Sample records for tauri stars cttss

  1. Hot Gas Lines in T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Herczeg, Gregory J.; Gregory, Scott G.; Ingleby, Laura; France, Kevin; Brown, Alexander; Edwards, Suzan; Johns-Krull, Christopher; Linsky, Jeffrey L.; Yang, Hao; Valenti, Jeff A.; Abgrall, Hervé; Alexander, Richard D.; Bergin, Edwin; Bethell, Thomas; Brown, Joanna M.; Calvet, Nuria; Espaillat, Catherine; Hillenbrand, Lynne A.; Hussain, Gaitee; Roueff, Evelyne; Schindhelm, Eric R.; Walter, Frederick M.

    2013-07-01

    For Classical T Tauri Stars (CTTSs), the resonance doublets of N V, Si IV, and C IV, as well as the He II 1640 Å line, trace hot gas flows and act as diagnostics of the accretion process. In this paper we assemble a large high-resolution, high-sensitivity data set of these lines in CTTSs and Weak T Tauri Stars (WTTSs). The sample comprises 35 stars: 1 Herbig Ae star, 28 CTTSs, and 6 WTTSs. We find that the C IV, Si IV, and N V lines in CTTSs all have similar shapes. We decompose the C IV and He II lines into broad and narrow Gaussian components (BC and NC). The most common (50%) C IV line morphology in CTTSs is that of a low-velocity NC together with a redshifted BC. For CTTSs, a strong BC is the result of the accretion process. The contribution fraction of the NC to the C IV line flux in CTTSs increases with accretion rate, from ~20% to up to ~80%. The velocity centroids of the BCs and NCs are such that V BC >~ 4 V NC, consistent with the predictions of the accretion shock model, in at most 12 out of 22 CTTSs. We do not find evidence of the post-shock becoming buried in the stellar photosphere due to the pressure of the accretion flow. The He II CTTSs lines are generally symmetric and narrow, with FWHM and redshifts comparable to those of WTTSs. They are less redshifted than the CTTSs C IV lines, by ~10 km s-1. The amount of flux in the BC of the He II line is small compared to that of the C IV line, and we show that this is consistent with models of the pre-shock column emission. Overall, the observations are consistent with the presence of multiple accretion columns with different densities or with accretion models that predict a slow-moving, low-density region in the periphery of the accretion column. For HN Tau A and RW Aur A, most of the C IV line is blueshifted suggesting that the C IV emission is produced by shocks within outflow jets. In our sample, the Herbig Ae star DX Cha is the only object for which we find a P-Cygni profile in the C IV line, which

  2. Hot Gas Flows in T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Herczeg, G.; Gregory, S. G.; Ingleby, L.; France, K.; Brown, A.; Edwards, S.; Linsky, J.; Yang, H.; Valenti, J. A.; Johns-Krull, C. M.; Alexander, R.; Bergin, E. A.; Bethell, T.; Brown, J.; Calvet, N.; Espaillat, C.; Hervé, A.; Hillenbrand, L.; Hussain, G.; Roueff, E.; Schindhelm, E.; Walter, F. M.

    2013-01-01

    We describe observations of the hot gas 1e5 K) ultraviolet lines C IV and He II, in Classical and Weak T Tauri Stars (CTTSs, WTTSs). Our goal is to provide observational constraints for realistic models. Most of the data for this work comes from the Hubble proposal “The Disks, Accretion, and Outflows (DAO) of T Tau stars” (PI Herczeg). The DAO program is the largest and most sensitive high resolution spectroscopic survey of young stars in the UV ever undertaken and it provides a rich source of information for these objects. The sample of high resolution COS and STIS spectra presented here comprises 35 stars: one Herbig Ae star, 28 CTTSs, and 6 WTTSs. For CTTSs, the lines consist of two kinematic components. The relative strengths of the narrow and broad components (NC, BC) are similar in C IV but in He II the NC is stronger than the BC, and dominates the line profile. We do not find correlations between disk inclination and the velocity centroid, width, or shape of the CIV line profile. The NC of the C IV line in CTTSs increases in strength with accretion rate, and its contribution to the line increases from ˜20% to ˜80%, for the accretion rates considered here (1e-10 to 1e-7 Msun/yr). The CTTSs C IV lines are redshifted by ˜20 km/s while the CTTSs He II are redshifted by ˜10 km/s. Because the He II line and the C IV NC have the same width in CTTSs and in WTTSs, but are correlated with accretion, we suggest that they are produced in the stellar transition region. The accretion shock model predicts that the velocity of the post-shock emission should be 4x smaller than the velocity of the pre-shock emission. Identifying the post-shock emission with the NC and the pre-shock with the BC, we find that this is approximately the case in 11 out of 23 objects. The model cannot explain 11 systems in which the velocity of the NC is smaller than the velocity of the BC, or systems in which one of the velocities is negative (five CTTSs). The hot gas lines in some systems

  3. Long-term variability of T Tauri stars using WASP

    NASA Astrophysics Data System (ADS)

    Rigon, Laura; Scholz, Alexander; Anderson, David; West, Richard

    2017-03-01

    We present a reference study of the long-term optical variability of young stars using data from the WASP project. Our primary sample is a group of well-studied classical T Tauri stars (CTTSs), mostly in Taurus-Auriga. WASP light curves cover time-scales of up to 7 yr and typically contain 10 000-30 000 data points. We quantify the variability as a function of time-scale using the time-dependent standard deviation 'pooled sigma'. We find that the overwhelming majority of CTTSs have a low-level variability with σ < 0.3 mag dominated by time-scales of a few weeks, consistent with rotational modulation. Thus, for most young stars, monitoring over a month is sufficient to constrain the total amount of variability over time-scales of up to a decade. The fraction of stars with a strong optical variability (σ > 0.3 mag) is 21 per cent in our sample and 21 per cent in an unbiased control sample. An even smaller fraction (13 per cent in our sample, 6 per cent in the control) show evidence for an increase in variability amplitude as a function of time-scale from weeks to months or years. The presence of long-term variability correlates with the spectral slope at 3-5 μm, which is an indicator of inner disc geometry, and with the U-B band slope, which is an accretion diagnostics. This shows that the long-term variations in CTTSs are predominantly driven by processes in the inner disc and in the accretion zone. Four of the stars with long-term variations show periods of 20-60 d, significantly longer than the rotation periods and stable over months to years. One possible explanation is cyclic changes in the interaction between the disc and the stellar magnetic field.

  4. Spectroscopic diagnostics of UV power and accretion in T Tauri stars

    NASA Astrophysics Data System (ADS)

    Brooks, D. H.; Costa, V. M.

    2003-02-01

    It is known that in the upper atmospheres of the Sun and some late-type stars there is a systematic relationship between the optically thin total radiated power and the power emitted by single spectral lines. Using recently derived emission-measure distributions from IUE spectra for BP Tau, CV Cha, RY Tau, RU Lupi and GW Ori, we demonstrate that this is also true for classical T Tauri stars (CTTSs). As in the solar case it is found that the CIV resonance doublet at 1548 Å is also the most accurate indicator of the total radiated power from the atmospheres of CTTSs. Since the total radiated-power density in CTTSs exceeds that of the Sun by over three orders of magnitude we derive new analytic expressions that can be used to estimate the values for these stars. We also discuss the implications of these results with regard to the influence or absence of accretion in this sample of stars and suggest that the method can be used to infer properties of the geometrical structure of the emission regions. As a demonstration case we also use archived HST-GHRS data to estimate the total radiative losses in the UV emitting region of BP Tau. We find values of 4.57 × 109 erg cm-2 s-1 and 5.11 × 1032 erg s-1 dependent on the geometry of the emission region. These results are several orders of magnitude larger than would be expected if the UV emission came primarily from an atmosphere covered in solar-like active regions and are closer to values associated with solar flares. They lead to luminosity estimates of 0.07 and 0.13 Lsolar, respectively, which are in broad agreement with results obtained from theoretical accretion shock models. Taken together they suggest that accretion may well be the dominant contributor to the UV emission in BP Tau.

  5. POST T-Tauri Stars in Galactic Clusters

    NASA Astrophysics Data System (ADS)

    Haro, G.

    1983-08-01

    There is a number of theoretical and observational reasons to support a view of star formation and evolution as a continuous process which covers a rather long period of time, On the other hand, it can be stressed that some particular evolutionary stages are confined to relatively short lengths of time. On a purely observational basis, it seems quite evident that the typical and most "advanced" T Tauri phenomenon in a given star -and consequently its extreme spectroscopic and photometric characteristics- manifest itself during an extremely short period of time in relation to the whole evolutionary process for intermediate and late type stars. Without doubt the extreme or advanced" features of a T Tauri object tend to diminish in periods of only -in most cases- a few million years. However, a considerably longer time is required for the process of weakening or apparent total disappearance of the most persistent T Tauri features. Nevertheless, among other problems, there emerges one of fundamental importance: can we arrive to an acceptable definition of a bon T Tauri star? In the present work we repeat our attempt to define what can characterize an "advanced" T Tauri-type star or the minimum spectroscopic and photometric features required to classify a young star within the family that unmistakably includes all typical T Tauri objects. At the same time, and following the trends of modern astronomy, we try to demonstrate that certain T Tauri-type stars evolve, during different periods of time and that, although they lose mass and their most conspicuous spectroscopic characteristics, they can still be described as what Herbig calls "post-T Tauri" stars, keeping some remnants of their primitive spectroscopic and photometric features. Several years ago, we stressed that in the great majority of T Tauri stars it seems that the time required for the diminishing or even apparent disappearance of the last typical T Tauri vestiges depends on the mass or on the observable

  6. Near-simultaneous ultraviolet and optical spectrophotometry of T Tauri stars

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Herbig, G. H.

    1986-01-01

    A set of near-simultaneous ultraviolet and optical spectra and UBVR(J)I(J) photometry of five T Tauri stars has been analyzed for the shape of the energy distribution shortward of 3000 A. The far-ultraviolet continua of these stars are very much stronger than the level of light scattered from longer wavelengths in the IUE spectrograph. The results, expressed as two-color plots, show that the UV colors of T Tauri stars differ significantly from those expected from their optical spectral types. Although these particular K-type T Tauri stars are not extreme members of the class, they have the UV colors of A stars. The spectral shape of this UV excess is approximately that expected from published chromospheric models of T Tauri stars.

  7. X-ray emitting T Tauri stars in the L1551 cloud

    NASA Technical Reports Server (NTRS)

    Koyama, Katsuji; Reid, I. Neill; Carkner, Lee; Feigelson, Eric D.; Montmerle, Thierry

    1995-01-01

    Low mass pre-main sequence stars in the nearby Lynds 1551 star forming cloud are studied with the ROSAT and ASCA X-ray satellites. An 8 ksec ROSAT image reveals 38 sources including 7 well-known T Tauri stars, 2 likely new weak-lined T Tauri stars, 5 potential new weak-lined T Tauri stars, one is a young B9 star, and the remaining sources are unrelated to the cloud or poorly identified. A 40 ksec ASCA image of the cloud detects seven of the ROSAT sources. Spectral fitting of the brighter X-ray emitting stars suggests the emission is produced in either a multi-temperature plasma, with temperatures near 0.2 and 1 keV, or a single-temperature plasma with low metal abundances. XZ Tau, a young classical T Tauri star, is much stronger in ASCA than ROSAT observations showing a harder (1.5-2.0 kev) component. Timing analysis reveals all but one of the T Tauri stars are variable on timescales ranging from one hour to a year. A powerful flare, emitting 3 x 10(exp 34) ergs within a 40 minute rise and fall, was observed by ASCA on the weak-lined T Tauri star V826 Tau. The event was preceded and followed by constant quiescent X-ray emission. The extreme classical T Tauri star XZ Tau was also caught during both high and low states, varying by a factor of 15 between the ASCA and ROSAT observations. Neither of the luminous infrared embedded protostars L1551-IRS 5 or L1551NE were detected by ROSAT or ASCA.

  8. Chemical Compositions of RV Tauri Stars and Related Objects

    NASA Astrophysics Data System (ADS)

    Rao, S. S.; Giridhar, S.

    2014-04-01

    We have undertaken a comprehensive abundance analysis for a sample of relatively unexplored RV Tauri and RV Tauri like stars to further our understanding of post-Asymptotic Giant Branch (post-AGB) evolution. From our study based on high resolution spectra and a grid of model atmospheres, we find indications of mild s-processing for V820 Cen and IRAS 06165+3158. On the other hand, SU Gem and BT Lac exhibit the effects of mild dust-gas winnowing. We have also compiled the existing abundance data on RV Tauri objects and find that a large fraction of them are afflicted by dust-gas winnowing and aided by the present work, we find a small group of two RV Tauris showing mild s-process enhancement in our Galaxy. With two out of three reported s-process enhanced objects belonging to RV Tauri spectroscopic class C, these intrinsically metal-poor objects appear to be promising candidates to analyse the possible s-processing in RV Tauri stars.

  9. Multi-epoch monitoring of the AA Tauri-like star V 354 Mon. Indications for a low gas-to-dust ratio in the inner disk warp

    NASA Astrophysics Data System (ADS)

    Schneider, P. C.; Manara, C. F.; Facchini, S.; Günther, H. M.; Herczeg, G. J.; Fedele, D.; Teixeira, P. S.

    2018-06-01

    Disk warps around classical T Tauri stars (CTTSs) can periodically obscure the central star for some viewing geometries. For these so- called AA Tau-like variables, the obscuring material is located in the inner disk and absorption spectroscopy allows one to characterize its dust and gas content. Since the observed emission from CTTSs consists of several components (photospheric, accretion, jet, and disk emission), which can all vary with time, it is generally challenging to disentangling disk features from emission variability. Multi- epoch, flux-calibrated, broadband spectra provide us with the necessary information to cleanly separate absorption from emission variability. We applied this method to three epochs of VLT/X-shooter spectra of the CTTS V 354 Mon (CSI Mon-660) located in NGC 2264 and find that: (a) the accretion emission remains virtually unchanged between the three epochs; (b) the broadband flux evolution is best described by disk material obscuring part of the star, and (c) the Na and K gas absorption lines show only a minor increase in equivalent width during phases of high dust extinction. The limits on the absorbing gas column densities indicate a low gas-to-dust ratio in the inner disk, less than a tenth of the ISM value. We speculate that the evolutionary state of V 354 Mon, rather old with a low accretion rate, is responsible for the dust excess through an evolution toward a dust dominated disk or through the fragmentation of larger bodies that drifted inward from larger radii in a still gas dominated disk.

  10. Magnetic fields of intermediate mass T Tauri stars

    NASA Astrophysics Data System (ADS)

    Lavail, A.; Kochukhov, O.; Hussain, G. A. J.; Alecian, E.; Herczeg, G. J.; Johns-Krull, C.

    2017-12-01

    Aims: In this paper, we aim to measure the strength of the surface magnetic fields for a sample of five intermediate mass T Tauri stars and one low mass T Tauri star from late-F to mid-K spectral types. While magnetic fields of T Tauri stars at the low mass range have been extensively characterized, our work complements previous studies towards the intermediate mass range; this complementary study is key to evaluate how magnetic fields evolve during the transition from a convective to a radiative core. Methods: We studied the Zeeman broadening of magnetically sensitive spectral lines in the H-band spectra obtained with the CRIRES high-resolution near-infrared spectrometer. These data are modelled using magnetic spectral synthesis and model atmospheres. Additional constraints on non-magnetic line broadening mechanisms are obtained from modelling molecular lines in the K band or atomic lines in the optical wavelength region. Results: We detect and measure mean surface magnetic fields for five of the six stars in our sample: CHXR 28, COUP 107, V2062 Oph, V1149 Sco, and Par 2441. Magnetic field strengths inferred from the most magnetically sensitive diagnostic line range from 0.8 to 1.8 kG. We also estimate a magnetic field strength of 1.9 kG for COUP 107 from an alternative diagnostic. The magnetic field on YLW 19 is the weakest in our sample and is marginally detected, with a strength of 0.8 kG. Conclusions: We populate an uncharted area of the pre-main-sequence HR diagram with mean magnetic field measurements from high-resolution near-infrared spectra. Our sample of intermediate mass T Tauri stars in general exhibits weaker magnetic fields than their lower mass counterparts. Our measurements will be used in combination with other spectropolarimetric studies of intermediate mass and lower mass T Tauri stars to provide input into pre-main-sequence stellar evolutionary models.

  11. Young Brown Dwarfs and Giant Planets as Companions to Weak-Line T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang; Frink, Sabine; Kohler, Rainer; Kunkel, Michael

    Weak-line T Tauri stars, contrary to classical T Tauri stars, no longer possess massive circumstellar disks. In weak-line T Tauri stars, the circumstellar matter was either accreted onto the T Tauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association. In the course of follow-up observations, we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line T Tauri stars. We have initiated a program to spatially resolve young brown dwarfs and young giant planets as companions to single weak-line T Tauri stars using adaptive optics at the ESO 3.6 m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations. An update on the program status can be found at http://www.astro.uiuc.edu/~brandner/text/bd/bd.html

  12. Winds from T Tauri stars. I - Spherically symmetric models

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Avrett, Eugene H.; Loeser, Rudolf; Calvet, Nuria

    1990-01-01

    Line fluxes and profiles are computed for a sequence of spherically symmetric T Tauri wind models. The calculations indicate that the H-alpha emission of T Tauri stars arises in an extended and probably turbulent circumstellar envelope at temperatures above about 8000 K. The models predict that Mg II resonance line emission should be strongly correlated with H-alpha fluxes; observed Mg II/H-alpha ratios are inconsistent with the models unless extinction corrections have been underestimated. The models predict that most of the Ca II resonance line and IR triplet emission arises in dense layers close to the star rather than in the wind. H-alpha emission levels suggest mass loss rates of about 10 to the -8th solar mass/yr for most T Tauri stars, in reasonable agreement with independent analysis of forbidden emission lines. These results should be useful for interpreting observed line profiles in terms of wind densities, temperatures, and velocity fields.

  13. The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: A 2.2 micron speckle imaging survey

    NASA Technical Reports Server (NTRS)

    Ghez, A. M.; Neugebauer, G.; Matthews, K.

    1993-01-01

    We present the results of a magnitude limited (K less than = 8.5 mag) speckle imaging survey of 69 T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius. Thirty-three companion stars were found with separations ranging from 0.07 sec to 2.5 sec, nine are new detections. This survey reveals a distinction between the classical T Tauri stars (CTTS) and the weak-lined T Tauri stars (WTTS) based on the binary star frequency as a function of separation: the WTTS binary star distribution is enhanced at the closer separations (less than 50 AU) relative to the CTTS binary star distribution. We suggest that the nearby companion stars shorten the accretion time scale in multiple star systems, thereby accounting for the presence of WTTS that are coeval with many CTTS. The binary star frequency in the projected linear separation range 16 to 252 AU for T Tauri stars (60 (+/- 17)%) is a factor of 4 greater than that of the solar-type main-sequence stars (16(+/- 3)%). Given the limited separation range of this survey, the rate at which binaries are detected suggests that most, if not all, T Tauri stars have companions. We propose that the observed overabundance of companions of T Tauri stars is an evolutionary effect, in which triple and higher order T Tauri stars are disrupted by close encounters with another star or system of stars.

  14. Observations of suspected low-mass post-T Tauri stars and their evolutionary status

    NASA Technical Reports Server (NTRS)

    Mundt, R.; Walter, F. M.; Feigelson, E. D.; Finkenzeller, U.; Herbig, G. H.; Odell, A. P.

    1983-01-01

    The results of a study of five X-ray discovered weak emission pre-main-sequence stars in the Taurus-Auriga star formation complex are presented. All are of spectral type K7-M0, and about 1-2 mag above the main sequence. One is a double-lined spectroscopic binary, the first spectroscopic binary PMS star to be confirmed. The ages, masses, and radii of these stars as determined by photometry and spectroscopy are discussed. The difference in emission strength between these and the T Tauri stars is investigated, and it is concluded that these 'post-T Tauri' stars do indeed appear more evolved than the T Tauri stars, although there is no evidence of any significant difference in ages.

  15. Photometric and spectral properties of some T Tauri stars

    NASA Technical Reports Server (NTRS)

    Warner, J. W.; Hubbard, R. P.; Gallagher, J. S.

    1978-01-01

    Photometric and spectroscopic data have been obtained for selected T Tauri members of the Taurus-Aurigae cloud and the Orion complex. A correlation between the intensity ratio of calcium and hydrogen emission lines and the infrared excess at 3.5 microns is found for these stars, which indicates a causal relationship between 'chromospheric activity' and emission processes in the circumstellar shells. It is argued that a comparison with properties of well-studied novae could lead to a better understanding of the physical structure of T Tauri stars.

  16. Spectral Variations of T Tauri stars

    NASA Astrophysics Data System (ADS)

    Guenther, E.

    1994-02-01

    Although it can now be taken for granted that T Tauri stars accrete matter from circumstellar disks, the way in which the matter is ultimately accreted by the star is still under discussion. Boundary layer models, as well as models of magnetic accretion are considered. Since the very inner part of the disk, the star, and the boundary layer or the accretion shock radiate mainly in the optical, it is necessary to investigate this wavelength region. Optical spectra of classical T Tauri stars consist of emission lines superimposed on a late-type photospheric spectrum, but the photospheric lines in T Tauri stars are much weaker than the lines of main sequence stars of the same spectral type. This is generally attributed to the presence of an additional continuum which veils the photospheric spectrum of the star, which may be be the emission of the boundary layer, or the emission of the immediate vicinity of an accretion shock. The aim of this work is to give additional information on the nature of the region that emits the veiling continuum by investigating the correlations between the veiling and line fluxes in time serieses of T Tauri stars. For this work a time series of 27, 117, and 89 spectra of BM And, DI Cep and DG Tau, were taken in 9, 13, and 12 nights, using the Echellette-Spectrograph of the 2.2m telescope on Calar Alto, Spain. These T Tauri stars were selected because of their different of levels of activity. The spectra cover the whole region between 3200Å and 11000Å with a resolution of about Δ λ λ = 3000. Using 32 template stars the spectral types of the stars were determined, which is found to remain unchanged during the whole time series. The wavelengths of all photospheric lines are in agreement with a single doppler shift (+/- 6 km/s), which is taken as the systemic velocity. It is thus assumed that the low excitation lines are indeed the photospheric lines of the star and the veiling is an additional continuum source. The spectrum of the veiling

  17. New T Tauri stars in Chamaeleon I and Chamaeleon II

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick

    1993-01-01

    A new objective prism survey of the entire Chamaeleon I dark cloud and 2/3 of the Chamaeleon II cloud has uncovered 26 new H-alpha emission line objects that were missed by previous H-alpha plate surveys. The new H-alpha emission line objects have similar IR colors and spatial distributions to the known T Tauri stars in these dark clouds, and could represent the very low mass end of the stellar population in these clouds or an older, less active component to the usual classical T Tauri star population. The new H-alpha survey identified 70 percent of the total known Young Stellar Objects (YSOs) in Cha I, compared with 35 percent for IRAS, and 25 percent from the Einstein X-ray survey. Ten of the new objects are weak-lined stars, with H-alpha equivalent widths less than 10 A. Weak-lined T Tauri stars make up about half of the total population of young stars in the Chamaeleon I cloud, a proportion similar to the Taurus-Auriga cloud. Presented are coordinates, finding charts, and optical and IR photometry of the new emission-line objects.

  18. OPTICAL SPECTROSCOPY OF X-RAY-SELECTED YOUNG STARS IN THE CARINA NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaidya, Kaushar; Chen, Wen-Ping; Lee, Hsu-Tai

    We present low-resolution optical spectra for 29 X-ray sources identified as either massive star candidates or low-mass pre-main-sequence (PMS) star candidates in the clusters Trumpler 16 and Trumpler 14 of the Carina Nebula. Spectra of two more objects (one with an X-ray counterpart, and one with no X-ray counterpart), not originally our targets, but found close (∼3″) to two of our targets, are presented as well. Twenty early-type stars, including an O8 star, seven B1–B2 stars, two B3 stars, a B5 star, and nine emission-line stars, are identified. Eleven T Tauri stars, including eight classical T Tauri stars (CTTSs) and threemore » weak-lined T Tauri stars, are identified. The early-type stars in our sample are more reddened compared to the previously known OB stars of the region. The Chandra hardness ratios of our T Tauri stars are found to be consistent with the Chandra hardness ratios of T Tauri stars of the Orion Nebula Cluster. Most early-type stars are found to be nonvariable in X-ray emission, except the B2 star J104518.81–594217.9, the B3 star J104507.84–594134.0, and the Ae star J104424.76–594555.0, which are possible X-ray variables. J104452.20–594155.1, a CTTS, is among the brightest and the hardest X-ray sources in our sample, appears to be a variable, and shows a strong X-ray flare. The mean optical and near-infrared photometric variability in the V and K{sub s} bands, of all sources, is found to be ∼0.04 and 0.05 mag, respectively. The T Tauri stars show significantly larger mean variation, ∼0.1 mag, in the K{sub s} band. The addition of one O star and seven B1–B2 stars reported here contributes to an 11% increase of the known OB population in the observed field. The 11 T Tauri stars are the first ever confirmed low-mass PMS stars in the Carina Nebula region.« less

  19. X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-β values

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Sacco, G. G.; Argiroffi, C.; Reale, F.; Peres, G.; Maggio, A.

    2010-02-01

    Context. Plasma accreting onto classical T Tauri stars (CTTS) is believed to impact the stellar surface at free-fall velocities, generating a shock. Current time-dependent models describing accretion shocks in CTTSs are one-dimensional, assuming that the plasma moves and transports energy only along magnetic field lines (β ≪ 1). Aims: We investigate the stability and dynamics of accretion shocks in CTTSs, considering the case of β ⪆ 1 in the post-shock region. In these cases the 1D approximation is not valid and a multi-dimensional MHD approach is necessary. Methods: We model an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere by performing 2D axisymmetric MHD simulations. The model takes into account the stellar magnetic field, the gravity, the radiative cooling, and the thermal conduction (including the effects of heat flux saturation). Results: The dynamics and stability of the accretion shock strongly depend on the plasma β. In the case of shocks with β > 10, violent outflows of shock-heated material (and possibly MHD waves) are generated at the base of the accretion column and intensely perturb the surrounding stellar atmosphere and the accretion column itself (therefore modifying the dynamics of the shock). In shocks with β ≈ 1, the post-shock region is efficiently confined by the magnetic field. The shock oscillations induced by cooling instability are strongly influenced by β: for β > 10, the oscillations may be rapidly dumped by the magnetic field, approaching a quasi-stationary state, or may be chaotic with no obvious periodicity due to perturbation of the stream induced by the post-shock plasma itself; for β≈ 1 the oscillations are quasi-periodic, although their amplitude is smaller and the frequency higher than those predicted by 1D models. Three movies are only available in electronic form at http://www.aanda.org

  20. Variability of young stars: Determination of rotational periods of weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region

    NASA Astrophysics Data System (ADS)

    Koeltzsch, A.; Mugrauer, M.; Raetz, St.; Schmidt, T. O. B.; Roell, T.; Eisenbeiss, T.; Hohle, M. M.; Vaňko, M.; Ginski, Ch.; Marka, C.; Moualla, M.; Schreyer, K.; Broeg, Ch.; Neuhäuser, R.

    2009-05-01

    We report on observation and determination of rotational periods of ten weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region. Observations were carried out with the Cassegrain-Teleskop-Kamera (CTK) at University Observatory Jena between 2007 June and 2008 May. The periods obtained range between 0.49 d and 5.7 d, typical for weak-line and post T Tauri stars. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  1. Discovery of ``isolated'' co-moving T Tauri stars in Cepheus

    NASA Astrophysics Data System (ADS)

    Guillout, P.; Frasca, A.; Klutsch, A.; Marilli, E.; Montes, D.

    2010-09-01

    Context. During the course of a large spectroscopic survey of X-ray active late-type stars in the solar neighbourhood, we discovered four lithium-rich stars packed within just a few degrees on the sky. Although located in a sky area rich in CO molecular regions and dark clouds, the Cepheus-Cassiopeia complex, these very young stars are projected several degrees away from clouds in front of an area void of interstellar matter. As such, they are very good “isolated” T Tauri star candidates. Aims: We present optical observations of these stars conducted with 1-2 m class telescopes. We acquired high-resolution optical spectra as well as photometric data allowing us to investigate in detail their nature and physical parameters with the aim of testing the “runaway” and “in-situ” formation scenarios. Their kinematical properties are also analyzed to investigate their possible connection to already known stellar kinematic groups. Methods: We use the cross-correlation technique and other tools developed by us to derive accurate radial and rotational velocities and perform an automatic spectral classification. The spectral subtraction technique is used to infer chromospheric activity level in the Hα line core and clean the spectra of photospheric lines before measuring the equivalent width of the lithium absorption line. Results: Both physical (lithium content, chromospheric, and coronal activities) and kinematical indicators show that all stars are very young, with ages probably in the range 10-30 Myr. In particular, the spectral energy distribution of TYC 4496-780-1 displays a strong near- and far-infrared excess, typical of T Tauri stars still surrounded by an accretion disc. They also share the same Galactic motion, proving that they form a homogeneous moving group of stars with the same origin. Conclusions: The most plausible explanation of how these “isolated” T Tauri stars formed is the “in-situ” model, although accurate distances are needed to

  2. DIBS independent of accretion in T Tauri stars

    NASA Technical Reports Server (NTRS)

    Ghandour, Louma; Jenniskens, Peter; Hartigan, P.

    1994-01-01

    The examination of high resolution spectra (5200 - 7000 Angstroms) of 36 T Tauri stars ranging in accretion rates was performed. Only the lambda lambda 5780, 5797, and 6613 bands were found detectable to within an equivalent width of 10 micro Angstroms. They are strongest in DG Tau, DR Tau, Dl Tau, and AS 353A. DR Tau was monitored over the course of four years; during this time, the accretion rate varied by a factor of five, but the equivalent widths of the DIB's (Diffuse Interstellar Bands) remained constant. The lack of correlation of the strength of the bands with the accretion rates implies that the bands are not directly produced by UV radiation from the accretion process. The bands have line strengths and ratios characteristic of the diffuse interstellar medium, from which we conclude that the diffuse interstellar bands seen in the spectra of T Tauri stars do not originate in the stars' immediate environment. Instead, they are part of a foreground extinction, probably due to the parent molecular cloud.

  3. Measuring the rotation periods of 4-10 Myr T-Tauri stars in the Orion OB1 association

    NASA Astrophysics Data System (ADS)

    Karim, Md Tanveer; Stassun, Keivan; Briceno, Cesar; Vivas, Kathy; Raetz, Stefanie; Calvet, Nuria; Mateu, Cecilia; Downes, Juan Jose; Hernandez, Jesus; Neuhäuser, Ralph; Mugrauer, Markus; Takahashi, Hidenori; Tachihara, Kengo; Chini, Rolf; YETI

    2016-01-01

    Most existing studies of young stellar populations have focused on the youngest (< 2-3 Myr) T-Tauri stars, which are usually associated with their natal gas and hence easier to identify. In contrast, older T-Tauri stars (~ 4-10 Myr), being more difficult to find, have been less studied, even though they hold key insight to understanding evolution of lower-mass (0.1-2 M⊙) stars and of protoplanetary discs. We present a study of photometric variability of 1974 confirmed 4-10 Myr old T-Tauri stars in the Orion OB1 association using optical time-series from three different surveys: the Centro de Investigaciones de Astronomía-Quest Equatorial Survey Team (CIDA-QUEST), the Young Exoplanet Transit Initiative (YETI) and from a Kitt Peak National Observatory (KPNO) campaign. We investigated stellar rotation periods according to the type of stars (Classical or Weak-lined T-Tauri stars) and their locations, to look for population-wide trends. We detected 563 periodic variables and 1411 non-periodic variables by investigating the light curves of these stars. We find that ~ 30% of Weak-line T-Tauri stars (WTTS) and ~ 20% of Classical T-Tauri stars (CTTS) are periodic. Though we did not find any noticeable difference in rotation period between CTTS and WTTS, our study does show a change in the overall rotation periods of stars 4-10 Myr old, consistent with predictions of angular momentum evolution models, an important constraint for theoretical models for an age range for which no similar data existed.

  4. Magnetospheric accretion models for T Tauri stars. 1: Balmer line profiles without rotation

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Hewett, Robert; Calvet, Nuria

    1994-01-01

    We argue that the strong emission lines of T Tauri stars are generally produced in infalling envelopes. Simple models of infall constrained to a dipolar magnetic field geometry explain many peculiarities of observed line profiles that are difficult, if not impossible, to reproduce with wind models. Radiative transfer effects explain why certain lines can appear quite symmetric while other lines simultaneously exhibit inverse P Cygni profiles, without recourse to complicated velocity fields. The success of the infall models in accounting for qualitative features of observed line profiles supports the proposal that stellar magnetospheres disrupt disk accretion in T Tauri stars, that true boundary layers are not usually present in T Tauri stars, and that the observed 'blue veiling' emission arises from the base of the magnetospheric accretion column.

  5. Residual Gas and Dust around Transition Objects and Weak T Tauri Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doppmann, Greg W.; Najita, Joan R.; Carr, John S., E-mail: gdoppmann@keck.hawaii.edu, E-mail: najita@noao.edu, E-mail: carr@nrl.navy.mil

    Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive search for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few to ∼10 Myr. Using high-resolution 4.7 μ m spectra of transition objects (TOs) and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to themore » observed spectrum. We find that the CO emission from TOs is weaker and located farther from the star than CO emission from nontransition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (i.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 × 10{sup −20} to 10{sup −18} W m{sup −2}). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation.« less

  6. High-resolution ultraviolet radiation fields of classical T Tauri stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Schindhelm, Eric; Bergin, Edwin A.

    2014-04-01

    The far-ultraviolet (FUV; 912-1700 Å) radiation field from accreting central stars in classical T Tauri systems influences the disk chemistry during the period of giant planet formation. The FUV field may also play a critical role in determining the evolution of the inner disk (r < 10 AU), from a gas- and dust-rich primordial disk to a transitional system where the optically thick warm dust distribution has been depleted. Previous efforts to measure the true stellar+accretion-generated FUV luminosity (both hot gas emission lines and continua) have been complicated by a combination of low-sensitivity and/or low-spectral resolution and did not includemore » the contribution from the bright Lyα emission line. In this work, we present a high-resolution spectroscopic study of the FUV radiation fields of 16 T Tauri stars whose dust disks display a range of evolutionary states. We include reconstructed Lyα line profiles and remove atomic and molecular disk emission (from H{sub 2} and CO fluorescence) to provide robust measurements of both the FUV continuum and hot gas lines (e.g., Lyα, N V, C IV, He II) for an appreciable sample of T Tauri stars for the first time. We find that the flux of the typical classical T Tauri star FUV radiation field at 1 AU from the central star is ∼10{sup 7} times the average interstellar radiation field. The Lyα emission line contributes an average of 88% of the total FUV flux, with the FUV continuum accounting for an average of 8%. Both the FUV continuum and Lyα flux are strongly correlated with C IV flux, suggesting that accretion processes dominate the production of both of these components. On average, only ∼0.5% of the total FUV flux is emitted between the Lyman limit (912 Å) and the H{sub 2} (0-0) absorption band at 1110 Å. The total and component-level high-resolution radiation fields are made publicly available in machine-readable format.« less

  7. ASCA Observations of the T Tauri Star SU Aurigae and the Surrounding L1517 Dark Cloud

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Walter, Frederick M.

    1998-01-01

    We present the results of a approximately equals 40 ks pointed Advanced Satellite for Cosmology and Astrophysics (ASCA) observation of the L1517 star-forming region, centered on the X-ray-bright T Tauri star SU Aurigae. This star has the highest X-ray luminosity of any classical T Tauri star in the Taurus-Auriga region, and its optical spectra show evidence for both mass inflow and outflow. Strong X-ray emission was detected from SU Aur (L(sub x) = 10(exp 30.9) ergs s(exp -1)) as well as weaker emission from five other pre-main-sequence stars. Although no large-amplitude flares were detected, the X-ray emission of SU Aur showed clear variability in the form of a slow decline in count rate during the 1.3 day observation. We provide the first direct comparison of the coronal differential emission measure (DEM) distribution of a classical T Tauri star with that of a young main-sequence star of similar spectral type. The DEM distributions of SU Aur (G2; age 3 Myr) and the young solar-like star EK Draconis (GO V; age 70 Myr) are qualitatively similar, with both showing a bimodal temperature distribution characterized by a cool plasma component peaking at approximately 8-9 MK and a hot component peaking at approximately 20-21 MK. However, there is a striking difference in the relative proportion of plasma at high temperatures in the two stars, with hot plasma (>20 MK) accounting for approximately equals 80% of the volume emission measure of SU Aur, compared to only approximately equals 40% in EK Dra. These results provide new insight into the changes that will occur in the corona of a T Tauri star as it descends onto the main sequence. A sharp decline in the fraction of coronal plasma at flarelike temperatures will occur during the late-T Tauri and post-T Tauri phases, and other recent X-ray studies have shown that this decline will continue after the young solar-like star reaches the main sequence.

  8. IUE observations of pre-main-sequence stars. I - Mg II and Ca II resonance line fluxes for T Tauri stars

    NASA Technical Reports Server (NTRS)

    Giampapa n, M. S.

    1981-01-01

    IUE satellite and Lick 3 m reflector image tube scanner measurements of the Mg II and Ca II resonance lines in a sample of T Tauri stars are the basis of a discussion of the Mg II h and k line emission and the Ca II H and K line emission, within the context of stellar chromospheres. Corroborative evidence is presented for the chromospheric origin of these resonance lines, and chromospheric radiative loss rates in the Mg II and Ca II resonance lines are derived. It is found that the degree of nonradiative heating present in the outer atmospheres of T Tauri stars generally exceeds that of the RS CVn systems, as well as the dMe stars and other active chromospheric dwarfs, and it is inferred that the surfaces of such pre-main sequence stars are covered by regions similar to solar plages. The mean chromospheric electron density of T Tauri stars is determined as 10 to the 11th/cu cm.

  9. The Spectral Variability of the T Tauri Star DF Tauri

    NASA Astrophysics Data System (ADS)

    Johns-Krull, Christopher M.; Basri, Gibor

    1997-01-01

    We analyze 117 echelle spectra of the T Tauri star DF Tau, concentrating on variations in the optical continuum veiling and the strong emission lines. Although this star was the inspiration for the original suggestion of magnetospheric accretion in T Tauri stars (TTSs), this hypothesis is only partially supported in our data. We find that variations in the Ca II infrared triplet lines correlate with the veiling variations; there is some evidence that the broad component of the He I line does, too. The narrow component of He I is shown to arise at the stellar surface, but it correlates with the broad component. There is a surprising lack of periodicity in the lines, and it does not occur where expected when seen. The correlation between continuum veiling and the line components expected to be most related to the veiling is poor. There is a great deal of variability in all the lines and line components; a snapshot spectrum is a poor way to characterize the star as a whole. The total Balmer line fluxes are poorly correlated with the veiling, unlike previous results on a large sample of TTSs. Redshifted absorption components are found in the weaker lines but are not common. The strength of the blueshifted absorption feature in Hα is correlated with the veiling, but changes in it perhaps occur before veiling changes by about one day. This time delay supports the idea that the wind originates at some distance from the stellar surface and is related to accretion. Spherically symmetric wind models are unable to reproduce well the relative absorption levels on the blue side of the Hα and Hβ lines simultaneously. Hα does not display the asymmetries expected of magnetospheric accretion, but it is sometimes suggestive of azimuthally asymmetric corotating structures. The line wings indicate that the formation region of the Hα line is dominated by high turbulence. Hβ does show more of the asymmetry expected of magnetospheric accretion. Based on observations obtained at the

  10. A near infrared speckle imaging study of T Tauri stars

    NASA Technical Reports Server (NTRS)

    Ghez, A. M.; Mccarthy, D. W., Jr.; Weinberger, A. J.; Neugebauer, G.; Matthews, K.

    1994-01-01

    The results of a speckle imaging survey of T Tauri stars suggest that most, if not all, young low mass stars have companions. Repeated observations of these young binary stars have revealed orbital motion in the closest pairs (less than or = 0.3 sec), providing that these systems are indeed gravitationally bound and providing the basis for mass estimates in the upcoming years. These mass estimates are necessary to distinguish between the various binary star formation mechanisms that have been proposed to date.

  11. Flat spectrum T Tauri stars: The case for infall

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Kenyon, S. J.; Whitney, B. A.

    1994-01-01

    We show that the mid- to far-infrared fluxes of 'flat spectrum' T Tauri stars can be explained by radiative equilibrium emission from infalling dusty envelopes. Infall eliminates the need for accretion disks with non-standard temperature distributions. The simplicity and power of this explanantion indicates that models employing 'active' disks, in which the temperature distribution is a parameterized power law, should be invoked with caution. Infall also naturally explains the scattered light nebulae detected around many flat spectrum sources. To match the observed spectra, material must fall onto a disk rather than the central star, as expected for collapse of a rotating molecular cloud. It may be necessary to invoke cavities in the envelopes to explain the strength of optical and near-infrared emission; these cavities could be produced by the powerful bipolar outflows commonly observed from young stars. If viewed along the cavity, a source may be lightly extincted at visual wavelengths, while still accreting substantial amounts of material from the envelope. Infall may also be needed to explain the infrared-bright companions of many optical T Tauri stars. This picture suggests that many of the flat spectrum sources are 'protostars'-young stellar objects surrounded by dust infalling envelopes of substantial mass.

  12. Residual Gas and Dust around Transition Objects and Weak T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Doppmann, Greg W.; Najita, Joan R.; Carr, John S.

    2017-02-01

    Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive search for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few to ˜10 Myr. Using high-resolution 4.7 μm spectra of transition objects (TOs) and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to the observed spectrum. We find that the CO emission from TOs is weaker and located farther from the star than CO emission from nontransition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (I.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 × 10-20 to 10-18 W m-2). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency’s scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  13. Using He I λ10830 to Diagnose Mass Flows Around Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Cauley, Paul W.; Johns-Krull, Christopher M.

    2015-01-01

    The pre-main sequence Herbig Ae/Be stars (HAEBES) are the intermediate mass cousins of the low mass T Tauri stars (TTSs). However, it is not clear that the same accretion and mass outflow mechanisms operate identically in both mass regimes. Classical TTSs (CTTSs) accrete material from their disks along stellar magnetic field lines in a scenario called magnetospheric accretion. Magnetospheric accretion requires a strong stellar dipole field in order to truncate the inner gas disk. These fields are either absent or very weak on a large majority of HAEBES, challenging the view that magnetospheric accretion is the dominant accretion mechanism. If magnetospheric accretion does not operate similarly around HAEBES as it does around CTTSs, then strong magnetocentrifugal outflows, which are directly linked to accretion and are ubiquitous around CTTSs, may be driven less efficiently from HAEBE systems. Here we present high resolution spectroscopic observations of the He I λ10830 line in a sample of 48 HAEBES. He I λ10830 is an excellent tracer of both mass infall and outflow which is directly manifested as red and blue-shifted absorption in the profile morphologies. These features, among others, are common in our sample. The occurrence of both red and blue-shifted absorption profiles is less frequent, however, than is found in CTTSs. Statistical contingency tests confirm this difference at a significant level. In addition, we find strong evidence for smaller disk truncation radii in the objects displaying red-shifted absorption profiles. This is expected for HAEBES experiencing magnetospheric accretion based on their large rotation rates and weak magnetic field strengths. Finally, the low incidence of blue-shifted absorption in our sample compared to CTTSs and the complete lack of simultaneous red and blue-shifted absorption features suggests that magnetospheric accretion in HAEBES is less efficient at driving strong outflows. The stellar wind-like outflows that are

  14. Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion

    NASA Technical Reports Server (NTRS)

    Kenyon, S. J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution.

  15. Local protoplanetary disk ionisation by T Tauri star energetic particles

    NASA Astrophysics Data System (ADS)

    Fraschetti, F.; Drake, J.; Cohen, O.; Garraffo, C.

    2017-10-01

    The evolution of protoplanetary disks is believed to be driven largely by viscosity. The ionization of the disk that gives rise to viscosity is caused by X-rays from the central star or by energetic particles released by shock waves travelling into the circumstellar medium. We have performed test-particle numerical simulations of GeV-scale protons traversing a realistic magnetised wind of a young solar mass star with a superposed small-scale turbulence. The large-scale field is generated via an MHD model of a T Tauri wind, whereas the isotropic (Kolmogorov power spectrum) turbulent component is synthesised along the particles' trajectories. We have combined Chandra observations of T Tauri flares with solar flare scaling for describing the energetic particle spectrum. In contrast with previous models, we find that the disk ionization is dominated by X-rays except within narrow regions where the energetic particles are channelled onto the disk by the strongly tangled and turbulent field lines; the radial thickness of such regions broadens with the distance from the central star (5 stellar radii or more). In those regions, the disk ionization due to energetic particles can locally dominate the stellar X-rays, arguably, out to large distances (10, 100 AU) from the star.

  16. Simultaneous observations of Ca II K and Mg II k in T Tauri stars

    NASA Technical Reports Server (NTRS)

    Calvet, N.; Basri, G.; Imhoff, C. L.; Giampapa, M. S.

    1985-01-01

    The first simultaneous, calibrated observations of the Ca II K and Mg II k resonance lines in T Tauri stars are presented. It is found that for T Tauri stars with mass greater than 1.5 solar mass, which have radiative cores and tend to be fast rotators, the k line seems to arise in an extended region (probably also responsible for the H-alpha emission), whereas the K line apparently originates closer to the highly inhomogeneous stellar surface. The lower mass stars, which are fully convective and tend to be slow rotators, are more easily described by a largely chromospheric model, consistent with main-sequence activity structures but at greater values of the nonradiative flux. The strongest emission-line stars in the low-mass group, however, are also likely to have extended k line regions.

  17. Intrinsic polarization changes and the H-alpha and CA II emission features in T-Tauri stars

    NASA Astrophysics Data System (ADS)

    Svatos, J.; Solc, M.

    1981-12-01

    On the basis of the correlation between polarization and emission features observed in certain T-Tauri stars, it is concluded that flaring effects associated with UV and/or X-ray irradiation and with increased magnetic field are responsible for the intrinsic polarization changes in T-Tauri stars. The correlation between emission Ca II lines and polarization degree both in Miras and T-Tau stars is thought to support the contention that the intrinsic polarization changes are due to the irradiation of silicate-like grains. In some T-Tau stars the increase in the magnetic field can be the principal agent causing the polarization increase due to the enhanced orientation of elongated grains.

  18. Observations of jets from low-luminosity stars - DG Tauri B

    NASA Technical Reports Server (NTRS)

    Jones, B. F.; Cohen, Martin

    1986-01-01

    Low spectral resolution studies of DG Tau B, the faint system of knots south of the T Tauri star DG Tau, are described. The observations show this object to be bipolar, with the blueshifted lobe having extraordinarily low excitation. Infrared observations of the exciting star show it to be of very low luminosity, with a bolometric luminosity of 0.88 solar luminosity. The visual extinction indicates a highly nonspherical distribution of circumstellar dust around the exciting star. In spite of this lack of embedding within an obvious dark cloud, the system is identified as a young one.

  19. Line-dependent veiling in very active classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Rei, A. C. S.; Petrov, P. P.; Gameiro, J. F.

    2018-02-01

    Context. The T Tauri stars with active accretion disks show veiled photospheric spectra. This is supposedly due to non-photospheric continuum radiated by hot spots beneath the accretion shocks at stellar surface and/or chromospheric emission lines radiated by the post-shocked gas. The amount of veiling is often considered as a measure of the mass-accretion rate. Aim. We analysed high-resolution photospheric spectra of accreting T Tauri stars LkHα 321, V1331 Cyg, and AS 353A with the aim of clarifying the nature of the line-dependent veiling. Each of these objects shows a strong emission line spectrum and powerful wind features indicating high rates of accretion and mass loss. Methods: Equivalent widths of hundreds of weak photospheric lines were measured in the observed spectra of high quality and compared with those in synthetic spectra of appropriate models of stellar atmospheres. Results: The photospheric spectra of the three T Tauri stars are highly veiled. We found that the veiling is strongly line-dependent: larger in stronger photospheric lines and weak or absent in the weakest ones. No dependence of veiling on excitation potential within 0 to 5 eV was found. Different physical processes responsible for these unusual veiling effects are discussed in the framework of the magnetospheric accretion model. Conclusions: The observed veiling has two origins: (1) an abnormal structure of stellar atmosphere heated up by the accreting matter, and (2) a non-photospheric continuum radiated by a hot spot with temperature lower than 10 000 K. The true level of the veiling continuum can be derived by measuring the weakest photospheric lines with equivalent widths down to ≈10 mÅ. A limited spectral resolution and/or low signal-to-noise ratio results in overestimation of the veiling continuum. In the three very active stars, the veiling continuum is a minor contributor to the observed veiling, while the major contribution comes from the line-dependent veiling.

  20. Establishing binarity amongst Galactic RV Tauri stars with a disc⋆

    NASA Astrophysics Data System (ADS)

    Manick, Rajeev; Van Winckel, Hans; Kamath, Devika; Hillen, Michel; Escorza, Ana

    2017-01-01

    Context. Over the last few decades it has become more evident that binarity is a prevalent phenomenon amongst RV Tauri stars with a disc. This study is a contribution to comprehend the role of binarity upon late stages of stellar evolution. Aims: In this paper we determine the binary status of six Galactic RV Tauri stars, namely DY Ori, EP Lyr, HP Lyr, IRAS 17038-4815, IRAS 09144-4933, and TW Cam, which are surrounded by a dusty disc. The radial velocities are contaminated by high-amplitude pulsations. We disentangle the pulsations from the orbital signal in order to determine accurate orbital parameters. We also place them on the HR diagram, thereby establishing their evolutionary nature. Methods: We used high-resolution spectroscopic time series obtained from the HERMES and CORALIE spectrographs mounted on the Flemish Mercator and Swiss Leonhard Euler Telescopes, respectively. An updated ASAS/AAVSO photometric time series is analysed to complement the spectroscopic pulsation search and to clean the radial velocities from the pulsations. The pulsation-cleaned orbits are fitted with a Keplerian model to determine the spectroscopic orbital parameters. We also calibrated a PLC relationship using type II cepheids in the LMC and apply the relation to our Galactic sample to obtain accurate distances and hence luminosities. Results: All six of the Galactic RV Tauri stars included in this study are binaries with orbital periods ranging between 650 and 1700 days and with eccentricities between 0.2 and 0.6. The mass functions range between 0.08 to 0.55 M⊙ which points to an unevolved low-mass companion. In the photometric time series we detect a long-term variation on the timescale of the orbital period for IRAS 17038-4815, IRAS 09144-4933, and TW Cam. Our derived stellar luminosities indicate that all except DY Ori and EP Lyr are post-AGB stars. DY Ori and EP Lyr are likely examples of the recently discovered dusty post-RGB stars. Conclusions: The orbital parameters

  1. Abundance Analysis of the Helium Weak Star 20-TAURI

    NASA Astrophysics Data System (ADS)

    Mon, M.; Hirata, R.; Sadakane, K.

    An abundance analysis of the helium-weak star 20 Tauri is performed with a fully line-blanketed model atmosphere. The adopted atmospheric parameters are Teff =12600 K and log g=3.2. These values are lower by about 1000 K in Teff and 0.3 in log g than those used in previous investigations, and 20 Tau is the coolest star among the group of helium-weak star. A value of log N(He)/N(H)=-1.7 is found from the average of six He I lines. Mg, Si, Ca, and Ni are underabundant, while P and Mn are overabundant. The abundances of C, Ti, Cr, and Fe coincide with the solar values within ±0.3 dex. Upper limits of the abundances of S, Sc, and Sr are estimated and these elements are not overabundant. The observed abundance pattern in 20 Tau is quite different from those in other helium-weak stars, while it shows a mild characteristic of Mn-Hg stars.

  2. FGK stars and T Tauri stars: Monograph series on nonthermal phenomena in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Cram, Lawrence E. (Editor); Kuhi, Leonard V. (Editor)

    1989-01-01

    The purpose of this book, FGK Stars and T Tauri Stars, like all other volumes of this series, is to exhibit and describe the best space data and ground based data currently available, and also to describe and critically evaluate the status of current theoretical models and physical mechanisms that have been proposed to interpret these data. The method for obtaining this book was to collect manuscripts from competent volunteer authors, and then to collate and edit these contributions to form a well structured book, which will be distributed to an international community of research astronomers by NASA and by the French CNRS.

  3. A Moderate Resolution NIR Spectral Library of Weak-Lined T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Cooper, Rachel; Covey, K. R.

    2013-01-01

    We present a spectral library of high-quality moderate resolution (R ~ 3500) NIR spectra for 44 weak-lined T Tauri Stars (WTTS) in the Taurus-Auriga Molecular Cloud. These spectra, obtained with the TripleSpec spectrograph on the Astrophysical Research Consortium (ARC) 3.5 meter telescope, provide full coverage of the J, H, and K near-infrared bands in a single epoch. Analyzing these spectra, along with those of dwarf and giant spectral type standards from the SpeX Spectral Library, we have identified several elemental and molecular absorption lines that vary in strength with respect to each star's spectral type and luminosity class. Calibrating each of these features as a spectral type indicator, we provide a detailed characterization for each of the WTTSs in our sample, identifying each star's NIR spectral type and line-of-sight extinction, estimated both from the shape of the overall continuum and from the fluxes of the Paschen beta and Brackett gamma emission lines. In addition to improving our understanding of the properties of these WTTSs, this well characterized spectral library will be a valuable resource for analyses of the NIR continuum veiling and line emission present in the spectra of accreting classical T Tauri stars. This research was made possible by NSF Grant AST-1004107.

  4. Molecular hydrogen fluorescence and accretion in far-ultraviolet spectra of classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Herczeg, Gregory J.

    2005-11-01

    Far-ultraviolet spectra of classical T Tauri stars reveal accretion, outflows, and H 2 fluorescence. The E140M echelle spectrograph on HST /STIS and the FUSE satellite offer high spectral resolution and broad wavelength coverage, and enables our unique and detailed analysis of the H 2 lines. A strong and broad Lya emission line excites warm H 2 into many levels of the B and C electronic states, from which we can detect as many as 200 H 2 emission lines. These H2 lines are narrow and often asymmetric, with excess blueshifted emission that can extend to 100 km s -1 from some sources. The fluorescent H 2 emission probes diverse environments around CTTSs. High spectral and spatial resolution are essential for identifying the location and studying the kinematics of the gas, which constrain the origin of the H 2 emission. Several other spectral characteristics, including absorption of H2 emission by the wind and H 2 absorption lines, also provide valuable diagnostics of the origin of this emission. The H 2 emission is most likely produced at the surface of a circumstellar disk in some sources, but is produced by outflows from other sources. DF Tau appears to show H 2 emission from both a disk and an outflow. The excitation of H 2 can be determined from relative line strengths by measuring self-absorption in lines with low-energy lower levels, or by reconstructing the Lya profile incident upon the warm H 2 using the total flux from a single upper level and the opacity in the pumping transition. Based on those diagnostics and the rich H 2 spectrum of TW Hya, the H 2 at the warm disk surface has a column density of log N (H 2 ) = [Special characters omitted.] , a temperature T = [Special characters omitted.] K, and a filling factor of H 2 , as seen by the source of Lya emission, of 0.25 +/- 0.08 (all 2s error bars). The total FUV luminosity from CTTSs ranges from 2 x 10 -3 to 3 x 10 -2 [Special characters omitted.] , much of which is in the Lya line. With the exception of

  5. TIME-DOMAIN SPECTROSCOPY OF A T TAURI STAR

    NASA Astrophysics Data System (ADS)

    Dupree, Andrea K.; Brickhouse, Nancy S.; Cranmer, Steven R.; Berlind, Perry L.; Strader, Jay; Smith, Graeme H.

    2014-06-01

    High resolution optical and near-infrared spectra of TW Hya, the nearest accreting T Tauri star, cover a decade and reveal the substantial changes in accretion and wind properties. Our spectra suggest that the broad near-IR, optical, and far-uv emission lines, centered on the star, originate in a turbulent post-shock region and can undergo scattering by the overlying stellar wind as well as absorption from infalling material. Stable absorption features appear in H-alpha, apparently caused by an accreting column silhouetted in the stellar wind. The free-fall velocity of material correlates inversely with the strength of the post-shock emission, consistent with a dipole accretion model. Terminal outflow velocities appear to be directly related to the amount of post-shock emission, giving evidence for an accretion-driven stellar wind.

  6. CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264

    NASA Astrophysics Data System (ADS)

    Sousa, A. P.; Alencar, S. H. P.; Bouvier, J.; Stauffer, J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Guimarães, M. M.; McGinnis, P. T.; Rebull, L.; Flaccomio, E.; Fürész, G.; Micela, G.; Gameiro, J. F.

    2016-02-01

    Context. NGC 2264 is a young stellar cluster (~3 Myr) with hundreds of low-mass accreting stars that allow a detailed analysis of the accretion process taking place in the pre-main sequence. Aims: Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. Methods: NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and photometric and spectroscopic observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. Results: The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light curves correspond mostly to systems with a low mass-accretion rate and low mid-IR excess. About 30% of the classical T Tauri stars observed in the 2008 and 2011 CoRoT runs changed their light-curve morphology. Transitions from AA Tau-like and spot-like to aperiodic light curves and vice versa were common. The analysis of the Hα emission line variability of 58 accreting stars showed that 8 presented a periodicity that in a few cases was coincident with the photometric period. The blue and red wings of the Hα line profiles often do not correlate with each other, indicating that they are strongly influenced by different physical processes. Classical T Tauri stars have a dynamic stellar and circumstellar environment that can be explained by magnetospheric

  7. Mottled Protoplanetary Disk Ionization by Magnetically Channeled T Tauri Star Energetic Particles

    NASA Astrophysics Data System (ADS)

    Fraschetti, F.; Drake, J. J.; Cohen, O.; Garraffo, C.

    2018-02-01

    The evolution of protoplanetary disks is believed to be driven largely by angular momentum transport resulting from magnetized disk winds and turbulent viscosity. The ionization of the disk that is essential for these processes has been thought to be due to host star coronal X-rays but could also arise from energetic particles produced by coronal flares, or traveling shock waves, and advected by the stellar wind. We have performed test-particle numerical simulations of energetic protons propagating into a realistic T Tauri stellar wind, including a superposed small-scale magnetostatic turbulence. The isotropic (Kolmogorov power spectrum) turbulent component is synthesized along the individual particle trajectories. We have investigated the energy range [0.1–10] GeV, consistent with expectations from Chandra X-ray observations of large flares on T Tauri stars and recent indications by the Herschel Space Observatory of a significant contribution of energetic particles to the disk ionization of young stars. In contrast with a previous theoretical study finding a dominance of energetic particles over X-rays in the ionization throughout the disk, we find that the disk ionization is likely dominated by X-rays over much of its area, except within narrow regions where particles are channeled onto the disk by the strongly tangled and turbulent magnetic field. The radial thickness of such regions is 5 stellar radii close to the star and broadens with increasing radial distance. This likely continues out to large distances from the star (10 au or greater), where particles can be copiously advected and diffused by the turbulent wind.

  8. On the apparent positions of T Tauri stars in the H-R diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenyon, S.J.; Hartmann, L.W.

    1990-01-01

    The spread in apparent luminosities of T Tauri stars caused by occultation and emission from protostellar disks is investigated. A random distribution of disk inclination angles, coupled with a plausible range of accretion rates, introduces a significant scatter in apparent luminosities for intrinsically identical stars. The observed dispersion of luminosities for K7-M1 Hayashi track stars thought to have disks in Taurus-Auriga is similar to predictions of the simple accretion disk model, which suggets that age determinations form many pre-main-sequence stars are uncertain. The results also suggest that Stahler's birthline for convective track pre-main-sequence stars may be located at slightly lowermore » luminosities than previously thought. 38 refs.« less

  9. Imaging the Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Astrophysics Data System (ADS)

    Cox, Andrew; Grady, C.; Hammel, H. B.; Hornbeck, J.; Russell, R. W.; Sitko, M. L.; Woodgate, B. E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use HST/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS corona graphic observations, compare these data with optical photometry in the literature and find that unlike other classical T Tauri stars observed on the same HST program, the disk is most robustly detected at optical minimum light. We measure the outer disk radius, major axis position angle, and disk inclination, and find that the inner disk, as reported in the literature, is both mis-inclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis and which is poorly collimated near the star. The measured outer disk inclination, 71±1 degrees, is out of the inclination band suggested for stars with UX Orionis-like variability where no grain growth has occurred in the disk. The faintness of the disk, the small disk size, and visibility of the star and despite the high inclination, all indicate that the disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  10. IMAGING THE DISK AND JET OF THE CLASSICAL T TAURI STAR AA TAU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustlymore » detected in scattered light at stellar optical minimum light. We measure the outer disk radius, 1.''15 {+-} 0.''10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21'' from the star in data from 2005. The measured outer disk inclination, 71 Degree-Sign {+-} 1 Degree-Sign , is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.« less

  11. Imaging the Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Technical Reports Server (NTRS)

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.; Hornbeck, Jeremy; Russell, Ray W.; Sitko, Michael L.; Woodgate, Bruce E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light.We measure the outer disk radius, 1 inch.15 plus-minus 0 inch.10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21 inches from the star in data from 2005. The measured outer disk inclination, 71deg plus-minus 1deg, is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  12. High-resolution TNG spectra of T Tauri stars. Near-IR GIANO observations of the young variables XZ Tauri and DR Tauri

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; Nisini, B.; Biazzo, K.; Giannini, T.; Lorenzetti, D.; Sanna, N.; Harutyunyan, A.; Origlia, L.; Oliva, E.

    2017-10-01

    Aims: We aim to characterise the star-disk interaction region in T Tauri stars that show photometric and spectroscopic variability. Methods: We used the GIANO instrument at the Telescopio Nazionale Galileo to obtain near-infrared high-resolution spectra (R 50 000) of XZ Tau and DR Tau, which are two actively accreting T Tauri stars classified as EXors. Equivalent widths and profiles of the observed features are used to derive information on the properties of the inner disk, the accretion columns, and the winds. Results: Both sources display composite H I line profiles, where contributions from both accreting gas and high-velocity winds can be recognised. These lines are progressively more symmetric and narrower with increasing upper energy which may be interpreted in terms of two components with different decrements or imputed to self-absorption effects. XZ Tau is observed in a relatively high state of activity with respect to literature observations. The variation of the He I 1.08 μm line blue-shifted absorption, in particular, suggests that the inner wind has undergone a dramatic change in its velocity structure, connected with a recent accretion event. DR Tau has a more stable wind as its He I 1.08 μm absorption does not show variations with time in spite of strong variability of the emission component. The IR veiling in the two sources can be interpreted as due to blackbody emission at temperatures of 1600 K and 2300 K for XZ Tau and DR Tau, respectively, with emitting areas 30 times larger than the central star. While for XZ Tau these conditions are consistent with emission from the inner rim of the dusty disk, the fairly high temperature inferred for DR Tau might suggest that its veiling originates from a thick gaseous disk located within the dust sublimation radius. Strong and broad metallic lines, mainly from C I and Fe I, are detected in XZ Tau, similar to those observed in other EXor sources during burst phases. At variance, DR Tau shows weaker and

  13. Catalogue of UBVRI photometry of T Tauri stars and analysis of the causes of their variability

    NASA Astrophysics Data System (ADS)

    Herbst, W.; Herbst, D. K.; Grossman, E. J.; Weinstein, D.

    1994-11-01

    A computer-based catalogue of UBVRI photoelectric photometry of T Tauri stars and their earlier type analogs has been compiled. It presently includes over 10 000 entries on 80 stars and will be updated on a regular basis; it is available on Internet. The catalogue is used to analyze the sometimes bizarre light variations of pre-main-sequence stars on time scales of days to months in an attempt to illuminate the nature and causes of the phenomenon. It is useful in discussing their light variations to divide the stars into three groups according to their spectra. These are: weak T Tauri stars (WTTS; spectral class later than K0 and WH-alpha less than 10 A, classical T Tauri stars (CTTS; spectral class later than K0 and WH-alpha greater than 10 A), and early type T Tauri stars (ETTS; spectral class of K0 or earlier). Three distinct types of variability are displayed by stars in the catalogue. Type I variations are periodic in VRI and undoubtedly caused by rotational modulation of a star with an asymmetric distribution of cool spots on its surface. Irregular flare activity is sometimes seen on such stars in U and B. Type I variations are easiest to see on WTTS but are clearly present on CTTS and ETTS as well. Type II variations are caused by hot 'spots' or zones and, it is argued, result from changes in the excess or 'veiling' continuum commonly attributed to an accretion boundary layer or impact zone of a magnetically channeled accretion flow. This type of variation is seen predominantly or solely in CTTS. A sub-category, designated Type IIp, consists of stars which display periodic variations caused by hot spots. Whereas cool spots may last for hundreds or thousands of rotations, hot spots appear to come and go on a much shorter time scale. This suggests that both unsteady accretion and rotation of the star contribute to Type II variations. It is shown that a third type of variation exists among ETTS, including stars as early as A type. UX Ori is a typical example

  14. Impacts of fragmented accretion streams onto classical T Tauri stars: UV and X-ray emission lines

    NASA Astrophysics Data System (ADS)

    Colombo, S.; Orlando, S.; Peres, G.; Argiroffi, C.; Reale, F.

    2016-10-01

    Context. The accretion process in classical T Tauri stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV-band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims: We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams. We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods: We modeled the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through two-dimensional (2D) magnetohydrodynamic (MHD) simulations. We explored different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 Å) and O VIII (18.97 Å) line profiles. Results: The impacts of accreting blobs onto the stellar chromosphere produce reverse shocks propagating through the blobs and shocked upflows. These upflows, in turn, hit and shock the subsequent downfalling fragments. As a result, several plasma components differing for the downfalling velocity, density, and temperature are present altoghether. The profiles of C IV doublet are characterized by two main components: one narrow and redshifted to speed ≈ 50 km s-1 and the other broader and consisting of subcomponents with redshift to speed in the range 200-400 km s-1. The profiles of O VIII lines appear more symmetric than C IV and are redshifted to speed ≈ 150 km s-1. Conclusions: Our model predicts profiles of C IV line remarkably similar to those observed and explains their origin in a natural way as due to stream fragmentation. Movies are available at http://www.aanda.org

  15. Emission measures derived from far ultraviolet spectra of T Tauri stars

    NASA Astrophysics Data System (ADS)

    Cram, L. E.; Giampapa, M. S.; Imhoff, C. L.

