McCoig, Thomas M.; Dooley, Joseph B.; Smith, Cyrus M.

    2001-01-16

    A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent.

  18. Non-lead environmentally safe projectiles and explosive container

    DOEpatents

    Lowden, Richard A.; McCoig, Thomas M.; Dooley, Joseph B.; Smith, Cyrus M.

    1999-06-15

    A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent.

  19. Determination of enthalpies of formation of energetic molecules with composite quantum chemical methods

    DOE PAGES

    Manaa, M. Riad; Fried, Laurence E.; Kuo, I-Feng W.

    2016-02-01

    We report gas-phase enthalpies of formation for the set of energetic molecules NTO, DADE, LLM-105, TNT, RDX, TATB, HMX, and PETN using the G2, G3, G4, and ccCA-PS3 quantum composite methods. Calculations for HMX and PETN hitherto represent the largest molecules attempted with these methods. G3 and G4 calculations are typically close to one another, with a larger difference found between these methods and ccCA-PS3. Furthermore there is significant uncertainty in experimental values, the mean absolute deviation between the average experimental value and calculations are 12, 6, 7, and 3 kcal/mol for G2, G3, G4, and ccCA-PS3, respectively.

  20. Determination of adiabatic ionization potentials and electron affinities of energetic molecules with the Gaussian-4 method

    NASA Astrophysics Data System (ADS)

    Manaa, M. Riad

    2017-06-01

    Adiabatic ionization potentials (IPad) and electron affinities (EAad) are determined with the Gaussian-4 (G4) method for the energetic molecules PETN, RDX, β-δ-HMX, CL-17, TNB, TNT, CL-14, DADNE, TNA, and TATB. The IPad and EAad values are in the range of 8.43-11.73 and 0.74-2.86 eV, respectively. Variations are due to substitutional effects of electron withdrawing and donating functional groups. Enthalpies of formation are also determined for several of these molecules to augment the list of recently reported G4 values. The calculated IPad and EAad provide quantitative assessment of such molecular properties as chemical hardness, molecular electronegativity, and "intrinsic" molecular physical hardness.

  1. The role of atmospheric nuclear explosions on the stagnation of global warming in the mid 20th century

    NASA Astrophysics Data System (ADS)

    Fujii, Yoshiaki

    2011-04-01

    This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.

  2. Understanding the shock and detonation response of high explosives at the continuum and meso scales

    NASA Astrophysics Data System (ADS)

    Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.

    2018-03-01

    The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.

  3. Shock Initiation Characteristics of an Aluminized DNAN/RDX Melt-Cast Explosive

    NASA Astrophysics Data System (ADS)

    Cao, Tong-Tang; Zhou, Lin; Zhang, Xiang-Rong; Zhang, Wei; Miao, Fei-Chao

    2017-10-01

    Shock sensitivity is one of the key parameters for newly developed, 2,4-dinitroanisole (DNAN)-based, melt-cast explosives. For this paper, a series of shock initiation experiments were conducted using a one-dimensional Lagrangian system with a manganin piezoresistive pressure gauge technique to evaluate the shock sensitivity of an aluminized DNAN/cyclotrimethylenetrinitramine (RDX) melt-cast explosive. This study fully investigated the effects of particle size distributions in both RDX and aluminum, as well as the RDX's crystal quality on the shock sensitivity of the aluminized DNAN/RDX melt-cast explosive. Ultimately, the shock sensitivity of the aluminized DNAN/RDX melt-cast explosives increases when the particle size decreases in both RDX and aluminum. Additionally, shock sensitivity increases when the RDX's crystal quality decreases. In order to simulate these effects, an Ignition and Growth (I&G) reactive flow model was calibrated. This calibrated I&G model was able to predict the shock initiation characteristics of the aluminized DNAN/RDX melt-cast explosive.

  4. Development of Diesel Engine Operated Forklift Truck for Explosive Gas Atmospheres

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Rajendra Kumar; Singh, Arvind Kumar; Ahirwal, Bhagirath; Sinha, Amalendu

    2018-02-01

    For the present study, a prototype diesel engine operated Forklift truck of 2 t capacity is developed for explosive gas atmosphere. The parts of the Forklift truck are assessed against risk of ignition of the explosive gases, vapors or mist grouped in Gr. IIA and having ignition temperature more than 200°C. Identification of possible sources of ignition and their control or prevention is the main objective of this work. The design transformation of a standard Forklift truck into a special Forklift truck is made on prototype basis. The safety parameters of the improved Forklift truck are discussed in this paper. The specially designed Forklift truck is useful in industries where explosive atmospheres may present during normal working conditions and risk of explosion is a concern during handling or transportation of materials. This indigenous diesel engine based Forklift truck for explosive gas atmosphere classified as Zone 1 and Zone 2 area and gas group IIA is developed first time in India in association with the Industry.

  5. Features of the incorporation of single and double based powders within emulsion explosives

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. B.; Mendes, R.; Tavares, B.; Louro, C.

    2014-05-01

    In this work, features of the thermal and detonation behaviour of compositions resulting from the mixture of single and double based powders within ammonium nitrate based emulsion explosives are shown. Those features are portrayed through results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential thermal analysis [DTA] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the "gap-test". DTA/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical species and so of the compatibility of the components of the compositions. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with powder than for the one with sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have been shown to be higher for the powdered compositions than for the sole emulsion explosive. Shock sensitivity assessments have ended-up with a slightly bigger sensitivity for the compositions with double based powder when compared to the single based compositions or to the sole emulsion.

  6. Features of the Valorization of Single and Double Based Powders for Codetonation in Emulsion Explosives

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jose; Mendes, Ricardo; Tavares, Bruno; Louro, Cristina

    2013-06-01

    In this work, features of the thermal and detonation behavior of compositions resulting from the mixture of single and double based gun powder within ammonium nitrate (AN) based emulsion explosives are shown. That includes results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential scanning calorimetry [DSC] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the ``gap-test''. DSC/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical specimens and so of the capability of the composition components. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with gun powder than for the sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have shown to be higher for the powdered compositions than for the pure emulsion explosive. Shock sensitivity assessment have ended-up with a slightly bigger sensitivity for the compositions with double based gun powder when compared to the single based compositions or to the pure emulsion.

  7. Common Low-cost IM Explosive Program. Development of Next Generation Insensitive Munitions: A Success Story

    DTIC Science & Technology

    2011-11-30

    fuze separating from the shell body preventing high order detonations thus saving the lives of the Soldiers. Unit’s SPC Alan Ng  with his father Peter...Sensitive If not fully compliant, must show improvement over Baseline explosive Affordable Artillery Cost Drivers = Steel Body Material & Explosive Fill...Mortar Cost Drivers = Steel Body Material, Fuze & Propelling Charges Producible within the National Technology and Industrial Base Infrastructure

  8. Minutes of the Explosives Safety Seminar (19th) Held at Los Angeles, California, 9-10-11 September 1980. Volume 1

    DTIC Science & Technology

    1980-01-01

    DOUBLE-BASE EXTRUSION COMPOSITIONS ................................... 89 Messrs. Craig E. Johnson and Paul F. Dendor V I GUN PROPELLANT PROPAGATION IN...Mullins and C. F. Baker RESULTS AND ANALYSIS OF STRENGTHENED STEEL BUILDING BLAST TESTS ..... 165 Messrs. Frederic E. Sock, Norval Dobbs, Paul Price and...347 Mr. J. Paul Glenn I viLR SESSION - EXPLOSION CONTAIMENT & VENTING Moderator - Mr. Irving Forsten EXPLOSION CONTAINMENT VESSELS AND M4TERIALS

  9. Design of a Simple Blast Pressure Gauge Based on a Heterodyne Velocimetry Measuring Technique

    DTIC Science & Technology

    2016-08-01

    deployed in an experiment during which the blast pressure was measured from detonation of 114 g of Primasheet 1000 high explosive. The gauge reported... detonation of high explosive where accelerated projectiles and debris may occur. Many times, overpressures generated by such events can be a nuisance to...as that generated by release of energy from a high-explosive detonation or deflagration, materials such as metals or ceramics may be needed. A

  10. Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection.

    PubMed

    Wang, Danling; Chen, Antao; Jen, Alex K-Y

    2013-04-14

    Environmental humidity is an important factor that can influence the sensing performance of a metal oxide. TiO2-(B) in the form of nanowires has been demonstrated to be a promising material for the detection of explosive gases such as 2,4,6-trinitrotoluene (TNT). However, the elimination of cross-sensitivity of the explosive detectors based on TiO2-(B) toward environmental humidity is still a major challenge. It was found that the cross-sensitivity could be effectively modulated when the thin film of TiO2-(B) nanowires was exposed to ultraviolet (UV) light during the detection of explosives under operating conditions. Such a modulation of sensing responses of TiO2-(B) nanowires to explosives by UV light was attributed to a photocatalytic effect, with which the water adsorbed on the TiO2-(B) nanowire surface was split and therefore the sensor response performance was less affected. It was revealed that the cross-sensitivity could be suppressed up to 51% when exposed to UV light of 365 nm wavelength with an intensity of 40 mW cm(-2). This finding proves that the reduction of cross-sensitivity to humidity through UV irradiation is an effective approach that can improve the performance of a sensor based on TiO2-(B) nanowires for the detection of explosive gas.

  11. Selective detection of trace nitroaromatic, nitramine, and nitrate ester explosive residues using a three-step fluorimetric sensing process: a tandem turn-off, turn-on sensor.

    PubMed

    Sanchez, Jason C; Toal, Sarah J; Wang, Zheng; Dugan, Regina E; Trogler, William C

    2007-11-01

    Detection of trace quantities of explosive residues plays a key role in military, civilian, and counter-terrorism applications. To advance explosives sensor technology, current methods will need to become cheaper and portable while maintaining sensitivity and selectivity. The detection of common explosives including trinitrotoluene (TNT), cyclotrimethylenetrinitramine, cyclotetramethylene-tetranitramine, pentaerythritol tetranitrate, 2,4,6-trinitrophenyl-N-methylnitramine, and trinitroglycerin may be carried out using a three-step process combining "turn-off" and "turn-on" fluorimetric sensing. This process first detects nitroaromatic explosives by their quenching of green luminescence of polymetalloles (lambda em approximately 400-510 nm). The second step places down a thin film of 2,3-diaminonaphthalene (DAN) while "erasing" the polymetallole luminescence. The final step completes the reaction of the nitramines and/or nitrate esters with DAN resulting in the formation of a blue luminescent traizole complex (lambda(em) = 450 nm) providing a "turn-on" response for nitramine and nitrate ester-based explosives. Detection limits as low as 2 ng are observed. Solid-state detection of production line explosives demonstrates the applicability of this method to real world situations. This method offers a sensitive and selective detection process for a diverse group of the most common high explosives used in military and terrorist applications today.

  12. Thermonuclear ignition by Z-pinch X-ray radiation produced by current of an explosive magnetic generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garanin, S. G.; Ivanovskiy, A. V., E-mail: ivanovsky@elph.vniief.ru

    2015-12-15

    The scheme of a device based a superpower disk-type magnetic explosion generator to produce a pulse of X-ray radiation with the energy exceeding the target ignition threshold is described and validated.

  13. Thermonuclear ignition by Z-pinch X-ray radiation produced by current of an explosive magnetic generator

    NASA Astrophysics Data System (ADS)

    Garanin, S. G.; Ivanovskiy, A. V.

    2015-12-01

    The scheme of a device based a superpower disk-type magnetic explosion generator to produce a pulse of X-ray radiation with the energy exceeding the target ignition threshold is described and validated.

  14. An Experimental study of Corner Turning in a Granular Ammonium Nitrate Based Explosive

    NASA Astrophysics Data System (ADS)

    Sorber, Susan; Taylor, Peter

    2007-06-01

    A novel experimental geometry has been designed to perform controlled studies of corner turning in a ``tap density'' granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionization probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive which is initiated on axis from below by a smaller diameter cylinder of the same explosive or a booster charge. Four experiments have been performed on a granular Ammonium Nitrate based non ideal explosive (NIE). Two experiments were initiated directly from a PE4 booster charge and two were initiated from a train including a booster charge and a 1'' diameter Copper cylinder containing the same NIE. Data from the four experiments was reproducible and observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster initiated geometries with a higher input shock pressure into the NIE gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.

  15. Emulsion based cast booster - a priming system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, R.N.; Mishra, A.K.

    2005-07-01

    This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiatedmore » with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.« less

  16. Improved Overpressure Recording and Modeling for Near-Surface Explosion Forensics

    NASA Astrophysics Data System (ADS)

    Kim, K.; Schnurr, J.; Garces, M. A.; Rodgers, A. J.

    2017-12-01

    The accurate recording and analysis of air-blast acoustic waveforms is a key component of the forensic analysis of explosive events. Smartphone apps can enhance traditional technologies by providing scalable, cost-effective ubiquitous sensor solutions for monitoring blasts, undeclared activities, and inaccessible facilities. During a series of near-surface chemical high explosive tests, iPhone 6's running the RedVox infrasound recorder app were co-located with high-fidelity Hyperion overpressure sensors, allowing for direct comparison of the resolution and frequency content of the devices. Data from the traditional sensors is used to characterize blast signatures and to determine relative iPhone microphone amplitude and phase responses. A Wiener filter based source deconvolution method is applied, using a parameterized source function estimated from traditional overpressure sensor data, to estimate system responses. In addition, progress on a new parameterized air-blast model is presented. The model is based on the analysis of a large set of overpressure waveforms from several surface explosion test series. An appropriate functional form with parameters determined empirically from modern air-blast and acoustic data will allow for better parameterization of signals and the improved characterization of explosive sources.

  17. Toward Improved Fidelity of Thermal Explosion Simulations

    NASA Astrophysics Data System (ADS)

    Nichols, A. L.; Becker, R.; Howard, W. M.; Wemhoff, A.

    2009-12-01

    We will present results of an effort to improve the thermal/chemical/mechanical modeling of HMX based explosives like LX04 and LX10 for thermal cook-off The original HMX model and analysis scheme were developed by Yoh et al. for use in the ALE3D modeling framework. The current results were built to remedy the deficiencies of that original model. We concentrated our efforts in four areas. The first area was addition of porosity to the chemical material model framework in ALE3D that is used to model the HMX explosive formulation. This is needed to handle the roughly 2% porosity in solid explosives. The second area was the improvement of the HMX reaction network, which included a reactive phase change model base on work by Henson et al. The third area required adding early decomposition gas species to the CHEETAH material database to develop more accurate equations of state for gaseous intermediates and products. Finally, it was necessary to improve the implicit mechanics module in ALE3D to more naturally handle the long time scales associated with thermal cook-off The application of the resulting framework to the analysis of the Scaled Thermal Explosion (STEX) experiments will be discussed.

