Sample records for taxa biodiversity inventory

  1. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level

    PubMed Central

    Peters, Marcell K.; Hemp, Andreas; Appelhans, Tim; Behler, Christina; Classen, Alice; Detsch, Florian; Ensslin, Andreas; Ferger, Stefan W.; Frederiksen, Sara B.; Gebert, Friederike; Haas, Michael; Helbig-Bonitz, Maria; Hemp, Claudia; Kindeketa, William J.; Mwangomo, Ephraim; Ngereza, Christine; Otte, Insa; Röder, Juliane; Rutten, Gemma; Schellenberger Costa, David; Tardanico, Joseph; Zancolli, Giulia; Deckert, Jürgen; Eardley, Connal D.; Peters, Ralph S.; Rödel, Mark-Oliver; Schleuning, Matthias; Ssymank, Axel; Kakengi, Victor; Zhang, Jie; Böhning-Gaese, Katrin; Brandl, Roland; Kalko, Elisabeth K.V.; Kleyer, Michael; Nauss, Thomas; Tschapka, Marco; Fischer, Markus; Steffan-Dewenter, Ingolf

    2016-01-01

    The factors determining gradients of biodiversity are a fundamental yet unresolved topic in ecology. While diversity gradients have been analysed for numerous single taxa, progress towards general explanatory models has been hampered by limitations in the phylogenetic coverage of past studies. By parallel sampling of 25 major plant and animal taxa along a 3.7 km elevational gradient on Mt. Kilimanjaro, we quantify cross-taxon consensus in diversity gradients and evaluate predictors of diversity from single taxa to a multi-taxa community level. While single taxa show complex distribution patterns and respond to different environmental factors, scaling up diversity to the community level leads to an unambiguous support for temperature as the main predictor of species richness in both plants and animals. Our findings illuminate the influence of taxonomic coverage for models of diversity gradients and point to the importance of temperature for diversification and species coexistence in plant and animal communities. PMID:28004657

  2. Counting complete? Finalising the plant inventory of a global biodiversity hotspot

    PubMed Central

    Colville, Jonathan F.; Joppa, Lucas N.; Huyser, Onno; Manning, John

    2017-01-01

    The Cape Floristic Region—the world’s smallest and third richest botanical hotspot—has benefited from sustained levels of taxonomic effort and exploration for almost three centuries, but how close is this to resulting in a near-complete plant species inventory? We analyse a core component of this flora over a 250-year period for trends in taxonomic effort and species discovery linked to ecological and conservation attributes. We show that >40% of the current total of species was described within the first 100 years of exploration, followed by a continued steady rate of description. We propose that <1% of the flora is still to be described. We document a relatively constant cohort of taxonomists, working over 250 years at what we interpret to be their ‘taxonomic maximum.’ Rates of description of new species were independent of plant growth-form but narrow-range taxa have constituted a significantly greater proportion of species discoveries since 1950. This suggests that the fraction of undiscovered species predominantly comprises localised endemics that are thus of high conservation concern. Our analysis provides important real-world insights for other hotspots in the context of global strategic plans for biodiversity in informing considerations of the likely effort required in attaining set targets of comprehensive plant inventories. In a time of unprecedented biodiversity loss, we argue for a focused research agenda across disciplines to increase the rate of species descriptions in global biodiversity hotspots. PMID:28243528

  3. TaxaGloss - A Glossary and Translation Tool for Biodiversity Studies.

    PubMed

    Collin, Rachel; Fredericq, Suzanne; Freshwater, D Wilson; Gilbert, Edward; Madrid, Maycol; Maslakova, Svetlana; Miglietta, Maria Pia; Rocha, Rosana M; Rodríguez, Estefanía; Thacker, Robert W

    2016-01-01

    Correctly identifying organisms is key to most biological research, and is especially critical in areas of biodiversity and conservation. Yet it remains one of the greatest challenges when studying all but the few well-established model systems. The challenge is in part due to the fact that most species have yet to be described, vanishing taxonomic expertise and the relative inaccessibility of taxonomic information. Furthermore, identification keys and other taxonomic resources are based on complex, taxon-specific vocabularies used to describe important morphological characters. Using these resources is made difficult by the fact that taxonomic documentation of the world's biodiversity is an international endeavour, and keys and field guides are not always available in the practitioner's native language. To address this challenge, we have developed a publicly available on-line illustrated multilingual glossary and translation tool for technical taxonomic terms using the Symbiota Software Project biodiversity platform. Illustrations, photographs and translations have been sourced from the global community of taxonomists working with marine invertebrates and seaweeds. These can be used as single-language illustrated glossaries or to make customized translation tables. The glossary has been launched with terms and illustrations of seaweeds, tunicates, sponges, hydrozoans, sea anemones, and nemerteans, and already includes translations into seven languages for some groups. Additional translations and development of terms for more taxa are underway, but the ultimate utility of this tool depends on active participation of the international taxonomic community.

  4. DNA barcoding in Mucorales: an inventory of biodiversity.

    PubMed

    Walther, G; Pawłowska, J; Alastruey-Izquierdo, A; Wrzosek, M; Rodriguez-Tudela, J L; Dolatabadi, S; Chakrabarti, A; de Hoog, G S

    2013-06-01

    The order Mucorales comprises predominantly fast-growing saprotrophic fungi, some of which are used for the fermentation of foodstuffs but it also includes species known to cause infections in patients with severe immune or metabolic impairments. To inventory biodiversity in Mucorales ITS barcodes of 668 strains in 203 taxa were generated covering more than two thirds of the recognised species. Using the ITS sequences, Molecular Operational Taxonomic Units were defined by a similarity threshold of 99 %. An LSU sequence was generated for each unit as well. Analysis of the LSU sequences revealed that conventional phenotypic classifications of the Mucoraceae are highly artificial. The LSU- and ITS-based trees suggest that characters, such as rhizoids and sporangiola, traditionally used in mucoralean taxonomy are plesiomorphic traits. The ITS region turned out to be an appropriate barcoding marker in Mucorales. It could be sequenced directly in 82 % of the strains and its variability was sufficient to resolve most of the morphospecies. Molecular identification turned out to be problematic only for the species complexes of Mucor circinelloides, M. flavus, M. piriformis and Zygorhynchus moelleri. As many as 12 possibly undescribed species were detected. Intraspecific variability differed widely among mucorealean species ranging from 0 % in Backusella circina to 13.3 % in Cunninghamella echinulata. A high proportion of clinical strains was included for molecular identification. Clinical isolates of Cunninghamella elegans were identified molecularly for the first time. As a result of the phylogenetic analyses several taxonomic and nomenclatural changes became necessary. The genus Backusella was emended to include all species with transitorily recurved sporangiophores. Since this matched molecular data all Mucor species possessing this character were transferred to Backusella. The genus Zygorhynchus was shown to be polyphyletic based on ITS and LSU data. Consequently

  5. Development of a stand-scale forest biodiversity index based on the state forest inventory

    Treesearch

    Diego Van Den Meersschaut; Kris Vandekerkhove

    2000-01-01

    Ecological aspects are increasingly influencing silvicultural management. Estimating forest biodiversity has become one often major tools for evaluating management strategies. A stand-scale forest biodiversity index is developed, based on available data from the state forest inventory. The index combines aspects of forest structure, woody and herbal layer composition,...

  6. Contribution of large-scale forest inventories to biodiversity assessment and monitoring

    Treesearch

    Piermaria Corona; Gherardo Chirici; Ronald E. McRoberts; Susanne Winter; Anna Barbati

    2011-01-01

    Statistically-designed inventories and biodiversity monitoring programs are gaining relevance for biological conservation and natural resources management. Mandated periodic surveys provide unique opportunities to identify and satisfy natural resources management information needs. However, this is not an end in itself but rather is the beginning of a process that...

  7. Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve.

    PubMed

    Telfer, Angela C; Young, Monica R; Quinn, Jenna; Perez, Kate; Sobel, Crystal N; Sones, Jayme E; Levesque-Beaudin, Valerie; Derbyshire, Rachael; Fernandez-Triana, Jose; Rougerie, Rodolphe; Thevanayagam, Abinah; Boskovic, Adrian; Borisenko, Alex V; Cadel, Alex; Brown, Allison; Pages, Anais; Castillo, Anibal H; Nicolai, Annegret; Glenn Mockford, Barb Mockford; Bukowski, Belén; Wilson, Bill; Trojahn, Brock; Lacroix, Carole Ann; Brimblecombe, Chris; Hay, Christoper; Ho, Christmas; Steinke, Claudia; Warne, Connor P; Garrido Cortes, Cristina; Engelking, Daniel; Wright, Danielle; Lijtmaer, Dario A; Gascoigne, David; Hernandez Martich, David; Morningstar, Derek; Neumann, Dirk; Steinke, Dirk; Marco DeBruin, Donna DeBruin; Dobias, Dylan; Sears, Elizabeth; Richard, Ellen; Damstra, Emily; Zakharov, Evgeny V; Laberge, Frederic; Collins, Gemma E; Blagoev, Gergin A; Grainge, Gerrie; Ansell, Graham; Meredith, Greg; Hogg, Ian; McKeown, Jaclyn; Topan, Janet; Bracey, Jason; Guenther, Jerry; Sills-Gilligan, Jesse; Addesi, Joseph; Persi, Joshua; Layton, Kara K S; D'Souza, Kareina; Dorji, Kencho; Grundy, Kevin; Nghidinwa, Kirsti; Ronnenberg, Kylee; Lee, Kyung Min; Xie, Linxi; Lu, Liuqiong; Penev, Lyubomir; Gonzalez, Mailyn; Rosati, Margaret E; Kekkonen, Mari; Kuzmina, Maria; Iskandar, Marianne; Mutanen, Marko; Fatahi, Maryam; Pentinsaari, Mikko; Bauman, Miriam; Nikolova, Nadya; Ivanova, Natalia V; Jones, Nathaniel; Weerasuriya, Nimalka; Monkhouse, Norman; Lavinia, Pablo D; Jannetta, Paul; Hanisch, Priscila E; McMullin, R Troy; Ojeda Flores, Rafael; Mouttet, Raphaëlle; Vender, Reid; Labbee, Renee N; Forsyth, Robert; Lauder, Rob; Dickson, Ross; Kroft, Ruth; Miller, Scott E; MacDonald, Shannon; Panthi, Sishir; Pedersen, Stephanie; Sobek-Swant, Stephanie; Naik, Suresh; Lipinskaya, Tatsiana; Eagalle, Thanushi; Decaëns, Thibaud; Kosuth, Thibault; Braukmann, Thomas; Woodcock, Tom; Roslin, Tomas; Zammit, Tony; Campbell, Victoria; Dinca, Vlad; Peneva, Vlada; Hebert, Paul D N; deWaard, Jeremy R

    2015-01-01

    Comprehensive biotic surveys, or 'all taxon biodiversity inventories' (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies - a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic specialist time. The final product is

  8. Surrogate taxa and fossils as reliable proxies of spatial biodiversity patterns in marine benthic communities.

    PubMed

    Tyler, Carrie L; Kowalewski, Michał

    2017-03-15

    Rigorous documentation of spatial heterogeneity (β-diversity) in present-day and preindustrial ecosystems is required to assess how marine communities respond to environmental and anthropogenic drivers. However, the overwhelming majority of contemporary and palaeontological assessments have centred on single higher taxa. To evaluate the validity of single taxa as community surrogates and palaeontological proxies, we compared macrobenthic communities and sympatric death assemblages at 52 localities in Onslow Bay (NC, USA). Compositional heterogeneity did not differ significantly across datasets based on live molluscs, live non-molluscs, and all live organisms. Death assemblages were less heterogeneous spatially, likely reflecting homogenization by time-averaging. Nevertheless, live and dead datasets were greater than 80% congruent in pairwise comparisons to the literature estimates of β-diversity in other marine ecosystems, yielded concordant bathymetric gradients, and produced nearly identical ordinations consistently delineating habitats. Congruent estimates from molluscs and non-molluscs suggest that single groups can serve as reliable community proxies. High spatial fidelity of death assemblages supports the emerging paradigm of Conservation Palaeobiology. Integrated analyses of ecological and palaeontological data based on surrogate taxa can quantify anthropogenic changes in marine ecosystems and advance our understanding of spatial and temporal aspects of biodiversity. © 2017 The Author(s).