    1980-06-01

    Spectroscopic diagnostics based on UV emission line observations have been developed to study the solar chromosphere, transition region, and corona. The atmospheric properties that can be inferred from observations of total line intensities include the temperature, by identifying the ionic species present; the temperature distribution of the emission measure, from the absolute intensities; and the electron density of the source, from line intensity ratios sensitive to the electron density. In the present paper, the temperature distribution of the emission measure is estimated from observations of far UV emission line fluxes of the T Tauri stars, RW Aurigae and RU Lupi, made on the IUE. A crude estimate of the electron density of one star is obtained, using density-sensitive line ratios.

  16. A hot Jupiter around the very active weak-line T Tauri star TAP 26

    NASA Astrophysics Data System (ADS)

    Yu, L.; Donati, J.-F.; Hébrard, E. M.; Moutou, C.; Malo, L.; Grankin, K.; Hussain, G.; Collier Cameron, A.; Vidotto, A. A.; Baruteau, C.; Alencar, S. H. P.; Bouvier, J.; Petit, P.; Takami, M.; Herczeg, G.; Gregory, S. G.; Jardine, M.; Morin, J.; Ménard, F.; Matysse Collaboration

    2017-05-01

    We report the results of an extended spectropolarimetric and photometric monitoring of the weak-line T Tauri star TAP 26, carried out within the Magnetic Topologies of Young Stars and the Survival of close-in massive Exoplanets (MaTYSSE) programme with the Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) spectropolarimeter at the 3.6-m Canada-France-Hawaii Telescope. Applying Zeeman-Doppler Imaging (ZDI) to our observations, concentrating in 2015 November and 2016 January and spanning 72 d in total, 16 d in 2015 November and 13 d in 2016 January, we reconstruct surface brightness and magnetic field maps for both epochs and demonstrate that both distributions exhibit temporal evolution not explained by differential rotation alone. We report the detection of a hot Jupiter (hJ) around TAP 26 using three different methods, two using ZDI and one Gaussian-process regression (GPR), with a false-alarm probability smaller than 6 × 10-4. However, as a result of the aliasing related to the observing window, the orbital period cannot be uniquely determined; the orbital period with highest likelihood is 10.79 ± 0.14 d followed by 8.99 ± 0.09 d. Assuming the most likely period, and that the planet orbits in the stellar equatorial plane, we obtain that the planet has a minimum mass Msin I of 1.66 ± 0.31 MJup and orbits at 0.0968 ± 0.0032 au from its host star. This new detection suggests that disc type II migration is efficient at generating newborn hJs, and that hJs may be more frequent around young T Tauri stars than around mature stars (or that the MaTYSSE sample is biased towards hJ-hosting stars).

  17. SPECTROPOLARIMETRY OF THE CLASSICAL T TAURI STAR BP TAU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei; Johns-Krull, Christopher M., E-mail: wc2@rice.edu, E-mail: cmj@rice.edu

    We implement a least-squares deconvolution (LSD) code to study magnetic fields on cool stars. We first apply our code to high-resolution optical echelle spectra of 53 Cam (a magnetic Ap star) and three well-studied cool stars (Arcturus, 61 Cyg A, and ξ Boo A) as well as the Sun (by observing the asteroid Vesta) as tests of the code and the instrumentation. Our analysis is based on several hundred photospheric lines spanning the wavelength range 5000 Å to 9000 Å. We then apply our LSD code to six nights of data on the Classical T Tauri Star BP Tau. Amore » maximum longitudinal field of 370 ± 80 G is detected from the photospheric lines on BP Tau. A 1.8 kG dipole tilted at 129° with respect to the rotation axis and a 1.4 kG octupole tilted at 104° with respect to the rotation axis, both with a filling factor of 0.25, best fit our LSD Stokes V profiles. Measurements of several emission lines (He I 5876 Å, Ca II 8498 Å, and 8542 Å) show the presence of strong magnetic fields in the line formation regions of these lines, which are believed to be the base of the accretion footpoints. The field strength measured from these lines shows night-to-night variability consistent with rotation of the star.« less

  18. The Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Technical Reports Server (NTRS)

    Cox, A. W.; Grady, C. A.; Hamel, H.; Hornbeck, Jeremy; Russell, R.; Sitko, M.; Woodgate, B.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photopolarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipolefield. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use the HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination, and find that the inner disk is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis. The jet is also poorly collimated near the star. The measured inclination, 71+/-1deg, is above the inclination range suggested for stars with UX Orionis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.

  19. Spectrophotometry of Peculiar B-Stars and A-Stars - Part Nine - HD5797 HD12288 9-TAURI HD81009 HD111133 33-LIBRAE and HD216533

    NASA Astrophysics Data System (ADS)

    Adelman, S. J.

    1981-02-01

    Optical region spectrophotometry of λλ3300-7100 is presented for seven sharp-lined peculiar A stars: HD 5797, HD 12288, 9 Tauri, HD 81009, HD 111133, 33 Librae, and HD 216533. Many of proposed periods in the literature are questioned. Some of the deviations from the predictions of normal stellar atmospheres suggest that such continua are only remotely related to those of peculiar A stars.

  20. The Environment and Outflow of the G-type T Tauri Star SU Aur

    NASA Astrophysics Data System (ADS)

    Grady, C.; Stapelfeldt, K.; Clampin, M.; Padgett, D.; Woodgate, B.; Henning, T.; Grinin, V.; Quirrenbach, A.; Stecklum, B.; Sitko, M.; Biggs, J.

    2001-12-01

    We present HST/STIS white light coronagraphic imaging data for the optically bright, classical T Tauri star, SU Aur. Previous optical imagery has detected "cometary" nebulosity beginning north of the star and wrapping around to the west and ultimately south (Nakajima & Golimowski 1995). The STIS data demonstrate that this nebulosity consists of a fan of nebulosity similar to that seen around R CrA, with wisp and clump structure down to the resolution limit of the telescope. This nebulosity has an opening angle of 70 degrees and a vertical extent of at least 12.2" (1842 AU at d=151 pc). The fan is visible in WFPC2 V, R, and I images, in addition to the STIS broad-band (0.2-1.0 micron) data, indicating detection of reflection nebulosity. A distinctive feature of the HST imagery of SU Aur is the presence of radial streamers seen at V and in the STIS data. The central streamer, which roughly bisects the fan of nebulosity, extends at least 8" (1200 AU) from the star at PA=295+/-1 degrees. The STIS data demonstrate that this feature is accompanied, on the opposite side of the star, by a string of bow-shaped nebulosities, extending 7.3" (1100 AU) from the star at PA=114+/-1 degrees. We interpret the fan of nebulosity as arising from the walls of a partially exposed outflow cavity. The scale and morphology of the central streamer and the PA=114 string of knots are consistent with the appearance of bipolar outflows as seen by STIS. SU Aur is a 4 Myr old (de Warf et al. 1998), 1.9+/-0.1 solar mass star. The bipolar outflow reported here is the second collimated outflow detected in association with an isolated, several million year old intermediate-mass star. Given the small number of coronagraphically imaged intermediate-mass stars, this result indicates that collimated outflows, similar to those routinely detected in association with lower mass T Tauri stars, appear to be common among their higher mass analogs and to persist for much of the star's pre-main sequence lifetime

  1. Winds from T Tauri stars. II - Balmer line profiles for inner disk winds

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Hewett, Robert

    1992-01-01

    Results are presented of calculations of Balmer emission line profiles using escape probability methods for T Tauri wind models with nonspherically symmetric geometry. The wind is assumed to originate in the inner regions of an accretion disk surrounding the T Tauri star, and flows outward in a 'cone' geometry. Two types of wind models are considered, both with monotonically increasing expansion velocities as a function of radial distance. For flows with large turbulent velocities, such as the HF Alfven wave-driven wind models, the effect of cone geometry is to increase the blue wing emission, and to move the absorption reversal close to line center. Line profiles for a wind model rotating with the same angular velocity as the inner disk are also calculated. The Balmer lines of this model are significantly broader than observed in most objects, suggesting that the observed emission lines do not arise in a region rotating at Keplerian velocity.

  2. Balmer line profiles for infalling T Tauri envelopes

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee

    1992-01-01

    The possibility that the Balmer emission lines of T Tauri stars arise in infalling envelopes rather than winds is considered. Line profiles for the upper Balmer lines are presented for models with cone geometry, intended to simulate the basic features of magnetospheric accretion from a circumstellar disk. An escape probability treatment is used to determine line source functions in nonspherically symmetric geometry. Thermalization effects are found to produce nearly symmetric H-alpha line profiles at the same time the higher Balmer series lines exhibit inverse P Cygni profiles. The infall models produce centrally peaked emission line wings, in good agreement with observations of many T Tauri stars. It is suggested that the Balmer emission of many T Tauri stars may be produced in an infalling envelope, with blue shifted absorption contributed by an overlying wind. Some of the observed narrow absorption components with small blueshifts may also arise in the accretion column.

  3. A search for T Tauri stars and related objects: Archival photometry of candidate variables in V733 Cep field

    NASA Astrophysics Data System (ADS)

    Jurdana-Šepić, R.; Poljančić Beljan, I.

    Searching for T Tauri stars or related early type variables we carried out a BVRI photometric measurements of five candidates with positions within the field of the pre-main sequence object V733 Cephei (Persson's star) located in the dark cloud L1216 near to Cepheus OB3 Association: VES 946, VES 950, NSV 14333, NSV 25966 and V385 Cep. Their magnitudes are determined on the plates from Asiago Observatory historical photographic archive exposed 1971 - 1978. We provide finding charts for program stars and comparison sequence stars, magnitude estimations, magnitude mean values and BVR_cI_c light curves of program stars.

  4. Modelling the magnetic activity and filtering radial velocity curves of young Suns : the weak-line T Tauri star LkCa 4

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Hébrard, E.; Hussain, G.; Moutou, C.; Grankin, K.; Boisse, I.; Morin, J.; Gregory, S. G.; Vidotto, A. A.; Bouvier, J.; Alencar, S. H. P.; Delfosse, X.; Doyon, R.; Takami, M.; Jardine, M. M.; Fares, R.; Cameron, A. C.; Ménard, F.; Dougados, C.; Herczeg, G.; Matysse Collaboration

    2014-11-01

    We report results of a spectropolarimetric and photometric monitoring of the weak-line T Tauri star LkCa 4 within the Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets (MaTYSSE) programme, involving ESPaDOnS at the Canada-France-Hawaii Telescope. Despite an age of only 2 Myr and a similarity with prototypical classical T Tauri stars, LkCa 4 shows no evidence for accretion and probes an interesting transition stage for star and planet formation. Large profile distortions and Zeeman signatures are detected in the unpolarized and circularly polarized lines of LkCa 4 using Least-Squares Deconvolution (LSD), indicating the presence of brightness inhomogeneities and magnetic fields at the surface of LkCa 4. Using tomographic imaging, we reconstruct brightness and magnetic maps of LkCa 4 from sets of unpolarized and circularly polarized LSD profiles. The large-scale field is strong and mainly axisymmetric, featuring a ≃2 kG poloidal component and a ≃1 kG toroidal component encircling the star at equatorial latitudes - the latter making LkCa 4 markedly different from classical T Tauri stars of similar mass and age. The brightness map includes a dark spot overlapping the magnetic pole and a bright region at mid-latitudes - providing a good match to the contemporaneous photometry. We also find that differential rotation at the surface of LkCa 4 is small, typically ≃5.5 times weaker than that of the Sun, and compatible with solid-body rotation. Using our tomographic modelling, we are able to filter out the activity jitter in the radial velocity curve of LkCa 4 (of full amplitude 4.3 km s-1) down to an rms precision of 0.055 km s-1. Looking for hot Jupiters around young Sun-like stars thus appears feasible, even though we find no evidence for such planets around LkCa 4.

  5. Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Bonito, R.; Argiroffi, C.; Reale, F.; Peres, G.; Miceli, M.; Matsakos, T.; Stehlé, C.; Ibgui, L.; de Sa, L.; Chièze, J. P.; Lanz, T.

    2013-11-01

    Context. According to the magnetospheric accretion model, hot spots form on the surface of classical T Tauri stars (CTTSs) in regions where accreting disk material impacts the stellar surface at supersonic velocity, generating a shock. Aims: We investigate the dynamics and stability of postshock plasma that streams along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. Methods: We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model considers the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction (including the effects of heat flux saturation). We explore different configurations and strengths of the magnetic field. Results: The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. In the case of weak magnetic fields (plasma β ≳ 1 in the postshock region), a large component of B may develop perpendicular to the stream at the base of the accretion column, which limits the sinking of the shocked plasma into the chromosphere and perturbs the overstable shock oscillations induced by radiative cooling. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields (β < 1 in the postshock region close to the chromosphere), the field configuration determines the position of the shock and its stand-off height. If the field is strongly tapered close to the chromosphere, an oblique shock may form well above the stellar surface at the height where the plasma β ≈ 1. In general, we find that a nonuniform magnetic field makes the distribution of emission measure vs. temperature of the postshock plasma at T > 106 K lower than when there is uniform magnetic field

  6. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    NASA Astrophysics Data System (ADS)

    Ingleby, Laura; Calvet, Nuria; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander

    2013-04-01

    We analyze the accretion properties of 21 low-mass T Tauri stars using a data set of contemporaneous near-UV (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph and the ground-based Small and Medium Aperture Research Telescope System, a unique data set because of the nearly simultaneous broad wavelength coverage. Our data set includes accreting T Tauri stars in Taurus, Chamaeleon I, η Chamaeleon, and the TW Hydra Association. For each source we calculate the accretion rate (\\dot{M}) by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high-density, low filling factor accretion spots coexist with low-density, high filling factor spots. By fitting the UV and optical spectra with multiple accretion components, we can explain excesses which have been observed in the near-IR. Comparing our estimates of \\dot{M} to previous estimates, we find some discrepancies; however, they may be accounted for when considering assumptions for the amount of extinction and variability in optical spectra. Therefore, we confirm many previous estimates of the accretion rate. Finally, we measure emission line luminosities from the same spectra used for the \\dot{M} estimates, to produce correlations between accretion indicators (Hβ, Ca II K, C II], and Mg II) and accretion properties obtained simultaneously.

  7. Asymmetric MHD outflows/jets from accreting T Tauri stars

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Lii, P. S.; Romanova, M. M.; Koldoba, A. V.

    2015-06-01

    Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. A large set of 2.5D magnetohydrodynamic simulations was carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows are asymmetric relative to the equatorial plane. We consider initial magnetic fields that are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc field) and a stellar dipole field. (1) For pure disc-fields the symmetry or asymmetry of the outflows is affected by the mid-plane plasma β of the disc. For discs with small plasma β, outflows are symmetric to within 10 per cent over time-scales of hundreds of inner disc orbits. For higher β discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion leads to asymmetric episodic outflows. (2) Accreting stars with a stellar dipole field and no disc-field exhibit episodic, two component outflows - a magnetospheric wind and an inner disc wind. Both are characterized by similar velocity profiles but the magnetospheric wind has densities ≳ 10 times that of the disc wind. (3) Adding a disc field parallel to the stellar dipole field enhances the magnetospheric winds but suppresses the disc wind. (4) Adding a disc field which is antiparallel to the stellar dipole field in the disc suppresses the magnetospheric and disc winds. Our simulations reproduce some key features of observations of asymmetric outflows of T Tauri stars.

  8. The Widest-separation Substellar Companion Candidate to a Binary T Tauri Star

    NASA Astrophysics Data System (ADS)

    Kuzuhara, M.; Tamura, M.; Ishii, M.; Kudo, T.; Nishiyama, S.; Kandori, R.

    2011-04-01

    The results of near-infrared imaging and spectroscopy of a substellar companion (SR12 C), with a possible planetary mass, of a binary T Tauri star (SR12 AB) in the ρ Ophiuchi star-forming region are presented. The object is separated by ~8farcs7, corresponding to ~1100 AU at 125 pc, and has an H-band brightness of 15.2 mag and infrared spectra suggesting a spectral type of M9.0 ± 0.5. It is confirmed that SR12 C is physically related to the ρ Ophiuchi star-forming region from its common proper motion with SR12 AB and its youth is confirmed by a gravity-sensitive spectral feature. Furthermore, based on the number of known members of the ρ Ophiuchi star-forming region in the area in which SR12 AB exists, the probability of a chance alignment is ~1% and it is therefore likely that SR12 C is physically associated with SR12 AB. The mass of SR12 C is estimated by comparing its estimated luminosity and assumed age with the theoretical age-luminosity relation. SR12 C is identified as an extremely low-mass (0.013 ± 0.007 M sun) object, but its separation from its parent star is the widest among planetary-mass companion (PMC) candidates imaged to date. In addition, SR12 C is the first PMC candidate directly imaged around a binary star. This discovery suggests that PMCs form via multiple star formation processes including disk gravitational instability and cloud core fragmentation.

  9. Magnetic Field Measurements of T Tauri Stars in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Johns-Krull, Christopher M.

    2011-03-01

    We present an analysis of high-resolution (R ~ 50, 000) infrared K-band echelle spectra of 14 T Tauri stars (TTSs) in the Orion Nebula Cluster. We model Zeeman broadening in three magnetically sensitive Ti I lines near 2.2 μm and consistently detect kilogauss-level magnetic fields in the stellar photospheres. The data are consistent in each case with the entire stellar surface being covered with magnetic fields, suggesting that magnetic pressure likely dominates over gas pressure in the photospheres of these stars. These very strong magnetic fields might themselves be responsible for the underproduction of X-ray emission of TTSs relative to what is expected based on main-sequence star calibrations. We combine these results with previous measurements of 14 stars in Taurus and 5 stars in the TW Hydrae association to study the potential variation of magnetic field properties during the first 10 million years of stellar evolution, finding a steady decline in total magnetic flux with age. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and SECYT (Argentina).

  10. X-Ray Spectroscopy of the Nearby, Classical T Tauri Star TW Hydrae

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Huenemoerder, David P.; Schulz, Norbert S.; Weintraub, David A.

    1999-11-01

    We present ASCA and ROSAT X-ray observations of the classical T Tauri star TW Hya, the namesake of a small association that, at a distance of ~50 pc, represents the nearest known region of recent star formation. Analysis of ASCA and ROSAT spectra indicates characteristic temperatures of ~1.7 and ~9.7 MK for the X-ray-emitting region(s) of TW Hya, with emission lines of highly ionized Fe dominating the spectrum at energies of ~1 keV. The X-ray data show variations in X-ray flux on timescales of <~1 hr as well as indications of changes in the X-ray-absorbing column on timescales of several years, suggesting that flares and variable obscuration are responsible for the large-amplitude optical variability of TW Hya on short and long timescales, respectively. Comparison with model calculations suggests that TW Hya produces sufficient hard X-ray flux to produce significant ionization of molecular gas within its circumstellar disk; such X-ray ionization may regulate both protoplanetary accretion and protoplanetary chemistry.

  11. Mid-infrared spectroscopy of disks around classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Forrest, W. J.; Sargent, B.; Furlan, E.; Chen, C. H.; Kemper, F.; Calvet, N.; Hartmann, L.; Uchida, K. I.; Watson, D. M.; Green, J. D.; Keller, L. D.; Sloan, G. C.; Herter, T. L.; Brandl, B. R.; Houck, J. R.; Barry, D. J.; Hall, P.; Morris, P. W.; Najita, J.; Myers, P. C.; D'Alessio, P.; Jura, M.

    2004-05-01

    We present the first Spitzer Infrared Spectrograph* observations of the disks around classical T Tauri stars: spectra in the 5.3-30 micron range of six stars that appear not to be members of close binary systems. The spectra are dominated by emission features from amorphous silicate dust, and a continuous component from 5 to 8 microns that in most cases comprises an excess above the photosphere throughout our spectral range. There is considerable variation in the silicate feature/continuum ratio, which implies variations of inclination, disk flaring, and stellar mass accretion rate. In some of our stars, structure in the silicate feature suggests the presence of a crystalline component, somewhat surprising for objects this young (1-2 Myr). In one, CoKu Tau 4, no excess above the photosphere appears at wavelengths shortward of the silicate features, similar to 10 Myr old TW Hya, TWA 3 and HR 4796A. This indicates a truncation of the inner the disk, a feature suggestive of gravitational influence by planets or close stellar companions; CoKu Tau 4 would be the first star in the million-year-old age range in which such a central clearing is found. * The IRS was a collaborative venture between Cornell University and Ball Aerospace Corporation funded by NASA through the Jet Propulsion Laboratory and the Ames Research Center. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA through Contract Number 1257184 issued by JPL/Caltech. Support for this work was provided by NASA through the Spitzer Fellowship Program, under award 011 808-001.

  12. Photo-reverberation Mapping of a Protoplanetary Accretion Disk around a T Tauri Star

    NASA Astrophysics Data System (ADS)

    Meng, Huan; Plavchan, Peter; Rieke, George

    2016-01-01

    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner "wall" at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1-AU scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H and K bands were synchronized while the 4.5 μm emission lagged by 74.5±3.2 seconds. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084±0.004 AU from the protostar on average. This size is likely larger than the range of magnetospheric truncations, but consistent with an optically and geometrically thick disk front at the dust sublimation radius at ~1500 K. The detection of a definite time lag places new constraints on the geometry of the disk.

  13. Orbital motion in T Tauri binary systems

    NASA Astrophysics Data System (ADS)

    Woitas, J.; Köhler, R.; Leinert, Ch.

    2001-04-01

    Using speckle-interferometry we have carried out repeated measurements of relative positions for the components of 34 T Tauri binary systems. The projected separation of these components is low enough that orbital motion is expected to be observable within a few years. In most cases orbital motion has indeed been detected. The observational data is discussed in a manner similar to Ghez et al. (\\cite{Ghez95}). However, we extend their study to a larger number of objects and a much longer timespan. The database presented in this paper is valuable for future visual orbit determinations. It will yield empirical masses for T Tauri stars that now are only poorly known. The available data is however not sufficient to do this at the present time. Instead, we use short series of orbital data and statistical distributions of orbital parameters to derive an average system mass that is independent of theoretical assumptions about the physics of PMS stars. For our sample this mass is 2.0 Msun and thus in the order of magnitude one expects for the mass sum of two T Tauri stars. It is also comparable to mass estimates obtained for the same systems using theoretical PMS evolutionary models. Based on observations collected at the German-Spanish Astronomical Center on Calar Alto, Spain, and at the European Southern Observatory, La Silla, Chile. Table A.1 is only available in electronic form at the CDS, via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/369/249

  14. The Mysterious Dimmings of the T Tauri Star V1334 Tau

    NASA Astrophysics Data System (ADS)

    Rodriguez, Joseph E.; Zhou, George; Cargile, Phillip A.; Stevens, Daniel J.; Osborn, Hugh P.; Shappee, Benjamin J.; Reed, Phillip A.; Lund, Michael B.; Relles, Howard M.; Latham, David W.; Eastman, Jason; Stassun, Keivan G.; Bieryla, Allyson; Esquerdo, Gilbert A.; Berlind, Perry; Calkins, Michael L.; Vanderburg, Andrew; Gaidos, Eric; Ansdell, Megan; Siverd, Robert J.; Beatty, Thomas G.; Kochanek, Christopher S.; Pepper, Joshua; Gaudi, B. Scott; West, Richard G.; Pollacco, Don; James, David; Kuhn, Rudolf B.; Stanek, Krzysztof Z.; Holoien, Thomas W.-S.; Prieto, Jose L.; Johnson, Samson A.; Sergi, Anthony; McCrady, Nate; Johnson, John A.; Wright, Jason T.; Wittenmyer, Robert A.; Horner, Jonathan

    2017-02-01

    We present the discovery of two extended ˜0.12 mag dimming events of the weak-lined T Tauri star V1334. The start of the first event was missed but came to an end in late 2003, and the second began in 2009 February, and continues as of 2016 November. Since the egress of the current event has not yet been observed, it suggests a period of >13 years if this event is periodic. Spectroscopic observations suggest the presence of a small inner disk, although the spectral energy distribution shows no infrared excess. We explore the possibility that the dimming events are caused by an orbiting body (e.g., a disk warp or dust trap), enhanced disk winds, hydrodynamical fluctuations of the inner disk, or a significant increase in the magnetic field flux at the surface of the star. We also find a ˜0.32 day periodic photometric signal that persists throughout the 2009 dimming which appears to not be due to ellipsoidal variations from a close stellar companion. High-precision photometric observations of V1334 Tau during K2 campaign 13, combined with simultaneous photometric and spectroscopic observations from the ground, will provide crucial information about the photometric variability and its origin.

  15. Photo-Reverberation Mapping of a Protoplanetary Accretion Disk around a T Tauri star

    NASA Astrophysics Data System (ADS)

    Meng, Huan; Plavchan, Peter; Rieke, George

    2015-12-01

    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner "wall", where material is depleted by sublimation and/or magnetospheric accretion. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1-AU scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H and K bands were synchronized while the 4.5 μm emission lagged by 74.5 ± 3.2 seconds. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 ± 0.004 AU from the protostar on average. This size is likely larger than the range of magnetospheric truncations, but consistent with an optically and geometrically thick disk front at the dust sublimation radius of ~1500 K. The detection of a definite time lag places constraints on the geometry of the disk.

  16. CO Fundamental Emission from V836 Tauri

    DTIC Science & Technology

    2008-11-10

    systems: formation — planetary systems: protoplanetary disks — stars: individual (V836 Tauri) — stars: pre–main-sequence Online material: color...how either of these hypothesesmay bear on our under- standing of disk dissipation in this system. Subject headinggs: circumstellar matter — planetary ...that can be modeled as an optically thick disk that has an optically thin region (a hole or a gap ) at smaller radii, have been suggested to be in the

  17. Optical veiling, disk accretion, and the evolution of T Tauri stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, L.W.; Kenyon, S.J.

    1990-01-01

    High-resolution spectra of 31 K7-M1 T Tauri stars (TTs) in the Taurus-Auriga molecular cloud demonstrate that most of these objects exhibit substantial excess emission at 5200 A. Extrapolations of these data consistent with low-resolution spectrophotometry indicate that the extra emission is comparable to the stellar luminosity in many cases. If this continuum emission arises in the boundary layers of accreting disks, more than about 30 percent of all TTs may be accreting material at a rate which is sufficiently rapid to alter their evolution from standard Hayashi tracks. It is estimated that roughly 10 percent of the final stellar massmore » is accreted in the TT phase. This amount of material is comparable to the minimum gravitationally unstable disk mass estimated by Larson and it is speculated that the TT phase represents the final stages of disk accretion driven by gravitational instabilities. 40 refs.« less

  18. Hyperfine Structure and Abundances of Heavy Elements in 68 Tauri (HD 27962)

    NASA Astrophysics Data System (ADS)

    Martinet, S.; Monier, R.

    2017-12-01

    HD 27962, also known as 68 Tauri, is a Chemically Peculiar Am star member of the Hyades Open Cluster in the local arm of the Galaxy. We have modeled the high resolution SOPHIE (R=75000) spectrum of 68 Tauri using updated model atmosphere and spectrum synthesis to derive chemical abundances in its atmosphere. In particular, we have studied the effect of the inclusion of Hyperfine Structure of various Baryum isotopes on the determination of the Baryum abundance in 68 Tauri. We have also derived new abundances using updated accurate atomic parameters retrieved from the NIST database.

  19. Photo-reverberation Mapping of a Protoplanetary Accretion Disk around a T Tauri Star

    NASA Astrophysics Data System (ADS)

    Meng, Huan Y. A.; Plavchan, Peter; Rieke, George H.; Cody, Ann Marie; Güth, Tina; Stauffer, John; Covey, Kevin; Carey, Sean; Ciardi, David; Duran-Rojas, Maria C.; Gutermuth, Robert A.; Morales-Calderón, María; Rebull, Luisa M.; Watson, Alan M.

    2016-05-01

    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner “wall” at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1 au scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light-travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 μm) and K (2.2 μm) bands were synchronized while the 4.5 μm emission lagged by 74.5 ± 3.2 s. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 au from the protostar on average, with an error of order 0.01 au. This size is likely larger than the range of magnetospheric truncations and consistent with an optically and geometrically thick disk front at the dust sublimation radius at ˜1500 K. The widths of the cross-correlation functions between the data in different wavebands place possible new constraints on the geometry of the disk.

  20. Ionization ratios and elemental abundances in the atmosphere of 68 Tauri

    NASA Astrophysics Data System (ADS)

    Aouina, A.; Monier, R.

    2017-12-01

    We have derived the ionization ratios of twelve elements in the atmosphere of the star 68 Tauri (HD 27962) using an ATLAS9 model atmosphere with 72 layers computed for the effective temperature and surface gravity of the star. We then computed a grid of synthetic spectra generated by SYNSPEC49 based on an ATLAS9 model atmosphere in order to model one high resolution spectrum secured by one of us (RM) with the échelle spectrograph SOPHIE at Observatoire de Haute Provence. We could determine the abundances of several elements in their dominant ionization stage, including those defining the Am phenomenon. We thus provide new abundance determinations for 68 Tauri using updated accurate atomic data retrieved from the NIST database which extend previous abundance works.

  1. THE SPITZER c2d SURVEY OF WEAK-LINE T TAURI STARS. III. THE TRANSITION FROM PRIMORDIAL DISKS TO DEBRIS DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahhaj, Zahed; Cieza, Lucas; Koerner, David W.

    2010-12-01

    We present 3.6 to 70 {mu}m Spitzer photometry of 154 weak-line T Tauri stars (WTTSs) in the Chamaeleon, Lupus, Ophiuchus, and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars which are located in the same star-forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 {mu}m) and the 24 {mu}m MIPS band. In the 70 {mu}m MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observationsmore » represent the most sensitive WTTSs survey in the mid- to far-infrared to date and reveal the frequency of outer disks (r = 3-50 AU) around WTTSs. The 70 {mu}m photometry for half the c2d WTTSs sample (the on-cloud objects), which were not included in the earlier papers in this series, those of Padgett et al. and Cieza et al., are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTSs, but just 5% for off-cloud WTTSs, similar to the value reported in the earlier works. WTTSs exhibit spectral energy distributions that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than L{sub disk}/L{sub *} = 2 x 10{sup -3} in 2 Myr and more tenuous than L{sub disk}/L{sub *} = 5 x 10{sup -4} in 4 Myr.« less

  2. Tracing Slow Winds from T Tauri Stars via Low Velocity Forbidden Line Emission

    NASA Astrophysics Data System (ADS)

    Simon, Molly; Pascucci, Ilaria; Edwards, Suzan; Feng, Wanda; Rigliaco, Elisabetta; Gorti, Uma; Hollenbach, David J.; Tuttle Keane, James

    2016-06-01

    Protoplanetary disks are a natural result of star formation, and they provide the material from which planets form. The evolutional and eventual dispersal of protoplanetary disks play critical roles in determining the final architecture of planetary systems. Models of protoplanetary disk evolution suggest that viscous accretion of disk gas onto the central star and photoevaporation driven by high-energy photons from the central star are the main mechanisms that drive disk dispersal. Understanding when photoevaporation begins to dominate over viscous accretion is critically important for models of planet formation and planetary migration. Using Keck/HIRES (resolution of ~ 7 km/s) we analyze three low excitation forbidden lines ([O I] 6300 Å, [O I] 5577 Å, and [S II] 6731 Å) previously determined to trace winds (including photoevaporative winds). These winds can be separated into two components, a high velocity component (HVC) with blueshifts between ~30 - 150 km/s, and a low velocity component (LVC) with blueshifts on the order of ~5 km/s (Hartigan et al. 1995). We selected a sample of 32 pre-main sequence T Tauri stars in the Taurus-Auriga star-forming region (plus TW Hya) with disks that span a range of evolutionary stages. We focus on the origin of the LVC specifically, which we are able to separate into a broad component (BC) and a narrow component (NC) due to the high resolution of our optical spectra. We focus our analysis on the [O I] 6300 Å emission feature, which is detected in 30/33 of our targets. Interestingly, we find wind diagnostics consistent with photoevaporation for only 21% of our sample. We can, however, conclude that a specific component of the LVC is tracing a magnetohydrodynamic (MHD) wind rather than a photoevaporative wind. We will present the details behind these findings and the implications they have for planet formation more generally.

  3. DETECTION OF STRONG MILLIMETER EMISSION FROM THE CIRCUMSTELLAR DUST DISK AROUND V1094 SCO: COLD AND MASSIVE DISK AROUND A T TAURI STAR IN A QUIESCENT ACCRETION PHASE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukagoshi, Takashi; Kohno, Kotaro; Saito, Masao

    2011-01-01

    We present the discovery of a cold massive dust disk around the T Tauri star V1094 Sco in the Lupus molecular cloud from the 1.1 mm continuum observations with AzTEC on ASTE. A compact (r{approx}< 320 AU) continuum emission coincides with the stellar position having a flux density of 272 mJy, which is the largest among T Tauri stars in Lupus. We also present the detection of molecular gas associated with the star in the five-point observations in {sup 12}CO J = 3-2 and {sup 13}CO J = 3-2. Since our {sup 12}CO and {sup 13}CO observations did not showmore » any signature of a large-scale outflow or a massive envelope, the compact dust emission is likely to come from a disk around the star. The observed spectral energy distribution (SED) of V1094 Sco shows no distinct turnover from near-infrared to millimeter wavelengths, can be well described by a flattened disk for the dust component, and no clear dip feature around 10 {mu}m suggestive of the absence of an inner hole in the disk. We fit a simple power-law disk model to the observed SED. The estimated disk mass ranges from 0.03 M{sub sun} to {approx}>0.12 M{sub sun}, which is one or two orders of magnitude larger than the median disk mass of T Tauri stars in Taurus. The resultant temperature is lower than that of a flared disk with well-mixed dust in hydrostatic equilibrium and is probably attributed to the flattened disk geometry for the dust which the central star cannot illuminate efficiently. From these results, together with the fact that there is no signature of an inner hole in the SED, we suggest that the dust grains in the disk around V1094 Sco sank into the midplane with grain growth by coalescence and are in the evolutional stage just prior to or at the formation of planetesimals.« less

  4. NICMOS Coronagraphic Imaging of a Circumstellar Disk around the T Tauri Star GM Aurigae

    NASA Astrophysics Data System (ADS)

    Koerner, D. W.; Schneider, G.; Smith, B. A.; Becklin, E. E.; Hines, D. C.; Kirkpatrick, J. D.; Lowrance, P. J.; Meier, R.; Reike, M.; Terrile, R. J.; Thompson, R. I.; NICMOS/IDT EONS Teams

    1998-12-01

    We have carried out a coronagraphic imaging study of circumstellar disk candidates as part of NICMOS IDT investigations of the environments of nearby stars. Here we present images of circumstellar nebulosity around the classical T Tauri star, GM Aurigae, at lambda = 1.1 and 1.6 mu m. The emission extends beyond 2.8'' (450 AU) from the star with brightness falling off radially as R(-2.5) . The flux ratio between the two wavelengths differs little from that expected for a K5 star like GM Aur, suggesting that scattering grains include a substantial population with sizes larger than 1 mu m. Preliminary modeling of the emission confirms its origin in stellar light reflected off the surface of a flared circumstellar disk and indicates an inclination 60(deg) from face on. These results agree well with the appearance of CO(2->1) emission in aperture synthesis images from the Owens Valley Millimeter Array, and with the morphology of optical nebulosity in psf-subtracted exposures taken by the WFPC2 science team. Further, the high-resolution constraint on size and orientation enables a definitive interpretation of the velocity structure from kinematic modeling of CO(2->1) images at lower resolution: it is demonstrated unequivocally that the gas is centrifugally supported and in Keplerian rotation within the confines of a disk centered on the star. This work is supported by NASA grant NAG 5-3042, and based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.

  5. An assessment of Li abundances in weak-lined and classical T Tauri stars of the Taurus-Auriga association

    NASA Astrophysics Data System (ADS)

    Sestito, P.; Palla, F.; Randich, S.

    2008-09-01

    Context: Accurate measurements of lithium abundances in young low-mass stars provide an independent and reliable age diagnostics. Previous studies of nearby star forming regions have identified significant numbers of Li-depleted stars, often at levels inconsistent with the ages indicated by their luminosity. Aims: We aim at a new and accurate analysis of Li abundances in a sample of ~100 pre-main sequence stars in Taurus-Auriga using a homogeneous and updated set of stellar parameters and model atmospheres appropriate for the spectral types of the sample stars. Methods: We compute Li abundances using published values of the equivalent widths of the Li λ6708 Å doublet obtained from medium/high resolution spectra. Results: We find that the number of significantly Li-depleted stars in Taurus-Auriga is greatly reduced with respect to earlier results. Only 13 stars have abundances lower than the interstellar value by a factor of 5 or greater. All of them are weak-lined T Tauri stars drawn from X-ray surveys; with the exception of four stars located near the L1551 and L1489 dark clouds, all the Li-depleted stars belong to the class of dispersed low-mass stars, distributed around the main sites of current star formation. If located at the distance of Taurus-Auriga, the stellar ages implied by the derived Li abundances are in the range 3-30 Myr, greater than the bulk of the Li-rich population with implication on the star formation history of the region. Conclusions: In order to derive firm conclusions about the fraction of Li-depleted stars of Taurus-Auriga, Li measurements of the remaining members of the association should be obtained, in particular of the group of stars that fall in the Li-burning region of the HR diagram. Table [see full text] is only available in electronic form at http://www.aanda.org

  6. Spatially extended polycyclic aromatic hydrocarbons in circumstellar disks around T Tauri and Herbig Ae stars

    NASA Astrophysics Data System (ADS)

    Geers, V. C.; van Dishoeck, E. F.; Visser, R.; Pontoppidan, K. M.; Augereau, J.-C.; Habart, E.; Lagrange, A. M.

    2007-12-01

    Aims:Our aim is to determine the presence and location of the emission from polycyclic aromatic hydrocarbons (PAHs) towards low and intermediate mass young stars with disks using large aperture telescopes. Methods: VLT-VISIR N-band spectra and VLT-ISAAC and VLT-NACO L-band spectra of 29 sources are presented, spectrally resolving the 3.3, 8.6, 11.2, and 12.6 μm PAH features. Spatial-extent profiles of the features and the continuum emission have been derived and used to associate the PAH emission with the disks. The results are discussed in the context of recent PAH-emission disk models. Results: The 3.3, 8.6, and 11.2 μm PAH features are detected toward a small fraction of the T Tauri stars, with typical upper limits between 1 × 10-15 and 5 × 10-17 W m-2. All 11.2 μm detections from a previous Spitzer survey are confirmed with (tentative) 3.3 μm detections, and both the 8.6 and the 11.2 μm features are detected in all PAH sources. For 6 detections, the spatial extent of the PAH features is confined to scales typically smaller than 0.12-0.34'', consistent with the radii of 12-60 AU disks at their distances (typically 150 pc). For 3 additional sources, WL 16, HD 100546, and TY CrA, one or more of the PAH features are more extended than the hot dust continuum of the disk, whereas for Oph IRS 48, the size of the resolved PAH emission is confirmed as smaller than for the large grains. For HD 100546, the 3.3 μm emission is confined to a small radial extent of 12±3 AU, most likely associated with the outer rim of the gap in this disk. Gaps with radii out to 10-30 AU may also affect the observed PAH extent for other sources. For both Herbig Ae and T Tauri stars, the small measured extents of the 8.6 and 11.2 μm features are consistent with larger (≥100 carbon atoms) PAHs. Based on observations obtained at the European Southern Observatory, Paranal, Chile, within the observing programs 164.I-0605 (ISAAC May 2002), 074.C-0413 (NACO, March/April 2005), 075.C-0420

  7. Timescales of Disk Evolution and Planet Formation: HST, Adaptive Optics, and ISO Observations of Weak-Line and Post-T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang; Zinnecker, Hans; Alcalá, Juan M.; Allard, France; Covino, Elvira; Frink, Sabine; Köhler, Rainer; Kunkel, Michael; Moneti, Andrea; Schweitzer, Andreas

    2000-08-01

    We present high spatial resolution HST and ground-based adaptive optics observations and high-sensitivity ISO (ISOCAM & ISOPHOT) observations of a sample of X-ray selected weak-line (WTTS) and post- (PTTS) T Tauri stars located in the nearby Chamaeleon T and Scorpius-Centaurus OB associations. HST/NICMOS and adaptive optics observations aimed at identifying substellar companions (young brown dwarfs) at separations >=30 AU from the primary stars. No such objects were found within 300 AU of any of the target stars, and a number of faint objects at larger separations can very likely be attributed to a population of field (background) stars. ISOCAM observations of 5 to 15 Myr old WTTSs and PTTSs in ScoCen reveal infrared excesses which are clearly above photospheric levels and which have a spectral index intermediate between that of younger (1 to 5 Myr) T Tauri stars in Chamaeleon and that of pure stellar photospheres. The difference in the spectral index of the older PTTSs in ScoCen compared with the younger classical and weak-line TTSs in Cha can be attributed to a deficiency of smaller size (0.1 to 1 μm) dust grains relative to larger size (~5 μm) dust grains in the disks of the PTTSs. The lack of small dust grains is either due to the environment (effect of nearby O stars and supernova explosions) or due to disk evolution. If the latter is the case, it would hint that circumstellar disks start to become dust depleted at an age between 5 to 15 Myr. Dust depletion is very likely related to the build-up of larger particles (ultimately rocks and planetesimals) and thus an indicator for the onset of the period of planet formation. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555, observations at the European Southern Observatory, La Silla (ESO Prop ID 58.E-0169), and observations with

  8. Variability of FUV Emission Line in Classical T Tauri Stars as a Diagnostic for Disc Accretion

    NASA Astrophysics Data System (ADS)

    Ramkumar, B.; Johns-Krull, C. M.

    2005-12-01

    We present our results of FUV emission line variability studies done on four classical T Tauri stars. We have used the IUE Final Archive spectra of pre-main sequence stars to analyze the sample of four stars BP Tau, DR Tau, RU Lup and RY Tau where each of these low-resolution (R ˜6 Å) spectra was observed in the IUE short-wavelength band pass (1150--1980Å). Given a broad time line of multiple observations being available from the IUE Final archive, an intrinsic variability study has been possible with this sample. Our results indicate that the transition region lines \\ion{Si}{4} and \\ion{C}{4}, produced near the accretion shocks at ˜105 K, have a strong correlation between them in all four stars except DR Tau. We also observe a strong correlation between \\ion{C}{4} & \\ion{He}{2} on our entire sample with a correlation coefficient of 0.549 (false alarm probability = 7.9 x 10-2) or higher. In addition, \\ion{He}{2} correlates with the molecular hydrogen (1503Å) line in all but RU Lup. If the \\ion{He}{2} lines are produced because of X-ray ionization then the observed molecular hydrogen emission is indeed controlled by X-ray ionization and therefore \\ion{He}{2} could serve as an X-ray proxy for future studies. Also, our correlation results strengthen the fact that \\ion{C}{4} is a good predictor of \\ion{Si}{4} and have a common origin i.e. in accretion shocks in the star formation process.

  9. 10 AU scale halo structure around DG Tauri

    NASA Technical Reports Server (NTRS)

    Chen, Wen P.; Howell, R. R.; Simon, M.; Benson, J. A.

    1992-01-01

    Lunar occultation observations of the active T Tauri star DG Tau show that in the infrared K band it has a core-halo structure: 20-25 percent of the flux comes from a region 10 AU in extent and the rest from an unresolved core smaller than an AU. These results are consistent with those reported by Leinert et al. from a separate observation. The results obtained here and those of Leinert et al., measuring the intensity distribution projected along directions spanning roughly 40 deg, indicate that the resolved structure is not highly elongated. The extended emission is interpreted as star light scattered by optically thin dust located in a halo surrounding the star.

  10. HeI lambda 10830 line: a probe of the accretion/ejection activity in RU Lupi .

    NASA Astrophysics Data System (ADS)

    Podio, L.; Garcia, P. J. V.; Bacciotti, F.

    Most of the observed lines and continuum emission excesses from Classical T Tauri Stars (CTTSs) take place at the star-disk interface or in the inner disk region. These regions have a complex emission topology still largely unknown. The HeI lambda 10830 line showed to be a powerful instrument to trace both accreting matter, in emission, and outflowing gas via the frequently detected absorption features. To fully exploit the diagnostic potential of this line we performed a spectro-astrometric analysis of the spectra of the TTS RU Lupi, taken with ISAAC at the VLT. The analysis highlighted a displacement with respect to the source of the region where the absorption feature is generated. This indicates the presence of both an inner stellar wind and a collimated micro-jet in the circumstellar region of RU Lupi.

  11. V471 Tauri, ballerina of the Hyades

    NASA Astrophysics Data System (ADS)

    Skillman, David R.; Patterson, Joseph

    1988-09-01

    Orbital light curves for V471 Tauri, the red dwarf-white dwarf binary in the Hyades, were obtained for the 1980-1983 observing seasons based on photometric and spectroscopic data. The results reveal the effects of tidal distortion of the secondary and a slow, transient wave which may originate from darker areas on the star's surface. A consistent ephemeris is derived. A Ca II line emission similar to that of rapidly rotating late-type stars and an additional component arising from the stellar region bathed in the white dwarf's UV-radiation field are found. An overall orbital-period decrease is noted which may be due to the strong braking of the K star's rotation by its own stellar wind, coupled with the enforcement of synchronous rotation by the tidal interaction with the white dwarf.

  12. Disk Accretion in the 10 Myr Old T Tauri Stars TW Hydrae and Hen 3-600A.

    PubMed

    Muzerolle; Calvet; Briceño; Hartmann; Hillenbrand

    2000-05-20

    We have found that two members of the TW Hydrae association, TW Hydrae and Hen 3-600A, are still actively accreting, based on the ballistic infall signature of their broad Halpha emission profiles. We present the first quantitative analysis of accretion in these objects and conclude that the same accretion mechanisms which operate in the well-studied 1 Myr old T Tauri stars can and do occur in older (10 Myr) stars. We derive the first estimates of the disk mass accretion rate in TW Hya and Hen 3-600A, which are 1-2 orders of magnitude lower than the average rates in 1 Myr old objects. The decrease in accretion rates over 10 Myr, as well as the low fraction of TW Hya association objects still accreting, points to significant disk evolution, possibly linked to planet formation. Given the multiplicity of the Hen 3-600 system and the large UV excess of TW Hya, our results show that accretion disks can be surprisingly long lived in spite of the presence of companions and significant UV ionizing flux.

  13. Spectroscopy of T Tauri stars with UVES. Observations and analysis of RU Lup

    NASA Astrophysics Data System (ADS)

    Stempels, H. C.; Piskunov, N.

    2002-08-01

    We present the first results of our observations of classical T Tauri Stars with UVES/VLT. The data consists of high signal-to-noise (ge 150) and high spectral resolution (R ~ 60 000) spectra. A large simultaneous wavelength coverage throughout most of the visible spectrum and comparatively short integration times allow us to study variability on short time-scales, using a number of diagnostics reflecting a wide range of physical processes. In particular we concentrate on the properties and geometry of the accretion process in the strongly accreting and highly variable CTTS RU Lup. We use the evolution of the level of veiling, the shapes of absorption and emission lines, and correlations between these diagnostics, to make new measurements of the fundamental stellar parameters as well as constraints on the accretion process and its geometry. We also derive the shortest time-scale of incoherent changes, which has implications for the nature of the accretion process in RU Lup. Based on observations collected at the European Southern Observatory, Chile (proposal 65.I-0404).

  14. A multi-wavelength study of pre-main sequence stars in the Taurus-Auriga star-forming region

    NASA Astrophysics Data System (ADS)

    Guenther, E. W.; Stelzer, B.; Neuhäuser, R.; Hillwig, T. C.; Durisen, R. H.; Menten, K. M.; Greimel, R.; Barwig, H.; Englhauser, J.; Robb, R. M.

    2000-05-01

    Although many lowmass pre-main sequence stars are strong X-ray sources, the origin of the X-ray emission is not well known. Since these objects are variable at all frequencies, simultaneous observations in X-rays and in other wavelengths are able to constrain the properties of the X-ray emitting regions. In this paper, we report quasi-simultaneous observations in X-rays, the optical, and the radio regime for classical and weak-line T Tauri stars from the Taurus-Auriga star-forming region. We find that all detected T Tauri stars show significant night-to-night variations of the X-ray emission. For three of the stars, FM Tau and CW Tau, both classical T Tauri stars, and V773 Tau, a weak-line T Tauri star, the variations are especially large. From observations taken simultaneously, we also find that there is some correspondence between the strength of Hα and the X-ray brightness in V773 Tau. The lack of a strong correlation leads us to conclude that the X-ray emission of V773 Tau is not a superposition of flares. However, we suggest that a weak correlation occurs because chromospherically active regions and regions of strong X-ray emission are generally related. V773 Tau was detected at 8.46 GHz as a weakly circularly polarised but highly variable source. We also find that the X-ray emission and the equivalent width of Hα remained unchanged, while large variations of the flux density in the radio regime were observed. This clearly indicates that the emitting regions are different. Using optical spectroscopy we detected a flare in Hα and event which showed a flare-like light-curve of the continuum brightness in FM Tau. However, ROSAT did not observe the field at the times of these flares. Nevertheless, an interesting X-ray event was observed in V773 Tau, during which the flux increased for about 8 hours and then decreased back to the same level in 5 hours. We interpret this as a long-duration event similar to those seen on the sun and other active stars. In the

  15. Measurements of mass accretion rates in Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Donehew, Brian

    Herbig Ae/Be stars(HAeBes) are young stellar objects of spectral class F2 through B0, with the central star often surrounded by a circumstellar disk of gas and dust. They are the higher mass analogs to T Tauri stars. The interaction between the star and the disk is not well understood, nor is the disk structure. The central star will often accrete mass from the disk, and the mass accretion rate is an important parameter for modeling the disk structure and evolution. The methods for measuring mass accretion rates of T Tauri stars are generally not applicable to HAeBe stars. As such, reliable measurements of mass accretion rates for HAeBes are rare. Garrison(1978) saw that the Balmer Discontinuity of HAeBes was veiled, and attributed this veiling to accretion luminosity. Building on Garrison(1978) and the work of Muzerolle et al. (2004), I determine the mass accretion rates and accretion luminosities of a large sample of HAeBe stars by measuring the veiling of the Balmer Discontinuity due to the accretion luminosity. Muzerolle et al. (1998) established a strong correlation between the accretion luminosity of T Tauri stars and the luminosity of Br gamma, and this correlation seems to extend to the evolutionary precursors to HAeBes, intermediate T Tauri stars, as well Calvet et al. (2004). I test this correlation for HAeBes and discover that it is valid for HAe stars but not for HBe stars. From examining the HAeBes of my sample from spectral range A3 to B7, there does not seem to be a particular spectral type at which the correlation fails. A few of the late HBe stars are consistent with the correlation, but most of the HBe stars have Br gamma luminosities much larger than what one would expect from the correlation. This suggests that there might be a significant stellar wind component to the Br gamma luminosity for many of the HBe stars. T Tauri stars accrete mass from their disks magnetospherically, in which the strong stellar field of the star truncates the disk at

  16. VizieR Online Data Catalog: UV spectra of classical T Tauri stars (France+, 2014)

    NASA Astrophysics Data System (ADS)

    France, K.; Schindhelm, E.; Bergin, E. A.; Roueff, E.; Abgrall, H.

    2017-06-01

    We present 16 objects from the larger GTO + DAO T Tauri star samples described by Ardila et al. (2013ApJS..207....1A; focusing on the hot gas emission lines) and France et al. (2012, J/ApJ/756/171; focusing on the molecular circumstellar environment). Eleven of the 16 sources were observed as part of the DAO of Tau guest observing program (PID 11616; PI: G. Herczeg), four were part of the COS Guaranteed Time Observing program on protoplanetary disks (PIDs 11533 and 12036; PI: J. Green), and we have included archival STIS observations of the well-studied CTTS TW Hya (Herczeg et al. 2002ApJ...572..310H, 2004ApJ...607..369H), obtained through StarCAT (Ayres 2010, J/ApJS/187/149). The targets were selected by the availability of reconstructed Lyα spectra, as this emission line is a critical component to the intrinsic CTTS UV radiation field (Schindhelm et al. 2012ApJ...756L..23S) and has not been uniformly included in recent studies of the CTTS radiation field (e.g., Ingleby et al. 2011AJ....141..127I; Yang et al. 2012, J/ApJ/744/121). Most of the targets were observed with the medium-resolution FUV modes of COS (G130M and G160M; Green et al. 2012ApJ...744...60G). (2 data files).

  17. Photometric search for variable stars in the young open cluster Berkeley 59

    NASA Astrophysics Data System (ADS)

    Lata, Sneh; Pandey, A. K.; Maheswar, G.; Mondal, Soumen; Kumar, Brijesh

    2011-12-01

    We present the time series photometry of stars located in the extremely young open cluster Berkeley 59. Using the 1.04-m telescope at Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, we have identified 42 variables in a field of ˜13 × 13 arcmin2 around the cluster. The probable members of the cluster have been identified using a (V, V-I) colour-magnitude diagram and a (J-H, H-K) colour-colour diagram. 31 variables have been found to be pre-main-sequence stars associated with the cluster. The ages and masses of the pre-main-sequence stars have been derived from the colour-magnitude diagram by fitting theoretical models to the observed data points. The ages of the majority of the probable pre-main-sequence variable candidates range from 1 to 5 Myr. The masses of these pre-main-sequence variable stars have been found to be in the range of ˜0.3 to ˜3.5 M⊙, and these could be T Tauri stars. The present statistics reveal that about 90 per cent T Tauri stars have period <15 d. The classical T Tauri stars are found to have a larger amplitude than the weak-line T Tauri stars. There is an indication that the amplitude decreases with an increase in mass, which could be due to the dispersal of the discs of relatively massive stars.

  18. A Multi-Fiber Spectroscopic Search for Low-mass Young Stars in Orion OB1

    NASA Astrophysics Data System (ADS)

    Loerincs, Jacqueline; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2017-01-01

    We present here results of a low resolution spectroscopic followup of candidate low-mass pre-main sequence stars in the Orion OB1 association. Our targets were selected from the CIDA Variability Survey of Orion (CVSO), and we used the Michigan/Magellan Fiber Spectrograph (M2FS) on the Magellan Clay 6.5m telescope to obtain spectra of 500 candidate T Tauri stars distributed in seven 0.5 deg diameter fields, adding to a total area of ~5.5 deg2. We identify young stars by looking at the distinctive Hα 6563 Å emission and Lithium Li I 6707 Å absorption features characteristic of young low mass pre-main sequence stars. Furthermore, by measuring the strength of their Hα emission lines, confirmed T Tauri stars can be classified as either Classical T Tauris (CTTS) or Weak-line T Tauris (WTTS), which give indication of whether the star is actively accreting material from a gas and dust disk surrounding the star, which may be the precursor of a planetary system. We confirm a total of 90 T Tauri stars, of which 50% are newly identified young members of Orion; out of the 49 new detections,15 are accreting CTTS, and of these all but one are found in the OB1b sub-region. This result is in line with our previous findings that this region is much younger than the more extended Orion OB1a sub-association. The M2FS results add to our growing census of young stars in Orion, that is allowing us to characterize in a systematic and consistent way the distribution of stellar ages across the entire complex, in order to building a complete picture of star formation in this, one of nearest most active sites of star birth.

  19. Narrow-band Imagery with the Goddard Fabry-Perot: Probing the Epoch of Active Accretion for PMS Stars

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.; Grady, C.; Endres, M.; Williger, G.

    2006-01-01

    The STIS coronagraphic imaging sample of I'MS stars was surveyed with the Goddard Fabry-Perot (GFP) interferometer to determine what fraction of the stars drive jets, whether there is any difference in behavior for a group of intermediate-mass stars as compared with T Tauri stars, and to search for evolutionary effects. Compared to broad band imaging, the FGP achieves an emission-line nebulosity-to-star contrast gain of between 500 and 3000. To date, we have detected jets associated with classical T Tauri stars spanning a factor of 280 in mass accretion rate in approximately 50% of the STIS coronagraphic imaging sample. We also detected jets or Herbig-HARO knots associated with 5 Herbig Ae stars, all younger than 8 Myr, for a detection fraction which is smaller than the T Tauri survey.

  20. A near infrared classification of pre-main sequence stars

    NASA Astrophysics Data System (ADS)

    Alonso-Martínez, M.; Meeus, G.; Eiroa, C.

    2017-03-01

    T Tauri stars are young solar analogues (M ≤ 1.5M_{⊙}), harbouring a disc and with ongoing accretion. The T Tauri phase has been estimated to last around 10 Myr. We have obtained J and K band spectra with WHT/LIRIS and NOT/NOTCam of 112 T Tauri stars in the Taurus star forming region. By measuring the equivalent widths of common and strong spectral features, known to follow a tight relation with temperature, we aim at providing a direct and fast method to derive stellar effective temperatures. Line ratios of strong absorption features relatively close in wavelength are used to overcome the effects of veiling. Besides, the Al I (1.313μm) line is strongly gravity-dependent and used to discern between surface gravities. Finally, we estimate accretion rates using the H-lines Pa-β and Br-γ.

  1. Amplitude variations of modulated RV Tauri stars support the dust obscuration model of the RVb phenomenon

    NASA Astrophysics Data System (ADS)

    Kiss, L. L.; Bódi, A.

    2017-12-01

    Context. RV Tauri-type variables are pulsating post-asymptotic giant branch (AGB) stars that evolve rapidly through the instability strip after leaving the AGB. Their light variability is dominated by radial pulsations. Members of the RVb subclass show an additional variability in the form of a long-term modulation of the mean brightness, for which the most popular theories all assume binarity and some kind of circumstellar dust. Here we assess whether or not the amplitude modulations are consistent with the dust obscuration model. Aims: We measure and interpret the overall changes of the mean amplitude of the pulsations along the RVb variability. Methods: We compiled long-term photometric data for RVb-type stars, including visual observations of the American Association of Variable Star Observers, ground-based CCD photometry from the OGLE and ASAS projects, and ultra-precise space photometry of one star, DF Cygni, from theKepler space telescope. After converting all the observations to flux units, we measure the cycle-to-cycle variations of the pulsation amplitude and correlate them to the actual mean fluxes. Results: We find a surprisingly uniform correlation between the pulsation amplitude and the mean flux; they scale linearly with each other for a wide range of fluxes and amplitudes. This means that the pulsation amplitude actually remains constant when measured relative to the system flux level. The apparent amplitude decrease in the faint states has long been noted in the literature but it was always claimed to be difficult to explain with the actual models of the RVb phenomenon. Here we show that when fluxes are used instead of magnitudes, the amplitude attenuation is naturally explained by periodic obscuration from a large opaque screen, one most likely corresponding to a circumbinary dusty disk that surrounds the whole system.

  2. Dynamical investigations of the multiple stars

    NASA Astrophysics Data System (ADS)

    Kiyaeva, Olga V.; Zhuchkov, Roman Ya.

    2017-11-01

    Two multiple stars - the quadruple star - Bootis (ADS 9173) and the triple star T Taury were investigated. The visual double star - Bootiswas studied on the basis of the Pulkovo 26-inch refractor observations 1982-2013. An invisible satellite of the component A was discovered due to long-term uniform series of observations. Its orbital period is 20 ± 2 years. The known invisible satellite of the component B with near 5 years period was confirmed due to high precision CCD observations. The astrometric orbits of the both components were calculated. The orbits of inner and outer pairs of the pre-main sequence binary T Taury were calculated on the basis of high precision observations by the VLT and on the Keck II Telescope. This weakly hierarchical triple system is stable with probability more than 70%.

  3. Elemental abundance analyses with coadded Dominion Astrophysical Observatory spectrograms. II - The mercury-manganese stars 53 Tauri, Mu Leporis and Kappa Cancri

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.

    1987-01-01

    Elemental abundance analyses based on the coaddition of at least 10 2.4 A/mm Ila-O Dominion Astrophysical Observatory spectrograms have been performed for three mercury-manganese stars, 53 Tauri, Mu Leporis, and Kappa Cancri. These fine analyses show a greater degree of internal consistency than previous studies based on lower signal-to-noise data. Lines as weak as of order 3 mA are employed in these studies, and lines of atomic species not previously identified have been discovered. The status of 53 Tau as an anomalous member of this class is confirmed in that it lacks a Hg II 3984 A line even at the 2 mA level. Further, its surface gravity indicates it is less evolved than Mu Lep and Chi Cnc. Violations of the odd-even effect in the photospheric abundances of all three stars suggest that nonnuclear processes have operated in their atmospheres. Some of the values are substantially changed from their presumably initial solar values.

  4. Discussing the low fraction of disk-bearing T Tauri stars discovered near to the Sh2-296 nebula

    NASA Astrophysics Data System (ADS)

    Gregorio-Hetem, Jane

    2015-08-01

    A multiband study has been developed by our team in the direction of young star clusters associated to the Sh2-296 nebula aiming to unveil the star formation history of this galactic molecular cloud that shows a mixing of different age stellar groups. A sample of 58 pre-main sequence stars has been recently discovered by us in this region (Fernandes et al. 2015, MNRAS in press), based on optical spectral features. Only 41% of the sample shows evidence of IR excess revealing the presence of circumstellar disks. It is interesting to note that the targets were revealed by their strong X-ray emission, typically found in T Tauri stars (TTs) (Santos-Silva et al. 2015, in preparation) . In this case, it would be expected a larger number of disk-bearing stars and also the fraction of circumstellar emission (fc = Ldisk/Ltotal ) should be more significant in these objects. However, we verified that only 12% of the sample has fc > 30%. This low fraction is quite rare compared to most young star-forming regions, suggesting that some external factor has accelerated the disc dissipation. In the present work we explore the circumstellar structure of a subsample of 8 TTs associated to Sh2-296. The TTs were selected on the basis of their high circumstellar emission, which is estimated by SED fitting that uses near- to mid-IR data extracted from available catalogues (WISE, AKARI, MSX). The circumstellar characteristics are confronted to interstellar environment by comparing the stellar spatial distribution with 12CO maps (Nanten Survey, Fukui et al. ). Most of the TTs are projected against moderate molecular emission (33 Jy), but some of them are found in regions of lower levels of gas distribution (3.8 Jy). The similarities and differences found among the studied objects are discussed in order to better understand the formation and evolution of protostellar disks of the selected sample and their role in the star formation scenario nearby Sh2-296

  5. Wind diagnostics and correlations with the near-infrared excess in Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Corcoran, M.; Ray, T. P.

    1998-03-01

    Intermediate dispersion spectroscopic observations of 37 Herbig Ae/Be stars reveal that the equivalent widths of their [OI]lambda 6300 and Hα emission lines, are related to their near-infrared colours in the same fashion as the T-Tauri stars. Such a correlation strongly supports the idea that the winds from Herbig Ae/Be stars arise in the same manner as those from T-Tauri stars, i.e. through accretion driven mass-loss. We also find that the [OI]lambda 6300 line luminosity correlates better with excess infrared luminosity than with stellar luminosities, again supporting the idea that Herbig Ae/Be winds are accretion driven. If one includes the lower mass analogues of the Herbig Ae/Be stars with forbidden line emission, i.e. the classical T-Tauri stars, the correlation between mass-loss rate and infrared excess spans 5 orders of magnitude in luminosity and a range of masses from 0.5Msun to approximately 10Msun. Our observations therefore extend the findings of Cohen et al. (1989) and Cabrit et al. (1990) for low mass young stars and, taken in conjunction with other evidence (Corcoran & Ray 1997), strongly support the presence of circumstellar disks around intermediate mass stars with forbidden line emission. An implication of our findings is that the same outflow model must be applicable to these Herbig Ae/Be stars and the classical T Tauri stars. Based on observations made at the La Palma Observatory, the Caltech Submillimeter Observatory, and the European Southern Observatory/Max Planck Institute 2.2m Telescope.

  6. Polycyclic Aromatic Hydrocarbons in Protoplanetary Disks around Herbig Ae/Be and T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Seok, Ji Yeon; Li, Aigen

    2017-02-01

    A distinct set of broad emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm, is often detected in protoplanetary disks (PPDs). These features are commonly attributed to polycyclic aromatic hydrocarbons (PAHs). We model these emission features in the infrared spectra of 69 PPDs around 14 T Tauri and 55 Herbig Ae/Be stars in terms of astronomical PAHs. For each PPD, we derive the size distribution and the charge state of the PAHs. We then examine the correlations of the PAH properties (I.e., sizes and ionization fractions) with the stellar properties (e.g., stellar effective temperature, luminosity, and mass). We find that the characteristic size of the PAHs tends to correlate with the stellar effective temperature ({T}{eff}) and interpret this as the preferential photodissociation of small PAHs in systems with higher {T}{eff} of which the stellar photons are more energetic. In addition, the PAH size shows a moderate correlation with the red-ward wavelength shift of the 7.7 μm PAH feature that is commonly observed in disks around cool stars. The ionization fraction of PAHs does not seem to correlate with any stellar parameters. This is because the charging of PAHs depends on not only the stellar properties (e.g., {T}{eff}, luminosity) but also their spatial distribution in the disks. The marginally negative correlation between PAH size and stellar age suggests that continuous replenishment of PAHs via the outgassing of cometary bodies and/or the collisional grinding of planetesimals and asteroids is required to maintain the abundance of small PAHs against complete destruction by photodissociation.

  7. X-rays from young stars: A summary of highlights from the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST)

    NASA Astrophysics Data System (ADS)

    Güdel, M.

    2008-02-01

    The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST) is a survey of the nearest large star-forming region, the Taurus Molecular Cloud (TMC), making use of all instruments on board the XMM-Newton X-ray observatory. The survey, presently still growing, has provided unprecedented spectroscopic results from nearly every observed T Tauri star, and from ≈50% of the studied brown dwarfs and protostars. The survey includes the first coherent statistical sample of high-resolution spectra of T Tauri stars, and is accompanied by an U-band/ultraviolet imaging photometric survey of the TMC. XEST led to the discovery of new, systematic X-ray features not possible before with smaller samples, in particular the X-ray soft excess in classical T Tauri stars and the Two-Absorber X-ray (TAX) spectra of jet-driving T Tauri stars. This paper summarizes highlights from XEST and reviews the key role of this large project.