  18. Mobile TNA system to detect explosives and drugs concealed in cars and trucks

    NASA Astrophysics Data System (ADS)

    Bendahan, Joseph; Gozani, Tsahi

    1998-12-01

    The drug problem in the U.S. is serious and efforts to fight it are constrained by the lack of adequate means to curb the inflow of smuggled narcotics into the country through cargo containers. Also, events such as the disastrous explosion in Oklahoma City, the IRA bombing in London, and the bombing of the U.S. military residence in Dharan make the development of new tools for the detection of explosives and drugs in vehicles imperative. Thermal neutron analysis (TNA) technology, developed for the detection of explosives in suitcases, and detection of landmines and unexploded ordnance is presently being applied to the nonintrusive detection of significant amounts of explosives and drugs concealed in cars, trucks and large cargo containers. TNA technology is based on the analysis of characteristic gamma rays emitted following thermal neutron capture. A TNA system can be used in a variety of operational scenarios, such as inspection before an unloaded cargo container from a spit is moved to temporary storage, inspection of trucks unloaded from a ferry, or inspection of vehicles parked close to Federal building or military bases. This paper will discuss the detection process and operational scenarios, and will present results from recent simulations and measurements.

  19. Molecular design and property prediction of high density polynitro[3.3.3]-propellane-derivatized frameworks as potential high explosives.

    PubMed

    Zhang, Qinghua; Zhang, Jiaheng; Qi, Xiujuan; Shreeve, Jean'ne M

    2014-11-13

    Research in energetic materials is now heavily focused on the design and synthesis of novel insensitive high explosives (IHEs) for specialized applications. As an effective and time-saving tool for screening potential explosive structures, computer simulation has been widely used for the prediction of detonation properties of energetic molecules with relatively high precision. In this work, a series of new polynitrotetraoxopentaaza[3.3.3]-propellane molecules with tricyclic structures were designed. Their properties as potential high explosives including density, heats of formation, detonation properties, impact sensitivity, etc., have been extensively evaluated using volume-based thermodynamic calculations and density functional theory (DFT).These new energetic molecules exhibit high densities of >1.82 g cm(-3), in which 1 gives the highest density of 2.04 g cm(-3). Moreover, most new materials show good detonation properties and acceptable impact sensitivities, in which 5 displays much higher detonation velocity (9482 m s(-1)) and pressure (43.9 GPa) than HMX and has a h50 value of 11 cm. These results are expected to facilitate the experimental synthesis of new-generation nitramine-based high explosives.

  20. Numerical Simulations of Thermobaric Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Bell, J B; Beckner, V E

    2007-05-04

    A Model of the energy evolution in thermobaric explosions is presented. It is based on the two-phase formulation: conservation laws for the gas and particle phases along with inter-phase interaction terms. It incorporates a Combustion Model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields. The Model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the fuel (Al or TNT detonation products) with air. Numerical simulations were performed for 1.5-g thermobaric explosions inmore » five different chambers (volumes ranging from 6.6 to 40 liters and length-to-diameter ratios from 1 to 12.5). Computed pressure waveforms were very similar to measured waveforms in all cases - thereby proving that the Model correctly predicts the energy evolution in such explosions. The computed global fuel consumption {mu}(t) behaved as an exponential life function. Its derivative {dot {mu}}(t) represents the global rate of fuel consumption. It depends on the rate of turbulent mixing which controls the rate of energy release in thermobaric explosions.« less

  1. Non-lead environmentally safe projectiles and explosive container

    DOEpatents

    Lowden, R.A.; McCoig, T.M.; Dooley, J.B.; Smith, C.M.

    1999-06-15

    A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent. 10 figs.

  2. Reflection processing of the large-N seismic data from the Source Physics Experiment (SPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paschall, Olivia C.

    2016-07-18

    The purpose of the SPE is to develop a more physics-based model for nuclear explosion identification to understand the development of S-waves from explosion sources in order to enhance nuclear test ban treaty monitoring.

  3. What factors control superficial lava dome explosivity?

    PubMed

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J

    2015-09-30

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  4. Laser-based standoff detection of surface-bound explosive chemicals

    NASA Astrophysics Data System (ADS)

    Huestis, David L.; Smith, Gregory P.; Oser, Harald

    2010-04-01

    Avoiding or minimizing potential damage from improvised explosive devices (IEDs) such as suicide, roadside, or vehicle bombs requires that the explosive device be detected and neutralized outside its effective blast radius. Only a few seconds may be available to both identify the device as hazardous and implement a response. As discussed in a study by the National Research Council, current technology is still far from capable of meeting these objectives. Conventional nitrocarbon explosive chemicals have very low vapor pressures, and any vapors are easily dispersed in air. Many pointdetection approaches rely on collecting trace solid residues from dust particles or surfaces. Practical approaches for standoff detection are yet to be developed. For the past 5 years, SRI International has been working toward development of a novel scheme for standoff detection of explosive chemicals that uses infrared (IR) laser evaporation of surfacebound explosive followed by ultraviolet (UV) laser photofragmentation of the explosive chemical vapor, and then UV laser-induced fluorescence (LIF) of nitric oxide. This method offers the potential of long standoff range (up to 100 m or more), high sensitivity (vaporized solid), simplicity (no spectrometer or library of reference spectra), and selectivity (only nitrocompounds).

  5. What factors control superficial lava dome explosivity?

    PubMed Central

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-01-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management. PMID:26420069

  6. Micellar electrokinetic chromatography and capillary electrochromatography of nitroaromatic explosives in seawater.

    PubMed

    Giordano, Braden C; Copper, Christine L; Collins, Greg E

    2006-02-01

    The ability to separate nitroaromatic and nitramine explosives in seawater sample matrices is demonstrated using both MEKC and CEC. While several capillary-based separations exist for explosives, none address direct sampling from seawater, a sample matrix of particular interest in the detection of undersea mines. Direct comparisons are made between MEKC and CEC in terms of sensitivity and separation efficiency for the analysis of 14 explosives and explosive degradation products in seawater and diluted seawater. The use of high-salt stacking with MEKC results, on average, in a three-fold increase in the number of theoretical plates, and nearly double resolution for samples prepared in 25% seawater. By taking advantage of long injection times in conjunction with stacking, detection limits down to sub mg/L levels are attainable; however, resolution is sacrificed. CEC of explosive mixtures using sol-gels prepared from methyltrimethoxysilane does not perform as well as MEKC in terms of resolving power, but does permit extended injection times for concentrating analyte onto the head of the separation column with little or no subsequent loss in resolution. Electrokinetic injections of 8 min at high voltage allow for detection limits of explosives below 100 microg/L.

  7. Direct Real-Time Detection of Vapors from Explosive Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, Robert G.; Clowers, Brian H.; Atkinson, David A.

    2013-10-03

    The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX and nitroglycerine along with various compositions containing these substances is demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a non-radioactive ionization source and coupled to a mass spectrometer. Direct vapor detection was demonstrated in less than 5 seconds at ambient temperature without sample pre-concentration. The several seconds of residence time of analytes in the AFT provides a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ionsmore » (NO3- and NO3-•HNO3), enables highly sensitive explosives detection. Observed signals from diluted explosive vapors indicate detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284 and 289 for tetryl, PETN, RDX and NG respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations, including double base propellants, plastic explosives and commercial blasting explosives using SIM for the NG, PETN and RDX product ions.« less

  8. Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots.

    PubMed

    Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng

    2017-11-20

    The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals.

  9. Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots

    PubMed Central

    Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng

    2017-01-01

    The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals. PMID:29156627

  10. A simulation study of fast neutron interrogation for standoff detection of improvised explosive devices

    NASA Astrophysics Data System (ADS)

    Heider, S. A.; Dunn, W. L.

    2015-11-01

    The signature-based radiation-scanning technique utilizes radiation detector responses, called "signatures," and compares these to "templates" in order to differentiate targets that contain certain materials, such as explosives or drugs, from those that do not. Our investigations are aimed at the detection of nitrogen-rich explosives contained in improvised explosive devices. We use the term "clutter" to refer to any non-explosive materials with which the interrogating radiation may interact between source and detector. To deal with the many target types and clutter configurations that may be encountered in the field, the use of "artificial templates" is proposed. The MCNP code was used to simulate 14.1 MeV neutron source beams incident on one type of target containing various clutter and sample materials. Signatures due to inelastic-scatter and prompt-capture gamma rays from hydrogen, carbon, nitrogen, and oxygen and two scattered neutron signatures were considered. Targets containing explosive materials in the presence of clutter were able to be identified from targets that contained only non-explosive ("inert") materials. This study demonstrates that a finite number of artificial templates is sufficient for IED detection with fairly good sensitivity and specificity.

  11. NQR: From imaging to explosives and drugs detection

    NASA Astrophysics Data System (ADS)

    Osán, Tristán M.; Cerioni, Lucas M. C.; Forguez, José; Ollé, Juan M.; Pusiol, Daniel J.

    2007-02-01

    The main aim of this work is to present an overview of the nuclear quadrupole resonance (NQR) spectroscopy capabilities for solid state imaging and detection of illegal substances, such as explosives and drugs. We briefly discuss the evolution of different NQR imaging techniques, in particular those involving spatial encoding which permit conservation of spectroscopic information. It has been shown that plastic explosives and other forbidden substances cannot be easily detected by means of conventional inspection techniques, such as those based on conventional X-ray technology. For this kind of applications, the experimental results show that the information inferred from NQR spectroscopy provides excellent means to perform volumetric and surface detection of dangerous explosive and drug compounds.

  12. Nuclear cycler: An incremental approach to the deflection of asteroids

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano; Thiry, Nicolas

    2016-04-01

    This paper introduces a novel deflection approach based on nuclear explosions: the nuclear cycler. The idea is to combine the effectiveness of nuclear explosions with the controllability and redundancy offered by slow push methods within an incremental deflection strategy. The paper will present an extended model for single nuclear stand-off explosions in the proximity of elongated ellipsoidal asteroids, and a family of natural formation orbits that allows the spacecraft to deploy multiple bombs while being shielded by the asteroid during the detonation.

  13. Exploitation of the IMS and Other Data for a Comprehensive, Advanced Analysis of the North Korean Nuclear Tests

    DTIC Science & Technology

    2010-09-01

    locations for the two events, we made very precise arrival time measurements at 35 stations that recorded both explosions with good signal to noise... what we believe to be very reasonable and accurate locations for these two explosions. The corresponding source depths can not be reliably...of the 2009 and 2006 events as explosions based on high-frequency Pn/Lg ratios measured at regional stations are unambiguous; however, results for

  14. Laser-Based Remote Sensing of Explosives by a Differential Absorption and Scattering Method

    NASA Astrophysics Data System (ADS)

    Ayrapetyan, V. S.

    2018-01-01

    A multifunctional IR parametric laser system is developed and tested for remote detection and identification of atmospheric gases, including explosive and chemically aggressive substances. Calculations and experimental studies of remote determination of the spectroscopic parameters of the best known explosive substances TNT, RDX, and PETN are carried out. The feasibility of high sensitivity detection ( 1 ppm) of these substances with the aid of a multifunctional IR parametric light source by differential absorption and scattering is demonstrated.

  15. Biomotor structures in elite female handball players.

    PubMed

    Katić, Ratko; Cavala, Marijana; Srhoj, Vatromir

    2007-09-01

    In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities of elite female handball players (N = 53) were determined first, followed by determination of relations between the morphological-motor space factors obtained and the set of criterion variables evaluating situation motor abilities in handball. Factor analysis of 14 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity (mesoendomorph), factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of jumping explosive strength, factor of throwing explosive strength, factor of movement frequency rate, and factor of running explosive strength (sprint). Four significant canonic correlations, i.e. linear combinations, explained the correlation between the set of eight latent variables of the morphological and basic motor space and five variables of situation motoricity. First canonic linear combination is based on the positive effect of the factors of agility/coordination on the ability of fast movement without ball. Second linear combination is based on the effect of jumping explosive strength and transverse hand dimensionality on ball manipulation, throw precision, and speed of movement with ball. Third linear combination is based on the running explosive strength determination by the speed of movement with ball, whereas fourth combination is determined by throwing and jumping explosive strength, and agility on ball pass. The results obtained were consistent with the model of selection in female handball proposed (Srhoj et al., 2006), showing the speed of movement without ball and the ability of ball manipulation to be the predominant specific abilities, as indicated by the first and second linear combination.

  16. Laser based in-situ and standoff detection of chemical warfare agents and explosives

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2009-09-01

    Laser based detection of gaseous, liquid and solid residues and trace amounts has been developed ever since lasers were invented. However, the lack of availability of reasonably high power tunable lasers in the spectral regions where the relevant targets can be interrogated as well as appropriate techniques for high sensitivity, high selectivity detection has hampered the practical exploitation of techniques for the detection of targets important for homeland security and defense applications. Furthermore, emphasis has been on selectivity without particular attention being paid to the impact of interfering species on the quality of detection. Having high sensitivity is necessary but not a sufficient condition. High sensitivity assures a high probability of detection of the target species. However, it is only recently that the sensor community has come to recognize that any measure of probability of detection must be associated with a probability of false alarm, if it is to have any value as a measure of performance. This is especially true when one attempts to compare performance characteristics of different sensors based on different physical principles. In this paper, I will provide a methodology for characterizing the performance of sensors utilizing optical absorption measurement techniques. However, the underlying principles are equally application to all other sensors. While most of the current progress in high sensitivity, high selectivity detection of CWAs, TICs and explosives involve identifying and quantifying the target species in-situ, there is an urgent need for standoff detection of explosives from safe distances. I will describe our results on CO2 and quantum cascade laser (QCL) based photoacoustic sensors for the detection of CWAs, TICs and explosives as well the very new results on stand-off detection of explosives at distances up to 150 meters. The latter results are critically important for assuring safety of military personnel in battlefield environment, especially from improvised explosive devices (IEDs), and of civilian personnel from terrorist attacks in metropolitan areas.

  17. EDS V25 containment vessel explosive qualification test report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolphi, John Joseph

    2012-04-01

    The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests thatmore » were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.« less

  18. Detonation initiation of heterogeneous melt-cast high explosives

    NASA Astrophysics Data System (ADS)

    Chuzeville, V.; Baudin, G.; Lefrançois, A.; Genetier, M.; Barbarin, Y.; Jacquet, L.; Lhopitault, J.-L.; Peix, J.; Boulanger, R.; Catoire, L.