  9. Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve

    PubMed Central

    Young, Monica R; Quinn, Jenna; Perez, Kate; Sobel, Crystal N; Sones, Jayme E; Levesque-Beaudin, Valerie; Derbyshire, Rachael; Fernandez-Triana, Jose; Rougerie, Rodolphe; Thevanayagam, Abinah; Boskovic, Adrian; Borisenko, Alex V; Cadel, Alex; Brown, Allison; Pages, Anais; Castillo, Anibal H; Nicolai, Annegret; Glenn Mockford, Barb Mockford; Bukowski, Belén; Wilson, Bill; Trojahn, Brock; Lacroix, Carole Ann; Brimblecombe, Chris; Hay, Christoper; Ho, Christmas; Steinke, Claudia; Warne, Connor P; Garrido Cortes, Cristina; Engelking, Daniel; Wright, Danielle; Lijtmaer, Dario A; Gascoigne, David; Hernandez Martich, David; Morningstar, Derek; Neumann, Dirk; Steinke, Dirk; Marco DeBruin, Donna DeBruin; Dobias, Dylan; Sears, Elizabeth; Richard, Ellen; Damstra, Emily; Zakharov, Evgeny V; Laberge, Frederic; Collins, Gemma E; Blagoev, Gergin A; Grainge, Gerrie; Ansell, Graham; Meredith, Greg; Hogg, Ian; McKeown, Jaclyn; Topan, Janet; Bracey, Jason; Guenther, Jerry; Sills-Gilligan, Jesse; Addesi, Joseph; Persi, Joshua; Layton, Kara K S; D'Souza, Kareina; Dorji, Kencho; Grundy, Kevin; Nghidinwa, Kirsti; Ronnenberg, Kylee; Lee, Kyung Min; Xie, Linxi; Lu, Liuqiong; Penev, Lyubomir; Gonzalez, Mailyn; Rosati, Margaret E; Kekkonen, Mari; Kuzmina, Maria; Iskandar, Marianne; Mutanen, Marko; Fatahi, Maryam; Pentinsaari, Mikko; Bauman, Miriam; Nikolova, Nadya; Ivanova, Natalia V; Jones, Nathaniel; Weerasuriya, Nimalka; Monkhouse, Norman; Lavinia, Pablo D; Jannetta, Paul; Hanisch, Priscila E; McMullin, R. Troy; Ojeda Flores, Rafael; Mouttet, Raphaëlle; Vender, Reid; Labbee, Renee N; Forsyth, Robert; Lauder, Rob; Dickson, Ross; Kroft, Ruth; Miller, Scott E; MacDonald, Shannon; Panthi, Sishir; Pedersen, Stephanie; Sobek-Swant, Stephanie; Naik, Suresh; Lipinskaya, Tatsiana; Eagalle, Thanushi; Decaëns, Thibaud; Kosuth, Thibault; Braukmann, Thomas; Woodcock, Tom; Roslin, Tomas; Zammit, Tony; Campbell, Victoria; Dinca, Vlad; Peneva, Vlada; Hebert, Paul D N

    2015-01-01

    Abstract Background Comprehensive biotic surveys, or ‘all taxon biodiversity inventories’ (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. New information The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies – a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic

  10. Biodiversity of Fungi : Inventory and Monitoring Methods

    USGS Publications Warehouse

    Mueller, G.M.; Bills, G.F.; Foster, M.S.

    2004-01-01

    Biodiversity of Fungi is essential for anyone collecting and/or monitoring any fungi. Fascinating and beautiful, fungi are vital components of nearly all ecosystems and impact human health and our economy in a myriad of ways. Standardized methods for documenting diversity and distribution have been lacking. An wealth of information, especially regrading sampling protocols, compiled by an international team of fungal biologists, make Biodiversity of Fungi an incredible and fundamental resource for the study of organismal biodiversity. Chapters cover everything from what is a fungus, to maintaining and organizing a permanent study collection with associated databases; from protocols for sampling slime molds to insect associated fungi; from fungi growing on and in animals and plants to mushrooms and truffles. The chapters are arranged both ecologically and by sampling method rather than by taxonomic group for ease of use. The information presented here is intended for everyone interested in fungi, anyone who needs tools to study them in nature including naturalists, land managers, ecologists, mycologists, and even citizen scientists and sophiscated amateurs. Fungi are among the most important organisms in the world; they play vital roles in ecosystem functions and have wide-ranging effects, both positive and negative, on humans and human-related activities. There are about 1.5 million species of fungi. The combination of fungal species and abundances in an ecosystem are often used as indicators of ecosystem health and as indicators of the effects of pollution and of different management and use plans. Because of their significance, it is important that these organisms be monitored. This book is the first comprehensive treatment of fungal inventory and monitoring, including standardized sampling protocols as well as information on study design, sample preservation, and data analysis.

  11. The biodiversity of the deep Southern Ocean benthos.

    PubMed

    Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K E; Gooday, A J; Hilbig, B; Linse, K; Thomson, M R A; Tyler, P A

    2007-01-29

    Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae.

  12. The biodiversity of the deep Southern Ocean benthos

    PubMed Central

    Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K.E; Gooday, A.J; Hilbig, B; Linse, K; Thomson, M.R.A; Tyler, P.A

    2006-01-01

    Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae. PMID:17405207

  13. The effectiveness of surrogate taxa to conserve freshwater biodiversity.

    PubMed

    Stewart, David R; Underwood, Zachary E; Rahel, Frank J; Walters, Annika W

    2018-02-01

    Establishing protected areas has long been an effective conservation strategy and is often based on readily surveyed species. The potential of any freshwater taxa to be a surrogate for other aquatic groups has not been explored fully. We compiled occurrence data on 72 species of freshwater fishes, amphibians, mussels, and aquatic reptiles for the Great Plains, Wyoming (U.S.A.). We used hierarchical Bayesian multispecies mixture models and MaxEnt models to describe species' distributions and the program Zonation to identify areas of conservation priority for each aquatic group. The landscape-scale factors that best characterized aquatic species' distributions differed among groups. There was low agreement and congruence among taxa-specific conservation priorities (<20%), meaning no surrogate priority areas would include or protect the best habitats of other aquatic taxa. Common, wideranging aquatic species were included in taxa-specific priority areas, but rare freshwater species were not included. Thus, the development of conservation priorities based on a single freshwater aquatic group would not protect all species in the other aquatic groups. © 2017 Society for Conservation Biology.

  14. The effectiveness of surrogate taxa to conserve freshwater biodiversity

    USGS Publications Warehouse

    Stewart, David R.; Underwood, Zachary E.; Rahel, Frank J.; Walters, Annika W.

    2018-01-01

    Establishing protected areas has long been an effective conservation strategy, and is often based on more readily surveyed species. The potential of any freshwater taxa to be a surrogate of other aquatic groups has not been fully explored. We compiled occurrence data on 72 species of freshwater fish, amphibians, mussels, and aquatic reptiles for the Great Plains, Wyoming. We used hierarchical Bayesian multi-species mixture models and MaxEnt models to describe species distributions, and program Zonation to identify conservation priority areas for each aquatic group. The landscape-scale factors that best characterized aquatic species distributions differed among groups. There was low agreement and congruence among taxa-specific conservation priorities (<20%), meaning that no surrogate priority areas would include or protect the best habitats of other aquatic taxa. We found that common, wide-ranging aquatic species were included in taxa-specific priority areas, but rare freshwater species were not included. Thus, the development of conservation priorities based on a single freshwater aquatic group would not protect all species in the other aquatic groups.

  15. A pervasive denigration of natural history misconstrues how biodiversity inventories and taxonomy underpin scientific knowledge

    PubMed Central

    2011-01-01

    Embracing comparative biology, natural history encompasses those sciences that discover, decipher and classify unique (idiographic) details of landscapes, and extinct and extant biodiversity. Intrinsic to these multifarious roles in expanding and consolidating research and knowledge, natural history endows keystone support to the veracity of law-like (nomothetic) generalizations in science. What science knows about the natural world is governed by an inherent function of idiographic discovery; characteristic of natural history, this relationship is exemplified wherever an idiographic discovery overturns established wisdom. This nature of natural history explicates why inventories are of such epistemological importance. Unfortunately, a Denigration of Natural History weakens contemporary science from within. It expresses in the prevalent, pervasive failure to appreciate this pivotal role of idiographic research: a widespread disrespect for how natural history undergirds scientific knowledge. Symptoms of this Denigration of Natural History present in negative impacts on scientific research and knowledge. One symptom is the failure to appreciate and support the inventory and monitoring of biodiversity. Another resides in failures of scientiometrics to quantify how taxonomic publications sustain and improve knowledge. Their relevance in contemporary science characteristically persists and grows; so the temporal eminence of these idiographic publications extends over decades. This is because they propagate a succession of derived scientific statements, findings and/or conclusions - inherently shorter-lived, nomothetic publications. Widespread neglect of natural science collections is equally pernicious, allied with disregard for epistemological functions of specimens, whose preservation maintains the veracity of knowledge. Last, but not least, the decline in taxonomic expertise weakens research capacity; there are insufficient skills to study organismal diversity in all

  16. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar

    PubMed Central

    Smith, M. Alex; Fisher, Brian L; Hebert, Paul D.N

    2005-01-01

    The role of DNA barcoding as a tool to accelerate the inventory and analysis of diversity for hyperdiverse arthropods is tested using ants in Madagascar. We demonstrate how DNA barcoding helps address the failure of current inventory methods to rapidly respond to pressing biodiversity needs, specifically in the assessment of richness and turnover across landscapes with hyperdiverse taxa. In a comparison of inventories at four localities in northern Madagascar, patterns of richness were not significantly different when richness was determined using morphological taxonomy (morphospecies) or sequence divergence thresholds (Molecular Operational Taxonomic Unit(s); MOTU). However, sequence-based methods tended to yield greater richness and significantly lower indices of similarity than morphological taxonomy. MOTU determined using our molecular technique were a remarkably local phenomenon—indicative of highly restricted dispersal and/or long-term isolation. In cases where molecular and morphological methods differed in their assignment of individuals to categories, the morphological estimate was always more conservative than the molecular estimate. In those cases where morphospecies descriptions collapsed distinct molecular groups, sequence divergences of 16% (on average) were contained within the same morphospecies. Such high divergences highlight taxa for further detailed genetic, morphological, life history, and behavioral studies. PMID:16214741

  17. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation

    Treesearch

    Christopher A. Lepczyk; Myla F. J. Aronson; Karl L. Evans; Mark A. Goddard; Susannah B. Lerman; J. Scott MacIvor

    2017-01-01

    As urban areas expand, understanding how ecological processes function in cities has become increasingly important for conserving biodiversity. Urban green spaces are critical habitats to support biodiversity, but we still have a limited understanding of their ecology and how they function to conserve biodiversity at local and landscape scales across multiple taxa....

  18. Plots, pixels, and partnerships: prospects for mapping, monitoring and modeling biodiversity.

    Treesearch

    H. Gyde Lund; Victor A. Rudis; Kenneth W. Stolte

    1998-01-01

    Many biodiversity inventories are conducted in relatively small areas, yet information is needed at the national, regional, and global levels.Most nations have forest inventory plot networks.While forest inventories may not contain the detailed species information that biodiversity inventories do, the forest inventory plot networks do represent large areas.Linkages...

  19. Global meta-analysis reveals low consistency of biodiversity congruence relationships.

    PubMed

    Westgate, Martin J; Barton, Philip S; Lane, Peter W; Lindenmayer, David B

    2014-05-21

    Knowledge of the number and distribution of species is fundamental to biodiversity conservation efforts, but this information is lacking for the majority of species on earth. Consequently, subsets of taxa are often used as proxies for biodiversity; but this assumes that different taxa display congruent distribution patterns. Here we use a global meta-analysis to show that studies of cross-taxon congruence rarely give consistent results. Instead, species richness congruence is highest at extreme spatial scales and close to the equator, while congruence in species composition is highest at large extents and grain sizes. Studies display highest variance in cross-taxon congruence when conducted in areas with dissimilar areal extents (for species richness) or latitudes (for species composition). These results undermine the assumption that a subset of taxa can be representative of biodiversity. Therefore, researchers whose goal is to prioritize locations or actions for conservation should use data from a range of taxa.