  8. Variability of Young Stars: the Importance of Keeping an Eye on Children

    NASA Astrophysics Data System (ADS)

    Herbst, W.

    2013-06-01

    (Abstract only) I will review the state of our understanding of young stars with an emphasis on how and why they vary in brightness. The main causes of the variations will be reviewed, including the rotation of spotted weak-lined T Tauri stars, accretion onto classical T Tauri stars, the eruptive behavior of FUors, and the enigmatic variations of the UXors. The important role that amateurs have and will continue to play in these studies is highlighted. I will also discuss the latest results on two unusual young binaries, BM Orionis in the Trapezium asterism and KH 15D in NGC 2264.

  9. A Candidate Young Massive Planet in Orbit around the Classical T Tauri Star CI Tau

    NASA Astrophysics Data System (ADS)

    Johns-Krull, Christopher M.; McLane, Jacob N.; Prato, L.; Crockett, Christopher J.; Jaffe, Daniel T.; Hartigan, Patrick M.; Beichman, Charles A.; Mahmud, Naved I.; Chen, Wei; Skiff, B. A.; Cauley, P. Wilson; Jones, Joshua A.; Mace, G. N.

    2016-08-01

    The ˜2 Myr old classical T Tauri star CI Tau shows periodic variability in its radial velocity (RV) variations measured at infrared (IR) and optical wavelengths. We find that these observations are consistent with a massive planet in a ˜9 day period orbit. These results are based on 71 IR RV measurements of this system obtained over five years, and on 26 optical RV measurements obtained over nine years. CI Tau was also observed photometrically in the optical on 34 nights over ˜one month in 2012. The optical RV data alone are inadequate to identify an orbital period, likely the result of star spot and activity-induced noise for this relatively small data set. The infrared RV measurements reveal significant periodicity at ˜9 days. In addition, the full set of optical and IR RV measurements taken together phase coherently and with equal amplitudes to the ˜9 day period. Periodic RV signals can in principle be produced by cool spots, hotspots, and reflection of the stellar spectrum off the inner disk, in addition to resulting from a planetary companion. We have considered each of these and find the planet hypothesis most consistent with the data. The RV amplitude yields an M\\sin I of ˜8.1 M Jup; in conjunction with a 1.3 mm continuum emission measurement of the circumstellar disk inclination from the literature, we find a planet mass of ˜11.3 M Jup, assuming alignment of the planetary orbit with the disk. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  10. Star–Disk Interactions in Multiband Photometric Monitoring of the Classical T Tauri Star GI Tau

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Herczeg, Gregory J.; Jose, Jessy; Fu, Jianning; Chiang, Po-Shih; Grankin, Konstantin; Michel, Raúl; Kesh Yadav, Ram; Liu, Jinzhong; Chen, Wen-ping; Li, Gang; Xue, Huifang; Niu, Hubiao; Subramaniam, Annapurni; Sharma, Saurabh; Prasert, Nikom; Flores-Fajardo, Nahiely; Castro, Angel; Altamirano, Liliana

    2018-01-01

    The variability of young stellar objects is mostly driven by star–disk interactions. In long-term photometric monitoring of the accreting T Tauri star GI Tau, we detect extinction events with typical depths of {{Δ }}V∼ 2.5 mag that last for days to months and often appear to occur stochastically. In 2014–2015, extinctions that repeated with a quasi-period of 21 days over several months are the first empirical evidence of slow warps predicted by magnetohydrodynamic simulations to form at a few stellar radii away from the central star. The reddening is consistent with {R}V=3.85+/- 0.5 and, along with an absence of diffuse interstellar bands, indicates that some dust processing has occurred in the disk. The 2015–2016 multiband light curve includes variations in spot coverage, extinction, and accretion, each of which results in different traces in color–magnitude diagrams. This light curve is initially dominated by a month-long extinction event and a return to the unocculted brightness. The subsequent light curve then features spot modulation with a 7.03 day period, punctuated by brief, randomly spaced extinction events. The accretion rate measured from U-band photometry ranges from 1.3× {10}-8 to 1.1× {10}-10 M ⊙ yr‑1 (excluding the highest and lowest 5% of high- and low- accretion rate outliers), with an average of 4.7 × {10}-9 M ⊙ yr‑1. A total of 50% of the mass is accreted during bursts of > 12.8× {10}-9 M ⊙ yr{}-1, which indicates limitations on analyses of disk evolution using single-epoch accretion rates.

  11. Orbits in the T Tauri triple system observed with SPHERE

    NASA Astrophysics Data System (ADS)

    Köhler, R.; Kasper, M.; Herbst, T. M.; Ratzka, T.; Bertrang, G. H.-M.

    2016-03-01

    Aims: We present new astrometric measurements of the components in the T Tauri system and derive new orbits and masses. Methods: T Tauri was observed during the science verification time of the new extreme adaptive optics facility SPHERE at the VLT. We combine the new positions with recalibrated NACO-measurements and data from the literature. Model fits for the orbits of T Tau Sa and Sb around each other and around T Tau N yield orbital elements and individual masses of the stars Sa and Sb. Results: Our new orbit for T Tau Sa/Sb is in good agreement with other recent results, which indicates that enough of the orbit has been observed for a reliable fit. The total mass of T Tau S is 2.65 ± 0.11 M⊙. The mass ratio MSb:MSa is 0.25 ± 0.03, which yields individual masses of MSa = 2.12 ± 0.10 M⊙ and MSb = 0.53 ± 0.06 M⊙. If our current knowledge of the orbital motions is used to compute the position of the southern radio source in the T Tauri system, then we find no evidence of the proposed dramatic change in its path. Based on observations collected at the European Southern Observatory, Chile, proposals number 070.C-0162, 072.C-0593, 074.C-0699, 074.C-0396, 078.C-0386, 380.C-0179, 382.C-0324, 60.A-9363 and 60.A-9364.

  12. A young star takes centre stage

    NASA Image and Video Library

    2015-03-02

    With its helical appearance resembling a snail’s shell, this reflection nebula seems to spiral out from a luminous central star in this new NASA/ESA Hubble Space Telescope image. The star in the centre, known as V1331 Cyg and located in the dark cloud LDN 981 — or, more commonly, Lynds 981 — had previously been defined as a T Tauri star. A T Tauri is a young star — or Young Stellar Object — that is starting to contract to become a main sequence star similar to the Sun. What makes V1331Cyg special is the fact that we look almost exactly at one of its poles. Usually, the view of a young star is obscured by the dust from the circumstellar disc and the envelope that surround it. However, with V1331Cyg we are actually looking in the exact direction of a jet driven by the star that is clearing the dust and giving us this magnificent view. This view provides an almost undisturbed view of the star and its immediate surroundings allowing astronomers to study it in greater detail and look for features that might suggest the formation of a verylow-mass object in the outer circumstellar disc.

  13. Detection of circumstellar gas associated with GG Tauri

    NASA Technical Reports Server (NTRS)

    Skrutskie, M. F.; Snell, R. L.; Strom, K. M.; Strom, S. E.; Edwards, S.; Fukui, Y.; Mizuno, A.; Hayashi, M.; Ohashi, N.

    1993-01-01

    Double-peaked (C-12)O (1-0) emission centered on the young T Tauri star GG Tau possesses a line profile which may be modeled on the assumption that CO emission arises in an extended circumstellar disk. While bounds on the observed gas mass can be estimated on this basis, it is suggested that a large amount of mass could lie within a small and optically thick region, escaping detection due to beam-dilution effects. In addition, CO may no longer accurately trace the gas mass due to its dissociation, or freezing into grains, or due to the locking-up of carbon into more complex molecules.

  14. Multi-epoch observations with high spatial resolution of multiple T Tauri systems

    NASA Astrophysics Data System (ADS)

    Csépány, Gergely; van den Ancker, Mario; Ábrahám, Péter; Köhler, Rainer; Brandner, Wolfgang; Hormuth, Felix; Hiss, Hector

    2017-07-01

    Context. In multiple pre-main-sequence systems the lifetime of circumstellar discs appears to be shorter than around single stars, and the actual dissipation process may depend on the binary parameters of the systems. Aims: We report high spatial resolution observations of multiple T Tauri systems at optical and infrared wavelengths. We determine whether the components are gravitationally bound and orbital motion is visible, derive orbital parameters, and investigate possible correlations between the binary parameters and disc states. Methods: We selected 18 T Tau multiple systems (16 binary and two triple systems, yielding 16 + 2 × 2 = 20 binary pairs) in the Taurus-Auriga star-forming region from a previous survey, with spectral types from K1 to M5 and separations from 0.22″ (31 AU) to 5.8″ (814 AU). We analysed data acquired in 2006-07 at Calar Alto using the AstraLux lucky imaging system, along with data from SPHERE and NACO at the VLT, and from the literature. Results: We found ten pairs to orbit each other, five pairs that may show orbital motion, and five likely common proper motion pairs. We found no obvious correlation between the stellar parameters and binary configuration. The 10 μm infra-red excess varies between 0.1 and 7.2 mag (similar to the distribution in single stars, where it is between 1.7 and 9.1), implying that the presence of the binary star does not greatly influence the emission from the inner disc. Conclusions: We have detected orbital motion in young T Tauri systems over a timescale of ≈ 20 yr. Further observations with even longer temporal baseline will provide crucial information on the dynamics of these young stellar systems.

  15. Surface differential rotation and prominences of the Lupus post T Tauri star RX J1508.6-4423

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Mengel, M.; Carter, B. D.; Marsden, S.; Collier Cameron, A.; Wichmann, R.

    2000-08-01

    We present in this paper a spectroscopic monitoring of the Lupus post T Tauri star RX J1508.6-4423 carried out at two closely separated epochs (1998 May 06 and 10) with the UCL Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Applying least-squares convolution and maximum entropy image reconstruction techniques to our sets of spectra, we demonstrate that this star features on its surface a large cool polar cap with several appendages extending to lower latitudes, as well as one spot close to the equator. The images reconstructed at both epochs are in good overall agreement, except for a photospheric shear that we interpret in terms of latitudinal differential rotation. Given the spot distribution at the epoch of our observations, differential rotation could only be investigated between latitudes 15° and 60°. We find in particular that the observed differential rotation is compatible with a solar-like law (i.e., with rotation rate decreasing towards high latitudes proportionally to sin2l, where l denotes the latitude) in this particular latitude range. Assuming that such a law can be extrapolated to all latitudes, we find that the equator of RX J1508.6-4423 does one more rotational cycle than the pole every 50+/-10d, implying a photospheric shear 2 to 3 times stronger than that of the Sun. We also discover that the Hα emission profile of RX J1508.6-4423 is most of the time double-peaked and strongly modulated with the rotation period of the star. We interpret this rotationally modulated emission as being caused by a dense and complex prominence system, the circumstellar distribution of which is obtained through maximum entropy Doppler tomography. These maps show in particular that prominences form a complete and inhomogeneous ring around the star, precisely at the corotation radius. We use the total Hα and Hβ emission flux to estimate that the mass of the whole prominence system is about 1020g. From our observation that the whole cloud system

  16. High Dispersion Line Profile Studies of TW HYA and Other Pre-Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.

    1984-07-01

    We propose to extend our study of line profiles in T Tauri stars by obtaining a 16 hour SWP-HI spectrum of TW Hya and 6-8 hour LWP-HI spectra of TW Hya, AK Sco, CoD -35 10525 and CoD -33 10685. High dispersion spectra of pre-main sequence (PMS) stars provide unique information on line widths, shifts, and asymmetries, as well as evidence for mass outflow, circumstellar absorption, and diagnostics for the temperature structure of the outer atmosphere layers of these complex yet incredibly important objects. We have previously obtained and studied line profiles in RU Lupi and the prototype star T Tau. RU Lupi has line profiles that are dominated by the wind expansion, for example the MgII and FeII multiplet UV1 profiles are unique in that they have a classical P Cygni shape, whereas T Tau has more symmetric emission profiles indicative of a chromosphere and hotter layers not dominated by expansion. TW Hya is different from these two previously studied stars in that it may be the brightest known example of a post-T Tauri star, and hence less active and older than the other PMS stars. We intend to compare its line profiles with those of RU Lupi and T Tauri in order to understand the differences in the non-thermal mass motions, wind expansion, and thermal structures of these three very different T Tau stars. The requested LWPHI spectra are to obtain MgII and FeII multiplet UV1. profiles of 4 different T Tauri objects so as to infer the expansion and thermal structure in their chromospheric layers.

  17. Probing Signatures of a Distant Planet around the Young T-Tauri Star CI Tau Hosting a Possible Hot Jupiter

    NASA Astrophysics Data System (ADS)

    Konishi, Mihoko; Hashimoto, Jun; Hori, Yasunori

    2018-06-01

    We search for signatures of a distant planet around the two million-year-old classical T-Tauri star CI Tau hosting a hot-Jupiter candidate ({M}{{p}}\\sin i∼ 8.1 {M}Jupiter}) in an eccentric orbit (e ∼ 0.3). To probe the existence of an outer perturber, we reanalyzed 1.3 mm dust continuum observations of the protoplanetary disk around CI Tau obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). We found a gap structure at ∼0.″8 in CI Tau’s disk. Our visibility fitting assuming an axisymmetric surface brightness profile suggested that the gap is located at a deprojected radius of 104.5 ± 1.6 au and has a width of 36.9 ± 2.9 au. The brightness temperature around the gap was calculated to be ∼2.3 K lower than that of the ambient disk. Gap-opening mechanisms such as secular gravitational instability (GI) and dust trapping can explain the gap morphology in the CI Tau disk. The scenario that an unseen planet created the observed gap structure cannot be ruled out, although the coexistence of an eccentric hot Jupiter and a distant planet around the young CI Tau would be challenging for gravitational scattering scenarios. The mass of the planet was estimated to be between ∼0.25 M Jupiter and ∼0.8 M Jupiter from the gap width and depth ({0.41}-0.06+0.04) in the modeled surface brightness image, which is lower than the current detection limits of high-contrast direct imaging. The young classical T-Tauri CI Tau may be a unique system for exploring the existence of a potential distant planet as well as the origin of an eccentric hot Jupiter.

  18. Connection between jets, winds and accretion in T Tauri stars. The X-shooter view

    NASA Astrophysics Data System (ADS)

    Nisini, B.; Antoniucci, S.; Alcalá, J. M.; Giannini, T.; Manara, C. F.; Natta, A.; Fedele, D.; Biazzo, K.

    2018-01-01

    Mass loss from jets and winds is a key ingredient in the evolution of accretion discs in young stars. While slow winds have been recently extensively studied in T Tauri stars, little investigation has been devoted on the occurrence of high velocity jets and on how the two mass-loss phenomena are connected with each other, and with the disc mass accretion rates. In this framework, we have analysed the [O I]6300 Å line in a sample of 131 young stars with discs in the Lupus, Chamaeleon and σ Orionis star forming regions. The stars were observed with the X-shooter spectrograph at the Very Large Telescope and have mass accretion rates spanning from 10-12 to 10-7M⊙ yr-1. The line profile was deconvolved into a low velocity component (LVC, | Vr | < 40 km s-1) and a high velocity component (HVC, | Vr | > 40 km s-1), originating from slow winds and high velocity jets, respectively. The LVC is by far the most frequent component, with a detection rate of 77%, while only 30% of sources have a HVC. The fraction of HVC detections slightly increases (i.e. 39%) in the sub-sample of stronger accretors (i.e. with log (Lacc/L⊙) >-3). The [O I]6300 Å luminosity of both the LVC and HVC, when detected, correlates with stellar and accretion parameters of the central sources (i.e. L∗, M∗, Lacc, Ṁacc), with similar slopes for the two components. The line luminosity correlates better (i.e. has a lower dispersion) with the accretion luminosity than with the stellar luminosity or stellar mass. We suggest that accretion is the main drivers for the line excitation and that MHD disc-winds are at the origin of both components. In the sub-sample of Lupus sources observed with ALMA a relationship is found between the HVC peak velocity and the outer disc inclination angle, as expected if the HVC traces jets ejected perpendicularly to the disc plane. Mass ejection rates (Ṁjet) measured from the detected HVC [O I]6300 Å line luminosity span from 10-13 to 10-7M⊙ yr-1. The

  19. Mass loss from solar-type stars

    NASA Technical Reports Server (NTRS)

    Hartmann, L.

    1985-01-01

    The present picture of mass loss from solar-type (low-mass) stars is described, with special emphasis on winds from pre-main-sequence stars. Attention is given to winds from T Tauri stars and to angular momentum loss. Prospects are good for further advances in our understanding of the powerful mass loss observed from young stars; ultraviolet spectra obtainable with the Space Telescope should provide better estimates of mass loss rates and a clearer picture of physical conditions in the envelopes of these stars. To understand the mass ejection from old, slowly rotating main-sequence stars, we will have to study the sun.

  20. Magnetic activity and radial velocity filtering of young Suns: the weak-line T-Tauri stars Par 1379 and Par 2244

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Carmona, A.; Donati, J.-F.; Hussain, G. A. J.; Gregory, S. G.; Alencar, S. H. P.; Bouvier, J.; The Matysse Collaboration

    2017-12-01

    We report the results of our spectropolarimetric monitoring of the weak-line T-Tauri stars (wTTSs) Par 1379 and Par 2244, within the MaTYSSE (Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets) programme. Both stars are of a similar mass (1.6 and 1.8 M⊙) and age (1.8 and 1.1 Myr), with Par 1379 hosting an evolved low-mass dusty circumstellar disc, and with Par 2244 showing evidence of a young debris disc. We detect profile distortions and Zeeman signatures in the unpolarized and circularly polarized lines for each star, and have modelled their rotational modulation using tomographic imaging, yielding brightness and magnetic maps. We find that Par 1379 harbours a weak (250 G), mostly poloidal field tilted 65° from the rotation axis. In contrast, Par 2244 hosts a stronger field (860 G) split 3:2 between poloidal and toroidal components, with most of the energy in higher order modes, and with the poloidal component tilted 45° from the rotation axis. Compared to the lower mass wTTSs, V819 Tau and V830 Tau, Par 2244 has a similar field strength, but is much more complex, whereas the much less complex field of Par 1379 is also much weaker than any other mapped wTTS. We find moderate surface differential rotation of 1.4× and 1.8× smaller than Solar, for Par 1379 and Par 2244, respectively. Using our tomographic maps to predict the activity-related radial velocity (RV) jitter, and filter it from the RV curves, we find RV residuals with dispersions of 0.017 and 0.086 km s-1 for Par 1379 and Par 2244, respectively. We find no evidence for close-in giant planets around either star, with 3σ upper limits of 0.56 and 3.54 MJup (at an orbital distance of 0.1 au).

  1. Magnetospheric Accretion in Close Pre-main-sequence Binaries

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Jonhs-Krull, Christopher; Herczeg, Gregory J.; Mathieu, Robert D.; Quijano-Vodniza, Alberto

    2015-10-01

    The transfer of matter between a circumbinary disk and a young binary system remains poorly understood, obscuring the interpretation of accretion indicators. To explore the behavior of these indicators in multiple systems, we have performed the first systematic time-domain study of young binaries in the ultraviolet. We obtained far- and near-ultraviolet HST/COS spectra of the young spectroscopic binaries DQ Tau and UZ Tau E. Here we focus on the continuum from 2800 to 3200 Å and on the C iv doublet (λλ1548.19, 1550.77 Å) as accretion diagnostics. Each system was observed over three or four consecutive binary orbits, at phases ∼0, 0.2, 0.5, and 0.7. Those observations are complemented by ground-based U-band measurements. Contrary to model predictions, we do not detect any clear correlation between accretion luminosity and phase. Further, we do not detect any correlation between C iv flux and phase. For both stars the appearance of the C iv line is similar to that of single Classical T Tauri Stars (CTTSs), despite the lack of stable long-lived circumstellar disks. However, unlike the case in single CTTSs, the narrow and broad components of the C iv lines are uncorrelated, and we argue that the narrow component is powered by processes other than accretion, such as flares in the stellar magnetospheres and/or enhanced activity in the upper atmosphere. We find that both stars contribute equally to the narrow component C iv flux in DQ Tau, but the primary dominates the narrow component C iv emission in UZ Tau E. The C iv broad component flux is correlated with other accretion indicators, suggesting an accretion origin. However, the line is blueshifted, which is inconsistent with its origin in an infall flow close to the star. It is possible that the complicated geometry of the region, as well as turbulence in the shock region, are responsible for the blueshifted line profiles.

  2. Coronagraphic imaging of pre-main-sequence stars: Remnant evvelopes of star formation seen in reflection

    NASA Technical Reports Server (NTRS)

    Nakajima, Tadashi; Golimowski, David A.

    1995-01-01

    We have obtained R- and I-band coronagraphic images of the vicinities of 11 pre-main sequence (PMS) stars to search for faint, small-scale reflection nebulae. The inner radius of the search and the field of view are 1.9 arcsec and 1x1 arcmin, respectively. Reflection nebulae were imaged around RY Tau, T Tau,DG Tau, SU Aur, AB Aur, FU Ori, and Z CMa. No nebulae were detected around HBC 347, GG Tau, V773 Tau, and V830 Tau. Categorically speaking, most of the classical T Tauri program stars and all the FU Orionis-type program stars are associated with the reflection nebulae, while none of the weak-line T Tauri program stars are associated with nebulae. The detected nebulae range in size from 250 to 37 000 AU. From the brightness ratios of the stars and nebulae, we obtain a lower limit to the visual extinction of PMS star light through the nebulae of (A(sub V))(sub neb) = 0.1. The lower limits of masses and volume densities of the nebulae associated with the classical T Tauri stars are 10(exp-6) Solar mass and N(sub H) = 10(exp 5)/cu cm, respectively. Lower limits for the nebulae around FU Orionis stars are 10(exp -5) Solar mass and n(sub H) = 10 (exp 5)/cu cm, respectively. Some reflection nebulae may trace the illuminated surfaces of the optically thick dust nebulae, so these mass estimates are not stringent. All the PMS stars with associated nebulae are strong far-infrared emitters. Both the far-infrared emission and the reflection nebulae appear to originate from the remnant envelopes of star formation. The 100 micrometers emitting regions of SU Aur and FU Ori are likely to be cospatial with the reflection nebulae. A spatial discontinuity between FU Ori and its reflection nebula may explain the dip in the far-infrared spectral energy distribution at 60 micrometers. The warped, disk-like nebulae around T Tau and Z CMa are aligned with and embrace the inner star/circumstellar disk systems. The arc-shaped nebula around DG Tau may be in contact with the coaligned inner

  3. 2.5D global-disk oscillation models of the Be shell star ζ Tauri. I. Spectroscopic and polarimetric analysis

    NASA Astrophysics Data System (ADS)

    Escolano, C.; Carciofi, A. C.; Okazaki, A. T.; Rivinius, T.; Baade, D.; Štefl, S.

    2015-04-01

    Context. A large number of Be stars exhibit intensity variations of their violet and red emission peaks in their H i lines observed in emission. This is the so-called V/R phenomenon, usually explained by the precession of a one-armed spiral density perturbation in the circumstellar disk. That global-disk oscillation scenario was confirmed, both observationally and theoretically, in the previous series of two papers analyzing the Be shell star ζ Tauri. The vertically averaged (2D) global-disk oscillation model used at the time was able to reproduce the V/R variations observed in Hα, as well as the spatially resolved interferometric data from AMBER/VLTI. Unfortunately, that model failed to reproduce the V/R phase of Br15 and the amplitude of the polarization variation, suggesting that the inner disk structure predicted by the model was incorrect. Aims: The first aim of the present paper is to quantify the temporal variations of the shell-line characteristics of ζ Tauri. The second aim is to better understand the physics underlying the V/R phenomenon by modeling the shell-line variations together with the V/R and polarimetric variations. The third aim is to test a new 2.5D disk oscillation model, which solves the set of equations that describe the 3D perturbed disk structure but keeps only the equatorial (i.e., 2D) component of the solution. This approximation was adopted to allow comparisons with the previous 2D model, and as a first step toward a future 3D model. Methods: We carried out an extensive analysis of ζ Tauri's spectroscopic variations by measuring various quantities characterizing its Balmer line profiles: red and violet emission peak intensities (for Hα, Hβ, and Br15), depth and asymmetry of the shell absorption (for Hβ, Hγ, and Hδ), and the respective position (i.e., radial velocity) of each component. We attempted to model the observed variations by implementing in the radiative transfer code HDUST the perturbed disk structure computed with a

  4. VARIATIONS OF THE 10 mum SILICATE FEATURES IN THE ACTIVELY ACCRETING T TAURI STARS: DG Tau AND XZ Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bary, Jeffrey S.; Leisenring, Jarron M.; Skrutskie, Michael F., E-mail: jbary@colgate.ed, E-mail: jml2u@virginia.ed, E-mail: mfs4n@virginia.ed

    2009-11-20

    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star-forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 mum silicate complex in the spectra of two sources-DG Tau and XZ Tau-undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolutionmore » coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.« less

  5. Herschel PACS Observations of 4–10 Myr Old Classical T Tauri Stars in Orion OB1

    NASA Astrophysics Data System (ADS)

    Maucó, Karina; Briceño, César; Calvet, Nuria; Hernández, Jesús; Ballesteros-Paredes, Javier; González, Omaira; Espaillat, Catherine C.; Li, Dan; Telesco, Charles M.; José Downes, Juan; Macías, Enrique; Qi, Chunhua; Michel, Raúl; D’Alessio, Paola; Ali, Babar

    2018-05-01

    We present Herschel PACS observations of eight classical T Tauri Stars in the ∼7–10 Myr old OB1a and the ∼4–5 Myr old OB1b Orion subassociations. Detailed modeling of the broadband spectral energy distributions, particularly the strong silicate emission at 10 μm, shows that these objects are (pre-)transitional disks with some amount of small optically thin dust inside their cavities, ranging from ∼4 to ∼90 au in size. We analyzed Spitzer IRS spectra for two objects in the sample: CVSO-107 and CVSO-109. The IRS spectrum of CVSO-107 indicates the presence of crystalline material inside its gap, while the silicate feature of CVSO-109 is characterized by a pristine profile produced by amorphous silicates; the mechanisms creating the optically thin dust seem to depend on disk local conditions. Using millimeter photometry, we estimated dust disk masses for CVSO-107 and CVSO-109 lower than the minimum mass of solids needed to form the planets in our solar system, which suggests that giant planet formation should be over in these disks. We speculate that the presence and maintenance of optically thick material in the inner regions of these pre-transitional disks might point to low-mass planet formation.

  6. Observational diagnostics of accretion on young stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  7. Spectrophotometry at 10 microns of T Tauri stars

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Witteborn, F. C.

    1985-01-01

    New 8-13 micron spectra of 32 T Tau, or related young, stars are presented. Silicate emission features are commonly seen. Absorptions occur less frequently but also match the properties of silicate materials. The shape of the emission feature suggests that a more crystalline grain is responsible in the T Tau stars than those of the Trapezium region. The evolution of the silicate component of the circumstellar shell around T Tau stars, and its dependence upon stellar wind activity, visual linear polarization, and extinction are investigated. Several correlations suggest that the shells are likely to be flattened, disklike structures rather than spherical.

  8. Stable and unstable accretion in the classical T Tauri stars IM Lup and RU Lup as observed by MOST

    NASA Astrophysics Data System (ADS)

    Siwak, Michal; Ogloza, Waldemar; Rucinski, Slavek M.; Moffat, Anthony F. J.; Matthews, Jaymie M.; Cameron, Chris; Guenther, David B.; Kuschnig, Rainer; Rowe, Jason F.; Sasselov, Dimitar; Weiss, Werner W.

    2016-03-01

    Results of the time variability monitoring of the two classical T Tauri stars, RU Lup and IM Lup, are presented. Three photometric data sets were utilized: (1) simultaneous (same field) MOST satellite observations over four weeks in each of the years 2012 and 2013, (2) multicolour observations at the South African Astronomical Observatory in April-May of 2013, (3) archival V-filter All Sky Automated Survey (ASAS) data for nine seasons, 2001-2009. They were augmented by an analysis of high-resolution, public-domain VLT-UT2 Ultraviolet Visual Echelle Spectrograph spectra from the years 2000 to 2012. From the MOST observations, we infer that irregular light variations of RU Lup are caused by stochastic variability of hotspots induced by unstable accretion. In contrast, the MOST light curves of IM Lup are fairly regular and modulated with a period of about 7.19-7.58 d, which is in accord with ASAS observations showing a well-defined 7.247 ± 0.026 d periodicity. We propose that this is the rotational period of IM Lup and is due to the changing visibility of two antipodal hotspots created near the stellar magnetic poles during the stable process of accretion. Re-analysis of RU Lup high-resolution spectra with the broadening function approach reveals signs of a large polar coldspot, which is fairly stable over 13 years. As the star rotates, the spot-induced depression of intensity in the broadening function profiles changes cyclically with period 3.710 58 d, which was previously found by the spectral cross-correlation method.

  9. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H{sub 2}O Dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé, E-mail: kevin.france@colorado.edu

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we havemore » assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope -Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100–1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST -COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490–1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L (Bump) ≈ 7 × 10{sup 29} erg s{sup −1}. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ {sub o} = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H{sub 2} excited by electron -impact. We show that this Bump makes up between 5%–50% of the total FUV continuum emission in the 1490–1690 Å band and emits roughly 10%–80% of the total fluorescent H{sub 2} luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Ly α photons. We argue that the most likely

  10. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H2O Dissociation

    NASA Astrophysics Data System (ADS)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé

    2017-08-01

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we have assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope-Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100-1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST-COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490-1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L(Bump) ≈ 7 × 1029 erg s-1. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ o = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H2 excited by electron -impact. We show that this Bump makes up between 5%-50% of the total FUV continuum emission in the 1490-1690 Å band and emits roughly 10%-80% of the total fluorescent H2 luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Lyα photons. We argue that the most likely mechanism is Lyα-driven dissociation of H2O in the inner disk, r

  11. Cold CO Gas in the Envelopes of FU Orionis-type Young Eruptive Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kóspál, Á.; Ábrahám, P.; Moór, A.

    FU Orionis-type objects (FUors) are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX {sup 12}CO and {sup 13}CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets, locate the source of the COmore » emission, and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.« less

  12. Hubble Sees a Young Star Take Center Stage

    NASA Image and Video Library

    2015-03-06

    With its helical appearance resembling a snail’s shell, this reflection nebula seems to spiral out from a luminous central star in this NASA/ESA Hubble Space Telescope image. The star in the center, known as V1331 Cyg and located in the dark cloud LDN 981 — or, more commonly, Lynds 981 — had previously been defined as a T Tauri star. A T Tauri is a young star — or Young Stellar Object — that is starting to contract to become a main sequence star similar to the sun. What makes V1331Cyg special is the fact that we look almost exactly at one of its poles. Usually, the view of a young star is obscured by the dust from the circumstellar disc and the envelope that surround it. However, with V1331Cyg we are actually looking in the exact direction of a jet driven by the star that is clearing the dust and giving us this magnificent view. This view provides an almost undisturbed view of the star and its immediate surroundings allowing astronomers to study it in greater detail and look for features that might suggest the formation of a very low-mass object in the outer circumstellar disk. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Systems-level feedback regulation of cell cycle transitions in Ostreococcus tauri.

    PubMed

    Kapuy, Orsolya; Vinod, P K; Bánhegyi, Gábor; Novák, Béla

    2018-05-01

    Ostreococcus tauri is the smallest free-living unicellular organism with one copy of each core cell cycle genes in its genome. There is a growing interest in this green algae due to its evolutionary origin. Since O. tauri is diverged early in the green lineage, relatively close to the ancestral eukaryotic cell, it might hold a key phylogenetic position in the eukaryotic tree of life. In this study, we focus on the regulatory network of its cell division cycle. We propose a mathematical modelling framework to integrate the existing knowledge of cell cycle network of O. tauri. We observe that feedback loop regulation of both G1/S and G2/M transitions in O. tauri is conserved, which can make the transition bistable. This is essential to make the transition irreversible as shown in other eukaryotic organisms. By performing sequence analysis, we also predict the presence of the Greatwall/PP2A pathway in the cell cycle of O. tauri. Since O. tauri cell cycle machinery is conserved, the exploration of the dynamical characteristic of the cell division cycle will help in further understanding the regulation of cell cycle in higher eukaryotes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Theoretical studies of the RS cannum venaticorum stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1981-01-01

    Four areas of research were investigated: chromospheric modelling; starspot modelling; supersonic transition locus (STL) crossing; and STL crossing and T Tauri phenomena. Relationships among these areas of research are presented. Stellar structure and mass ejection for these stars were examined along with chromospheric analysis.

  15. Rotation periods of open-cluster stars, 3

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Shetrone, Matthew D.; Dasgupta, Amil; Backman, Dana E.; Laaksonen, Bentley D.; Baker, Shawn W.; Marschall, Laurence A.; Whitney, Barbara A.; Kuijken, Konrad; Stauffer, John R.

    1995-01-01

    We present the results from a photometric monitoring program of 15 open cluster stars and one weak-lined T Tauri star during late 1993/early 1994. Several show rotators which are members of the Alpha Persei, Pleiades, and Hyades open clusters have been monitored and period estimates derived. Using all available Pleiades stars with photometric periods together with current X-ray flux measurements, we illustrate the X-ray activity/rotation relation among Pleiades late-G/K dwarfs. The data show a clear break in the rotation-activity relation around P approximately 6-7 days -- in general accordance with previous results using more heterogeneous samples of G/K stars.

  16. A statistical spectropolarimetric study of Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Ababakr, K. M.; Oudmaijer, R. D.; Vink, J. S.

    2017-11-01

    We present H α linear spectropolarimetry of a large sample of Herbig Ae/Be stars. Together with newly obtained data for 17 objects, the sample contains 56 objects, the largest such sample to date. A change in linear polarization across the H α line is detected in 42 (75 per cent) objects, which confirms the previous finding that the circumstellar environment around these stars on small spatial scales has an asymmetric structure, which is typically identified with a disc. A second outcome of this research is that we confirm that Herbig Ae stars are similar to T Tauri stars in displaying a line polarization effect, while depolarization is more common among Herbig Be stars. This finding had been suggested previously to indicate that Herbig Ae stars form in the same manner than T Tauri stars through magnetospheric accretion. It appears that the transition between these two differing polarization line effects occurs around the B7-B8 spectral type. This would in turn not only suggest that Herbig Ae stars accrete in a similar fashion as lower mass stars, but also that this accretion mechanism switches to a different type of accretion for Herbig Be stars. We report that the magnitude of the line effect caused by electron scattering close to the stars does not exceed 2 per cent. Only a very weak correlation is found between the magnitude of the line effect and the spectral type or the strength of the H α line. This indicates that the detection of a line effect only relies on the geometry of the line-forming region and the geometry of the scattering electrons.

  17. Coronal Structures in Cool Stars

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2005-01-01

    We have extended our study of the structure of coronas in cool stars to very young stars still accreting from their surrounding disks. In addition we are pursing the connection between coronal X-rays and a powerful diagnostic line in the infrared, the He I 10830Angstrom transition of helium. Highlights of these are summarized below including publications during this reporting period and presentations. Spectroscopy of the infrared He I (lambda10830) line with KECK/NIRSPEC and IRTF/CSHELL and of the ultraviolet C III (lambda977) and O VI (lambda1032) emission with FUSE reveals that the classical T Tauri star TW Hydrae exhibits P Cygni profiles, line asymmetries, and absorption indicative of a continuous, fast (approximately 400 kilometers per second), hot (approximately 300,000 K) accelerating outflow with a mass loss rate approximately 10(exp -11)-10(exp -12) solar mass yr(sup -1) or larger. Spectra of T Tauri N appear consistent with such a wind. The source of the emission and outflow seems restricted to the stars themselves. Although the mass accretion rate is an order of magnitude less for TW Hya than for T Tau, the outflow reaches higher velocities at chromospheric temperatures in TW Hya. Winds from young stellar objects may be substantially hotter and faster than previously thought. The ultraviolet emission lines, when corrected for absorption are broad. Emission associated with the accretion flow and shock is likely to show turbulent broadening. We note that the UV line widths are significantly larger than the X-ray line widths. If the X-rays from TW Hya are generated at the accretion shock, the UV lines may not be directly associated with the shock. On the other hand, studies of X-ray emission in young star clusters, suggest that the strength of the X-ray emission is correlated with stellar rotation, thus casting doubt on an accretion origin for the X-rays. We are beginning to access the infrared spectral region where the He I 108308Angstroms transition

  18. EVIDENCE FOR AN FU ORIONIS-LIKE OUTBURST FROM A CLASSICAL T TAURI STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Adam A.; Poznanski, Dovi; Silverman, Jeffrey M.

    2011-04-01

    We present pre- and post-outburst observations of the new FU Orionis-like young stellar object PTF 10qpf (also known as LkH{alpha} 188-G4 and HBC 722). Prior to this outburst, LkH{alpha} 188-G4 was classified as a classical T Tauri star (CTTS) on the basis of its optical emission-line spectrum superposed on a K8-type photosphere and its photometric variability. The mid-infrared spectral index of LkH{alpha} 188-G4 indicates a Class II-type object. LkH{alpha} 188-G4 exhibited a steady rise by {approx}1 mag over {approx}11 months starting in August 2009, before a subsequent more abrupt rise of >3 mag on a timescale of {approx}2 months. Observationsmore » taken during the eruption exhibit the defining characteristics of FU Orionis variables: (1) an increase in brightness by {approx}>4 mag, (2) a bright optical/near-infrared reflection nebula appeared, (3) optical spectra are consistent with a G supergiant and dominated by absorption lines, the only exception being H{alpha} which is characterized by a P Cygni profile, (4) near-infrared spectra resemble those of late K-M giants/supergiants with enhanced absorption seen in the molecular bands of CO and H{sub 2}O, and (5) outflow signatures in H and He are seen in the form of blueshifted absorption profiles. LkH{alpha} 188-G4 is the first member of the FU Orionis-like class with a well-sampled optical to mid-infrared spectral energy distribution in the pre-outburst phase. The association of the PTF 10qpf outburst with the previously identified CTTS LkH{alpha} 188-G4 (HBC 722) provides strong evidence that FU Orionis-like eruptions represent periods of enhanced disk accretion and outflow, likely triggered by instabilities in the disk. The early identification of PTF 10qpf as an FU Orionis-like variable will enable detailed photometric and spectroscopic observations during its post-outburst evolution for comparison with other known outbursting objects.« less

  19. The embedded population around Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Testi, L.; Stanga, R. M.; Natta, A.; Palla, F.; Prusti, T.; Baffa, C.; Hunt, L. K.; Lisi, F.

    Herbig Ae/Be stars are intermediate mass young stars in the pre-main sequence phase of evolution. There are only few stars of this type known so far, and all of them seem to be relatively isolated, in contrast to their low mass counterparts, the T Tauri stars. A possible explanation of this fact is that other young stars formed near the known YSO are deeply embedded in the molecular cloud environment and are not detectable at optical wavelengths. We used the new ARcetri Near Infrared CAmera (ARNICA) to survey in the J, H and K bands the regions of sky around Herbig stars. The aim of this work is to identify embedded YSO and investigate the clustering properties of these young stars.

  20. Photometric light curves for ten rapidly rotating stars in Alpha Persei, the Pleiades, and the field

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Schild, Rudolph E.; Stauffer, John R.; Jones, Burton F.

    1993-01-01

    We present the results from a photometric monitoring program of ten rapidly rotating stars observed during 1991 using the FLWO 48-in. telescope. Brightness variations for an additional six cluster stars observed with the Lick 40-in. telescope are also given. The periods and light curves for seven Alpha Persei members, two Pleiades members, and one naked T Tauri field star are reported.

  1. The OH rotational population and photodissociation of H{sub 2}O in DG Tauri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, John S.; Najita, Joan R.

    2014-06-10

    We analyze the OH rotational emission in the Spitzer Space Telescope mid-infrared spectrum of the T Tauri star DG Tau. OH is observed in emission from upper level energies of 1900 K to 28,000 K. The rotational diagram cannot be fit with any single combination of temperature and column density and has slopes that correspond to excitation temperatures ranging from 200 K to 6000 K. The relative Λ-doublet population within each rotational level is not equal, showing that the OH population is not in thermal equilibrium. The symmetric Λ-doublet state is preferred in all rotational states, with an average ofmore » 0.5 for the population ratio of the anti-symmetric to symmetric state. We show that the population distribution of the high rotational lines and the Λ-doublet ratio are consistent with the formation of OH following the photo-dissociation of H{sub 2}O by FUV photons in the second absorption band of water (∼1150-1400 Å), which includes Lyα. Other processes, OH formation from either photo-dissociation of water in the first absorption band (1450-1900 Å) or the reaction O({sup 1} D) + H{sub 2}, or collisional excitation, cannot explain the observed emission in the high rotational states but could potentially contribute to the population of lower rotational levels. These results demonstrate that the photodissociation of water is active in DG Tau and support the idea that the hot rotational OH emission commonly observed in Classical T Tauri stars is due to the dissociation of H{sub 2}O by FUV radiation.« less

  2. Deep Stromvil Photometry for Star Formation in the Head of the Pelican Nebula

    NASA Astrophysics Data System (ADS)

    Boyle, Richard P.; J., S.; Stott, J.; J., S.; Janusz, R.; J., S.; Straizys, V.

    2010-01-01

    The North America and Pelican Nebulae, and specifically the dark cloud L935 contain regions of active star formation (Herbig, G. H. 1958, ApJ, 128,259). Previously we reported on Vatican telescope observations by Stromvil intermediate-band filters in a 12-arcmin field in the "Gulf of Mexico" region of L935. There we classify A, F, and G-type stars. However, the many faint K and M-type dwarf stars remain somewhat ambiguous in calibration and classification. But attaining reasonable progress, we turn to another part of L935 located near the Pelican head. This area includes the "bright rim" which is formed by dust and gas condensed by the light pressure of an unseen O-type star hidden behind the dense dark cloud. Straizys and Laugalys (2008 Baltic Astronomy, 17, 143 ) have identified this star to be one of the 2MASS objects with Av=23 mag. A few concentrations of faint stars, V 13 to 14 mag. are immersed in this dark region. Among these stars are a few known emission-line objects (T-Tauri or post T-Tauri stars). A half degree nearby are some photometric Vilnius standards we use to calibrate our new field. We call on 2MASS data for correlative information. Also the Stromvil photometry offers candidate stars for spectral observations. The aim of this study in the Vilnius and Stromvil photometric systems is to classify stars down to V = 18 mag., to confirm the existence of the young star clusters, and to determine the distance of the cloud covering the suspected hidden ionizing star.

  3. Observations of southern emission-line stars

    NASA Technical Reports Server (NTRS)

    Henize, K. G.

    1976-01-01

    A catalog of 1929 stars showing H-alpha emission on photographic plates is presented which covers the entire southern sky south of declination -25 deg to a red limiting magnitude of about 11.0. The catalog provides previous designations of known emission-line stars equatorial (1900) and galactic coordinates, visual and photographic magnitudes, H-alpha emission parameters, spectral types, and notes on unusual spectral features. The objects listed include 16 M stars, 25 S stars, 37 carbon stars, 20 symbiotic stars, 40 confirmed or suspected T Tauri stars, 16 novae, 14 planetary nebulae, 11 P Cygni stars, 9 Bep stars, 87 confirmed or suspected Wolf-Rayet stars, and 26 'peculiar' stars. Two new T associations are discovered, one in Lupus and one in Chamaeleon. Objects with variations in continuum or H-alpha intensity are noted, and the distribution by spectral type is analyzed. It is found that the sky distribution of these emission-line stars shows significant concentrations in the region of the small Sagittarius cloud and in the Carina region.

  4. X-Ray Properties of Low-mass Pre-main Sequence Stars in the Orion Trapezium Cluster

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Huenemoerder, David P.; Günther, Moritz; Testa, Paola; Canizares, Claude R.

    2015-09-01

    The Chandra HETG Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster that provides high-resolution X-ray spectra of very young stars over a wide mass range (0.7-2.3 {M}⊙ ). In this paper, we focus on the six brightest X-ray sources with T Tauri stellar counterparts that are well-characterized at optical and infrared wavelengths. All stars show column densities which are substantially smaller than expected from optical extinction, indicating that the sources are located on the near side of the cluster with respect to the observer as well as that these stars are embedded in more dusty environments. Stellar X-ray luminosities are well above 1031 erg s-1, in some cases exceeding 1032 erg s-1 for a substantial amount of time. The stars during these observations show no flares but are persistently bright. The spectra can be well fit with two temperature plasma components of 10 MK and 40 MK, of which the latter dominates the flux by a ratio 6:1 on average. The total emission measures range between 3-8 × 1054 cm-3 and are comparable to active coronal sources. The fits to the Ne ix He-Like K-shell lines indicate forbidden to inter-combination line ratios consistent with the low-density limit. Observed abundances compare well with active coronal sources underlying the coronal nature of these sources. The surface flux in this sample of 0.6-2.3 {M}⊙ classical T Tauri stars shows that coronal activity increases significantly between ages 0.1 and 10 Myr. The results demonstrate the power of X-ray line diagnostics to study coronal properties of T Tauri stars in young stellar clusters.

  5. Radial Velocity Survey of T Tauri Stars in Taurus-Auriga

    NASA Astrophysics Data System (ADS)

    Crockett, Christopher; Mahmud, N.; Huerta, M.; Prato, L.; Johns-Krull, C.; Hartigan, P.; Jaffe, D.

    2009-01-01

    Is the frequency of giant planet companions to young stars similar to that seen around old stars? Is the "brown dwarf desert" a product of how low-mass companion objects form, or of how they evolve? Some models indicate that both giant planets and brown dwarfs should be common at young ages within 3 AU of a primary star, but migration induced by massive disks drive brown dwarfs into the parent stars, leaving behind proportionally more giant planets. Our radial velocity survey of young stars will provide a census of the young giant planet and brown dwarf population in Taurus-Auriga. In this poster we present our progress in quantifying how spurious radial velocity signatures are caused by stellar activity and in developing models to help distinguish between companion induced and spot induced radial velocity variations. Early results stress the importance of complementary observations in both visible light and NIR. We present our technique to determine radial velocities by fitting telluric features and model stellar features to our observed spectra. Finally, we discuss ongoing observations at McDonald Observatory, KPNO, and the IRTF, and several new exoplanet host candidates.

  6. HUBBLE SEES DISKS AROUND YOUNG STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left]: This Wide Field and Planetary Camera 2 (WFPC2) image shows Herbig-Haro 30 (HH 30), the prototype of a young star surrounded by a thin, dark disk and emitting powerful gaseous jets. The disk extends 40 billion miles from left to right in the image, dividing the nebula in two. The central star is hidden from direct view, but its light reflects off the upper and lower surfaces of the disk to produce the pair of reddish nebulae. The gas jets are shown in green. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Top right]: DG Tauri B appears very similar to HH 30, with jets and a central dark lane with reflected starlight at its edges. In this WFPC2 image, the dust lane is much thicker than seen in HH 30, indicating that dusty material is still in the process of falling onto the hidden star and disk. The bright jet extends a distance of 90 billion miles away from the system. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Lower left]: Haro 6-5B is a nearly edge-on disk surrounded by a complex mixture of wispy clouds of dust and gas. In this WFPC2 image, the central star is partially hidden by the disk, but can be pinpointed by the stubby jet (shown in green), which it emits. The dark disk extends 32 billion miles across at a 90-degree angle to the jet. Credit: John Krist (STScI), the WFPC2 Science Team and NASA [Lower right]: HK Tauri is the first example of a young binary star system with an edge-on disk around one member of the pair. The thin, dark disk is illuminated by the light of its hidden central star. The absence of jets indicates that the star is not actively accreting material from this disk. The disk diameter is 20 billion miles. The brighter primary star appears at top of the image. Credit: Karl Stapelfeldt (JPL) and colleagues, and NASA

  7. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria; Greenwood, Aaron; Kamp, Inga; Henning, Thomas; Ménard, François; Dent, William R. F.; Evans, Neal J., II

    2017-06-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O I] 63 μm line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3-78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature-stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O I] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O I] 63 μm nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. ASCA Observations of the Barnard 209 Dark Cloud and an Intense X-Ray Flare on V773 Tauri

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Guedel, Manuel; Koyama, Katsuji; Yamauchi, Shigeo

    1997-01-01

    ASCA (Advanced Satellite for Cosmology and Astrophysics) detected an intense X-ray flare on the weak-lined T Tauri star V773 Tau (=HD 283447) during a 30 ks observation of the Barnard 209 dark cloud in 1995 September. This star is a spectroscopic binary and shows signs of strong magnetic surface activity including a spot-modulated optical light curve. The flare was seen only during its decay phase but is still one of the strongest ever recorded from a T Tauri star with a peak luminosity L(sub x) = 10(exp 32.4) ergs/s (0.5-10 keV), a maximum temperature of at least 42 million K, and energy release of greater than 10(exp 37) ergs. A shorter ASCA observation taken five months later showed V773 Tau in a quiescent state (L(sub x)= 10(exp 31.0) ergs/s) and detected variable emission from the infrared binary IRAS 04113+2758. The differential emission measure (DEM) distribution during the V773 Tau flare shows a bimodal temperature structure that is almost totally dominated by hot plasma at an average temperature of approx. 37 million K. Using information from time-resolved spectra, we examine the flare decay in terms of solar flare models (cooling loops and two-ribbon flares) and also consider possible nonsolar behavior (interbinary flares, star-disk flares, and rotational X-ray modulation). Solar models are unable to reproduce the unusual convex-shaped X-ray light curve, which decays slowly over a timespan of at least 1 day. However, the light curve decay is accurately modeled as a sinusoid with an inferred X-ray period of 2.97 days, which is nearly identical to the optical rotation period(s) of the two K-type components. This provides tantalizing evidence that the flaring region was undergoing rotational occultation, but periodic X-ray variability is not yet proven since our ASCA observation spans only one-third of a rotation cycle.

  9. The Surface of V410 Tauri

    NASA Astrophysics Data System (ADS)

    Rice, J. B.; Strassmeier, K. G.; Kopf, M.

    2011-02-01

    We present Doppler images of the weak-lined T Tauri star V410 Tau obtained with two different Doppler-imaging codes. The images are consistent and show a cool extended spot, symmetric about the pole, at a temperature approximately 750 K below the average photospheric value. Smaller cool spots are found fairly uniformly distributed at latitudes below the polar cap with temperatures about 450 K below the average photospheric temperature. Resolution on the stellar surface is limited to about 7° of arc, so structure within these spots is not visible. Also at lower latitudes are hotter features with temperatures up to 1000 K above the photosphere. A trial Doppler image using a TiO molecular feature reproduced the cool polar cap at a temperature about 100 K below the value from the atomic line images. The equatorial features, however, were not properly reproduced since Doppler imaging relies on information in the wings of lines for reconstructing equatorial features, and for V410 Tau these molecular band lines overlap. In 1993, V410 Tau had a large photometric amplitude resulting from the concentration of cool spots on the hemisphere of the star visible at phase 0°, a phenomenon known as preferred longitude. In contrast, the small photometric amplitude observed currently is due to a strong symmetric polar spot and the uniform distribution in longitude of equatorial cool and warm spots. This redistribution of surface features may be the beginning of a slow "flip-flop" for V410 Tau where spot locations alternate between preferred longitudes. Flare events linked to two of the hotter spots in the Doppler image were observed.

  10. UV And X-Ray Emission from Impacts of Fragmented Accretion Streams on Classical T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Colombo, Salvatore; Orlando, Salvatore; Peres, Giovanni; Argiroffi, Costanza; Reale, Fabio

    2016-07-01

    According to the magnetoshperic accretion scenario, during their evo- lution, Classical T Tauri stars accrete material from their circumstellar disk. The accretion process is regulated by the stellar magnetic eld and produces hot and dense post-shocks on the stellar surface as a result of impacts of the downfalling material. The impact regions are expected to strongly radiate in UV and X-rays. Several lines of evidence support the magnetospheric accretion scenario, especially in optical and infrared bands. However several points still remain unclear as, for instance,where the complex-pro le UV lines originate, or whether and how UV and X-ray emission is produced in the same shock region. The analysis of a large solar eruption has shown that EUV excesses might be e ectively produced by the impact of dense fragments onto the stellar surface. Since a steady accretion stream does not reprouce observations, in this work we investi- gate the e ects of a fragmented accretion stream on the uxes and pro les of C IV and O VIII emission lines. To this end we model the impact of a fragmented accretion stream onto the chromosphere of a CTTS with 2D axysimmetric magneto-hydrodynamic simulations. Our model takes into account of the gravity, the stellar magnetic eld, the thermal conduction and the radiative cooling from an optically thin plasma. From the model results, we synthesize the UV and X-ray emission including the e ect of Doppler shift along the line of sight. We nd that a fragmented accretion stream produces complex pro les of UV emission lines which consists of multiple components with di erent Doppler shifts. Our model predicts line pro les that are consistent with those observed and explain their origin as due to the stream fragmentation.

  11. Sensitive survey for 13CO, CN, H2CO, and SO in the disks of T Tauri and Herbig Ae stars. II. Stars in ρ Ophiuchi and upper Scorpius

    NASA Astrophysics Data System (ADS)

    Reboussin, L.; Guilloteau, S.; Simon, M.; Grosso, N.; Wakelam, V.; Di Folco, E.; Dutrey, A.; Piétu, V.

    2015-06-01

    Aims: We attempt to determine the molecular composition of disks around young low-mass stars in the ρ Oph region and to compare our results with a similar study performed in the Taurus-Auriga region. Methods: We used the IRAM 30 m telescope to perform a sensitive search for CN N = 2-1 in 29 T Tauri stars located in the ρ Oph and upper Scorpius regions. 13CO J = 2-1 is observed simultaneously to provide an indication of the level of confusion with the surrounding molecular cloud. The bandpass also contains two transitions of ortho-H2CO, one of SO, and the C17O J = 2-1 line, which provides complementary information on the nature of the emission. Results: Contamination by molecular cloud in 13CO and even C17O is ubiquitous. The CN detection rate appears to be lower than for the Taurus region, with only four sources being detected (three are attributable to disks). H2CO emission is found more frequently, but appears in general to be due to the surrounding cloud. The weaker emission than in Taurus may suggest that the average disk size in the ρ Oph region is smaller than in the Taurus cloud. Chemical modeling shows that the somewhat higher expected disk temperatures in ρ Oph play a direct role in decreasing the CN abundance. Warmer dust temperatures contribute to convert CN into less volatile forms. Conclusions: In such a young region, CN is no longer a simple, sensitive tracer of disks, and observations with other tracers and at high enough resolution with ALMA are required to probe the gas disk population. Based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org

  12. ASCA X-ray observations of pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Skinner, S. L.; Walter, F. M.; Yamauchi, S.

    1996-01-01

    The results of recent Advanced Satellite for Cosmology and Astrophysics (ASCA) X-ray observations of two pre-main sequence stars are presented: the weak emission line T Tauri star HD 142361, and the Herbig Ae star HD 104237. The solid state imaging spectrometer spectra for HD 142361 shows a clear emission line from H-like Mg 7, and spectral fits reveal a multiple temperature plasma with a hot component of at least 16 MK. The spectra of HD 104237 show a complex temperature structure with the hottest plasma at temperatures of greater than 30 MK. It is concluded that mechanisms that predict only soft X-ray emission can be dismissed for Herbig Ae stars.

  13. Water Formation and Destruction by 'Super' X-ray Flares from a T-Tauri Star in a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Waggoner, Abygail R.; Cleeves, L. Ilsedore

    2018-01-01

    We present models of H2O chemistry is protoplanetary disks in the presence of 'super' X-ray flares emitted by a T-Tauri star. We examine the time-evolving chemistry of H2O at radial locations from 1 to 20 AU at various vertical heights from the mid-plane to the surface of the disk. We find the gas-phase H2O abundance can be enhanced in the surface (Z/R ≥ 0.3) by more than a factor of approximately 3 - 5 by strong flares, i.e., those that increase the ionization rate by a factor of 100. Dissociative recombination of H3O+ , H2O adsorption onto grain, and photolysis of H2O are found to be the three dominant processes leading to a change in H2O abundance. We find X-ray flares have predominantly short- term (days) effects on gaseous H2O abundance, but some regions show a long-term (for the duration of the test about 15 days) decrease in gaseous H2O due to adsorption onto grains, which results in an increase (up to 200%) in ice H2O in regions where ice H2O is < 10-9 abundance with respect to H atom. In regions where ice H2 O is > 10-8 abundance no are response in the ice is observed.Thanks to the National Science Foundation for funding this research as a part of the Smithsonian Astrophysical Observatory Research Experience for Undergraduates (SAO REU).

  14. VLA observations of mass loss from T Tauri stars

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Bieging, J. H.; Schwartz, P. R.

    1982-01-01

    Six of 24 pre-main sequence stars surveyed with the VLA have been found to emit at 4.885 GHz. Radio maps of the six stars, V410 Tau, T Tau, DG Tau, LkH-alpha 101, L1551 IRS5, and Z CMa, show unresolved cores of less than 0.5 arcsec in most cases, along with 1-2 arcsec, faint, extended structures. Mass loss rates, derived under the assumption of uniform spherical winds, range from approximately 3 x 10 to the -7th to about 4 x 10 to the -5th solar masses/year. Because the flows are highly anisotropic, however, these estimates are to be taken only as likely upper limits.

  15. 2.0 to 2.4 micron spectroscopy of T Tauri stars

    NASA Astrophysics Data System (ADS)

    Hamann, F.; Simon, M.; Ridgway, S. T.

    1988-03-01

    Velocity-resolved 2.0-2.5-micron observations of the T Tau stars T, DF, DG, DK, HL, and RY Tau, SU Aur, and GW Ori are presented. For each of these stars except SU Aur, the Brackett gamma line was detected in emission with line widths inthe range of about 130-230 km/s. The Brackett gamma line profile of SU Aur is complex, having components of both emission and absorption. The first measurement of CO band-head emission in DG Tau is reported, and it is shown that published radio continuum fluxes of young stars far exceed what could be produced in an envelope ionized by only the stellar photospheric Lyman continuum. The excess of radio emission is found to be much greater in low-luminosity sources (e.g., the T Tau stars).

  16. TH28 (Krautter's star) and its string of Herbig-Haro objects

    NASA Technical Reports Server (NTRS)

    Graham, J. A.; Heyer, Mark H.

    1988-01-01

    A high-quality spectrogram of the unusual T Tauri-like star Th28 and its string of Herbig-Haro (HH) objects has been obtained. New velocities and line intensities for the star and the gaseous knots are reported, and data are given for a third HH object located 87 arcsec to the SE along the same collimation axis as defined by the other features. Th28 has a heliocentric velocity of +5 km/s which is close to the velocity of the CO in the area. The star's spectral type is probably in the G8-K2 range.

  17. COLD CO GAS IN THE DISK OF THE YOUNG ERUPTIVE STAR EX LUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kóspál, Á.; Ábrahám, P.; Moór, A.

    EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1–5 mag at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the {sup 12}CO J = 3−2 and 4–3 lines, and themore » {sup 13}CO 3–2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model and compare the obtained parameters with corresponding ones of other T Tauri disks.« less

  18. Star-disk interaction in Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Speights, Christa Marie

    2012-09-01

    The question of the mechanism of certain types of stars is important. Classical T Tauri (CTTS) stars accrete magnetospherically, and Herbig Ae/Be stars (higher-mass analogs to CTTS) are thought to also accrete magnetospherically, but the source of a kG magnetic field is unknown, since these stars have radiative interiors. For magnetospheric accretion, an equation has been derived (Hartmann, 2001) which relates the truncation radius, stellar radius, stellar mass, mass accretion rate and magnetic field strength. Currently the magnetic field of Herbig stars is known to be somewhere between 0.1 kG and 10 kG. One goal of this research is to further constrain the magnetic field. In order to do that, I use the magnetospheric accretion equation. For CTTS, all of the variables used in the equation can be measured, so I gather this data from the literature and test the equation and find that it is consistent. Then I apply the equation to Herbig Ae stars and find that the error introduced from using random inclinations is too large to lower the current upper limit of the magnetic field range. If Herbig Ae stars are higher-mass analogs to CTTS, then they should have a similar magnetic field distribution. I compare the calculated Herbig Ae magnetic field distribution to several typical magnetic field distributions using the Kolmogorov-Smirnov test, and find that the data distribution does not match any of the distributions used. This means that Herbig Ae stars do not have well ordered kG fields like CTTS.

  19. A spectrum of the veiled T Tauri star CY Tau

    NASA Technical Reports Server (NTRS)

    Stuewe, J. A.; Schultz, R.

    1994-01-01

    We present a flux calibrated spectrum of the star listed as CY Tau in the `General Catalog of Variable Stars 4th ed.' in the spectral range 3700 A less than or equal to lambda less than or equal to 6400 A with a resolution of approximately equals 15 A showing the Balmer-Series from H(sub beta) to H(sub 10) as well as the CaII H (in blend with H(sub epsilon) and K lines in emission. Apart from the emission lines the spectrum is composed of a continuum equivalent to that of an ordinary pre-main sequence star (i.e. a `naked' T Tau) of spectral type M2 V with emission lines plus a `blue' veiling continuum that can be described as black body radiation of temperature T(sub BL) approximately equals 7000K due to accretion onto a boundary layer at a rate of M-dot(sub acc) greater than or approximately = 2.18 10(exp -8) solar mass/a.

  20. A magnetic study of spotted UV Ceti flare stars and related late-type dwarfs

    NASA Astrophysics Data System (ADS)

    Vogt, S. S.

    1980-09-01

    A multichannel photoelectric Zeeman analyzer has been used to investigate the magnetic nature of the spotted UV Ceti flare stars. Magnetic observations were obtained on a sample of 19 program objects, of which 5 were currently spotted dKe-dMe stars, 7 were normal dK-dM stars, 7 were UV Ceti flare stars, and 1 was a possible post-T Tauri star. Contrary to most previously published observations and theoretical expectations, no magnetic fields were detected on any of these objects from either the absorption lines or the H-alpha emission line down to an observational uncertainty level of 100-160 gauss (standard deviation).

  1. First scattered light detection of a nearly edge-on transition disk around the T Tauri star RY Lupi

    NASA Astrophysics Data System (ADS)

    Langlois, M.; Pohl, A.; Lagrange, A.-M.; Maire, A.-L.; Mesa, D.; Boccaletti, A.; Gratton, R.; Denneulin, L.; Klahr, H.; Vigan, A.; Benisty, M.; Dominik, C.; Bonnefoy, M.; Menard, F.; Avenhaus, H.; Cheetham, A.; Van Boekel, R.; de Boer, J.; Chauvin, G.; Desidera, S.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J. H.; Henning, T.; Janson, M.; Kopytova, T.; Kral, Q.; Ligi, R.; Messina, S.; Peretti, S.; Pinte, C.; Sissa, E.; Stolker, T.; Zurlo, A.; Magnard, Y.; Blanchard, P.; Buey, T.; Suarez, M.; Cascone, E.; Moller-Nilsson, O.; Weber, L.; Petit, C.; Pragt, J.

    2018-06-01

    Context. Transition disks are considered sites of ongoing planet formation, and their dust and gas distributions could be signposts of embedded planets. The transition disk around the T Tauri star RY Lup has an inner dust cavity and displays a strong silicate emission feature. Aims: Using high-resolution imaging we study the disk geometry, including non-axisymmetric features, and its surface dust grain, to gain a better understanding of the disk evolutionary process. Moreover, we search for companion candidates, possibly connected to the disk. Methods: We obtained high-contrast and high angular resolution data in the near-infrared with the VLT/SPHERE extreme adaptive optics instrument whose goal is to study the planet formation by detecting and characterizing these planets and their formation environments through direct imaging. We performed polarimetric imaging of the RY Lup disk with IRDIS (at 1.6 μm), and obtained intensity images with the IRDIS dual-band imaging camera simultaneously with the IFS spectro-imager (0.9-1.3 μm). Results: We resolved for the first time the scattered light from the nearly edge-on circumstellar disk around RY Lup, at projected separations in the 100 au range. The shape of the disk and its sharp features are clearly detectable at wavelengths ranging from 0.9 to 1.6 μm. We show that the observed morphology can be interpreted as spiral arms in the disk. This interpretation is supported by in-depth numerical simulations. We also demonstrate that these features can be produced by one planet interacting with the disk. We also detect several point sources which are classified as probable background objects.

  2. X-ray sources associated with young stellar objects in the star formation region CMa R1

    NASA Astrophysics Data System (ADS)

    Santos-Silva, Thais; Gregorio-Hetem, Jane; Montmerle, Thierry

    2013-07-01

    In previous works we studied the star formation scenario in the molecular cloud Canis Major R1 (CMa R1), derived from the existence of young stellar population groups near the Be stars Z CMa and GU CMa. Using data from the ROSAT X-ray satellite, having a field-of-view of ~ 1° in diameter, Gregorio-Hetem et al. (2009) discovered in this region young stellar objects mainly grouped in two clusters of different ages, with others located in between. In order to investigate the nature of these objects and to test a possible scenario of sequential star formation in this region, four fields (each 30 arcmin diameter, with some overlap) have been observed with the XMM-Newton satellite, with a sensitivity about 10 times better than ROSAT. The XMM-Newton data are currently under analysis. Preliminary results indicate the presence of about 324 sources, most of them apparently having one or more near-infrared counterparts showing typical colors of young stars. The youth of the X-ray sources was also confirmed by X-ray hardness ratio diagrams (XHRD), in different energy bands, giving an estimate of their Lx/Lbol ratios. In addition to these results, we present a detailed study of the XMM field covering the cluster near Z CMa. Several of these sources were classified as T Tauri and Herbig Ae/Be stars, using optical spectroscopy obtained with Gemini telescopes, in order to validate the use of XHRD applied to the entire sample. This classification is also used to confirm the relation between the luminosities in the near-infrared and X-ray bands expected for the T Tauri stars in CMa R1. In the present work we show the results of the study based on the spectra of about 90 sources found nearby Z CMa. We checked that the X-ray spectra (0.3 to 10 keV) of young objects is different from that observed in field stars and extragalactic objects. Some of the candidates also have light curve showing flares that are typical of T Tauri stars, which confirms the young nature of these X

  3. Observations of red-giant variable stars by Aboriginal Australians

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2018-04-01

    Aboriginal Australians carefully observe the properties and positions of stars, including both overt and subtle changes in their brightness, for subsistence and social application. These observations are encoded in oral tradition. I examine two Aboriginal oral traditions from South Australia that describe the periodic changing brightness in three pulsating, red-giant variable stars: Betelgeuse (Alpha Orionis), Aldebaran (Alpha Tauri), and Antares (Alpha Scorpii). The Australian Aboriginal accounts stand as the only known descriptions of pulsating variable stars in any Indigenous oral tradition in the world. Researchers examining these oral traditions over the last century, including anthropologists and astronomers, missed the description of these stars as being variable in nature as the ethnographic record contained several misidentifications of stars and celestial objects. Arguably, ethnographers working on Indigenous Knowledge Systems should have academic training in both the natural and social sciences.