    2017-01-01

    2,4,6-trinitrotoluene (TNT) is widely used in conventional and insensitive munitions as a fusible binder, commonly melt-cast with other explosives such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) or 3-nitro-1,2,4-triazol-one (NTO). In this paper, we study the shock-to-detonation transition phenomenon in two melt-cast high explosives (HE). We have performed plate impact tests on wedge samples to measure run-distance and time-to-detonation in order to establish the Pop-plot relation for several melt-cast HE. Highlighting the existence of the single curve buildup, we propose a two phase model based on a Zeldovich, Von-Neumann, Döring (ZND) approach where the deflagration fronts grow from the explosive grain boundaries. Knowing the grain size distribution, we calculate the deflagration velocities of the explosive charges as a function of shock pressure and explore the possible grain fragmentation.

  19. Hot-spot contributions in shocked high explosives from mesoscale ignition models

    NASA Astrophysics Data System (ADS)

    Levesque, G.; Vitello, P.; Howard, W. M.

    2013-06-01

    High explosive performance and sensitivity is strongly related to the mesoscale defect densities. Bracketing the population of mesoscale hot spots that are active in the shocked ignition of explosives is important for the development of predictive reactive flow models. By coupling a multiphysics-capable hydrodynamics code (ale3d) with a chemical kinetics solver (cheetah), we can parametrically analyze different pore sizes undergoing collapse in high pressure shock conditions with evolving physical parameter fields. Implementing first-principles based decomposition kinetics, burning hot spots are monitored, and the regimes of pore sizes that contribute significantly to burnt mass faction and those that survive thermal conduction on the time scales of ignition are elucidated. Comparisons are drawn between the thermal explosion theory and the multiphysics models for the determination of nominal pore sizes that burn significantly during ignition for the explosive 1,3,5-triamino-2,4,6-trinitrobenzene.

  20. Detection of Explosives Using Differential Laser-Induced Perturbation Spectroscopy with a Raman-based Probe.

    PubMed

    Oztekin, Erman K; Burton, Dallas J; Hahn, David W

    2016-04-01

    Explosives detection is carried out with a novel spectral analysis technique referred to as differential laser-induced perturbation spectroscopy (DLIPS) on thin films of TNT, RDX, HMX, and PETN. The utility of Raman spectroscopy for detection of explosives is enhanced by inducing deep ultraviolet laser perturbation on molecular structures in combination with a differential Raman sensing scheme. Principal components analysis (PCA) is used to quantify the DLIPS method as benchmarked against a traditional Raman scattering probe, and the related photo-induced effects on the molecular structure of the targeted explosives are discussed in detail. Finally, unique detection is observed with TNT samples deposited on commonly available background substrates of nylon and polyester. Overall, the data support DLIPS as a noninvasive method that is promising for screening explosives in real-world environments and backgrounds. © The Author(s) 2016.

  1. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waltman, Melanie J.

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionizedmore » through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.« less

  2. Universal explosive detection system for homeland security applications

    NASA Astrophysics Data System (ADS)

    Lee, Vincent Y.; Bromberg, Edward E. A.

    2010-04-01

    L-3 Communications CyTerra Corporation has developed a high throughput universal explosive detection system (PassPort) to automatically screen the passengers in airports without requiring them to remove their shoes. The technical approach is based on the patented energetic material detection (EMD) technology. By analyzing the results of sample heating with an infrared camera, one can distinguish the deflagration or decomposition of an energetic material from other clutters such as flammables and general background substances. This becomes the basis of a universal explosive detection system that does not require a library and is capable of detecting trace levels of explosives with a low false alarm rate. The PassPort is a simple turnstile type device and integrates a non-intrusive aerodynamic sampling scheme that has been shown capable of detecting trace levels of explosives on shoes. A detailed description of the detection theory and the automated sampling techniques, as well as the field test results, will be presented.

  3. Effect of Shock Precompression on the Critical Diameter of Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, Oren E.; Higgins, Andrew J.; Yoshinaka, Akio C.; Zhang, Fan

    2006-07-01

    The critical diameter of both ambient and shock-precompressed liquid nitromethane confined in PVC tubing are measured experimentally. The experiment was conducted for both amine sensitized and neat NM. In the precompression experiments, the explosive is compressed by a strong shock wave generated by a donor explosive and reflected from a high impedance anvil prior to being detonated by a secondary event. The pressures reached in the test sections prior to detonation propagation was approximately 7 and 8 GPa for amine sensitized and neat NM respectively. The results demonstrated a 30% - 65% decrease in the critical diameter for the shock-compressed explosives. This critical diameter decrease is observed despite a significant decrease in the predicted Von Neumann temperature of the detonation in the precompressed explosive. The results are discussed in the context of theoretical predictions based on thermal ignition theory and previous critical diameter measurements.

  4. LX-04 VIOLENCE MEASUREMENTS- STEVEN TESTS IMPACTED BY PROJECTILES SHOT FROM A HOWITZER GUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chidester, S K; Vandersall, K S; Switzer, L L

    Characterization of the reaction violence of LX-04 explosive (85% HMX and 15% Viton A by weight) was obtained from Steven Impact Tests performed above the reaction initiation threshold. A 155 mm Howitzer propellant driven gas gun was used to accelerate the Steven Test projectiles in the range of approximately 170-300 m/s to react (ignite) the LX-04 explosive. Blast overpressure gauges, acoustic microphones, and high-speed photography characterized the level of high explosive reaction violence. A detonation in this velocity range was not observed and when comparing these results (and the Susan test results) with that of other HMX based explosives, LX-04more » has a more gradual reaction violence slope as the impact velocity increases. The high binder content (15%) of the LX-04 explosive is believed to be the key factor to the lower level of violence.« less

  5. On mechanism of explosive boiling in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Çelen, Serap

    2016-06-01

    Today laser-based machining is used to manufacture vital parts for biomedical, aviation and aerospace industries. The aim of the paper is to report theoretical, numerical and experimental investigations of explosive boiling under nanosecond pulsed ytterbium fiber laser irradiation. Experiments were performed in an effective peak power density range between 1397 and 1450 MW/cm2 on pure titanium specimens. The threshold laser fluence for phase explosion, the pressure and temperature at the target surface and the velocity of the expulsed material were reported. A narrow transition zone was realized between the normal vaporization and phase explosion fields. The proof of heterogeneous boiling was given with detailed micrographs. A novel thermal model was proposed for laser-induced splashing at high fluences. Packaging factor and scattering arc radius terms were proposed to state the level of the melt ejection process. Results of the present investigation explain the explosive boiling during high-power laser interaction with metal.

  6. Strength of the phase change materials on loading with the products of electric explosion of conductors

    NASA Astrophysics Data System (ADS)

    Savenkov, Georgiy; Morozov, Viktor; Kats, Victor

    2018-05-01

    Results of the experimentation on the destruction of the phase change materials (beeswax and paraffin) by the electric explosion of conductors are presented. The process of the explosion of copper and nickel titanium wires in both pure PCM and its mixture with nonosized additives of cuprous oxide is analyzed. The effect of this additive on the process of the expansion of the electric-discharge plasma during the electric explosion of conductors and on the strength of composite materials is demonstrated. The piezoprobe-based method of measurement of the radial pressure during samples destruction is developed. The experiments made it possible to determine the dimensions of the melting channel formed inside the samples during the explosion and the subsequent expansion of the electric-discharge plasma. The experiments are performed on the generator of short-term high-voltage pulses capable to shape the voltage of (10-24) kV.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavanaugh, J.E.; McQuarrie, A.D.; Shumway, R.H.

    Conventional methods for discriminating between earthquakes and explosions at regional distances have concentrated on extracting specific features such as amplitude and spectral ratios from the waveforms of the P and S phases. We consider here an optimum nonparametric classification procedure derived from the classical approach to discriminating between two Gaussian processes with unequal spectra. Two robust variations based on the minimum discrimination information statistic and Renyi's entropy are also considered. We compare the optimum classification procedure with various amplitude and spectral ratio discriminants and show that its performance is superior when applied to a small population of 8 land-based earthquakesmore » and 8 mining explosions recorded in Scandinavia. Several parametric characterizations of the notion of complexity based on modeling earthquakes and explosions as autoregressive or modulated autoregressive processes are also proposed and their performance compared with the nonparametric and feature extraction approaches.« less

  8. 6 CFR 27.225 - Site security plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Identify and describe how security measures selected by the facility will address the applicable risk-based... explosive devices, water-borne explosive devices, ground assault, or other modes or potential modes identified by the Department; (3) Identify and describe how security measures selected and utilized by the...

  9. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  10. Ultrasonically triggered ignition at liquid surfaces.

    PubMed

    Simon, Lars Hendrik; Meyer, Lennart; Wilkens, Volker; Beyer, Michael

    2015-01-01

    Ultrasound is considered to be an ignition source according to international standards, setting a threshold value of 1mW/mm(2) [1] which is based on theoretical estimations but which lacks experimental verification. Therefore, it is assumed that this threshold includes a large safety margin. At the same time, ultrasound is used in a variety of industrial applications where it can come into contact with explosive atmospheres. However, until now, no explosion accidents have been reported in connection with ultrasound, so it has been unclear if the current threshold value is reasonable. Within this paper, it is shown that focused ultrasound coupled into a liquid can in fact ignite explosive atmospheres if a specific target positioned at a liquid's surface converts the acoustic energy into a hot spot. Based on ignition tests, conditions could be derived that are necessary for an ultrasonically triggered explosion. These conditions show that the current threshold value can be significantly augmented. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Portable device for the detection of nitro-explosives based on optical properties of sensor's material

    NASA Astrophysics Data System (ADS)

    Baranova, A. A.; Khokhlov, K. O.

    2014-11-01

    The aim of this study was to design a device for explosives detection. The study design is based on excited steady-state luminescence quenching registration. Sensor's material luminescence intensity reduction occurs due to an interaction of explosives vapours contained in the air. The decrease rate of the luminescence intensity indicates the concentration of vapours. To study the luminescent properties of the sensor element, its luminescence spectra excited by photons with energies in the range 280 - 425 nm were measured. The excitation photoluminescence spectra for luminescence bands of the sensor element were also measured. Excitation source was light emitting diode (375 nm) and luminescent signal receiver was a photodiode (430 - 650 nm) in device designed. The device is operated under control of a program. The algorithm provides multiple operating modes (configuration, calibration, measurement etc.). Thus this device is referred to the class of devices with increased sensitivity to the explosives vapors. The advantages of device are autonomic power, small weight and sizes, simplicity of device operation for measurements.

  12. Characterisation and Modification of Thermally Stable High Explosives for Laser Flyer Applications

    NASA Astrophysics Data System (ADS)

    Parker, A.; Claridge, R. P.; Proud, W. G.; Johnson, N. A.

    2007-12-01

    Laser initiation offers improved weapon survivability, versatility and greater Insensitive Munitions (IM) compliance. Detonators based on laser-driven flyers are less vulnerable to electrical initiation and can be based on insensitive secondary explosives. Additionally, this technology will offer advantages in terms of improved flexibility and reliability. Hexanitrostilbene (HNS) and nonanitro-m-terphenyl (NONA) were selected for investigation at QinetiQ as their increased thermal stability over conventional explosives makes them ideal candidates for use in insensitive munition compliant applications. The response of these materials to short duration high-amplitude shock impulses provided by exploding foil initiators (EFI), the electrical equivalent of a laser-driven flyer system, was investigated. Preparation techniques including sonication and the incorporation of additives were used to sensitize the materials to flyer impact, yet maintain their insensitivity to external hazards. Sonication significantly reduced the particle size of both HNS and NONA. The reduced-size explosives exhibited increased sensitivity to EFI impact than the starting materials.

  13. Waveform inversion of acoustic waves for explosion yield estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Rodgers, A. J.

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  14. Development of a flyer design to perform plate impact shock-release-shock experiments on explosives

    NASA Astrophysics Data System (ADS)

    Finnegan, Simon; Ferguson, James; Millett, Jeremy; Goff, Michael

    2017-06-01

    A flyer design to generate a shock-release-shock loading history within a gas gun target was developed before being used to study the response of an HMX based explosive. The flyer consisted of two flyer plates separated by a vacuum gap. This created a rear free surface that, with correct material choice, allowed the target to release to close to ambient pressure between the initial shock and subsequent re-shock. The design was validated by impacting piezoelectric pin arrays to record the front flyer deformation. Shots were performed on PCTFE targets to record the shock states generated in an inert material prior to subjecting an HMX based explosive to the same loading. The response of the explosive to this loading history was recorded using magnetic particle velocity (PV) gauges embedded within the targets. The behavior during the run to detonation is compared with the response to sustained shocks at similar input pressures.

  15. Explosive fragmentation of liquids in spherical geometry

    NASA Astrophysics Data System (ADS)

    Milne, A.; Longbottom, A.; Frost, D. L.; Loiseau, J.; Goroshin, S.; Petel, O.

    2017-05-01

    Rapid acceleration of a spherical shell of liquid following central detonation of a high explosive causes the liquid to form fine jets that are similar in appearance to the particle jets that are formed during explosive dispersal of a packed layer of solid particles. Of particular interest is determining the dependence of the scale of the jet-like structures on the physical parameters of the system, including the fluid properties (e.g., density, viscosity, and surface tension) and the ratio of the mass of the liquid to that of the explosive. The present paper presents computational results from a multi-material hydrocode describing the dynamics of the explosive dispersal process. The computations are used to track the overall features of the early stages of dispersal of the liquid layer, including the wave dynamics, and motion of the spall and accretion layers. The results are compared with new experimental results of spherical charges surrounded by a variety of different fluids, including water, glycerol, ethanol, and vegetable oil, which together encompass a significant range of fluid properties. The results show that the number of jet structures is not sensitive to the fluid properties, but primarily dependent on the mass ratio. Above a certain mass ratio of liquid fill-to-explosive burster ( F / B), the number of jets is approximately constant and consistent with an empirical model based on the maximum thickness of the accretion layer. For small values of F / B, the number of liquid jets is reduced, in contrast with explosive powder dispersal, where small F / B yields a larger number of particle jets. A hypothetical explanation of these features based on the nucleation of cavitation is explored numerically.

  16. Data acquisition and analysis of the UNCOSS underwater explosive neutron sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carasco, C.; Eleon, C.; Perot, B.