  20. Integrating Biodiversity Data into Botanic Collections

    PubMed Central

    2016-01-01

    Abstract Background Today's species names are entry points into a web of publicly available knowledge and are integral parts of legislation concerning biological conservation and consumer safety. Species information usually is fragmented, can be misleading due to the existence of different names and might even be biased because of an identical name that is used for a different species. Safely navigating through the name space is one of the most challenging tasks when associating names with data and when decisions are made which name to include in legislation. Integrating publicly available dynamic data to characterise plant genetic resources of botanic gardens and other facilities will significantly increase the efficiency of recovering relevant information for research projects, identifying potentially invasive taxa, constructing priority lists and developing DNA-based specimen authentication. New information To demonstrate information availability and discuss integration into botanic collections, scientific names derived from botanic gardens were evaluated using the Encyclopedia of Life, The Catalogue of Life and The Plant List. 98.5% of the names could be verified by the combined use of these providers. Comparing taxonomic status information 13 % of the cases were in disagreement. About 7 % of the verified names were found to be included in the International Union for Conservation of Nature Red List, including one extinct taxon and three taxa with the status "extinct in the wild". As second most important factor for biodiversity loss, potential invasiveness was determined. Approximately 4 % of the verified names were detected using the Global Invasive Species Information Network, including 208 invasive taxa. According to Delivering Alien Invasive Species Inventories for Europe around 20 % of the verified names are European alien taxa including 15 of the worst European invasive taxa. Considering alternative names in the data recovery process, success increased up

  1. Integrating Biodiversity Data into Botanic Collections.

    PubMed

    Horn, Thomas

    2016-01-01

    Today's species names are entry points into a web of publicly available knowledge and are integral parts of legislation concerning biological conservation and consumer safety. Species information usually is fragmented, can be misleading due to the existence of different names and might even be biased because of an identical name that is used for a different species. Safely navigating through the name space is one of the most challenging tasks when associating names with data and when decisions are made which name to include in legislation. Integrating publicly available dynamic data to characterise plant genetic resources of botanic gardens and other facilities will significantly increase the efficiency of recovering relevant information for research projects, identifying potentially invasive taxa, constructing priority lists and developing DNA-based specimen authentication. To demonstrate information availability and discuss integration into botanic collections, scientific names derived from botanic gardens were evaluated using the Encyclopedia of Life, The Catalogue of Life and The Plant List. 98.5% of the names could be verified by the combined use of these providers. Comparing taxonomic status information 13 % of the cases were in disagreement. About 7 % of the verified names were found to be included in the International Union for Conservation of Nature Red List, including one extinct taxon and three taxa with the status "extinct in the wild". As second most important factor for biodiversity loss, potential invasiveness was determined. Approximately 4 % of the verified names were detected using the Global Invasive Species Information Network, including 208 invasive taxa. According to Delivering Alien Invasive Species Inventories for Europe around 20 % of the verified names are European alien taxa including 15 of the worst European invasive taxa. Considering alternative names in the data recovery process, success increased up to 18 %.

  2. Supporting biodiversity by prescribed burning in grasslands - A multi-taxa approach.

    PubMed

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid D; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2016-12-01

    There are contrasting opinions on the use of prescribed burning management in European grasslands. On the one hand, prescribed burning can be effectively used for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. On the other hand burning can have a detrimental impact on grassland biodiversity by supporting competitor grasses and by threatening several rare and endangered species, especially arthropods. We studied the effects of prescribed burning in alkaline grasslands of high conservation interest. Our aim was to test whether dormant-season prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in East-Hungary: in three sites, a prescribed fire was applied in November 2011, while three sites remained unburnt. We studied the effects of burning on soil characteristics, plant biomass and on the composition of vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soil pH, organic matter, potassium and phosphorous did not change, but soluble salt content increased significantly in the burnt sites. Prescribed burning had several positive effects from the nature conservation viewpoint. Shannon diversity and the number of flowering shoots were higher, and the cover of the dominant grass Festuca pseudovina was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control. The key finding of our study was that prescribed burning did not decrease the abundance and diversity of arthropod taxa. Species-level analyses showed that out of the most abundant invertebrate species, 10 were not affected, 1 was negatively and 1 was positively affected by burning. Moreover, our results suggest that prescribed burning leaving unburnt patches can be a viable management tool in open landscapes, because it supports plant diversity and does not threaten

  3. From Sea to Sea: Canada's Three Oceans of Biodiversity

    PubMed Central

    Archambault, Philippe; Snelgrove, Paul V. R.; Fisher, Jonathan A. D.; Gagnon, Jean-Marc; Garbary, David J.; Harvey, Michel; Kenchington, Ellen L.; Lesage, Véronique; Levesque, Mélanie; Lovejoy, Connie; Mackas, David L.; McKindsey, Christopher W.; Nelson, John R.; Pepin, Pierre; Piché, Laurence; Poulin, Michel

    2010-01-01

    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a

  4. From sea to sea: Canada's three oceans of biodiversity.

    PubMed

    Archambault, Philippe; Snelgrove, Paul V R; Fisher, Jonathan A D; Gagnon, Jean-Marc; Garbary, David J; Harvey, Michel; Kenchington, Ellen L; Lesage, Véronique; Levesque, Mélanie; Lovejoy, Connie; Mackas, David L; McKindsey, Christopher W; Nelson, John R; Pepin, Pierre; Piché, Laurence; Poulin, Michel

    2010-08-31

    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a

  5. The equivalence of two phylogenetic biodiversity measures: the Shapley value and Fair Proportion index.

    PubMed

    Hartmann, Klaas

    2013-11-01

    Most biodiversity conservation programs are forced to prioritise species in order to allocate their funding. This paper contains a mathematical proof that provides biological support for one common approach based on phylogenetic indices. Phylogenetic trees describe the evolutionary relationships between a group of taxa. Two indices for computing the distinctiveness of each taxon in a phylogenetic tree are considered here-the Shapley value and the Fair Proportion index. These indices provide a measure of the importance of each taxon for overall biodiversity and have been used to prioritise taxa for conservation. The Shapley value is the biodiversity contribution a taxon is expected to make if all taxa are equally likely to become extinct. This interpretation makes it appealing to use the Shapley value in biodiversity conservation applications. The Fair Proportion index lacks a convenient interpretation, however it is significantly easier to calculate and understand. It has been empirically observed that there is a high correlation between the two indices. This paper shows the mathematical basis for this correlation and proves that as the number of taxa increases, the indices become equivalent. Consequently in biodiversity prioritisation the simpler Fair Proportion index can be used whilst retaining the appealing interpretation of the Shapley value.

  6. Nationwide inventory of mosquito biodiversity (Diptera: Culicidae) in Belgium, Europe.

    PubMed

    Versteirt, V; Boyer, S; Damiens, D; De Clercq, E M; Dekoninck, W; Ducheyne, E; Grootaert, P; Garros, C; Hance, T; Hendrickx, G; Coosemans, M; Van Bortel, W

    2013-04-01

    To advance our restricted knowledge on mosquito biodiversity and distribution in Belgium, a national inventory started in 2007 (MODIRISK) based on a random selection of 936 collection points in three main environmental types: urban, rural and natural areas. Additionally, 64 sites were selected because of the risk of importing a vector or pathogen in these sites. Each site was sampled once between May and October 2007 and once in 2008 using Mosquito Magnet Liberty Plus traps. Diversity in pre-defined habitat types was calculated using three indices. The association between species and environmental types was assessed using a correspondence analysis. Twenty-three mosquito species belonging to traditionally recognized genera were found, including 21 indigenous and two exotic species. Highest species diversity (Simpson 0.765) and species richness (20 species) was observed in natural areas, although urban sites scored also well (Simpson 0.476, 16 species). Four clusters could be distinguished based on the correspondence analysis. The first one is related to human modified landscapes (such as urban, rural and industrial sites). A second is composed of species not associated with a specific habitat type, including the now widely distributed Anopheles plumbeus. A third group includes species commonly found in restored natural or bird migration areas, and a fourth cluster is composed of forest species. Outcomes of this study demonstrate the effectiveness of the designed sampling scheme and support the choice of the trap type. Obtained results of this first country-wide inventory of the Culicidae in Belgium may serve as a basis for risk assessment of emerging mosquito-borne diseases.

  7. Extinction debt: a challenge for biodiversity conservation.

    PubMed

    Kuussaari, Mikko; Bommarco, Riccardo; Heikkinen, Risto K; Helm, Aveliina; Krauss, Jochen; Lindborg, Regina; Ockinger, Erik; Pärtel, Meelis; Pino, Joan; Rodà, Ferran; Stefanescu, Constantí; Teder, Tiit; Zobel, Martin; Steffan-Dewenter, Ingolf

    2009-10-01

    Local extinction of species can occur with a substantial delay following habitat loss or degradation. Accumulating evidence suggests that such extinction debts pose a significant but often unrecognized challenge for biodiversity conservation across a wide range of taxa and ecosystems. Species with long generation times and populations near their extinction threshold are most likely to have an extinction debt. However, as long as a species that is predicted to become extinct still persists, there is time for conservation measures such as habitat restoration and landscape management. Standardized long-term monitoring, more high-quality empirical studies on different taxa and ecosystems and further development of analytical methods will help to better quantify extinction debt and protect biodiversity.

  8. Hot spots, indicator taxa, complementarity and optimal networks of taiga.

    PubMed Central

    Virolainen, K M; Ahlroth, P; Hyvärinen, E; Korkeamäki, E; Mattila, J; Päiivinen, J; Rintala, T; Suomi, T; Suhonen, J

    2000-01-01

    If hot spots for different taxa coincide, priority-setting surveys in a region could be carried out more cheaply by focusing on indicator taxa. Several previous studies show that hot spots of different taxa rarely coincide. However, in tropical areas indicator taxa may be used in selecting complementary networks to represent biodiversity as a whole. We studied beetles (Coleoptera), Heteroptera, polypores or bracket fungi (Polyporaceae) and vascular plants of old growth boreal taiga forests. Optimal networks for Heteroptera maximized the high overall species richness of beetles and vascular plants, but these networks were least favourable options for polypores. Polypores are an important group indicating the conservation value of old growth taiga forests. Random selection provided a better option. Thus, certain groups may function as good indicators for maximizing the overall species richness of some taxonomic groups, but all taxa should be examined separately. PMID:10885520

  9. An Overview of Marine Biodiversity in United States Waters

    PubMed Central

    Fautin, Daphne; Dalton, Penelope; Incze, Lewis S.; Leong, Jo-Ann C.; Pautzke, Clarence; Rosenberg, Andrew; Sandifer, Paul; Sedberry, George; Tunnell, John W.; Abbott, Isabella; Brainard, Russell E.; Brodeur, Melissa; Eldredge, Lucius G.; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S.; Wainstein, Michelle; Wolff, Nicholas

    2010-01-01

    Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise. PMID:20689852

  10. An overview of marine biodiversity in United States waters

    USGS Publications Warehouse

    Fautin, Daphne G.; Delton, Penelope; Incze, Lewis S.; Leong, Jo-Ann C.; Pautzke, Clarence; Rosenberg, Andrew A.; Sandifer, Paul; Sedberry, George R.; Tunnell, John W.; Abbott, Isabella; Brainard, Russell E.; Brodeur, Melissa; Eldredge, Lucius G.; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S.; Wainstein, Michelle; Wolff, Nicholas

    2010-01-01

    Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

  11. An overview of marine biodiversity in United States waters.

    PubMed

    Fautin, Daphne; Dalton, Penelope; Incze, Lewis S; Leong, Jo-Ann C; Pautzke, Clarence; Rosenberg, Andrew; Sandifer, Paul; Sedberry, George; Tunnell, John W; Abbott, Isabella; Brainard, Russell E; Brodeur, Melissa; Eldredge, Lucius G; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S; Wainstein, Michelle; Wolff, Nicholas

    2010-08-02

    Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

  12. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions.