  4. The 2RE J0241-525: A Nearby Post T-Tauri Visual Binary System

    NASA Technical Reports Server (NTRS)

    Jeffries, R. D.; Buckley, D. A. H.; James, D. J.; Stauffer, J. R.

    1995-01-01

    We present high spatial resolution X-ray observations, photometry and spectroscopy of the two low mass, active stars proposed as optical counterparts to the extreme ultraviolet source 2RE J0241-525 (equal to EUVE J0241-530). It is confirmed that both stars, which are of types dK7e and dM3e and separated by 22 arcsecs, are sources of soft X-ray emission and exhibit substantial chromospheric activity. Radial velocity measurements indicate that the two components are physically associated and most probably single. The projected equatorial velocities are measured as (75 +/- 3) km/s and (11.7 +/- 0.7) km/s for the hotter and cooler components, respectively, and whilst the hotter component has a relatively high photospheric lithium abundance, log N(Li) equal to 1.5 +/- 0.2, we are unable to detect any lithium in the cooler star. Isochrone fitting to this 'mini-cluster' yields an age of (3-70) Myr and a distance of (19-60) pc. An empirical comparison of the lithium abundances with those for similar stars in young clusters and associations narrows this age range to (5-30) Myr and a corresponding distance of (26-50) pc. We conclude that this object is a nearby post T-Tauri system, but we cannot locate any possible birth site. It appears unlikely that the system can have been ejected from a nearby open cluster in a two or three body encounter.

  5. Understanding the atmospheric structure of T Tauri stars - II. UV spectroscopy of RY Tau, BP Tau, RU Lupi, GW Ori and CV Cha

    NASA Astrophysics Data System (ADS)

    Brooks, D. H.; Costa, V. M.; Lago, M. T. V. T.; Lanzafame, A. C.

    2001-10-01

    We report results from our study of International Ultraviolet Explorer (IUE) data of a group of T Tauri stars (TTS). Comparisons between UV-line fluxes in these stars and in the Sun indicate very high levels of activity in their atmospheres and comparatively higher electron densities. Spectroscopic diagnostic line ratios indicate densities over an order of magnitude higher than in the `quiet' Sun at `transition region' temperatures. At these densities, metastable levels can attain comparable populations to the ground level and ionization fractions can be altered as a result of the sensitivity of dielectronic recombination. In Brooks et al. we improved the treatment of these effects using the adas software package, the atomic models and data of which are based on collisional-radiative theory. Here we extend the analysis to a sample of five TTS: RY Tau, BP Tau, RU Lupi, GW Ori and CV Cha. Using these models and data we derive the emission measure (EM) distribution for each star in the sample. We find that the decrease in EM with increasing temperature appears to be sharper than that found in previous work. In comparison with the Sun, the results suggest that the UV emission is formed in a region with a steeper density or volume gradient. We find mismatches between the theoretical and observed fluxes which cannot be explained by density effects and thus must be a result of uncertainties in the atomic data, unreliabilities in the fluxes or the failure of physical assumptions in the method. We have made a series of tests and comparisons, including examination of opacity effects, and these clearly favour the latter explanation. They also lead us to suggest the presence of two separate components in the UV emission for each of the TTS, although the case of CV Cha is more ambiguous. This supports and extends the earlier work of Jordan & Kuin on RU Lupi. Interestingly, we find that the EM distribution for GW Ori has values at least 10 times larger than those of RY Tau

  6. Multiplicity of Massive Stars

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans

    We review the multiplicity of massive stars by compiling the abstracts of the most relevant papers in the field. We start by discussing the massive stars in the Orion Trapezium Cluster and in other Galactic young clusters and OB associations, and end with the R136 cluster in the LMC. The multiplicity of field O-stars and runaway OB stars is also reviewed. The results of both visual and spectroscopic surveys are presented, as well as data for eclipsing systems. Among the latter, we find the most massive known binary system WR20a, with two ~,80M_⊙ components in a 3 day orbit. Some 80% of the wide visual binaries in stellar associations are in fact hierarchical triple systems, where typically the more massive of the binary components is itself a spectroscopic or even eclipsing binary pair. The multiplicity (number of companions) of massive star primaries is significantly higher than for low-mass solar-type primaries or for young low-mass T Tauri stars. There is also a striking preponderance of very close nearly equal mass binary systems (the origin of which has recently been explained in an accretion scenario). Finally, we offer a new idea as to the origin of massive Trapezium systems, frequently found in the centers of dense young clusters.

  7. Mid-IR Spectra Herbig Ae/Be Stars

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Herbig Ae/Be stars are intermediate mass pre-main sequence stars, the higher mass analogues to the T Tauri stars. Because of their higher mass, they are expected form more rapidly than the T Tauri stars. Whether the Herbig Ae/Be stars accrete only from collapsing infalling envelopes or whether accrete through geometrically flattened viscous accretion disks is of current debate. When the Herbig Ae/Be stars reach the main sequence they form a class called Vega-like stars which are known from their IR excesses to have debris disks, such as the famous beta Pictoris. The evolutionary scenario between the pre-main sequence Herbig Ae/Be stars and the main sequence Vega-like stars is not yet revealed and it bears on the possibility of the presence of Habitable Zone planets around the A stars. Photometric studies of Herbig Ae/Be stars have revealed that most are variable in the optical, and a subset of stars show non-periodic drops of about 2 magnitudes. These drops in visible light are accompanied by changes in their colors: at first the starlight becomes reddened, and then it becomes bluer, the polarization goes from less than 0.1 % to roughly 1% during these minima. The theory postulated by V. Grinnin is that large cometary bodies on highly eccentric orbits occult the star on their way to being sublimed, for systems that are viewed edge-on. This theory is one of several controversial theories about the nature of Herbig Ae/Be stars. A 5 year mid-IR spectrophotometric monitoring campaign was begun by Wooden and Butner in 1992 to look for correlations between the variations in visible photometry and mid-IR dust emission features. Generally the approximately 20 stars that have been observed by the NASA Ames HIFOGS spectrometer have been steady at 10 microns. There are a handful, however, that have shown variable mid-IR spectra, with 2 showing variations in both the continuum and features anti-correlated with visual photometry, and 3 showing variations in the emission

  8. Young Star Probably Ejected From Triple System

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Astronomers analyzing nearly 20 years of data from the National Science Foundation's Very Large Array radio telescope have discovered that a small star in a multiple-star system in the constellation Taurus probably has been ejected from the system after a close encounter with one of the system's more-massive components, presumed to be a compact double star. This is the first time any such event has been observed. Path of Small Star, 1983-2001 "Our analysis shows a drastic change in the orbit of this young star after it made a close approach to another object in the system," said Luis Rodriguez of the Institute of Astronomy of the National Autonomous University of Mexico (UNAM). "The young star was accelerated to a large velocity by the close approach, and certainly now is in a very different, more remote orbit, and may even completely escape its companions," said Laurent Loinard, leader of the research team that also included Monica Rodriguez in addition to Luis Rodriguez. The UNAM astronomers presented their findings at the American Astronomical Society's meeting in Seattle, WA. The discovery of this chaotic event will be important for advancing our understanding of classical dynamic astronomy and of how stars evolve, including possibly providing an explanation for the production of the mysterious "brown dwarfs," the astronomers said. The scientists analyzed VLA observations of T Tauri, a multiple system of young stars some 450 light-years from Earth. The observations were made from 1983 to 2001. The T Tauri system includes a "Northern" star, the famous star that gives its name to the class of young visible stars, and a "Southern" system of stars, all orbiting each other. The VLA data were used to track the orbit of the smaller Southern star around the larger Southern object, presumed to be a pair of stars orbiting each other closely. The astronomers' plot of the smaller star's orbit shows that it followed an apparently elliptical orbit around its twin companions

  9. Radio variability and structure of T Tauri stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Bieging, John H.

    1986-01-01

    Observations of radio variability in V410 Tau and in HP Tau/G2 and /G3, and striking variations in the radio structure of DG Tau, are reported. The position of the radio peak of DG Tau has shown apparent motion between 1982 and 1985 along the flow axis from this star, while its morphology has varied from point-like to bipolar. These changes and the spectral index of 0.6 at high frequencies are interpreted as indicative of a variable, freely expanding radio jet in DG Tau.

  10. Accretion and Magnetic Reconnection in the Classical T Tauri Binary DQ Tau

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Johns-Krull, Christopher; Herczeg, Gregory J.; Quijano-Vodniza, Alberto

    2017-01-01

    The theory of binary star formation predicts that close binaries (a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (˜daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  11. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascucci, I.; Simon, M. N.; Edwards, S.

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within themore » circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.« less

  12. Hydrodynamic modelling of accretion impacts in classical T Tauri stars: radiative heating of the pre-shock plasma

    NASA Astrophysics Data System (ADS)

    Costa, G.; Orlando, S.; Peres, G.; Argiroffi, C.; Bonito, R.

    2017-01-01

    Context. It is generally accepted that, in classical T Tauri stars, the plasma from the circumstellar disc accretes onto the stellar surface with free-fall velocity and the impact generates a shock. The impact region is expected to contribute to emission in different spectral bands; many studies have confirmed that the X-rays arise from the post-shock plasma but, otherwise, there are no studies in the literature investigating the origin of the observed UV emission which is apparently correlated to accretion. Aims: We investigated the effect of radiative heating of the infalling material by the post-shock plasma at the base of the accretion stream, with the aim to identify in which region a significant part of the UV emission originates. Methods: We developed a one-dimensional hydrodynamic model describing the impact of an accretion stream onto the stellar surface; the model takes into account the gravity, the radiative cooling of an optically thin plasma, the thermal conduction, and the heating due to absorption of X-ray radiation. The latter term represents the heating of the infalling plasma due to the absorption of X-rays emitted from the post-shock region. Results: We found that the radiative heating of the pre-shock plasma plays a non-negligible role in the accretion phenomenon. In particular, the dense and cold plasma of the pre-shock accretion column is gradually heated up to a few 105K due to irradiation of X-rays arising from the shocked plasma at the impact region. This heating mechanism does not affect significantly the dynamics of the post-shock plasma. On the other hand, a region of radiatively heated gas (that we consider a precursor) forms in the unshocked accretion column and contributes significantly to UV emission. Our model naturally reproduces the luminosity of UV emission lines correlated to accretion and shows that most of the UV emission originates from the precursor.

  13. Aging jets from low-mass stars

    NASA Technical Reports Server (NTRS)

    Graham, J. A.; Chen, W. P.

    1994-01-01

    An extended faint optical jet is associated with the compact emission region plus faint star known as HH 55. HH 55 is located in the Lupus 2 cloud 2 min SW of the well studied T Tauri star RU Lupi. The HH 55 jet extends 55 sec N and 35 sec S in PA 160 deg. The HH 55 star is an emission line star of spectral type M3.5. Its image in the emission lines of H-alpha and (S II) is slightly elongated by 2 sec - 3 sec to the S but in continuum light is symmetrical and pointlike ((full width at half maximum) (FWHM) = 1.7 sec). The star and jet have several features in common with the star and jet known as Sz 102 = Th 28 in the nearby Lupus 3 cloud. We suggest that these objects are representative of the late evolutionary stage of the HH jet-outflow phenomenon and point out that such objects may be quite common although difficult to detect. With L(sub bol) approximately = 0.005 solar luminosity, and log T(sub e) approximately = 3.5, the HH 55 star is close to the main sequence and evolutionary tracks suggest an age of 3 x 10(exp 7) yr.

  14. The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr)

    NASA Astrophysics Data System (ADS)

    Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.

    2018-03-01

    There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.

  15. Multiwavelength search for protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Neuhaeuser, Ralph; Schmidt-Kaler, Theodor

    1994-01-01

    Infrared emission of circumstellar dust was observed for almost one hundred T Tauri stars. This dust is interpreted to be part of a protoplanetary disk orbiting the central star. T Tauri stars are young stellar objects and evolve into solar type stars. Planets are believed to form in these disks. The spectral energy distribution of a disk depends on its temperature profile. Different disk regions emit at different wavelengths. The disk-star boundary layer is hot and emits H(alpha) radiation. Inner disk regions at around 1 AU with a temperature of a few hundred Kelvin can be probed in near infrared wavelength regimes. Outer disk regions at around 100 AU distance from the star are colder and emit far infrared and sub-millimeter radiation. Also, X-ray emission from the stellar surface can reveal information on disk properties. Emission from the stellar surface and the boundary layer may be shielded by circumstellar gas and dust. T Tauri stars with low H(alpha) emission, i.e. no boundary layer, show stronger X-ray emission than classical T Tauri stars, because the inner disk regions of weak emission-line T Tauri stars may be clear of material. In this paper, first ROSAT all sky survey results on the X-ray emission of T Tauri stars and correlations between X-ray luminosity and properties of T Tauri disks are presented. Due to atmospheric absorption, X-ray and most infrared observations cannot be carried out on Earth, but from Earth orbiting satellites (e.g. IRAS, ROSAT, ISO) or from lunar based observatories, which would have special advantages such as a stable environment.

  16. COUPLED EVOLUTIONS OF THE STELLAR OBLIQUITY, ORBITAL DISTANCE, AND PLANET'S RADIUS DUE TO THE OHMIC DISSIPATION INDUCED IN A DIAMAGNETIC HOT JUPITER AROUND A MAGNETIC T TAURI STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yu-Ling; Gu, Pin-Gao; Bodenheimer, Peter H.

    We revisit the calculation of the ohmic dissipation in a hot Jupiter presented by Laine et al. by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modeled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small corotation orbital radius can undergo orbital decay bymore » the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/antiparallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model of Laine et al. and find that the planet's radius is sustained at a nearly constant value by the ohmic heating, rather than being thermally expanded to the Roche radius as suggested by the authors.« less

  17. The V471 Tauri System: A Multi-data-type Probe

    NASA Astrophysics Data System (ADS)

    Vaccaro, T. R.; Wilson, R. E.; Van Hamme, W.; Terrell, Dirk

    2015-09-01

    V471 Tauri, a white dwarf-red dwarf eclipsing binary (EB) in the Hyades, is well known for stimulating development of common envelope theory, whereby novae and other cataclysmic variables form from much wider binaries by catastrophic orbit shrinkage. Our evaluation of a recent imaging search that reported negative results for a much postulated third body shows that the object could have escaped detection or may have actually been seen. The balance of evidence continues to favor a brown dwarf companion about 12 AU from the EB. A recently developed algorithm finds unified solutions from three data types. New radial velocities (RVs) of the red dwarf and {{BVR}}C{I}C light curves are solved simultaneously along with white dwarf and red dwarf RVs from the literature, uvby data, the Microvariability and Oscillations of Stars mission light curve, and 40 years of eclipse timings. Precision-based weighting is the key to proper information balance among the various data sets. Timewise variation of modeled starspots allows unified solution of multiple data eras. Light-curve amplitudes strongly suggest decreasing spottedness from 1976 to about 1980, followed by approximately constant spot coverage from 1981 to 2005. An explanation is proposed for lack of noticeable variation in 1981 light curves, in terms of competition between spot and tidal variations. Photometric-spectroscopic distance is estimated. The red dwarf mass comes out larger than normal for a K2 V star, and even larger than adopted in several structure and evolution papers. An identified cause for this result is that much improved red dwarf RV curves now exist.

  18. Elemental abundances of the B and A stars Gamma Geminorum, 7 Sextantis, HR 4817, and HR 5780

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.; Philip, A. G. D.

    1992-01-01

    Fine analyses of the B and A stars, Gamma Geminorum, 7 Sextantis, HR 4817, and HR 5780 are performed. Although the data cover rather limited spectral regions, still useful results were obtained. The data were mostly obtained at the KPNO coude feed telescope with CCD TI No. 3, camera 5, and grating A. The He/H ratio of HR 4817 confirms the similarity of many abundance values with those of the peculiar Mn star 53 Tauri. For the most part Gamma Gem, 7 Sex, and HR 5780 have derived abundances similar to those of other normal sharp-lined stars of similar effective temperature.

  19. Star Shows It Has The Right Stuff

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Astronomers have used an observation by NASA's Chandra X-ray Observatory to make the best case yet that a star can be engulfed by its companion star and survive. This discovery will help astronomers better understand how closely coupled stars, and perhaps even stars and planets, evolve when one of the stars expands enormously in its red giant phase. The binary star system known as V471 Tauri comprises a white dwarf star (the primary) in a close orbit -- one thirtieth of the distance between Mercury and the Sun -- with a normal Sun-like star (the secondary). Chandra's data showed that the hot upper atmosphere of the secondary star has a deficit of carbon atoms relative to nitrogen atoms. "This deficit of carbon atoms is the first clear observational evidence that the normal star was engulfed by its companion in the past," according to Jeremy Drake of the Smithsonian Astrophysical Observatory in Cambridge, MA, who coauthored an article on V471 in The Astrophysical Journal Letters with Marek Sarna of the N. Copernicus Astronomical Center in Poland. The white dwarf star was once a star several times as massive as the Sun. Nuclear fusion reactions in the core of such a star convert carbon into nitrogen over a period of about a billion years. When the fuel in the core of the star is exhausted, the core collapses, triggering more energetic nuclear reactions that cause the star to expand and transform into a red giant before eventually collapsing to become a white dwarf. The carbon-poor material in the core of the red giant is mixed with outer part of the star, so its atmosphere shows a deficit of carbon, as compared with Sun-like stars. The X-ray spectra of a red giant star (top panel) and a Sun-like star (bottom panel) show the large difference in the peaks due to carbon atoms in the two stars. Theoretical calculations indicate that a red giant in a binary system can completely envelop its companion star and dramatically affect its evolution. During this common envelope

  20. Evidence for Residual Material in Accretion Disk Gaps: CO Fundamental Emission from the T Tauri Spectroscopic Binary DQ Tauri

    DTIC Science & Technology

    2001-04-10

    for gas from the circumbinary disk to cross disk gaps in the...00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE Evidence for Residual Material in Accretion Disk Gaps : CO Fundamental Emission from the T Tauri...MATERIAL IN ACCRETION DISK GAPS 455 type of modulated, or pulsed, accretion predicted by Arty- mowicz & Lubow (1996) for an eccentric, equal mass

  1. Probing the dusty disk around the Herbig Ae star MWC 480

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Looney, L. W.; Shaw, J.

    2004-12-01

    It is already quite evident that some Herbig AeBe stars are surrounded by circumstellar dusty disk (e.g. Fuente et al 2003, Natta et al. 2004). We present sub-arcsecond resolution observations at λ = 1mm of dust continuum emission from circumstellar structures around the Herbig AeBe star MWC 480. We have detected a disk-like structure around the star. This is the first well resolved Herbig Ae disk at 1.3 mm. We deduced from the best fit Gaussian a FWHM of 100 AU. We deduce a disk mass of ˜ 0.017 M⊙ assuming optically thin emission. We focus the discussion upon the morphology of the disk and use models to infer the physical parameters (e.g. the density profile). In addition, we discuss a new method with which to fit the numerical model to interferometric data of circumstellar structures around Herbig AeBe stars and T Tauri stars. This method allows us to compare complete Fourier dataset to the Model.

  2. Theoretical studies of chromospheres and winds in cool stars

    NASA Technical Reports Server (NTRS)

    Hartmann, L.

    1986-01-01

    Propagation of pulsational waves through the atmosphere of the M supergiant alpha Ori was explored using a time dependent hydrodynamic code. Wind properties for three FU Orionis objects were determined using radiative transfer models based on optical line profiles. The effects of varying wind temperature while keeping the velocity steady were considered. Using the premise that FU Orionis eruptions result from massive accretions from a disk into a T Tauri star explains a variety of observational peculiarities of FU Orionis objects.

  3. A Test of Pre-Main-Sequence Evolutionary Models across the Stellar/Substellar Boundary Based on Spectra of the Young Quadruple GG Tauri

    NASA Astrophysics Data System (ADS)

    White, Russel J.; Ghez, A. M.; Reid, I. Neill; Schultz, Greg

    1999-08-01

    We present spatially separated optical spectra of the components of the young hierarchical quadruple GG Tau. Spectra of GG Tau Aa and Ab (separation 0.25"~35 AU) were obtained with the Faint Object Spectrograph on board the Hubble Space Telescope. Spectra of GG Tau Ba and Bb (separation 1.48"~207 AU) were obtained with both the HIRES and the LRIS spectrographs on the W. M. Keck telescopes. The components of this minicluster, which span a wide range in spectral type (K7-M7), are used to test both evolutionary models and the temperature scale for very young, low-mass stars under the assumption of coeval formation. Of the evolutionary models tested, those of Baraffe et al. yield the most consistent ages when combined with a temperature scale intermediate between that of dwarfs and giants. The version of the Baraffe et al. models computed with a mixing length nearly twice the pressure scale height is of particular interest, as it predicts masses for GG Tau Aa and Ab that are in agreement with their dynamical mass estimate. Using this evolutionary model and a coeval (at 1.5 Myr) temperature scale, we find that the coldest component of the GG Tau system, GG Tau Bb, is substellar with a mass of 0.044+/-0.006 Msolar. This brown dwarf companion is especially intriguing as it shows signatures of accretion, although this accretion is not likely to alter its mass significantly. GG Tau Bb is currently the lowest mass, spectroscopically confirmed companion to a T Tauri star, and is one of the coldest, lowest mass T Tauri objects in the Taurus-Auriga star-forming region. Based partly on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  4. Glycerolipid Characterization and Nutrient Deprivation-Associated Changes in the Green Picoalga Ostreococcus tauri1

    PubMed Central

    Degraeve-Guilbault, Charlotte; Bréhélin, Claire; Haslam, Richard; Jouhet, Juliette

    2017-01-01

    The picoalga Ostreococcus tauri is a minimal photosynthetic eukaryote that has been used as a model system. O. tauri is known to efficiently produce docosahexaenoic acid (DHA). We provide a comprehensive study of the glycerolipidome of O. tauri and validate this species as model for related picoeukaryotes. O. tauri lipids displayed unique features that combined traits from the green and the chromalveolate lineages. The betaine lipid diacylglyceryl-hydroxymethyl-trimethyl-β-alanine and phosphatidyldimethylpropanethiol, both hallmarks of chromalveolates, were identified as presumed extraplastidial lipids. DHA was confined to these lipids, while plastidial lipids of prokaryotic type were characterized by the overwhelming presence of ω-3 C18 polyunsaturated fatty acids (FAs), 18:5 being restricted to galactolipids. C16:4, an FA typical of green microalgae galactolipids, also was a major component of O. tauri extraplastidial lipids, while the 16:4-coenzyme A (CoA) species was not detected. Triacylglycerols (TAGs) displayed the complete panel of FAs, and many species exhibited combinations of FAs diagnostic for plastidial and extraplastidial lipids. Importantly, under nutrient deprivation, 16:4 and ω-3 C18 polyunsaturated FAs accumulated into de novo synthesized TAGs while DHA-TAG species remained rather stable, indicating an increased contribution of FAs of plastidial origin to TAG synthesis. Nutrient deprivation further severely down-regulated the conversion of 18:3 to 18:4, resulting in obvious inversion of the 18:3/18:4 ratio in plastidial lipids, TAGs, as well as acyl-CoAs. The fine-tuned and dynamic regulation of the 18:3/18:4 ratio suggested an important physiological role of these FAs in photosynthetic membranes. Acyl position in structural and storage lipids together with acyl-CoA analysis further help to determine mechanisms possibly involved in glycerolipid synthesis. PMID:28235892

  5. Protoplanetary disk evolution and stellar parameters of T Tauri binaries in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Daemgen, S.; Petr-Gotzens, M. G.; Correia, S.; Teixeira, P. S.; Brandner, W.; Kley, W.; Zinnecker, H.

    2013-06-01

    Aims: This study aims to determine the impact of stellar binary companions on the lifetime and evolution of circumstellar disks in the Chamaeleon I (Cha I) star-forming region by measuring the frequency and strength of accretion and circumstellar dust signatures around the individual components of T Tauri binary stars. Methods: We used high-angular resolution adaptive optics JHKsL' -band photometry and 1.5-2.5 μm spectroscopy of 19 visual binary and 7 triple stars in Cha I - including one newly discovered tertiary component - with separations between ~25 and ~1000 AU. The data allowed us to infer stellar component masses and ages and, from the detection of near-infrared excess emission and the strength of Brackett-γ emission, the presence of ongoing accretion and hot circumstellar dust of the individual stellar components of each binary. Results: Of all the stellar components in close binaries with separations of 25-100 AU, 10+15-5% show signs of accretion. This is less than half of the accretor fraction found in wider binaries, which itself appears significantly reduced (~44%) compared with previous measurements of single stars in Cha I. Hot dust was found around 50+30-15% of the target components, a value that is indistinguishable from that of Cha I single stars. Only the closest binaries (<25 AU) were inferred to have a significantly reduced fraction (≲25%) of components that harbor hot dust. Accretors were exclusively found in binary systems with unequal component masses Msecondary/Mprimary < 0.8, implying that the detected accelerated disk dispersal is a function of mass-ratio. This agrees with the finding that only one accreting secondary star was found, which is also the weakest accretor in the sample. Conclusions: The results imply that disk dispersal is more accelerated the stronger the dynamical disk truncation, i.e., the smaller the inferred radius of the disk. Nonetheless, the overall measured mass accretion rates appear to be independent of the

  6. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk

  7. Identifying Young, Nearby Stars

    NASA Technical Reports Server (NTRS)

    Webb, Rich; Song, Inseok; Zuckerman, Ben; Bessell, Mike

    2001-01-01

    Young stars have certain characteristics, e.g., high atmospheric abundance of lithium and chromospheric activity, fast rotation, distinctive space motion and strong X-ray flux compared to that of older main sequence stars. We have selected a list of candidate young (<100Myr) and nearby (<60pc) stars based on their space motion and/or strong X-ray flux. To determine space motion of a star, one needs to know its coordinates (RA, DEC), proper motion, distance, and radial velocity. The Hipparcos and Tycho catalogues provide all this information except radial velocities. We anticipate eventually searching approx. 1000 nearby stars for signs of extreme youth. Future studies of the young stars so identified will help clarify the formation of planetary systems for times between 10 and 100 million years. Certainly, the final output of this study will be a very useful resource, especially for adaptive optics and space based searches for Jupiter-mass planets and dusty proto-planetary disks. We have begun spectroscopic observations in January, 2001 with the 2.3 m telescope at Siding Spring Observatory (SSO) in New South Wales, Australia. These spectra will be used to determine radial velocities and other youth indicators such as Li 6708A absorption strength and Hydrogen Balmer line intensity. Additional observations of southern hemisphere stars from SSO are scheduled in April and northern hemisphere observations will take place in May and July at the Lick Observatory of the University of California. AT SSO, to date, we have observed about 100 stars with a high resolution spectrometer (echelle) and about 50 stars with a medium spectral resolution spectrometer (the "DBS"). About 20% of these stars turn out to be young stars. Among these, two especially noteworthy stars appear to be the closest T-Tauri stars ever identified. Interestingly, these stars share the same space motions as that of a very famous star with a dusty circumstellar disk--beta Pictoris. This new finding better

  8. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    PubMed

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  9. Theory of winds in late-type evolved and pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.

    1983-01-01

    Recent observational results confirm that many of the physical processes which are known to occur in the Sun also occur among late-type stars in general. One such process is the continuous loss of mass from a star in the form of a wind. There now exists an abundance of either direct or circumstantial evidence which suggests that most (if not all) stars in the cool portion of the HR diagram possess winds. An attempt is made to assess the current state of theoretical understanding of mass loss from two distinctly different classes of late-type stars: the post-main-sequence giant/supergiant stars and the pre-main-sequence T Tauri stars. Toward this end, the observationally inferred properties of the wind associated with each of the two stellar classes under consideration are summarized and compared against the predictions of existing theoretical models. Although considerable progress has been made in attempting to identify the mechanisms responsible for mass loss from cool stars, many fundamental problems remain to be solved.

  10. Evidence for unseen companions around T Tauri stars

    NASA Technical Reports Server (NTRS)

    Marsh, Kenneth A.; Mahoney, Michael J.

    1992-01-01

    The observed spectral energy distributions of HK Tau, T Tau, and R Y Tau exhibit shallow (but significant) dips at mid-infrared wavelengths. This behavior can be explained by the existence of discrete gaps in their circumstellar disks since, if the temperature in the disks decreases monotonically outward, a gap would result in a range of "missing" temperatures. The gap centers for the three objects occur at radial distances of 0.5, 1.4, and 1.6 AU, respectively, while the corresponding ratios of outer to inner radii of the gaps are 6:1, 7:1, and 15:1, respectively. Larger mid-infrared dips are observed for SU Aur and GM Aur and are interpreted as correspondingly larger gaps, with almost complete clearing of the inner region of the disk in the latter case. The gaps in all cases are consistent with the tidal effects of either companion stars or planets.

  11. VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. IV. A PRELIMINARY DISTANCE TO THE PROTO-HERBIG AeBe STAR EC 95 IN THE SERPENS CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzib, Sergio; Loinard, Laurent; Rodriguez, Luis F.

    2010-08-01

    Using the Very Long Base Array, we observed the young stellar object EC 95 in the Serpens cloud core at eight epochs from 2007 December to 2009 December. Two sources are detected in our field and are shown to form a tight binary system. The primary (EC 95a) is a 4-5 M {sub sun} proto-Herbig AeBe object (arguably the youngest such object known), whereas the secondary (EC 95b) is most likely a low-mass T Tauri star. Interestingly, both sources are non-thermal emitters. While T Tauri stars are expected to power a corona because they are convective while they go downmore » the Hayashi track, intermediate-mass stars approach the main sequence on radiative tracks. Thus, they are not expected to have strong superficial magnetic fields, and should not be magnetically active. We review several mechanisms that could produce the non-thermal emission of EC 95a and argue that the observed properties of EC 95a might be most readily interpreted if it possessed a corona powered by a rotation-driven convective layer. Using our observations, we show that the trigonometric parallax of EC 95 is {pi} = 2.41 {+-} 0.02 mas, corresponding to a distance of 414.9{sup +4.4} {sub -4.3} pc. We argue that this implies a distance to the Serpens core of 415 {+-} 5 pc and a mean distance to the Serpens cloud of 415 {+-} 25 pc. This value is significantly larger than previous estimates (d {approx} 260 pc) based on measurements of the extinction suffered by stars in the direction of Serpens. A possible explanation for this discrepancy is that these previous observations picked out foreground dust clouds associated with the Aquila Rift system rather than Serpens itself.« less

  12. Discovery of new dipper stars with K2: a window into the inner disc region of T Tauri stars

    NASA Astrophysics Data System (ADS)

    Hedges, Christina; Hodgkin, Simon; Kennedy, Grant

    2018-05-01

    In recent years, a new class of young stellar object (YSO) has been defined, referred to as dippers, where large transient drops in flux are observed. These dips are too large to be attributed to stellar variability, last from hours to days and can reduce the flux of a star by 10-50 per cent. This variability has been attributed to occultations by warps or accretion columns near the inner edge of circumstellar discs. Here, we present 95 dippers in the Upper Scorpius association and ρ Ophiuchus cloud complex found in K2 Campaign 2 data using supervised machine learning with a random forest classifier. We also present 30 YSOs that exhibit brightening events on the order of days, known as bursters. Not all dippers and bursters are known members, but all exhibit infrared excesses and are consistent with belonging to either of the two young star-forming regions. We find 21.0 ± 5.5 per cent of stars with discs are dippers for both regions combined. Our entire dipper sample consists only of late-type (KM) stars, but we show that biases limit dipper discovery for earlier spectral types. Using the dipper properties as a proxy, we find that the temperature at the inner disc edge is consistent with interferometric results for similar and earlier type stars.

  13. Bayesian inference of T Tauri star properties using multi-wavelength survey photometry

    NASA Astrophysics Data System (ADS)

    Barentsen, Geert; Vink, J. S.; Drew, J. E.; Sale, S. E.

    2013-03-01

    There are many pertinent open issues in the area of star and planet formation. Large statistical samples of young stars across star-forming regions are needed to trigger a breakthrough in our understanding, but most optical studies are based on a wide variety of spectrographs and analysis methods, which introduces large biases. Here we show how graphical Bayesian networks can be employed to construct a hierarchical probabilistic model which allows pre-main-sequence ages, masses, accretion rates and extinctions to be estimated using two widely available photometric survey data bases (Isaac Newton Telescope Photometric Hα Survey r'/Hα/i' and Two Micron All Sky Survey J-band magnitudes). Because our approach does not rely on spectroscopy, it can easily be applied to ho-mogeneously study the large number of clusters for which Gaia will yield membership lists. We explain how the analysis is carried out using the Markov chain Monte Carlo method and provide PYTHON source code. We then demonstrate its use on 587 known low-mass members of the star-forming region NGC 2264 (Cone Nebula), arriving at a median age of 3.0 Myr, an accretion fraction of 20 ± 2 per cent and a median accretion rate of 10-8.4 M⊙ yr-1. The Bayesian analysis formulated in this work delivers results which are in agreement with spectroscopic studies already in the literature, but achieves this with great efficiency by depending only on photometry. It is a significant step forward from previous photometric studies because the probabilistic approach ensures that nuisance parameters, such as extinction and distance, are fully included in the analysis with a clear picture on any degeneracies.

  14. High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aarnio, Alicia N.; Monnier, John D.; Calvet, Nuria

    Recent observational work has indicated that mechanisms for accretion and outflow in Herbig Ae/Be star–disk systems may differ from magnetospheric accretion (MA) as it is thought to occur in T Tauri star–disk systems. In this work, we assess the temporal evolution of spectral lines probing accretion and mass loss in Herbig Ae/Be systems and test for consistency with the MA paradigm. For two Herbig Ae/Be stars, HD 98922 (B9e) and V1295 Aql (A2e), we have gathered multi-epoch (∼years) and high-cadence (∼minutes) high-resolution optical spectra to probe a wide range of kinematic processes. Employing a line equivalent width evolution correlation metricmore » introduced here, we identify species co-evolving (indicative of common line origin) via novel visualization. We interferometrically constrain often problematically degenerate parameters, inclination and inner-disk radius, allowing us to focus on the structure of the wind, magnetosphere, and inner gaseous disk in radiative transfer models. Over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines; the strength of variability increases with the cadence of the observations. Finally, high-resolution spectra allow us to probe substructure within the Balmer series’ blueshifted absorption components: we observe static, low-velocity features and time-evolving features at higher velocities. Overall, we find the observed line morphologies and variability are inconsistent with a scaled-up T Tauri MA scenario. We suggest that as magnetic field structure and strength change dramatically with increasing stellar mass from T Tauri to Herbig Ae/Be stars, so too may accretion and outflow processes.« less

  15. Abundâncias químicas de estrelas T Tauri fracas

    NASA Astrophysics Data System (ADS)

    Rojas, G. A.; Gregorio-Hetem, J.

    2003-08-01

    Apresentamos resultados do estudo de 44 estrelas pré-seqüência principal, para as quais buscamos realizar uma classificação espectroscópica e determinar parâmetros estelares e abundâncias químicas. A amostra foi escolhida da seguinte maneira : 21 objetos selecionados a partir de catálogos de objetos jovens, como o Pico dos Dias Survey e o Herbig Bell Catalogue, e 23 objetos selecionados a partir de contrapartidas ópticas de fontes de raios X detectadas pelo satélite ROSAT. Dentre 24 objetos previamente classificados como estrelas T Tauri Fracas, apenas 7 revelaram ser realmente pertencentes à essa classe, sendo os demais objetos T Tauri Clássicas ou estrelas evoluídas da pré-seqüência principal. Esse resultado demonstra que o critério mais utilizado para distinguir as T Tauri Clássicas das T Tauri Fracas, baseado na largura equivelente da emissão Ha, não é suficiente para determinar o estágio evolutivo desses objetos. Para o cálculo de parâmetros estelares e abundâncias, foram escolhidas as estrelas que apresentam características ideais para esse tipo de estudo, como ausência de velamento, baixa velocidade de rotação e espectros com razão sinal-ruído adequada. Os parâmetros estelares como temperatura efetiva e gravidade foram determinados através do equilíbrio de excitação e ionização das linhas de Ferro, e as abundâncias químicas foram calculadas utilizando o método de síntese espectral. Serão apresentados os parâmetros estelares e as abundâncias de Lítio para toda a amostra, e abundâncias de vários elementos quimicos para 7 estrelas estudadas em maior detalhe

  16. The protoplanetary disk of FT Tauri: multiwavelength data analysis and modeling

    NASA Astrophysics Data System (ADS)

    Garufi, A.; Podio, L.; Kamp, I.; Ménard, F.; Brittain, S.; Eiroa, C.; Montesinos, B.; Alonso-Martínez, M.; Thi, W. F.; Woitke, P.

    2014-07-01

    Context. Investigating the evolution of protoplanetary disks is crucial for our understanding of star and planet formation. There have been several theoretical and observational studies in past decades to advance this knowledge. The launch of satellites operating at infrared wavelengths, such as the Spitzer Space Telescope and the Herschel Space Observatory, has provided important tools for investigating the properties of circumstellar disks. Aims: FT Tauri is a young star in the Taurus star forming region that was included in a number of spectroscopic and photometric surveys. We investigate the properties of the star, the circumstellar disk, and the accretion/ejection processes and propose a consistent gas and dust model also as a reference for future observational studies. Methods: We performed a multiwavelength data analysis to derive the basic stellar and disk properties, as well as mass accretion/outflow rate from TNG/DOLoRes, WHT/LIRIS, NOT/NOTCam, Keck/NIRSpec, and Herschel/PACS spectra. From the literature, we compiled a complete spectral energy distribution. We then performed detailed disk modeling using the MCFOST and ProDiMo codes. Multiwavelength spectroscopic and photometric measurements were compared with the reddened predictions of the codes in order to constrain the disk properties. Results: We have determined the stellar mass (~ 0.3 M⊙), luminosity (~ 0.35 L⊙), and age (~ 1.6 Myr), as well as the visual extinction of the system (1.8 mag). We estimate the mass accretion rate (~ 3 × 10-8 M⊙/yr) to be within the range of accreting objects in Taurus. The evolutionary state and the geometric properties of the disk are also constrained. The radial extent (0.05 to 200 AU), flaring angle (power law with exponent =1.15), and mass (0.02 M⊙) of the circumstellar disk are typical of a young primordial disk. This object can serve as a benchmark for primordial disks with significant mass accretion rate, high gas content, and typical size. Based on

  17. Identification and analysis of OsttaDSP, a phosphoglucan phosphatase from Ostreococcus tauri

    PubMed Central

    Carrillo, Julieta B.; Gomez-Casati, Diego F.; Martín, Mariana

    2018-01-01

    Ostreococcus tauri, the smallest free-living (non-symbiotic) eukaryote yet described, is a unicellular green alga of the Prasinophyceae family. It has a very simple cellular organization and presents a unique starch granule and chloroplast. However, its starch metabolism exhibits a complexity comparable to higher plants, with multiple enzyme forms for each metabolic reaction. Glucan phosphatases, a family of enzymes functionally conserved in animals and plants, are essential for normal starch or glycogen degradation in plants and mammals, respectively. Despite the importance of O. tauri microalgae in evolution, there is no information available concerning the enzymes involved in reversible phosphorylation of starch. Here, we report the molecular cloning and heterologous expression of the gene coding for a dual specific phosphatase from O. tauri (OsttaDSP), homologous to Arabidopsis thaliana LSF2. The recombinant enzyme was purified to electrophoretic homogeneity to characterize its oligomeric and kinetic properties accurately. OsttaDSP is a homodimer of 54.5 kDa that binds and dephosphorylates amylopectin. Also, we also determined that residue C162 is involved in catalysis and possibly also in structural stability of the enzyme. Our results could contribute to better understand the role of glucan phosphatases in the metabolism of starch in green algae. PMID:29360855

  18. Reprocessing of Archival Direct Imaging Data of Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Safsten, Emily; Stephens, Denise C.

    2017-01-01

    Herbig Ae/Be (HAeBe) stars are intermediate mass (2-10 solar mass) pre-main sequence stars with circumstellar disks. They are the higher mass analogs of the better-known T Tauri stars. Observing planets within these young disks would greatly aid in understanding planet formation processes and timescales, particularly around massive stars. So far, only one planet, HD 100546b, has been confirmed to orbit a HAeBe star. With over 250 HAeBe stars known, and several observed to have disks with structures thought to be related to planet formation, it seems likely that there are as yet undiscovered planetary companions within the circumstellar disks of some of these young stars.Direct detection of a low-luminosity companion near a star requires high contrast imaging, often with the use of a coronagraph, and the subtraction of the central star's point spread function (PSF). Several processing algorithms have been developed in recent years to improve PSF subtraction and enhance the signal-to-noise of sources close to the central star. However, many HAeBe stars were observed via direct imaging before these algorithms came out. We present here current work with the PSF subtraction program PynPoint, which employs a method of principal component analysis, to reprocess archival images of HAeBe stars to increase the likelihood of detecting a planet in their disks.

  19. Herschel GASPS spectral observations of T Tauri stars in Taurus. Unraveling far-infrared line emission from jets and discs

    NASA Astrophysics Data System (ADS)

    Alonso-Martínez, M.; Riviere-Marichalar, P.; Meeus, G.; Kamp, I.; Fang, M.; Podio, L.; Dent, W. R. F.; Eiroa, C.

    2017-07-01

    Context. At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. Aims: We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, H2O, and OH) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. Methods: The atomic and molecular FIR (60-190 μm) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. Results: Outflow sources exhibit brighter atomic and molecular emission lines and higher detection rates than non-outflow sources. The line detection fractions decrease with SED evolutionary status (from Class I to Class III). We find correlations between [OI] 63.18 μm and [OI] 6300 Å, o-H2O 78.74 μm, CO 144.78 μm, OH 79.12+79.18 μm, and the continuum flux at 24 μm. The atomic line ratios can be explain either by fast (Vshock > 50 km s-1) dissociative J-shocks at low densities (n 103 cm-3) occurring along the jet and/or PDR emission (G0 > 102, n 103-106 cm-3). To account for the [CII] absolute fluxes, PDR emission or UV irradiation of

  20. Submillimeter studies of main-sequence stars

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.; Becklin, E. E.

    1993-01-01

    JCMT maps of the 800-micron emission from Vega, Fomalhaut, and Beta Pictoris are interpreted to indicate that they are not ringed by large reservoirs of distant orbiting dust particles that are too cold to have been detected by IRAS. A search for 800-micron emission from stars in the Pleiades and Ursa Majoris open clusters is reported. In comparison with the mass of dust particles near T Tauri and Herbig Ae stars, the JCMT data indicate a decline in dust mass during the initial 3 x 10 exp 8 yr that a star spends on the main sequence that is at least as rapid as (time) exp -2. It is estimated that in the Kuiper belt the ratio of total mass carried by small particles to that carried by comets is orders of magnitude smaller than this ratio is 1 AU from the sun. If 800-micron opacities calculated by Pollack et al. (1993) are correct, then the particles with radii less than 100 microns that dominate the FIR fluxes measured by IRAS cannot entirely account for the measured 800-micron fluxes at Vega, Beta Pic, and Fomalhaut; larger particles must be present as well.

  1. A Deep X-ray Survey of Low-Mass PMS Stars in NGC 2264

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2005-01-01

    Two X-ray images were obtained with the XMM-Newton spacecraft of more than 300 members of the NGC 2264 Open Cluster and its associated molecular cloud in order to investigate their magnetic activity. The X-ray fluxes extracted from those observations were used to study the dependence of stellar dynamo activity upon age and rotation for the optically revealed T Tauri stars and to place empirical constraints on theoretical models of angular momentum/dynamo evolution. The observations were also used to study the role of magnetic fields in the formation of low mass stars through the observation of very young protostars that are deeply embedded in the molecular cloud located behind the visible open cluster.

  2. Chandra and HST Observations of the High Energy (X-ray/UV) Radiation Fields for an Evolutionary Sequence of Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Herczeg, G. J.; Brown, J. M.; Walter, F. M.; Valenti, J.; Ardila, D.; Hillenbrand, L. A.; Edwards, S.; Johns-Krull, C. M.; Alexander, R.; Bergin, E. A.; Calvet, N.; Bethell, T. J.; Ingleby, L.; Bary, J. S.; Audard, M.; Baldovin, C.; Roueff, E.; Abgrall, H.; Gregory, S. G.; Ayres, T. R.; Linsky, J. L.

    2010-03-01

    Pre-main-sequence (PMS) stars are strong X-ray and UV emitters and the high energy radiation from the central stars directly influences the physical and chemical processes in their protoplanetary disks. Gas and dust in protoplanetary systems are excited by these photons, which are the dominant ionization source for hundreds of AU around the star. X-rays penetrate deep into disks and power complex chemistry on grain surfaces. ``Transitional disks'' are an important short-lived evolutionary stage for PMS stars and protoplanetary systems. These disks have transformed most of the dust and gas in their inner regions into planetesimals or larger solid bodies. As dust disks disappear after ages of roughly 5 Myr high levels of stellar magnetic activity persist and continue to bathe the newly-forming protoplanetary systems with intense high energy radiation. We present new X-ray and UV spectra for a sample of PMS stars at a variety of evolutionary stages, including the classical T Tauri stars DE Tau and DK Tau, the transitional disk stars GM Aur and HD135344B, the Herbig Ae star HD104237, and the weak-lined T Tauri star LkCa4, the Eta Cha cluster [age 7 Myr] members RECX1, RECX-11, and RECX-15, and TW Hya association [age 8 Myr] member TWA-2. These include the first results from our 111 orbit HST Large project and associated X-ray data. New and archival Chandra, XMM, and Swift X-ray spectra and HST COS+STIS FUV spectra are being used to reconstruct the full high energy (X-ray/EUV/FUV/NUV) spectra of these stars, thus allowing detailed modeling of the physics and chemistry of their circumstellar environments. The UV spectra provide improved emission line profiles revealing details of the magnetically-heated plasma and accretion and outflow processes. This work is supported by Chandra grants GO8-9024X, GO9-0015X and GO9-0020B and proposal 11200754 and HST GO grants 11336, 11616, and 11828.

  3. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that ifmore » the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.« less

  4. X-ray stars observed in LAMOST spectral survey

    NASA Astrophysics Data System (ADS)

    Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Shi, Jianrong

    2018-05-01

    X-ray stars have been studied since the beginning of X-ray astronomy. Investigating and studying the chromospheric activity from X-ray stellar optical spectra is highly significant in providing insights into stellar magnetic activity. The big data of LAMOST survey provides an opportunity for researching stellar optical spectroscopic properties of X-ray stars. We inferred the physical properties of X-ray stellar sources from the analysis of LAMOST spectra. First, we cross-matched the X-ray stellar catalogue (12254 X-ray stars) from ARXA with LAMOST data release 3 (DR3), and obtained 984 good spectra from 713 X-ray sources. We then visually inspected and assigned spectral type to each spectrum and calculated the equivalent width (EW) of Hα line using the Hammer spectral typing facility. Based on the EW of Hα line, we found 203 spectra of 145 X-ray sources with Hα emission above the continuum. For these spectra we also measured the EWs of Hβ, Hγ, Hδ and Ca ii IRT lines of these spectra. After removing novae, planetary nebulae and OB-type stars, we found there are 127 X-ray late-type stars with Hα line emission. By using our spectra and results from the literature, we found 53 X-ray stars showing Hα variability; these objects are Classical T Tauri stars (CTTs), cataclysmic variables (CVs) or chromospheric activity stars. We also found 18 X-ray stars showing obvious emissions in the Ca ii IRT lines. Of the 18 X-ray stars, 16 are CTTs and 2 are CVs. Finally, we discussed the relationships between the EW of Hα line and X-ray flux.

  5. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    NASA Astrophysics Data System (ADS)

    Lii, Patrick; Romanova, Marina; Lovelace, Richard

    2014-01-01

    Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  6. Analysis of 45-years of Eclipse Timings of the Hyades (K2 V+ DA) Eclipsing Binary V471 Tauri

    NASA Astrophysics Data System (ADS)

    Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    V471 Tau is an important detached 0.521-day eclipsing binary composed of a K2 V and a hot DA white dwarf star. This system resides in the Hyades star cluster located approximately 153 Ly from us. V471 Tau is considered to be the end-product of common-envelope binary star evolution and is currently a pre-CV system. V471 Tau serves as a valuable astrophysical laboratory for studying stellar evolution, white dwarfs, stellar magnetic dynamos, and possible detection of low mass companions using the Light Travel Time (LTT) Effects. Since its discovery as an eclipsing binary in 1970, photometry has been carried out and many eclipse timings have been determined. We have performed an analysis of the available photometric data available on V471 Tauri. The binary system has been the subject of analyses regarding the orbital period. From this analysis several have postulated the existence of a third body in the form of a brown dwarf that is causing periodic variations in the system’s apparent period. In this study we combine ground based data with photometry secured recently from the Kepler K2 mission. After detrending and phasing the available data, we are able to compare the changing period of the eclipsing binary system against predictions on the existence of this third body. The results of the analysis will be presented. This research is sponsored by grants from NASA and NSF for which we are very grateful.

  7. The Temperature and Distribution of Organic Molecules in the Inner Regions of T Tauri Disks

    NASA Technical Reports Server (NTRS)

    Mandell, Avi

    2012-01-01

    "High-resolution NIR spectroscopic observations of warm molecular gas emission from young circumstellar disks allow us to constrain the temperature and composition of material in the inner planet-forming region. By combining advanced data reduction algorithms with accurate modeling of the terrestrial atmospheric spectrum and a novel double-differencing data analysis technique, we have achieved very high-contrast measurements (S/N approx. 500-1000) of molecular emission at 3 microns. In disks around low-mass stars, we have achieved the first detections of emission from HCN and C2H2 at near-infrared wavelengths from several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope. We spectrally resolve the line shape, showing that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We used a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we then compared these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU)."

  8. X-ray Emission from Pre-Main-Sequence Stars - Testing the Solar Analogy

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2000-01-01

    This LTSA award funded my research on the origin of stellar X-ray emission and the validity of the solar-stellar analogy. This research broadly addresses the relevance of our current understanding of solar X-ray physics to the interpretation of X-ray emission from stars in general. During the past five years the emphasis has been on space-based X-ray observations of very young stars in star-forming regions (T Tauri stars and protostars), cool solar-like G stars, and evolved high-mass Wolf-Rayet (WR) stars. These observations were carried out primarily with the ASCA and ROSAT space-based observatories (and most recently with Chandra), supplemented by ground-based observations. This research has focused on the identification of physical processes that are responsible for the high levels of X-ray emission seen in pre-main-sequence (PMS) stars, active cool stars, and WR stars. A related issue is how the X-ray emission of such stars changes over time, both on short timescales of days to years and on evolutionary timescales of millions of years. In the case of the Sun it is known that magnetic fields play a key role in the production of X-rays by confining the coronal plasma in loop-like structures where it is heated to temperatures of several million K. The extent to which the magnetically-confined corona interpretation can be applied to other X-ray emitting stars is the key issue that drives the research summarized here.

  9. Cool stars, stellar systems, and the sun; Proceedings of the 7th Cambridge Workshop, Tucson, AZ, Oct. 9-12, 1991

    NASA Technical Reports Server (NTRS)

    Giampapa, Mark S. (Editor); Bookbinder, Jay A. (Editor)

    1992-01-01

    Consideration is given to HST observations of late-type stars, molecular absorption in the UV spectrum of Alpha Ori, EUV emission from late-type stars, Rosat observations of the Pleiades cluster, a deep ROSAT observation of the Hyades cluster, optical spectroscopy detected by EXOSAT, stellar photospheric convection, a structure of the solar X-ray corona, magnetic surface images of the BY Dra Star HD 82558, a Zebra interpretatin of BY Dra stars, optical flares on II Peg, a low-resolution spectroscopic survey of post-T tauri candidates, millimeter and sub-millimeter emission from flare stars, and activity in tidally interacting binaries. Attention is also given to modeling stellar angular momentum evolution, extended 60-micron emission from nearby Mira variables, the PANDORA atmosphere program, the global properties of active regions, oscillations in a stratified atmosphere, lithium abundances in northern RS CVn binaries, a new catalog of cool dwarf stars, the Far UV Spectrograph Explorer, and development of reflecting coronagraphs.

  10. Full Stokes IQUV spectropolarimetry of AGB and post-AGB stars: probing surface magnetism and atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Lèbre, Agnès; Aurière, Michel; Fabas, Nicolas; Gillet, Denis; Josselin, Eric; Mathias, Philippe; Petit, Pascal

    2015-10-01

    Full Stokes spectropolarimetric observations of a Mira star (χ Cyg) and a RV Tauri star (R Sct) are presented and analyzed comparatively. From their Stokes V data (circular polarization), we report the detection of a weak magnetic field at the surface of these cool and evolved radially pulsating stars. For both stars, we analyse this detection in the framework of their complex atmospheric dynamics, with the possibility that shock waves may imprint an efficient compressive effect on the surface magnetic field. We also report strong Stokes U and Stokes Q signatures associated to metallic lines (as a global trend), those linear polarimetric features appear to be time variable along the pulsating phase. More surprising, in the Stokes U and Stokes Q data, we also detect signatures associated to individual metallic lines (such as Sr i 460.7 nm, Na D2 588.9 nm), that are known (from the solar case) to be easily polarizable in case of a global asymmetry at the photospheric level.

  11. Oxygen-rich Mass Loss with a Pinch of Salt: NaCl in the Circumstellar Gas of IK Tauri and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Milam, S. N.; Apponi, A. J.; Woolf, N. J.; Ziurys, L. M.

    2007-10-01

    The NaCl molecule has been observed in the circumstellar envelopes of VY Canis Majoris (VY CMa) and IK Tauri (IK Tau)-the first identifications of a metal refractory in oxygen-rich shells of evolved stars. Five rotational transitions of NaCl at 1 and 2 mm were detected toward VY CMa and three 1 mm lines were observed toward IK Tau, using the telescopes of the Arizona Radio Observatory. In both objects, the line widths of the NaCl profiles were extremely narrow relative to those of other molecules, indicating that sodium chloride has not reached the terminal outflow velocity in either star, likely a result of early condensation onto grains. Modeling the observed spectra suggests abundances, relative to H2, of f~5×10-9 in VY CMa and f~4×10-9 in IK Tau, with source sizes of 0.5" and 0.3", respectively. The extent of these sources is consistent with the size of the dust acceleration zones in both stars. NaCl therefore appears to be at least as abundant in O-rich shells as compared to C-rich envelopes, where f~(0.2-2)×10-9, although it appears to condense out earlier in the O-rich case. Chemical equilibrium calculations indicate that NaCl is the major carrier of sodium at T~1100 K for oxygen-rich stars, with predicted fractional abundances in good agreement with the observations. These measurements suggest that crystalline salt may be an important condensate for sodium in both C- and O-rich circumstellar shells.

  12. Effective Temperatures for Young Stars in Binaries

    NASA Astrophysics Data System (ADS)

    Muzzio, Ryan; Avilez, Ian; Prato, Lisa A.; Biddle, Lauren I.; Allen, Thomas; Wright-Garba, Nuria Meilani Laure; Wittal, Matthew

    2017-01-01

    We have observed about 100 multi-star systems, within the star forming regions Taurus and Ophiuchus, to investigate the individual stellar and circumstellar properties of both components in young T Tauri binaries. Near-infrared spectra were collected using the Keck II telescope’s NIRSPEC spectrograph and imaging data were taken with Keck II’s NIRC2 camera, both behind adaptive optics. Some properties are straightforward to measure; however, determining effective temperature is challenging as the standard method of estimating spectral type and relating spectral type to effective temperature can be subjective and unreliable. We explicitly looked for a relationship between effective temperatures empirically determined in Mann et al. (2015) and equivalent width ratios of H-band Fe and OH lines for main sequence spectral type templates common to both our infrared observations and to the sample of Mann et al. We find a fit for a wide range of temperatures and are currently testing the validity of using this method as a way to determine effective temperature robustly. Support for this research was provided by an REU supplement to NSF award AST-1313399.

  13. Brown Dwarfs and Giant Planets Around Young Stars

    NASA Astrophysics Data System (ADS)

    Mahmud, Naved; Crockett, C.; Johns-Krull, C.; Prato, L.; Hartigan, P.; Jaffe, D.; Beichman, C.

    2011-01-01

    How dry is the brown dwarf (BD) desert at young ages? Previous radial velocity (RV) surveys have revealed that the frequency of BDs as close companions to solar-age stars in the field is extraordinarily low compared to the frequency of close planetary and stellar companions. Is this a formation or an evolutionary effect? Do close-in BDs form at lower rates, or are they destroyed by migration via interactions with a massive circumstellar disk, followed by assimilation into the parent star? To answer these questions, we are conducting an RV survey of 130 T Tauri stars in Taurus-Auriga (a few Myr old) and a dozen stars in the Pleiades (100 Myr old) to search for stellar reflex motions resulting from close substellar companions. Our goal is to measure the frequency of BDs at young ages. Detecting a higher frequency of BDs in young systems relative to the field will provide evidence for the migration theory as well as set limits on the migration timescale. Two additional goals are (1) to investigate the effect of star spots in young stars on RV observations, and (2) to detect the youngest-known giant exoplanet. We present results from the first few years of this survey. Strikingly, after completing observations of a third of our sample, we have yet to detect a single BD. Thus we can set limits on the dryness of the BD desert at young ages and shed light on the mysterious early lives of these objects.

  14. Spectrophotometry of pulsating stars at Oukaimeden Observatory in Morocco

    NASA Astrophysics Data System (ADS)

    Benhida, Abdelmjid; sefyani, Fouad; de France, Thibault; Elashab, Sana; Zohra Belharcha, fatim; Gillet, Denis; Mathias, phillipe; Daassou, Ahmed; Lazrek, Mohamed; Benkhaldoun, Zouhair

    2015-08-01

    Location of modern observatories requires high sky quality: good weather, isolated site to avoid any pollution, high altitude for a better transparency and to reduce temperature gradients, the main source of atmospheric turbulence. With an altitude of 2750m, the region of Oukaimeden in Morocco (longitude: 7°52'052" West, latitude: 3°112032" North) meets most of these criteriaWith its 10'' and 14'' dedicated telescopes operating in remote control modes that combines high precision photometry and high resolution spectroscopy (spectrograph Eshell of R~12000 resolution over a wide spectral range), the universitary observatory of Oukaimeden (code J43) aims to develop new thematics in addition to present science. In particular, through this instrumentation, we aim to develop the field of pulsating stars, especially the atmospheric dynamics of high amplitude pulsators such as RR Lyrae and RV Tauri star, in order to establish new models of the mechanical and thermal behaviour of their atmospheres (shock waves, relaxation time, energy loss...).In this work we will first describe our measuring instruments, and then analyze spectra and photometric curves of RR Lyrae star obtained during the maximum of the Blazhko effect.

  15. The relevance of the IUE results on young stars for Earth's paleoatmosphere

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Levine, J. S.; Augustsson, T. R.; Imhoff, C. L.; Giampap, M. S.

    1982-01-01

    Using the latest IUE results for seven T Tauri stars, which are believed to represent the young Sun and a detailed photochemical chemical model of the paleoatmosphere, the vertical distribution of Oxygen and Ozone in the early atmosphere was calculated. The calculations indicate that the surface Oxygen mixing ratio is as much as six orders of magnitude larger than previously estimated, but appears low enough for the formation of amino acids via the Urey-Miller type of experiments. It is believed that the quantification of the oxygen level in the Earth's paleoatmosphere presented can reconcile the demands of both biological and geological considerations.

  16. Bacteria in Ostreococcus tauri cultures – friends, foes or hitchhikers?

    PubMed Central

    Abby, Sophie S.; Touchon, Marie; De Jode, Aurelien; Grimsley, Nigel; Piganeau, Gwenael

    2014-01-01

    Marine phytoplankton produce half of the oxygen we breathe and their astounding diversity is just starting to be unraveled. Many microbial phytoplankton are thought to be phototrophic, depending solely on inorganic sources of carbon and minerals for growth rather than preying on other planktonic cells. However, there is increasing evidence that symbiotic associations, to a large extent with bacteria, are required for vitamin or nutrient uptake for many eukaryotic microalgae. Here, we use in silico approaches to look for putative symbiotic interactions by analysing the gene content of microbial communities associated with 13 different Ostreococcus tauri (Chlorophyta, Mamilleophyceae) cultures sampled from the Mediterranean Sea. While we find evidence for bacteria in all cultures, there is no ubiquitous bacterial group, and the most prevalent group, Flavobacteria, is present in 10 out of 13 cultures. Among seven of the microbiomes, we detected genes predicted to encode type 3 secretion systems (T3SS, in 6/7 microbiomes) and/or putative type 6 secretion systems (T6SS, in 4/7 microbiomes). Phylogenetic analyses show that the corresponding genes are closely related to genes of systems identified in bacterial-plant interactions, suggesting that these T3SS might be involved in cell-to-cell interactions with O. tauri. PMID:25426102

  17. IUE observations of rapidly rotating low-mass stars in young clusters - The relation between chromospheric activity and rotation

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    1990-01-01

    If the rapid spindown of low-mass stars immediately following their arrival on the ZAMS results from magnetic braking by coronal winds, an equally sharp decline in their chromospheric emission may be expected. To search for evidence of this effect, the IUE spacecraft was used to observe the chromospheric Mg II emission lines of G-M dwarfs in the nearby IC 2391, Alpha Persei, Pleiades, and Hyades clusters. Similar observations were made of a group of X-ray-selected 'naked' T Tauri stars in Taurus-Auriga. The existence of a decline in activity cannot be confirmed from the resulting data. However, the strength of the chromospheric emission in the Mg II lines of the cluster stars is found to be correlated with rotation rate, being strongest for the stars with the shortest rotation periods and weakest for those with the longest periods. This provides indirect support for such an evolutionary change in activity. Chromospheric activity may thus be only an implicit function of age.

  18. An accessible echelle pipeline and its application to a binary star

    NASA Astrophysics Data System (ADS)

    Carmichael, Theron; Johnson, John Asher

    2018-01-01

    Nearly every star observed in the Galaxy has one or more companions that play an integral role in the evolution of the star. Whether it is a planet or another star, a companion opens up opportunities for unique forms of analysis to be done on a system. Some 2400 lightyears away, there is a 3-10 Myr old binary system called KH 15D, which not only includes two T Tauri K-type stars in a close orbit of 48 days, but also a truncated, coherently precessing warped disk in a circumbinary orbit.In binary systems, a double-lined spectroscopic binary may be observable in spectra. This is a spectrum that contains a mixture of each star's properties and manifests as two sets of spectral emission and absorption lines that correspond to each star. Slightly different is a single-lined spectroscopic binary, where only one set of spectral lines from one star is visible. The data of KH 15D are studied in the form of a double single-lined spectroscopic binary. This means that at two separate observing times, a single-lined spectroscopic binary is obtained from one of the stars of KH 15D. This is possible because of the circumbinary disk that blocks one star at a time from view.Here, we study this binary system with a combination of archival echelle data from the Keck Observatory and new echelle data from Las Campanas Observatory. This optical data is reduced with a new Python-based pipeline available on GitHub. The objective is to measure the mass function of the binary star and refine the current values of each star's properties.

  19. Herschel Studies of the Evolution and Environs of Young Stars in the DIGIT, WISH, and FOOSH Programs

    NASA Astrophysics Data System (ADS)

    Green, Joel D.; DIGIT OT Key Project Team; WISH GT Key Project Team; FOOSH OT1 Team

    2012-01-01

    The Herschel Space Observatory has enabled us to probe the physical conditions of outer disks, envelopes, and outflows of young stellar objects, including embedded objects, Herbig Ae/Be disks, and T Tauri disks. We will report on results from three projects, DIGIT, WISH, and FOOSH. The DIGIT (Dust, Ice, and Gas in Time) program (PI: Neal Evans) utilizes the full spectral range of the PACS instrument to explore simultaneously the solid and gas-phase chemistry around sources in all of these stages. WISH (Water in Star Forming Regions with Herschel, PI Ewine van Dishoeck) focuses on observations of key lines with HIFI and line scans of selected spectral regions with PACS. FOOSH (FU Orionis Objects Surveyed with Herschel, PI Joel Green) studies FU Orionis objects with full range PACS and SPIRE scans. DIGIT includes examples of low luminosity protostars, while FOOSH studies the high luminosity objects during outburst states. Rotational ladders of highly excited CO and OH emission are detected in both disks and protostars. The highly excited lines are more commonly seen in the embedded phases, where there appear to be two temperature components. Intriguingly, water is frequently detected in spectra of embedded sources, but not in the disk spectra. In addition to gas features, we explore the extent of the newly detected 69 um forsterite dust feature in both T Tauri and Herbig Ae/Be stars. When analyzed along with the Spitzer-detected dust features, these provide constraints on a population of colder crystalline material. We will present some models of individual sources, as well as some broad statistics of the emission from these stages of star and planet formation.