    2011-07-01

    The purpose of the FP7 UNCOSS project (Underwater Coastal Sea Surveyor, http://www.uncoss-project.org) is to develop a neutron-based underwater explosive sensor to detect unexploded ordnance lying on the sea bottom. The Associated Particle Technique is used to focus the inspection on a suspicious object located by optical and electromagnetic sensors and to determine if there is an explosive charge inside. This paper presents the data acquisition electronics and data analysis software which have been developed for this project. The electronics digitize and process the signal in real-time based on a field programmable gate array structure to perform precise time-of-flight and gamma-raymore » energy measurements. UNCOSS software offers the basic tools to analyze the time-of-flight and energy spectra of the interrogated object. It allows to unfold the gamma-ray spectrum into pure elemental count proportions, mainly C, N, O, Fe, Al, Si, and Ca. The C, N, and O count fractions are converted into chemical proportions by taking into account the gamma-ray production cross sections, as well as neutron and photon attenuation in the different shields between the ROV (Remotely Operated Vehicle) and the explosive, such as the explosive iron shell, seawater, and ROV envelop. These chemical ratios are plotted in a two-dimensional (2D) barycentric representation to position the measured point with respect to common explosives. The systematic uncertainty due to the above attenuation effects and counting statistical fluctuations are combined with a Monte Carlo method to provide a 3D uncertainty area in a barycentric plot, which allows to determine the most probable detected materials in view to make a decision about the presence of explosive. (authors)« less

  17. A Statistical Discrimination Experiment for Eurasian Events Using a Twenty-Seven-Station Network

    DTIC Science & Technology

    1980-07-08

    to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...the weight assigned to each variable whenever a new one is added. Jennrich, R. I. (1977). Stepwise discriminant analysis , in Statistical Methods for

  18. Nuclear Explosion and Infrasound Event Resources of the SMDC Monitoring Research Program

    DTIC Science & Technology

    2008-09-01

    2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies 928 Figure 7. Dozens of detected infrasound signals from...investigate alternative detection schemes at the two infrasound arrays based on frequency-wavenumber (fk) processing and the F-statistic. The results of... infrasound signal - detection processing schemes. REFERENCES Bahavar, M., B. Barker, J. Bennett, R. Bowman, H. Israelsson, B. Kohl, Y-L. Kung, J. Murphy

  19. The quantitative studies on gas explosion suppression by an inert rock dust deposit.

    PubMed

    Song, Yifan; Zhang, Qi

    2018-07-05

    The traditional defence against propagating gas explosions is the application of dry rock dust, but not much quantitative study on explosion suppression of rock dust has been made. Based on the theories of fluid dynamics and combustion, a simulated study on the propagation of premixed gas explosion suppressed by deposited inert rock dust layer is carried out. The characteristics of the explosion field (overpressure, temperature, flame speed and combustion rate) at different deposited rock dust amounts are investigated. The flame in the pipeline cannot be extinguished when the deposited rock dust amount is less than 12 kg/m 3 . The effects of suppressing gas explosion become weak when the deposited rock dust amount is greater than 45 kg/m 3 . The overpressure decreases with the increase of the deposited rock dust amounts in the range of 18-36 kg/m 3 and the flame speed and the flame length show the same trends. When the deposited rock dust amount is 36 kg/m 3 , the overpressure can be reduced by 40%, the peak flame speed by 50%, and the flame length by 42% respectively, compared with those of the gas explosion of stoichiometric mixture. In this model, the effective raised dust concentrations to suppress explosion are 2.5-3.5 kg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A Study of SDT in an Ammonium Nitrate (NH4 NO3) Based Granular Explosive

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm; Taylor, Peter

    2007-06-01

    In order to study the SDT process in a granular non ideal explosive (NIE) an experimental technique has been developed that allows the granular explosive to be shock initiated at a well controlled ``tap density''. The granular NIE was contained in a PMMA cone and a planar shock was delivered to the explosive through buffer plates of varying material. A combination of piezoelectric probes, ionization pins, PVDF stress gauges and a high speed framing camera were used to measure the input shock pressure and shock and detonation wave positions in the explosive. Four trials were performed to characterize the run to detonation distance versus pressure relationship (Pop plot) of the granular NH4 NO3 explosive. Input pressures ranged from close to the 4GPa predicted CJ pressure of the granular explosive down to 1.4 GPa, giving run distances up to 14mm for the lowest pressure. The data indicates a steady acceleration of the input shock to the detonation velocity, implying significant reaction growth at the shock front. This is in contrast to the behaviour of most high density pressed PBXs which show little growth in shock front velocity before transit to detonation. The experimentally observed initiation behaviour is compared to that predicted by a simple JWL++ reactive burn model for the granular NH4 NO3 explosive which has been fitted to other detonics experiments on this material.

  1. Energetic Trend in Explosive Activity of Stromboli

    NASA Astrophysics Data System (ADS)

    Coltelli, M.; Cristaldi, A.; Mangiagli, S.; Nunnari, G.; Pecora, E.

    2003-12-01

    The typical activity of Stromboli consists of intermittent mild explosions lasting a few seconds, which take place at different vents and at variable intervals, the most common time interval being 10-20 minutes. However, the routine activity can be interrupted by more violent, paroxysmal explosions, that eject m-sized scoriaceous bombs and lava blocks to a distance of several hundreds of meters from the craters, endangering the numerous tourists that watch the spectacular activity from the volcano's summit located about two hundreds meters from the active vents. On average, 1-2 paroxysmal explosions occurred per year over the past century, but this statistic may be underestimated in absence of continuous monitoring. For this reason from summer 1996 a remote surveillance camera works on Stromboli recording continuously the volcanic activity. It is located on Pizzo Sopra la Fossa, 100 metres above the crater terrace where are the active vents. Using image analysis we seeks to identify any change of the explosive activity trend that could precede a particular eruptive event, like paroxysmal explosions, fire fountains, lava flows. The analysis include the counting of the explosions occurred at the different craters and the parameterization in classes of intensity for each explosion on the base of tephra dispersion and kinetics energy. Associating at each class a corresponding Index of energy in order to compute an heuristic value of the Average Daily Energy Released (ADER) of the explosive activity at Stromboli and plotting this value for each crater versus time, the diagram shows a cyclic behavior with max and min of explosive activity ranging from a few days to a month. Often the craters show opposite trends so when the activity decreases in a crater, increases in the other. Before every paroxysmal explosions recorded, the crater that produced the event decreased and then stopped its activity from a few days to weeks before. The other crater tried to compensate increasing its activity and when it declined the paroxysmal explosion occurred suddenly at the former site. From September 2001 an on-line image analyzer called VAMOS (Volcanic Activity MOnitoring System) operates detection and classification of explosive events in real-time. The system has automatically recorded and analyzed the change in the energetic trend that preceded the 20 October 2001 paroxysmal explosion that killed a woman and the strong explosive activity that preceded the onset of 28 December 2002 lava flow eruption.

  2. On the low pressure shock initiation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine based plastic bonded explosives

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Tarver, Craig M.; Garcia, Frank; Chidester, Steven K.

    2010-05-01

    In large explosive and propellant charges, relatively low shock pressures on the order of 1-2 GPa impacting large volumes and lasting tens of microseconds can cause shock initiation of detonation. The pressure buildup process requires several centimeters of shock propagation before shock to detonation transition occurs. In this paper, experimentally measured run distances to detonation for lower input shock pressures are shown to be much longer than predicted by extrapolation of high shock pressure data. Run distance to detonation and embedded manganin gauge pressure histories are measured using large diameter charges of six octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic bonded explosives (PBX's): PBX 9404; LX-04; LX-07; LX-10; PBX 9501; and EDC37. The embedded gauge records show that the lower shock pressures create fewer and less energetic "hot spot" reaction sites, which consume the surrounding explosive particles at reduced reaction rates and cause longer distances to detonation. The experimental data is analyzed using the ignition and growth reactive flow model of shock initiation in solid explosives. Using minimum values of the degrees of compression required to ignite hot spot reactions, the previously determined high shock pressure ignition and growth model parameters for the six explosives accurately simulate the much longer run distances to detonation and much slower growths of pressure behind the shock fronts measured during the shock initiation of HMX PBX's at several low shock pressures.

  3. Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirakawa, Evan; Pitarka, Arben; Mellors, Robert

    One challenging task in explosion seismology is the development of physical models for explaining the generation of S waves during underground explosions. Recent analysis of ground motion from chemical explosions during the Source Physics Experiment (Pitarka et al., 2015) suggests that, although a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography is necessary to better match the recorded data. In our paper, we used a stochastic representation of small-scale velocity variability to produce high-frequency scattering and to analyze its implication on shear-motion generation during underground explosions. In our stochasticmore » velocity model, the key parameters that affect scattering are the correlation length and the relative amplitude of velocity perturbations. Finally, based on finite-difference simulations of elastic wave propagation from an isotropic explosion source, we find that higher velocity perturbations result in larger shear motion, whereas the correlation length, which controls the scatterers size, affects the frequency range at which relative transverse motion is larger.« less

  4. Shock initiated reactions of reactive multi-phase blast explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2017-01-01

    This paper describes a new class of non-ideal explosive compositions made of perfluoropolyether (PFPE), nanoaluminum, and a micron-size, high mass density, reactive metal. Unlike high explosives, these compositions release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Their reaction rates are shock dependent and they can be overdriven to change their energy release rate. These compositions are fuel rich and have an extended aerobic energy release phase. The term "reactive multiphase blast" refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts energy and momentum [1]; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. Tantalum-based RMBX formulations were tested in two spherical core-shell configurations - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  5. Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media

    DOE PAGES

    Hirakawa, Evan; Pitarka, Arben; Mellors, Robert

    2016-07-19

    One challenging task in explosion seismology is the development of physical models for explaining the generation of S waves during underground explosions. Recent analysis of ground motion from chemical explosions during the Source Physics Experiment (Pitarka et al., 2015) suggests that, although a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography is necessary to better match the recorded data. In our paper, we used a stochastic representation of small-scale velocity variability to produce high-frequency scattering and to analyze its implication on shear-motion generation during underground explosions. In our stochasticmore » velocity model, the key parameters that affect scattering are the correlation length and the relative amplitude of velocity perturbations. Finally, based on finite-difference simulations of elastic wave propagation from an isotropic explosion source, we find that higher velocity perturbations result in larger shear motion, whereas the correlation length, which controls the scatterers size, affects the frequency range at which relative transverse motion is larger.« less

  6. Real time recognition of explosophorous group and explosive material using laser induced photoacoustic spectroscopy associated with novel algorithm for time and frequency domain analysis.

    PubMed

    El-Sharkawy, Yasser H; Elbasuney, Sherif

    2018-06-07

    Energy-rich bonds such as nitrates (NO 3 - ) and percholorates (ClO 4 - ) have an explosive nature; they are frequently encountered in high energy materials. These bonds encompass two highly electronegative atoms competing for electrons. Common explosive materials including urea nitrate, ammonium nitrate, and ammonium percholorates were subjected to photoacoustic spectroscopy. The captured signal was processed using novel digital algorithm designed for time and frequency domain analysis. Frequency domain analysis offered not only characteristic frequencies for NO 3 - and ClO 4 - groups; but also characteristic fingerprint spectra (based on thermal, acoustical, and optical properties) for different materials. The main outcome of this study is that phase-shift domain analysis offered an outstanding signature for each explosive material, with novel discrimination between explosive and similar non-explosive material. Photoacoustic spectroscopy offered different characteristic signatures that can be employed for real time detection with stand-off capabilities. There is no two materials could have the same optical, thermal, and acoustical properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Graph-Based Interactive Bibliographic Information Retrieval Systems

    ERIC Educational Resources Information Center

    Zhu, Yongjun

    2017-01-01

    In the big data era, we have witnessed the explosion of scholarly literature. This explosion has imposed challenges to the retrieval of bibliographic information. Retrieval of intended bibliographic information has become challenging due to the overwhelming search results returned by bibliographic information retrieval systems for given input…

  8. 40 CFR 258.23 - Explosive gases control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 258.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.23 Explosive gases control. (a) Owners or... of MSWLFs that dispose of 20 tons of municipal solid waste per day or less, based on an annual...

  9. 40 CFR 258.23 - Explosive gases control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 258.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.23 Explosive gases control. (a) Owners or... of MSWLFs that dispose of 20 tons of municipal solid waste per day or less, based on an annual...

  10. Green primary explosives: 5-Nitrotetrazolato-N2-ferrate hierarchies

    PubMed Central

    Huynh, My Hang V.; Coburn, Michael D.; Meyer, Thomas J.; Wetzler, Modi

    2006-01-01

    The sensitive explosives used in initiating devices like primers and detonators are called primary explosives. Successful detonations of secondary explosives are accomplished by suitable sources of initiation energy that is transmitted directly from the primaries or through secondary explosive boosters. Reliable initiating mechanisms are available in numerous forms of primers and detonators depending upon the nature of the secondary explosives. The technology of initiation devices used for military and civilian purposes continues to expand owing to variations in initiating method, chemical composition, quantity, sensitivity, explosive performance, and other necessary built-in mechanisms. Although the most widely used primaries contain toxic lead azide and lead styphnate, mixtures of thermally unstable primaries, like diazodinitrophenol and tetracene, or poisonous agents, like antimony sulfide and barium nitrate, are also used. Novel environmentally friendly primary explosives are expanded here to include cat[FeII(NT)3(H2O)3], cat2[FeII(NT)4(H2O)2], cat3[FeII(NT)5(H2O)], and cat4[FeII(NT)6] with cat = cation and NT− = 5-nitrotetrazolato-N2. With available alkaline, alkaline earth, and organic cations as partners, four series of 5-nitrotetrazolato-N2-ferrate hierarchies have been prepared that provide a plethora of green primaries with diverse initiating sensitivity and explosive performance. They hold great promise for replacing not only toxic lead primaries but also thermally unstable primaries and poisonous agents. Strategies are also described for the systematic preparation of coordination complex green primaries based on appropriate selection of ligands, metals, and synthetic procedures. These strategies allow for maximum versatility in initiating sensitivity and explosive performance while retaining properties required for green primaries. PMID:16803957

  11. Identification of improvised explosives residues using physical-chemical analytical methods under real conditions after an explosion

    NASA Astrophysics Data System (ADS)

    Kotrlý, Marek; Mareš, Bohumil; Turková, Ivana; Beroun, Ivo

    2016-05-01

    Within the analysis of cases relating to the use of explosives for crimes, we have experienced a shift from using industrial explosives towards substances made in amateur and illegal way. Availability of industrial explosives is increasingly limited to a narrow sphere of subjects with a relevant permission. Thus, on the part of perpetrators, terrorists, ever greater attention is paid to illegal production of explosives that are easily made from readily available raw materials. Another alarming fact is the availability of information found on the internet. Procedures of preparation are often very simple and do not require even a deeper professional knowledge. Explosive characteristics are not actually accessible for many of these substances (detonation velocity, sensitivity, working capacity, brisance, physical and chemical stability, etc.). Therefore, a project is being implemented, which on grounds of assessment of individual information available in literature and on the internet, aiming at choosing individual areas of potentially abusable substances (e.g. mixtures of nitric acid (98%) with organic substances, mixtures nitromethane and tetranitromethane with organic substances, mixtures of chlorates and perchlorates of alkali metals with organic substances, chemically individual compounds of organic base type of perchloric acid, azides, fulminates, acetylides, picrates, styphnates of heavy metals, etc.). It is directed towards preparation of these explosives also in non-stoichiometric mixtures, conducting test explosives, determination of explosive characteristics (if they are unknown) and analysis of both primary phases and post-blast residues through available analytical techniques, such as gas and liquid chromatography with mass detection, FTIR, micro-Raman spectrometry, electron microscopy with microanalysis and Raman microspectrometry directly in SEM chamber for analysis at the level of individual microparticles. The received characteristics will be used to extend knowledge database for security forces.