    PubMed

    Titley, Mark A; Snaddon, Jake L; Turner, Edgar C

    2017-01-01

    Over the last 25 years, research on biodiversity has expanded dramatically, fuelled by increasing threats to the natural world. However, the number of published studies is heavily weighted towards certain taxa, perhaps influencing conservation awareness of and funding for less-popular groups. Few studies have systematically quantified these biases, although information on this topic is important for informing future research and conservation priorities. We investigated: i) which animal taxa are being studied; ii) if any taxonomic biases are the same in temperate and tropical regions; iii) whether the taxon studied is named in the title of papers on biodiversity, perhaps reflecting a perception of what biodiversity is; iv) the geographical distribution of biodiversity research, compared with the distribution of biodiversity and threatened species; and v) the geographical distribution of authors' countries of origin. To do this, we used the search engine Web of Science to systematically sample a subset of the published literature with 'biodiversity' in the title. In total 526 research papers were screened-5% of all papers in Web of Science with biodiversity in the title. For each paper, details on taxonomic group, title phrasing, number of citations, study location, and author locations were recorded. Compared to the proportions of described species, we identified a considerable taxonomic weighting towards vertebrates and an under-representation of invertebrates (particularly arachnids and insects) in the published literature. This discrepancy is more pronounced in highly cited papers, and in tropical regions, with only 43% of biodiversity research in the tropics including invertebrates. Furthermore, while papers on vertebrate taxa typically did not specify the taxonomic group in the title, the converse was true for invertebrate papers. Biodiversity research is also biased geographically: studies are more frequently carried out in developed countries with larger

  13. Pesticides reduce regional biodiversity of stream invertebrates

    PubMed Central

    Beketov, Mikhail A.; Kefford, Ben J.; Schäfer, Ralf B.; Liess, Matthias

    2013-01-01

    The biodiversity crisis is one of the greatest challenges facing humanity, but our understanding of the drivers remains limited. Thus, after decades of studies and regulation efforts, it remains unknown whether to what degree and at what concentrations modern agricultural pesticides cause regional-scale species losses. We analyzed the effects of pesticides on the regional taxa richness of stream invertebrates in Europe (Germany and France) and Australia (southern Victoria). Pesticides caused statistically significant effects on both the species and family richness in both regions, with losses in taxa up to 42% of the recorded taxonomic pools. Furthermore, the effects in Europe were detected at concentrations that current legislation considers environmentally protective. Thus, the current ecological risk assessment of pesticides falls short of protecting biodiversity, and new approaches linking ecology and ecotoxicology are needed. PMID:23776226

  14. Hopping hotspots: global shifts in marine biodiversity.

    PubMed

    Renema, W; Bellwood, D R; Braga, J C; Bromfield, K; Hall, R; Johnson, K G; Lunt, P; Meyer, C P; McMonagle, L B; Morley, R J; O'Dea, A; Todd, J A; Wesselingh, F P; Wilson, M E J; Pandolfi, J M

    2008-08-01

    Hotspots of high species diversity are a prominent feature of modern global biodiversity patterns. Fossil and molecular evidence is starting to reveal the history of these hotspots. There have been at least three marine biodiversity hotspots during the past 50 million years. They have moved across almost half the globe, with their timing and locations coinciding with major tectonic events. The birth and death of successive hotspots highlights the link between environmental change and biodiversity patterns. The antiquity of the taxa in the modern Indo-Australian Archipelago hotspot emphasizes the role of pre-Pleistocene events in shaping modern diversity patterns.

  15. On specimen killing in the era of conservation crisis - A quantitative case for modernizing taxonomy and biodiversity inventories.

    PubMed

    Waeber, Patrick O; Gardner, Charlie J; Lourenço, Wilson R; Wilmé, Lucienne

    2017-01-01

    For centuries taxonomy has relied on dead animal specimens, a practice that persists today despite the emergence of innovative biodiversity assessment methods. Taxonomists and conservationists are engaged in vigorous discussions over the necessity of killing animals for specimen sampling, but quantitative data on taxonomic trends and specimen sampling over time, which could inform these debates, are lacking. We interrogated a long-term research database documenting 2,723 land vertebrate and 419 invertebrate taxa from Madagascar, and their associated specimens conserved in the major natural history museums. We further compared specimen collection and species description rates for the birds, mammals and scorpions over the last two centuries, to identify trends and links to taxon descriptions. We located 15,364 specimens documenting endemic mammals and 11,666 specimens documenting endemic birds collected between 1820 and 2010. Most specimens were collected at the time of the Mission Zoologique Franco-Anglo-Américaine (MZFAA) in the 1930s and during the last two decades, with major differences according to the groups considered. The small mammal and bat collections date primarily from recent years, and are paralleled by the description of new species. Lemur specimens were collected during the MZFAA but the descriptions of new taxa are recent, with the type series limited to non-killed specimens. Bird specimens, particularly of non-passerines, are mainly from the time of the MZFAA. The passerines have also been intensely collected during the last two decades; the new material has been used to solve the phylogeny of the groups and only two new endemic taxa of passerine birds have been described over the last two decades. Our data show that specimen collection has been critical for advancing our understanding of the taxonomy of Madagascar's biodiversity at the onset of zoological work in Madagascar, but less so in recent decades. It is crucial to look for alternatives to

  16. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale

    PubMed Central

    Niklaus, Pascal A.

    2017-01-01

    Experiments have shown positive biodiversity-ecosystem functioning (BEF) relationships in small plots with model communities established from species pools typically comprising few dozen species. Whether patterns found can be extrapolated to complex, nonexperimental, real-world landscapes that provide ecosystem services to humans remains unclear. Here, we combine species inventories from a large-scale network of 447 1-km2 plots with remotely sensed indices of primary productivity (years 2000–2015). We show that landscape-scale productivity and its temporal stability increase with the diversity of plants and other taxa. Effects of biodiversity indicators on productivity were comparable in size to effects of other important drivers related to climate, topography, and land cover. These effects occurred in plots that integrated different ecosystem types (i.e., metaecosystems) and were consistent over vast environmental and altitudinal gradients. The BEF relations we report are as strong or even exceed the ones found in small-scale experiments, despite different community assembly processes and a species pool comprising nearly 2,000 vascular plant species. Growing season length increased progressively over the observation period, and this shift was accelerated in more diverse plots, suggesting that a large species pool is important for adaption to climate change. Our study further implies that abiotic global-change drivers may mediate ecosystem functioning through biodiversity changes. PMID:28874547

  17. Analysis of Reptile Biodiversity and Ecosystem Services within ...

    EPA Pesticide Factsheets

    A focus for resource management, conservation planning, and environmental decision analysis has been mapping and quantifying biodiversity and ecosystem services. The challenge has been to integrate ecology with economics to better understand the effects of human policies and actions and their subsequent impacts on human well-being and ecosystem function. Biodiversity is valued by humans in varied ways, and thus is an important input to include in assessing the benefits of ecosystems to humans. Some biodiversity metrics more clearly reflect ecosystem services (e.g., game species, threatened and endangered species), whereas others may indicate indirect and difficult to quantify relationships to services (e.g., taxa richness and cultural value). In the present study, we identify and map reptile biodiversity and ecosystem services metrics. The importance of reptiles to biodiversity and ecosystems services is not often described. We used species distribution models for reptiles in the conterminous United States from the U.S. Geological Survey’s Gap Analysis Program. We focus on species richness metrics including all reptile species richness, taxa groupings of lizards, snakes and turtles, NatureServe conservation status (G1, G2, G3) species, IUCN listed reptiles, threatened and endangered species, Partners in Amphibian and Reptile Conservation listed reptiles, and rare species. These metrics were analyzed with the Protected Areas Database of the United States to

  18. Utility of DNA barcoding for rapid and accurate assessment of bat diversity in Malaysia in the absence of formally described species.

    PubMed

    Wilson, J-J; Sing, K-W; Halim, M R A; Ramli, R; Hashim, R; Sofian-Azirun, M

    2014-02-19

    Bats are important flagship species for biodiversity research; however, diversity in Southeast Asia is considerably underestimated in the current checklists and field guides. Incorporation of DNA barcoding into surveys has revealed numerous species-level taxa overlooked by conventional methods. Inclusion of these taxa in inventories provides a more informative record of diversity, but is problematic as these species lack formal description. We investigated how frequently documented, but undescribed, bat taxa are encountered in Peninsular Malaysia. We discuss whether a barcode library provides a means of recognizing and recording these taxa across biodiversity inventories. Tissue was sampled from bats trapped at Pasir Raja, Dungun Terengganu, Peninsular Malaysia. The DNA was extracted and the COI barcode region amplified and sequenced. We identified 9 species-level taxa within our samples, based on analysis of the DNA barcodes. Six specimens matched to four previously documented taxa considered candidate species but currently lacking formal taxonomic status. This study confirms the high diversity of bats within Peninsular Malaysia (9 species in 13 samples) and demonstrates how DNA barcoding allows for inventory and documentation of known taxa lacking formal taxonomic status.

  19. Maximizing phylogenetic diversity in biodiversity conservation: Greedy solutions to the Noah's Ark problem.

    PubMed

    Hartmann, Klaas; Steel, Mike

    2006-08-01

    The Noah's Ark Problem (NAP) is a comprehensive cost-effectiveness methodology for biodiversity conservation that was introduced by Weitzman (1998) and utilizes the phylogenetic tree containing the taxa of interest to assess biodiversity. Given a set of taxa, each of which has a particular survival probability that can be increased at some cost, the NAP seeks to allocate limited funds to conserving these taxa so that the future expected biodiversity is maximized. Finding optimal solutions using this framework is a computationally difficult problem to which a simple and efficient "greedy" algorithm has been proposed in the literature and applied to conservation problems. We show that, although algorithms of this type cannot produce optimal solutions for the general NAP, there are two restricted scenarios of the NAP for which a greedy algorithm is guaranteed to produce optimal solutions. The first scenario requires the taxa to have equal conservation cost; the second scenario requires an ultrametric tree. The NAP assumes a linear relationship between the funding allocated to conservation of a taxon and the increased survival probability of that taxon. This relationship is briefly investigated and one variation is suggested that can also be solved using a greedy algorithm.

  20. Children's Perceptions of Rainforest Biodiversity: Which Animals Have the Lion's Share of Environmental Awareness?

    PubMed Central

    Foster, William A.

    2008-01-01

    Globally, natural ecosystems are being lost to agricultural land at an unprecedented rate. This land-use often results in significant reductions in abundance and diversity of the flora and fauna as well as alterations in their composition. Despite this, there is little public perception of which taxa are most important in terms of their total biomass, biodiversity or the ecosystem services they perform. Such awareness is important for conservation, as without appreciation of their value and conservation status, species are unlikely to receive adequate conservation protection. We investigated children's perceptions of rainforest biodiversity by asking primary-age children, visiting the University Museum of Zoology, Cambridge to draw their ideal rainforest. By recording the frequency at which children drew different climatic, structural, vegetative and faunal components of the rainforest, we were able to quantify children's understanding of a rainforest environment. We investigated children's perceptions of rainforest biodiversity by comparing the relative numbers of the taxa drawn with the actual contributions made by these taxa to total rainforest biomass and global biodiversity. We found that children have a sophisticated view of the rainforest, incorporating many habitat features and a diverse range of animals. However, some taxa were over-represented (particularly mammals, birds and reptiles) and others under-represented (particularly insects and annelids) relative to their contribution to total biomass and species richness. Scientists and naturalists must continue to emphasise the diversity and functional importance of lesser-known taxa through public communication and outdoor events to aid invertebrate conservation and to ensure that future generations are inspired to become naturalists themselves. PMID:18596931

  1. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats

    PubMed Central

    Lefcheck, Jonathan S.; Byrnes, Jarrett E. K.; Isbell, Forest; Gamfeldt, Lars; Griffin, John N.; Eisenhauer, Nico; Hensel, Marc J. S.; Hector, Andy; Cardinale, Bradley J.; Duffy, J. Emmett

    2015-01-01

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups. PMID:25907115

  2. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats.

    PubMed

    Lefcheck, Jonathan S; Byrnes, Jarrett E K; Isbell, Forest; Gamfeldt, Lars; Griffin, John N; Eisenhauer, Nico; Hensel, Marc J S; Hector, Andy; Cardinale, Bradley J; Duffy, J Emmett

    2015-04-24

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups.

  3. Corridor use by diverse taxa.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, Nick, M.; Browne, David, R.; Cunningham, Alan

    2003-01-01

    Haddad, N.M., D.R. Browne, A. Cunningham, B.J. Danielson, D.J. Levey, S. Sargent, and T. Spira. 2003. Corridor use by diverse taxa. Ecology, 84(3):609-615. One of the most popular approaches for maintaining populations and conserving biodiversity in fragmented landscapes is to retain or create corridors that connect otherwise isolated habitat patches. Working in large-scale, experimental landscapes in which open-habitat patches and corridors were created by harvesting pine forest, we showed that corridors direct movements of different types of species, including butterflies, small mammals, and bird dispersed plants, causing higher movement between connected than between unconnected patches. Corridors directed the movement ofmore » all 10 species studied, with all corridor effect sizes >68%. However, this corridor effect was significant for five species, not significant for one species, and inconclusive for four species because of small sample sizes. Although we found no evidence that corridors increase emigration from a patch, our results show that movements of disparate taxa with broadly different life histories and functional roles are directed by corridors.« less

  4. Climate constrains the evolutionary history and biodiversity of crocodylians.

    PubMed

    Mannion, Philip D; Benson, Roger B J; Carrano, Matthew T; Tennant, Jonathan P; Judd, Jack; Butler, Richard J

    2015-09-24

    The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A 'modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions.