  20. Locating the Accretion Footprint on a Herbig Ae Star: MWC 480

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Hamaguchi, K.; Schneider, G.; Stecklum, B.; Woodgate, B. E.; McCleary, J. E.; Williger, G. M.; Sitko, M. L.; Menard, F.; Henning, Th.; hide

    2011-01-01

    Accretion is a fundamental process which establishes the dynamics of the protoplanetary disk and the final properties of the forming star. In solar-type stars, the star-disk coupling is determined by the magnetic field structure, which is responsible for funneling material from the disk midplane to higher latitudes on the star. Here, we use pan-chromatic data for the Herbig Ae star MWC 480 to address whether similar processes occur in intermediate-mass stars. MWC 480 has X-ray emission typical of actively accreting Herbig Ae stars, but with 5-9 x more photoelectric absorption than expected from optical and FUV data. We consider 3 sources for the absorption: the disk absorption in a wind or jet, and accretion. While we detect the disk in scattered light in are-analysis of archival HST data. the data are consistent with grazing illumination of the dust disk. We find that MWC 480's disk is stratified, geometrically thin, and is not responsible for the observed photoelectric absorption. MWC 480 drives a bipolar jet, but with a mass loss rate which is low compared to other Herbig Ae stars, where the outflow is more favorably oriented and enhanced photoelectric absorption is not seen. This excludes a jet or wind origin for the enhanced photoelectric absorption. We compare MWC 480's 0 VI emission with other Herbig Ae stars. The distribution of the emission in inclination, and lack of a correlation of profile shape and system inclination excludes equatorially-confined accretion for the FUSE Herbig Ae stars. The photoelectric absorption data further suggest that the accretion footprint on MWC 480 and other Herbig Ae stars is located at high temperate, rather than polar, latitudes. These findings support the presence of funneled accretion in MWC 480 and Herbig Ae stars, strengthening the parallel to T Tauri stars.

  1. INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecaut, Mark J.; Mamajek, Eric E.

    2013-09-01

    We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main-sequence (pre-MS) stars using the F0- through M9-type members of nearby, negligibly reddened groups: the η Cha cluster, the TW Hydra Association, the β Pic Moving Group, and the Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5 m telescope. Combining these new types with published spectral types and photometry from the literature (Johnson-Cousins BVI{sub C} , 2MASS JHK{submore » S} and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (T {sub eff}) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new T {sub eff} and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new T {sub eff} scale for pre-MS stars is within ≅100 K of dwarfs at a given spectral type for stars« less

  2. A NEAR-INFRARED STUDY OF THE STAR-FORMING REGION RCW 34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Walt, D. J.; De Villiers, H. M.; Czanik, R. J.

    2012-07-15

    We report the results of a near-infrared imaging study of a 7.8 Multiplication-Sign 7.8 arcmin{sup 2} region centered on the 6.7 GHz methanol maser associated with the RCW 34 star-forming region using the 1.4 m IRSF telescope at Sutherland. A total of 1283 objects were detected simultaneously in J, H, and K for an exposure time of 10,800 s. The J - H, H - K two-color diagram revealed a strong concentration of more than 700 objects with colors similar to what is expected of reddened classical T Tauri stars. The distribution of the objects on the K versus Jmore » - K color-magnitude diagram is also suggestive that a significant fraction of the 1283 objects is made up of lower mass pre-main-sequence stars. We also present the luminosity function for the subset of about 700 pre-main-sequence stars and show that it suggests ongoing star formation activity for about 10{sup 7} years. An examination of the spatial distribution of the pre-main-sequence stars shows that the fainter (older) part of the population is more dispersed over the observed region and the brighter (younger) subset is more concentrated around the position of the O8.5V star. This suggests that the physical effects of the O8.5V star and the two early B-type stars on the remainder of the cloud out of which they formed could have played a role in the onset of the more recent episode of star formation in RCW 34.« less

  3. The Search for Young Planetary Systems And the Evolution of Young Stars

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Boden, Andrew; Ghez, Andrea; Hartman, Lee W.; Hillenbrand, Lynn; Lunine, Jonathan I.; Simon, Michael J.; Stauffer, John R.; Velusamy, Thangasamy

    2004-01-01

    and migrate from their place of birth, and about their survival rate. With these data in hand, we will provide data, for the first time, on such important questions as: What processes affect the formation and dynamical evolution of planets? When and where do planets form? What is initial mass distribution of planetary systems around young stars? How might planets be destroyed? What is the origin of the eccentricity of planetary orbits? What is the origin of the apparent dearth of companion objects between planets and brown dwarfs seen in mature stars? The observational strategy is a compromise between the desire to extend the planetary mass function as low as possible and the essential need to build up sufficient statistics on planetary occurrence. About half of the sample will be used to address the "where" and "when" of planet formation. We will study classical T Tauri stars (cTTs) which have massive accretion disks and post- accretion, weak-lined T Tauri stars (wTTs). Preliminary estimates suggest the sample will consist of approx. 30% cTTs and approx. 70% wTTs, driven in part by the difficulty of making accurate astrometric measurements toward objects with strong variability or prominent disks.

  4. Further observations of the lambda 10830 He line in stars and their significance as a measure of stellar activity

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1975-01-01

    Measurements of the lambda 1030 He line in 198 stars are given along with data on other features in that spectral range. Nearly 80% of all G and K stars show some lambda 10830; of these, half are variable and 1/4 show emission. It was confirmed that lambda 10830 is not found in M stars, is weak in F stars, and is particularly strong in close binaries. The line is found in emission in extremely late M and S stars, along with P gamma, but P gamma is not in emission in G and K stars with lambda 10830 emissions. Variable He emission and Ti I emission are found in the RV Tauri variables R Scuti and U Mon. In R Aqr the Fe XIII coronal line lambda 10747 and a line at lambda 11012 which may be singlet He or La II are found, as well as lambda 10830 and P gamma. The nature of coronas or hot chromospheres in the various stars is discussed. It was concluded that the lambda 10830 intensity must be more or less proportional to the energy deposited in the chromosphere corona by non-thermal processes.

  5. HST and Adaptive Optics Imaging of the Edge-on Circumtertiary Disk in the Young Triple System HV Tauri

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, K. R.; Menard, F.; Brandner, W.; Padgett, D. L.; Krist, J. E.; Watson, A. M.

    2000-12-01

    Hubble Space Telescope images of the HV Tauri triple system show that HV Tau C appears as a compact bipolar nebula at visual wavelengths. Near-infrared adaptive optics observations made at the Canada France Hawaii Telescope show a similar morphology, and no directly visible star at wavelengths less than 2 microns. These results confirm the conclusions of Monin & Bouvier 2000, namely that HV Tau C is an optically thick circumstellar disk seen close to edge-on. The images are compared to scattered light models for circumstellar disks. We find that the HV Tau C disk has an outer radius of 85 AU, inclination of about 6 deg, gaussian scale height of 15 AU at its outer radius, and is flared. The thickness of the dark lane indicates a total disk mass about half that of Jupiter. There is clear evidence for declining dust opacity toward longer wavelengths, as the dust lane thickness shrinks by 30 between 0.8 and 2.2 microns; the trend is consistent with interstellar dust grains. Tidal truncation of the disk outer radius may have occurred in this system.

  6. The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee

    1993-01-01

    We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.

  7. Far-infrared observations of a star-forming region in the Corona Australis dark cloud

    NASA Technical Reports Server (NTRS)

    Cruz-Gonzalez, I.; Mcbreen, B.; Fazio, G. G.

    1984-01-01

    A high-resolution far-IR (40-250-micron) survey of a 0.9-sq-deg section of the core region of the Corona Australis dark cloud (containing very young stellar objects such as T Tauri stars, Herbig Ae and Be stars, Herbig-Haro objects, and compact H II regions) is presented. Two extended far-IR sources were found, one associated with the Herbig emission-line star R CrA and the other with the irregular emission-line variable star TY CrA. The two sources have substantially more far-IR radiation than could be expected from a blackbody extrapolation of their near-IR fluxes. The total luminosities of these sources are 145 and 58 solar luminosity, respectively, implying that the embedded objects are of intermediate or low mass. The infrared observations of the sources associated with R CrA and TY CrA are consistent with models of the evolution of protostellar envelopes of intermediate mass. However, the TY CrA source appears to have passed the evolutionary stage of expelling most of the hot dust near the central source, yielding an age of about 1 Myr.

  8. Optical spectroscopy of X-ray sources in the Taurus molecular cloud: discovery of ten new pre-main sequence stars

    NASA Astrophysics Data System (ADS)

    Scelsi, L.; Sacco, G.; Affer, L.; Argiroffi, C.; Pillitteri, I.; Maggio, A.; Micela, G.

    2008-11-01

    Aims: We have analyzed optical spectra of 25 X-ray sources identified as potential new members of the Taurus molecular cloud (TMC), in order to confirm their membership in this star-forming region. Methods: Fifty-seven candidate members were previously selected among the X-ray sources in the XEST survey, having a 2MASS counterpart compatible with a pre-main sequence star based on color-magnitude and color-color diagrams. We obtained high-resolution optical spectra for 7 of these candidates with the SARG spectrograph at the TNG telescope, which were used to search for lithium absorption and to measure the Hα line and the radial and rotational velocities. Then, 18 low-resolution optical spectra obtained with the instrument DOLORES for other candidate members were used for spectral classification, for Hα measurements, and to assess membership together with IR color-color and color-magnitude diagrams and additional information from the X-ray data. Results: We found that 3 sources show lithium absorption, with equivalent widths (EWs) of 500 mÅ, broad spectral line profiles, indicating rotational velocities of 20{-}40 km s-1, radial velocities consistent with those for known members, and Hα emission. Two of them are classified as new weak-lined T Tauri stars, while the EW ( -9 Å) of the Hα line and its broad asymmetric profile clearly indicate that the third star (XEST-26-062) is a classical T Tauri star. Fourteen sources observed with DOLORES are M-type stars. Fifteen sources show Hα emission. Six of them have spectra that indicate surface gravity lower than in main sequence stars, and their de-reddened positions in IR color-magnitude diagrams are consistent with their derived spectral type and with pre-main sequence models at the distance of the TMC. The K-type star XEST-11-078 is confirmed as a new member on the basis of the strength of the Hα emission line. Overall, we confirm membership to the TMC for 10 out of 25 X-ray sources observed in the optical. Three

  9. Angular Momentum Evolution in Young Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Pinzón, G.; de La Reza, R.

    2006-06-01

    During the last decades, the study of rotation in young low mass stars has been one of the more active areas in the field of stellar evolution. Many theoretical efforts have been made to understand the angular momentum evolution and our picture now, reveals the main role of the stellar magnetic field in all pre-main sequence stage (Ghosh & Lamb 1979, ApJ, 234, 296; Cameron & Campbell 1993, A&A, 274, 309; Cameron & Campbell 1995, A&A, 298, 133; Kúker, Henning, & Rúdiger 2003, ApJ, 589, 397; Matt & Pudritz 2005, MNRAS, 356, 167). The mean rotation of most of the cool low mass stars remains roughly constant during the T Tauri stage. This can be explained by the disc locking scenario. This paradigm suggest that star start out as CTTS with periods of 4-14 days, perhaps locked to their disc, and that this disc is eventually lost mainly by accretion. At the current time, it is not clear that this is true for all low mass stars. Some authors have questioned its validity for stars less massive than 0.5 solar masses. Although the reality may eventually turn out to be considerably more complex, a simple consideration of the effects of and limits on disc locking of young low mass stars seems necessary.We have investigated the exchange of angular momentum between a low mass star and an accretion disc during the Hayashi Track (Pinzón, Kúker, & de la Reza 2005, in preparation) and also along the first 100Myr of stellar evolution. The model incorporates changes in the star's moment of inertia, magnetic field strength (Elstner & Rúdiger 2000, A&A, 358, 612), angular momentum loss by a magnetic wind and an exponential decrease of the accretion rate. The lifetime of the accretion disc is a free parameter in our model. The resulting rotation rates are in agreement with observed vsin and photometric periods for young stars belonging to co-moving groups and open young clusters.

  10. Multi-wavelength photometry of the T Tauri binary V582 Mon (KH 15D): A new epoch of occultations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windemuth, Diana; Herbst, William, E-mail: dwindemuth@wesleyan.edu

    2014-01-01

    We present multi-wavelength (VRIJHK) observations of KH 15D obtained in 2012/2013, as well as a master table of standard photometry spanning the years 1967 to 2013. The system is a close, eccentric T Tauri binary embedded in an inclined precessing circumbinary (CB) ring. The most recent data show the continued rise of star B with respect to the trailing edge of the occulting horizon as the system's maximum brightness steadily increases. The wealth of data in time and wavelength domains allows us to track the long-term CCD color evolution of KH 15D. We find that the V – I behaviormore » is consistent with direct and scattered light from the composite color of two stars with slightly different temperatures. There is no evidence for any reddening or bluing associated with extinction or scattering by interstellar-medium-size dust grains. Furthermore, we probe the system's faint phase behavior at near-infrared wavelengths in order to investigate extinction properties of the ring and signatures of a possible shepherding planet sometimes invoked to confine the CB ring at ∼5 AU. The wavelength independence of eclipse depth at second contact is consistent with the ring material being fully opaque to 2.2 μm. The color-magnitude diagrams demonstrate excess flux in J and H at low light levels, which may be due to the presence of a hot, young Jupiter-mass planet.« less

  11. Multi-wavelength Photometry of the T Tauri Binary V582 Mon (KH 15D): a New Epoch of Occultations

    NASA Astrophysics Data System (ADS)

    Windemuth, Diana; Herbst, William

    2014-01-01

    We present multi-wavelength (VRIJHK) observations of KH 15D obtained in 2012/2013, as well as a master table of standard photometry spanning the years 1967 to 2013. The system is a close, eccentric T Tauri binary embedded in an inclined precessing circumbinary (CB) ring. The most recent data show the continued rise of star B with respect to the trailing edge of the occulting horizon as the system's maximum brightness steadily increases. The wealth of data in time and wavelength domains allows us to track the long-term CCD color evolution of KH 15D. We find that the V - I behavior is consistent with direct and scattered light from the composite color of two stars with slightly different temperatures. There is no evidence for any reddening or bluing associated with extinction or scattering by interstellar-medium-size dust grains. Furthermore, we probe the system's faint phase behavior at near-infrared wavelengths in order to investigate extinction properties of the ring and signatures of a possible shepherding planet sometimes invoked to confine the CB ring at ~5 AU. The wavelength independence of eclipse depth at second contact is consistent with the ring material being fully opaque to 2.2 μm. The color-magnitude diagrams demonstrate excess flux in J and H at low light levels, which may be due to the presence of a hot, young Jupiter-mass planet.

  12. Near-ultraviolet Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission

    NASA Astrophysics Data System (ADS)

    Ingleby, Laura; Calvet, Nuria; Bergin, Edwin; Herczeg, Gregory; Brown, Alexander; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; France, Kevin; Gregory, Scott G.; Hillenbrand, Lynne; Roueff, Evelyne; Valenti, Jeff; Walter, Frederick; Johns-Krull, Christopher; Brown, Joanna; Linsky, Jeffrey; McClure, Melissa; Ardila, David; Abgrall, Hervé; Bethell, Thomas; Hussain, Gaitee; Yang, Hao

    2011-12-01

    Young stars surrounded by disks with very low mass accretion rates are likely in the final stages of inner disk evolution and therefore particularly interesting to study. We present ultraviolet (UV) observations of the ~5-9 Myr old stars RECX-1 and RECX-11, obtained with the Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph on the Hubble Space Telescope, as well as optical and near-infrared spectroscopic observations. The two stars have similar levels of near-UV emission, although spectroscopic evidence indicates that RECX-11 is accreting and RECX-1 is not. The line profiles of Hα and He I λ10830 in RECX-11 show both broad and narrow redshifted absorption components that vary with time, revealing the complexity of the accretion flows. We show that accretion indicators commonly used to measure mass accretion rates, e.g., U-band excess luminosity or the Ca II triplet line luminosity, are unreliable for low accretors, at least in the middle K spectral range. Using RECX-1 as a template for the intrinsic level of photospheric and chromospheric emission, we determine an upper limit of 3 × 10-10 M ⊙ yr-1 for RECX-11. At this low accretion rate, recent photoevaporation models predict that an inner hole should have developed in the disk. However, the spectral energy distribution of RECX-11 shows fluxes comparable to the median of Taurus in the near-infrared, indicating that substantial dust remains. Fluorescent H2 emission lines formed in the innermost disk are observed in RECX-11, showing that gas is present in the inner disk, along with the dust. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  13. ROSAT-IUE observations of symbiotic stars. The x ray morphology of high latitude associations

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.

    1993-01-01

    The purposes of this grant included: to provide for continuing investigations of the x-ray properties of a class of interacting binaries known as symbiotic stars through analysis of their detection statistics in the ROSAT All-Sky Survey and simultaneous IUE observations; and to obtain and analyze ROSAT images of selected high latitude OB star associations, in order to permit multi-wavelength dissection of their contents and energetics. The first study is expected to result in enhanced information on mass transfer and accretion in such systems, and provide a more quantitative basis for interpretation of the spectra of these and similar stellar and extragalactic systems. This particular effort represents NASA support for an approved collaboration between the PI and the ROSAT Team at MPE Garching. In the second study, we seek to correlate the strength with which the diffuse clouds have been shocked and the recent star formation triggered, namely, the O and B stars of the Association, as well as nearby T Tauri stars. The large scale X-ray emission in deep ROSAT PSPC images will be compared with the optical, infrared, and radio topology of nearby supernova remnants, molecular clouds, and the distribution of massive stars in the regions. This should enable us to test whether the star formation triggering shocks originate from in the galactic plane (nearby supernovae) or from the collision of infalling matter with the disk material (galactic fountain dynamics).

  14. CN rings in full protoplanetary disks around young stars as probes of disk structure

    NASA Astrophysics Data System (ADS)

    Cazzoletti, P.; van Dishoeck, E. F.; Visser, R.; Facchini, S.; Bruderer, S.

    2018-01-01

    Aims: Bright ring-like structure emission of the CN molecule has been observed in protoplanetary disks. We investigate whether such structures are due to the morphology of the disk itself or if they are instead an intrinsic feature of CN emission. With the intention of using CN as a diagnostic, we also address to which physical and chemical parameters CN is most sensitive. Methods: A set of disk models were run for different stellar spectra, masses, and physical structures via the 2D thermochemical code DALI. An updated chemical network that accounts for the most relevant CN reactions was adopted. Results: Ring-shaped emission is found to be a common feature of all adopted models; the highest abundance is found in the upper outer regions of the disk, and the column density peaks at 30-100 AU for T Tauri stars with standard accretion rates. Higher mass disks generally show brighter CN. Higher UV fields, such as those appropriate for T Tauri stars with high accretion rates or for Herbig Ae stars or for higher disk flaring, generally result in brighter and larger rings. These trends are due to the main formation paths of CN, which all start with vibrationally excited H_2^* molecules, that are produced through far ultraviolet (FUV) pumping of H2. The model results compare well with observed disk-integrated CN fluxes and the observed location of the CN ring for the TW Hya disk. Conclusions: CN rings are produced naturally in protoplanetary disks and do not require a specific underlying disk structure such as a dust cavity or gap. The strong link between FUV flux and CN emission can provide critical information regarding the vertical structure of the disk and the distribution of dust grains which affects the UV penetration, and could help to break some degeneracies in the SED fitting. In contrast with C2H or c-C3H2, the CN flux is not very sensitive to carbon and oxygen depletion.

  15. DR Tauri: Temporal variability of the brightness distribution in the potential planet-forming region

    NASA Astrophysics Data System (ADS)

    Brunngräber, R.; Wolf, S.; Ratzka, Th.; Ober, F.

    2016-01-01

    Aims: We investigate the variability of the brightness distribution and the changing density structure of the protoplanetary disk around DR Tau, a classical T Tauri star. DR Tau is known for its peculiar variations from the ultraviolet (UV) to the mid-infrared (MIR). Our goal is to constrain the temporal variation of the disk structure based on photometric and MIR interferometric data. Methods: We observed DR Tau with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) at three epochs separated by about nine years, two months, respectively. We fit the spectral energy distribution and the MIR visibilities with radiative transfer simulations. Results: We are able to reproduce the spectral energy distribution as well as the MIR visibility for one of the three epochs (third epoch) with a basic disk model. We were able to reproduce the very different visibility curve obtained nine years earlier with a very similar baseline (first epoch), using the same disk model with a smaller scale height. The same density distribution also reproduces the observation made with a higher spatial resolution in the second epoch, I.e. only two months before the third epoch. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under the programs 074.C-0342(A) and 092.C-0726(A,B).

  16. Simultaneous optical and IR photometry of the T Tauri star RU LUPI

    NASA Astrophysics Data System (ADS)

    Giovannelli, F.; Errico, L.; Vittone, A. A.; Rossi, C.

    1991-01-01

    Two simultaneous optical and IR photometric observation runs of RU Lupi were carried out at the ESO in February 1983 and in June 1986 within the framework of a large multifrequency coordinated campaign of observations. RU Lupi was found in two different states. In the first case the star was in 'quiescence', in the second it was brighter and showed larger variations due to flare like event (FLE). A positive correlation between luminosity and its variations has been found. A Fourier analysis of the light curve available in literature was performed to point out the rotational period. The analysis of these data excludes any periodicity. The color-color diagnostic diagram clearly shows that RU Lupi variability is mainly due to a strong photospheric and chromospheric activity.

  17. Keck Adaptive Optics Imaging of Nearby Young Stars: Detection of Close Multiple Systems

    NASA Astrophysics Data System (ADS)

    Brandeker, Alexis; Jayawardhana, Ray; Najita, Joan

    2003-10-01

    Using adaptive optics on the Keck II 10 m telescope on Mauna Kea, we have surveyed 24 of the nearest young stars known in search of close companions. Our sample includes members of the MBM 12 and TW Hydrae young associations and the classical T Tauri binary UY Aurigae in the Taurus star-forming region. We present relative photometry and accurate astrometry for 10 close multiple systems. The multiplicity frequency in the TW Hydrae and MBM 12 groups are high in comparison to other young regions, although the significance of this result is low because of the small number statistics. We resolve S18 into a triple system, including a tight 63 mas (projected separation of 17 AU at a distance of 275 pc) binary, for the first time, with a hierarchical configuration reminiscent of VW Chamaeleontis and T Tauri. Another tight binary in our sample-TWA 5Aab (54 mas or 3 AU at 55 pc)-offers the prospect of dynamical mass measurement using astrometric observations within a few years and thus could be important for testing pre-main-sequence evolutionary models. Our observations confirm with 9 σ confidence that the brown dwarf TWA 5B is bound to TWA 5A. We find that the flux ratio of UY Aur has changed dramatically, by more than a magnitude in the H band, possibly as a result of variable extinction. With the smaller flux difference, the system may once again become detectable as an optical binary, as it was at the time of its discovery in 1944. Taken together, our results demonstrate that adaptive optics on large telescopes is a powerful tool for detecting tight companions and thus exploring the frequency and configurations of close multiple systems.

  18. A spectroscopic and photometric study of the unique pre- main sequence system KH 15D

    NASA Astrophysics Data System (ADS)

    Hamilton, Catrina Marie

    2004-09-01

    As a class, T Tauri stars are YSOs, some which are surrounded by circumstellar disks, and are recognized as the final stage of low-mass star formation. They also represent the earliest stage of stellar evolution that is optically visible, and, therefore, can be easily studied in detail. Understanding the processes through which these young stars interact with and eventually disperse their circumstellar disks is critical for understanding how they evolve from the T Tauri phase to the zero age main sequence (ZAMS), and how this affects the formation of planets, as well as their rotational evolution. KH 15D is a unique eclipsing system that could provide invaluable insight into the evolution of circumstellar disk material, as well as clues to the close stellar environment. Discovered in 1997, this star system has been observed to undergo an eclipse every 48 days in which the star's light is diminished by 3.5 magnitudes. What is so unusual about the eclipse is that the length of the eclipse has evolved over time, growing in length from 16 days initially, to ˜25 days in 2002/2003. Evolution of disk material on these timescales has never been observed before, and therefore provides us with a unique opportunity to refine our theories about remnant disks around young stars, how they transition, possibly into planets, and what role they play as the star matures and arrives on the zero age main sequence. Additionally, high resolution spectra obtained at specific phases during the December 2001 eclipse showed that as the obscuring matter cut across the star, dramatic spectral changes in the Hα and Hβ lines were seen. Its unique eclipse produces a “natural coronographic” effect in which the stellar photosphere is occulted, revealing details of its magnetosphere and surroundings during eclipse. There is evidence that the weak-lined T Tauri star (WTTS) central to the system is actively accreting gas, although probably not at the rate of a typical classical T Tauri star

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, Blesson; Manoj, P.; Bhatt, B. C.

    We present results of our study of the PDS 11 binary system, which belongs to a rare class of isolated, high Galactic latitude T Tauri stars. Our spectroscopic analysis reveals that PDS 11 is an M2–M2 binary system with both components showing similar H α emission strengths. Both the components appear to be accreting and are classical T Tauri stars. The lithium doublet Li i  λ 6708, a signature of youth, is present in the spectrum of PDS 11A, but not in PDS 11B. From the application of lithium depletion boundary age-dating method and a comparison with the Li i more » λ 6708 equivalent width distribution of moving groups, we estimated an age of 10–15 Myr for PDS 11A. Comparison with pre-main sequence evolutionary models indicates that PDS 11A is a 0.4 M {sub ⊙} T Tauri star at a distance of 114–131 pc. PDS 11 system does not appear to be associated with any known star-forming regions or moving groups. PDS 11 is a new addition, after TWA 30 and LDS 5606, to the interesting class of old, dusty, wide binary classical T Tauri systems in which both components are actively accreting.« less

  20. Pulsed Accretion in the T Tauri Binary TWA 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Herczeg, Gregory J.

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolvemore » over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.« less

  1. Theory of Bipolar Outflows from Accreting Hot Stars

    NASA Astrophysics Data System (ADS)

    Konigl, A.

    1996-05-01

    There is a growing number of observational indicators for the presence of bipolar outflows in massive, young stellar objects that are still accreting mass as part of their formation process. In particular, there is evidence that the outflows from these objects can attain higher velocities and kinetic luminosities than their lower-mass counterparts. Furthermore, the higher-mass objects appear to smoothly continue the correlation found in T Tauri stars between outflow and accretion signatures, and in several cases there are direct clues to the existence of a disk from optical and infrared spectroscopy. These results suggest that the disk--outflow connection found in low-mass pre--main-sequence stars extends to more massive objects, and that a similar physical mechanism may drive the outflows in both cases. In this presentation, I first critically examine the observational basis for this hypothesis, considering, among other things, the possibility that several low-luminosity outflows might occasionally masquerade as a single flow from a luminous object, and the effects that the radiation field of a hot star could have on the spectroscopic diagnostics of an accretion-driven outflow. I then go on to consider how the commonly invoked centrifugally driven wind models of bipolar outflows in low-mass stars would be affected by the various physical processes (such as photoionization, photoevaporation, radiation pressure, and stellar wind ram pressure) that operate in higher-mass stars. I conclude by mentioning some of the tantalizing questions that one could hope to address as this young field of research continues to develop (for example: is there a high-mass analog of the FU Orionis outburst phenomenon? Could one use observations of progressively more massive, and hence less convective, stars to elucidate the role of stellar magnetic fields in the accretion and outflow processes? Would it be possible to observationally identify massive stars that have reached the main

  2. IPHAS and the symbiotic stars. I. Selection method and first discoveries

    NASA Astrophysics Data System (ADS)

    Corradi, R. L. M.; Rodríguez-Flores, E. R.; Mampaso, A.; Greimel, R.; Viironen, K.; Drew, J. E.; Lennon, D. J.; Mikolajewska, J.; Sabin, L.; Sokoloski, J. L.

    2008-03-01

    Context: The study of symbiotic stars is essential to understand important aspects of stellar evolution in interacting binaries. Their observed population in the Galaxy is however poorly known, and is one to three orders of magnitudes smaller than the predicted population size. Aims: IPHAS, the INT Photometric Hα survey of the Northern Galactic plane, gives us the opportunity to make a systematic, complete search for symbiotic stars in a magnitude-limited volume, and discover a significant number of new systems. Methods: A method of selecting candidate symbiotic stars by combining IPHAS and near-IR (2MASS) colours is presented. It allows us to distinguish symbiotic binaries from normal stars and most of the other types of Hα emission line stars in the Galaxy. The only exception are T Tauri stars, which can however be recognized because of their concentration in star forming regions. Results: Using these selection criteria, we discuss the classification of a list of 4338 IPHAS stars with Hα in emission. 1500 to 2000 of them are likely to be Be stars. Among the remaining objects, 1183 fulfill our photometric constraints to be considered candidate symbiotic stars. The spectroscopic confirmation of three of these objects, which are the first new symbiotic stars discovered by IPHAS, proves the potential of the survey and selection method. Based on observations obtained at the 2.5 m INT telescope of the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofísica de Canarias. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has also made use of the SIMBAD database, operated at CDS, Strasbourg, France. Table 1 is only available

  3. The quiescent and flaring EUV spectrum of Algol and its relationship to other active coronae. EUV spectroscopy of bright hyades coronae: 71 Tauri and Theta 1 Tauri

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1994-01-01

    This program involves analysis and interpretation of EUVE spectrometer observations of the active stars Algol (beta Per) and 71 Tauri. The EUVE satellite spectrometers observed the prototype eclipsing binary Algol over nearly 1.5 orbital periods. Effective exposure times were 100 ksec and 89 ksec in the short wave (70-180 A) and medium wave (140-370 A) channels. High temperature (up to 20 MK) Fe XVI-XXIV emission lines are clearly detected in the overall spectrum. In addition, a quiescent continuum is present which increases towards shorter wavelengths. Using synthesized spectra of optically thin line and continuum emission folded through the instrumental response, we have examined constraints on the (Fe/H) coronal abundance in Algol. We find that the coronal Fe is underabundant by factors that approximately equal 2-4 relative to solar photospheric values, unless an unreasonably large quantity of coronal plasma at T greater than 30 MK is present in the quiescent spectrum. The latter possibility is, however, inconsistent with available X-ray data. Lightcurves of the high temperature EUV lines compared to line emission at He II 304 A show considerable differences, with much deeper minima present in the He II line during both primary and secondary eclipses. Toward the end of the observation a moderate flare lasting approximately 6 hours was detected in the high temperature Fe emission lines. The 71 Tau observation, for about the same exposure time, revealed only a handful of weak emission lines; however, the strongest lines were also those of Fe XXIII/XX, suggesting a hot coronal plasma. No obvious flaring or other variation was present in the 71 Tau Deep Survey lightcurve.

  4. Variation of the period and light curves of the solar-type contact binary EQ Tauri

    NASA Astrophysics Data System (ADS)

    Yuan, Jinzhao; Qian, Shengbang

    2007-10-01

    We present two new sets of complete light curves of EQ Tauri (EQ Tau) observed in 2000 October and 2004 December. These were analysed, together with the light curves obtained by Yang & Liu in 2001 December, with the 2003 version of the Wilson-Devinney code. In the three observing seasons, the light curves show a noticeable variation in the time-scale of years. The more massive component of EQ Tau is a solar-type star (G2) with a very deep convective envelope, which rotates about 80 times as fast as the Sun. Therefore, the change can be explained by dark-spot activity on the common convective envelope. The assumed unperturbed part of the light curve and the radial velocities published by Rucinski et al. were used to determine the basic parameters of the system, which were kept fixed for spot modelling in the three sets of light curves. The results reveal that the total spotted area on the more massive component covers 18, 3 and 20 per cent of the photospheric surface in the three observing seasons, respectively. Polar spots and high-latitude spots are found. The analysis of the orbital period has demonstrated that it undergoes cyclical oscillation, which is due to either a tertiary component or periodic magnetic activity in the more massive component.

  5. The discovery of low-mass pre-main-sequence stars in Cepheus OB3b

    NASA Astrophysics Data System (ADS)

    Pozzo, M.; Naylor, T.; Jeffries, R. D.; Drew, J. E.

    2003-05-01

    We report the discovery of a low-mass pre-main-sequence (PMS) stellar population in the younger subgroup of the Cepheus OB3 association, Cep OB3b, using UBVI CCD photometry and follow-up spectroscopy. The optical survey covers approximately 1300 arcmin2 on the sky and gives a global photometric and astrometric catalogue for more than 7000 objects. The location of a PMS population is well defined in a V versus (V-I) colour-magnitude diagram. Multifibre spectroscopic results for optically selected PMS candidates confirm the T Tauri nature for 10 objects, with equal numbers of classical TTS (CTTS) and weak-line TTS (WTTS). There are six other objects that we classify as possible PMS stars. The newly discovered TTS stars have masses in the range ~0.9-3.0 Msolar and ages from <1 to nearly 10 Myr, based on the Siess, Dufour & Forestini isochrones. Their location close to the O and B stars of the association (especially the O7n star) demonstrates that low-mass star formation is indeed possible in such an apparently hostile environment dominated by early-type stars and that the latter must have been less effective in eroding the circumstellar discs of their lower-mass siblings compared with other OB associations (e.g. λ-Ori). We attribute this to the nature of the local environment, speculating that the bulk of molecular material, which shielded low-mass stars from the ionizing radiation of their early-type siblings, has only recently been removed.

  6. The evolution of the lithium abundances of solar-type stars. II - The Ursa Major Group

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Pilachowski, Catherine A.; Fedele, Stephen B.; Jones, Burton F.

    1993-01-01

    We draw upon a recent study of the membership of the Ursa Major Group (UMaG) to examine lithium among 0.3 Gyr old solar-type stars. For most G and K dwarfs, Li confirms the conclusions about membership in UMaG reached on the basis of kinematics and chromospheric activity. G and K dwarfs in UMaG have less Li than comparable stars in the Pleiades. This indicates that G and K dwarfs undergo Li depletion while they are on the main sequence, in addition to any pre-main-sequence depletion they may have experienced. Moreover, the Li abundances of the Pleiades K dwarfs cannot be attributed to main-sequence depletion alone, demonstrating that pre-main-sequence depletion of Li also takes place. The sun's Li abundance implies that the main-sequence mechanism becomes less effective with age. The hottest stars in UMaG have Li abundances like those of hot stars in the Pleiades and Hyades and in T Tauris, and the two genuine UMaG members with temperatures near Boesgaard's Li chasm have Li abundances consistent with that chasm developing fully by 0.3 Gyr for stars with UMaG's metallicity. We see differences in the abundance of Li between UMaG members of the same spectral types, indicating that a real spread in the lithium abundance exists within this group.

  7. The Star Formation History of Orion and its Environs

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria

    2003-01-01

    the project "Cluster survey of protoplanetary disk evolution", (P.I.: A. Sicilia-Aguilar). Clear weather throughout. We obtained spectra for some 200 candidate PMS stars in 3 fields located in a 2.3 deg wide strip centered at DEC=+l and spanning from RA=5h20m to 5h35m. Data for both observing runs is partially reduced and is being analyzed. U photometry: During Nov.29-Dec.4, 2002 we were granted time with the 4-shooter CCD Mosaic Camera at the SAO 1.2m telescope, to obtain U-band photometry of a subset of the newly identified T Tauri stars in the strip centered at DEC=-1. This sample is composed of strong H(alpha) emitting PMS stars (Classical T Tauri stars) located mostly in the Orion OB lb association, around the Orion Belt area. Our data will be combined with our calibration of the U-band excess (Gullbring et al. 1998) to derive mass accretion rates. Because of bad weather we observed only 20 stars during 1.5 clear nights. Near IR photometry: During Dec. 14-19, 2002 we used the IR Camera on the SAO 1.2m telescope, to obtain L-band photometry of a set of 17 the newly identified Orion OB 1a and 1b stars, in order to look for IR excess emission coming from the hotter inner parts of circumstellar disks. Again, mediocre weather prevented a larger set to be observed. These stars were also observed with the OSCIR mid-IR camera on Gemini North during later 2001. Our goal is to construct SEDs from the visual out to the mid-IR (by combining our optical/IR data with 2MASS JHK magnitudes) in order to explore disk dissipation at the critical ages of 5-10 Myr spanned by these stars.

  8. LONG-TERM LIGHT CURVE OF HIGHLY VARIABLE PROTOSTELLAR STAR GM CEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Limin; Kroll, Peter; Henden, Arne A.

    2010-04-15

    We present data from the archival plates at Harvard College Observatory and Sonneberg Observatory showing the field of the solar-type pre-main-sequence star GM Cep. A total of 186 magnitudes of GM Cep have been measured on these archival plates, with 176 in blue sensitivity, six in visible, and four in red. We combine our data with data from the literature and from the American Association of Variable Star Observers to depict the long-term light curves of GM Cep in both B and V wavelengths. The light curves span from 1895 until now, with two densely sampled regions (1935-1945 in themore » B band, and 2006 until now in the V band). The long-term light curves do not show any fast rise behavior as predicted by an accretion mechanism. Both the light curves and the magnitude histograms confirm the conclusion that the light curves are dominated by dips (possibly from extinction) superposed on some quiescence state, instead of outbursts caused by accretion flares. Our result excludes the possibility of GM Cep being a FUor, EXor, or McNeil's Nebula-type star. Several special cases of T Tauri stars were checked, but none of these light curves were compatible with that of GM Cep. The lack of periodicity in the light curve excludes the possibility of GM Cep being a KH 15D system.« less

  9. PLANETARY SYSTEM FORMATION IN THE PROTOPLANETARY DISK AROUND HL TAURI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, Eiji; Hasegawa, Yasuhiro; Hayashi, Masahiko

    2016-02-20

    We reprocess the Atacama Large Millimeter/Submillimeter Array (ALMA) long-baseline science verification data taken toward HL Tauri. Assuming the observed gaps are opened up by currently forming, unseen bodies, we estimate the mass of such hypothetical bodies based on the following two approaches: the Hill radius analysis and a more elaborate approach developed from the angular momentum transfer analysis in gas disks. For the former, the measured gap widths are used for estimating the mass of the bodies, while for the latter, the measured gap depths are utilized. We show that their masses are comparable to or less than the mass of Jovian planets.more » By evaluating Toomre’s gravitational instability (GI) condition and cooling effect, we find that the GI might be a mechanism to form the bodies in the outer region of the disk. As the disk might be gravitationally unstable only in the outer region of the disk, inward planetary migration would be needed to construct the current architecture of the observed disk. We estimate the gap-opening mass and show that type II migration might be able to play such a role. Combining GIs with inward migration, we conjecture that all of the observed gaps may be a consequence of bodies that might have originally formed at the outer part of the disk, and have subsequently migrated to the current locations. While ALMA’s unprecedented high spatial resolution observations can revolutionize our picture of planet formation, more dedicated observational and theoretical studies are needed to fully understand the HL Tauri images.« less

  10. Interacting Coronae of Two T Tauri Stars: First Observational Evidence for Solar-Like Helmet Streamers

    DTIC Science & Technology

    2008-01-01

    for the first time in stars other than the Sun. The complete extent of each helmet streamer above the stellar surface is about 24 R∗ which implies...is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...Heliospheric Observatory (SOHO) satellite (Schwenn 2006; Suess & Nerney 2004; Vourlidas 2006). Following the analogy with the Sun, Massi & collaborators

  11. Evidence of a primordial solar wind. [T Tauri-type evolution model

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1974-01-01

    A model is reviewed which requires a T Tauri 'wind' and at the same time encompasses certain early-object stellar features. The theory rests on electromagnetic induction driven by the 'wind'. Plasma confinement of the induced field prohibits a scattered field, and all energy loss is via ohmic heating in the scatterer (i.e., planetary objects). Two modes, one caused by the interplanetary electric field (transverse magnetic) and the other by time variations in the interplanetary magnetic field (transverse electric) are present. Parent body melting, lunar surface melting, and a primordial magnetic field are components of the proposed model.

  12. Mid-infrared interferometric variability of DG Tauri: Implications for the inner-disk structure

    NASA Astrophysics Data System (ADS)

    Varga, J.; Gabányi, K. É.; Ábrahám, P.; Chen, L.; Kóspál, Á.; Menu, J.; Ratzka, Th.; van Boekel, R.; Dullemond, C. P.; Henning, Th.; Jaffe, W.; Juhász, A.; Moór, A.; Mosoni, L.; Sipos, N.

    2017-08-01

    Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 μm silicate feature from emission to absorption temporarily. Aims: We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods: Infrared interferometry can spatially resolve the thermal emission of the circumstellar disk, also giving information about dust processing. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results: The inner disk (r < 1-3 au) spectra exhibit a 10 μm absorption feature related to amorphous silicate grains. The outer disk (r > 1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions: For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can

  13. Gas in the Terrestrial Planet Region of Disks: CO Fundamental Emission from T Tauri Stars

    DTIC Science & Technology

    2003-06-01

    planetary systems: protoplanetary disks — stars: variables: other 1. INTRODUCTION As the likely birthplaces of planets, the inner regions of young...both low column density regions, such as disk gaps , and temperature inversion regions in disk atmospheres can produce significant emission. The esti...which planetary systems form. The moti- vation to study inner disks is all the more intense today given the discovery of planets outside the solar system

  14. Herschel-PACS observation of the 10 Myr old T Tauri disk TW Hya. Constraining the disk gas mass

    NASA Astrophysics Data System (ADS)

    Thi, W.-F.; Mathews, G.; Ménard, F.; Woitke, P.; Meeus, G.; Riviere-Marichalar, P.; Pinte, C.; Howard, C. D.; Roberge, A.; Sandell, G.; Pascucci, I.; Riaz, B.; Grady, C. A.; Dent, W. R. F.; Kamp, I.; Duchêne, G.; Augereau, J.-C.; Pantin, E.; Vandenbussche, B.; Tilling, I.; Williams, J. P.; Eiroa, C.; Barrado, D.; Alacid, J. M.; Andrews, S.; Ardila, D. R.; Aresu, G.; Brittain, S.; Ciardi, D. R.; Danchi, W.; Fedele, D.; de Gregorio-Monsalvo, I.; Heras, A.; Huelamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mendigutía, I.; Montesinos, B.; Mora, A.; Morales-Calderon, M.; Nomura, H.; Phillips, N.; Podio, L.; Poelman, D. R.; Ramsay, S.; Rice, K.; Solano, E.; Walker, H.; White, G. J.; Wright, G.

    2010-07-01

    Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, making TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [O i] and [C ii] as part of the open-time large program GASPS. We complement this with continuum data and ground-based 12 CO 3-2 and 13CO 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [O i] line at 63 μm. The other lines that were observed, [O i] at 145 μm and [C ii] at 157 μm, are not detected. No extended emission has been found. Preliminary modeling of the photometric and line data assuming [ 12CO] /[ 13CO] = 69 suggests a dust mass for grains with radius <1 mm of ~1.9 × 10-4 M⊙ (total solid mass of 3 × 10-3 M⊙) and a gas mass of (0.5-5) × 10-3 M⊙. The gas-to-dust mass may be lower than the standard interstellar value of 100. Herschel is an ESA space observatory with science instruments provided by Principal Investigator consortia. It is open for proposals for observing time from the worldwide astronomical community.Appendix is only available in electronic form at http://www.aanda.org

  15. DIAGNOSING MASS FLOWS AROUND HERBIG Ae/Be STARS USING THE HE I λ10830 LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauley, P. Wilson; Johns-Krull, Christopher M., E-mail: pcauley@wesleyan.edu, E-mail: cmj@rice.edu

    2014-12-20

    We examine He I λ10830 profile morphologies for a sample of 56 Herbig Ae/Be stars (HAEBES). We find significant differences between HAEBES and classical T-Tauri stars (CTTS) in the statistics of both blueshifted absorption (i.e., mass outflows) and redshifted absorption features (i.e., mass infall or accretion). Our results suggest that, in general, Herbig Be (HBe) stars do not accrete material from their inner disks in the same manner as CTTS, which are believed to accrete material via magnetospheric accretion, whereas Herbig Ae (HAe) stars generally show evidence for magnetospheric accretion. We find no evidence in our sample of narrow blueshiftedmore » absorption features, which are typical indicators of inner disk winds and are common in He I λ10830 profiles of CTTS. The lack of inner-disk-wind signatures in HAEBES, combined with the paucity of detected magnetic fields on these objects, suggests that accretion through large magnetospheres that truncate the disk several stellar radii above the surface is not as common for HAe and late-type HBe stars as it is for CTTS. Instead, evidence is found for smaller magnetospheres in the maximum redshifted absorption velocities in our HAEBE sample. These velocities are, on average, a smaller fraction of the system escape velocity than is found for CTTS, suggesting accretion is taking place closer to the star. Smaller magnetospheres, and evidence for boundary layer accretion in HBe stars, may explain the less common occurrence of redshifted absorption in HAEBES. Evidence is found that smaller magnetospheres may be less efficient at driving outflows compared to CTTS magnetospheres.« less

  16. STAR FORMATION ACROSS THE W3 COMPLEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Tapia, Mauricio

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts amore » large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.« less

  17. EMPIRICALLY ESTIMATED FAR-UV EXTINCTION CURVES FOR CLASSICAL T TAURI STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McJunkin, Matthew; France, Kevin; Schindhelm, Eric

    Measurements of extinction curves toward young stars are essential for calculating the intrinsic stellar spectrophotometric radiation. This flux determines the chemical properties and evolution of the circumstellar region, including the environment in which planets form. We develop a new technique using H{sub 2} emission lines pumped by stellar Ly α photons to characterize the extinction curve by comparing the measured far-ultraviolet H{sub 2} line fluxes with model H{sub 2} line fluxes. The difference between model and observed fluxes can be attributed to the dust attenuation along the line of sight through both the interstellar and circumstellar material. The extinction curvesmore » are fit by a Cardelli et al. (1989) model and the A {sub V} (H{sub 2}) for the 10 targets studied with good extinction fits range from 0.5 to 1.5 mag, with R {sub V} values ranging from 2.0 to 4.7. A {sub V} and R {sub V} are found to be highly degenerate, suggesting that one or the other needs to be calculated independently. Column densities and temperatures for the fluorescent H{sub 2} populations are also determined, with averages of log{sub 10}( N (H{sub 2})) = 19.0 and T = 1500 K. This paper explores the strengths and limitations of the newly developed extinction curve technique in order to assess the reliability of the results and improve the method in the future.« less

  18. COMPLEX VARIABILITY OF THE H{alpha} EMISSION LINE PROFILE OF THE T TAURI BINARY SYSTEM KH 15D: THE INFLUENCE OF ORBITAL PHASE, OCCULTATION BY THE CIRCUMBINARY DISK, AND ACCRETION PHENOMENA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Catrina M.; Johns-Krull, Christopher M.; Mundt, Reinhard

    2012-06-01

    We have obtained 48 high-resolution echelle spectra of the pre-main-sequence eclipsing binary system KH 15D (V582 Mon, P = 48.37 days, e {approx} 0.6, M{sub A} = 0.6 M{sub Sun }, M{sub B} = 0.7 M{sub Sun }). The eclipses are caused by a circumbinary disk (CBD) seen nearly edge on, which at the epoch of these observations completely obscured the orbit of star B and a large portion of the orbit of star A. The spectra were obtained over five contiguous observing seasons from 2001/2002 to 2005/2006 while star A was fully visible, fully occulted, and during several ingressmore » and egress events. The H{alpha} line profile shows dramatic changes in these time series data over timescales ranging from days to years. A fraction of the variations are due to 'edge effects' and depend only on the height of star A above or below the razor sharp edge of the occulting disk. Other observed variations depend on the orbital phase: the H{alpha} emission line profile changes from an inverse P-Cygni-type profile during ingress to an enhanced double-peaked profile, with both a blue and a red emission component, during egress. Each of these interpreted variations are complicated by the fact that there is also a chaotic, irregular component present in these profiles. We find that the complex data set can be largely understood in the context of accretion onto the stars from a CBD with gas flows as predicted by the models of eccentric T Tauri binaries put forward by Artymowicz and Lubow, Guenther and Kley, and de Val-Borro et al. In particular, our data provide strong support for the pulsed accretion phenomenon, in which enhanced accretion occurs during and after perihelion passage.« less

  19. BP Piscium: its flaring disc imaged with SPHERE/ZIMPOL★

    NASA Astrophysics Data System (ADS)

    de Boer, J.; Girard, J. H.; Canovas, H.; Min, M.; Sitko, M.; Ginski, C.; Jeffers, S. V.; Mawet, D.; Milli, J.; Rodenhuis, M.; Snik, F.; Keller, C. U.

    2017-03-01

    Whether BP Piscium (BP Psc) is either a pre-main sequence T Tauri star at d ≈ 80 pc, or a post-main sequence G giant at d ≈ 300 pc is still not clear. As a first-ascent giant, it is the first to be observed with a molecular and dust disc. Alternatively, BP Psc would be among the nearest T Tauri stars with a protoplanetary disc (PPD). We investigate whether the disc geometry resembles typical PPDs, by comparing polarimetric images with radiative transfer models. Our Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE)/Zurich IMaging Polarimeter (ZIMPOL) observations allow us to perform polarimetric differential imaging, reference star differential imaging, and Richardson-Lucy deconvolution. We present the first visible light polarization and intensity images of the disc of BP Psc. Our deconvolution confirms the disc shape as detected before, mainly showing the southern side of the disc. In polarized intensity the disc is imaged at larger detail and also shows the northern side, giving it the typical shape of high-inclination flared discs. We explain the observed disc features by retrieving the large-scale geometry with MCMAX radiative transfer modelling, which yields a strongly flared model, atypical for discs of T Tauri stars.

  20. Near-IR Spectroscopy of Herbig Ae/Be Companion Stars

    NASA Astrophysics Data System (ADS)

    Rodgers, B. M.; van der Bliek, N. S.; Brandvig, B.; Thomas, S.; Doppmann, G.; Bouvier, J.

    2005-12-01

    We present first results of a program to obtain near-infrared spectra of candidate companions to intermediate mass pre-main sequence Herbig Ae/Be (HAEBE) stars. Accurate spectral classification is critical to proper identification of the secondary star and interpretation of its spectral energy distribution. Spectra also allow analysis of emission lines and other stellar charcteristics such as veiling and rotation, to determine the companion's evolutionary status and help establish binarity. Of the first six objects observed with GNIRS on Gemini South (AS310 NW, HD76534, HD150193, HR5999, HD141569 and CO Ori), we find two B+B companion pairs, three early A primaries with T Tauri type secondaries (G, K and M type), and a peculiar F+F pair in which the secondary star is the primary emission star (respectively). If true binaries, three systems are similar spectral type pairs but with very different extinction and emission properties. The three late-type secondaries all exhibit significant near-infrared excess, but only weak emission lines. Other components of our project are an AO-fed near-infrared imaging survey of a large sample of HAEBE systems (N. S. van der Bliek et al. poster) and modeling of companion spectral energy distributions (B. Brandvig et al. poster). Together, these three complementary approaches will result in the most thorough accounting of multiple HAEBE systems to date. Our initial spectroscopy sample contains about 40 objects taken from the literature, roughly half from Bouvier and Corporon (2001). Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil

  1. CSI 2264: Probing the inner disks of AA Tauri-like systems in NGC 2264

    NASA Astrophysics Data System (ADS)

    McGinnis, P. T.; Alencar, S. H. P.; Guimarães, M. M.; Sousa, A. P.; Stauffer, J.; Bouvier, J.; Rebull, L.; Fonseca, N. N. J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Aigrain, S.; Favata, F.; Fűrész, G.; Vrba, F. J.; Flaccomio, E.; Turner, N. J.; Gameiro, J. F.; Dougados, C.; Herbst, W.; Morales-Calderón, M.; Micela, G.

    2015-05-01

    Context. The classical T Tauri star (CTTS) AA Tau has presented photometric variability that was attributed to an inner disk warp, caused by the interaction between the inner disk and an inclined magnetosphere. Previous studies of the young cluster NGC 2264 have shown that similar photometric behavior is common among CTTS. Aims: The goal of this work is to investigate the main causes of the observed photometric variability of CTTS in NGC 2264 that present AA Tau-like light curves, and verify if an inner disk warp could be responsible for their observed variability. Methods: In order to understand the mechanism causing these stars' photometric behavior, we investigate veiling variability in their spectra and u - r color variations and estimate parameters of the inner disk warp using an occultation model proposed for AA Tau. We also compare infrared Spitzer IRAC and optical CoRoT light curves to analyze the dust responsible for the occultations. Results: AA Tau-like variability proved to be transient on a timescale of a few years. We ascribe this variability to stable accretion regimes and aperiodic variability to unstable accretion regimes and show that a transition, and even coexistence, between the two is common. We find evidence of hot spots associated with occultations, indicating that the occulting structures could be located at the base of accretion columns. We find average values of warp maximum height of 0.23 times its radial location, consistent with AA Tau, with variations of on average 11% between rotation cycles. We also show that extinction laws in the inner disk indicate the presence of grains larger than interstellar grains. Conclusions: The inner disk warp scenario is consistent with observations for all but one star with AA Tau-like variability in our sample. AA Tau-like systems are fairly common, comprising 14% of CTTS observed in NGC 2264, though this number increases to 35% among systems of mass 0.7 M⊙ ≲ M ≲ 2.0 M⊙. Assuming random

  2. A mid-IR study of the circumstellar environment of Herbig Be stars

    NASA Astrophysics Data System (ADS)

    Verhoeff, A. P.; Waters, L. B. F. M.; van den Ancker, M. E.; Min, M.; Stap, F. A.; Pantin, E.; van Boekel, R.; Acke, B.; Tielens, A. G. G. M.; de Koter, A.

    2012-02-01

    Context. The study of the formation of massive stars is complicated because of the short times scales, large distances, and obscuring natal clouds. There are observational and theoretical indications that the circumstellar environment of Herbig Be (HBe) stars is substantially different from that of their lower mass counterparts, the T Tauri and Herbig Ae stars. Aims: We map the spatial distribution and mineralogy of the warm circumstellar dust of a sample of HBe stars. We compare our results to a sample of less massive Herbig Ae stars. Methods: We used literature photometry to obtain optical extinctions and stellar parameters of the targets. We obtained N-band imaging and long-slit spectroscopic data with the VISIR instrument at the VLT and we analyzed these data. We performed photometry of the images and extracted spatial information. We corrected the spectra for extinction and performed mineralogical fits. We fitted Gaussian profiles to characterize the spatial extent of the spectra along the VISIR slit. Results: We find that the mid-infrared (IR) emission of the HBe stars is typically characterized by a circumstellar disk that efficiently reprocesses a substantial portion of the stellar flux. The mid-IR flux levels, the spatial compactness, and the dust composition are quite similar to those of the Herbig Ae stars. We find upper limits to the full-width-at-half-maximum (FWHM) size of the mid-IR emission of ~500 AU. The main differences with the lower mass stars are the lower overall IR excess with a greater variety in shapes, the weaker PAH reprocessing power, and the lack of a silica-forsterite relation. The discrepancies between VISIR and IRAS photometry, the far-IR contributions and the large PAH sizes of HBe stars are attributed to natal clouds. Conclusions: Our results suggest that the Herbig Be disks are flatter than those around lower mass stars and they are likely truncated from the outside by photoevaporation. Based on observations collected at the

  3. Visual Spectroscopy of R Scuti (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Undreiu, L.; Chapman, A.

    2015-06-01

    (Abstract only) We are currently conducting a visual spectral analysis of the brightest known RV Tauri variable star, R Scuti. The goal of our undergraduate research project is to investigate this variable star's erratic nature by collecting spectra at different times in its cycle. Starting in late June of 2014 and proceeding into the following four months, we have monitored the alterations in the spectral characteristics that accompany the progression of R Sct's irregular cycle. During this time, we were given the opportunity to document the star's most recent descent from maximum brightness V~5 to a relatively deep minimum of V~7.5. Analysis of the data taken during the star's period of declining magnitude has provided us with several interesting findings that concur with the observations of more technically sophisticated studies. Following their collection, we compared our observations and findings with archived material in the hopes of facilitating a better understanding of the physical state of RV Tauri stars and the perplexing nature of their evolution. Although identification of the elements in the star's bright phase proved to be challenging, documenting clear absorption features in its fainter stage was far less difficult. As previously reported in similar studies, we identified prominent TiO molecular absorption bands near R Sct's faintest state, typical of mid-M spectral type stars. In addition to these TiO absorption lines, we report the presence of many more metallic lines in the spectral profiles obtained near star's minimum. Supportive of previously published hypotheses regarding the causation of its variability, we observed significant variation in the star's spectral characteristics throughout different phases of its cycle. We are hopeful that our observations will make a meaningful contribution to existing databases and help advance our collective understanding of RV Tauri stars and their evolutionary significance.

  4. Young Binaries and Early Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang

    1996-07-01

    Most main-sequence stars are members of binary or multiple systems. The same is true for pre-main-sequence (PMS) stars, as recent surveys have shown. Therefore studying star formation means to a large extent studying the formation of binary systems. Similarly, studying early stellar evolution primarily involves PMS binary systems. In this thesis I have studied the binary frequency among ROSAT selected T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association, and the evolutionary status of Hα-selected PMS binaries in the T associations of Chamaeleon, Lupus, and ρ Ophiuchi. The direct imaging and spectroscopic observations in the optical have been carried out under subarcsec seeing conditions at the ESO New Technology Telescope (NTT) at La Silla. Furthermore, high-spatial resolution images of selected PMS stars in the near infrared were obtained with the ESO adaptive optics system COME-ON+/ADONIS. Among 195 T Tauri stars observed using direct imaging 31 binaries could be identified, 12 of them with subarcsec separation. Based on statistical arguments alone I conclude that almost all of them are indeed physical (i.e. gravitationally bound) binary or multiple systems. Using astrometric measurements of some binaries I showed that the components of these binaries are common proper motion pairs, very likely in a gravitationally bound orbit around each other. The overall binary frequency among T Tauri stars with a range of separations between 120 and 1800 AU is in agreement with the binary frequency observed among main-sequence stars in the solar neighbourhood. However, within individual regions the spatial distribution of binaries is non-uniform. In particular, in Upper Scorpius, weak-line T Tauri stars in the vicinity of early type stars seem to be almost devoid of multiple systems, whereas in another area in Upper Scorpius half of all weak-line T Tauri stars have a companion in a range of separation between 0.''7 and 3.''0. For a sample

  5. The weak-line T Tauri star V410 Tau. I. A multi-wavelength study of variability

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Fernández, M.; Costa, V. M.; Gameiro, J. F.; Grankin, K.; Henden, A.; Guenther, E.; Mohanty, S.; Flaccomio, E.; Burwitz, V.; Jayawardhana, R.; Predehl, P.; Durisen, R. H.

    2003-12-01

    We present the results of an intensive coordinated monitoring campaign in the optical and X-ray wavelength ranges of the low-mass, pre-main sequence star V410 Tau carried out in November 2001. The aim of this project was to study the relation between various indicators for magnetic activity that probe different emitting regions and would allow us to obtain clues on the interplay of the different atmospheric layers: optical photometric star spot (rotation) cycle, chromospheric Hα emission, and coronal X-rays. Our optical photometric monitoring has allowed us to measure the time of the minimum of the lightcurve with high precision. Joining the result with previous data we provide a new estimate for the dominant periodicity of V410 Tau (1.871970 +/- 0.000010 d). This updated value removes systematic offsets of the time of minimum observed in data taken over the last decade. The recurrence of the minimum in the optical lightcurve over such a long timescale emphasizes the extraordinary stability of the largest spot. This is confirmed by radial velocity measurements: data from 1993 and 2001 fit almost exactly onto each other when folded with the new period. The combination of the new data from November 2001 with published measurements taken during the last decade allows us to examine long-term changes in the mean light level of the photometry of V410 Tau. A variation on the timescale of 5.4 yr is suggested. Assuming that this behavior is truly cyclic V410 Tau is the first pre-main sequence star on which an activity cycle is detected. Two X-ray pointings were carried out with the Chandra satellite simultaneously with the optical observations, and centered near the maximum and minimum levels of the optical lightcurve. A relation of their different count levels to the rotation period of the dominating spot is not confirmed by a third Chandra observation carried out some months later, during another minimum of the 1.87 d cycle. Similarly we find no indications for a

  6. Finding new sub-stellar co-moving companion candidates - the case of CT Cha

    NASA Astrophysics Data System (ADS)

    Schmidt, Tobias; Neuhäuser, Ralph

    2008-05-01

    We have searched for close and faint companions around T Tauri stars in the Chamaeleon star forming region. Two epochs of direct imaging data were taken with the VLT Adaptive Optics instrument NaCo in February 2006 and March 2007 in Ks band for the classical T Tauri star CT Cha together with a Hipparcos binary for astrometric calibration. Moreover a J band image was taken in March 2007 to get color information. We found CT Cha to have a very faint companion (Ks0=14.6 mag) of 2.67” separation corresponding to 440AU. We show that CT Cha A and the faint object form a common proper motion pair and that the companion is not a non-moving background object (with 4σ significance).

  7. Evidence that the Planetary Candidate CVSO30c is a Background Star from Optical, Seeing-limited Data

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu; Chiang, Po-Shih

    2018-01-01

    We report serendipitous optical imaging of CVSO30c, an exoplanet candidate associated with the pre-main-sequence T Tauri star CVSO30 that resides in the 25 Ori stellar cluster. We perform PSF modeling on our seeing-limited optical image to remove the lights from the host star (CVSO30), allowing us to extract photometry of CVSO30c to be g = 23.2 ± 0.2 (statistic) ± 0.1 (systematic) and r = 21.5 ± 0.1 (statistic) ± 0.1 (systematic) magnitudes, respectively. This is 170 and 80 times too bright in the g and r bands, respectively, if CVSO30c were an L0 substellar object as suggested by previous studies. The optical/infrared colors of CVSO30c are indicative of a stellar, not substellar object, while the object’s color–magnitude diagram position is strikingly inconsistent with expected values for a low-mass member of 25 Ori. Broadband photometry for CVSO30c is instead better fit by contaminants such as a background K3 giant or M subdwarf. Our study demonstrates that optical seeing-limited data can help clarify the nature of candidate wide separation planet-mass companions in young star-forming regions.

  8. Evolution of Cold Circumstellar Dust around Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Carpenter, John M.; Wolf, Sebastian; Schreyer, Katharina; Launhardt, Ralf; Henning, Thomas

    2005-02-01

    We present submillimeter (Caltech Submillimeter Observatory 350 μm) and millimeter (Swedish-ESO Submillimetre Telescope [SEST] 1.2 mm, Owens Valley Radio Observatory [OVRO] 3 mm) photometry for 127 solar-type stars from the Formation and Evolution of Planetary Systems Spitzer Legacy program that have masses between ~0.5 and 2.0 Msolar and ages from ~3 Myr to 3 Gyr. Continuum emission was detected toward four stars with a signal-to-noise ratio>=3: the classical T Tauri stars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and the debris-disk system HD 107146 with OVRO. RX J1842.9-3532 and RX J1852.3-3700 are located in projection near the R CrA molecular cloud, with estimated ages of ~10 Myr (Neuhäuser et al.), whereas PDS 66 is a probable member of the ~20 Myr old Lower Centaurus-Crux subgroup of the Scorpius-Centaurus OB association (Mamajek et al.). The continuum emission toward these three sources is unresolved at the 24" SEST resolution and likely originates from circumstellar accretion disks, each with estimated dust masses of ~5×10-5 Msolar. Analysis of the visibility data toward HD 107146 (age~80-200 Myr) indicates that the 3 mm continuum emission is centered on the star within the astrometric uncertainties and resolved with a Gaussian-fit FWHM size of (6.5"+/-1.4")×(4.2"+/-1.3"), or 185AU×120 AU. The results from our continuum survey are combined with published observations to quantify the evolution of dust mass with time by comparing the mass distributions for samples with different stellar ages. The frequency distribution of circumstellar dust masses around solar-type stars in the Taurus molecular cloud (age~2 Myr) is distinguished from that around 3-10 Myr and 10-30 Myr old stars at a significance level of ~1.5 and ~3 σ, respectively. These results suggest a decrease in the mass of dust contained in small dust grains and/or changes in the grain properties by stellar ages of 10-30 Myr, consistent with previous conclusions. Further

  9. Subaru Near Infrared Coronagraphic Images of T Tauri

    NASA Astrophysics Data System (ADS)

    Mayama, Satoshi; Tamura, Motohide; Hayashi, Masahiko; Itoh, Yoichi; Fukagawa, Misato; Suto, Hiroshi; Ishii, Miki; Murakawa, Koji; Oasa, Yumiko; Hayashi, Saeko S.; Yamashita, Takuya; Morino, Junichi; Oya, Shin; Naoi, Takahiro; Pyo, Tae-Soo; Nishikawa, Takayuki; Kudo, Tomoyuki; Usuda, Tomonori; Ando, Hiroyasu; Miyama, Shoken M.; Kaifu, Norio

    2006-04-01

    High angular resolution near-infrared (JHK) adaptive optics images of T Tau were obtained with the infrared camera Coronagraphic Imager with Adaptive Optics (CIAO) mounted on the 8.2m Subaru Telescope in 2002 and 2004. The images resolve a complex circumstellar structure around a multiple system. We resolved T Tau Sa and Sb as well as T Tau N and S. The estimated orbit of T Tau Sb indicates that it is probably bound to T Tau Sa. The K band flux of T Tau S decreased by ˜ 1.7 Jy in 2002 November compared with that in 2001 mainly because T Tau Sa became fainter. The arc-like ridge detected in our near-infrared images is consistent with what is seen at visible wavelengths, supporting the interpretation in previous studies that the arc is part of the cavity wall seen relatively pole-on. Halo emission is detected out to ˜2''from T Tau N. This may be light scattered off the common envelope surrounding the T Tauri multiple system.

  10. HST Snapshot Study of Variable Stars in Globular Clusters: Inner Region of NGC 6441

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Stetson, Peter B.; Catelan, Marcio; Sweigart, Allen V.; Layden, Andrew C.; Rich, R. Michael

    2003-01-01

    not appear to be a change in the period-luminosity relation slope between the BL Herculis and W Virginis stars, but that a change of slope does occur when the RV Tauri stars are added to the period-luminosity relation.

  11. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana

    1994-01-01

    We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a

  12. Pre-main sequence stars with disks in the Eagle Nebula observed in scattered light

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Damiani, F.; Micela, G.; Peres, G.; Prisinzano, L.; Sciortino, S.