  12. Green primary explosives: 5-nitrotetrazolato-N2-ferrate hierarchies.

    PubMed

    Huynh, My Hang V; Coburn, Michael D; Meyer, Thomas J; Wetzler, Modi

    2006-07-05

    The sensitive explosives used in initiating devices like primers and detonators are called primary explosives. Successful detonations of secondary explosives are accomplished by suitable sources of initiation energy that is transmitted directly from the primaries or through secondary explosive boosters. Reliable initiating mechanisms are available in numerous forms of primers and detonators depending upon the nature of the secondary explosives. The technology of initiation devices used for military and civilian purposes continues to expand owing to variations in initiating method, chemical composition, quantity, sensitivity, explosive performance, and other necessary built-in mechanisms. Although the most widely used primaries contain toxic lead azide and lead styphnate, mixtures of thermally unstable primaries, like diazodinitrophenol and tetracene, or poisonous agents, like antimony sulfide and barium nitrate, are also used. Novel environmentally friendly primary explosives are expanded here to include cat[Fe(II)(NT)(3)(H(2)O)(3)], cat(2)[Fe(II)(NT)(4)(H(2)O)(2)], cat(3)[Fe(II)(NT)(5)(H(2)O)], and cat(4)[Fe(II)(NT)(6)] with cat = cation and NT(-) = 5-nitrotetrazolato-N(2). With available alkaline, alkaline earth, and organic cations as partners, four series of 5-nitrotetrazolato-N(2)-ferrate hierarchies have been prepared that provide a plethora of green primaries with diverse initiating sensitivity and explosive performance. They hold great promise for replacing not only toxic lead primaries but also thermally unstable primaries and poisonous agents. Strategies are also described for the systematic preparation of coordination complex green primaries based on appropriate selection of ligands, metals, and synthetic procedures. These strategies allow for maximum versatility in initiating sensitivity and explosive performance while retaining properties required for green primaries.

  13. Soviet test yields

    NASA Astrophysics Data System (ADS)

    Vergino, Eileen S.

    Soviet seismologists have published descriptions of 96 nuclear explosions conducted from 1961 through 1972 at the Semipalatinsk test site, in Kazakhstan, central Asia [Bocharov et al., 1989]. With the exception of releasing news about some of their peaceful nuclear explosions (PNEs) the Soviets have never before published such a body of information.To estimate the seismic yield of a nuclear explosion it is necessary to obtain a calibrated magnitude-yield relationship based on events with known yields and with a consistent set of seismic magnitudes. U.S. estimation of Soviet test yields has been done through application of relationships to the Soviet sites based on the U.S. experience at the Nevada Test Site (NTS), making some correction for differences due to attenuation and near-source coupling of seismic waves.

  14. Challenge of false alarms in nitroaromatic explosive detection--a detection device based on surface-enhanced Raman spectroscopy.

    PubMed

    Wackerbarth, Hainer; Gundrum, Lars; Salb, Christian; Christou, Konstantin; Viöl, Wolfgang

    2010-08-10

    A challenge in the detection of explosives is the differentiation between explosives and contaminants. Synthetic musk-containing perfumes can cause false alarms, as these perfumes are nitroaromatic compounds, which can be mistaken for trinitro toluene (TNT) by some detectors. We present a detection principle based on surface-enhanced Raman scattering (SERS). A stream of the airborne compounds is focused and resublimated on a cooled nanostructured gold surface. We recorded high-resolution SERS spectra of TNT, musk xylene, and musk ketone. The nitroaromatic compounds can be identified unambiguously by their SERS spectra. Even the dominant bands containing nitro-group scissoring and symmetric stretching modes are significantly shifted by the difference in molecular structure.

  15. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marv A; Aguilar - Chang, Julio; Anderson, Dale

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well asmore » potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  16. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marv A; Aguilar-chang, Julio; Arrowsmith, Marie

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  17. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A; Patterson, Eileen F

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, asmore » well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  18. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is tomore » provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  19. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  20. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well asmore » potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  1. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Francesca C.; Mendius, E. Louise

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as wellmore » as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  2. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  3. Preliminary Monte Carlo calculations for the UNCOSS neutron-based explosive detector

    NASA Astrophysics Data System (ADS)

    Eleon, C.; Perot, B.; Carasco, C.

    2010-07-01

    The goal of the FP7 UNCOSS project (Underwater Coastal Sea Surveyor) is to develop a non destructive explosive detection system based on the associated particle technique, in view to improve the security of coastal area and naval infrastructures where violent conflicts took place. The end product of the project will be a prototype of a complete coastal survey system, including a neutron-based sensor capable of confirming the presence of explosives on the sea bottom. A 3D analysis of prompt gamma rays induced by 14 MeV neutrons will be performed to identify elements constituting common military explosives, such as C, N and O. This paper presents calculations performed with the MCNPX computer code to support the ongoing design studies performed by the UNCOSS collaboration. Detection efficiencies, time and energy resolutions of the possible gamma-ray detectors are compared, which show NaI(Tl) or LaBr 3(Ce) scintillators will be suitable for this application. The effect of neutron attenuation and scattering in the seawater, influencing the counting statistics and signal-to-noise ratio, are also studied with calculated neutron time-of-flight and gamma-ray spectra for an underwater TNT target.

  4. Seismic data acquisition at the FACT site for the CASPAR project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Kyle R.; Chael, Eric Paul; Hart, Darren M.

    Since May 2010, we have been recording continuous seismic data at Sandia's FACT site. The collected signals provide us with a realistic archive for testing algorithms under development for local monitoring of explosive testing. Numerous small explosive tests are routinely conducted around Kirtland AFB by different organizations. Our goal is to identify effective methods for distinguishing these events from normal daily activity on and near the base, such as vehicles, aircraft, and storms. In this report, we describe the recording system, and present some observations of the varying ambient noise conditions at FACT. We present examples of various common, non-explosive,more » sources. Next we show signals from several small explosions, and discuss their characteristic features.« less

  5. Structural-Phase States of Fe-Cu and Fe-Ag Bimetallic Particles Produced by Electric Explosion of Two Wires

    NASA Astrophysics Data System (ADS)

    Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.

    2018-05-01

    X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.

  6. Cassiopeia A: Supernova explosion and expansion simulations under strong asymmetry conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakhin, R. A., E-mail: yakhin.rafael@gmail.com; Rozanov, V. B.; Zmitrenko, N. V.

    We propose a model for the explosion of a supernova and the expansion of its ejecta in the presence of a strong initial asymmetry (at the explosion time) in the central part of the star (core) and a possible smallscale asymmetry in the peripheral regions. The Chandra and NuSTAR observations of ejecta in the Cassiopeia A supernova remnant are analyzed. Based on our 1D and 2D numerical simulations performed using the DIANA and NUTCY codes, we propose a model for the explosion and expansion of ejecta that explains the observed experimental data where the materials initially located in the centralmore » region of the star end up on the periphery of the cloud of ejecta.« less

  7. Structural-Phase States of Fe–Cu and Fe–Ag Bimetallic Particles Produced by Electric Explosion of Two Wires

    NASA Astrophysics Data System (ADS)

    Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.

    2018-05-01

    X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.

  8. Toward Improved Fidelity of Thermal Explosion Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, A L; Becker, R; Howard, W M

    2009-07-17

    We will present results of an effort to improve the thermal/chemical/mechanical modeling of HMX based explosive like LX04 and LX10 for thermal cook-off. The original HMX model and analysis scheme were developed by Yoh et.al. for use in the ALE3D modeling framework. The current results were built to remedy the deficiencies of that original model. We concentrated our efforts in four areas. The first area was addition of porosity to the chemical material model framework in ALE3D that is used to model the HMX explosive formulation. This is needed to handle the roughly 2% porosity in solid explosives. The secondmore » area was the improvement of the HMX reaction network, which included the inclusion of a reactive phase change model base on work by Henson et.al. The third area required adding early decomposition gas species to the CHEETAH material database to develop more accurate equations of state for gaseous intermediates and products. Finally, it was necessary to improve the implicit mechanics module in ALE3D to more naturally handle the long time scales associated with thermal cook-off. The application of the resulting framework to the analysis of the Scaled Thermal Explosion (STEX) experiments will be discussed.« less

  9. Supernova simulations from a 3D progenitor model - Impact of perturbations and evolution of explosion properties

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Melson, Tobias; Heger, Alexander; Janka, Hans-Thomas

    2017-11-01

    We study the impact of large-scale perturbations from convective shell burning on the core-collapse supernova explosion mechanism using 3D multigroup neutrino hydrodynamics simulations of an 18M⊙ progenitor. Seed asphericities in the O shell, obtained from a recent 3D model of O shell burning, help trigger a neutrino-driven explosion 330 ms after bounce whereas the shock is not revived in a model based on a spherically symmetric progenitor for at least another 300 ms. We tentatively infer a reduction of the critical luminosity for shock revival by ˜ 20 {per cent} due to pre-collapse perturbations. This indicates that convective seed perturbations play an important role in the explosion mechanism in some progenitors. We follow the evolution of the 18M⊙ model into the explosion phase for more than 2 s and find that the cycle of accretion and mass ejection is still ongoing at this stage. With a preliminary value of 7.7 × 1050 erg for the diagnostic explosion energy, a baryonic neutron star mass of 1.85M⊙, a neutron star kick of ˜ 600 km s^{-1} and a neutron star spin period of ˜ 20 ms at the end of the simulation, the explosion and remnant properties are slightly atypical, but still lie comfortably within the observed distribution. Although more refined simulations and a larger survey of progenitors are still called for, this suggests that a solution to the problem of shock revival and explosion energies in the ballpark of observations is within reach for neutrino-driven explosions in 3D.

  10. Green primaries: Environmentally friendly energetic complexes

    PubMed Central

    Huynh, My Hang V.; Hiskey, Michael A.; Meyer, Thomas J.; Wetzler, Modi

    2006-01-01

    Primary explosives are used in small quantities to generate a detonation wave when subjected to a flame, heat, impact, electric spark, or friction. Detonation of the primary explosive initiates the secondary booster or main-charge explosive or propellant. Long-term use of lead azide and lead styphnate as primary explosives has resulted in lead contamination at artillery and firing ranges and become a major health hazard and environmental problem for both military and civilian personnel. Devices using lead primary explosives are manufactured by the tens of millions every year in the United States from primers for bullets to detonators for mining. Although substantial synthetic efforts have long been focused on the search for greener primary explosives, this unresolved problem has become a “holy grail” of energetic materials research. Existing candidates suffer from instability or excessive sensitivity, or they possess toxic metals or perchlorate. We report here four previously undescribed green primary explosives based on complex metal dianions and environmentally benign cations, (cat)2[MII(NT)4(H2O)2] (where cat is NH4+ or Na+, M is Fe2+ or Cu2+, and NT− is 5-nitrotetrazolato-N2). They are safer to prepare, handle, and transport than lead compounds, have comparable initiation efficiencies to lead azide, and offer rapid reliable detonation comparable with lead styphnate. Remarkably, they possess all current requirements for green primary explosives and are suitable to replace lead primary explosives in detonators. More importantly, they can be synthesized more safely, do not pose health risks to personnel, and cause much less pollution to the environment. PMID:16567623

  11. Casualty data analysis of the world merchant fleet for reported fire and explosion incidents resulting in marine pollution

    DOT National Transportation Integrated Search

    1995-02-01

    World wide merchant vessel fire and explosion data were analyzed to determine the contribution of these casualties to the marine pollution problem. The source of information is the Lloyd's Casualty Information System Data Base. The major findings of ...

  12. Predicting the Emplacement of Improvised Explosive Devices: An Innovative Solution

    ERIC Educational Resources Information Center

    Lerner, Warren D.

    2013-01-01

    In this quantitative correlational study, simulated data were employed to examine artificial-intelligence techniques or, more specifically, artificial neural networks, as they relate to the location prediction of improvised explosive devices (IEDs). An ANN model was developed to predict IED placement, based upon terrain features and objects…

  13. Detection of hazardous chemicals using field-portable Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wright, Cherylyn W.; Harvey, Scott D.; Wright, Bob W.

    2003-07-01

    A major challenge confronting emergency response, border control, and other security-related functions is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Raman spectroscopy is a rapid, non-intrusive technique that can be used to confidently identify many classes of hazardous and potentially explosive compounds based on molecular vibration information. Advances in instrumentation now allow reliable field - portable measurements to be made. Before the Raman technique can be effectively applied and be accepted within the scientific community, realistic studies must be performed to develop methods, define limitations, and rigorously evaluate its effectiveness. Examples of a variety of chemicals (including neat and diluted chemical warfare [CW] agents, a CW agent precursor, a biological warfare (BW)-related compound, an illicit drug, and explosives) identified using Raman spectroscopy in various types of containers and on surfaces are given, as well as results from a blind field test of 29 unknown samples which included CW agent precursors and/or degradation products, solvents associated with CW agent production, pesticides, explosives, and BW toxins (mostly mycotoxins). Additionally, results of experimental studies to evaluate the analysis of flammable organic solvents, propellants, military explosives, mixtures containing military explosives, shock-sensitive explosives, and gun powders are described with safety guidelines. Spectral masks for screening unknown samples for explosives and nerve agents are given.