  5. Climate constrains the evolutionary history and biodiversity of crocodylians

    PubMed Central

    Mannion, Philip D.; Benson, Roger B. J.; Carrano, Matthew T.; Tennant, Jonathan P.; Judd, Jack; Butler, Richard J.

    2015-01-01

    The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A ‘modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions. PMID:26399170

  6. Selection of multiple umbrella species for functional and taxonomic diversity to represent urban biodiversity.

    PubMed

    Sattler, T; Pezzatti, G B; Nobis, M P; Obrist, M K; Roth, T; Moretti, M

    2014-04-01

    Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty-one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within- and across-taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity. © 2013 Society for Conservation Biology.

  7. Preserving the evolutionary potential of floras in biodiversity hotspots.

    PubMed

    Forest, Félix; Grenyer, Richard; Rouget, Mathieu; Davies, T Jonathan; Cowling, Richard M; Faith, Daniel P; Balmford, Andrew; Manning, John C; Procheş, Serban; van der Bank, Michelle; Reeves, Gail; Hedderson, Terry A J; Savolainen, Vincent

    2007-02-15

    One of the biggest challenges for conservation biology is to provide conservation planners with ways to prioritize effort. Much attention has been focused on biodiversity hotspots. However, the conservation of evolutionary process is now also acknowledged as a priority in the face of global change. Phylogenetic diversity (PD) is a biodiversity index that measures the length of evolutionary pathways that connect a given set of taxa. PD therefore identifies sets of taxa that maximize the accumulation of 'feature diversity'. Recent studies, however, concluded that taxon richness is a good surrogate for PD. Here we show taxon richness to be decoupled from PD, using a biome-wide phylogenetic analysis of the flora of an undisputed biodiversity hotspot--the Cape of South Africa. We demonstrate that this decoupling has real-world importance for conservation planning. Finally, using a database of medicinal and economic plant use, we demonstrate that PD protection is the best strategy for preserving feature diversity in the Cape. We should be able to use PD to identify those key regions that maximize future options, both for the continuing evolution of life on Earth and for the benefit of society.

  8. Selective‐logging and oil palm: multitaxon impacts, biodiversity indicators, and trade‐offs for conservation planning.

    PubMed

    Edwards, David P; Magrach, Ainhoa; Woodcock, Paul; Ji, Yinqiu; Lim, Norman T -L; Edwards, Felicity A; Larsen, Trond H; Hsu, Wayne W; Benedick, Suzan; Khen, Chey Vun; Chung, Arthur Y C; Reynolds, Glen; Fisher, Brendan; Laurance, William F; Wilcove, David S; Hamer, Keith C; Yu, Douglas W

    Strong global demand for tropical timber and agricultural products has driven large-scale logging and subsequent conversion of tropical forests. Given that the majority of tropical landscapes have been or will likely be logged, the protection of biodiversity within tropical forests thus depends on whether species can persist in these economically exploited lands, and if species cannot persist, whether we can protect enough primary forest from logging and conversion. However, our knowledge of the impact of logging and conversion on biodiversity is limited to a few taxa, often sampled in different locations with complex land-use histories, hampering attempts to plan cost-effective conservation strategies and to draw conclusions across taxa. Spanning a land-use gradient of primary forest, once- and twice-logged forests, and oil palm plantations, we used traditional sampling and DNA metabarcoding to compile an extensive data set in Sabah, Malaysian Borneo for nine vertebrate and invertebrate taxa to quantify the biological impacts of logging and oil palm, develop cost-effective methods of protecting biodiversity, and examine whether there is congruence in response among taxa. Logged forests retained high species richness, including, on average, 70% of species found in primary forest. In contrast, conversion to oil palm dramatically reduces species richness, with significantly fewer primary-forest species than found on logged forest transects for seven taxa. Using a systematic conservation planning analysis, we show that efficient protection of primary-forest species is achieved with land portfolios that include a large proportion of logged-forest plots. Protecting logged forests is thus a cost-effective method of protecting an ecologically and taxonomically diverse range of species, particularly when conservation budgets are limited. Six indicator groups (birds, leaf-litter ants, beetles, aerial hymenopterans, flies, and true bugs) proved to be consistently good

  9. Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees

    Treesearch

    S.M. Philpott; W.J. Arendt; I. Armbrecht; P. Bichier; T.V. Diestch; C. Gordon; R. Greenberg; I. Perfecto; R. Reynoso-Santos; L. Soto-Pinto; C. Tejeda-Cruz; G. Williams-Linera; J. Valenzuela; J.M. Zolotoff

    2008-01-01

    Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions.We quantitatively reviewed data from...

  10. Assessment of available anatomical characters for linking living mammals to fossil taxa in phylogenetic analyses.

    PubMed

    Guillerme, Thomas; Cooper, Natalie

    2016-05-01

    Analyses of living and fossil taxa are crucial for understanding biodiversity through time. The total evidence method allows living and fossil taxa to be combined in phylogenies, using molecular data for living taxa and morphological data for living and fossil taxa. With this method, substantial overlap of coded anatomical characters among living and fossil taxa is vital for accurately inferring topology. However, although molecular data for living species are widely available, scientists generating morphological data mainly focus on fossils. Therefore, there are fewer coded anatomical characters in living taxa, even in well-studied groups such as mammals. We investigated the number of coded anatomical characters available in phylogenetic matrices for living mammals and how these were phylogenetically distributed across orders. Eleven of 28 mammalian orders have less than 25% species with available characters; this has implications for the accurate placement of fossils, although the issue is less pronounced at higher taxonomic levels. In most orders, species with available characters are randomly distributed across the phylogeny, which may reduce the impact of the problem. We suggest that increased morphological data collection efforts for living taxa are needed to produce accurate total evidence phylogenies. © 2016 The Authors.

  11. Current and Future Patterns of Global Marine Mammal Biodiversity

    PubMed Central

    Kaschner, Kristin; Tittensor, Derek P.; Ready, Jonathan; Gerrodette, Tim; Worm, Boris

    2011-01-01

    Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available. PMID:21625431

  12. Biodiversity impact assessment (BIA+) - methodological framework for screening biodiversity.

    PubMed

    Winter, Lisa; Pflugmacher, Stephan; Berger, Markus; Finkbeiner, Matthias

    2018-03-01

    For the past 20 years, the life cycle assessment (LCA) community has sought to integrate impacts on biodiversity into the LCA framework. However, existing impact assessment methods still fail to do so comprehensively because they quantify only a few impacts related to specific species and regions. This paper proposes a methodological framework that will allow LCA practitioners to assess currently missing impacts on biodiversity on a global scale. Building on existing models that seek to quantify the impacts of human activities on biodiversity, the herein proposed methodological framework consists of 2 components: a habitat factor for 14 major habitat types and the impact on the biodiversity status in those major habitat types. The habitat factor is calculated by means of indicators that characterize each habitat. The biodiversity status depends on parameters from impact categories. The impact functions, relating these different parameters to a given response in the biodiversity status, rely on expert judgments. To ensure the applicability for LCA practitioners, the components of the framework can be regionalized on a country scale for which LCA inventory data is more readily available. The weighting factors for the 14 major habitat types range from 0.63 to 1.82. By means of area weighting of the major habitat types in a country, country-specific weighting factors are calculated. In order to demonstrate the main part of the framework, examples of impact functions are given for the categories "freshwater eutrophication" and "freshwater ecotoxicity" in 1 major habitat type. The results confirm suitability of the methodological framework. The major advantages are the framework's user-friendliness, given that data can be used from LCA databases directly, and the complete inclusion of all levels of biodiversity (genetic, species, and ecosystem). It is applicable for the whole world and a wide range of impact categories. Integr Environ Assess Manag 2018;14:282-297.

  13. Taxa-area relationship of aquatic fungi on deciduous leaves.

    PubMed

    Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Bärlocher, Felix

    2017-01-01

    One of the fundamental patterns in macroecology is the increase in the number of observed taxa with size of sampled area. For microbes, the shape of this relationship remains less clear. The current study assessed the diversity of aquatic fungi, by the traditional approach based on conidial morphology (captures reproducing aquatic hyphomycetes) and next generation sequencing (NGS; captures other fungi as well), on graded sizes of alder leaves (0.6 to 13.6 cm2). Leaves were submerged in two streams in geographically distant locations: the Oliveira Stream in Portugal and the Boss Brook in Canada. Decay rates of alder leaves and fungal sporulation rates did not differ between streams. Fungal biomass was higher in Boss Brook than in Oliveira Stream, and in both streams almost 100% of the reads belonged to active fungal taxa. In general, larger leaf areas tended to harbour more fungi, but these findings were not consistent between techniques. Morphospecies-based diversity increased with leaf area in Boss Brook, but not in Oliveira Stream; metabarcoding data showed an opposite trend. The higher resolution of metabarcoding resulted in steeper taxa-accumulation curves than morphospecies-based assessments (fungal conidia morphology). Fungal communities assessed by metabarcoding were spatially structured by leaf area in both streams. Metabarcoding promises greater resolution to assess biodiversity patterns in aquatic fungi and may be more accurate for assessing taxa-area relationships and local to global diversity ratios.

  14. Comparative modeling of coevolution in communities of unicellular organisms: adaptability and biodiversity.

    PubMed

    Lashin, Sergey A; Suslov, Valentin V; Matushkin, Yuri G

    2010-06-01

    We propose an original program "Evolutionary constructor" that is capable of computationally efficient modeling of both population-genetic and ecological problems, combining these directions in one model of required detail level. We also present results of comparative modeling of stability, adaptability and biodiversity dynamics in populations of unicellular haploid organisms which form symbiotic ecosystems. The advantages and disadvantages of two evolutionary strategies of biota formation--a few generalists' taxa-based biota formation and biodiversity-based biota formation--are discussed.

  15. [Hyperbolic growth of marine and continental biodiversity through the phanerozoic and community evolution].

    PubMed

    Markov, A V; Korotaev, A V

    2008-01-01

    Among diverse models that are used to describe and interpret the changes in global biodiversity through the Phanerozoic, the exponential and logistic models (traditionally used in population biology) are the most popular. As we have recently demonstrated (Markov, Korotayev, 2007), the growth of the Phanerozoic marine biodiversity at genus level correlates better with the hyperbolic model (widely used in demography and macrosociology). Here we show that the hyperbolic model is also applicable to the Phanerozoic continental biota at genus and family levels, and to the marine biota at species, genus, and family levels. There are many common features in the evolutionary dynamics of the marine and continental biotas that imply similarity and common nature of the factors and mechanisms underlying the hyperbolic growth. Both marine and continental biotas are characterized by continuous growth of the mean longevity of taxa, by decreasing extinction and origination rates, by similar pattern of replacement of dominant groups, by stepwise accumulation of evolutionary stable, adaptable and "physiologically buffered" taxa with effective mechanisms of parental care, protection of early developmental stages, etc. At the beginning of the development of continental biota, the observed taxonomic diversity was substantially lower than that predicted by the hyperbolic model. We suggest that this is due, firstly, to the fact that, during the earliest stages of the continental biota evolution, the groups that are not preserved in the fossil record (such as soil bacteria, unicellular algae, lichens, etc.) played a fundamental role, and secondly, to the fact that the continental biota initially formed as a marginal portion of the marine biota, rather than a separate system. The hyperbolic dynamics is most prominent when both marine and continental biotas are considered together. This fact can be interpreted as a proof of the integrated nature of the biosphere. In the macrosociological

  16. Conservation of deep pelagic biodiversity.

    PubMed

    Robison, Bruce H

    2009-08-01

    The deep ocean is home to the largest ecosystems on our planet. This vast realm contains what may be the greatest number of animal species, the greatest biomass, and the greatest number of individual organisms in the living world. Humans have explored the deep ocean for about 150 years, and most of what is known is based on studies of the deep seafloor. In contrast, the water column above the deep seabed comprises more than 90% of the living space, yet less than 1% of this biome has been explored. The deep pelagic biota is the largest and least-known major faunal group on Earth despite its obvious importance at the global scale. Pelagic species represent an incomparable reservoir of biodiversity. Although we have yet to discover and describe the majority of these species, the threats to their continued existence are numerous and growing. Conserving deep pelagic biodiversity is a problem of global proportions that has never been addressed comprehensively. The potential effects of these threats include the extensive restructuring of entire ecosystems, changes in the geographical ranges of many species, large-scale elimination of taxa, and a decline in biodiversity at all scales. This review provides an initial framework of threat assessment for confronting the challenge of conserving deep pelagic biodiversity; and it outlines the need for baseline surveys and protected areas as preliminary policy goals.