    2010-10-01

    Context. NGC 6611 and its parental cloud, the Eagle Nebula (M 16), are well-studied star-forming regions, thanks to their large content of both OB stars and stars with disks and the observed ongoing star formation. In our previous studies of the Eagle Nebula, we identified 834 disk-bearing stars associated with the cloud, after detecting their excesses in NIR bands from J band to 8.0 μ m. Aims: In this paper, we study in detail the nature of a subsample of disk-bearing stars that show peculiar characteristics. They appear older than the other members in the V vs. V-I diagram, and/or they have one or more IRAC colors at pure photospheric values, despite showing NIR excesses, when optical and infrared colors are compared. Methods: We confirm the membership of these stars to M 16 by a spectroscopic analysis. The physical properties of these stars with disks are studied by comparing their spectral energy distributions (SEDs) with the SEDs predicted by models of T Tauri stars with disks and envelopes. Results: We show that the age of these stars estimated from the V vs. V-I diagram is unreliable since their V-I colors are altered by the light scattered by the disk into the line of sight. Only in a few cases their SEDs are compatible with models with excesses in V band caused by optical veiling. Candidate members with disks and photospheric IRAC colors are selected by the used NIR disk diagnostic, which is sensitive to moderate excesses, such as those produced by disks with low masses. In 1/3 of these cases, scattering of stellar flux by the disks can also be invoked. Conclusions: The photospheric light scattered by the disk grains into the line of sight can affect the derivation of physical parameters of Class II stars from photometric optical and NIR data. Besides, the disks diagnostic we defined are useful for selecting stars with disks, even those with moderate excesses or whose optical colors are altered by veiling or photospheric scattered light. Table with the

  13. Extinction and Star Formation Study in Molecular Clouds with DENIS infrared data and USNO optical data

    NASA Astrophysics Data System (ADS)

    Cambrésy, Laurent

    1999-11-01

    This thesis consists in a study of molecular clouds, essentially of the point of view of the interstellar environment, but also of the one of the star formation. The original method to estimate extinction presented here is based on adaptive star counts as well as on a wavelet decomposition. For the first time, an extinction map of the whole sky is proposed (USNO-PMM optical data). Access to very large field maps offers the opportunity to analyze the interstellar matter distribution in various environments. A first result is that the contained mass in regions for which AV > 1 would not exceed half of the total cloud mass. Using DENIS data, it becomes possible to probe dense regions of clouds. For instance, star counts in the Chamaeleon complex show cores which were not resolved before. Moreover, the selection of stars with a strong infrared excess yields about fifty T Tauri candidates. From their luminosity function, I derived the average lifetime of circumstellar disc of low--mass stars: ~4cdot 106 years. It is difficult to understand the relation between extinction and molecular emission, but it appears clearly that molecular emission is a bad estimator of the column density for low extinction area. Actually, thresholds exist in the CO detection and I conclude that photodissociation, density and cloud geometry have important consequences on the CO emission when AV < 2. Investigation of the relation between extinction and far--infrared emission in Polaris leads to a four times larger emissivity in cold areas than in hot areas. This result explains the low temperatures in this cloud and implies severe restrictions concerning the use of far--infrared fluxes as an extinction estimator.

  14. VSOP: the variable star one-shot project. I. Project presentation and first data release

    NASA Astrophysics Data System (ADS)

    Dall, T. H.; Foellmi, C.; Pritchard, J.; Lo Curto, G.; Allende Prieto, C.; Bruntt, H.; Amado, P. J.; Arentoft, T.; Baes, M.; Depagne, E.; Fernandez, M.; Ivanov, V.; Koesterke, L.; Monaco, L.; O'Brien, K.; Sarro, L. M.; Saviane, I.; Scharwächter, J.; Schmidtobreick, L.; Schütz, O.; Seifahrt, A.; Selman, F.; Stefanon, M.; Sterzik, M.

    2007-08-01

    Context: About 500 new variable stars enter the General Catalogue of Variable Stars (GCVS) every year. Most of them however lack spectroscopic observations, which remains critical for a correct assignement of the variability type and for the understanding of the object. Aims: The Variable Star One-shot Project (VSOP) is aimed at (1) providing the variability type and spectral type of all unstudied variable stars, (2) process, publish, and make the data available as automatically as possible, and (3) generate serendipitous discoveries. This first paper describes the project itself, the acquisition of the data, the dataflow, the spectroscopic analysis and the on-line availability of the fully calibrated and reduced data. We also present the results on the 221 stars observed during the first semester of the project. Methods: We used the high-resolution echelle spectrographs HARPS and FEROS in the ESO La Silla Observatory (Chile) to survey known variable stars. Once reduced by the dedicated pipelines, the radial velocities are determined from cross correlation with synthetic template spectra, and the spectral types are determined by an automatic minimum distance matching to synthetic spectra, with traditional manual spectral typing cross-checks. The variability types are determined by manually evaluating the available light curves and the spectroscopy. In the future, a new automatic classifier, currently being developed by members of the VSOP team, based on these spectroscopic data and on the photometric classifier developed for the COROT and Gaia space missions, will be used. Results: We confirm or revise spectral types of 221 variable stars from the GCVS. We identify 26 previously unknown multiple systems, among them several visual binaries with spectroscopic binary individual components. We present new individual results for the multiple systems V349 Vel and BC Gru, for the composite spectrum star V4385 Sgr, for the T Tauri star V1045 Sco, and for DM Boo which we re

  15. Spectrophotometry of peculiar B and A stars. XIV - 56 Arietis, 41 Tauri, 25 Sextantis, HD 170973, HD 205087, and HD 215441

    NASA Astrophysics Data System (ADS)

    Adelman, S. J.

    1983-03-01

    Optical region spectrophotometry of six relatively hot Ap stars is presented. Additional scans of 56 Ari extend the results of an earlier paper in this series. The data for 41 Tau, 25 Sex, HD 170973, and HD 215441 are studied as a function of phase. The observations of HD 205087 are inconclusive about its variability although they show spectrophotometrically that it is a definite Ap star. The observations of HD 215441 show a prominent λ5200 broad, continuum feature with an unusual shape. However, when the data are corrected for interstellar reddening, the energy distribution resembles those of other silicon stars. The λ5200 feature is found to be variable in phase with the U-B and B-V colors and with the magnetic field strength. This feature is strongest when the Balmer jump is smallest, the Paschen continuum the bluest according to B-V, and the surface magnetic field strength the largest.

  16. Discovery of a cool expanding shell at -1200 kilometers per second around V471 Tauri

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Bruhweiler, Fred C.; Mullan, Dermott; Carpenter, Ken

    1989-01-01

    High-resolution IUE spectra of V471 Tauri reveal the presence of a very-high-velocity cool expanding gas in the line of sight to the binary system with an expansion velocity of -1200 km/s. The summed strength of the coadded absorption is 125 mA + or - 25 mA, with FWHM = 30 km/s. It is suggested that the observed absorption may be related to the narrow coadded absorption at -590 km/s noted by Bruhweiler and Sion (1966). The large expansion velocity suggests a possible association with an ancient nova outburst.

  17. Evidence for a cool wind from the K2 dwarf in the detached binary V471 Tauri

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Sion, E. M.; Bruhweiler, F. C.; Carpenter, K. G.

    1989-01-01

    Evidence for mass loss from the K2 dwarf in V471 Tauri is found in the form of discrete absorption features in lines of various elements (Mg, Fe, Cr, Mn) and ionization stages (Mg I, Mg II, Fe I, Fe II). Resonant Mg II absorption indicates a mass loss rate of at least 10 to the -11th solar masses per year. The wind appears to be cool (no more than a few times 10,000 K).

  18. THE GALACTIC CENTER CLOUD G2-A YOUNG LOW-MASS STAR WITH A STELLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoville, N.; Burkert, A.

    2013-05-10

    We explore the possibility that the G2 gas cloud falling in toward SgrA* is the mass-loss envelope of a young T Tauri star. As the star plunges to smaller radius at 1000-6000 km s{sup -1}, a strong bow shock forms where the stellar wind is impacted by the hot X-ray emitting gas in the vicinity of SgrA*. For a stellar mass-loss rate of 4 Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1} and wind velocity 100 km s{sup -1}, the bow shock will have an emission measure (EM = n {sup 2} vol) at a distance {approx}10{sup 16} cm, similar tomore » that inferred from the IR emission lines. The ionization of the dense bow shock gas is potentially provided by collisional ionization at the shock front and cooling radiation (X-ray and UV) from the post shock gas. The former would predict a constant line flux as a function of distance from SgrA*, while the latter will have increasing emission at lesser distances. In this model, the star and its mass-loss wind should survive pericenter passage since the wind is likely launched at 0.2 AU and this is much less than the Roche radius at pericenter ({approx}3 AU for a stellar mass of 2 M{sub Sun }). In this model, the emission cloud will probably survive pericenter passage, discriminating this scenario from others.« less

  19. LAMP: the long-term accretion monitoring programme of T Tauri stars in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Costigan, G.; Scholz, A.; Stelzer, B.; Ray, T.; Vink, J. S.; Mohanty, S.

    2012-12-01

    We present the results of a variability study of accreting young stellar objects in the Chameleon I star-forming region, based on ˜300 high-resolution optical spectra from the Fibre Large Area Multi-Element Spectrograph (FLAMES) at the European Southern Observatory (ESO) Very Large Telescope (VLT). 25 objects with spectral types from G2-M5.75 were observed 12 times over the course of 15 months. Using the emission lines Hα (6562.81 Å) and Ca II (8662.1 Å) as accretion indicators, we found 10 accreting and 15 non-accreting objects. We derived accretion rates for all accretors in the sample using the Hα equivalent width, Hα 10 per cent width and Ca II (8662.1 Å) equivalent width. We found that the Hα equivalent widths of accretors varied by ˜7-100 Å over the 15-month period. This corresponds to a mean amplitude of variations in the derived accretion rate of ˜0.37 dex. The amplitudes of variations in the derived accretion rate from Ca II equivalent width were ˜0.83 dex and those from Hα 10 per cent width were ˜1.11 dex. Based on the large amplitudes of variations in accretion rate derived from the Hα 10 per cent width with respect to the other diagnostics, we do not consider it to be a reliable accretion rate estimator. Assuming the variations in Hα and Ca II equivalent width accretion rates to be closer to the true value, these suggest that the spread that was found around the accretion rate to stellar-mass relation is not due to the variability of individual objects on time-scales of weeks to ˜1 year. From these variations, we can also infer that the accretion rates are stable within <0.37 dex over time-scales of less than 15 months. A major portion of the accretion variability was found to occur over periods shorter than the shortest time-scales in our observations, 8-25 days, which are comparable with the rotation periods of these young stellar objects. This could be an indication that what we are probing is spatial structure in the accretion flows

  20. Observational studies of the clearing phase in proto-planetary disk systems

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1994-01-01

    A summary of the work completed during the first year of a 5 year program to observationally study the clearing phase of proto-planetary disks is presented. Analysis of archival and current IUE data, together with supporting optical observations has resulted in the identification of 6 new proto-planetary disk systems associated with Herbig Ae/Be stars, the evolutionary precursors of the beta Pictoris system. These systems exhibit large amplitude light and optical color variations which enable us to identify additional systems which are viewed through their circumstellar disks including a number of classical T Tauri stars. On-going IUE observations of Herbig Ae/Be and T Tauri stars with this orientation have enabled us to detect bipolar emission plausibly associated with disk winds. Preliminary circumstellar extinction studies were completed for one star, UX Ori. Intercomparison of the available sample of edge-on systems, with stars ranging from 1-6 solar masses, suggests that the signatures of accreting gas, disk winds, and bipolar flows and the prominence of a dust-scattered light contribution to the integrated light of the system decreases with decreasing IR excess.

  1. Elemental abundance analyses with DAO spectrograms. VII - The late normal B stars Pi Ceti, 134 Tauri, 21 Aquilae, and Nu Capricorni and the use of RETICON spectra

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.

    1991-09-01

    This paper presents elemental abundance analyses of sharp-lined normal late B stars. These stars exhibit mostly near-solar abundances, but each star also shows a few abundances which are a factor of 2 less than solar. The coadded photographic spectrograms are supplemented with Reticon data. A comparison of 261 equivalent widths on 2.4 A/mm spectra of sharp-lined B and A stars shows that the Reticon equivalent widths are about 95 percent of the coadded equivalent mean. The H-gamma profiles of the coadded and Reticon spectra for eight sharp-lined stars show generally good agreement. The generally high quality of the coadded data produced from 10 or more spectrograms is confirmed using the REDUCE graphics-oriented computed reduction code. For five stars, metal lines which fall in the gap between the U and V plates are analyzed using Reticon data.

  2. Elemental abundance analyses with DAO spectrograms. VII - The late normal B stars Pi Ceti, 134 Tauri, 21 Aquilae, and Nu Capricorni and the use of Reticon spectra

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.

    1991-01-01

    This paper presents elemental abundance analyses of sharp-lined normal late B stars. These stars exhibit mostly near-solar abundances, but each star also shows a few abundances which are a factor of 2 less than solar. The coadded photographic spectrograms are supplemented with Reticon data. A comparison of 261 equivalent widths on 2.4 A/mm spectra of sharp-lined B and A stars shows that the Reticon equivalent widths are about 95 percent of the coadded equivalent mean. The H-gamma profiles of the coadded and Reticon spectra for eight sharp-lined stars show generally good agreement. The generally high quality of the coadded data produced from 10 or more spectrograms is confirmed using the REDUCE graphics-oriented computed reduction code. For five stars, metal lines which fall in the gap between the U and V plates are analyzed using Reticon data.

  3. Interferometric view of the circumstellar envelopes of northern FU Orionis-type stars

    NASA Astrophysics Data System (ADS)

    Fehér, O.; Kóspál, Á.; Ábrahám, P.; Hogerheijde, M. R.; Brinch, C.

    2017-11-01

    the observed envelopes enables us to set up an evolutionary sequence between the objects. We find their evolutionary state to range from early, embedded Class I stage to late, Class II-type objects with very-low-mass circumstellar material. We also find evidence of larger-scale circumstellar material influencing the detected spectral features in the environment of our targets. These results reinforce the idea of FU Orionis-type stars as representatives of a transitory stage between embedded Class I young stellar objects and classical T Tauri stars.

  4. Student Measurements of STFA 10AB (Theta Tauri)

    NASA Astrophysics Data System (ADS)

    Gillette, Sean; Estrada, Chris; Estrada, Reed; Aguilera, Sophia; Chavez, Valerie; Givens, Jalynn; Lindorfer, Sarah; Michels, Kaylie; Mobley, Makenzie; Reder, Gabriel; Renteria, Kayla; Shattles, Jenna; Wilkin, Aiden; Woodbury, Maisy; Rhoades, Breauna; Rhoades, Mark

    2017-04-01

    Eighth grade students at Vanguard Preparatory School measured the double star STFA 10AB using a 22-inch Newtonian Alt/Az telescope and a Celestron Micro Guide eyepiece. Bellatrix was used as the calibration star. The calculated means of multiple observations of STFA 10AB resulted in a separation of 45.18,” a scale constant of 7.88 arcseconds per division, and position angle of 257.9°. These measurements were compared to the most recent values in the Washington Double Star Catalog.

  5. CAN WE PREDICT THE GLOBAL MAGNETIC TOPOLOGY OF A PRE-MAIN-SEQUENCE STAR FROM ITS POSITION IN THE HERTZSPRUNG-RUSSELL DIAGRAM?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, S. G.; Hillenbrand, L. A.; Donati, J.-F.

    2012-08-20

    Zeeman-Doppler imaging studies have shown that the magnetic fields of T Tauri stars can be significantly more complex than a simple dipole and can vary markedly between sources. We collect and summarize the magnetic field topology information obtained to date and present Hertzsprung-Russell (H-R) diagrams for the stars in the sample. Intriguingly, the large-scale field topology of a given pre-main-sequence (PMS) star is strongly dependent upon the stellar internal structure, with the strength of the dipole component of its multipolar magnetic field decaying rapidly with the development of a radiative core. Using the observational data as a basis, we arguemore » that the general characteristics of the global magnetic field of a PMS star can be determined from its position in the H-R diagram. Moving from hotter and more luminous to cooler and less luminous stars across the PMS of the H-R diagram, we present evidence for four distinct magnetic topology regimes. Stars with large radiative cores, empirically estimated to be those with a core mass in excess of {approx}40% of the stellar mass, host highly complex and dominantly non-axisymmetric magnetic fields, while those with smaller radiative cores host axisymmetric fields with field modes of higher order than the dipole dominant (typically, but not always, the octupole). Fully convective stars above {approx}> 0.5 M{sub Sun} appear to host dominantly axisymmetric fields with strong (kilo-Gauss) dipole components. Based on similarities between the magnetic properties of PMS stars and main-sequence M-dwarfs with similar internal structures, we speculate that a bistable dynamo process operates for lower mass stars ({approx}< 0.5 M{sub Sun} at an age of a few Myr) and that they will be found to host a variety of magnetic field topologies. If the magnetic topology trends across the H-R diagram are confirmed, they may provide a new method of constraining PMS stellar evolution models.« less

  6. The circumstellar environments of dusty main sequence stars

    NASA Astrophysics Data System (ADS)

    Gebrim, Antonio S. Hales

    -light images of dust-disks around dust excess stars. This technique allows one to automatically suppress the unpolarised light from the central star, increasing the dynamic range for detecting polarised light scattered by the dust present in circumstellar discs. The detections of extended disks around the classical T Tauri star TW Hya and the Herbig Ac star HD 169142 are reported, as well as the strong but spatially unresolved polarization signals measured toward two other Herbig Ae stars. Monte Carlo scattering simulations are used to fit the J-, H- and K-band polarization images of the disk around TW Hya, providing new constraints on the geometry of TW Hya's disk. The third part of this thesis is dedicated to studying the gas content and dynamics around dust-excess stars. The evolution of circumstellar gas is thought to be strongly linked to the formation of gaseous giant planets similar to Jupiter, Saturn and most currently known extra-solar planets. However, the timescales over which circumstellar gas discs dissipate remains poorly constrained, mainly due to the observational difficulties associated with detecting small amounts of circumstellar gas. An analysis of high-resolution (R 50 000) optical spectroscopic data of a sample of 'Vega-like' candidates from the catalogue of Mannings & Barlow (1998) is presented. Analysis of the stellar spectra allows one to search for narrow absorption features due to circumstellar gas and possible Falling Evaporating Bodies, similar to the ones seen in the (3 Pictoris system. None of the stars from this sample show emission line activity in either Ha, Ca II or Na I, indicating that accretion of material onto the stars has ceased and suggesting they are true main sequence Vega-like stars. Four stars were found to exhibit narrow absorption features near the cores of the photospheric Ca II and Na I D lines, with HD 110058 being the strongest candidate to host a (3 Pictoris-like gas disk. If confirmed, HD 110058 would represent the Vega

  7. Secondaries of eclipsing binaries. IV - The triple system Lambda Tauri

    NASA Technical Reports Server (NTRS)

    Fekel, F. C., Jr.; Tomkin, J.

    1982-01-01

    High signal-to-noise ratio Reticon observations of Lambda Tauri have been obtained along with high-quality orbital elements for both the primary and secondary of the eclipsing system. The velocity curve of the secondary is determined for the first time. The findings include: K(1) = 56.9 + or - 0.6 km/s, K(2 = 215.6 + or - 0.7 km/s, m(1) = 7.18 + or - 0.09 solar masses, and m(2) = 1.89 + or - 0.04 solar masses. The 33-day periodicity in the residuals is confirmed and is present in the secondary velocities as well as those of the primary, and can unambiguously be ascribed to orbital motion about a third body. The K and f(m) for the 33-day orbit are 10.1 + or - 0.7 km/s and 0.0034 + or - 0.0008 solar masses. The photometry shows that the orbits are coplanar to within seven degrees. The mass of the third body is 0.7 + or - 0.2 solar masses; it is most probably a K dwarf.

  8. A search for passive protoplanetary discs in the Taurus-Auriga star-forming region

    NASA Astrophysics Data System (ADS)

    Duchêne, Gaspard; Becker, Adam; Yang, Yizhe; Bouy, Hervé; De Rosa, Robert J.; Patience, Jennifer; Girard, Julien H.

    2017-08-01

    We conducted a 12-month monitoring campaign of 33 T Tauri stars (TTS) in Taurus. Our goal was to monitor objects that possess a disc but have a weak H α line, a common accretion tracer for young stars, in order to determine whether they host a passive circumstellar disc. We used medium-resolution optical spectroscopy to assess the accretion status of the objects and to measure the H α line. We found no convincing examples of passive discs: only transition disc and debris disc systems in our sample are non-accreting. Among accretors, we found no example of flickering accretion, leading to an upper limit of 2.2 per cent on the duty cycle of accretion gaps, assuming that all accreting TTS experience such events. When combining literature results with our observations, we found that the reliability of traditional H α-based criteria to test for accretion is high but imperfect, particularly for low-mass TTS. We found a significant correlation between stellar mass and the full width at 10 per cent of the peak (W10) of the H α line that does not seem to be related to variations in free-fall velocity. Finally, our data revealed a positive correlation between the H α equivalent width and its W10, indicative of a systematic modulation in the line profile whereby the high-velocity wings of the line are proportionally more enhanced than its core when the line luminosity increases. We argue that this supports the hypothesis that the mass accretion rate on the central star is correlated with the H α W10 through a common physical mechanism.

  9. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauffer, John; Rebull, Luisa; Carey, Sean

    2016-03-15

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strengthmore » of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.« less

  10. Emission-line studies of young stars. 4: The optical forbidden lines

    NASA Astrophysics Data System (ADS)

    Hamann, Fred

    1994-08-01

    Optical forbidden line strengths and profiles are discussed for a sample of 30 T Tauri stars and 12 Herbig Ae-Be stars. Transitions of (C I), (N II), (O I), (O II), (S II), (Ca II), (Cr II), (Fe II), and (Ni II) are detected. Profile variability occurred in DG Tau and probably other sources. The ensemble profiles can be divided into four generic components that may represent distinct emitting regions; (1) narrow rest-velocity lines, (2) 'low'-velocity lines (peaking at less than or approximately +/- 50 km s-1), (3) 'high'-velocity (usually greater than or approximately +/- 100 km s-1) blueshifted peaks or wings, and (4) high-velocity redshifted peaks. Among T Tauri stars, the rest-velocity lines appear most often in sources with weak and narrow permitted lines, such as the Ca II triplet. The low- and high-velocity blueshifted components usually appear together in sources with strong and broad Ca II triplet lines. If the velocity-shifted lines form in jets, the smallest (full) opening angles required by the profiles are less than or approximately 20 deg for the narrow, blueshifted (Ca II) lines of DG Tau and HL Tau. Other lines in DG Tau are much broader, implying larger opening angles or greater velocity dispersions. The variability in DG Tau also implies significant changes in the collimation or velocity coherence on timescales of a few years. RW Aur and AS 353A have blue- and redshifted line peaks that could form in oppositely directed jets. The strong (S II) lambda 6716 and lambda 6731 lines in RW Aur are exclusively redshifted and require opening angles less than or approximately 60 deg. Measurements of different profiles in the same spectrum show that the physical conditions change with the line-of-sight velocities. The most persistent trends are for more (N II) and (O II) and less (O I) lambda 5577 flux at high velocities. Constraints on the physical conditions are derived by modeling the emission lines via multilevel ions in 'coronal ionization equilibrium

  11. Emission-line studies of young stars. 4: The optical forbidden lines

    NASA Technical Reports Server (NTRS)

    Hamann, Fred

    1994-01-01

    Optical forbidden line strengths and profiles are discussed for a sample of 30 T Tauri stars and 12 Herbig Ae-Be stars. Transitions of (C I), (N II), (O I), (O II), (S II), (Ca II), (Cr II), (Fe II), and (Ni II) are detected. Profile variability occurred in DG Tau and probably other sources. The ensemble profiles can be divided into four generic components that may represent distinct emitting regions; (1) narrow rest-velocity lines, (2) 'low'-velocity lines (peaking at less than or approximately +/- 50 km s(exp -1)), (3) 'high'-velocity (usually greater than or approximately +/- 100 km s(exp -1)) blueshifted peaks or wings, and (4) high-velocity redshifted peaks. Among T Tauri stars, the rest-velocity lines appear most often in sources with weak and narrow permitted lines, such as the Ca II triplet. The low- and high-velocity blueshifted components usually appear together in sources with strong and broad Ca II triplet lines. If the velocity-shifted lines form in jets, the smallest (full) opening angles required by the profiles are less than or approximately 20 deg for the narrow, blueshifted (Ca II) lines of DG Tau and HL Tau. Other lines in DG Tau are much broader, implying larger opening angles or greater velocity dispersions. The variability in DG Tau also implies significant changes in the collimation or velocity coherence on timescales of a few years. RW Aur and AS 353A have blue- and redshifted line peaks that could form in oppositely directed jets. The strong (S II) lambda 6716 and lambda 6731 lines in RW Aur are exclusively redshifted and require opening angles less than or approximately 60 deg. Measurements of different profiles in the same spectrum show that the physical conditions change with the line-of-sight velocities. The most persistent trends are for more (N II) and (O II) and less (O I) lambda 5577 flux at high velocities. Constraints on the physical conditions are derived by modeling the emission lines via multilevel ions in 'coronal ionization

  12. CO AND H{sub 2} ABSORPTION IN THE AA TAURI CIRCUMSTELLAR DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Burgh, Eric B.; Schindhelm, Eric

    2012-01-01

    The direct study of molecular gas in inner protoplanetary disks is complicated by uncertainties in the spatial distribution of the gas, the time variability of the source, and the comparison of observations across a wide range of wavelengths. Some of these challenges can be mitigated with far-ultraviolet spectroscopy. Using new observations obtained with the Hubble Space Telescope Cosmic Origins Spectrograph, we measure column densities and rovibrational temperatures for CO and H{sub 2} observed on the line of sight through the AA Tauri circumstellar disk. CO A - X absorption bands are observed against the far-UV continuum. The CO absorption ismore » characterized by log{sub 10}(N({sup 12}CO)) = 17.5 {+-} 0.5 cm{sup -2} and T{sub rot}(CO) = 500{sup +500}{sub -200} K, although this rotational temperature may underestimate the local kinetic temperature of the CO-bearing gas. We also detect {sup 13}CO in absorption with an isotopic ratio of {approx}20. We do not observe H{sub 2} absorption against the continuum; however, hot H{sub 2} (v > 0) is detected in absorption against the Ly{alpha} emission line. We measure the column densities in eight individual rovibrational states, determining a total log{sub 10}(N(H{sub 2})) = 17.9{sup +0.6}{sub -0.3} cm{sup -2} with a thermal temperature of T(H{sub 2}) = 2500{sup +800}{sub -700} K. The high temperature of the molecules, the relatively small H{sub 2} column density, and the high inclination of the AA Tauri disk suggest that the absorbing gas resides in an inner disk atmosphere. If the H{sub 2} and CO are cospatial within a molecular layer {approx}0.6 AU thick, this region is characterized by {approx} 10{sup 5} cm{sup -3} with an observed (CO/H{sub 2}) ratio of {approx}0.4. We also find evidence for a departure from a purely thermal H{sub 2} distribution, suggesting that excitation by continuum photons and H{sub 2} formation may be altering the level populations in the molecular gas.« less

  13. Observational aspects of Herbig Ae/Be stars and of candidate young A/B stars

    NASA Astrophysics Data System (ADS)

    de Winter, Dolf

    1996-06-01

    observed in the LMC. In recent publications, however, HD 45677 was described as a possible Herbig Be star. In Chapter B4 new observational evidences together with the analyses of about 100 years of known brightness measurements of this star indicate that its PMS nature must be questioned. Another object for which the PMS status is doubtful is HD 147196. A Be star located in the dark cloud region ρ Ophiuchus. In Chapter B5 we show that the emission line nature of this object is variable, which indicate the difficulties to select homogeneous samples on the bases of spectral observations. Finally in Chapter B6 we discuss the possible youth of HR 6000, an object not showing any observable peculiarities at first sight. But being the close neighbour of HR 5999, a comparable youth is likely. Indeed, a weak near-IR excess, photometric variability and being a strong X-ray source, suggest the presence of a T Tauri companion. In Parts A and B we have encountered various difficulties to make a clear and easy distinction between PMS stars and more evolved objects. In the case of young open clusters such problems are less severe. For this reason in Part C a study of the well known very young open cluster NGC 6611 is presented. The results are reported in two chapters: in Chapter C1 the stars in the cluster field are studied, from which a HRD can be constructed, giving necessary information about some cluster properties such as distance and age; we use these findings in Chapter C1 to study in detail objects which were previously recognised as PMS candidates, in order to discover true HAeBe objects. Although we find a large number of early type stars being in the PMS phase, we find only scarcely objects with clear HAeBe characteristics. It is therefore discussed that the clearing mechanism on the circumstellar material must work on a very short timescale and that not all of them go through a HAeBe-phase. This conclusion is discussed with an eye to the recent finding af EGGs in the field

  14. Optical and Radio Observations of the T Tauri Binary KH 15D (V582 Mon): Stellar Properties, Disk Mass Limit, and Discovery of a CO Outflow

    NASA Astrophysics Data System (ADS)

    Aronow, Rachel A.; Herbst, William; Hughes, A. Meredith; Wilner, David J.; Winn, Joshua N.

    2018-01-01

    We present VRIJHK photometry of the KH 15D T Tauri binary system for the 2015/2016 and 2016/2017 observing seasons. For the first time in the modern (CCD) era, we are seeing Star B fully emerge from behind the trailing edge of the precessing circumbinary ring during each apastron passage. We are, therefore, able to measure its luminosity and color. Decades of photometry on the system now allow us to infer the effective temperature, radius, mass, and age of each binary component. We find our values to be in good agreement with previous studies, including archival photographic photometry from the era when both stars were fully visible, and they set the stage for a full model of the system that can be constructed once radial velocity measurements are available. We also present the first high-sensitivity radio observations of the system, taken with the Atacama Large Millimeter/submillimeter Array and the Submillimeter Array. The respective 2.0 and 0.88 mm observations provide an upper limit on the circumbinary (gas and dust) disk mass of 1.7 M Jup and reveal an extended CO outflow, which overlaps with the position, systemic velocity, and orientation of the KH 15D system and is certainly associated with it. The low velocity, tight collimation, and extended nature of the emission suggest that the outflow is inclined nearly orthogonal to the line of sight, implying it is also orthogonal to the circumbinary ring. The position angle of the radio outflow also agrees precisely with the direction of polarization of the optical emission during the faint phase. A small offset between the optical image of the binary and the central line of the CO outflow remains a puzzle and possible clue to the jet launching mechanism.

  15. From the Cover: Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features

    NASA Astrophysics Data System (ADS)

    Derelle, Evelyne; Ferraz, Conchita; Rombauts, Stephane; Rouzé, Pierre; Worden, Alexandra Z.; Robbens, Steven; Partensky, Frédéric; Degroeve, Sven; Echeynié, Sophie; Cooke, Richard; Saeys, Yvan; Wuyts, Jan; Jabbari, Kamel; Bowler, Chris; Panaud, Olivier; Piégu, Benoît; Ball, Steven G.; Ral, Jean-Philippe; Bouget, François-Yves; Piganeau, Gwenael; de Baets, Bernard; Picard, André; Delseny, Michel; Demaille, Jacques; van de Peer, Yves; Moreau, Hervé

    2006-08-01

    The green lineage is reportedly 1,500 million years old, evolving shortly after the endosymbiosis event that gave rise to early photosynthetic eukaryotes. In this study, we unveil the complete genome sequence of an ancient member of this lineage, the unicellular green alga Ostreococcus tauri (Prasinophyceae). This cosmopolitan marine primary producer is the world's smallest free-living eukaryote known to date. Features likely reflecting optimization of environmentally relevant pathways, including resource acquisition, unusual photosynthesis apparatus, and genes potentially involved in C4 photosynthesis, were observed, as was downsizing of many gene families. Overall, the 12.56-Mb nuclear genome has an extremely high gene density, in part because of extensive reduction of intergenic regions and other forms of compaction such as gene fusion. However, the genome is structurally complex. It exhibits previously unobserved levels of heterogeneity for a eukaryote. Two chromosomes differ structurally from the other eighteen. Both have a significantly biased G+C content, and, remarkably, they contain the majority of transposable elements. Many chromosome 2 genes also have unique codon usage and splicing, but phylogenetic analysis and composition do not support alien gene origin. In contrast, most chromosome 19 genes show no similarity to green lineage genes and a large number of them are specialized in cell surface processes. Taken together, the complete genome sequence, unusual features, and downsized gene families, make O. tauri an ideal model system for research on eukaryotic genome evolution, including chromosome specialization and green lineage ancestry. genome heterogeneity | genome sequence | green alga | Prasinophyceae | gene prediction

  16. A survey for variable young stars with small telescopes: First results from HOYS-CAPS

    NASA Astrophysics Data System (ADS)

    Froebrich, D.; Campbell-White, J.; Scholz, A.; Eislöffel, J.; Zegmott, T.; Billington, S. J.; Donohoe, J.; Makin, S. V.; Hibbert, R.; Newport, R. J.; Pickard, R.; Quinn, N.; Rodda, T.; Piehler, G.; Shelley, M.; Parkinson, S.; Wiersema, K.; Walton, I.

    2018-05-01

    Variability in Young Stellar Objects (YSOs) is one of their primary characteristics. Long-term, multi-filter, high-cadence monitoring of large YSO samples is the key to understand the partly unusual light-curves that many of these objects show. Here we introduce and present the first results of the HOYS-CAPScitizen science project which aims to perform such monitoring for nearby (d < 1 kpc) and young (age < 10 Myr) clusters and star forming regions, visible from the northern hemisphere, with small telescopes. We have identified and characterised 466 variable (413 confirmed young) stars in 8 young, nearby clusters. All sources vary by at least 0.2 mag in V, have been observed at least 15 times in V, R and I in the same night over a period of about 2 yrs and have a Stetson index of larger than 1. This is one of the largest samples of variable YSOs observed over such a time-span and cadence in multiple filters. About two thirds of our sample are classical T-Tauri stars, while the rest are objects with depleted or transition disks. Objects characterised as bursters show by far the highest variability. Dippers and objects whose variability is dominated by occultations from normal interstellar dust or dust with larger grains (or opaque material) have smaller amplitudes. We have established a hierarchical clustering algorithm based on the light-curve properties which allows the identification of the YSOs with the most unusual behaviour, and to group sources with similar properties. We discuss in detail the light-curves of the unusual objects V2492 Cyg, V350 Cep and 2MASS J21383981+5708470.

  17. FU Orionis Outbursts in the Triangulum Galaxy (M33)

    NASA Astrophysics Data System (ADS)

    Zawadzki, Nicole; Moe, Maxwell

    2018-01-01

    FU Orionis systems (FUors) are young T-Tauri stars that brighten upwards of 6 magnitudes due to an instability in their disk. It is unclear whether all T-Tauri stars experience this period of disk instability to create FUor outbursts, or if a binary companion is required to trigger these instabilities. To date, there have been around 20 known FUors detected in the Milky Way. To better understand the occurrence rate of these instabilities more observations are needed. By using observations of M33 from the Canada-France-Hawaii telescope, SDSS, and an ongoing survey at the Bok 90” telescope, a 15+ year baseline can be established to identify FUor outbursts in M33. By measuring the occurrence rate of FUors in M33 from these observations, the question of whether a binary companion is required can be answered.

  18. New astrometry and photometry for the companion candidates of CT Cha

    NASA Astrophysics Data System (ADS)

    Schmidt, Tobias O. B.; Neuhäuser, Ralph; Mugrauer, Markus; Bedalov, Ana; Vogt, Nikolaus

    2009-02-01

    In our ongoing search for close and faint companions around T Tauri stars in the Chamaeleon star-forming region, we recently (Schmidt et al. 2008 b) presented direct observations and integral field spectroscopy of a new common proper motion companion to the young T-Tauri star and Chamaeleon member CT Cha and discussed its properties in comparison to other young, low-mass objects and to synthetic model spectra from different origins. We now obtained for the first time direct H-Band observations of the companion CT Cha b and of another faint companion candidate (cc2) approximately 1.9 arcsec northeast of CT Cha using the Adaptive Optics (AO) instrument Naos-Conica (NACO) at the Very Large Telescope (VLT) of the European Southern Observatory (ESO) in February 2008. From these data we can now exclude by 4.4 & 4.8 σ that CT Cha b is a non-moving background object and find cc2 to be most likely a background star of spectral type <=K4 with a proper motion of μα cos δ = -8.5+/-5.7 mas/yr and μδ = 12.0+/-5.6 mas/yr, not consistent with being a member of the Cha I star-forming region.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in amore » regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.« less

  20. Disk Masses around Solar-mass Stars are Underestimated by CO Observations

    NASA Astrophysics Data System (ADS)

    Yu, Mo; Evans, Neal J., II; Dodson-Robinson, Sarah E.; Willacy, Karen; Turner, Neal J.

    2017-05-01

    Gas in protostellar disks provides the raw material for giant planet formation and controls the dynamics of the planetesimal-building dust grains. Accurate gas mass measurements help map the observed properties of planet-forming disks onto the formation environments of known exoplanets. Rare isotopologues of carbon monoxide (CO) have been used as gas mass tracers for disks in the Lupus star-forming region, with an assumed interstellar CO/H2 abundance ratio. Unfortunately, observations of T-Tauri disks show that CO abundance is not interstellar, a finding reproduced by models that show CO abundance decreasing both with distance from the star and as a function of time. Here, we present radiative transfer simulations that assess the accuracy of CO-based disk mass measurements. We find that the combination of CO chemical depletion in the outer disk and optically thick emission from the inner disk leads observers to underestimate gas mass by more than an order of magnitude if they use the standard assumptions of interstellar CO/H2 ratio and optically thin emission. Furthermore, CO abundance changes on million-year timescales, introducing an age/mass degeneracy into observations. To reach a factor of a few accuracy for CO-based disk mass measurements, we suggest that observers and modelers adopt the following strategies: (1) select low-J transitions; (2) observe multiple CO isotopologues and use either intensity ratios or normalized line profiles to diagnose CO chemical depletion; and (3) use spatially resolved observations to measure the CO-abundance distribution.

  1. A GALEX-BASED SEARCH FOR THE SPARSE YOUNG STELLAR POPULATION IN THE TAURUS-AURIGAE STAR FORMING REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez de Castro, Ana I.; Lopez-Santiago, Javier; López-Martínez, Fatima

    2015-02-01

    In this work, we identify 63 bona fide new candidates to T Tauri stars (TTSs) in the Taurus-Auriga region, using its ultraviolet excess as our baseline. The initial data set was defined from the GALEX all sky survey (AIS). The GALEX satellite obtained images in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands where TTSs show a prominent excess compared with main-sequence or giants stars. GALEX AIS surveyed the Taurus-Auriga molecular complex, as well as a fraction of the California Nebula and the Perseus complex; bright sources and dark clouds were avoided. The properties of TTSs in the ultraviolet (GALEX), opticalmore » (UCAC4), and infrared (2MASS) have been defined using the TTSs observed with the International Ultraviolet Explorer reference sample. The candidates were identified by means of a mixed ultraviolet-optical-infrared excess set of colors; we found that the FUV-NUV versus J–K color-color diagram is ideally suited for this purpose. From an initial sample of 163,313 bona fide NUV sources, a final list of 63 new candidates to TTSs in the region was produced. The search procedure has been validated by its ability to detect all known TTSs in the area surveyed: 31 TTSs. Also, we show that the weak-lined TTSs are located in a well-defined stripe in the FUV-NUV versus J–K diagram. Moreover, in this work, we provide a list of TTSs photometric standards for future GALEX-based studies of the young stellar population in star forming regions.« less

  2. Examples of seismic modelling

    NASA Astrophysics Data System (ADS)

    Pamyatnykh, A. A.

    2008-12-01

    Findings of a few recent asteroseismic studies of the main sequence pulsating stars, as per- formed in Wojciech Dziembowski’s group in Warsaw and in Michel Breger’s group in Vienna, are briefly presented and discussed. The selected objects are three hybrid pulsators ν Eridani, 12 Lacertae and γ Pegasi, which show both β Cephei and SPB type modes, and the δ Scuti type star 44 Tauri.

  3. Rosat sky survey observations of the eclipsing binary V471 Tauri

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Schmitt, J. H. M. M.; Clemens, J. C.; Pye, J. P.; Denby, M.; Harris, A. W.; Pankiewicz, G. S.

    1992-01-01

    Rosat observations of the DA white dwarf + K2V binary system V471 Tauri, obtained during the sky survey phase of the mission, are presented. A lower amplitude shorter time-scale variability is seen in both the soft X-ray and EUV bands. This is associated with the white dwarf pulsations previously discovered by Exosat and also observed at optical wavelengths. The minimum in the EUV light curve is found to coincide with the maximum in the optical. This direct comparison of the phases of the optical and EUV pulses confirms the prediction made by an earlier indirect comparison and shows conclusively that the V471 Tau oscillations cannot arise from nonradial g-mode pulsations in the white dwarf. They are argued to be caused by rotation of the white dwarf with accretion-darkened magnetic poles. On the basis of the EUV and optical pulse shapes, the accretion geometry is studied, and it is estimated that the rate of accretion onto the white dwarf is about (4-11) x 10 exp -13 solar mass/yr.

  4. Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Natta, A.; Rosotti, G.; Benisty, M.; Ercolano, B.; Ricci, L.

    2014-08-01

    Context. Transitional disks are thought to be a late evolutionary stage of protoplanetary disks whose inner regions have been depleted of dust. The mechanism responsible for this depletion is still under debate. To constrain the various models it is mandatory to have a good understanding of the properties of the gas content in the inner part of the disk. Aims: Using X-Shooter broad band - UV to near-infrared - medium-resolution spectroscopy, we derive the stellar, accretion, and wind properties of a sample of 22 transitional disks. The analysis of these properties allows us to place strong constraints on the gas content in a region very close to the star (≲0.2 AU) that is not accessible with any other observational technique. Methods: We fitted the spectra with a self-consistent procedure to simultaneously derive spectral type, extinction, and accretion properties of the targets. From the continuum excess at near-infrared wavelength we distinguished whether our targets have dust free inner holes. By analyzing forbidden emission lines, we derived the wind properties of the targets. We then compared our findings with results for classical T Tauri stars. Results: The accretion rates and wind properties of 80% of the transitional disks in our sample, which is strongly biased toward stongly accreting objects, are comparable to those of classical T Tauri stars. Thus, there are (at least) some transitional disks with accretion properties compatible with those of classical T Tauri stars, irrespective of the size of the dust inner hole. Only in two cases are the mass accretion rates much lower, while the wind properties remain similar. We detected no strong trend of the mass accretion rates with the size of the dust-depleted cavity or with the presence of a dusty optically thick disk very close to the star. These results suggest that, close to the central star, there is a gas-rich inner disk with a density similar to that of classical T Tauri star disks. Conclusions: The

  5. Evolution of dynamo-generated magnetic fields in accretion disks around compact and young stars

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.

    1994-01-01

    Geometrically thin, optically thick, turbulent accretion disks are believed to surround many stars. Some of them are the compact components of close binaries, while the others are throught to be T Tauri stars. These accretion disks must be magnetized objects because the accreted matter, whether it comes from the companion star (binaries) or from a collapsing molecular cloud core (single young stars), carries an embedded magnetic field. In addition, most accretion disks are hot and turbulent, thus meeting the condition for the MHD turbulent dynamo to maintain and amplify any seed field magnetic field. In fact, for a disk's magnetic field to persist long enough in comparison with the disk viscous time it must be contemporaneously regenerated because the characteristic diffusion time of a magnetic field is typically much shorter than a disk's viscous time. This is true for most thin accretion disks. Consequently, studying magentic fields in thin disks is usually synonymous with studying magnetic dynamos, a fact that is not commonly recognized in the literature. Progress in studying the structure of many accretion disks was achieved mainly because most disks can be regarded as two-dimensional flows in which vertical and radial structures are largely decoupled. By analogy, in a thin disk, one may expect that vertical and radial structures of the magnetic field are decoupled because the magnetic field diffuses more rapidly to the vertical boundary of the disk than along the radius. Thus, an asymptotic method, called an adiabatic approximation, can be applied to accretion disk dynamo. We can represent the solution to the dynamo equation in the form B = Q(r)b(r,z), where Q(r) describes the field distribution along the radius, while the field distribution across the disk is included in the vector function b, which parametrically depends on r and is normalized by the condition max (b(z)) = 1. The field distribution across the disk is established rapidly, while the radial

  6. Parameterizing the dust around Herbig Ae/Be stars: Multiwavelength imaging radiative transfer modeling, and near-infrared instrumentation

    NASA Astrophysics Data System (ADS)

    Doering, Ryan Lee

    Herbig Ae/Be stars are considered the intermediate-mass analogs of the low-mass pre-main sequence T Tauri stars. Observations reveal that they are surrounded by dusty matter that may provide the solid-state material for building planets. Determining the dust parameters provides constraints for planet formation theory, and yields information about the matter around intermediate-mass stars as they approach the main sequence. In this dissertation, I present the results of a multiwavelength imaging and radiative transfer modeling study of Herbig Ae/Be stars, and a near-infrared instrumentation project, with the aim of parameterizing the dust in these systems. The Hubble Space Telescope was used to search for optical light scattered by dust in a sample of young stars. This survey provided the first scattered-light image of the circumstellar environment around the Herbig Ae/Be star HD 97048. Structure is observed in the dust distribution similar to that seen in other Herbig Ae/Be systems. A ground-based near-infrared imaging study of Herbig Ae/ Be candidates was also carried out. Photometry was collected for spectral energy distribution construction, and binary candidates were resolved. A mid- infrared image of the low-mass debris system, AU Microscopii, is presented, being relevant to the study of Herbig Ae/Be stars. Detailed dust modeling of HD 97048 and HD 100546 was carried out with a two- component geometry consisting of a flared disk and an extended envelope. The models achieve a reasonable global fit to the spectral energy distributions, and produce images with the desired geometry. The disk midplane densities are found to go as r -0.5 and r -1.8 , giving disk dust masses of 3.0 × 10^-4 and 5.9 × 10 ^5 [Special characters omitted.] for HD 97048 and HD 100546, respectively. A gas-to-dust mass ratio lower limit of 3.2 was calculated for HD 97048. In order to advance the imaging capabilities available for observations of Herbig Ae/Be stars, I have participated in

  7. An XMM-Newton Observation of the Lagoon Nebula and the Very Young Open Cluster NGC 6530

    NASA Technical Reports Server (NTRS)

    Rauw, G.; Naze, Y.; Gosset, E.; Stevens, I. R.; Blomme, R.; Corcoran, M. F.; Pittard, J. M.; Runacres, M. C.

    2002-01-01

    We report the results of an XMM-Newton observation of the Lagoon Nebula (M 8). Our EPIC images of this region reveal a cluster of point sources, most of which have optical counterparts inside the very young open cluster NGC 6530. The bulk of these X-ray sources are probably associated with low and intermediate mass pre-main sequence stars. One of the sources experiences a flare-like increase of its X-ray flux making it the second brightest source in M 8 after the O4 star 9 Sgr. The X-ray spectra of most of the brightest sources can be fitted with thermal plasma models with temperatures of kT approximately a few keV. Only a few of the X-ray selected PMS candidates are known to display H(alpha) emission and were previously classified as classical T Tauri stars. This suggests that most of the X-ray emitting PMS stars in NGC 6530 are weak line T Tauri stars. In addition to 9 Sgr, our EPIC field of view contains also a few early-type stars. The X-ray emission from HD 164816 is found to be typical for an O9.5III-IV star. At least one of the known Herbig Be stars in NGC 6530 (LkH(alpha) 115) exhibits a relatively strong X-ray emission, while most of the main sequence stars of spectral type B1 and later are not detected. We also detect (probably) diffuse X-ray emission from the Hourglass Region that might reveal a hot bubble blown by the stellar wind of Herschel 36, the ionizing star of the Hourglass Region.

  8. Origin of the wide-angle hot H2 in DG Tauri. New insight from SINFONI spectro-imaging

    NASA Astrophysics Data System (ADS)

    Agra-Amboage, V.; Cabrit, S.; Dougados, C.; Kristensen, L. E.; Ibgui, L.; Reunanen, J.

    2014-04-01

    Context. The origin of protostellar jets remains a major open question in star formation. Magnetohydrodynamical (MHD) disc winds are an important mechanism to consider, because they would have a significant impact on planet formation and migration. Aims: We wish to test the origins proposed for the extended hot H2 at 2000 K around the atomic jet from the T Tauri star DG Tau, in order to constrain the wide-angle wind structure and the possible presence of an MHD disc wind in this prototypical source. Methods: We present spectro-imaging observations of the DG Tau jet in H2 1-0 S(1) with 0.̋ 12 angular resolution, obtained with SINFONI/VLT. Thanks to spatial deconvolution by the point spread function and to careful correction for wavelength calibration and for uneven slit illumination (to within a few km s-1), we performed a thorough analysis and modeled the morphology and kinematics. We also compared our results with studies in [Fe II], [O I], and FUV-pumped H2. Absolute flux calibration yields the H2 column/volume density and emission surface, and narrows down possible shock conditions. Results: The limb-brightened H2 1-0 S(1) emission in the blue lobe is strikingly similar to FUV-pumped H2 imaged 6 yr later, confirming that they trace the same hot gas and setting an upper limit <12 km s-1 on any expansion proper motion. The wide-angle rims are at lower blueshifts (between -5 and 0 km s-1) than probed by narrow long-slit spectra. We confirm that they extend to larger angle and to lower speed the onion-like velocity structure observed in optical atomic lines. The latter is shown to be steady over ≥4 yr but undetected in [Fe II] by SINFONI, probably due to strong iron depletion. The rim thickness ≤14 AU rules out excitation by C-type shocks, and J-type shock speeds are constrained to ≃10 km s-1. Conclusions: We find that explaining the H2 1-0 S(1) wide-angle emission with a shocked layer requires either a recent outburst (15 yr) into a pre-existing ambient

  9. Protoplanetary Disk Masses from Stars to Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhanjoy; Greaves, Jane; Mortlock, Daniel; Pascucci, Ilaria; Scholz, Aleks; Thompson, Mark; Apai, Daniel; Lodato, Giuseppe; Looper, Dagny

    2013-08-01

    We present SCUBA-2 850 μm observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3σ limits correspond to a dust mass of 1.2 M ⊕ in Taurus and a mere 0.2 M ⊕ in the TWA (3-10× deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, ρ Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is ~100 AU for intermediate-mass stars, solar types, and VLMS, and ~20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M * from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and ρ Oph intermediate-mass and solar-type stars evince an opacity index of β ~ 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 μm fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A Bayesian analysis shows that the apparent disk-to-stellar mass ratio has a roughly constant

  10. Searching for Hα emitting sources around MWC 758. SPHERE/ZIMPOL high-contrast imaging

    NASA Astrophysics Data System (ADS)

    Huélamo, N.; Chauvin, G.; Schmid, H. M.; Quanz, S. P.; Whelan, E.; Lillo-Box, J.; Barrado, D.; Montesinos, B.; Alcalá, J. M.; Benisty, M.; Gregorio-Monsalvo, I. de; Mendigutía, I.; Bouy, H.; Merín, B.; de Boer, J.; Garufi, A.; Pantin, E.

    2018-05-01

    Context. MWC 758 is a young star surrounded by a transitional disk. The disk shows an inner cavity and spiral arms that could be caused by the presence of protoplanets. Recently, a protoplanet candidate has been detected around MWC 758 through high-resolution L'-band observations. The candidate is located inside the disk cavity at a separation of 111 mas from the central star, and at an average position angle of 165.5°. Aims: We aim at detecting accreting protoplanet candidates within the disk of MWC 758 through angular spectral differential imaging (ASDI) observations in the optical regime. In particular, we explore the emission at the position of the detected planet candidate. Methods: We have performed simultaneous adaptive optics observations in the Hα line and the adjacent continuum using SPHERE/ZIMPOL at the Very Large Telescope (VLT). Results: The data analysis does not reveal any Hα signal around the target. The derived contrast curve in the B_Ha filter allows us to derive a 5σ upper limit of 7.6 mag at 111 mas, the separation of the previously detected planet candidate. This contrast translates into a Hα line luminosity of LHα ≲ 5×10-5 L⊙ at 111 mas. Assuming that LHα scales with Lacc as in classical T Tauri stars (CTTSs) as a first approximation, we can estimate an accretion luminosity of Lacc < 3.7 × 10-4 L⊙ for the protoplanet candidate. For the predicted mass range of MWC 758b, 0.5-5 MJup, this implies accretion rates smaller than Ṁ < 3.4 × (10-8-10-9)M⊙ yr-1, for an average planet radius of 1.1 RJup. Therefore, our estimates are consistent with the predictions of accreting circumplanetary accretion models for Rin = 1RJup. The ZIMPOL line luminosity is consistent with the Hα upper limit predicted by these models for truncation radii ≲3.2 RJup. Conclusions: The non-detection of any Hα emitting source in the ZIMPOL images does not allow us to unveil the nature of the L' detected source. Either it is a protoplanet candidate or a

  11. Cygnids and Taurids - Two classes of infrared objects.

    NASA Technical Reports Server (NTRS)

    Strecker, D. W.; Ney, E. P.; Murdock, T. L.

    1973-01-01

    In a study of the anonymous objects from the IRC Survey, we have found that about 10 percent have large long wave excesses. These infrared stars seem to belong to two classes, one group like NML Cygni (Cygnids) and the other like NML Tauri (Taurids).

  12. The W Serpentis binaries with a few words on epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1982-01-01

    The Algol systems, U-Cephei and V356 Sagittarii, which should be included among the W Serpentis stars, characterized by strong ultraviolet emission lines are discussed. The spectra of the W-Ser stars are similar to those of the T-Tauri stars, and a similarity of physical conditions is indicated. A model of W-Serpentis, a B-star embedded in a thick disk, may be relevant to other exotic eclipsing systems, possibly even to obliquity of ecliptic Aurigae. The obliquity of ecliptic and the relationship to Aur, BM Orionis is reviewed; the system probably contains a pre main sequence star highly flattened by differential rotation.

  13. Studies of early-type variable stars. XIV. Spectroscopic orbit and absolute parameters of HU Tauri.

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Hill, G.; Hilditch, R. W.

    1995-09-01

    We present a new spectroscopic orbit for the Algol-type eclipsing binary system HU Tau (HD 29365, P=2.0563 days α(2000.0) = 04 38 15.80, δ= +20 41 05.3, V=5.87-6.8, B8V + G2). We find : m_1_ sin^3^i=4.17+/-0.09Msun_, m_2_ sin^3^i=1.07+/-0.025Msun_, (a_p_+a_s_)sin i=11.8 +/-0.1Rsun_, m_1_/m_2_=3.90+/-0.07. The spectroscopic orbit includes corrections for non-Keplerian effects derived from the solutions of the BV light curves of Ito (1988). We have been able to derive much improved absolute parameters for this system as follows: M_1_=4.43+/-0.09Msun_, M_2_=1.14+/-0.03Msun_, R _1_=2.57+/-0.03Rsun_, R _2_=4.21+/-0.03Rsun_, log(L_1_/Lsun_)= 2.09+/-0.15, log(L_2_/Lsun_)= 0.92+/-0.05. Comparison of HU Tau with non-conservative case B evolution models of De Greve (1993) suggests that the system evolved from an initial mass ratio <~0.5. However, the orbital period of HU Tau is more than 3 days shorter than any of the model systems, and the observed secondary luminosity of order 10 times less than a model star of the same mass during the slow mass transfer phase.

  14. The structure and spectrum of the accretion shock in the atmospheres of young stars

    NASA Astrophysics Data System (ADS)

    Dodin, Alexandr

    2018-04-01

    The structure and spectrum of the accretion shock have been self-consistently simulated for a wide range of parameters typical for Classical T Tauri Stars (CTTS). Radiative cooling of the shocked gas was calculated, taking into account the self-absorption and non-equilibrium (time-dependent) effects in the level populations. These effects modify the standard cooling curve for an optically thin plasma in coronal equilibrium, however the shape of high-temperature (T > 3 × 105 K) part of the curve remains unchanged. The applied methods allow us to smoothly describe the transition from the cooling flow to the hydrostatic stellar atmosphere. Thanks to this approach, it has been found that the narrow component of He II lines is formed predominantly in the irradiated stationary atmosphere (hotspot), i.e. at velocities of the settling gas <2 km s-1. The structure of the pre-shock region is calculated simultaneously with the heated atmosphere. The simulation shows that the pre-shock gas produces a noticeable emission component in He II lines and practically does not manifest itself in He I lines (λλ 5876, 10830 Å). The ultraviolet spectrum of the hotspot is distorted by the pre-shock gas, namely numerous red-shifted emission and absorption lines overlap each other forming a pseudo-continuum. The spectrum of the accretion region at high pre-shock densities ˜1014 cm-3 is fully formed in the in-falling gas and can be qualitatively described as a spectrum of a star with an effective temperature derived from the Stefan-Boltzmann law via the full energy flux.

  15. An UXor among FUors: Extinction-related Brightness Variations of the Young Eruptive Star V582 Aur

    NASA Astrophysics Data System (ADS)

    Ábrahám, P.; Kóspál, Á.; Kun, M.; Fehér, O.; Zsidi, G.; Acosta-Pulido, J. A.; Carnerero, M. I.; García-Álvarez, D.; Moór, A.; Cseh, B.; Hajdu, G.; Hanyecz, O.; Kelemen, J.; Kriskovics, L.; Marton, G.; Mező, Gy.; Molnár, L.; Ordasi, A.; Rodríguez-Coira, G.; Sárneczky, K.; Sódor, Á.; Szakáts, R.; Szegedi-Elek, E.; Szing, A.; Farkas-Takács, A.; Vida, K.; Vinkó, J.

    2018-01-01

    V582 Aur is an FU Ori-type young eruptive star in outburst since ∼1985. The eruption is currently in a relatively constant plateau phase, with photometric and spectroscopic variability superimposed. Here we will characterize the progenitor of the outbursting object, explore its environment, and analyze the temporal evolution of the eruption. We are particularly interested in the physical origin of the two deep photometric dips, one that occurred in 2012 and one that is ongoing since 2016. We collected archival photographic plates and carried out new optical, infrared, and millimeter-wave photometric and spectroscopic observations between 2010 and 2018, with a high sampling rate during the current minimum. Besides analyzing the color changes during fading, we compiled multiepoch spectral energy distributions and fitted them with a simple accretion disk model. Based on pre-outburst data and a millimeter continuum measurement, we suggest that the progenitor of the V582 Aur outburst is a low-mass T Tauri star with average properties. The mass of an unresolved circumstellar structure, probably a disk, is 0.04 M ⊙. The optical and near-infrared spectra demonstrate the presence of hydrogen and metallic lines, show the CO band head in absorption, and exhibit a variable Hα profile. The color variations strongly indicate that both the ∼1 yr long brightness dip in 2012 and the current minimum since 2016 are caused by increased extinction along the line of sight. According to our accretion disk models, the reddening changed from A V = 4.5 to 12.5 mag, while the accretion rate remained practically constant. Similarly to the models of the UXor phenomenon of intermediate- and low-mass young stars, orbiting disk structures could be responsible for the eclipses.

  16. A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. I. DETECTION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontoppidan, Klaus M.; Blake, Geoffrey A.; Meijerink, Rowin

    2010-09-01

    We present a Spitzer InfraRed Spectrometer search for 10-36 {mu}m molecular emission from a large sample of protoplanetary disks, including lines from H{sub 2}O, OH, C{sub 2}H{sub 2}, HCN, and CO{sub 2}. This paper describes the sample and data processing and derives the detection rate of mid-infrared molecular emission as a function of stellar mass. The sample covers a range of spectral type from early M to A, and is supplemented by archival spectra of disks around A and B stars. It is drawn from a variety of nearby star-forming regions, including Ophiuchus, Lupus, and Chamaeleon. Spectra showing strong emissionmore » lines are used to identify which lines are the best tracers of various physical and chemical conditions within the disks. In total, we identify 22 T Tauri stars with strong mid-infrared H{sub 2}O emission. Integrated water line luminosities, where water vapor is detected, range from 5 x 10{sup -4} to 9 x 10{sup -3} L{sub sun}, likely making water the dominant line coolant of inner disk surfaces in classical T Tauri stars. None of the five transitional disks in the sample show detectable gaseous molecular emission with Spitzer upper limits at the 1% level in terms of line-to-continuum ratios (apart from H{sub 2}), but the sample is too small to conclude whether this is a general property of transitional disks. We find a strong dependence on detection rate with spectral type; no disks around our sample of 25 A and B stars were found to exhibit water emission, down to 1%-2% line-to-continuum ratios, in the mid-infrared, while more than half of disks around late-type stars (M-G) show sufficiently intense water emission to be detected by Spitzer, with a detection rate approaching 2/3 for disks around K stars. Some Herbig Ae/Be stars show tentative H{sub 2}O/OH emission features beyond 20 {mu}m at the 1%-2% level, however, and one of them shows CO{sub 2} in emission. We argue that the observed differences between T Tauri disks and Herbig Ae/Be disks are

  17. IPHAS and the symbiotic stars . II. New discoveries and a sample of the most common mimics

    NASA Astrophysics Data System (ADS)

    Corradi, R. L. M.; Valentini, M.; Munari, U.; Drew, J. E.; Rodríguez-Flores, E. R.; Viironen, K.; Greimel, R.; Santander-García, M.; Sabin, L.; Mampaso, A.; Parker, Q.; DePew, K.; Sale, S. E.; Unruh, Y. C.; Vink, J. S.; Rodríguez-Gil, P.; Barlow, M. J.; Lennon, D. J.; Groot, P. J.; Giammanco, C.; Zijlstra, A. A.; Walton, N. A.

    2010-01-01

    Context. Knowledge of the total population of symbiotic stars in the Galaxy is important for understanding basic aspects of stellar evolution in interacting binaries and the relevance of this class of objects in the formation of supernovae of type Ia. Aims: In a previous paper, we presented the selection criteria needed to search for symbiotic stars in IPHAS, the INT Hα survey of the Northern Galactic plane. IPHAS gives us the opportunity to make a systematic, complete search for symbiotic stars in a magnitude-limited volume. Methods: Follow-up spectroscopy at different telescopes worldwide of a sample of sixty two symbiotic star candidates is presented. Results: Seven out of nineteen S-type candidates observed spectroscopically are confirmed to be genuine symbiotic stars. The spectral type of their red giant components, as well as reddening and distance, were computed by modelling the spectra. Only one new D-type symbiotic system, out of forty-three candidates observed, was found. This was as expected (see discussion in our paper on the selection criteria). The object shows evidence for a high density outflow expanding at a speed ≥65 km s-1. Most of the other candidates are lightly reddened classical T Tauri stars and more highly reddened young stellar objects that may be either more massive young stars of HAeBe type or classical Be stars. In addition, a few notable objects have been found, such as three new Wolf-Rayet stars and two relatively high-luminosity evolved massive stars. We also found a helium-rich source, possibly a dense ejecta hiding a WR star, which is surrounded by a large ionized nebula. Conclusions: These spectroscopic data allow us to refine the selection criteria for symbiotic stars in the IPHAS survey and, more generally, to better understand the behaviour of different Hα emitters in the IPHAS and 2MASS colour-colour diagrams. Based on observations obtained at; the 2.6 m Nordic Optical Telescope operated by NOTSA; the 2.5 m INT and 4.2 m

  18. A Survey for Circumstellar Disks around Young Substellar Objects

    NASA Astrophysics Data System (ADS)

    Liu, Michael C.; Najita, Joan; Tokunaga, Alan T.

    2003-03-01

    We have completed the first systematic survey for disks around spectroscopically identified young brown dwarfs and very low mass stars. For a sample of 38 very cool objects in IC 348 and Taurus, we have obtained L'-band (3.8 μm) imaging with sufficient sensitivity to detect objects with and without disks. The sample should be free of selection biases for our purposes. Our targets span spectral types from M6 to M9.5, corresponding to masses of ~15-100 MJup and ages of <~5 Myr, based on current models. None appear to be binaries at 0.4" resolution (55-120 AU). Using the objects' measured spectral types and extinctions, we find that most of our sample (77%+/-15%) possess intrinsic IR excesses, indicative of circum(sub)stellar disks. Because the excesses are modest, conventional analyses using only IR colors would have missed most of the sources with excesses. Such analyses inevitably underestimate the disk fraction and will be less reliable for young brown dwarfs than for T Tauri stars. The observed IR excesses are correlated with Hα emission, consistent with a common accretion disk origin. In the same star-forming regions, we find that disks around brown dwarfs and T Tauri stars are contemporaneous; assuming coevality, this demonstrates that the inner regions of substellar disks are at least as long-lived as stellar disks and evolve slowly for the first ~3 Myr. The disk frequency appears to be independent of mass. However, some objects in our sample, including the very coolest (lowest mass) ones, lack IR excesses and may be diskless. The observed excesses can be explained by disk reprocessing of starlight alone; the implied accretion rates are at least an order of magnitude below typical values for classical T Tauri stars. The observed distribution of IR excesses suggests inner disk holes with radii of >~2R*, consistent with the idea that such holes arise from disk-magnetosphere interactions. Altogether, the frequency and properties of young circumstellar disks

  19. Direct imaging of extra-solar planets in star forming regions. Lessons learned from a false positive around IM Lupi

    NASA Astrophysics Data System (ADS)

    Mawet, D.; Absil, O.; Montagnier, G.; Riaud, P.; Surdej, J.; Ducourant, C.; Augereau, J.-C.; Röttinger, S.; Girard, J.; Krist, J.; Stapelfeldt, K.