  14. Spectroscopic characterization of nitroaromatic landmine signature explosives

    NASA Astrophysics Data System (ADS)

    Hernandez-Rivera, Samuel P.; Manrique-Bastidas, Cesar A.; Blanco, Alejandro; Primera, Oliva M.; Pacheco, Leonardo C.; Castillo-Chara, Jairo; Castro, Miguel E.; Mina, Nairmen

    2004-09-01

    TNT and DNT are important explosives used as base charges of landmines and other explosive devices. They are often combined with RDX in specific explosive formulations. Their detection in vapor phase as well as in soil in contact with the explosives is important in landmine detection technology. The spectroscopic signatures of nitroaromatic compounds in neat forms: crystals, droplets, and recrystallized samples were determined by Raman Microspectroscopy (RS), Fourier Transform Infrared Microscopy (FTIR) and Fiber Optics Coupled - Fourier Transform Infrared Spectroscopy (FOC-FTIR) using a grazing angle (GA) probe. TNT exhibits a series of characteristic bands: vibrational signatures, which allow its detection in soil. The spectroscopic signature of neat TNT is dominated by strong bands about 1380 and 2970 cm-1. The intensity and position of these bands were found remarkably different in soil samples spiked with TNT. The 1380 cm-1 band is split into a number of bands in that region. The 2970 cm-1 band is reduced in intensity and new bands are observed about 2880 cm-1. The results are consistent with a different chemical environment of TNT in soil as compared to neat TNT. Interactions were found to be dependent on the physical source of the explosive. In the case of DNT-sand interactions, shifts in vibrational frequencies of the explosives as well as the substrates were found.

  15. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion.

    PubMed

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-02-17

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green's function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s(2) in the horizontal direction and 0.0917 m/s(2) in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, B.E.; Kanna, R.L.; Chambers, R.D.

    There is a great need for alternatives to open burn/open detonation of explosives and propellants from dismantled munitions. LANL has investigated the use of base hydrolysis for the demilitarization of explosives. Hydrolysates of Comp B, Octol, Tritonal, and PBXN-109 were processed in the pilot molten salt unit (in building 191). NOx and CO emissions were found to be low, except for CO from PBXN-109 processing. This report describes experimental results of the destruction of the base hydrolysates.

  17. Railroad Safety: DoD can Improve the Safety of On-Base Track and Equipment

    DTIC Science & Technology

    1991-06-01

    explosives are secured on rail cars for on-base movement. Unless you publicly announce its contents earlier, we plan no further distribution of this report...and rail cars thatare used to haul ammunition, explosives, or other hazardous material . The safe transport of this material both on military...commercial operating conditions. When transporting haz- ardous materials , cars operating in commerce must also comply with safety requirements established

  18. Shock induced shear strength in an HMX based plastic bonded explosive

    NASA Astrophysics Data System (ADS)

    Millett, J. C. F.; Taylor, P.; Appleby-Thomas, G.

    2017-01-01

    The shock induced mechanical response of an HMX based plastic bonded explosive (PBX) has been investigated in terms of the shear strength. Results show that shear strength increases with impact stress. However comparison with the calculated elastic response of both the PBX and pure HMX suggests that the overall mechanical response is controlled by the HMX crystals, with the near liquid like nature of the binder phase having a minimal contribution.

  19. Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition.

    PubMed

    Shan, Tzu-Ray; van Duin, Adri C T; Thompson, Aidan P

    2014-02-27

    We have developed a new ReaxFF reactive force field parametrization for ammonium nitrate. Starting with an existing nitramine/TATB ReaxFF parametrization, we optimized it to reproduce electronic structure calculations for dissociation barriers, heats of formation, and crystal structure properties of ammonium nitrate phases. We have used it to predict the isothermal pressure-volume curve and the unreacted principal Hugoniot states. The predicted isothermal pressure-volume curve for phase IV solid ammonium nitrate agreed with electronic structure calculations and experimental data within 10% error for the considered range of compression. The predicted unreacted principal Hugoniot states were approximately 17% stiffer than experimental measurements. We then simulated thermal decomposition during heating to 2500 K. Thermal decomposition pathways agreed with experimental findings.

  20. Characterizing Detonating LX-17 Charges Crossing a Transverse Air Gap with Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Lauderbach, Lisa M.; Souers, P. Clark; Garcia, Frank; Vitello, Peter; Vandersall, Kevin S.

    2009-12-01

    Experiments were performed using detonating LX-17 (92.5% TATB, 7.5% Kel-F by weight) charges with various width transverse air gaps with manganin peizoresistive in-situ gauges present. The experiments, performed with 25 mm diameter by 25 mm long LX-17 pellets with the transverse air gap in between, showed that transverse gaps up to about 3 mm could be present without causing the detonation wave to fail to continue as a detonation. The Tarantula/JWL++ code was utilized to model the results and compare with the in-situ gauge records with some agreement to the experimental data with additional work needed for a better match to the data. This work will present the experimental details as well as comparison to the model results.

  1. Auxiliary Gas Loading of Explosives and Their Sensitivity to DDT (Deflagration to Detonation Transition),

    DTIC Science & Technology

    1984-06-25

    the weight mean particle sizes were:ammonium picrate (285um), TNT (325pm), RDX (200um) and tetryl (470 and 160m). The carnauba wax (125pm) and the...WORDS (enti.e n reverse side if noceemdy and bnt, ock ,by br) PBXN103 ’"mber) Gas loading RDX Expl D PBXW-108 Sensitivity 91/9 ROX/ wax Cast H-6 PBXN...porous HE for their susceptibility to undergoing DDT. Granuiar explosives studied were RDX, waxed RDX, tetryl, TNT, and Explosive D; cast HE, TNT based

  2. On the mechanism of influence of explosive compounds: Destruction process on sensitivity of these compounds to mechanic impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filin, V.P.; Loboyko, B.G.; Averin, A.N.

    1996-05-01

    The results of investigations into sensitivity of the HMX-based explosive compound samples to mechanic stimuli are shown in the presented report. As a result of experimental studies it was illustrated, that explosives deformation and destruction processes under mechanical stimuli are accompanied by occurrence of different electric phenomena. The hypothesis on possible influence of electric phenomena occurring under deformation and destruction on the mechanism of formation of zones with high density of energy is discussed in the report. {copyright} {ital 1996 American Institute of Physics.}

  3. Nanopowder synthesis based on electric explosion technology

    NASA Astrophysics Data System (ADS)

    Kryzhevich, D. S.; Zolnikov, K. P.; Korchuganov, A. V.; Psakhie, S. G.

    2017-10-01

    A computer simulation of the bicomponent nanoparticle formation during the electric explosion of copper and nickel wires was carried out. The calculations were performed in the framework of the molecular dynamics method using many-body potentials of interatomic interaction. As a result of an electric explosion of dissimilar metal wires, bicomponent nanoparticles having different stoichiometry and a block structure can be formed. It is possible to control the process of destruction and the structure of the formed bicomponent nanoparticles by varying the distance between the wires and the loading parameters.

  4. Experimental investigation of powerful pulse current generators based on capacitive storage and explosive magnetic generators

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Zavalova, V. E.; Kozlov, A. V.; Shurupov, M. A.; Povareshkin, M. N.; Kozlov, A. A.; Shurupova, N. P.

    2018-01-01

    Experimental models of microsecond duration powerful generators of current pulses on the basis of explosive magnetic generators and voltage impulse generator have been developed for the electromagnetic pulse effects on energy facilities to verify their stability. Exacerbation of voltage pulse carried out through the use of electro explosive current interrupter made of copper wires with diameters of 80 and 120 μm. Experimental results of these models investigation are represented. Voltage fronts about 100 ns and the electric field strength of 800 kV/m are registered.

  5. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Jang, Jae-Kyeong; Lee, Jung-Ryul; Kim, Zaeill

    2016-07-01

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  6. ON THE IMPORTANCE OF THE EQUATION OF STATE FOR THE NEUTRINO-DRIVEN SUPERNOVA EXPLOSION MECHANISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suwa, Yudai; Takiwaki, Tomoya; Kotake, Kei

    2013-02-10

    By implementing the widely used equations of state (EOS) from Lattimer and Swesty (LS) and H. Shen et al. (SHEN) in core-collapse supernova simulations, we explore possible impacts of these EOS on the post-bounce dynamics prior to the onset of neutrino-driven explosions. Our spherically symmetric (1D) and axially symmetric (2D) models are based on neutrino radiation hydrodynamics including spectral transport, which is solved by the isotropic diffusion source approximation. We confirm that in 1D simulations neutrino-driven explosions cannot be obtained for any of the employed EOS. Impacts of the EOS on the post-bounce hydrodynamics are more clearly visible in 2Dmore » simulations. In 2D models of a 15 M {sub Sun} progenitor using the LS EOS, the stalled bounce shock expands to increasingly larger radii, which is not the case when using the SHEN EOS. Keeping in mind that the omission of the energy drain by heavy-lepton neutrinos in the present scheme could facilitate explosions, we find that 2D models of an 11.2 M {sub Sun} progenitor produce neutrino-driven explosions for all the EOS under investigation. Models using the LS EOS are slightly more energetic compared with those with the SHEN EOS. The more efficient neutrino heating in the LS models coincides with a higher electron antineutrino luminosity and a larger mass that is enclosed within the gain region. The models based on the LS EOS also show a more vigorous and aspherical downflow of accreting matter to the surface of the protoneutron star (PNS). The accretion pattern is essential for the production and strength of outgoing pressure waves, which can push in turn the shock to larger radii and provide more favorable conditions for the explosion. Based on our models, we investigate several diagnostic indicators of the explosion that have been suggested in the literature, e.g., the amplitude of the standing accretion shock instability mode, the mass-weighted average entropy in the gain region, the PNS radius, the antesonic condition, the ratio of advection and heating timescales, the neutrino heating efficiency, and the growth parameter of convection.« less

  7. Acoustic Full Waveform Inversion to Characterize Near-surface Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A. J.

    2015-12-01

    Recent high-quality, atmospheric overpressure data from chemical high-explosive experiments provide a unique opportunity to characterize near-surface explosions, specifically estimating yield and source time function. Typically, yield is estimated from measured signal features, such as peak pressure, impulse, duration and/or arrival time of acoustic signals. However, the application of full waveform inversion to acoustic signals for yield estimation has not been fully explored. In this study, we apply a full waveform inversion method to local overpressure data to extract accurate pressure-time histories of acoustics sources during chemical explosions. A robust and accurate inversion technique for acoustic source is investigated using numerical Green's functions that take into account atmospheric and topographic propagation effects. The inverted pressure-time history represents the pressure fluctuation at the source region associated with the explosion, and thus, provides a valuable information about acoustic source mechanisms and characteristics in greater detail. We compare acoustic source properties (i.e., peak overpressure, duration, and non-isotropic shape) of a series of explosions having different emplacement conditions and investigate the relationship of the acoustic sources to the yields of explosions. The time histories of acoustic sources may refine our knowledge of sound-generation mechanisms of shallow explosions, and thereby allow for accurate yield estimation based on acoustic measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Design and validation of inert homemade explosive simulants for X-ray-based inspection systems

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; Nacson, Sabatino; Koffler, Bruce; Bourbeau, Éric; Gagne, Louis; Laing, Robin; Anderson, C. J.

    2014-05-01

    Transport Canada (TC), the Canadian Armed Forces, and other public security agencies have an interest in the assessment of the potential utility of advanced explosives detection technologies to aid in the detection and interdiction of commercial grade, military grade, and homemade or improvised explosives (HME or IE). The availability of suitable, non-hazardous, non-toxic, explosive simulants is of concern when assessing the potential utility of such detection systems. Lack of simulants limits the training opportunities, and ultimately the detection probability, of security personnel using these systems. While simulants for commercial and military grade explosives are available for a wide variety of detection technologies, the design and production of materials to simulate improvised explosives has not kept pace with this emerging threat. Funded by TC and the Canadian Safety and Security Program, Defence Research and Development Canada (DRDC), Visiontec Systems, and Optosecurity engaged in an effort to develop inert, non-toxic Xray interrogation simulants for IE materials such as ammonium nitrate, potassium chlorate, and triacetone triperoxide. These simulants were designed to mimic key X-ray interrogation-relevant material properties of real improvised explosives, principally their bulk density and effective atomic number. Different forms of the simulants were produced and tested, simulating the different explosive threat formulations that could be encountered by front line security workers. These simulants comply with safety and stability requirements, and as best as possible match form and homogeneity. This paper outlines the research program, simulant design, and validation.

  9. Development of graphene nanoplatelet embedded polymer microcantilever for vapour phase explosive detection applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Prasenjit; Pandey, Swapnil; Ramgopal Rao, V.

    2014-09-28

    In this work, a graphene based strain sensor has been reported for explosive vapour detection applications by exploiting the piezoresistive property of graphene. Instead of silicon based cantilevers, a low cost polymeric micro-cantilever platform has been used to fabricate this strain sensor by embedding the graphene nanoplatelet layer inside the beam. The fabricated devices were characterized for their mechanical and electromechanical behaviour. This device shows a very high gauge factor which is around ~144. Also the resonant frequency of these cantilevers is high enough such that the measurements are not affected by environmental noise. These devices have been used inmore » this work for reliable detection of explosive vapours such as 2,4,6-Trinitrotoluene down to parts-per-billion concentrations in ambient conditions.« less

  10. The Candidate Progenitor of the Type IIn SN 2010jl Is Not an Optically Luminous Star

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Van Dyk, Schuyler D.; Dwek, Eli; Smith, Nathan; Filippenko, Alexei V.; Andrews, Jennifer; Arendt, Richard G.; Foley, Ryan J.; Kelly, Patrick L.; Miller, Adam; hide

    2017-01-01

    A blue source in pre-explosion Hubble Space Telescope (HST)/Wide-Field Planetary Camera 2 (WFPC2) images falls within the 5 Sigma astrometric error circle (approx. 0." 24) derived from post-explosion ground-based imaging of SN 2010jl. At the time the ground-based astrometry was published, however, the SN had not faded sufficiently forpost-explosion HST follow-up observations to determine a more precise astrometric solution and/or confirm if the pre-explosion source had disappeared, both of which are necessary to ultimately disentangle the possible progenitor scenarios. Here we present HST/WFC3 imaging of the SN 2010jl field obtained in 2014, 2015, and 2016 when the SN had faded sufficiently to allow for new constraints on the progenitor. The SN, which is still detected in the new images, is offset by 0."061(+/-) 0."008 (15 +/- 2 pc) from the underlying and extended source ofemission that contributes at least partially, if not entirely, to the blue source previously suggested as the candidate progenitor in the WFPC2 data. This point alone rules out the possibility that the blue source in the pre-explosion images is the exploding star, but may instead suggest an association with a young (less than 56 Myr) cluster and still argues for a massive (greater than 30 solar mass) progenitor. We obtain new upper limits on the flux from a single star at the SN position in the pre-explosion WFPC2 and Spitzer/IRAC images that may ultimately be used to constrain the progenitor properties.

  11. V27 Test Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stofleth, Jerome H.; Tribble, Megan Kimberly; Crocker, Robert W.