  17. Insights into biodiversity sampling strategies for freshwater microinvertebrate faunas through bioblitz campaigns and DNA barcoding.

    PubMed

    Laforest, Brandon J; Winegardner, Amanda K; Zaheer, Omar A; Jeffery, Nicholas W; Boyle, Elizabeth E; Adamowicz, Sarah J

    2013-04-04

    Biodiversity surveys have long depended on traditional methods of taxonomy to inform sampling protocols and to determine when a representative sample of a given species pool of interest has been obtained. Questions remain as to how to design appropriate sampling efforts to accurately estimate total biodiversity. Here we consider the biodiversity of freshwater ostracods (crustacean class Ostracoda) from the region of Churchill, Manitoba, Canada. Through an analysis of observed species richness and complementarity, accumulation curves, and richness estimators, we conduct an a posteriori analysis of five bioblitz-style collection strategies that differed in terms of total duration, number of sites, protocol flexibility to heterogeneous habitats, sorting of specimens for analysis, and primary purpose of collection. We used DNA barcoding to group specimens into molecular operational taxonomic units for comparison. Forty-eight provisional species were identified through genetic divergences, up from the 30 species previously known and documented in literature from the Churchill region. We found differential sampling efficiency among the five strategies, with liberal sorting of specimens for molecular analysis, protocol flexibility (and particularly a focus on covering diverse microhabitats), and a taxon-specific focus to collection having strong influences on garnering more accurate species richness estimates. Our findings have implications for the successful design of future biodiversity surveys and citizen-science collection projects, which are becoming increasingly popular and have been shown to produce reliable results for a variety of taxa despite relying on largely untrained collectors. We propose that efficiency of biodiversity surveys can be increased by non-experts deliberately selecting diverse microhabitats; by conducting two rounds of molecular analysis, with the numbers of samples processed during round two informed by the singleton prevalence during round

  18. Quantifying and sustaining biodiversity in tropical agricultural landscapes.

    PubMed

    Mendenhall, Chase D; Shields-Estrada, Analisa; Krishnaswami, Arjun J; Daily, Gretchen C

    2016-12-20

    Decision-makers increasingly seek scientific guidance on investing in nature, but biodiversity remains difficult to estimate across diverse landscapes. Here, we develop empirically based models for quantifying biodiversity across space. We focus on agricultural lands in the tropical forest biome, wherein lies the greatest potential to conserve or lose biodiversity. We explore two questions, drawing from empirical research oriented toward pioneering policies in Costa Rica. First, can remotely sensed tree cover serve as a reliable basis for improved estimation of biodiversity, from plots to regions? Second, how does tropical biodiversity change across the land-use gradient from native forest to deforested cropland and pasture? We report on understory plants, nonflying mammals, bats, birds, reptiles, and amphibians. Using data from 67,737 observations of 908 species, we test how tree cover influences biodiversity across space. First, we find that fine-scale mapping of tree cover predicts biodiversity within a taxon-specific radius (of 30-70 m) about a point in the landscape. Second, nearly 50% of the tree cover in our study region is embedded in countryside forest elements, small (typically 0.05-100 ha) clusters or strips of trees on private property. Third, most species use multiple habitat types, including crop fields and pastures (to which 15% of species are restricted), although some taxa depend on forest (57% of species are restricted to forest elements). Our findings are supported by comparisons of 90 studies across Latin America. They provide a basis for a planning tool that guides investments in tropical forest biodiversity similar to those for securing ecosystem services.

  19. Quantifying and sustaining biodiversity in tropical agricultural landscapes

    PubMed Central

    Mendenhall, Chase D.; Shields-Estrada, Analisa; Krishnaswami, Arjun J.; Daily, Gretchen C.

    2016-01-01

    Decision-makers increasingly seek scientific guidance on investing in nature, but biodiversity remains difficult to estimate across diverse landscapes. Here, we develop empirically based models for quantifying biodiversity across space. We focus on agricultural lands in the tropical forest biome, wherein lies the greatest potential to conserve or lose biodiversity. We explore two questions, drawing from empirical research oriented toward pioneering policies in Costa Rica. First, can remotely sensed tree cover serve as a reliable basis for improved estimation of biodiversity, from plots to regions? Second, how does tropical biodiversity change across the land-use gradient from native forest to deforested cropland and pasture? We report on understory plants, nonflying mammals, bats, birds, reptiles, and amphibians. Using data from 67,737 observations of 908 species, we test how tree cover influences biodiversity across space. First, we find that fine-scale mapping of tree cover predicts biodiversity within a taxon-specific radius (of 30–70 m) about a point in the landscape. Second, nearly 50% of the tree cover in our study region is embedded in countryside forest elements, small (typically 0.05–100 ha) clusters or strips of trees on private property. Third, most species use multiple habitat types, including crop fields and pastures (to which 15% of species are restricted), although some taxa depend on forest (57% of species are restricted to forest elements). Our findings are supported by comparisons of 90 studies across Latin America. They provide a basis for a planning tool that guides investments in tropical forest biodiversity similar to those for securing ecosystem services. PMID:27791070

  20. Regional zooplankton biodiversity provides limited buffering of pond ecosystems against climate change.

    PubMed

    Thompson, Patrick L; Shurin, Jonathan B

    2012-01-01

    1. Climate change and other human-driven environmental perturbations are causing reductions in biodiversity and impacting the functioning of ecosystems on a global scale. Metacommunity theory suggests that ecosystem connectivity may reduce the magnitude of these impacts if the regional species pool contains functionally redundant species that differ in their environmental tolerances. Dispersal may increase the resistance of local ecosystems to environmental stress by providing regional species with traits adapted to novel conditions. 2. We tested this theory by subjecting freshwater zooplankton communities in mesocosms that were either connected to or isolated from the larger regional species pool to a factorial manipulation of experimental warming and increased salinity. 3. Compensation by regional taxa depended on the source of stress. Warming tolerant regional taxa partially compensated for reductions in heat sensitive local taxa but similar compensation did not occur under increased salinity. 4. Dispersal-mediated species invasions dampened the effects of warming on summer net ecosystem productivity. However, this buffering effect did not occur in the fall or for periphyton growth, the only other ecosystem function affected by the stress treatments. 5. The results indicate that regional biodiversity can provide insurance in a dynamic environment but that the buffering capacity is limited to some ecosystem processes and sources of stress. Maintaining regional biodiversity and habitat connectivity may therefore provide some limited insurance for local ecosystems in changing environments, but is unable to impart resistance against all sources of environmental stress. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  1. Large conservation gains possible for global biodiversity facets.

    PubMed

    Pollock, Laura J; Thuiller, Wilfried; Jetz, Walter

    2017-06-01

    Different facets of biodiversity other than species numbers are increasingly appreciated as critical for maintaining the function of ecosystems and their services to humans. While new international policy and assessment processes such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) recognize the importance of an increasingly global, quantitative and comprehensive approach to biodiversity protection, most insights are still focused on a single facet of biodiversity-species. Here we broaden the focus and provide an evaluation of how much of the world's species, functional and phylogenetic diversity of birds and mammals is currently protected and the scope for improvement. We show that the large existing gaps in the coverage for each facet of diversity could be remedied by a slight expansion of protected areas: an additional 5% of the land has the potential to more than triple the protected range of species or phylogenetic or functional units. Further, the same areas are often priorities for multiple diversity facets and for both taxa. However, we find that the choice of conservation strategy has a fundamental effect on outcomes. It is more difficult (that is, requires more land) to maximize basic representation of the global biodiversity pool than to maximize local diversity. Overall, species and phylogenetic priorities are more similar to each other than they are to functional priorities, and priorities for the different bird biodiversity facets are more similar than those of mammals. Our work shows that large gains in biodiversity protection are possible, while also highlighting the need to explicitly link desired conservation objectives and biodiversity metrics. We provide a framework and quantitative tools to advance these goals for multi-faceted biodiversity conservation.

  2. Stronger tests of mechanisms underlying geographic gradients of biodiversity: insights from the dimensionality of biodiversity.

    PubMed

    Stevens, Richard D; Tello, J Sebastián; Gavilanez, María Mercedes

    2013-01-01

    Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km(2) grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota.

  3. Stronger Tests of Mechanisms Underlying Geographic Gradients of Biodiversity: Insights from the Dimensionality of Biodiversity

    PubMed Central

    Stevens, Richard D.; Tello, J. Sebastián; Gavilanez, María Mercedes

    2013-01-01

    Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km2 grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota. PMID

  4. Crowdfunding biodiversity conservation.

    PubMed

    Gallo-Cajiao, E; Archibald, C; Friedman, R; Steven, R; Fuller, R A; Game, E T; Morrison, T H; Ritchie, E G

    2018-05-26

    Raising funds is critical for conserving biodiversity and hence so too is scrutinizing emerging financial mechanisms that might help achieve this goal. In this context, anecdotal evidence indicates crowdfunding is being used to support a variety of activities needed for biodiversity conservation, yet its magnitude and allocation remain largely unknown. We conducted a global analysis to help address this knowledge gap, based on empirical data from conservation-focused projects extracted from crowdfunding platforms. For each project, we determined the funds raised, date, country of implementation, proponent characteristics, activity type, biodiversity realm, and target taxa. We identified 72 relevant platforms and 577 conservation-focused projects that have raised US$4 790 634 since 2009. Whilst proponents were based in 38 countries, projects were delivered across 80 countries, indicating a potential mechanism of resource mobilization. Proponents were from non-governmental organizations (35%), universities (30%), or were freelancers (26%). Most projects were for research (40%), persuasion (31%), and on-ground actions (21%). Projects have focused primarily on species (57.7%) and terrestrial ecosystems (20.3%), and less on marine (8.8%) and freshwater ecosystems (3.6%). Projects have focused on 208 species, including a disproportionate number of threatened bird and mammal species. Crowdfunding for biodiversity conservation has now become a global phenomenon and presents signals for potential expansion, despite possible pitfalls. Opportunities arise from its spatial amplifying effect, steady increase over time, inclusion of Cinderella species, adoption by multiple actors, and funding of a range of activities beyond research. Our study paves the way for further research on key questions, such as campaign success rates, effectiveness, and drivers of adoption. Even though the capital input of crowdfunding so far has been modest compared to other conservation finance

  5. Quaternary disappearance of tree taxa from Southern Europe: Timing and trends

    NASA Astrophysics Data System (ADS)

    Magri, Donatella; Di Rita, Federico; Aranbarri, Josu; Fletcher, William; González-Sampériz, Penélope

    2017-05-01

    A hundred pollen and plant macrofossil records from the Iberian Peninsula, Southern France, the Italian Peninsula, Greece and the Aegean, and the southwestern Black Sea area formed the basis for a review of the Quaternary distribution and extirpation of tree populations from Southern Europe. Following a discussion of the caveats/challenges about using pollen data, the Quaternary history of tree taxa has been reconstructed with attention to Taxodium/Glyptostrobus, Sciadopitys, Cathaya, Cedrus, Tsuga, Eucommia, Engelhardia, Carya, Pterocarya, Parrotia, Liquidambar, and Zelkova. The timing of extinction, distributed over the whole Quaternary, appears very diverse from one region to the other, in agreement with current biodiversity in Southern Europe. The geographical patterns of persistence/disappearance of taxa show unexpected trends and rule out a simple North to South and/or West to East trend in extirpations. In particular, it is possible to detect disjunct populations (Engelhardia), long-term persistence of taxa in restricted regions (Sciadopitys), distinct populations/species/genera in different geographical areas (Taxodium type). Some taxa that are still widespread in Europe have undergone extirpation in Mediterranean areas in the lateglacial period and Holocene (Buxus, Carpinus betulus, Picea); they provide an indication of the modes of disappearance of tree populations that may be useful to evaluate correctly the vulnerability of modern fragmented plant populations. The demographic histories of tree taxa obtained by combined palaeobotanical and genetic studies is a most challenging field of research needed not only to assess species/population differentiation, but also to reach a better understanding of extinction processes, an essential task in the current global change scenario.