    2012-08-01

    Context. Most exoplanet imagers consist of ground-based adaptive optics coronagraphic cameras which are currently limited in contrast, sensitivity and astrometric precision, but advantageously observe in the near-infrared window (1-5 μm). Because of these practical limitations, our current observational aim at detecting and characterizing planets puts heavy constraints on target selection, observing strategies, data reduction, and follow-up. Most surveys so far have thus targeted young systems (1-100 Myr) to catch the putative remnant thermal radiation of giant planets, which peaks in the near-infrared. They also favor systems in the solar neighborhood (d < 80 pc), which eases angular resolution requirements but also ensures a good knowledge of the distance and proper motion, which are critical to secure the planet status, and enable subsequent characterization. Aims: Because of their youth, it is very tempting to target the nearby star forming regions, which are typically twice as far as the bulk of objects usually combed for planets by direct imaging. Probing these interesting reservoirs sets additional constraints that we review in this paper by presenting the planet search that we initiated in 2008 around the disk-bearing T Tauri star IM Lup, which is part of the Lupus star forming region (140-190 pc). Methods: We show and discuss why age determination, the choice of evolutionary model for both the central star and the planet, precise knowledge of the host star proper motion, relative or absolute (between different instruments) astrometric accuracy (including plate scale calibration), and patience are the key ingredients for exoplanet searches around more distant young stars. Results: Unfortunately, most of the time, precision and perseverance are not paying off: we discovered a candidate companion around IM Lup in 2008, which we report here to be an unbound background object. We nevertheless review in details the lessons learned from our endeavor, and

  20. The Microjet of AA Tau

    NASA Astrophysics Data System (ADS)

    Cox, A. W.; Hilton, G. M.; Williger, G. M.; Grady, C. A.; Woodgate, B.

    2005-12-01

    The microjet of AA Tau A.W. Cox (Atholton High School, Columbia MD), G.M. Hilton (SSAI and GSFC), G.M. Williger (JHU and U. Louisville), C.A. Grady (Eureka Scientific and GSFC) B.Woodgate (NASA's GSFC) AA Tau is a classical T Tauri star with a spatially resolved disk viewed at approximately 70 degrees from pole-on. Photo-polarimetric variability of the star has been interpreted as being caused by the stellar magnetic field being inclined at 30 degrees with respect to the stellar rotation axis, producing a warp in the inner disk. Under these conditions, any jet should be less collimated than typical of T Tauri microjets, and should show signs of the jet axis precessing around the stellar rotation axis. When compared with the microjets imaged in the HST/STIS coronagraphic imaging survey, the AA Tau jet has an opening half-angle of approximately 10-15 degrees rather than the 3-5 degrees typical of the other T Tauri stars which have been coronagraphically imaged by HST/STIS. Using the HST data with ultra-narrowband imagery and long slit spectroscopy obtained with the Goddard Fabry-Perot and the Dual Imaging Spectrograph at the Apache Point Observatory 3.5m telescope, we derive the jet inclination, knot ejection epochs, and ejection frequency. We also compare the jet opening angle with model predictions. Apache Point Observatory observations with the Goddard Fabry-Perot were made through a grant of Director's Discretionary Time. Apache Point Observatory is operated by the Astrophysical Research Consortium. The GFP was supported under NASA RTOP 51-188-01-22 to GSFC. Grady is supported under NASA contract NNH05CD30C to Eureka Scientific.

  1. Spectroscopy of bright Algol-type semi-detached close binary system HU Tauri (HR 1471)

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.

    2018-01-01

    Radial velocities of the primary component (B8V) of HU Tauri derived from the photographic spectra obtained during January 1974 to December 1974 and spectroscopic orbital elements from the analysis of the radial velocity curve of the B8V primary are given. The H line of the late type secondary component is clearly detected on the photographic spectra taken around the quadratures and radial velocities of the secondary component are derived. The radial velocity semi amplitudes of the primary (K) and secondary (K) are found to be 60 km/sec and 234 km/sec respectively. The mass ratio M/M = K/K is found to be 0.2564. The detection of the H line of the secondary is confirmed from the high resolution spectra that I obtained during 1981 and 1983 at quadratures using the 2.1-m McDonald observatory Otto Struve reflector telescope and high resolution coude Reticon spectrograph.

  2. A Study of Mechanisms Producing Astrophysical Jets.

    DTIC Science & Technology

    1988-03-01

    REPORT NUMBER(S) IS0001f A FAL- T R-88-007 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (if applicable...entire rest energy by some , ,, . , , , - , . , . ,4 . ,... .- t . mechanism or other. If matter is in-falling in this fashion, conservation of angular...they are still enveloped in the dense gas and dust from which they are condensing. Associated with a class of these stars, the T Tauri stars, are

  3. Red and nebulous objects in dark clouds - A survey

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1980-01-01

    A search on the NGS-PO Sky Survey photographs has revealed 150 interesting nebulous and/or red objects, mostly lying in dark clouds and not previously catalogued. Spectral classifications are presented for 55 objects. These indicate a small number of new members of the class of Herbig-Haro objects, a significant number of new T Tauri stars, and a few emission-line hot stars. It is argued that hot, high-mass stars form preferentially in the dense cores of dark clouds. The possible symbiosis of high and low mass stars is considered. A new morphology class is defined for cometary nebulae, in which a star lies on the periphery of a nebulous ring.

  4. 3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    PubMed Central

    Henderson, Gregory P.; Gan, Lu; Jensen, Grant J.

    2007-01-01

    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes. PMID:17710148

  5. Star-triangle and star-star relations in statistical mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, R.J.

    1997-01-20

    The homogeneous three-layer Zamolodchikov model is equivalent to a four-state model on the checkerboard lattice which closely resembles the four-state critical Potts model, but with some of its Boltzmann weights negated. Here the author shows that it satisfies a star-to-reverse-star (or simply star-star) relation, even though they know of no star-triangle relation for this model. For any nearest-neighbor checkerboard model, they show that this star-star relation is sufficient to ensure that the decimated model (where half the spins have been summed over) satisfies a twisted Yang-Baxter relation. This ensures that the transfer matrices of the original model commute in pairs,more » which is an adequate condition for solvability.« less

  6. MONITORING H{alpha} EMISSION AND CONTINUUM OF UXORs: RR Tauri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedell, Megan; Villaume, Alexa; Weiss, Lauren

    2011-11-15

    The Maria Mitchell Observatory, in collaboration with the Astrokolkhoz Observatory, started a program of photometric monitoring of UX Ori-type stars (UXORs) with narrowband interference filters (IFs; augmented with the traditional broadband filters) aimed at separating the H{alpha} emission variations from those of the continuum. We present the method of separation and the first results for RR Tau obtained in two seasons, each roughly 100 days long (2010 Winter-Spring and 2010 Fall-2011 Spring). We confirm the conclusion from previous studies that the H{alpha} emission in this star is less variable than the continuum. Although some correlation between the two is notmore » excluded, the amplitude of H{alpha} variations is much smaller (factors of 3-5) than that of the continuum. These results are compatible with Grinin's model of UXORs, which postulates the presence of small obscuring circumstellar clouds as the cause of the continuum fading, as well as the presence of a circumstellar reflection/emission nebula, larger than the star and the obscuring clouds, which is responsible for H{alpha} emission and the effect of the 'color reversal' in deep minima. However, the results of both our broadband and narrowband photometry indicate that the obscuration model may be insufficient to explain all of the observations. Disk accretion, the presence of stellar or (proto) planetary companion(s), as well as the intrinsic variations of the star, may contribute to the observed light variations. We argue, in particular, that the H{alpha} emission may be more closely correlated with the intrinsic variations of the star than with the much stronger observed variations caused by the cloud obscuration. If this hypothesis is correct, the close monitoring of H{alpha} emission with IFs, accessible to small-size telescopes, may become an important tool in studying the physical nature of the UXORs' central stars.« less

  7. An inner warp in the DoAr 44 T Tauri transition disc

    NASA Astrophysics Data System (ADS)

    Casassus, Simon; Avenhaus, Henning; Pérez, Sebastián; Navarro, Víctor; Cárcamo, Miguel; Marino, Sebastián; Cieza, Lucas; Quanz, Sascha P.; Alarcón, Felipe; Zurlo, Alice; Osses, Axel; Rannou, Fernando R.; Román, Pablo E.; Barraza, Marcelo

    2018-07-01

    Optical/IR images of transition discs (TDs) have revealed deep intensity decrements in the rings of HAeBes HD 142527 and HD 100453 that can be interpreted as shadowing from sharply tilted inner discs, such that the outer discs are directly exposed to stellar light. Here we report similar dips in SPHERE+IRDIS differential polarized imaging (DPI) of T Tauri DoAr 44. With a fairly axially symmetric ring in the sub-mm radio continuum, DoAr 44 is likely also a warped system. We constrain the warp geometry by comparing radiative transfer predictions with the DPI data in H band (Qϕ(H)) and with a re-processing of archival 336 GHz ALMA observations. The observed DPI shadows have coincident radio counterparts, but the intensity drops are much deeper in Qϕ(H) (˜88 per cent), compared to the shallow drops at 336 GHz (˜24 per cent). Radiative transfer predictions with an inner disc tilt of ˜30 ± 5 deg approximately account for the observations. ALMA long-baseline observations should allow the observation of the warped gas kinematics inside the cavity of DoAr 44.

  8. A UV-to-MIR monitoring of DR Tau: Exploring how water vapor in the planet formation region is affected by stellar accretion variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banzatti, A.; Meyer, M. R.; Manara, C. F.

    2014-01-01

    Young stars are known to show variability due to non-steady mass accretion rate from their circumstellar disks. Accretion flares can produce strong energetic irradiation and heating that may affect the disk in the planet formation region, close to the central star. During an extreme accretion outburst in the young star EX Lupi, the prototype of EXor variables, remarkable changes in molecular gas emission from ∼1 AU in the disk have recently been observed. Here, we focus on water vapor and explore how it is affected by variable accretion luminosity in T Tauri stars. We monitored a young highly variable solar-massmore » star, DR Tau, using simultaneously two high/medium-resolution spectrographs at the European Southern Observatory Very Large Telescope: VISIR at 12.4 μm to observe water lines from the disk and X-shooter covering from 0.3 to 2.5 μm to constrain the stellar accretion. Three epochs spanning timescales from several days to several weeks were obtained. The accretion luminosity was estimated to change within a factor of ∼2 and no change in water emission was detected at a significant level. In comparison with EX Lupi and EXor outbursts, DR Tau suggests that the less long-lived and weaker variability phenomena typical of T Tauri stars may leave water at planet-forming radii in the disk mostly unaffected. We propose that these systems may provide evidence for two processes that act over different timescales: ultraviolet photochemistry in the disk atmosphere (faster) and heating of the deeper disk layers (slower).« less

  9. EX-111 Thermal Emission from Hot White Dwarfs: The Suggested He Abundance-Temperature Correlation. EX-112: The Unique Emission Line White Dwarf Star GD 356

    NASA Technical Reports Server (NTRS)

    Shipman, H. L.

    1986-01-01

    Progress in the EXOSAT data analysis program is reported. EXOSAT observations for four white dwarfs (WD1031-115, WD0004+330, WD1615-154, and WD0109-264) were obtained. Counting rates were unexpectedly low, indicating that these objects have a substantial amount of x-ray absorbing matter in their photosheres. In addition, soft x-ray pulsations characterized by a 9.25 minute cycle were discovered in the DA white dwarf V471 Tauri. A residual x-ray flux from the K dwarf companion can be seen during the white dwarf eclipse at orbital phase 0.0. Pronounced dips in the soft x-ray light curve occur at orbital phases 0.15, 0.18, and 0.85. The dips may be correlated with the triangular Lagrangian points of the binary orbit. Smaller dips at phases near the eclipse may be associated with cool loops in the K star corona. Data for the white dwarf H1504+65 was also analyzed. This object is particularly unusual in that its photoshere is devoid of hydrogen and helium. Finally, existing data on the white dwarf Sirius B were analyzed to see what constraints from other data can be placed on the properties of this star. Interrelationships between radius, rotational velocity, and effective temperature were derived.

  10. Neutron Stars and NuSTAR

    NASA Astrophysics Data System (ADS)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  11. Observations of Circumstellar Disks with Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Akeson, Rachel

    2008-01-01

    Star formation is arguably the area of astrophysics in which infrared interferometry has had the biggest impact. The optically thick portion of T Tauri and Herbig Ae/Be disks DO NOT extend to a few stellar radii of the stellar surface. Emission is coming from near the dust sublimation radius, but not all from a single radius. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. Observational prospects are rapidly improving: a) Higher spectral resolution will allow observations of the gas: jets, winds, accretion. b) Closure phase and imaging will help eliminate model uncertainties/dependencies.

  12. Spectro-astrometry Of H2O And OH In A Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Brown, Logan R.; Gibb, E. L.; Troutman, M. R.

    2012-05-01

    To understand how life originated on Earth, we must investigate how the necessary water and other prebiotic molecules were distributed through the protoplanetary disk from which the solar system formed. To infer this, we study analogs to the early solar system, T Tauri stars, which are surrounded by circumstellar disks. These disks generally have masses on the order of tens of Jupiter masses and extend outward to about 100 AU. These disks have a flared geometry. Of particular interest here is the chemistry of these objects. Disks have three main chemical regions: the cold midplane, warm molecular layer, and hot ionized region (Walsh et. al. 2010). The cold midplane is a cold, dense region where molecules freeze onto dust grains. In the warm molecular layer above that, molecular synthesis is stimulated by increasing temperatures and the evaporation of molecules from dust grains. Above that, stellar and cosmic radiation dissociates and ionizes molecules into constituent radicals, atoms, and ions in the hot ionized disk atmosphere. Spitzer Space Telescope observations found a rich water emission spectrum toward T Tauri star AA Tau (Salyk et al. 2008). How this water is distributed through a protoplanetary disk is of particular interest. This can be determined using a technique called spectro-astrometry that measures the spatial dependence of a spectral feature. We present high-resolution, near-infrared spectroscopic data from the T Tauri star DR Tau, obtained on 16 -18 February 2011 using NIRSPEC at the Keck II telescope. We detected both water and OH in emission and report our spectro-astrometric signals and the derived spatial extent of the gas emission in the disk. Supported by NSF 0908230. Salyk, C. et al. 2008, ApJ, 676, 49 Walsh, C., Miller, T. J., & Nomura, H. 2010 ApJ, 722, 1607

  13. Radio monitoring of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Ubach, C.; Maddison, S. T.; Wright, C. M.; Wilner, D. J.; Lommen, D. J. P.; Koribalski, B.

    2017-04-01

    Protoplanetary disc systems observed at radio wavelengths often show excess emission above that expected from a simple extrapolation of thermal dust emission observed at short millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help disentangle the physical mechanisms responsible for this excess, including free-free emission from a wind or jet, and chromospheric emission associated with stellar activity. We present new results from a radio monitoring survey conducted with Australia Telescope Compact Array over the course of several years with observation intervals spanning days, months and years, where the flux variability of 11 T Tauri stars in the Chamaeleon and Lupus star-forming regions was measured at 7 and 15 mm, and 3 and 6 cm. Results show that most sources are variable to some degree at 7 mm, indicating the presence of emission mechanisms other than thermal dust in some sources. Additionally, evidence of grain growth to centimetre-sized pebbles was found for some sources that also have signs of variable flux at 7 mm. We conclude that multiple processes contributing to the emission are common in T Tauri stars at 7 mm and beyond, and that a detection at a single epoch at radio wavelengths should not be used to determine all processes contributing to the emission.

  14. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    NASA Astrophysics Data System (ADS)

    Theodorakis, P. E.; Avgeropoulos, A.; Freire, J. J.; Kosmas, M.; Vlahos, C.

    2007-11-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  15. An ALMA Survey of DCN/H13CN and DCO+/H13CO+ in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Huang, Jane; Öberg, Karin I.; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M.; Furuya, Kenji; Guzmán, Viviana V.; Loomis, Ryan A.; van Dishoeck, Ewine F.; Wilner, David J.

    2017-02-01

    The deuterium enrichment of molecules is sensitive to their formation environment. Constraining patterns of deuterium chemistry in protoplanetary disks is therefore useful for probing how material is inherited or reprocessed throughout the stages of star and planet formation. We present ALMA observations at ˜0.″6 resolution of DCO+, H13CO+, DCN, and H13CN in the full disks around T Tauri stars AS 209 and IM Lup, in the transition disks around T Tauri stars V4046 Sgr and LkCa 15, and in the full disks around Herbig Ae stars MWC 480 and HD 163296. We also present ALMA observations of HCN in the IM Lup disk. DCN, DCO+, and H13CO+ are detected in all disks, and H13CN in all but the IM Lup disk. We find efficient deuterium fractionation for the sample, with estimates of disk-averaged DCO+/HCO+ and DCN/HCN abundance ratios ranging from ˜0.02-0.06 and ˜0.005-0.08, respectively, which is comparable to values reported for other interstellar environments. The relative distributions of DCN and DCO+ vary between disks, suggesting that multiple formation pathways may be needed to explain the diverse emission morphologies. In addition, gaps and rings observed in both H13CO+ and DCO+ emission provide new evidence that DCO+ bears a complex relationship with the location of the midplane CO snowline.

  16. The ROSAT Field Sources --- What are they?

    NASA Astrophysics Data System (ADS)

    Caillault, J.-P.; Briceno, C.; Martin, E. L.; Palla, F.; Wichmann, R.

    Recent studies using the ROSAT All-Sky Survey towards nearby star-forming regions have identified a widely dispersed population of X-ray active stars and have suggested that these objects are older PMS stars located far from molecular clouds. Another group, however, has presented a simple model assuming continuing star formation over the past 10^8 yrs that quantitatively reproduces the number, surface density, X-ray emission, and optical properties of the RASS sources, leading to the argument that these stars are not PMS stars, but young MS stars of ages up to approximately 10^8 yrs. A third party notes that the similarity between molecular cloud lifetimes and the ambipolar diffusion timescale implies that star formation does not take place instantaneously, nor at a constant rate. They thus argue that the probability of finding a large population of old stars in a star-forming region is intrinsically very small and that the post-T Tauri problem is by and large nonexistent.

  17. Converting neutron stars into strange stars

    NASA Technical Reports Server (NTRS)

    Olinto, A. V.

    1991-01-01

    If strange matter is formed in the interior of a neutron star, it will convert the entire neutron star into a strange star. The proposed mechanisms are reviewed for strange matter seeding and the possible strange matter contamination of neutron star progenitors. The conversion process that follows seeding and the recent calculations of the conversion timescale are discussed.

  18. VizieR Online Data Catalog: Photometric observations of PMS objects (Fernandez, 1995)

    NASA Astrophysics Data System (ADS)

    Fernandez, M.

    1995-05-01

    We present the observational data of a photometric monitoring of 24 pre-main sequence objects: T Tauri stars, Ae/Be Herbig stars and some unclassified objects. Observations were carried out from July 1988 to August 1992, using the UBV(RI)_c system. Variability with time scales from days to years and amplitudes in the V band larger than 0.1 mag is found for a part of this sample. The analysis of the possible causes of this variability are discussed in separate papers (Fernandez & Eiroa 1995a,b). (24 data files).

  19. Combinations of 148 navigation stars and the star tracker

    NASA Technical Reports Server (NTRS)

    Duncan, R.

    1980-01-01

    The angular separation of all star combinations for 148 nav star on the onboard software for space transportation system-3 flight and following missions is presented as well as the separation of each pair that satisfies the viewing constraints of using both star trackers simultaneously. Tables show (1) shuttle star catalog 1980 star position in M 1950 coordinates; (2) two star combination of 148 nav stars; and (3) summary of two star-combinations of the star tracker 5 deg filter. These 148 stars present 10,875 combinations. For the star tracker filters of plus or minus 5 deg, there are 875 combinations. Formalhaut (nav star 26) has the best number of combinations, which is 33.

  20. CSI 2264: Characterizing Young Stars in NGC 2264 with Stochastically Varying Light Curves

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J.; Covey, Kevin; Herbst, William; Gillen, Edward; Medeiros Guimarães, Marcelo; Bouy, Herve; Favata, Fabio

    2016-03-01

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He I 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion. Based on data from the Spitzer and CoRoT missions, as well as the Canada-France-Hawaii Telescope (CFHT) MegaCam CCD, and the European Southern Observatory Very Large Telescope, Paranal Chile, under program 088.C-0239. The CoRoT space mission was developed and is operated by the French space agency CNES, with particpiation of ESA’s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain

  1. Effect of data gaps on correlation dimension computed from light curves of variable stars

    NASA Astrophysics Data System (ADS)

    George, Sandip V.; Ambika, G.; Misra, R.

    2015-11-01

    Observational data, especially astrophysical data, is often limited by gaps in data that arises due to lack of observations for a variety of reasons. Such inadvertent gaps are usually smoothed over using interpolation techniques. However the smoothing techniques can introduce artificial effects, especially when non-linear analysis is undertaken. We investigate how gaps can affect the computed values of correlation dimension of the system, without using any interpolation. For this we introduce gaps artificially in synthetic data derived from standard chaotic systems, like the Rössler and Lorenz, with frequency of occurrence and size of missing data drawn from two Gaussian distributions. Then we study the changes in correlation dimension with change in the distributions of position and size of gaps. We find that for a considerable range of mean gap frequency and size, the value of correlation dimension is not significantly affected, indicating that in such specific cases, the calculated values can still be reliable and acceptable. Thus our study introduces a method of checking the reliability of computed correlation dimension values by calculating the distribution of gaps with respect to its size and position. This is illustrated for the data from light curves of three variable stars, R Scuti, U Monocerotis and SU Tauri. We also demonstrate how a cubic spline interpolation can cause a time series of Gaussian noise with missing data to be misinterpreted as being chaotic in origin. This is demonstrated for the non chaotic light curve of variable star SS Cygni, which gives a saturated D2 value, when interpolated using a cubic spline. In addition we also find that a careful choice of binning, in addition to reducing noise, can help in shifting the gap distribution to the reliable range for D2 values.

  2. Rotational velocities of newly discovered, low-mass members of the Alpha Persei cluster

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.; Hartmann, Lee W.; Jones, Burton F.

    1989-01-01

    About 30 new, low-mass members of the young open cluster Alpha Persei are identified via a proper-motion study and subsequent photometric and spectroscopic observations. Membership in the cluster is confirmed for a number of the fainter proper-motion candidates from Heckman, Dieckvoss, and Kox (1956). Coordinates, finding charts, BVRI photometry, and rotational velocities are provided for most of the stars. At least two of the stars show peculiar H-alpha emission profiles, with weak but very broad emission wings, and relatively narrow absorption reversals. The rotational velocity distribution for low-mass stars in the Alpha Per cluster are compared with recently derived rotational velocity distributions for T Tauri stars, placing strong constraints on the mechanisms for angular momentum loss during pre-main-sequence evolution.

  3. O stars and Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  4. Stars

    NASA Astrophysics Data System (ADS)

    Capelato, Hugo Vicente

    1999-01-01

    We will begin our study with a more or less superficial inspection of the "forest" of stars that we see in the skies. The first thing we notice is that, as sources of light, they are much weaker than the Sun. Second, their apparent colors vary; from a bluish-white in most of them to a reddish-yellow, which is rarer. There is also a third aspect, though it is not very obvious to the naked eye: most of the stars group themselves in small families of two, three or more members. A good example is the Alpha Centauri, the closest star to us, which, in fact, is a triple system of stars. Another is the group of 7 stars that make up the Pleiades, which will be discussed later on. In fact, almost half of the stars are double systems with only two members, called binary stars. Most of these double stars, though together, are separated by several astronomical units (one astronomical unit, AU, is the distance from Earth to the sun: see Chapter 1), and revolve around each other over periods of several years. And yet the revolutions of some binary stars, separated by much smaller distances, occur in only a few hours! These stars are so close to each other that they can share enveloping material. Often this exchange occurs in a somewhat violent manner. Local explosions may occur, expelling matter away from the system. In other binary systems, where one of the components is a very compact, dense star, companion material flows more calmly, making up a light disk around the compact star.

  5. A robust star identification algorithm with star shortlisting

    NASA Astrophysics Data System (ADS)

    Mehta, Deval Samirbhai; Chen, Shoushun; Low, Kay Soon

    2018-05-01

    A star tracker provides the most accurate attitude solution in terms of arc seconds compared to the other existing attitude sensors. When no prior attitude information is available, it operates in "Lost-In-Space (LIS)" mode. Star pattern recognition, also known as star identification algorithm, forms the most crucial part of a star tracker in the LIS mode. Recognition reliability and speed are the two most important parameters of a star pattern recognition technique. In this paper, a novel star identification algorithm with star ID shortlisting is proposed. Firstly, the star IDs are shortlisted based on worst-case patch mismatch, and later stars are identified in the image by an initial match confirmed with a running sequential angular match technique. The proposed idea is tested on 16,200 simulated star images having magnitude uncertainty, noise stars, positional deviation, and varying size of the field of view. The proposed idea is also benchmarked with the state-of-the-art star pattern recognition techniques. Finally, the real-time performance of the proposed technique is tested on the 3104 real star images captured by a star tracker SST-20S currently mounted on a satellite. The proposed technique can achieve an identification accuracy of 98% and takes only 8.2 ms for identification on real images. Simulation and real-time results depict that the proposed technique is highly robust and achieves a high speed of identification suitable for actual space applications.

  6. Molecular Diagnostics of Diffusive Boundary Layers

    NASA Astrophysics Data System (ADS)

    Rawlings, J. M. C.; Hartquist, T. W.

    1997-10-01

    We have examined the chemistry in thin (<~0.01 pc) boundary layers between dark star-forming cores and warm, shocked T Tauri winds on the assumption that turbulence-driven diffusion occurs within them. The results indicate that emissions from C+, CH, OH, H2O and the J = 6 --> 5 transition of CO, among others, may serve as diagnostics of the boundary layers.

  7. Is HL Tauri and FU Orionis system in quiescence?

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Hayashi, M.; Bell, K. R.; Ohashi, N.

    1994-01-01

    A recent Nobeyama map of HL Tau reveals that gas is infalling in a flattened region approximately 1400 AU around the central star. The apparent motion of the gas provides the necessary condition for the formation of a Keplerian disk with a radius comparable to the size of the primordial solar nebula. The inferred mass infall rate onto the disk is approximately equal to 5 x 10(exp -6) solar mass/yr, which greatly exceeds the maximum estimate of the accretion rate onto the central star (approximately 7 x 10(exp -7) solar mass/yr). Consequently, mass must currently be accumulating in the disk. The estimated age and disk mass of HL Tau suggest that the accumulated matter has been flushed repeatedly on a timescale less than 10(exp 4) yr. Based on the similarites between their evolution patterns, we propose that HL Tau is an FU Orionis system in quiescence. In addition to HL Tau, 14 out of 86 pre-main-sequence stars in the Taurus-Auriga dark clouds have infrared luminosities much greater than their otherwise normal extinction-corrected stellar luminosities. These sources also tend to have flat spectra which may be due to the reprocessing of radiation by dusty, flattened, collapsing envelopes with infall rates a few 10(exp -6) solar mass/yr. Such rates are much larger than estimated central accretion rates for these systems, which suggests that mass must also be accumulating in these disks. If these sources are FU Orionis stars in quiescence, similar to HL Tau, their age and relative abundance imply that the FU Orionis phase occurs over a timescale of approixmately 10(exp 5) yr, and the quiescent phase between each outburst lasts approximately 10(exp 3) =10(exp 4) yr. These inferred properties are compatible with the scenario that FU Orionis outbursts are regulated by a thermal instability in the inner region of the disk.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, I.M.; Pichakhchi, L.D.

    It is shown that the emission spectrum of T Tauri stars with anomalous continuous radiation in the ultraviolet can be explained by assuming that it is a negative absorption spectrum of hydrogen excited by synchrotron radiation of great intensity in a small part of the star's atmosphere--in its active zone. A method was also proposed for the determination of the spectrum of synchrotron radiation from the observed hydrogen emission spectrum. The intensity in the infrared part of the spectrum was determined from the broadening of the higher terms of the Balmer series that form the quasicontinuum, while the intensity inmore » the ultraviolet was determined from hydrogen ionization. In the present study the distribution of hydrogen atoms among the excited levels in the field of such radiation is calculated using an electronic computer. The calculations show that the Balmer lines will in fact be observed in emission due to induced transitions, i.e., as a sequence of negative absorption lines. The considerable overpopulation of the upper levels is responsible for the small Balmer decrement and the appearance of anomalous emission in the ultraviolet and also for the increase in intensity of the latter when approaching the Balmer discontinuity. Thus the theory of the excitation of the emission spectrum of T Tauri stars is confirmed quantitatively. (auth)« less

  9. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  10. The Weak-Line T Tauri Star V410 Tau

    DTIC Science & Technology

    2003-01-01

    700052 Tashkent, Uzbekistan 7 USRA/USNO Flagstaff Station, PO Box 1149, Flagstaff, AZ 86002-1149, USA 8 Thüringer Landessternwarte, Karl ... Schwarzschild -Observatorium, Sternwarte 5, 07778 Tautenburg, Germany 9 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 10

  11. Coronal Activity in the R CrA T Association

    NASA Technical Reports Server (NTRS)

    Patten, Brian M.; Oliversen, Ronald J. (Technical Monitor)

    2005-01-01

    Brian Patten is the Principal Investigator of the NASA ROSS-ADP project Coronal Activity in the R CrA T Association. For this project we have extracted net counts and variability information for all of the X-ray sources found in 23 archival ROSAT PSPC and HRI images in the region of the R CrA T association. These data have been merged with an extensive database of optical and near-infrared photometry, optical spectroscopy, and parallax data. These data have been used to (1) identify new association members and clarify the membership status of a number of previously suspected members of the association, and (2) derive, for the first time, an accurate coronal luminosity function for the T Tauri members of this T association and make direct comparisons between the coronal luminosity functions for other T associations and those of large clusters. We have used our survey data to assess (a) the importance of the star-formation environment in initial coronal activity levels, (b) the effects of PMS evolution on dynamo activity as a function of mass and age, and (c) the level of contamination by field post-T Tauri stars on association membership surveys.

  12. Studies of Circumstellar Disk Evolution

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2004-01-01

    Spitzer Space Telescope infrared data for our program on disk evolution has been taken (the main IRAC - 3-8 micron exposures; the 24 and 70 micron MIPS data are to come later). We now have deep maps in the four IRAC bands of the 3-Myr-old cluster Trumpler 37, and the 10-Myr-old cluster NGC 7160. Analysis of these data has now begun. We will be combining these data with our ground-based photometric and spectroscopic data to obtain a complete picture of disk frequency as a function of mass through this important age range, which spans the likely epoch of (giant) planet formation in most systems. Analysis of the SIRTF data, and follow-on ground-based spectroscopy on the converted MMT telescope using the wide-field, fiber-fed, multiobject spectrographs, Hectospec and Hectochelle, will be the major activity during the next year.Work was also performed on the following: protoplanetary disk mass accretion rates in very low-mass stars; the inner edge of T Tauri disks; accretion in intermediate-mass T Tauri stars (IMPS); and the near-infrared spectra of the rapidly-accreting protostellar disks FU Ori and V1057 Cyg.

  13. The Discovery of Herbig–Haro Objects in LDN 673

    NASA Astrophysics Data System (ADS)

    Rector, T. A.; Shuping, R. Y.; Prato, L.; Schweiker, H.

    2018-01-01

    We report the discovery of 12 faint Herbig–Haro (HH) objects in LDN 673 found using a novel color-composite imaging method that reveals faint Hα emission in complex environments. Follow-up observations in [S II] confirmed their classification as HH objects. Potential driving sources are identified from the Spitzer c2d Legacy Program catalog and other infrared observations. The 12 new HH objects can be divided into three groups: four are likely associated with a cluster of eight young stellar object class I/II IR sources that lie between them; five are colinear with the T Tauri multiple star system AS 353, and are likely driven by the same source as HH 32 and HH 332 and three are bisected by a very red source that coincides with an infrared dark cloud. We also provide updated coordinates for the three components of HH 332. Inaccurate numbers were given for this object in the discovery paper. The discovery of HH objects and associated driving sources in this region provides new evidence for star formation in the Aquila clouds, implying a much larger T Tauri population in a seldom-studied region.

  14. Strange stars

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Farhi, Edward; Olinto, Angela

    1986-01-01

    Strange matter, a form of quark matter that is postulated to be absolute stable, may be the true ground stage of the hadrons. If this hypothesis is correct, neutron stars may convert to 'strange stars'. The mass-radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and for mass of 1 solar mass or less, mass is proportional to the cube of the radius. For masses between 1 solar mass and 2 solar masses, the radii of strange stars are about 10 km, as for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin crust with the same composition as the preneutron drip outer layer of a conventional neutron star crust. Strange stars cool efficiently via neutrino emission.

  15. Silicate Emission in the TW Hydrae Association

    NASA Astrophysics Data System (ADS)

    Sitko, Michael L.; Lynch, David K.; Russell, Ray W.

    2000-11-01

    The TW Hydrae association is the nearest young stellar association. Among its members are HD 98800, HR 4796A, and TW Hydrae itself, the nearest known classical T Tauri star. We have observed these three stars spectroscopically between 3 and 13 μm. In TW Hya, the spectrum shows a silicate emission feature that is similar to many other young stars' with protostellar disks. The 11.2 μm feature indicative of significant amounts of crystalline olivine is not as strong as in some young stars and solar system comets. In HR 4796A, the thermal emission in the silicate feature is very weak, suggesting little in the way of (small silicate) grains near the star. The silicate band of HD 98800 (observed by us, but also reported by Sylvester & Skinner) is intermediate in strength between TW Hya and HR 4796A.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jane; Öberg, Karin I.; Qi, Chunhua

    The deuterium enrichment of molecules is sensitive to their formation environment. Constraining patterns of deuterium chemistry in protoplanetary disks is therefore useful for probing how material is inherited or reprocessed throughout the stages of star and planet formation. We present ALMA observations at ∼0.″6 resolution of DCO{sup +}, H{sup 13}CO{sup +}, DCN, and H{sup 13}CN in the full disks around T Tauri stars AS 209 and IM Lup, in the transition disks around T Tauri stars V4046 Sgr and LkCa 15, and in the full disks around Herbig Ae stars MWC 480 and HD 163296. We also present ALMA observationsmore » of HCN in the IM Lup disk. DCN, DCO{sup +}, and H{sup 13}CO{sup +} are detected in all disks, and H{sup 13}CN in all but the IM Lup disk. We find efficient deuterium fractionation for the sample, with estimates of disk-averaged DCO{sup +}/HCO{sup +} and DCN/HCN abundance ratios ranging from ∼0.02–0.06 and ∼0.005–0.08, respectively, which is comparable to values reported for other interstellar environments. The relative distributions of DCN and DCO{sup +} vary between disks, suggesting that multiple formation pathways may be needed to explain the diverse emission morphologies. In addition, gaps and rings observed in both H{sup 13}CO{sup +} and DCO{sup +} emission provide new evidence that DCO{sup +} bears a complex relationship with the location of the midplane CO snowline.« less

  17. TORUS: Radiation transport and hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Harries, Tim

    2014-04-01

    TORUS is a flexible radiation transfer and radiation-hydrodynamics code. The code has a basic infrastructure that includes the AMR mesh scheme that is used by several physics modules including atomic line transfer in a moving medium, molecular line transfer, photoionization, radiation hydrodynamics and radiative equilibrium. TORUS is useful for a variety of problems, including magnetospheric accretion onto T Tauri stars, spiral nebulae around Wolf-Rayet stars, discs around Herbig AeBe stars, structured winds of O supergiants and Raman-scattered line formation in symbiotic binaries, and dust emission and molecular line formation in star forming clusters. The code is written in Fortran 2003 and is compiled using a standard Gnu makefile. The code is parallelized using both MPI and OMP, and can use these parallel sections either separately or in a hybrid mode.

  18. K2 Reveals Pulsed Accretion Driven by the 2 Myr Old Hot Jupiter CI Tau b

    NASA Astrophysics Data System (ADS)

    Biddle, Lauren I.; Johns-Krull, Christopher M.; Llama, Joe; Prato, Lisa; Skiff, Brian A.

    2018-02-01

    CI Tau is a young (∼2 Myr) classical T Tauri star located in the Taurus star-forming region. Radial velocity observations indicate it hosts a Jupiter-sized planet with an orbital period of approximately 9 days. In this work, we analyze time series of CI Tau’s photometric variability as seen by K2. The light curve reveals the stellar rotation period to be ∼6.6 days. Although there is no evidence that CI Tau b transits the host star, a ∼9 day signature is also present in the light curve. We believe this is most likely caused by planet–disk interactions that perturb the accretion flow onto the star, resulting in a periodic modulation of the brightness with the ∼9 day period of the planet’s orbit.

  19. A brightness-referenced star identification algorithm for APS star trackers.

    PubMed

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-10-08

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4~5 times that of the pyramid method and 35~37 times that of the geometric method.

  20. Toward the first stars: hints from the CEMP-no stars

    NASA Astrophysics Data System (ADS)

    Choplin, A.

    2017-12-01

    CEMP-no stars are iron-deficient, carbon-rich stars, with no or little s- and r-elements. Because of their very low iron content, they are often considered to be closely linked to the first stars. Their origin is still a matter of debate. Understanding their formation could provide very valuable information on the first stars, early nucleosynthesis, early galactic chemical evolution and first supernovae. The most explored formation scenario for CEMP-no stars suggests that CEMP-no stars formed from the ejecta (wind and/or supernova) of a massive source star, that lived before the CEMP-no star. Here we discuss models of fast rotating massive source stars with and without triggering a late mixing event just before the end of the life of the source star. We find that without this late mixing event, the bulk of observed CEMP-no stars cannot be reproduced by our models. On the opposite, the bulk is reproductible if adding the late mixing event in the source star models.

  1. Tracing the potential planet-forming regions around seven pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Schegerer, A. A.; Wolf, S.; Hummel, C. A.; Quanz, S. P.; Richichi, A.

    2009-07-01

    Aims: We investigate the nature of the innermost regions with radii of several AUs of seven circumstellar disks around pre-main-sequence stars, T Tauri stars in particular. Our object sample contains disks apparently at various stages of their evolution. Both single stars and spatially resolved binaries are considered. In particular, we search for inner disk gaps as proposed for several young stellar objects (YSOs). When analyzing the underlying dust population in the atmosphere of circumstellar disks, the shape of the 10 μm feature should additionally be investigated. Methods: We performed interferometric observations in N band (8-13 μm) with the Mid-Infrared Interferometric Instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) using baseline lengths of between 54 m and 127 m. The data analysis is based on radiative-transfer simulations using the Monte Carlo code MC3D by modeling simultaneously the spectral energy distribution (SED), N band spectra, and interferometric visibilities. Correlated and uncorrelated N band spectra are compared to investigate the radial distribution of the dust composition of the disk atmosphere. Results: Spatially resolved mid-infrared (MIR) emission was detected in all objects. For four objects (DR Tau, RU Lup, S CrA N, and S CrA S), the observed N band visibilities and corresponding SEDs could be simultaneously simulated using a parameterized active disk-model. For the more evolved objects of our sample, HD 72106 and HBC 639, a purely passive disk-model provides the closest fit. The visibilities inferred for the source RU Lup allow the presence of an inner disk gap. For the YSO GW Ori, one of two visibility measurements could not be simulated by our modeling approach. All uncorrelated spectra reveal the 10 μm silicate emission feature. In contrast to this, some correlated spectra of the observations of the more evolved objects do not show this feature, indicating a lack of small silicates in the inner versus the outer

  2. The stellar population of the Lupus clouds

    NASA Technical Reports Server (NTRS)

    Hughes, Joanne; Hartigan, Patrick; Krautter, Joachim; Kelemen, Janos

    1994-01-01

    We present photometric and spectroscopic observations of the H alpha emission stars in the Lupus dark cloud complex. We estimate the effective temperatures of the stars from their spectral types and calculate the reddening towards each object from the (R-I) colors. From these data, we derive mass and age distributions for the Lupus stars using a new set of pre-main sequence evolutionar tracks. We compare the results for the Lupus stars with those for a similar population of young stellar objects in Taurus-Auriga and Chamaeleon and with the initial mass function for field stars in the solar neighborhood. From the H-R diagrams, Lupus appears to contain older stars than Taurus. The Lupus dark clouds form a greater proportion of low mass stars than the Taurus complex. Also, the proportion of low mass stars in Lupus is higher than that predicted by the Miller-Scalo initial mass function, and the lowest mass stars in Lupus are less active than similar T Tauri stars in other regions.

  3. ALMA Studies of the Disk-Jet-Outflow Connection

    NASA Astrophysics Data System (ADS)

    Dougados, Catherine; Louvet, F.; Mardones, D.; Cabrit, S.

    2017-06-01

    I will describe in this contribution recent results obtained with ALMA on the origin of the disk/jet/outflow connexion in T Tauri stars. I will first present ALMA observations of the disk associated with the jet source Th 28, which question previous jet rotation measurements in this source and the implications drawn from them. I will then discuss Cycle 2 ALMA observations of the disk and small scale CO outflow associated with the prototypical edge-on HH 30 source. The unprecedented angular resolution of this dataset brings new constraints on the origin of the CO outflows in young stars.

  4. A Brightness-Referenced Star Identification Algorithm for APS Star Trackers

    PubMed Central

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-01-01

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4∼5 times that of the pyramid method and 35∼37 times that of the geometric method. PMID:25299950

  5. CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer—evidence for multiple origins of variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variabilitymore » census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.« less

  6. Star centroiding error compensation for intensified star sensors.

    PubMed

    Jiang, Jie; Xiong, Kun; Yu, Wenbo; Yan, Jinyun; Zhang, Guangjun

    2016-12-26

    A star sensor provides high-precision attitude information by capturing a stellar image; however, the traditional star sensor has poor dynamic performance, which is attributed to its low sensitivity. Regarding the intensified star sensor, the image intensifier is utilized to improve the sensitivity, thereby further improving the dynamic performance of the star sensor. However, the introduction of image intensifier results in star centroiding accuracy decrease, further influencing the attitude measurement precision of the star sensor. A star centroiding error compensation method for intensified star sensors is proposed in this paper to reduce the influences. First, the imaging model of the intensified detector, which includes the deformation parameter of the optical fiber panel, is established based on the orthographic projection through the analysis of errors introduced by the image intensifier. Thereafter, the position errors at the target points based on the model are obtained by using the Levenberg-Marquardt (LM) optimization method. Last, the nearest trigonometric interpolation method is presented to compensate for the arbitrary centroiding error of the image plane. Laboratory calibration result and night sky experiment result show that the compensation method effectively eliminates the error introduced by the image intensifier, thus remarkably improving the precision of the intensified star sensors.

  7. Design and application of star map simulation system for star sensors

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan

    2013-12-01

    Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.

  8. Far-infrared properties of flare stars and dM stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Stencel, R. E.; Backman, D. E.

    1989-01-01

    Results are reported from a search of the IRAS data base for flare stars and for a control sample of dM stars. At 12 microns, 70-80 percent of both samples have been detected. The K-12 colors of flare stars are significantly different from those of dM stars: for a given K magnitude, a flare star is about 70 percent brighter at 12 microns than a dM star. At 100 microns, 27 percent of the flare stars which are sources at 12 microns have been detected, while none of the comparable dM stars has been detected. Implications for microflaring are discussed.

  9. Calibration of H-alpha/H-beta Indexes for Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, Michael D.

    2016-01-01

    In Joner and Hintz (2015) they report on a standard star system for calibration of H-alpha and H-beta observations. This work was based on data obtained with the Dominion Astrophysical Observatory 1.2-m telescope. As part of the data acquisition for that project, a large number of emission line objects were also observed. We will report on the preliminary results for the emission line data set. This will include a comparison of equivalent width measurements of each line with the matching index. We will also examine the relation between the absorption line objects previously published and the emission line objects, along with a discussion of the transition point. Object types included are Be stars, high mass x-ray binaries, one low mass x-ray binary, Herbig Ae/Be stars, pre-main sequence stars, T Tauri stars, young stellar objects, and one BY Draconis star. Some of these objects come from Cygnus OB-2, NGC 659, NGC 663, NGC 869 and NGC 884.

  10. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  11. I-Love relations for incompressible stars and realistic stars

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Chan, AtMa P. O.; Leung, P. T.

    2015-02-01

    In spite of the diversity in the equations of state of nuclear matter, the recently discovered I-Love-Q relations [Yagi and Yunes, Science 341, 365 (2013), 10.1126/science.1236462], which relate the moment of inertia, tidal Love number (deformability), and the spin-induced quadrupole moment of compact stars, hold for various kinds of realistic neutron stars and quark stars. While the physical origin of such universality is still a current issue, the observation that the I-Love-Q relations of incompressible stars can well approximate those of realistic compact stars hints at a new direction to approach the problem. In this paper, by establishing recursive post-Minkowskian expansion for the moment of inertia and the tidal deformability of incompressible stars, we analytically derive the I-Love relation for incompressible stars and show that the so-obtained formula can be used to accurately predict the behavior of realistic compact stars from the Newtonian limit to the maximum mass limit.

  12. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  13. Do All O Stars Form in Star Clusters?

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  14. Bursting star formation and the overabundance of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Bodigfee, G.; Deloore, C.

    1985-01-01

    The ratio of the number of WR-stars to their OB progenitors appears to be significantly higher in some extragalactic systems than in our Galaxy. This overabundance of Wolf-Rayet-stars can be explained as a consequence of a recent burst of star formation. It is suggested that this burst is the manifestation of a long period nonlinear oscillation in the star formation process, produced by positive feedback effects between young stars and the interstellar medium. Star burst galaxies with large numbers of WR-stars must generate gamma - fluxes but due to the distance, all of them are beyond the reach of present-day ray detectors, except probably 30 Dor.

  15. Multiwavelength and Statistical Research in Space Astrophysics

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1997-01-01

    The accomplishments in the following three research areas are summarized: multiwavelength study of active galactic nuclei; magnetic activity of young stellar objects; and statistical methodology for astronomical data analysis. The research is largely based on observations of the ROSAT and ASCA X-ray observatories, complemented by ground-based optical and radio studies. Major findings include: discovery of inverse Compton X-ray emission from radio galaxy lobes; creation of the largest and least biased available sample of BL Lac objects; characterization of X-ray and nonthermal radio emission from T Tauri stars; obtaining an improved census of young stars in a star forming region and modeling the star formation history and kinematics; discovery of X-ray emission from protostars; development of linear regression methods and codes for interpreting astronomical data; and organization of the first cross-disciplinary conferences for astronomers and statisticians.

  16. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Tie; Wu Yuefang; Zhang Huawei

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed towardmore » core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.« less

  17. WNL Stars - the Most Massive Stars in the Universe?

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier; Moffat, Anthony F. J.; St-Louis, Nicole; Skalkowski, Gwenael; Niemela, Virpi; Shara, Michael M.

    2001-08-01

    We propose to carry out an intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.

  18. WNLh Stars - The Most Massive Stars in the Universe?

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier; St-Louis, Nicole; Moffat, Anthony F. J.; Foellmi, Cedric

    2002-08-01

    We propose to conclude our intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.

  19. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  20. Identification of stars in a J1744.0 star catalogue Yixiangkaocheng

    NASA Astrophysics Data System (ADS)

    Ahn, S.-H.

    2012-05-01

    The stars in the Chinese star catalogue, Yixiangkaocheng, which were edited by the Jesuit astronomer Kögler in AD 1744 and published in AD 1756, are identified with their counterparts in the Hipparcos catalogue. The equinox of the catalogue is confirmed to be J1744.0. By considering the precession of equinox, proper motions and nutation, the star closest to the location of each star in Yixiangkaocheng, having a proper magnitude, is selected as the corresponding identified star. I identified 2848 stars and 13 nebulosities out of 3083 objects in Yixiangkaocheng, and so the identification rate reached 92.80 per cent. I find that the magnitude classification system in Yixiangkaocheng agrees with the modern magnitude system. The catalogue includes dim stars, whose visual magnitudes are larger than 7, but most of these stars have Flamsteed designations. I find that the stars whose declination is lower than -30° have relatively larger offsets and different systematic behaviour from other stars. This indicates that there might be two different sources of stars in Yixiangkaocheng. In particular, I find that μ1 Sco and γ1 Sgr approximately mark the boundary between two different source catalogues. The observer's location, as estimated from these facts, agrees with the latitude of Greenwich where Flamsteed made his observations. The positional offsets between the Yixiangkaocheng stars and the Hipparcos stars are 0.6 arcmin, which implies that the source catalogue of stars with δ > -30° must have come from telescopic observations. Nebulosities in Yixiangkaocheng are identified with a few double stars, o Cet (the variable star, Mira), the Andromeda galaxy, ω Cen and NGC6231. These entities are associated with listings in Halley's Catalogue of the Southern Stars of AD 1679 as well as Flamsteed's catalogue of AD 1690.

  1. Massive stars, disks, and clustered star formation

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas Barry

    The formation of an isolated massive star is inherently more complex than the relatively well-understood collapse of an isolated, low-mass star. The dense, clustered environment where massive stars are predominantly found further complicates the picture, and suggests that interactions with other stars may play an important role in the early life of these objects. In this thesis we present the results of numerical hydrodynamic experiments investigating interactions between a massive protostar and its lower-mass cluster siblings. We explore the impact of these interactions on the orientation of disks and outflows, which are potentially observable indications of encounters during the formation of a star. We show that these encounters efficiently form eccentric binary systems, and in clusters similar to Orion they occur frequently enough to contribute to the high multiplicity of massive stars. We suggest that the massive protostar in Cepheus A is currently undergoing a series of interactions, and present simulations tailored to that system. We also apply the numerical techniques used in the massive star investigations to a much lower-mass regime, the formation of planetary systems around Solar- mass stars. We perform a small number of illustrative planet-planet scattering experiments, which have been used to explain the eccentricity distribution of extrasolar planets. We add the complication of a remnant gas disk, and show that this feature has the potential to stabilize the system against strong encounters between planets. We present preliminary simulations of Bondi-Hoyle accretion onto a protoplanetary disk, and consider the impact of the flow on the disk properties as well as the impact of the disk on the accretion flow.

  2. A new family of magnetic stars: the Am stars

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Petit, P.; Lignières, F.

    2016-12-01

    We presented the discovery of an ultra-weak field in three Am stars, β UMa, θ Leo, and Alhena, thanks to ultra-deep spectropolarimetric observations. Two of the three stars of this study shown peculiar magnetic signatures with prominent positive lobes like the one of Sirius A that are not expected in the standard theory of the Zeeman effect. Alhena, contrary to Sirius A, β UMa and θ Leo, show normal signatures. These detections of ultra-weak fields in Am stars suggest the existence of a new family of magnetic intermediate-mass stars: the Am stars. However the various shapes of the signatures required further observation to identify the physical processes at work in these stars. A preliminary explanation is based on microturbulence.

  3. X-ray Radiative Transfer in Protoplanetary Disks with ProDiMo

    NASA Astrophysics Data System (ADS)

    Rab, Christian; Woitke, Peter; Güdel, Manuel; Min, Michiel; Diana Team

    2013-07-01

    X-ray emission is a common property of YSOs. T Tauri stars show X-ray luminosities up to 10^32 erg/s but also Herbig Ae/Be stars can have moderate X-ray emission in the range of 10^28 to 10^31 erg/s. We want to investigate the impact of X-ray radiation on the thermal and chemical structure of protoplanetary discs around these YSOs. Therefore we have added a new X-ray Radiative Transfer module to the radiation thermo-chemical code ProDiMo (Protoplanetary Disc Modeling) extending the existing implementation of X-ray chemistry implemented by Aresu et al. This new module considers gas and dust opacities (including scattering) and a possible X-ray background field. Further we added a new set of FUV - photoreactions to the X-ray chemistry module of ProDiMo as fast electrons created in X-ray ionisation can produce a significant secondary FUV radiation field by exciting atomic or molecular hydrogen. We discuss the importance of these processes on the thermal and chemical structure of the protoplanetary disc, and present them on the basis of a typical T Tauri disc model. This work is performed in the context of the EU FP7-project DIANA (www.diana-project.com).

  4. Induced Star Formation

    NASA Astrophysics Data System (ADS)

    Kennicutt, Robert C., Jr.

    Overview: Induced Star Formation and Interactions Introduction Historical Background: First Hints Systematic Studies: Starbursts Interactions and Nuclear activity IRAS and Ultralumious starburst Galaxies The 1990's: HST, Supercomputers, and the Distant Universe Key Questions and Issues Organization of Lectures Star Formation Properties of Normal Galaxies Observational Techniques Results: Star Formation in Normal Galaxies Interpretation: Star Formation Histories Global Star Formation in interacting Galaxies A Gallery of Interactions and Mergers Star Formation Statistics: Guilt By Association Tests SFRs in Interacting vs Noninteracting Galaxies Kinematic Properties and Regulation of SFRs Induced Nuclear Activity and Star Formation Background: Nuclear Spectra and Classification Nuclear Star Formation and Starbursts Nuclear Star Formation and Interactions Induced AGN Activity: Statistics of Seyfert Galaxies Environments of Quasars Kinematic Clues to the Triggering of AGNs Infrared Luminous Galaxies and Starbursts Background: IR Luminous Galaxies and IRAS Infrared Luminosity Function and Spectra Infrared Structure and Morphology Interstellar Gas X-Ray Emission and Superwinds Optical, UV, and Near-Infrared Spectra Radio Continuum Emission Evidence for Interactions and Mergers The Power Source: Starbursts or Dusty AGNs? Spectral Diagnostics of Starbursts Evolutionary Synthesis Models Applications: Integrated Colors of Interacting Galaxies Applications: Hα Emission, Colors, and SFRs Applications: Spectral Modelling of Evolved Starbursts Infrared Starbursts and the IMF in starbursts Triggering and Regulation of Star Formation: The Problem Introduction: Star Formation as a Nonlinear Process The schmidt Law in Normal Galaxies Star Formation Regimes in Interacting Galaxies Summary Triggering and Regulation of Starbusts: Theoretical Ideas Gravitational Star Formation Thresholds Cloud Collision Models Radial Transport of Gas: Clues from Barred Galaxies Simulations of Starbursts

  5. Blurred Star Image Processing for Star Sensors under Dynamic Conditions

    PubMed Central

    Zhang, Weina; Quan, Wei; Guo, Lei

    2012-01-01

    The precision of star point location is significant to identify the star map and to acquire the aircraft attitude for star sensors. Under dynamic conditions, star images are not only corrupted by various noises, but also blurred due to the angular rate of the star sensor. According to different angular rates under dynamic conditions, a novel method is proposed in this article, which includes a denoising method based on adaptive wavelet threshold and a restoration method based on the large angular rate. The adaptive threshold is adopted for denoising the star image when the angular rate is in the dynamic range. Then, the mathematical model of motion blur is deduced so as to restore the blurred star map due to large angular rate. Simulation results validate the effectiveness of the proposed method, which is suitable for blurred star image processing and practical for attitude determination of satellites under dynamic conditions. PMID:22778666

  6. CSI 2264: Simultaneous Optical and Infrared Light Curves of Young Disk-bearing Stars in NGC 2264 with CoRoT and Spitzer—Evidence for Multiple Origins of Variability

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Stauffer, John; Baglin, Annie; Micela, Giuseppina; Rebull, Luisa M.; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Carpenter, John; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Hartmann, Lee; Calvet, Nuria; Teixeira, Paula; Vrba, Frederick J.; Wolk, Scott; Covey, Kevin; Poppenhaeger, Katja; Günther, Hans Moritz; Forbrich, Jan; Whitney, Barbara; Affer, Laura; Herbst, William; Hora, Joseph; Barrado, David; Holtzman, Jon; Marchis, Franck; Wood, Kenneth; Medeiros Guimarães, Marcelo; Lillo Box, Jorge; Gillen, Ed; McQuillan, Amy; Espaillat, Catherine; Allen, Lori; D'Alessio, Paola; Favata, Fabio

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  7. ROSAT X-ray sources embedded in the rho Ophiuchi cloud core

    NASA Astrophysics Data System (ADS)

    Casanova, Sophie; Montmerle, Thierry; Feigelson, Eric D.; Andre, Philippe

    1995-02-01

    We present a deep ROSAT Position Sensitive Proportional Counter (PSPC) image of the central region of the rho Oph star-forming region. The selected area, about 35 x 35 arcmins in size, is rich with dense molecular cores and young stellar objects (YSOs). Fifty-five reliable X-ray sources are detected (and up to 50 more candidates may be present) above approximately 1 keV,, doubling the number of Einstein sources in this area. These sources are cross-identified with an updated list of 88 YSOs associated with the rho Oph cloud core. A third of the reliable X-ray sources do not have optical counterparts on photographic plates. Most can be cross-identified wth Class II and Class III infrared (IR) sources, which are embedded T Tauri stars, but three reliable X-ray sources and up to seven candidate sources are tentatively identified with Class I protostars. Eighteen reliable, and up to 20 candidate, X-ray sources are probably new cloud members. The overall detection rate of the bona fide cloud population is very high (73% for the Class II and Class III objects). The spatial distribution of the X-ray sources closely follows that of the moleclar gas. The visual extinctions Av estimated from near-IR data) of the ROSAT sources can be as high as 50 or more, confirming that most are embedded in the cloud core and are presumably very young. Using bolometric luminosities Lbol estimated from J-magnitudes a tight correlation between Lx and Lbol is found, similar to that seen for older T Tauri stars in the Cha I cloud: Lx approximately 10-4 Lbol. A general relation Lxproportional to LbolLj seems to apply to all T Tauri-like YSOs. The near equality of the extintion in the IR J band and in the keV X-ray rage implies that this relation is valid for the detected fluxes as well as for the dereddened fluxes. The X-ray luminosity function of the embedded sourced in rho Oph spans a range of Lx approximately 1028.5 to approximately equal to or greater than 1031.5 ergs/s and is statistically

  8. The Chemical Compositions of the SRD Variable Stars. III. KK Aquilae, AG Aurigae, Z Aurigae, W Leo Minoris, and WW Tauri

    NASA Astrophysics Data System (ADS)

    Giridhar, Sunetra; Lambert, David L.; Gonzalez, Guillermo

    2000-12-01

    Chemical compositions are derived from high-resolution spectra for five field SRd variables. These supergiants not previously analyzed are shown to be metal poor: KK Aql with [Fe/H]=-1.2, AG Aur with [Fe/H]=-1.8, Z Aur with [Fe/H]=-1.4, W LMi with [Fe/H]=-1.1, and WW Tau with [Fe/H]=-1.1. Their compositions are, except for two anomalies, identical to within the measurement errors to the compositions of subdwarfs, subgiants, and less evolved giants of the same [Fe/H]. One anomaly is an s-process enrichment for KK Aql, the first such enrichment reported for an SRd variable. The second and more remarkable anomaly is a strong lithium enrichment for W LMi, also a first for field SRd variables. The Li I λ6707 profile is not simply that of a photospheric line but includes strong absorption from redshifted gas, suggesting, perhaps, that lithium enrichment results from accretion of Li-rich gas. This potential clue to lithium enrichment is discussed in light of various proposals for lithium synthesis in evolved stars.

  9. The Diffuse Interstellar Bands: Contributed papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor)

    1994-01-01

    Drawing a coherent picture of the observational characteristics of the Diffuse Interstellar Bands (DIB's) and the physical and chemical properties of its proposed carriers was the focus of this NASA sponsored conference. Information relating to absoption spectra, diffuse radiation carriers, carbon compounds, stellar composition, and interstellar extinction involving T-Tauri stars, Reflection Nebulae, Red Giants, and accretion discs are discussed from those papers presented at the conference, which are included in this analytic.

  10. Intrinsically variable stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Querci, Monique

    1987-01-01

    The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.

  11. Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Abbott, David C.; Conti, Peter S.

    1987-01-01

    The properties and evolutionary status of WR stars are examined, reviewing the results of recent observational and theoretical investigations. Topics discussed include spectral types and line strengths, magnitudes and colors, intrinsic variability, IR and radio observations, X-ray observations, the Galactic distribution of WR stars, WR stars in other galaxies, and WR binaries. Consideration is given to the inferred masses, composition, and stellar winds of WR stars; model atmospheres; WR stars and the Galactic environment; and WR stars as a phase of stellar evolution. Diagrams, graphs, and tables of numerical data are provided.

  12. Dead Star Warps Light of Red Star Artist Animation

    NASA Image and Video Library

    2013-04-04

    This artist concept depicts an ultra-dense dead star, called a white dwarf, passing in front of a small red star. NASA planet-hunting Kepler was able to detect gravitational lensing by measuring a strangely subtle dip in the star brightness.

  13. Unbiased millimeter-wave line surveys of TW Hya and V4046 Sgr: The enhanced C{sub 2}H and CN abundances of evolved protoplanetary disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastner, Joel H.; Punzi, Kristina; Hily-Blant, Pierre

    2014-09-20

    We have conducted the first comprehensive millimeter-wave molecular emission line surveys of the evolved circumstellar disks orbiting the nearby, roughly solar-mass, pre-main-sequence (T Tauri) stars, TW Hya (D = 54 pc) and V4046 Sgr AB (D = 73 pc). Both disks are known to retain significant residual gaseous components despite the advanced ages of their host stars (∼8 Myr and ∼21 Myr, respectively). Our unbiased broadband radio spectral surveys of the TW Hya and V4046 Sgr disks were performed with the Atacama Pathfinder Experiment 12 m telescope, and are intended to yield a complete census of the bright molecular emissionmore » lines in the range 275-357 GHz (1.1-0.85 mm). We find that lines of {sup 12}CO, {sup 13}CO, HCN, CN, and C{sub 2}H, all of which lie in the higher frequency (>330 GHz) range, constitute the strongest molecular emission from both disks in the spectral region surveyed. The molecule C{sub 2}H is detected here for the first time in both disks, as is CS in the TW Hya disk. The survey results also include the first measurements of the full suite of the hyperfine transitions of CN N = 3 → 2 and C{sub 2}H N = 4 → 3 in both disks. Modeling of these CN and C{sub 2}H hyperfine complexes in the spectrum of TW Hya indicates that the emission from both species is optically thick and may originate from very cold (≲10 K) disk regions. The latter result, if confirmed, would suggest the efficient production of CN and C{sub 2}H in the outer disk and/or near the disk midplane. It furthermore appears that the fractional abundances of CN and C{sub 2}H are significantly enhanced in these evolved protoplanetary disks, relative to the fractional abundances of the same molecules in the environments of deeply embedded protostars. These results, combined with previous determinations of the enhanced abundances of other species (such as HCO{sup +}) in T Tauri star disks, underscore the importance of properly accounting for high-energy (FUV and X

  14. Young Star Clusters: Keys to Understanding Massive Stars

    NASA Astrophysics Data System (ADS)

    Davies, B.

    2012-12-01

    Young, coeval clusters of stars provide the perfect laboratory in which to test our understanding of how massive stars evolve. Early optical observations limited us to a handful of low-mass clusters within 1kpc. However, thanks to the recent progress in infrared astronomy, the Milky Way's population of young massive star clusters is now beginning to be revealed. Here, I will review the recent progress made in this field, what it has told us about the evolution of massive stars to supernova and beyond, the prospects for this field, and some issues that should be taken into account when interpreting the results.

  15. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  16. ALMA Observations of the Molecular Gas in the Debris Disk of the 30 Myr Old Star HD 21997

    NASA Technical Reports Server (NTRS)

    Kospal, A.; Moor, A.; Juhasz, A.; Abraham, P.; Apai, D.; Csengeri, T.; Grady, C. A.; Henning, Th.; Hughes, A. M.; Kiss, Cs.; hide

    2013-01-01

    The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here, we report on the detection of (12)CO and (13)CO in the J = 2-1 and J = 3-2 transitions and C(18)O in the J = 2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r(sub in) < 26 AU, r(sub out) = 138 +/- 20 AU, Stellar M = 1.8 +0.5/-0.2 Solar M, and i = 32. Deg. 6 +/- 3 deg..1. The total CO mass, as calculated from the optically thin C(18)O line, is about (4-8) ×10(exp -2 ) Solar M, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from ALMA continuum observations by Moor et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not colocated, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not colocated. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.

  17. Stars For Citizens With Urban Star Parks and Lighting Specialists

    NASA Astrophysics Data System (ADS)

    Grigore, Valentin

    2015-08-01

    General contextOne hundred years ago, almost nobody imagine a life without stars every night even in the urban areas. Now, to see a starry sky is a special event for urban citizens.It is possible to see the stars even inside cities? Yes, but for that we need star parks and lighting specialists as partners.Educational aspectThe citizens must be able to identify the planets, constellations and other celestial objects in their urban residence. This is part of a basic education. The number of the people living in the urban area who never see the main constellations or important stars increase every year. We must do something for our urban community.What is an urban star park?An urban public park where we can see the main constellations can be considered an urban star park. There can be organized a lot of activities as practical lessons of astronomy, star parties, etc.Classification of the urban star parksA proposal for classification of the urban star parks taking in consideration the quality of the sky and the number of the city inhabitants:Two categories:- city star parks for cities with < 100.000 inhabitants- metropolis star parks for cities with > 100.000 inhabitantsFive levels of quality:- 1* level = can see stars of at least 1 magnitude with the naked eyes- 2* level = at least 2 mag- 3* level = at least 3 mag- 4* level= at least 4 mag- 5* level = at least 5 magThe urban star urban park structure and lighting systemA possible structure of a urban star park and sky-friend lighting including non-electric illumination are descripted.The International Commission on IlluminationA description of this structure which has as members national commissions from all over the world.Dark-sky activists - lighting specialistsNational Commissions on Illumination organize courses of lighting specialist. Dark-sky activists can become lighting specialists. The author shows his experience in this aspect as a recent lighting specialist and his cooperation with the Romanian National

  18. Turbovelocity Stars: Kicks Resulting from the Tidal Disruption of Solitary Stars

    NASA Astrophysics Data System (ADS)

    Manukian, Haik; Guillochon, James; Ramirez-Ruiz, Enrico; O'Leary, Ryan M.

    2013-07-01

    The centers of most known galaxies host supermassive black holes (SMBHs). In orbit around these black holes are a centrally concentrated distribution of stars, both in single and in binary systems. Occasionally, these stars are perturbed onto orbits that bring them close to the SMBH. If the star is in a binary system, the three-body interaction with the SMBH can lead to large changes in orbital energy, depositing one of the two stars on a tightly-bound orbit, and its companion into a hyperbolic orbit that may escape the galaxy. In this Letter, we show that the disruption of solitary stars can also lead to large positive increases in orbital energy. The kick velocity depends on the amount of mass the star loses at pericenter, but not on the ratio of black hole to stellar mass, and are at most the star's own escape velocity. We find that these kicks are usually too small to result in the ejection of stars from the Milky Way, but can eject the stars from the black hole's sphere of influence, reducing their probability of being disrupted again. We estimate that {\\mathord {\\sim }} 10^5 stars, {\\mathord {\\sim }} 1% of all stars within 10 pc of the galactic center, are likely to have had mass removed by the central black hole through tidal interaction, and speculate that these "turbovelocity" stars will at first be redder, but eventually bluer, and always brighter than their unharassed peers.