    2017-05-01

    The V27 containment vessel was procured by the US Army Recovered Chemical Material Directorate ( RCMD ) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the third EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel, based on the Code Case, is nine (9) pounds TNT - equivalent for up to 637 detonations . This report documents the results of explosive tests that were done on the vessel at Sandiamore » National Laboratories in Albuquerque New Mexico to qualify the vessel for explosive use . The primary qualification test consisted of si x 1.5 pound charges of Composition C - 4 (equivalent to 11.25 pounds TNT) distributed around the vessel in accordance with the User Design Specification. Four subsequent tests using less explosive evaluated the effects of slight variations in orientation of the charges . All vessel acceptance criteria were met.« less

  12. Analysis of xRAGE and flag high explosive burn models with PBX 9404 cylinder tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrier, Danielle; Andersen, Kyle Richard

    High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested using a copper cylinder expansion test.more » The test was based on a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results. This study validate« less

  13. Prediction of explosive yield and other characteristics of liquid rocket propellant explosions

    NASA Technical Reports Server (NTRS)

    Farber, E. A.; Smith, J. H.; Watts, E. H.

    1973-01-01

    Work which has been done at the University of Florida in arriving at credible explosive yield values for liquid rocket propellants is presented. The results are based upon logical methods which have been well worked out theoretically and verified through experimental procedures. Three independent methods to predict explosive yield values for liquid rocket propellants are described. All three give the same end result even though they utilize different parameters and procedures. They are: (1) mathematical model; (2) seven chart approach; and (3) critical mass method. A brief description of the methods, how they were derived, how they were applied, and the results which they produced are given. The experimental work used to support and verify the above methods both in the laboratory and in the field with actually explosive mixtures are presented. The methods developed are used and their value demonstrated in analyzing real problems, among them the destruct system of the Saturn 5, and the early configurations of the space shuttle.

  14. Use of UV Sources for Detection and Identification of Explosives

    NASA Technical Reports Server (NTRS)

    Hug, William; Reid, Ray; Bhartia, Rohit; Lane, Arthur

    2009-01-01

    Measurement of Raman and native fluorescence emission using ultraviolet (UV) sources (<400 nm) on targeted materials is suitable for both sensitive detection and accurate identification of explosive materials. When the UV emission data are analyzed using a combination of Principal Component Analysis (PCA) and cluster analysis, chemicals and biological samples can be differentiated based on the geometric arrangement of molecules, the number of repeating aromatic rings, associated functional groups (nitrogen, sulfur, hydroxyl, and methyl), microbial life cycles (spores vs. vegetative cells), and the number of conjugated bonds. Explosive materials can be separated from one another as well as from a range of possible background materials, which includes microbes, car doors, motor oil, and fingerprints on car doors, etc. Many explosives are comprised of similar atomic constituents found in potential background samples such as fingerprint oils/skin, motor oil, and soil. This technique is sensitive to chemical bonds between the elements that lead to the discriminating separability between backgrounds and explosive materials.

  15. A fast, low resistance switch for small slapper detonators

    NASA Astrophysics Data System (ADS)

    Richardson, D. D.; Jones, D. A.

    1986-10-01

    A novel design for a shock compression conduction switch for use with slapper detonators is described. The switch is based on the concept of an explosively driven flyer plate impacting a plastic insulator and producing sufficient pressure within the insulator to produce a conduction transition. An analysis of the functioning of the switch is made using a simple Gurney model for the explosive, and basic shock wave theory to calculate impact pressure and switch closure times. The effect of explosive tamping is considered, and calculations are carried out for two donor explosive thicknesses and a range of flyer plate thicknesses. The new switch has been successfully tested in a series of experimental slapper detonator firings. The results of these tests show trends in overall agreement with those predicted by the calculations.

  16. Comprehensive Nuclear-Test-Ban Treaty seismic monitoring: 2012 USNAS report and recent explosions, earthquakes, and other seismic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, Paul G.

    A comprehensive ban on nuclear explosive testing is briefly characterized as an arms control initiative related to the Non-Proliferation Treaty. The work of monitoring for nuclear explosions uses several technologies of which the most important is seismology-a physics discipline that draws upon extensive and ever-growing assets to monitor for earthquakes and other ground-motion phenomena as well as for explosions. This paper outlines the basic methods of seismic monitoring within that wider context, and lists web-based and other resources for learning details. It also summarizes the main conclusions, concerning capability to monitor for test-ban treaty compliance, contained in a major studymore » published in March 2012 by the US National Academy of Sciences.« less

  17. Hot spot initiation and chemical reaction in shocked polymeric bonded explosives

    NASA Astrophysics Data System (ADS)

    An, Qi; Zybin, Sergey; Jaramillo-Botero, Andres; Goddard, William; Materials; Process Simulation Center, Caltech Team

    2011-06-01

    A polymer bonded explosive (PBX) model based on PBXN-106 is studied via molecular dynamics (MD) simulations using reactive force field (ReaxFF) under shock loading conditions. Hotspot is observed when shock waves pass through the non-planar interface of explosives and elastomers. Adiabatic shear localization is proposed as the main mechanism of hotspot ignition in PBX for high velocity impact. Our simulation also shows that the coupling of shear localization and chemical reactions at hotspot region play important rules at stress relaxtion for explosives. The phenomenon that shock waves are obsorbed by elastomers is also observed in the MD simulations. This research received supports from ARO (W911NF-05-1-0345; W911NF-08-1-0124), ONR (N00014-05-1-0778), and Los Alamos National Laboratory (LANL).

  18. Pulsating aurora induced by upper atmospheric barium releases

    NASA Technical Reports Server (NTRS)

    Deehr, C.; Romick, G.

    1977-01-01

    The paper reports the apparent generation of pulsating aurora by explosive releases of barium vapor near 250 km altitude. This effect occurred only when the explosions were in the path of precipitating electrons associated with the visible aurora. Each explosive charge was a standard 1.5 kg thermite mixture of Ba and CuO with an excess of Ba metal which was vaporized and dispersed by the thermite explosion. Traces of Sr, Na, and Li were added to some of the charges, and monitoring was achieved by ground-based spectrophotometric observations. On March 28, 1976, an increase in emission at 5577 A and at 4278 A was observed in association with the first two bursts, these emissions pulsating with roughly a 10 sec period for approximately 60 to 100 sec after the burst.

  19. P sub n from the Nevada Test Site

    DTIC Science & Technology

    1988-12-15

    reviewed and is approved for publication" JAMES0- t1IC Z--C J (TEX S C. BAkTIS CnLract Manager Acting Chief Solid Earth Geophysics Branch Solid Earth...high frequency Pn . The data base being used in the development consists of signals from explosions and earthquakes recorded on the western U.S. digital...measured quantitatively by correlating the average explosiorn ?n trace wiLh a data base of explosion and earthquake signals. The populations

  20. Novel high-fidelity realistic explosion damage simulation for urban environments

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya

    2010-04-01

    Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.

  1. W17_geonuc “Application of the Spectral Element Method to improvement of Ground-based Nuclear Explosion Monitoring”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larmat, Carene; Rougier, Esteban; Lei, Zhou

    This project is in support of the Source Physics Experiment SPE (Snelson et al. 2013), which aims to develop new seismic source models of explosions. One priority of this program is first principle numerical modeling to validate and extend current empirical models.

  2. Synthesis and Investigation of Advanced Energetic Materials Based on Bispyrazolylmethanes.

    PubMed

    Fischer, Dennis; Gottfried, Jennifer L; Klapötke, Thomas M; Karaghiosoff, Konstantin; Stierstorfer, Jörg; Witkowski, Tomasz G

    2016-12-23

    Herein we present the preparation and characterization of three new bispyrazolyl-based energetic compounds with great potential as explosive materials. The reaction of sodium 4-amino-3,5-dinitropyrazolate (5) with dimethyl iodide yielded bis(4-amino-3,5-dinitropyrazolyl)methane (6), which is a secondary explosive with high heat resistance (T dec =310 °C). The oxidation of this compound afforded bis(3,4,5-trinitropyrazolyl)methane (7), which is a combined nitrogen- and oxygen-rich secondary explosive with very high theoretical and estimated experimental detonation performance (V det (theor)=9304 m s -1 versus V det (exp)=9910 m s -1 ) in the range of that of CL-20. Also, the thermal stability (T dec =205 °C) and sensitivities of 7 are auspicious. The reaction of 6 with in situ generated nitrous acid yielded the primary explosive bis(4-diazo-5-nitro-3-oxopyrazolyl)methane (8), which showed superior properties to those of currently used diazodinitrophenol (DDNP). © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Selective Sampling with Direct Ion Mobility Spectrometric Detection for Explosives Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D; Ewing, Robert G; Waltman, Melanie J

    2009-06-29

    This study investigates the potential and limitations of a streamlined, field-deployable analytical approach that involves selective capture of explosive materials with direct analysis by ion mobility spectrometry (IMS). Selective capture of explosives was performed on deactivated quartz fiber filters impregnated with metal β-diketonate polymers. These Lewis acidic polymers selectively interact with Lewis base analytes such as explosives. The filter coupons could be directly inserted into an IMS instrument for analysis. The uptake kinetics of 2,4,6-trinitrotoluene (TNT) from a saturated atmosphere were characterized, and based on these studies, passive equilibrium sampling was applied to estimate the TNT concentration within an ammunitionmore » magazine that contained bulk TNT. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) uptake from a saturated environment also was examined over a one-month period. Each incremental sampling period showed increasing quantities of RDX culminating with collection of approximately 5 ng of RDX on the coupon at the end of one month. This is the first time that gas-phase uptake of RDX has been demonstrated.« less

  4. Study of energy partitioning using a set of related explosive formulations

    NASA Astrophysics Data System (ADS)

    Lieber, Mark; Foster, Joseph C.; Stewart, D. Scott

    2012-03-01

    Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to high power output during the detonation process. Historically, the explosive design problem has focused on intramolecular energy storage. The molecules of interest are derived via molecular synthesis providing near stoichiometric balance on the physical scale of the molecule. This approach provides prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employ intermolecular ingredients to alter the spatial and temporal distribution of energy release. State of the art continuum methods have been used to study this approach to the materials design. Cheetah has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and kinetic energy in the detonation. The equation of state information from Cheetah has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.

  5. Standoff detection of explosives and chemical agents using broadly tuned external-cavity quantum cascade lasers (EC-QCLs)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Eric B.; Rayner, Timothy; Weida, Miles; Crivello, Salvatore; Day, Timothy

    2007-10-01

    Civilian soft targets such as transportation systems are being targeted by terrorists using IEDs and suicide bombers. Having the capability to remotely detect explosives, precursors and other chemicals would enable these assets to be protected with minimal interruption of the flow of commerce. Mid-IR laser technology offers the potential to detect explosives and other chemicals in real-time and from a safe standoff distance. While many of these agents possess "fingerprint" signatures in the mid-IR (i.e. in the 3-20 micron regime), their effective interrogation by a practical, field-deployable system has been limited by size, complexity, reliability and cost constraints of the base laser technology. Daylight Solutions has addressed these shortcomings by developing compact, portable, broadly tunable mid-IR laser sources based upon external-cavity quantum cascade technology. This technology is now being applied by Daylight in system level architectures for standoff and remote detection of explosives, precursors and chemical agents. Several of these architectures and predicted levels of performance will be presented.

  6. Microporous Cd(II) metal-organic framework as fluorescent sensor for nitroaromatic explosives at the sub-ppm level

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Po; Han, Lu-Lu; Wang, Zhi; Guo, Ling-Yu; Sun, Di

    2016-03-01

    A novel Cd(II) metal-organic framework (MOF) based on a rigid biphenyltetracarboxylic acid, [Cd4(bptc)2(DMA)4(H2O)2·4DMA] (1) was successfully synthesized under the solvothermal condition and characterized by single-crystal X-ray diffraction and further consolidated by elemental analyses, powder X-ray diffraction (PXRD), infrared spectra (IR) and luminescent measurements. Single crystal X-ray diffraction analysis reveals that compound 1 is 4-connected PtS (Point symbol: {42·84}) network based on [Cd2(COO)4] secondary building units (SBUs). Its inherent porous and emissive characteristics make them to be a suitable fluorescent probe to sense small solvents and nitroaromatic explosives. Compound 1 shows obviously solvent-dependent emissive behaviors, especially for acetone with very high fluorescence quenching effect. Moreover, compound 1 displays excellent sensing of nitroaromatic explosives at sub-ppm level, giving a detection limit of 0.43 ppm and 0.37 ppm for nitrobenzene (NB) and p-nitrotoluene (PNT), respectively. This shows this Cd(II) MOF can be used as fluorescence probe for the detection of nitroaromatic explosives.

  7. Ion chromatography-mass spectrometry: a review of recent technologies and applications in forensic and environmental explosives analysis.

    PubMed

    Barron, Leon; Gilchrist, Elizabeth

    2014-01-02

    The development and application of ion chromatography (IC) coupled to mass spectrometry (MS) is discussed herein for the quantitative determination of low-order explosives-related ionic species in environmental and forensic sample types. Issues relating to environmental explosives contamination and the need for more confirmatory IC-MS based applications in forensic science are examined. In particular, the compatibility of a range of IC separation modes with MS detection is summarised along with the analytical challenges that have been overcome to facilitate determinations at the ng-μg L(-1) level. Observed trends in coupling IC to inductively coupled plasma and electrospray ionisation mass spectrometry form a particular focus. This review also includes a discussion of the relative performance of reported IC-MS methods in comparison to orthogonal ion separation-based, spectrometric and spectroscopic approaches to confirmatory detection of low-order explosives. Finally, some promising areas for future research are highlighted and discussed with respect to potential IC-MS applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Estimation of the Reactive Flow Model Parameters for an Ammonium Nitrate-Based Emulsion Explosive Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. B.; Silva, C.; Mendes, R.

    2010-10-01

    A real coded genetic algorithm methodology that has been developed for the estimation of the parameters of the reaction rate equation of the Lee-Tarver reactive flow model is described in detail. This methodology allows, in a single optimization procedure, using only one experimental result and, without the need of any starting solution, to seek the 15 parameters of the reaction rate equation that fit the numerical to the experimental results. Mass averaging and the plate-gap model have been used for the determination of the shock data used in the unreacted explosive JWL equation of state (EOS) assessment and the thermochemical code THOR retrieved the data used in the detonation products' JWL EOS assessments. The developed methodology was applied for the estimation of the referred parameters for an ammonium nitrate-based emulsion explosive using poly(methyl methacrylate) (PMMA)-embedded manganin gauge pressure-time data. The obtained parameters allow a reasonably good description of the experimental data and show some peculiarities arising from the intrinsic nature of this kind of composite explosive.