  6. Evaluating Temporal Consistency in Marine Biodiversity Hotspots.

    PubMed

    Piacenza, Susan E; Thurman, Lindsey L; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lindsley, Amy J; Nelson, Jake; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Heppell, Selina S

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon's diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  7. Evaluating Temporal Consistency in Marine Biodiversity Hotspots

    PubMed Central

    Barner, Allison K.; Benkwitt, Cassandra E.; Boersma, Kate S.; Cerny-Chipman, Elizabeth B.; Ingeman, Kurt E.; Kindinger, Tye L.; Lindsley, Amy J.; Nelson, Jake; Reimer, Jessica N.; Rowe, Jennifer C.; Shen, Chenchen; Thompson, Kevin A.; Heppell, Selina S.

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon’s diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  8. Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel.

    PubMed

    Brito, José C; Godinho, Raquel; Martínez-Freiría, Fernando; Pleguezuelos, Juan M; Rebelo, Hugo; Santos, Xavier; Vale, Cândida G; Velo-Antón, Guillermo; Boratyński, Zbyszek; Carvalho, Sílvia B; Ferreira, Sónia; Gonçalves, Duarte V; Silva, Teresa L; Tarroso, Pedro; Campos, João C; Leite, João V; Nogueira, Joana; Alvares, Francisco; Sillero, Neftalí; Sow, Andack S; Fahd, Soumia; Crochet, Pierre-André; Carranza, Salvador

    2014-02-01

    Deserts and arid regions are generally perceived as bare and rather homogeneous areas of low diversity. The Sahara is the largest warm desert in the world and together with the arid Sahel displays high topographical and climatic heterogeneity, and has experienced recent and strong climatic oscillations that have greatly shifted biodiversity distribution and community composition. The large size, remoteness and long-term political instability of the Sahara-Sahel, have limited knowledge on its biodiversity. However, over the last decade, there have been an increasing number of published scientific studies based on modern geomatic and molecular tools, and broad sampling of taxa of these regions. This review tracks trends in knowledge about biodiversity patterns, processes and threats across the Sahara-Sahel, and anticipates needs for biodiversity research and conservation. Recent studies are changing completely the perception of regional biodiversity patterns. Instead of relatively low species diversity with distribution covering most of the region, studies now suggest a high rate of endemism and larger number of species, with much narrower and fragmented ranges, frequently limited to micro-hotspots of biodiversity. Molecular-based studies are also unravelling cryptic diversity associated with mountains, which together with recent distribution atlases, allows identifying integrative biogeographic patterns in biodiversity distribution. Mapping of multivariate environmental variation (at 1 km × 1 km resolution) of the region illustrates main biogeographical features of the Sahara-Sahel and supports recently hypothesised dispersal corridors and refugia. Micro-scale water-features present mostly in mountains have been associated with local biodiversity hotspots. However, the distribution of available data on vertebrates highlights current knowledge gaps that still apply to a large proportion of the Sahara-Sahel. Current research is providing insights into key

  9. Island biodiversity conservation needs palaeoecology.

    PubMed

    Nogué, Sandra; de Nascimento, Lea; Froyd, Cynthia A; Wilmshurst, Janet M; de Boer, Erik J; Coffey, Emily E D; Whittaker, Robert J; Fernández-Palacios, José María; Willis, Kathy J

    2017-06-22

    The discovery and colonization of islands by humans has invariably resulted in their widespread ecological transformation. The small and isolated populations of many island taxa, and their evolution in the absence of humans and their introduced taxa, mean that they are particularly vulnerable to human activities. Consequently, even the most degraded islands are a focus for restoration, eradication, and monitoring programmes to protect the remaining endemic and/or relict populations. Here, we build a framework that incorporates an assessment of the degree of change from multiple baseline reference periods using long-term ecological data. The use of multiple reference points may provide information on both the variability of natural systems and responses to successive waves of cultural transformation of island ecosystems, involving, for example, the alteration of fire and grazing regimes and the introduction of non-native species. We provide exemplification of how such approaches can provide valuable information for biodiversity conservation managers of island ecosystems.

  10. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe.

    PubMed

    Paillet, Yoan; Bergès, Laurent; Hjältén, Joakim; Odor, Péter; Avon, Catherine; Bernhardt-Römermann, Markus; Bijlsma, Rienk-Jan; De Bruyn, Luc; Fuhr, Marc; Grandin, Ulf; Kanka, Robert; Lundin, Lars; Luque, Sandra; Magura, Tibor; Matesanz, Silvia; Mészáros, Ilona; Sebastià, M-Teresa; Schmidt, Wolfgang; Standovár, Tibor; Tóthmérész, Béla; Uotila, Anneli; Valladares, Fernando; Vellak, Kai; Virtanen, Risto

    2010-02-01

    Past and present pressures on forest resources have led to a drastic decrease in the surface area of unmanaged forests in Europe. Changes in forest structure, composition, and dynamics inevitably lead to changes in the biodiversity of forest-dwelling species. The possible biodiversity gains and losses due to forest management (i.e., anthropogenic pressures related to direct forest resource use), however, have never been assessed at a pan-European scale. We used meta-analysis to review 49 published papers containing 120 individual comparisons of species richness between unmanaged and managed forests throughout Europe. We explored the response of different taxonomic groups and the variability of their response with respect to time since abandonment and intensity of forest management. Species richness was slightly higher in unmanaged than in managed forests. Species dependent on forest cover continuity, deadwood, and large trees (bryophytes, lichens, fungi, saproxylic beetles) and carabids were negatively affected by forest management. In contrast, vascular plant species were favored. The response for birds was heterogeneous and probably depended more on factors such as landscape patterns. The global difference in species richness between unmanaged and managed forests increased with time since abandonment and indicated a gradual recovery of biodiversity. Clearcut forests in which the composition of tree species changed had the strongest effect on species richness, but the effects of different types of management on taxa could not be assessed in a robust way because of low numbers of replications in the management-intensity classes. Our results show that some taxa are more affected by forestry than others, but there is a need for research into poorly studied species groups in Europe and in particular locations. Our meta-analysis supports the need for a coordinated European research network to study and monitor the biodiversity of different taxa in managed and unmanaged

  11. Large conservation gains possible for global biodiversity facets

    NASA Astrophysics Data System (ADS)

    Pollock, Laura J.; Thuiller, Wilfried; Jetz, Walter

    2017-06-01

    Different facets of biodiversity other than species numbers are increasingly appreciated as critical for maintaining the function of ecosystems and their services to humans. While new international policy and assessment processes such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) recognize the importance of an increasingly global, quantitative and comprehensive approach to biodiversity protection, most insights are still focused on a single facet of biodiversity—species. Here we broaden the focus and provide an evaluation of how much of the world’s species, functional and phylogenetic diversity of birds and mammals is currently protected and the scope for improvement. We show that the large existing gaps in the coverage for each facet of diversity could be remedied by a slight expansion of protected areas: an additional 5% of the land has the potential to more than triple the protected range of species or phylogenetic or functional units. Further, the same areas are often priorities for multiple diversity facets and for both taxa. However, we find that the choice of conservation strategy has a fundamental effect on outcomes. It is more difficult (that is, requires more land) to maximize basic representation of the global biodiversity pool than to maximize local diversity. Overall, species and phylogenetic priorities are more similar to each other than they are to functional priorities, and priorities for the different bird biodiversity facets are more similar than those of mammals. Our work shows that large gains in biodiversity protection are possible, while also highlighting the need to explicitly link desired conservation objectives and biodiversity metrics. We provide a framework and quantitative tools to advance these goals for multi-faceted biodiversity conservation.

  12. Using occupancy modeling to compare traditional versus DNA metabarcoding methods for characterizing zooplankton biodiversity

    EPA Science Inventory

    DNA metabarcoding tools could increase our ability to detect changes in zooplankton communities and to detect invasive zooplankton taxa while they are still rare. Nonetheless, the use of DNA-metabarcoding for characterizing zooplankton biodiversity in the Great Lakes has not bee...

  13. Estimating dead wood during national forest inventories: a review of inventory methodologies and suggestions for harmonization.

    PubMed

    Woodall, Christopher W; Rondeux, Jacques; Verkerk, Pieter J; Ståhl, Göran

    2009-10-01

    Efforts to assess forest ecosystem carbon stocks, biodiversity, and fire hazards have spurred the need for comprehensive assessments of forest ecosystem dead wood (DW) components around the world. Currently, information regarding the prevalence, status, and methods of DW inventories occurring in the world's forested landscapes is scattered. The goal of this study is to describe the status, DW components measured, sample methods employed, and DW component thresholds used by national forest inventories that currently inventory DW around the world. Study results indicate that most countries do not inventory forest DW. Globally, we estimate that about 13% of countries inventory DW using a diversity of sample methods and DW component definitions. A common feature among DW inventories was that most countries had only just begun DW inventories and employ very low sample intensities. There are major hurdles to harmonizing national forest inventories of DW: differences in population definitions, lack of clarity on sample protocols/estimation procedures, and sparse availability of inventory data/reports. Increasing database/estimation flexibility, developing common dimensional thresholds of DW components, publishing inventory procedures/protocols, releasing inventory data/reports to international peer review, and increasing communication (e.g., workshops) among countries inventorying DW are suggestions forwarded by this study to increase DW inventory harmonization.

  14. Spatially explicit analyses of gastropod biodiversity in ancient Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Hauffe, T.; Albrecht, C.; Schreiber, K.; Birkhofer, K.; Trajanovski, S.; Wilke, T.

    2010-07-01

    Spatial heterogeneity of biodiversity arises from evolutionary processes, constraints of environmental factors and the interaction of communities. The quality of such spatial analyses of biodiversity is improved by (i) utilizing study areas with well defined physiogeographical boundaries, (ii) limiting the impact of widespread species, and (iii) using taxa with heterogeneous distributions. These conditions are typically met by ecosystems such as oceanic islands or ancient lakes and their biota. While research on ancient lakes has contributed significantly to our understanding of evolutionary processes, statistically sound studies of spatial variation of extant biodiversity have been hampered by the frequently vast size of ancient lakes, their limited accessibility, and the lack of infrastructure around them. The small European ancient Lake Ohrid provides a rare opportunity for such a reliable spatial study. The comprehensive horizontal and vertical sampling of a species-rich taxon, the Gastropoda, presented here, revealed interesting patterns of biodiversity, which, in part, have not been shown before for other ancient lakes. In a total of 224 locations throughout the Ohrid Basin, representatives of 68 gastropod species with 50 of them being endemic (=73.5%) could be reported. The spatial distribution of these species shows the following characteristics: (i) within Lake Ohrid, the most frequent species are endemic taxa with a wide depth range, (ii) widespread species (i.e. those occurring throughout the Balkans or beyond) are rare and mainly occur in the upper layer of the lake, (iii) while the total number of species decreases with water depth, the share of endemics increases, (iv) the deeper layers of Lake Ohrid appear to have a higher spatial homogeneity of biodiversity and related environmental factors, (v) biotic interaction due to possible spillover effects may contribute to the establishment of hotspots, and (vi) eco-insularity within the Ohrid Basin occurs

  15. Joining Inventory by Parataxonomists with DNA Barcoding of a Large Complex Tropical Conserved Wildland in Northwestern Costa Rica