  19. A Search for Giant Planet Companions to T Tauri Stars

    DTIC Science & Technology

    2012-12-20

    yielded a spectral resolving power of R ≡ (λ/Δλ) ≈ 60,000. Integration times were typically 1800 s (depending on conditions) and typical seeing was∼2...wavelength regions. This suggests different physical mechanisms underlying the optical and the K-band variability. Key words: planets and satellites ...the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

  20. A hybrid method for accurate star tracking using star sensor and gyros.

    PubMed

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  1. Effective star tracking method based on optical flow analysis for star trackers.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng

    2016-12-20

    Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.

  2. Managing the star performer.

    PubMed

    Hills, Laura

    2013-01-01

    Our culture seems to be endlessly fascinated with its stars in entertainment, athletics, politics, and business, and holds fast to the idea that extraordinary talent accounts for an individual's extraordinary performance. At first glance, managing a star performer in your medical practice may seem like it would be an easy task. However, there's much more to managing a star performer than many practice managers realize. The concern is how to keep the star performer happy and functioning at a high level without detriment to the rest of the medical practice team. This article offers tips for practice managers who manage star performers. It explores ways to keep the star performer motivated, while at the same time helping the star performer to meld into the existing medical practice team. This article suggests strategies for redefining the star performer's role, for holding the star performer accountable for his or her behavior, and for coaching the star performer. Finally, this article offers practical tips for keeping the star performer during trying times, for identifying and cultivating new star performers, and for managing medical practice prima donnas.

  3. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  4. The Destructive Birth of Massive Stars and Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  5. Initial data for black hole-neutron star binaries, with rotating stars

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2016-11-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole-neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.

  6. Merging strangeon stars

    NASA Astrophysics Data System (ADS)

    Lai, Xiao-Yu; Yu, Yun-Wei; Zhou, En-Ping; Li, Yun-Yang; Xu, Ren-Xin

    2018-02-01

    The state of supranuclear matter in compact stars remains puzzling, and it is argued that pulsars could be strangeon stars. What would happen if binary strangeon stars merge? This kind of merger could result in the formation of a hyper-massive strangeon star, accompanied by bursts of gravitational waves and electromagnetic radiation (and even a strangeon kilonova explained in the paper). The tidal polarizability of binary strangeon stars is different from that of binary neutron stars, because a strangeon star is self-bound on the surface by the fundamental strong force while a neutron star by the gravity, and their equations of state are different. Our calculation shows that the tidal polarizability of merging binary strangeon stars is favored by GW170817. Three kinds of kilonovae (i.e., of neutron, quark and strangeon) are discussed, and the light curve of the kilonova AT 2017 gfo following GW170817 could be explained by considering the decaying strangeon nuggets and remnant star spin-down. Additionally, the energy ejected to the fireball around the nascent remnant strangeon star, being manifested as a gamma-ray burst, is calculated. It is found that, after a prompt burst, an X-ray plateau could follow in a timescale of 102 ‑ 103 s. Certainly, the results could be tested also by further observational synergies between gravitational wave detectors (e.g., Advanced LIGO) and X-ray telescopes (e.g., the Chinese HXMT satellite and eXTP mission), and especially if the detected gravitational wave form is checked by peculiar equations of state provided by the numerical relativistical simulation.

  7. False star detection and isolation during star tracking based on improved chi-square tests.

    PubMed

    Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Yang, Yanqiang; Su, Guohua

    2017-08-01

    The star sensor is a precise attitude measurement device for a spacecraft. Star tracking is the main and key working mode for a star sensor. However, during star tracking, false stars become an inevitable interference for star sensor applications, which may result in declined measurement accuracy. A false star detection and isolation algorithm in star tracking based on improved chi-square tests is proposed in this paper. Two estimations are established based on a Kalman filter and a priori information, respectively. The false star detection is operated through adopting the global state chi-square test in a Kalman filter. The false star isolation is achieved using a local state chi-square test. Semi-physical experiments under different trajectories with various false stars are designed for verification. Experiment results show that various false stars can be detected and isolated from navigation stars during star tracking, and the attitude measurement accuracy is hardly influenced by false stars. The proposed algorithm is proved to have an excellent performance in terms of speed, stability, and robustness.

  8. Perfil de temperatura dos funis magnetosféricos de estrelas T Tauri com aquecimento alfvênico

    NASA Astrophysics Data System (ADS)

    Vasconcelos, M. J.

    2003-08-01

    Estrelas T Tauri Clássicas são objetos jovens circundados por discos de gás e poeira e que apresentam uma intensa atividade magnética. Seu espectro mostra linhas de emissão alargadas que são razoavelmente reproduzidas nos modelos de acresção magnetosférica. No entanto, o perfil de temperatura dos funis magnéticos é desconhecido. Aquecimento magnético compressional e difusão ambipolar foram considerados para estas estruturas, porém as temperaturas obtidas não são suficientes para explicar as observações. Neste trabalho, examinamos o aquecimento gerado pelo amortecimento de ondas Alfvén através de quatro mecanismos, os amortecimentos não-linear, turbulento, viscoso-resistivo e colisional como função da freqüência da onda. Inicialmente, a temperatura é ajustada para reproduzir as observações e o grau de turbulência requerido para que o mecanismo seja viável é calculado. Os resultados mostram que este é compatível com os dados observacionais. Apresentam-se, também, resultados preliminares do cálculo auto-consistente do perfil de temperatura dos funis, levando-se em conta fontes de aquecimento Alfvênica e fontes de resfriamento.

  9. THE PREVALENCE AND IMPACT OF WOLF–RAYET STARS IN EMERGING MASSIVE STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy

    We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point inmore » the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.{sup 4} We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ∼50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.« less

  10. Egyptian "Star Clocks"

    NASA Astrophysics Data System (ADS)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  11. Coronal Element Abundances of the Post-Common Envelope Binary V471 Tauri with ASCA

    NASA Technical Reports Server (NTRS)

    Still, Martin; Hussain, Gaitee; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report on ASCA observations of the coronally active companion star in the post-common envelope binary V471 Tau. While it would be prudent to check the following results with grating spectroscopy, we find that a single-temperature plasma model does not fit the data. Two temperature models with variable abundances indicate that Fe is underabundant compared to the Hyades photospheric mean, whereas, the high first ionization potential element Ne is overabundant. This is indicative of the inverse first ionization effect, believed to result from the fractionation of ionized material by the magnetic field in the upper atmosphere of the star. Evolutionary calculations indicate that there should be no peculiar abundances on the companion star resulting from the common envelope epoch. Indeed, we find no evidence for peculiar abundances, although uncertainties are high.

  12. Ponderable soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The theory of Lee and Pang (1987), who obtained solutions for soliton stars composed of zero-temperature fermions and bosons, is applied here to quark soliton stars. Model soliton stars based on a simple physical model of the proton are computed, and the properties of the solitons are discussed, including the important problem of the existence of a limiting mass and thus the possible formation of black holes of primordial origin. It is shown that there is a definite mass limit for ponderable soliton stars, so that during cooling a soliton star might reach a stage beyond which no equilibrium configuration exists and the soliton star probably will collapse to become a black hole. The radiation of ponderable soliton stars may alter the short-wavelength character of the cosmic background radiation, and may be observed as highly redshifted objects at z of about 100,000.

  13. Approximate universal relations for neutron stars and quark stars

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2017-04-01

    Neutron stars and quark stars are ideal laboratories to study fundamental physics at supra nuclear densities and strong gravitational fields. Astrophysical observables, however, depend strongly on the star's internal structure, which is currently unknown due to uncertainties in the equation of state. Universal relations, however, exist among certain stellar observables that do not depend sensitively on the star's internal structure. One such set of relations is between the star's moment of inertia (I), its tidal Love number (Love) and its quadrupole moment (Q), the so-called I-Love-Q relations. Similar relations hold among the star's multipole moments, which resemble the well-known black hole no-hair theorems. Universal relations break degeneracies among astrophysical observables, leading to a variety of applications: (i) X-ray measurements of the nuclear matter equation of state, (ii) gravitational wave measurements of the intrinsic spin of inspiraling compact objects, and (iii) gravitational and astrophysical tests of General Relativity that are independent of the equation of state. We here review how the universal relations come about and all the applications that have been devised to date.

  14. Infrared observations of anonymous IRC sources

    NASA Technical Reports Server (NTRS)

    Strecker, D. W.; Ney, E. P.

    1974-01-01

    Infrared (0.9 to 18 microns) observations of 232 anonymous 2-micron Sky survey (IRC) sources are reported. Most of the objects appear to be late-type stars with little or no long-wave excess. About ten percent exhibit large excesses. Thirty-one of the brightest 11-micron sources have been remeasured to determine variability. These brighter objects appear to fall into two groups; one group resembles NML Tauri, while the other is like NML Cygni.

  15. Star tracking method based on multiexposure imaging for intensified star trackers.

    PubMed

    Yu, Wenbo; Jiang, Jie; Zhang, Guangjun

    2017-07-20

    The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.

  16. Producing Runaway Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    How are the hypervelocity stars weve observed in our galaxy produced? A recent study suggests that these escapees could be accelerated by a massive black hole in the center of the Large Magellanic Cloud.A Black Hole SlingshotSince their discovery in 2005, weve observed dozens of candidate hypervelocity stars stars whose velocity in the rest frame of our galaxy exceeds the local escape velocity of the Milky Way. These stars present a huge puzzle: how did they attain these enormous velocities?One potential explanation is known as the Hills mechanism. In this process, a stellar binary is disrupted by a close encounter with a massive black hole (like those thought to reside at the center of every galaxy). One member of the binary is flung out of the system as a result of the close encounter, potentially reaching very large velocities.A star-forming region known as LHA 120-N 11, located within the LMC. Some binary star systems within the LMC might experience close encounters with a possible massive black hole at the LMCs center. [ESA/NASA/Hubble]Blame the LMC?Usually, discussions of the Hills mechanism assume that Sagittarius A*, the supermassive black hole at the center of the Milky Way, is the object guilty of accelerating the hypervelocity stars weve observed. But what if the culprit isnt Sgr A*, but a massive black hole at the center of the Large Magellanic Cloud (LMC), one of the Milky Ways satellite galaxies?Though we dont yet have evidence of a massive black hole at the center of the LMC, the dwarf galaxy is large enough to potentially host one as large as 100,000 solar masses. Assuming that it does, two scientists at the University of Cambridge, Douglas Boubert and Wyn Evans, have now modeled how this black hole might tear apart binary star systems and fling hypervelocity stars around the Milky Way.Models for AccelerationBoubert and Evans determined that the LMCs hypothetical black hole could easily eject stars at ~100 km/s, which is the escape velocity of the

  17. B- and A-Type Stars in the Taurus-Auriga Star-Forming Region

    NASA Technical Reports Server (NTRS)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), t Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  18. Understand B-type stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    When observations of B stars made from space are added to observations made from the ground and the total body of observational information is confronted with theoretical expectations about B stars, it is clear that nonthermal phenomena occur in the atmospheres of B stars. The nature of these phenomena and what they imply about the physical state of a B star and how a B star evolves are examined using knowledge of the spectrum of a B star as a key to obtaining an understanding of what a B star is like. Three approaches to modeling stellar structure (atmospheres) are considered, the characteristic properties of a mantle, and B stars and evolution are discussed.

  19. Dense Axion Stars.

    PubMed

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  20. By Draconis Stars

    NASA Astrophysics Data System (ADS)

    Bopp, Bernard W.

    An optical spectroscopic survey of dK-M stars has resulted in the discovery of several new H-alpha emission objects. Available optical data suggest these stars have a level of chromospheric activity midway between active BY Dra stars and quiet dM's. These "marginal" BY Dra stars are single objects that have rotation velocities slightly higher than that of quiet field stars but below that of active flare/BY Dra objects. The marginal BY Dra stars provide us with a class of objects rotating very near a "trigger velocity" (believed to be 5 km/s) which appears to divide active flare/BY Dra stars from quiet dM's. UV data on Mg II emission fluxes and strength of transition region features such as C IV will serve to fix activity levels in the marginal objects and determine chromosphere and transition-region heating rates. Simultaneous optical magnetic field measures will be used to explore the connection between fieldstrength/filling-factor and atmospheric heating. Comparison of these data with published information on active and quiet dM stars will yield information on the character of the stellar dynamo as it makes a transition from "low" to "high" activity.

  1. GASPS--A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics

    NASA Technical Reports Server (NTRS)

    Dent, W.R.F.; Thi, W. F.; Kamp, I.; Williams, J. P.; Menard, F.; Andrews, S.; Ardila, D.; Aresu, G.; Augereau, J.-C.; Barrado y Navascues, D.; hide

    2013-01-01

    We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted approx. 250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 micron the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 micron, [CII] at 157 µm, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 micron. Additionally, GASPS included continuum photometry at 70, 100 and 160 micron, around the peak of the dust emission. The targets were SED Class II– III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarize some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 micron was the brightest line seen in almost all objects, by a factor of 10. Overall [OI] 63 micron detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI] 63 µm detection of approx.10(exp -5) Solar M.. Normalizing to a distance of 140 pc, 84% of objects with dust masses =10 (exp -5) Solar M can be detected in this line in the present survey; 32% of those of mass 10(exp -6) – 10 (exp -5) Solar M, and only a very small number

  2. GASPS—A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics

    NASA Astrophysics Data System (ADS)

    Dent, W. R. F.; Thi, W. F.; Kamp, I.; Williams, J. P.; Menard, F.; Andrews, S.; Ardila, D.; Aresu, G.; Augereau, J.-C.; Barrado y Navascues, D.; Brittain, S.; Carmona, A.; Ciardi, D.; Danchi, W.; Donaldson, J.; Duchene, G.; Eiroa, C.; Fedele, D.; Grady, C.; de Gregorio-Molsalvo, I.; Howard, C.; Huélamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mathews, G.; Meeus, G.; Mendigutía, I.; Montesinos, B.; Morales-Calderon, M.; Mora, A.; Nomura, H.; Pantin, E.; Pascucci, I.; Phillips, N.; Pinte, C.; Podio, L.; Ramsay, S. K.; Riaz, B.; Riviere-Marichalar, P.; Roberge, A.; Sandell, G.; Solano, E.; Tilling, I.; Torrelles, J. M.; Vandenbusche, B.; Vicente, S.; White, G. J.; Woitke, P.

    2013-05-01

    We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted ~250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 μm the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 μm, [CII] at 157 μm, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 μm. Additionally, GASPS included continuum photometry at 70, 100 and 160 μm, around the peak of the dust emission. The targets were SED Class II-III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 μm was the brightest line seen in almost all objects, by a factor of ~10. Overall [OI]63 μm detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI]63 μm detection of ~10-5 Msolar. Normalising to a distance of 140 pc, 84% of objects with dust masses >=10-5 Msolar can be detected in this line in the present survey; 32% of those of mass 10-6-10-5 Msolar, and only a very small number of unusual objects with lower masses can be detected. This is

  3. Atoms, Stars, and Nebulae

    NASA Astrophysics Data System (ADS)

    Aller, Lawrence H.

    1991-09-01

    1. Introducing stars and nebulae; 2. Stellar rainbows; 3. Atoms and molecules; 4. The climate in a stellar atmosphere; 5. Analysing the stars; 6. Dwarfs, giants, and supergiants; 7. What makes a star shine?; 8. The youth and middle age of a common star; 9. Wind, dust and pulsations; 10. A star's last hurray?; 11. The interstellar medium and gaseous nebulae; 12. Uncommon stars and their sometimes violent behaviour; 13. High energy astronomy.

  4. NuSTAR Captures the Beat of a Dead Star Animation

    NASA Image and Video Library

    2014-10-08

    The brightest pulsar detected to date is shown in this frame from an animation that flips back and forth between images captured by NASA NuSTAR. A pulsar is a type of neutron star, the leftover core of a star that exploded in a supernova.

  5. Hidden Milky Way star clusters hosting Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Kurtev, R.; Borissova, J.; Ivanov, V. D.; Georgiev, L.

    2009-05-01

    A noticeable fraction of the hidden young star clusters contain WR and O stars providing us with unique laboratories to study the evolution of these rare objects and their maternity places. We are reporting the reddening, the distance and age of two new members of the family of massive young Galactic clusters, hosting WR stars - Glimpse 23 and Glimpse 30.

  6. THE GAS/DUST RATIO OF CIRCUMSTELLAR DISKS: TESTING MODELS OF PLANETESIMAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, David; Gibb, Erika; Rettig, Terrence W.

    2012-07-20

    We present high-resolution, near-infrared NIRSPEC observations of CO absorption toward six class II T Tauri stars: AA Tau, DG Tau, IQ Tau, RY Tau, CW Tau, and Haro 6-5b. {sup 12}CO overtone absorption lines originating from the circumstellar disk of each object were used to calculate line-of-sight gas column densities toward each source. We measured the gas/dust ratio as a function of disk inclination, utilizing measured visual extinctions and inclinations for each star. The majority of our sources show further evidence for a correlation between the gas/dust column density ratio and disk inclination similar to that found by Rettig etmore » al.« less

  7. Star-formation rate in compact star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Izotova, I. Y.; Izotov, Y. I.

    2018-03-01

    We use the data for the Hβ emission-line, far-ultraviolet (FUV) and mid-infrared 22 μm continuum luminosities to estimate star formation rates < SFR > averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking < SFR > and the star formation rate SFR0 derived from the Hβ luminosity at zero starburst age is found to be 0.04. We compare < SFR > s with some commonly used SFRs which are derived adopting a continuous star formation during a period of {˜} 100 Myr, and find that the latter ones are 2-3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for < SFR > determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of {˜} 2 of the < SFR > averaged over the lifetime of the bursting compact galaxy.

  8. I-Love-Q: unexpected universal relations for neutron stars and quark stars.

    PubMed

    Yagi, Kent; Yunes, Nicolás

    2013-07-26

    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star's internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star's internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.

  9. Pulsating Stars in the ASAS-3 Database. I. beta Cephei Stars

    NASA Astrophysics Data System (ADS)

    Pigulski, A.

    2005-06-01

    We present results of an analysis of the ASAS-3 data for short-period variables from the recently published catalog of over 38000 stars. Using the data available in the literature we verify the results of the automatic classification related to \\beta Cep pulsators. In particular, we find that 14 stars in the catalog can be classified unambiguously as new beta Cep stars. By means of periodogram analysis we derive the frequencies and amplitudes of the excited modes. The main modes in the new beta Cep stars have large semi-amplitudes, between 35 and 80 mmag. Up to four modes were found in some stars. Two (maybe three) new beta Cep stars are members of southern young open clusters: ASAS 164409-4719.1 belongs to NGC 6200, ASAS 164630-4701.2 is a member of Hogg 22, and ASAS 164939-4431.7 could be a member of NGC 6216. We also analyze the photometry of four known beta Cep stars in the ASAS-3 catalog, namely IL Vel, NSV 24078, V1449 Aql and SY Equ. Finally, we discuss the distribution of beta Cep stars in the Galaxy.

  10. Age-Defying Star

    NASA Image and Video Library

    2016-08-29

    An age-defying star called IRAS 19312+1950 exhibits features characteristic of a very young star and a very old star. The object stands out as extremely bright inside a large, chemically rich cloud of material, as shown in this image from NASA's Spitzer Space Telescope. IRAS 19312+1950 is the bright red star in the center of this image. A NASA-led team of scientists thinks the star -- which is about 10 times as massive as our sun and emits about 20,000 times as much energy -- is a newly forming protostar. That was a big surprise, because the region had not been known as a stellar nursery before. But the presence of a nearby interstellar bubble, which indicates the presence of a recently formed massive star, also supports this idea. http://photojournal.jpl.nasa.gov/catalog/PIA20914

  11. A surprise at the bottom of the main sequence: Rapid rotation and NO H-alpha emission

    NASA Technical Reports Server (NTRS)

    Basri, Gibor; Marcy, Geoffrey W.

    1995-01-01

    We report Kech Observatory high-resolution echelle spectra from 640-850 nm for eight stars near the faint end of the main sequence. These spectra are the highest resolution spectra of such late-type stars, and clearly resolve the TiO, VO, and atomic lines. The sample includes the field brown-dwarf candidate, BRI 0021-0214 (M9.5+). Very unexpectedly, it shows the most rapid rotation in the entire samples, v sin i approximately 40 km/s, which is 20x faster than typical field nonemission M stars. Equally surprising is that BRI 0021 exhibits no emission or absorptionat H-alpha. We argue that this absence is not simply due to its cool photosphere, but that stellar activity declines in a fundamental way at the end of the main sequence. As it is the first very late M dwarf observed at high spectral resolution, BRI 0021 may be signaling a qualitative change in the angular momentum loss rate among the lowest mass stars. Conventionally, its rapid rotation would have marked BRI 0021 as very young, consistent with the selection effect which arises if the latest-type dwarfs are really brown dwarfs on cooling curves. In any case, it is unprecedented to find no sign of stellar activity in such a rapidly rotating convective star. We also discuss the possible conflict between this observation and the extremely strong H-alpha seen in another very cool star, PC 0025+0447. Extrapolation of M-L relations for BRI 0021 yields M approximately 0.065 solar mass, and the other sample objects have expected masses near the H-burning limit. These include two Pleiades brown-dwarf candidates, four field M6 dwarfs and one late-type T Tauri star. The two Pleiades M6 dwarfs have v sin i of 26 and 37 km/s, H-alpha in emission, and radial velocities consistent with Pleiades M6 dwarfs have v sin i of 26 and 37 km/s, H-alpha in emission, and radial velocities consistent with Pleiades membership. Similarly, the late-type T Tauri star has v sin i approximately 30 km/s and H alpha emission indicate of its

  12. Fotometría infrarroja del Reloj de Arena en M8

    NASA Astrophysics Data System (ADS)

    Arias, J.; Barbá, R.; Morrell, N.; Rubio, M.

    We present sub-arcsecond resolution JHKs imaging of the Hourglass Nebula in Messier 8, obtained with the 2.5-m du Pont telescope at Las Campanas Observatory (LCO), Chile. Near-infrared colors have been measured for numerous infrared sources around the O-type star Herschel 36 (O7 V), the brightest source in the field and main responsible for the nebula ionization. Several of those IR sources are identified as Hα emission stars from narrow-band Hubble Space Telescope images, and some of them display a knotty shape, characteristic of proplyd-like objects. Based on the NIR color-color and color-magnitude diagrams, we also identified dozens of NIR excess sources which %we selected as are prime candidates to be intermediate and low-mass pre-main-sequence stars. Additionally, we present preliminary results of the spectroscopic confirmation of some T Tauri stars among these objects, based on spectra recently obtained with the 6.5-m Magellan telescope at LCO.

  13. Massive Stars and Star Clusters in the Era of JWST

    NASA Astrophysics Data System (ADS)

    Klein, Richard

    Massive stars lie at the center of the web of physical processes that has shaped the universe as we know it, governing the evolution of the interstellar medium of galaxies, producing a majority of the heavy elements, and thereby determining the evolution of galaxies. Massive stars are also important as signposts, since they produce most of the light and almost all the ionizing radiation in regions of active star formation. A significant fraction of all stars form in massive clusters, which will be observable throughout the visible universe with JWST. Their luminosities are so high that the pressure of their light on interstellar dust grains is likely the dominant feedback mechanism regulating their formation. While this process has been studied in the local Universe, much less attention has been focused on how it behaves at high redshift, where the dust abundance is much lower due to the overall lower abundance of heavy elements. The high redshift Universe also differs from the nearby one in that observations imply that high redshift star formation occurs at significantly higher densities than are typically found locally. We propose to simulate the formation of individual massive stars from the high redshift universe to the present day universe spanning metallicities ranging from 0.001 to 1.0 and column densities from 0.1to 30.0 g/cm2 focusing on how the process depends on both the dust abundance and on the density of the star-forming gas. These simulations will be among the first to treat the formation of Population II stars, which form in regions of low metallicity. Based on these results, we shall then simulate the formation of clusters of stars across also cosmic time, both of moderate mass, such as the Orion Nebula Cluster, and of high mass, such as the super star clusters seen in starburst galaxies. These state-of-the-art simulations will be carried out using our newly developed advanced techniques in our radiation-magneto-hydrodynamic AMR code ORION, for

  14. WR and LBV stars

    NASA Astrophysics Data System (ADS)

    Kochiashvili, Nino; Beradze, Sophie; Kochiashvili, Ia; Natsvlishvili, Rezo; Vardosanidze, Manana

    Evolutionary scenarios of massive stars were revised in recent decades, after finding "unusual", blue progenitor of SN 1987A and after detecting the more massive stars than the accepted 120 M ⊙ maximum limit of stellar masses. A very important relation exists between WR and LBV stars. They represent the earlier, pre-SN evolutionary states of massive stars. WR and LBV stars and "classic" evolutionary scheme of the relation between the different type massive stars are discussed in this article. There also exist the newest evolutionary scenarios for low metallicity massive stars, which give us a different picture of their post main-sequence evolution. There is a rather good tradition of observations and investigations of massive stars at Abastumani Astrophysical Observatory. The authors discuss the new findings on the fate of P Cygni, the LBV star. These results on the reddening of the star and about its next possible outburst in the near future were obtained on the basis of UBV long-term electrophotometric observations of P Cygni by Eugene Kharadze and Nino Magalashvili. The observations were held in 1951-1983 at Abastumani Observatory using 33-cm and 48-cm reflectors.

  15. Star Clusters within FIRE

    NASA Astrophysics Data System (ADS)

    Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.

    2017-01-01

    In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.

  16. Spectrophotometry of Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Boyd, David

    2017-06-01

    Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionises the nebula producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  17. Stars and Flowers, Flowers and Stars

    NASA Astrophysics Data System (ADS)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  18. A Star Close Encounter

    NASA Image and Video Library

    2006-10-03

    The potential planet-forming disk (or "protoplanetary disk") of a sun-like star is being violently ripped away by the powerful winds of a nearby hot O-type star in this image from NASA's Spitzer Space Telescope. At up to 100 times the mass of sun-like stars, O stars are the most massive and energetic stars in the universe. The O star can be seen to the right of the image, as the large orange spot with the white center. To the left, the comet-like structure is actually a neighboring solar system that is being destroyed by the O star's powerful winds and intense ultraviolet light. In a process called "photoevaporation," immense output from the O star heats up the nearby protoplanetary disk so much that gas and dust boil off, and the disk can no longer hold together. Photon (or light) blasts from the O star then strip the potential planet-forming disk off its neighbor star by blowing away evaporated material. This effect is illustrated in the smaller system's comet-like structure. The system is located about 2,450 light-years away in the star-forming cloud IC 1396. The image was taken with Spitzer's multiband imaging photometer instrument at 24 microns. The picture is a pseudo-color stretch representing intensity. Yellow and white represent hot areas, whereas purple and blue represent relatively cooler, fainter regions.

  19. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy

    NASA Astrophysics Data System (ADS)

    Case, S.

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets.

  20. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy.

    PubMed

    Case, Stephen

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  2. Descendants of the first stars: the distinct chemical signature of second generation stars

    NASA Astrophysics Data System (ADS)

    Hartwig, Tilman; Yoshida, Naoki; Magg, Mattis; Frebel, Anna; Glover, Simon C. O.; Gómez, Facundo A.; Griffen, Brendan; Ishigaki, Miho N.; Ji, Alexander P.; Klessen, Ralf S.; O'Shea, Brian W.; Tominaga, Nozomu

    2018-05-01

    Extremely metal-poor (EMP) stars in the Milky Way (MW) allow us to infer the properties of their progenitors by comparing their chemical composition to the metal yields of the first supernovae. This method is most powerful when applied to mono-enriched stars, i.e. stars that formed from gas that was enriched by only one previous supernova. We present a novel diagnostic to identify this subclass of EMP stars. We model the first generations of star formation semi-analytically, based on dark matter halo merger trees that yield MW-like halos at the present day. Radiative and chemical feedback are included self-consistently and we trace all elements up to zinc. Mono-enriched stars account for only ˜1% of second generation stars in our fiducial model and we provide an analytical formula for this probability. We also present a novel analytical diagnostic to identify mono-enriched stars, based on the metal yields of the first supernovae. This new diagnostic allows us to derive our main results independently from the specific assumptions made regarding Pop III star formation, and we apply it to a set of observed EMP stars to demonstrate its strengths and limitations. Our results may provide selection criteria for current and future surveys and therefore contribute to a deeper understanding of EMP stars and their progenitors.

  3. The Star Formation History of Orion and its Environs

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria

    2002-01-01

    a few at 18 micrometers. With these data, combined with our optical and JHKL photometry, we will construct spectral energy distributions. This will allow us to begin studying the structure of disks around low mass T Tauri stars in the distributed population of the Orion clouds, for direct comparison with that of Taurus. Ours is the first determination of the infrared emission of protoplanetary disks around low mass stars in the Orion region.

  4. Lifestyles of the Stars.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Cocoa Beach, FL. John F. Kennedy Space Center.

    Some general information on stars is provided in this National Aeronautics and Space Administration pamphlet. Topic areas briefly discussed are: (1) the birth of a star; (2) main sequence stars; (3) red giants; (4) white dwarfs; (5) neutron stars; (6) supernovae; (7) pulsars; and (8) black holes. (JN)

  5. Introduction to neutron stars

    NASA Astrophysics Data System (ADS)

    Lattimer, James M.

    2015-02-01

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  6. Introduction to neutron stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lattimer, James M.

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts canmore » set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.« less

  7. Magnetized anisotropic stars

    NASA Astrophysics Data System (ADS)

    Stelea, Cristian; Dariescu, Marina-Aura; Dariescu, Ciprian

    2018-05-01

    We extend a known solution-generating technique for isotropic fluids in order to construct more general models of anisotropic stars with poloidal magnetic fields. In particular, we discuss the magnetized versions of some well-known exact solutions describing anisotropic stars and dark energy stars, and we describe some of their properties.

  8. The Drifting Star

    NASA Astrophysics Data System (ADS)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  9. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionarymore » tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.« less

  10. Wolf-Rayet stars as starting points or as endpoints of the evolution of massive stars?

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.; Maeder, A.; Schmutz, W.; Cassinelli, J. P.

    1991-01-01

    The paper investigates the evidence for the two interpretations of Wolf-Rayet stars suggested in the literature: (1) massive premain-sequence stars with disks and (2) massive stars which have lost most of their H-rich layers in a stellar wind is investigated. The abundance determinations which are done in two different ways and which lead to different conclusions are discussed. The composition is solar, which would suggest interpretation (1), or the CNO abundances are strongly anomalous, which would suggest interpretation (2). Results from evolutionary calculations, stellar statistics, the existence of Ofpe/WN9 transition stars and W-R stars with evolved companions show overwhelming evidence that W-R stars are not premain-sequence stars but that they are in a late stage of evolution. Moreover, the fact that W-R stars are usually in clear regions of space, whereas massive premain-sequence stars are embedded in ultracompact H II regions also shows that W-R stars are not young premain-sequence stars.

  11. The Magnetic Properties of Galactic OB Stars from the Magnetism in Massive Stars Project

    NASA Astrophysics Data System (ADS)

    Wade, Gregg A.; Grunhut, Jason; Petit, Veronique; Neiner, Coralie; Alecian, Evelyne; Landstreet, John; MiMeS Collaboration

    2013-06-01

    The Magnetism in Massive Stars (MiMeS) project represents the largest systematic survey of stellar magnetism ever undertaken. Comprising nearly 4500 high resolution polarised spectra of nearly 550 Galactic B and O-type stars, the MiMeS survey aims to address interesting and fundamental questions about the magnetism of hot, massive stars: How and when are massive star magnetic fields generated, and how do they evolve throughout stellar evolution? How do magnetic fields couple to and interact with the powerful winds of OB stars, and what are the consequences for the wind structure, momentum flux and energetics? What are the detailed physical mechanisms that lead to the anomalously slow rotation of many magnetic massive stars? What is the ultimate impact of stellar magnetic fields -- both direct and indirect -- on the evolution of massive stars? In this talk we report results from the analysis of the B-type stars observed within the MiMeS survey. The sample consists of over 450 stars ranging in spectral type from B9 to B0, and in evolutionary stage from the pre-main sequence to the post-main sequence. In addition to general statistical results concerning field incidence, strength and topology, we will elaborate our conclusions for subsamples of special interest, including the Herbig and classical Be stars, pulsating B stars and chemically peculiar B stars.

  12. A new method for determining which stars are near a star sensor field-of-view

    NASA Technical Reports Server (NTRS)

    Yates, Russell E., Jr.; Vedder, John D.

    1991-01-01

    A new method is described for determining which stars in a navigation star catalog are near a star sensor field of view (FOV). This method assumes that an estimate of spacecraft inertial attitude is known. Vector component ranges for the star sensor FOV are computed, so that stars whose vector components lie within these ranges are near the star sensor FOV. This method requires no presorting of the navigation star catalog, and is more efficient than tradition methods.

  13. An X-ray Observation of the L1251 Dark Cloud

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2006-01-01

    An X-ray image of the L1251 dark cloud in Cepheus was obtained with the XMM-Newton telescope. More than three dozen sources were detected above a 3 delta limit in X-ray luminosity of L(sub X = 10(exp 29) ergs/s. Among the detections are eight optically visible T Tauri stars, which had been identified in earlier work from their emission at H(alpha). The two strongest X-ray sources have steady luminosities of L(sub X) approx. 10(exp 31) ergs/s and are at the saturation limit for X-ray activity in late-type stars, L(sub X)/L(sub bol) approx. 10(exp -3). X-ray emission was also observed from two CO emission cores in L1251, core C (L1251A) and core E (L1251B). Both regions contain high-velocity molecular gas, bright IRAS sources (Class I protostars), thermal radio sources, and Herbig-Haro (HH) jets. In L1251A strong X-ray emission was discovered in close proximity to the near-inbred and radio source IRSA/VLA 7 and to IRAS 22343+7501. IRSA/VLA 7 thus appears to be the most likely source of the molecular and HH outflows in L1251A. In L1251B X-ray emission was observed from a visible T Tauri star, KP2-44, which is thought to be the driving source for HH 189. Also reported is the tentative detection of X-ray emission from VLA 3, a thermal radio continuum source in L1251B that is closely associated with the extreme Class I protostar IRAS 22376+7455.

  14. Probing jets from young embedded sources

    NASA Astrophysics Data System (ADS)

    Nisini, Brunella

    2017-08-01

    Jets are intimately related to the process of star formation and disc accretion. Our present knowledge of this key ingredient in protostars mostly relies on observations of optical jets from T Tauri stars, where the original circumstellar envelope has been already cleared out. However, to understand how jets are originally formed and how their properties evolve with time, detailed observations of young accreting protostars, i.e. the class 0/I sources, are mandatory. The study of class0/I jets will be revolutionised by JWST, able to penetrate protostars dusty envelopes with unprecedented sensitivity and resolution. However, complementary information on parameters inferred from lines in different excitation regimes, for at least a representative sample of a few bright sources, is essential for a correct interpretation of the JWST results. Here we propose to observe four prototype bright jets from class0/I sources with the WFC3 in narrow band filters in order to acquire high angular resolution images in the [OI]6300A, [FeII]1.25 and [FeII]1.64um lines. These images will be used to: 1) provide accurate extinction maps of the jets that will be an important archival reference for any future observation on these jets. 2) measure key parameters as the mass flux, the iron abundance and the jet collimation on the hot gas component of the jets. These information will provide an invaluable reference frame for a comparison with similar parameters measured by JWST in a different gas regime. In addition, these observations will allow us to confront the properties of class 0/I jets with those of the more evolved T Tauri stars.

  15. Sizing up the stars

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha S.

    For the main part of this dissertation, I have executed a survey of nearby, main sequence A, F, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars to better than 4% accuracy. The results of these observations also yield empirical determinations of stellar linear radii and effective temperatures for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale isochrones to constrain the masses and ages of the stars. These quantities are compared to the results found in Allende Prieto & Lambert (1999), Holmberg et al. (2007), and Takeda (2007), who indirectly determine these same properties by fitting models to observed photometry. I find that for most cases, the models underestimate the radius of the star by ~ 12%, while in turn they overestimate the effective temperature by ~ 1.5-4%, when compared to my directly measured values, with no apparent correlation to the star's metallicity or color index. These overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the star's surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~ 1.3 [Special characters omitted.] . Alternatively, these quantities I measure are also compared to direct measurements from a large sample of eclipsing binary stars in Andersen (1991), and excellent agreement is seen within both data sets. Finally, a multi-parameter solution is found to fit color-temperature-metallicity values of the stars in this sample to provide a new calibration of the effective temperature scale for these types of stars. Published work in the field of stellar interferometry and optical spectroscopy of early-type stars are presented in Appendix D and E, respectively. INDEX WORDS: Interferometry, Infrared, Stellar Astronomy, Fundamental Properties, Effective Temperatures, Stellar Radii

  16. Which of Kepler's Stars Flare?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  17. The Evolution of Carbon Stars

    NASA Astrophysics Data System (ADS)

    Chan, S. Josephine

    1993-04-01

    This dissertation is concerned with the nature of the carbon stars, unusual late-type stars in which the abundance of carbon in the photosphere is greater than that of oxygen. Data from the Infrared Astronomical Satellite (IRAS) survey has shown that carbon stars which were identified from optical surveys and those identified from the SiC dust features in their IRAS Low Resolution Spectrometer LRS spectra have different IRAS colours. The former (which will be referred to as visual carbon stars) are visually bright and have large excesses at 6 microns, while the latter group (which will be referred to as infrared carbon stars) have blackbody energy distributions. The origin of visual carbon stars has been discussed by Chan and Kwok (1988) based on the hypothesis of Willems and de Jong (1988). A complete sample of visual carbon stars detected by IRAS with 12 microns flux densities greater than 5 Jy was selected, and 207 LRS spectra were extracted for those sources without previous \\lrs data. Of these, 152 sources had new LRS spectra with reasonably good signal-to-noise ratio and 575 sources had previously released LRS spectra. All these spectra have been classified with the scheme of Volk and Cohen (1989). When the LRS spectra of these 727 IRAS CCGCS sources were examined, 15 were found to show the 9.7 microns silicate emission feature which is expected to occur only in an oxygen-rich circumstellar shell. Eight of these are reported for the first time in this dissertation. This group of visual carbon stars (hereafter called silicate carbon stars) may represent transition objects between oxygen-rich and carbon stars on the asymptotic giant branch (AGB) because the photosphere is carbon-rich while the circumstellar material resembles that from a typical M-type star. A radiative transfer dust shell model for these silicate carbon stars is presented. The model spectra produce excellent fits to the observed energy distributions of these silicate carbon stars. The J

  18. Symbiotic stars

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  19. Be Stars in M31

    NASA Astrophysics Data System (ADS)

    Peters, Matthew L.; Wisniewski, John; Choi, Yumi; Williams, Ben; Lomax, Jamie; Bjorkman, Karen; Durbin, Meredith; Johnson, Lent Cliff; Lewis, Alexia; Lutz, Julie; Sigut, Aaron; Wallach, Aislynn; Dalcanton, Julianne

    2018-01-01

    We identify Be candidate stars in M31 using two-epoch F625W + F658N photometry from HST/ACS+WFC3 combined with the Panchromatic Hubble Andromeda Treasury (PHAT) Catalog. Using the PHAT catalog allows us to extract stellar parameters such as surface temperature and gravity, thereby allowing us to identify the main sequence B type stars in the field of view. Be candidate stars are identified by comparing their HST narrow-band Hα excess magnitudes with that predicted by Kurucz spectra. We find 314 Be candidate stars out of 5699 B + Be candidate stars (5.51%) in our first epoch and 301 Be candidate stars out of 5769 B + Be candidate stars (5.22%) in our second epoch. Our Be fraction, while lower than that of the SMC, LMC, and MW, is possibly consistent with the fact the M31 has a higher metallicity than the other galaxies because Be fraction varies inversely with metallicity. We note that earlier spectral types have the largest Be fraction, and that the Be fraction strictly declines as the spectral type increases to later types. We then match our Be candidate stars with clusters, establishing that 39 of 314 are cluster stars in epoch one and 36 of 301 stars are cluster stars in epoch two. We assign ages, using the cluster age to characterize cluster Be candidate stars and star formation histories to characterize field Be candidate stars. Finally, we determine which Be candidate stars exhibited disk loss or disk growth between epochs, finding that, of the Be stars that did not show source confusion or low SNR in one of the epochs, 65 / 265 (24.5%) showed disk loss or renewal, while 200 / 265 (75.5%) showed only small changes in Hα excess. Our research provides context for the parameters of candidate Be stars in M31, which will be useful in further determining the nature of Be stars. This paper was supported by a grant from STScI via GO-13857.

  20. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  1. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  2. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors

    PubMed Central

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-01-01

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233

  3. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    PubMed

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  4. Toward faster and more accurate star sensors using recursive centroiding and star identification

    NASA Astrophysics Data System (ADS)

    Samaan, Malak Anees

    The objective of this research is to study different novel developed techniques for spacecraft attitude determination methods using star tracker sensors. This dissertation addresses various issues on developing improved star tracker software, presents new approaches for better performance of star trackers, and considers applications to realize high precision attitude estimates. Star-sensors are often included in a spacecraft attitude-system instrument suite, where high accuracy pointing capability is required. Novel methods for image processing, camera parameters ground calibration, autonomous star pattern recognition, and recursive star identification are researched and implemented to achieve high accuracy and a high frame rate star tracker that can be used for many space missions. This dissertation presents the methods and algorithms implemented for the one Field of View 'FOV'Star NavI sensor that was tested aboard the STS-107 mission in spring 2003 and the two fields of view StarNavII sensor for the EO-3 spacecraft scheduled for launch in 2007. The results of this research enable advances in spacecraft attitude determination based upon real time star sensing and pattern recognition. Building upon recent developments in image processing, pattern recognition algorithms, focal plane detectors, electro-optics, and microprocessors, the star tracker concept utilized in this research has the following key objectives for spacecraft of the future: lower cost, lower mass and smaller volume, increased robustness to environment-induced aging and instrument response variations, increased adaptability and autonomy via recursive self-calibration and health-monitoring on-orbit. Many of these attributes are consequences of improved algorithms that are derived in this dissertation.

  5. Chemical Evolution of Binary Stars

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.

    2013-02-01

    Energy generation by nuclear fusion is the fundamental process that prevents stars from collapsing under their own gravity. Fusion in the core of a star converts hydrogen to heavier elements from helium to uranium. The signature of this nucleosynthesis is often visible in a single star only for a very short time, for example while the star is a red giant or, in massive stars, when it explodes. Contrarily, in a binary system nuclear-processed matter can captured by a secondary star which remains chemically polluted long after its more massive companion star has evolved and died. By probing old, low-mass stars we gain vital insight into the complex nucleosynthesis that occurred when our Galaxy was much younger than it is today. Stellar evolution itself is also affected by the presence of a companion star. Thermonuclear novae and type Ia supernovae result from mass transfer in binary stars, but big questions still surround the nature of their progenitors. Stars may even merge and one of the challenges for the future of stellar astrophysics is to quantitatively understand what happens in such extreme systems. Binary stars offer unique insights into stellar, galactic and extragalactic astrophysics through their plethora of exciting phenomena. Understanding the chemical evolution of binary stars is thus of high priority in modern astrophysics.

  6. Miras among C stars

    NASA Astrophysics Data System (ADS)

    Battinelli, P.; Demers, S.

    2014-08-01

    Context. Carbon stars are among the brightest intermediate-age stars. They are seen in nearly all galaxies of the Local Group. In the Milky Way they are members of the thin disk but over a hundred have been identified in the Galactic halo. Since the halo consists essentially of an old stellar population, these carbon stars warrant special attention. We believe that such stars are trespassers and belong to streams left over by disrupted dwarf spheroidal galaxies. Aims: By performing photometric monitoring we intend to identify Miras among the halo carbon stars. Methods: We obtained, over several semesters, K and J images centered on the carbon stars in order to determine their variation and periodicity. Results: We establish the variability for a number of stars and identify the Miras among them. We collect data from the literature on the Miras among various carbon star populations and show that the fraction of Miras among carbon stars is fairly constant. We demonstrate that such fractions for the halo and Sagittarius are biased because of the way targets are selected. We finally investigate the near-infrared color distribution of Miras and carbon stars. Based on observations made with the REM Telescope, INAF Chile.The observed K and J magnitudes are available only at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A100

  7. America's Star Libraries

    ERIC Educational Resources Information Center

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  8. Observing Double Stars

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  9. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  10. Heavy Metal Stars

    NASA Astrophysics Data System (ADS)

    2001-08-01

    La Silla Telescope Detects Lots of Lead in Three Distant Binaries Summary Very high abundances of the heavy element Lead have been discovered in three distant stars in the Milky Way Galaxy . This finding strongly supports the long-held view that roughly half of the stable elements heavier than Iron are produced in common stars during a phase towards the end of their life when they burn their Helium - the other half results from supernova explosions. All the Lead contained in each of the three stars weighs about as much as our Moon. The observations show that these "Lead stars" - all members of binary stellar systems - have been more enriched with Lead than with any other chemical element heavier than Iron. This new result is in excellent agreement with predictions by current stellar models about the build-up of heavy elements in stellar interiors. The new observations are reported by a team of Belgian and French astronomers [1] who used the Coude Echelle Spectrometer on the ESO 3.6-m telescope at the La Silla Observatory (Chile). PR Photo 26a/01 : A photo of HD 196944 , one of the "Lead stars". PR Photo 26b/01 : A CES spectrum of HD 196944 . The build-up of heavy elements Astronomers and physicists denote the build-up of heavier elements from lighter ones as " nucleosynthesis ". Only the very lightest elements (Hydrogen, Helium and Lithium [2]) were created at the time of the Big Bang and therefore present in the early universe. All the other heavier elements we now see around us were produced at a later time by nucleosynthesis inside stars. In those "element factories", nuclei of the lighter elements are smashed together whereby they become the nuclei of heavier ones - this process is known as nuclear fusion . In our Sun and similar stars, Hydrogen is being fused into Helium. At some stage, Helium is fused into Carbon, then Oxygen, etc. The fusion process requires positively charged nuclei to move very close to each other before they can unite. But with increasing

  11. A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.

    We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests thatmore » the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.« less

  12. Long term evolution of surface features on the unusual close binary V361 Lyr

    NASA Astrophysics Data System (ADS)

    Lister, T. A.

    2009-02-01

    V361 Lyr has been recognized as an unusual, possibly unique, pre-contact binary which is though to be evolving from a detached binary system into a W UMa contact binary system due to Angular Momentum Loss (AML) and mass transfer. The mass transfer and resulting hot spot on the secondary star allow the physics of accretion to be studied without the normal difficulties of disks and winds that are present in T Tauri stars. I present light curves obtained over a 10 year period as part of long term monitoring program obtained with a variety of telescopes, collect all available times of minima from the literature along with those determined from the light curves and determine the rate of period change.

  13. CEMP Stars in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Thidemann Hansen, Terese

    2018-06-01

    Exploration of the metal-poor stellar halo population of the Milky Way over the past decades has revealed a large number of stars strongly enhanced in carbon (CEMP stars). However, these stars are not as commonly detected in the dwarf galaxy satellites of the Milky Way (MW). The present-day satellites are thought to be similar to systems from which the MW and in particular its halo was formed via hierarchical mergers. I will present the results of abundance analysis for new samples of extremely metal-poor stars in Sculptor and Carina exploring the fraction of CEMP stars at low metallicity in these systems. I will also present the detailed abundance analyses of six CEMP stars detected in the Carina dwarf spheroidal galaxy. Five of these stars also show enhancement in slow neutron-capture elements and can thus be classified as CEMP-s stars, while the most metal-poor star with [Fe/H]=-2.5 shows no such enhancement and belongs to the CEMP-no class. The detection of CEMP stars in dwarf galaxies supports the hierarchical assembly of the MW halo and by providing a birth environment, can help to further constrain the formation of these stars.

  14. Heartbeat Stars Artist Concept

    NASA Image and Video Library

    2016-10-21

    This artist's concept depicts "heartbeat stars," which have been detected by NASA's Kepler Space Telescope and others. The illustration shows two heartbeat stars swerving close to one another in their closest approach along their highly elongated orbits around one another. The mutual gravitation of the two stars would cause the stars themselves to become slightly ellipsoidal in shape. A third, more distant star in the system is shown in the upper left. Astronomers speculate that such unseen companions may exist in some of these heartbeat star systems, and could be responsible for maintaining these oddly stretched-out orbits. The overlaid curve depicts the inferred cyclic change in velocities in one such system, called KIC 9965691, looking something like the graph of an electrocardiogram (hence the name "heartbeat stars"). The solid points represent measurements made by the HIRES instrument at the W.M. Keck Observatory, and the curve is the best fit model for the motions of this system. http://photojournal.jpl.nasa.gov/catalog/PIA21075

  15. Wolf-Rayet stars in the Small Magellanic Cloud as testbed for massive star evolution

    NASA Astrophysics Data System (ADS)

    Schootemeijer, A.; Langer, N.

    2018-03-01

    Context. The majority of the Wolf-Rayet (WR) stars represent the stripped cores of evolved massive stars who lost most of their hydrogen envelope. Wind stripping in single stars is expected to be inefficient in producing WR stars in metal-poor environments such as the Small Magellanic Cloud (SMC). While binary interaction can also produce WR stars at low metallicity, it is puzzling that the fraction of WR binaries appears to be about 40%, independent of the metallicity. Aim. We aim to use the recently determined physical properties of the twelve known SMC WR stars to explore their possible formation channels through comparisons with stellar models. Methods: We used the MESA stellar evolution code to construct two grids of stellar models with SMC metallicity. One of these consists of models of rapidly rotating single stars, which evolve in part or completely chemically homogeneously. In a second grid, we analyzed core helium burning stellar models assuming constant hydrogen and helium gradients in their envelopes. Results: We find that chemically homogeneous evolution is not able to account for the majority of the WR stars in the SMC. However, in particular the apparently single WR star SMC AB12, and the double WR system SMC AB5 (HD 5980) appear consistent with this channel. We further find a dichotomy in the envelope hydrogen gradients required to explain the observed temperatures of the SMC WR stars. Shallow gradients are found for the WR stars with O star companions, while much steeper hydrogen gradients are required to understand the group of hot apparently single WR stars. Conclusions: The derived shallow hydrogen gradients in the WR component of the WR+O star binaries are consistent with predictions from binary models where mass transfer occurs early, in agreement with their binary properties. Since the hydrogen profiles in evolutionary models of massive stars become steeper with time after the main sequence, we conclude that most of the hot (Teff > 60 k

  16. MASSIVE STARS IN THE LOCAL GROUP: Implications for Stellar Evolution and Star Formation

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    The galaxies of the Local Group serve as important laboratories for understanding the physics of massive stars. Here I discuss what is involved in identifying various kinds of massive stars in nearby galaxies: the hydrogen-burning O-type stars and their evolved He-burning evolutionary descendants, the luminous blue variables, red supergiants, and Wolf-Rayet stars. Primarily I review what our knowledge of the massive star population in nearby galaxies has taught us about stellar evolution and star formation. I show that the current generation of stellar evolutionary models do well at matching some of the observed features and provide a look at the sort of new observational data that will provide a benchmark against which new models can be evaluated.

  17. Winds from stripped low-mass helium stars and Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.

    2017-11-01

    We present mass-loss predictions from Monte Carlo radiative transfer models for helium (He) stars as a function of stellar mass, down to 2 M⊙. Our study includes both massive Wolf-Rayet (WR) stars and low-mass He stars that have lost their envelope through interaction with a companion. For these low-mass He stars we predict mass-loss rates that are an order of magnitude smaller than by extrapolation of empirical WR mass-loss rates. Our lower mass-loss rates make it harder for these elusive stripped stars to be discovered via line emission, and we should attempt to find these stars through alternative methods instead. Moreover, lower mass-loss rates make it less likely that low-mass He stars provide stripped-envelope supernovae (SNe) of type Ibc. We express our mass-loss predictions as a function of L and Z and not as a function of the He abundance, as we do not consider this physically astute given our earlier work. The exponent of the M⊙ versus Z dependence is found to be 0.61, which is less steep than relationships derived from recent empirical atmospheric modelling. Our shallower exponent will make it more challenging to produce "heavy" black holes of order 40 M⊙, as recently discovered in the gravitational wave event GW 150914, making low metallicity for these types of events even more necessary.

  18. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ke-Jung; Whalen, Daniel J.; Wollenberg, Katharina M. J.

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablativemore » flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.« less

  19. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Whalen, Daniel J.; Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S.

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  20. The SUNBIRD survey: characterizing the super star cluster populations of intensely star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Randriamanakoto, Zara; Väisänen, Petri

    2017-03-01

    Super star clusters (SSCs) represent the youngest and most massive form of known gravitationally bound star clusters in the Universe. They are born abundantly in environments that trigger strong and violent star formation. We investigate the properties of these massive SSCs in a sample of 42 nearby starbursts and luminous infrared galaxies. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared (NIR) K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments. Results from i) the fitted power-laws to the SSC K-band luminosity functions, ii) the NIR brightest star cluster magnitude - star formation rate (SFR) relation and iii) the star cluster age and mass distributions have shown the importance of studying SSC host galaxies with high SFR levels to determine the role of the galactic environments in the star cluster formation, evolution and disruption mechanisms.

  1. Mechanism of mRNA-STAR domain interaction: Molecular dynamics simulations of Mammalian Quaking STAR protein.

    PubMed

    Sharma, Monika; Anirudh, C R

    2017-10-03

    STAR proteins are evolutionary conserved mRNA-binding proteins that post-transcriptionally regulate gene expression at all stages of RNA metabolism. These proteins possess conserved STAR domain that recognizes identical RNA regulatory elements as YUAAY. Recently reported crystal structures show that STAR domain is composed of N-terminal QUA1, K-homology domain (KH) and C-terminal QUA2, and mRNA binding is mediated by KH-QUA2 domain. Here, we present simulation studies done to investigate binding of mRNA to STAR protein, mammalian Quaking protein (QKI). We carried out conventional MD simulations of STAR domain in presence and absence of mRNA, and studied the impact of mRNA on the stability, dynamics and underlying allosteric mechanism of STAR domain. Our unbiased simulations results show that presence of mRNA stabilizes the overall STAR domain by reducing the structural deviations, correlating the 'within-domain' motions, and maintaining the native contacts information. Absence of mRNA not only influenced the essential modes of motion of STAR domain, but also affected the connectivity of networks within STAR domain. We further explored the dissociation of mRNA from STAR domain using umbrella sampling simulations, and the results suggest that mRNA binding to STAR domain occurs in multi-step: first conformational selection of mRNA backbone conformations, followed by induced fit mechanism as nucleobases interact with STAR domain.

  2. Photometry of Standard Stars and Open Star Clusters

    NASA Astrophysics Data System (ADS)

    Jefferies, Amanda; Frinchaboy, Peter

    2010-10-01

    Photometric CCD observations of open star clusters and standard stars were carried out at the McDonald Observatory in Fort Davis, Texas. This data was analyzed using aperture photometry algorithms (DAOPHOT II and ALLSTAR) and the IRAF software package. Color-magnitude diagrams of these clusters were produced, showing the evolution of each cluster along the main sequence.

  3. Making star teams out of star players.

    PubMed

    Mankins, Michael; Bird, Alan; Root, James

    2013-01-01

    Top talent is an invaluable asset: In highly specialized or creative work, for instance, "A" players are likely to be six times as productive as "B" players. So when your company has a crucial strategic project, why not multiply all that firepower and have a team of your best performers tackle it? Yet many companies hesitate to do this, believing that all-star teams don't work: Big egos will get in the way. The stars won't be able to work with one another. They'll drive the team Leader crazy. Mankins, Bird, and Root of Bain & Company believe it's time to set aside that thinking. They have seen all-star teams do extraordinary work. But there is a right way and a wrong way to organize them. Before you can even begin to assemble such a team, you need to have the right talent management practices, so you hire and develop the best people and know what they're capable of. You have to give the team appropriate incentives and leaders and support staffers who are stars in their own right. And projects that are ill-defined or small scale are not for all-star teams. Use them only for critical missions, and make sure their objectives are clear. Even with the right setup, things can still go wrong. The wise executive will take steps to manage egos, prune non-team-players, and prevent average coworkers from feeling completely undervalued. She will also invest a lot of time in choosing the right team Leader and will ask members for lots of feedback to monitor how that leader is doing.

  4. Strangeon and Strangeon Star

    NASA Astrophysics Data System (ADS)

    Xiaoyu, Lai; Renxin, Xu

    2017-06-01

    The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).

  5. Star Masses and Star-Planet Distances for Earth-like Habitability.

    PubMed

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M ⊙ < M < 1.04 M ⊙ , and the range for planets with at least simple life is 0.57 M ⊙  < M < 1.64 M ⊙ . Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  6. Star Masses and Star-Planet Distances for Earth-like Habitability

    PubMed Central

    2017-01-01

    Abstract This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ < M < 1.04 M⊙, and the range for planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability—Habitable zone—Anthropic—Red dwarfs—Initial mass function. Astrobiology 17, 61–77. PMID:28103107

  7. The most luminous stars.

    PubMed

    Humphreys, R M; Davidson, K

    1984-01-20

    Stars with individual luminosities more than a million times that of the sun are now being studied in a variety of contexts. Observational and theoretical ideas about the most luminous stars have changed greatly in the past few years. They can be observed spectroscopically even in nearby galaxies. They are not very stable; some have had violent outbursts in which large amounts of mass were lost. Because of their instabilities, these stars do not evolve to become red superglants as less luminous stars do. Theoretical scenarios for the evolution of these most massive stars depend on the effects of turbulence and mixing combined with high radition densities.

  8. Four new Delta Scuti stars

    NASA Technical Reports Server (NTRS)

    Schutt, R. L.

    1991-01-01

    Four new Delta Scuti stars are reported. Power, modified into amplitude, spectra, and light curves are used to determine periodicities. A complete frequency analysis is not performed due to the lack of a sufficient time base in the data. These new variables help verify the many predictions that Delta Scuti stars probably exist in prolific numbers as small amplitude variables. Two of these stars, HR 4344 and HD 107513, are possibly Am stars. If so, they are among the minority of variable stars which are also Am stars.

  9. Design and DSP implementation of star image acquisition and star point fast acquiring and tracking

    NASA Astrophysics Data System (ADS)

    Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang

    2006-02-01

    Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.

  10. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  11. Bubbly Little Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this processed Spitzer Space Telescope image, baby star HH 46/47 can be seen blowing two massive 'bubbles.' The star is 1,140 light-years away from Earth.

    The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

    These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star's narrow jets are currently crashing head-on into the cosmic cloud's gas and dust material.

    Whenever astronomers observe a star, or snap a stellar portrait, through the lens of any telescope, they know that what they are seeing is slightly blurred. To clear up the blurring in Spitzer images, astronomers at the Jet Propulsion Laboratory developed an image processing technique for Spitzer called Hi-Res deconvolution.

    This process reduces blurring and makes the image sharper and cleaner, enabling astronomers to see the emissions around forming stars in greater detail. When scientists applied this image processing technique to the Spitzer image of HH 46/47, they were able to see winds from the star and jets of gas that are carving the celestial bubbles.

    This infrared image is a three-color composite, with data at 3.6 microns represented in blue, 4.5 and 5.8 microns shown in green, and 24 microns represented as red.

  12. A CENSUS OF ROTATION AND VARIABILITY IN L1495: A UNIFORM ANALYSIS OF TRANS-ATLANTIC EXOPLANET SURVEY LIGHT CURVES FOR PRE-MAIN-SEQUENCE STARS IN TAURUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Hongyu; Covey, Kevin R.; Lloyd, James P.

    2012-09-15

    We analyze light curves obtained by the Trans-atlantic Exoplanet Survey (TrES) for a field centered on the L1495 dark cloud in Taurus. The Spitzer Taurus Legacy Survey catalog identifies 179 bona fide Taurus members within the TrES field; 48 of the known Taurus members are detected by TrES, as well as 26 candidate members identified by the Spitzer Legacy team. We quantify the variability of each star in our sample using the ratio of the standard deviation of the original light curve ({sigma}{sub orig.}) to the standard deviation of a light curve that has been smoothed by 9 or 1001more » epochs ({sigma}{sub 9} and {sigma}{sub 1001}, respectively). Known Taurus members typically demonstrate ({sigma}{sub orig.}/{sigma}{sub 9}) < 2.0, and ({sigma}{sub orig.}/{sigma}{sub 1001}) < 5, while field stars reveal ({sigma}{sub orig.}/{sigma}{sub 9}) {approx} 3.0 and ({sigma}{sub orig.}/{sigma}{sub 1001}) {approx} 10, as expected for light curves dominated by unstructured white noise. Of the 74 Taurus members/candidates with TrES light curves, we detect significant variability in 49 sources. Adapting a quantitative metric originally developed to assess the reliability of transit detections, we measure the amount of red and white noise in each light curve and identify 18 known or candidate Taurus members with highly significant period measurements. These appear to be the first periods measured for four of these sources (HD 282276, CX Tau, FP Tau, TrES J042423+265008), and in two other cases, the first non-aliased periods (LkCa 21 and DK Tau AB). For the remainder, the TrES measurements typically agree very well ({delta}P < 1%) with previously reported values. Including periods measured at lower confidence for 15 additional sources, we report periods for 11 objects where no previous periods were found, including 8 confirmed Taurus members. We also identify 10 of the 26 candidate Taurus members that demonstrate variability levels consistent with being bona fide T Tauri stars. A

  13. Accreting neutron stars, black holes, and degenerate dwarf stars.

    PubMed

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  14. Search for OB stars running away from young star clusters. I. NGC 6611

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  15. The Initial Mass Function of the First Stars Inferred from Extremely Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Ishigaki, Miho N.; Tominaga, Nozomu; Kobayashi, Chiaki; Nomoto, Ken’ichi

    2018-04-01

    We compare the elemental abundance patterns of ∼200 extremely metal-poor (EMP; [Fe/H] < ‑3) stars to the supernova yields of metal-free stars, in order to obtain insights into the characteristic masses of the first (Population III or Pop III) stars in the universe. The supernova yields are prepared with nucleosynthesis calculations of metal-free stars with various initial masses (M = 13, 15, 25, 40 and 100 M ⊙) and explosion energies (E 51 = E/1051[erg] = 0.5–60), to include low-energy, normal-energy, and high-energy explosions. We adopt the mixing-fallback model, to take into account possible asymmetry in the supernova explosions, and the yields that best fit the observed abundance patterns of the EMP stars are searched by varying the model parameters. We find that the abundance patterns of the EMP stars are predominantly best-fitted by the supernova yields with initial masses M < 40 M ⊙, and that more than than half of the stars are best-fitted by the M = 25 M ⊙ hypernova (E 51 = 10) models. The results also indicate that the majority of the primordial supernovae have ejected 10‑2–10‑1 M ⊙ of 56Ni, leaving behind a compact remnant (either a neutron star or a black hole), with a mass in the range of ∼1.5–5 M ⊙. These results suggest that the masses of the first stars responsible for the first metal enrichment are predominantly <40 M ⊙. This implies that the higher-mass first stars were either less abundant, directly collapsed into a black hole without ejecting heavy elements, or a supernova explosion of a higher-mass first star inhibits the formation of the next generation of low-mass stars at [Fe/H] < ‑3.

  16. Seeing Stars in Serpens

    NASA Image and Video Library

    2006-12-08

    Infant stars are glowing gloriously in this image of the Serpens star-forming region, captured by NASA Spitzer Space Telescope. The reddish-pink dots are baby stars deeply embedded in the cosmic cloud of gas and dust that collapsed to create it.

  17. Spectrophotometry of Symbiotic Stars (Abstract)

    NASA Astrophysics Data System (ADS)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  18. I-Love-Q: Unexpected Universal Relations for Neutron Stars and Quark Stars

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2013-07-01

    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star’s internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star’s internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.

  19. Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Sander, Andreas; Todt, Helge

    Nearly 150 years ago, the French astronomers Charles Wolf and Georges Rayet described stars with very conspicuous spectra that are dominated by bright and broad emission lines. Meanwhile termed Wolf-Rayet Stars after their discoverers, those objects turned out to represent important stages in the life of massive stars. As the first conference in a long time that was specifically dedicated to Wolf-Rayet stars, an international workshop was held in Potsdam, Germany, from 1.-5. June 2015. About 100 participants, comprising most of the leading experts in the field as well as as many young scientists, gathered for one week of extensive scientific exchange and discussions. Considerable progress has been reported throughout, e.g. on finding such stars, modeling and analyzing their spectra, understanding their evolutionary context, and studying their circumstellar nebulae. While some major questions regarding Wolf-Rayet stars still remain open 150 years after their discovery, it is clear today that these objects are not just interesting stars as such, but also keystones in the evolution of galaxies. These proceedings summarize the talks and posters presented at the Potsdam Wolf-Rayet workshop. Moreover, they also include the questions, comments, and discussions emerging after each talk, thereby giving a rare overview not only about the research, but also about the current debates and unknowns in the field. The Scientific Organizing Committee (SOC) included Alceste Bonanos (Athens), Paul Crowther (Sheffield), John Eldridge (Auckland), Wolf-Rainer Hamann (Potsdam, Chair), John Hillier (Pittsburgh), Claus Leitherer (Baltimore), Philip Massey (Flagstaff), George Meynet (Geneva), Tony Moffat (Montreal), Nicole St-Louis (Montreal), and Dany Vanbeveren (Brussels).

  20. Young Star HD 141569

    NASA Image and Video Library

    2017-01-30

    This image shows the dusty disk of planetary material surrounding the young star HD 141569, located 380 light-years away from Earth. It was taken using the vortex coronagraph on the W.M. Keck Observatory. The vortex suppressed light from the star in the center, revealing light from the innermost ring of planetary material around the star (blue). The disk around the star, made of olivine particles, extends from 23 to 70 astronomical units from the star. By comparison, Uranus is over 19 astronomical units from our sun, and Neptune about 30 astronomical units. One astronomical unit is the distance between Earth and our sun. http://photojournal.jpl.nasa.gov/catalog/PIA21090