  9. Study of thermal decomposition mechanisms and low-level detection of explosives using pulsed photoacoustic technique

    NASA Astrophysics Data System (ADS)

    Yehya, F.; Chaudhary, A. K.; Srinivas, D.; Muralidharan, K.

    2015-11-01

    We report a novel time-resolved photoacoustic-based technique for studying the thermal decomposition mechanisms of some secondary explosives such as RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), picric acid, 4,6-dinitro-5-(4-nitro-1 H-imidazol-1-yl)-1 H-benzo[ d] [1-3] triazole, and 5-chloro-1-(4-nitrophenyl)-1 H-tetrazole. A comparison of the thermal decomposition mechanisms of these secondary explosives was made by detecting NO2 molecules released under controlled pyrolysis between 25 and 350 °C. The results show excellent agreement with the thermogravimetric and differential thermal analysis (TGA-DTA) results. A specially designed PA cell made of stainless steel was filled with explosive vapor and pumped using second harmonic, i.e., λ = 532 nm, pulses of duration 7 ns at a 10 Hz repetition rate, obtained using a Q-switched Nd:YAG laser. The use of a combination of PA and TGA-DTA techniques enables the study of NO2 generation, and this method can be used to scale the performance of these explosives as rocket fuels. The minimum detection limits of the four explosives were 38 ppmv to 69 ppbv, depending on their respective vapor pressures.

  10. The spatial distribution patterns of condensed phase post-blast explosive residues formed during detonation.

    PubMed

    Abdul-Karim, Nadia; Blackman, Christopher S; Gill, Philip P; Karu, Kersti

    2016-10-05

    The continued usage of explosive devices, as well as the ever growing threat of 'dirty' bombs necessitates a comprehensive understanding of particle dispersal during detonation events in order to develop effectual methods for targeting explosive and/or additive remediation efforts. Herein, the distribution of explosive analytes from controlled detonations of aluminised ammonium nitrate and an RDX-based explosive composition were established by systematically sampling sites positioned around each firing. This is the first experimental study to produce evidence that the post-blast residue mass can distribute according to an approximate inverse-square law model, while also demonstrating for the first time that distribution trends can vary depending on individual analytes. Furthermore, by incorporating blast-wave overpressure measurements, high-speed imaging for fireball volume recordings, and monitoring of environmental conditions, it was determined that the principle factor affecting all analyte dispersals was the wind direction, with other factors affecting specific analytes to varying degrees. The dispersal mechanism for explosive residue is primarily the smoke cloud, a finding which in itself has wider impacts on the environment and fundamental detonation theory. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Frictional properties of single crystals HMX, RDX and PETN explosives.

    PubMed

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Pyroclast Tracking Velocimetry: A particle tracking velocimetry-based tool for the study of Strombolian explosive eruptions

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Moroni, Monica; Taddeucci, Jacopo; Scarlato, Piergiorgio; Shindler, Luca

    2014-07-01

    Image-based techniques enable high-resolution observation of the pyroclasts ejected during Strombolian explosions and drawing inferences on the dynamics of volcanic activity. However, data extraction from high-resolution videos is time consuming and operator dependent, while automatic analysis is often challenging due to the highly variable quality of images collected in the field. Here we present a new set of algorithms to automatically analyze image sequences of explosive eruptions: the pyroclast tracking velocimetry (PyTV) toolbox. First, a significant preprocessing is used to remove the image background and to detect the pyroclasts. Then, pyroclast tracking is achieved with a new particle tracking velocimetry algorithm, featuring an original predictor of velocity based on the optical flow equation. Finally, postprocessing corrects the systematic errors of measurements. Four high-speed videos of Strombolian explosions from Yasur and Stromboli volcanoes, representing various observation conditions, have been used to test the efficiency of the PyTV against manual analysis. In all cases, >106 pyroclasts have been successfully detected and tracked by PyTV, with a precision of 1 m/s for the velocity and 20% for the size of the pyroclast. On each video, more than 1000 tracks are several meters long, enabling us to study pyroclast properties and trajectories. Compared to manual tracking, 3 to 100 times more pyroclasts are analyzed. PyTV, by providing time-constrained information, links physical properties and motion of individual pyroclasts. It is a powerful tool for the study of explosive volcanic activity, as well as an ideal complement for other geological and geophysical volcano observation systems.

  13. Principles and status of neutron-based inspection technologies

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    2011-06-01

    Nuclear based explosive inspection techniques can detect a wide range of substances of importance for a wide range of objectives. For national and international security it is mainly the detection of nuclear materials, explosives and narcotic threats. For Customs Services it is also cargo characterization for shipment control and customs duties. For the military and other law enforcement agencies it could be the detection and/or validation of the presence of explosive mines, improvised explosive devices (IED) and unexploded ordnances (UXO). The inspection is generally based on the nuclear interactions of the neutrons (or high energy photons) with the various nuclides present and the detection of resultant characteristic emissions. These can be discrete gamma lines resulting from the thermal neutron capture process (n,γ) or inelastic neutron scattering (n,n'γ) occurring with fast neutrons. The two types of reactions are generally complementary. The capture process provides energetic and highly penetrating gamma rays in most inorganic substances and in hydrogen, while fast neutron inelastic scattering provides relatively strong gamma-ray signatures in light elements such as carbon and oxygen. In some specific important cases unique signatures are provided by the neutron capture process in light elements such as nitrogen, where unusually high-energy gamma ray is produced. This forms the basis for key explosive detection techniques. In some cases the elastically scattered source (of mono-energetic) neutrons may provide information on the atomic weight of the scattering elements. The detection of nuclear materials, both fissionable (e.g., 238U) and fissile (e.g., 235U), are generally based on the fissions induced by the probing neutrons (or photons) and detecting one or more of the unique signatures of the fission process. These include prompt and delayed neutrons and gamma rays. These signatures are not discrete in energy (typically they are continua) but temporally and energetically significantly different from the background, thus making them readily distinguishable. The penetrability of neutrons as probes and signatures as well as the gamma ray signatures make neutron interrogation applicable to the inspection of large conveyances such as cars, trucks, marine containers and also smaller objects like explosive mines concealed in the ground. The application of nuclear interrogation techniques greatly depends on operational requirements. For example explosive mines and IED detection clearly require one-sided inspection, which excludes transmission based inspection (e.g., transmission radiography) and greatly limits others. The technologies developed over the last decades are now being implemented with good results. Further advances have been made over the last several years that increase the sensitivity, applicability and robustness of these systems. The principle, applications and status of neutron-based inspection techniques will be reviewed.

  14. On-line image analysis of the stromboli volcanic activity recorded by the surveillance camera helps the forecasting of the major eruptive events.

    NASA Astrophysics Data System (ADS)

    Cristaldi, A.; Coltelli, M.; Mangiagli, S.; Pecora, E.

    2003-04-01

    The typical activity of Stromboli consists of intermittent mild explosions lasting a few seconds, which take place at different vents and at variable intervals, the most common time interval being 10-20 minutes. However, the routine activity can be interrupted by more violent, paroxysmal explosions, that eject m-sized scoriaceous bombs and lava blocks to a distance of several hundreds of meters from the craters, endangering the numerous tourists that watch the spectacular activity from the volcano's summit located about two hundreds meters from the active vents. On average, 1-2 paroxysmal explosions occurred per year over the past century, but this statistic may be underestimated in absence of continuous monitoring. For this reason from summer 1996 a remote surveillance camera works on Stromboli recording continuously the volcanic activity. It is located on Pizzo Sopra la Fossa, 100 metres above the crater terrace where are the active vents. Using image analysis we seeks to identify any change of the explosive activity trend that could precede a particular eruptive event, like paroxysmal explosions, fire fountains, lava flows. From the day of the camera installation up to present 12 paroxysmal events and lava flows occurred. The analysis include the counting of the explosions occurred at the different craters and the parameterization in classes of intensity for each explosion on the base of tephra dispersion and kinetics energy. The plot of dissipated energy by each crater versus time shows a cyclic behavior with max and min of explosive activity ranging from a few days to a month. Often the craters show opposite trends so when the activity decreases in a crater, increases in the other. Before every paroxysmal explosions recorded, the crater that produced the event decreased and then stopped its activity from a few days to weeks before. The other crater tried to compensate increasing its activity and when it declined the paroxysmal explosion occurred suddenly at the former site. From September 2001 an on-line image analyzer called VAMOS (Volcanic Activity MOnitoring System) operates detection and classification of explosive events in quasi real-time. The system has automatically recorded and analyzed the change in the energetic trend that preceded the 20 October 2001 paroxysmal explosion that killed a woman and the strong explosive activity that preceded the onset of 28 December 2002 lava flow eruption.

  15. What factors control the superficial lava dome explosivity?

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Thus the probability of a superficial lava dome explosion inversely depends on its size; explosive activity more likely occurs at the onset of the lava dome extrusion in agreement with observations. We evidence a two-step process in magma ascent with edification of the lava dome that may be accompanied by a rapid ascent of an undegassed batch of magma some days prior the explosive activity. This new result is of interest for the whole volcanological community and for risk management.

  16. Driving Ability of HMX based Aluminized Explosive Affected by the Reaction Degree of Aluminum Powder

    NASA Astrophysics Data System (ADS)

    Duan, Yingliang

    2017-06-01

    Due to the time scale of aluminum reaction, the detonation process of the aluminized explosive becomes very complex, and there is less agreement on the reaction mechanism of aluminum powder. If the reaction of aluminum occurs in the reaction zone, the energy released will further strengthen the work ability of detonation wave. So it is very important for characterizing the detonation parameters and detonation driving ability to accurately understand the role of aluminum powder in the reaction zone. In this paper, detonation driving process of HMX based aluminized explosive was studied by cylinder test, obtaining the expansion track of cylinder wall. In order to further research the reaction degree (λ) of aluminum in the reaction zone, the thermodynamic program VHL was used to calculate the detonation process at different reaction degrees, obtaining the parameters of detonation products thermodynamic state. Using the dynamic software LS-DYNA and the JWL equation of state by fitting the pressure and relative volume relationship, the cylinder test was simulated. Compared with the experimental results, when the reaction degree is 20%, the driving ability is found to be in agreement with measured ones. It is concluded that the driving ability of HMX based aluminized explosive can be more accurately characterized by considering the reaction degree of aluminum powder in the reaction zone.

  17. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion

    PubMed Central

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-01-01

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green’s function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s2 in the horizontal direction and 0.0917 m/s2 in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0–7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals. PMID:26884136

  18. Calculation of Seismic Waves from Explosions with Tectonic Stresses and Topography

    NASA Astrophysics Data System (ADS)

    Stevens, J. L.; O'Brien, M.

    2017-12-01

    We investigate the effects of explosion depth, tectonic stresses and topography on seismic waves from underground nuclear explosions. We perform three-dimensional nonlinear calculations of an explosion at several depths in the topography of the North Korean test site. We also perform a large number of two-dimensional axisymmetric calculations of explosions at depths from 150 to 1000 meters in four earth structures, with compressive and tensile tectonic stresses and with no tectonic stresses. We use the representation theorem to propagate the results of these calculations and calculate seismic waves at regional and teleseismic distances. We find that P-waves are not strongly affected by any of these effects because the initial downgoing P-wave is unaffected by interaction with the free surface. Surface waves, however, are strongly affected by all of these effects. There is an optimal depth at which surface waves are maximized at the base of a mountain and at or slightly below normal containment depth. At deeper depths, increasing overburden pressure reduces the surface waves. At shallower depths, interaction with the free surface reduces the surface waves. For explosions inside a mountain, displacement of the sides of the mountain reduces surface waves. Compressive prestress reduces surface waves substantially, while tensile prestress increases surface waves. The North Korean explosions appear to be at an optimal depth, in a region of extension, and beneath a mountain, all of which increase surface wave amplitudes.

  19. Signatures of progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Hoeflich, P.; Chakraborty, S.; Comaskey, W.; Fisher, A.; Hristov, B.; Collins, D.; Diamond, T. R.; Dragulin, P.; Hsiao, E. Y.; Sadler, B.

    Thermonuclear Supernovae (SNe Ia) are one of the building blocks of modern cosmology and laboratories for the explosion physics of White Dwarf star/s (WD) in close binary systems. The second star may be a WD (double degenerate systems, DD), or a non-degenerated star (SD) with a main sequence star, red giant or a helium star as companion \\citep{branch95,nomoto03,wang2012}. Light curves and spectra of the explosion look similar because a 'stellar amnesia' \\citep{h06}. Basic nuclear physics determines the progenitor structure and the explosion physics, breaking the link between progenitor evolution, and the explosion, resulting in three main classes of explosion scenarios: a) dynamical merging of two WD and a heating on time scales of seconds \\citep{webbink84,isern11}, b) surface helium detonations on top of a WD which ignite the central C/O by a detonation wave traveling inwards \\citep{n82,hk96,Kromer2010}; c) compressional heating in an accreting WD approaching the Chandrasekar mass on time of up to 108 years which may originated from SD and DD systems \\citep{WI73,Piersanti2004}. Simulations of the explosions depend on the inital conditions at the onset of the explosions, namely the mass and angular momentum of the WD(s). For all scenarios, diversity in SNe Ia must be expected because the WD originates from a range of Main Sequence masses (MMS < 8 M_⊙) and metallicities Z. Moreover, there is growing evidence that magnetic fields B may have to be added to the 'mix'. Only with recent advances in observations ranging from X-ray to radio, high precision spectroscopy, polarimetry and photometry and in the time-domain astronomy we obtain constraints for progenitor, on the explosion scenarios and links emerge between the progenitors and their environment with LCs and spectral signatures needed for high precision cosmology. It is too early to give final answers but we present our personal view. We will give some examples from the theory point of view and discuss future prospects with upcoming ground based, ELT, GMT and space based such as JWST, Euclide and WFIRST instruments.

  20. Comparing CTH Simulations and Experiments on Explosively Loaded Rings

    NASA Astrophysics Data System (ADS)

    Braithwaite, C. H.; Aydelotte, B.; Thadhani, N. N.; Williamson, D. M.

    2011-06-01

    A series of experiments were conducted on explosively loaded rings for the purpose of studying fragmentation. In addition to the collection of fragments for analysis, the radial velocity of the expanding ring was measured with PDV and the arrangement was imaged using a high speed camera. Both the ring material and the material used as the explosive container were altered and the results compared with simulations performed in CTH. Good agreement was found between the simulations and the experiments. The maximum radial velocity attained was approximately 450 m/s, which was achieved through loading with a 5g PETN based charge.

Top