    PubMed Central

    Janzen, Daniel H.; Hallwachs, Winnie

    2011-01-01

    Background The many components of conservation through biodiversity development of a large complex tropical wildland, Area de Conservacion Guanacaste (ACG), thrive on knowing what is its biodiversity and natural history. For 32 years a growing team of Costa Rican parataxonomists has conducted biodiversity inventory of ACG caterpillars, their food plants, and their parasitoids. In 2003, DNA barcoding was added to the inventory process. Methodology/Principal Findings We describe some of the salient consequences for the parataxonomists of barcoding becoming part of a field biodiversity inventory process that has centuries of tradition. From the barcoding results, the parataxonomists, as well as other downstream users, gain a more fine-scale and greater understanding of the specimens they find, rear, photograph, database and deliver. The parataxonomists also need to adjust to collecting more specimens of what appear to be the “same species” – cryptic species that cannot be distinguished by eye or even food plant alone – while having to work with the name changes and taxonomic uncertainty that comes with discovering that what looked like one species may be many. Conclusions/Significance These career parataxonomists, despite their lack of formal higher education, have proven very capable of absorbing and working around the additional complexity and requirements for accuracy and detail that are generated by adding barcoding to the field base of the ACG inventory. In the process, they have also gained a greater understanding of the fine details of phylogeny, relatedness, evolution, and species-packing in their own tropical complex ecosytems. There is no reason to view DNA barcoding as incompatible in any way with tropical biodiversity inventory as conducted by parataxonomists. Their year-round on-site inventory effort lends itself well to the sampling patterns and sample sizes needed to build a thorough barcode library. Furthermore, the biological understanding

  16. Structural Analysis of Biodiversity

    PubMed Central

    Sirovich, Lawrence; Stoeckle, Mark Y.; Zhang, Yu

    2010-01-01

    Large, recently-available genomic databases cover a wide range of life forms, suggesting opportunity for insights into genetic structure of biodiversity. In this study we refine our recently-described technique using indicator vectors to analyze and visualize nucleotide sequences. The indicator vector approach generates correlation matrices, dubbed Klee diagrams, which represent a novel way of assembling and viewing large genomic datasets. To explore its potential utility, here we apply the improved algorithm to a collection of almost 17000 DNA barcode sequences covering 12 widely-separated animal taxa, demonstrating that indicator vectors for classification gave correct assignment in all 11000 test cases. Indicator vector analysis revealed discontinuities corresponding to species- and higher-level taxonomic divisions, suggesting an efficient approach to classification of organisms from poorly-studied groups. As compared to standard distance metrics, indicator vectors preserve diagnostic character probabilities, enable automated classification of test sequences, and generate high-information density single-page displays. These results support application of indicator vectors for comparative analysis of large nucleotide data sets and raise prospect of gaining insight into broad-scale patterns in the genetic structure of biodiversity. PMID:20195371

  17. Estimating dead wood during national forest inventories: a review of inventory methodologies and suggestions for harmonization

    Treesearch

    Christopher W. Woodall; Jacques Rondeux; Pieter J. Verkerk; G& #246; ran St& #229; hl

    2009-01-01

    Efforts to assess forest ecosystem carbon stocks, biodiversity, and fire hazards have spurred the need for comprehensive assessments of forest ecosystem dead wood (DW) components around the world. Currently, information regarding the prevalence, status, and methods of DW inventories occurring in the world's forested landscapes is scattered. The goal of this study...

  18. Estimating dead wood during national forest inventories: a review of inventory methodologies and suggestions for harmonization

    Treesearch

    Christopher W. Woodall; Jacques Rondeux; Pieter J. Verkerk; Goran Stahl

    2009-01-01

    Efforts to assess forest ecosystem carbon stocks, biodiversity, and fire hazards have spurred the need for comprehensive assessments of forest ecosystem dead wood (DW) attributes around the world. Currently, information regarding the prevalence, status, and methods of DW inventories occurring in the world?s forested landscapes is scattered. The goal of this study is to...

  19. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots.

    PubMed

    de Bruyn, Mark; Rüber, Lukas; Nylinder, Stephan; Stelbrink, Björn; Lovejoy, Nathan R; Lavoué, Sébastien; Tan, Heok Hui; Nugroho, Estu; Wowor, Daisy; Ng, Peter K L; Siti Azizah, M N; Von Rintelen, Thomas; Hall, Robert; Carvalho, Gary R

    2013-05-01

    Understanding factors driving diversity across biodiversity hotspots is critical for formulating conservation priorities in the face of ongoing and escalating environmental deterioration. While biodiversity hotspots encompass a small fraction of Earth's land surface, more than half the world's plants and two-thirds of terrestrial vertebrate species are endemic to these hotspots. Tropical Southeast (SE) Asia displays extraordinary species richness, encompassing four biodiversity hotspots, though disentangling multiple potential drivers of species richness is confounded by the region's dynamic geological and climatic history. Here, we use multilocus molecular genetic data from dense multispecies sampling of freshwater fishes across three biodiversity hotspots, to test the effect of Quaternary climate change and resulting drainage rearrangements on aquatic faunal diversification. While Cenozoic geological processes have clearly shaped evolutionary history in SE Asian halfbeak fishes, we show that paleo-drainage re-arrangements resulting from Quaternary climate change played a significant role in the spatiotemporal evolution of lowland aquatic taxa, and provide priorities for conservation efforts.

  20. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams.

    PubMed

    Wilhelm, Linda; Besemer, Katharina; Fasching, Christina; Urich, Tim; Singer, Gabriel A; Quince, Christopher; Battin, Tom J

    2014-08-01

    Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier-fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454-pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier-fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofilm types. Relative abundances of rRNA and rDNA were positively correlated across different taxa and taxonomic levels, but at lower taxonomic levels, the higher abundance in either the active or the bulk communities became more apparent. Here, environmental variables played a minor role in structuring active communities. However, we found a large number of rare taxa with higher relative abundances in rRNA compared with rDNA. This suggests that rare taxa contribute disproportionately to microbial community dynamics in glacier-fed streams. Our findings propose that high community turnover, where taxa repeatedly enter and leave the 'seed bank', contributes to the maintenance of microbial biodiversity in harsh ecosystems with continuous environmental perturbations, such as glacier-fed streams. © 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Prehistoric human impact on rainforest biodiversity in highland New Guinea.

    PubMed

    Haberle, Simon G

    2007-02-28

    In the highlands of New Guinea, the development of agriculture as an indigenous innovation during the Early Holocene is considered to have resulted in rapid loss of forest cover, a decrease in forest biodiversity and increased land degradation over thousands of years. But how important is human activity in shaping the diversity of vegetation communities over millennial time-scales? An evaluation of the change in biodiversity of forest habitats through the Late Glacial transition to the present in five palaeoecological sites from highland valleys, where intensive agriculture is practised today, is presented. A detailed analysis of the longest and most continuous record from Papua New Guinea is also presented using available biodiversity indices (palynological richness and biodiversity indicator taxa) as a means of identifying changes in diversity. The analysis shows that the collapse of key forest habitats in the highland valleys is evident during the Mid - Late Holocene. These changes are best explained by the adoption of new land management practices and altered disturbance regimes associated with agricultural activity, though climate change may also play a role. The implications of these findings for ecosystem conservation and sustainability of agriculture in New Guinea are discussed.

  2. Toward equality of biodiversity knowledge through technology transfer.

    PubMed

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  3. The impact of shifts in marine biodiversity hotspots on patterns of range evolution: Evidence from the Holocentridae (squirrelfishes and soldierfishes).

    PubMed

    Dornburg, Alex; Moore, Jon; Beaulieu, Jeremy M; Eytan, Ron I; Near, Thomas J

    2015-01-01

    One of the most striking biodiversity patterns is the uneven distribution of marine species richness, with species diversity in the Indo-Australian Archipelago (IAA) exceeding all other areas. However, the IAA formed fairly recently, and marine biodiversity hotspots have shifted across nearly half the globe since the Paleogene. Understanding how lineages have responded to shifting biodiversity hotspots represents a necessary historic perspective on the formation and maintenance of global marine biodiversity. Such evolutionary inferences are often challenged by a lack of fossil evidence that provide insights into historic patterns of abundance and diversity. The greatest diversity of squirrelfishes and soldierfishes (Holocentridae) is in the IAA, yet these fishes also represent some of the most numerous fossil taxa in deposits of the former West Tethyan biodiversity hotspot. We reconstruct the pattern of holocentrid range evolution using time-calibrated phylogenies that include most living species and several fossil lineages, demonstrating the importance of including fossil species as terminal taxa in ancestral area reconstructions. Holocentrids exhibit increased range fragmentation following the West Tethyan hotspot collapse. However, rather than originating within the emerging IAA hotspot, the IAA has acted as a reservoir for holocentrid diversity that originated in adjacent regions over deep evolutionary time scales. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  4. Biodiversity effects in the wild are common and as strong as key drivers of productivity.

    PubMed

    Duffy, J Emmett; Godwin, Casey M; Cardinale, Bradley J

    2017-09-14

    More than 500 controlled experiments have collectively suggested that biodiversity loss reduces ecosystem productivity and stability. Yet the importance of biodiversity in sustaining the world's ecosystems remains controversial, largely because of the lack of validation in nature, where strong abiotic forcing and complex interactions are assumed to swamp biodiversity effects. Here we test this assumption by analysing 133 estimates reported in 67 field studies that statistically separated the effects of biodiversity on biomass production from those of abiotic forcing. Contrary to the prevailing opinion of the previous two decades that biodiversity would have rare or weak effects in nature, we show that biomass production increases with species richness in a wide range of wild taxa and ecosystems. In fact, after controlling for environmental covariates, increases in biomass with biodiversity are stronger in nature than has previously been documented in experiments and comparable to or stronger than the effects of other well-known drivers of productivity, including climate and nutrient availability. These results are consistent with the collective experimental evidence that species richness increases community biomass production, and suggest that the role of biodiversity in maintaining productive ecosystems should figure prominently in global change science and policy.

  5. Response of Stream Biodiversity to Increasing Salinization

    NASA Astrophysics Data System (ADS)

    Hawkins, C. P.; Vander Laan, J. J.; Olson, J. R.

    2014-12-01

    We used a large data set of macroinvertebrate samples collected from streams in both reference-quality (n = 68) and degraded (n = 401) watersheds in the state of Nevada, USA to assess relationships between stream biodiversity and salinity. We used specific electrical conductance (EC)(μS/cm) as a measure of salinity, and applied a previously developed EC model to estimate natural, baseflow salinity at each stream. We used the difference between observed and predicted salinity (EC-Diff) as a measure of salinization associated with watershed degradation. Observed levels of EC varied between 22 and 994 μS/cm across reference sites and 22 to 3,256 uS/cm across non-reference sites. EC-Diff was as high as 2,743 μS/cm. We used a measure of local biodiversity completeness (ratio of observed to expected number of taxa) to assess ecological response to salinity. This O/E index decreased nearly linearly up to about 25% biodiversity loss, which occurred at EC-Diff of about 300 μS/cm. Too few sites had EC-Diff greater than 300 μS/cm to draw reliable inferences regarding biodiversity response to greater levels of salinization. EC-Diff increased with % agricultural land use, mine density, and % urban land use in the watersheds implying that human activities have been largely responsible for increased salinization in Nevada streams and rivers. Comparison of biological responses to EC and other stressors indicates that increased salinization may be the primary stressor causing biodiversity loss in these streams and that more stringent salinity water quality standards may be needed to protect aquatic life.

  6. Contrasting Taxonomic and Phylogenetic Diversity Responses to Forest Modifications: Comparisons of Taxa and Successive Plant Life Stages in South African Scarp Forest

    PubMed Central

    Grass, Ingo; Brandl, Roland; Botzat, Alexandra; Neuschulz, Eike Lena; Farwig, Nina

    2015-01-01

    The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different

  7. [From biodiversity to biodiversification: a new economy of nature?].

    PubMed

    Höhler, Sabine

    2014-03-01

    This paper explores the relations between economy and ecology in the last quarter of the 20th century with the example of biodiversity. From its definition in the 1980s, the concept of biodiversity responded not only to conservational concerns but also to hopes and demands of economic profitability. The paper argues that archival systems of inventorying and surveying nature, the biodiversity database and the biodiversity portfolio, changed the view on nature from a resource to an investment. The paper studies the alliances of ecologists and environmental economists in managing nature according to economic principles of successful asset management, "diversification", with the aim to distribute risk, minimize ecological loss and maximize overall ecosystem performance. Finally, the paper discusses the assumptions and the consequences of transferring principles from financial risk management to landscape management. How has the substitution of the existential values of nature by shareholder value affected the relations between ecology, environment, and ecosystem conservation? Who gains and who looses in exchanging natural capital and financial capital, yields, and profits?

  8. Assessing Conservation Values: Biodiversity and Endemicity in Tropical Land Use Systems

    PubMed Central

    Waltert, Matthias; Bobo, Kadiri Serge; Kaupa, Stefanie; Montoya, Marcela Leija; Nsanyi, Moses Sainge; Fermon, Heleen

    2011-01-01

    Despite an increasing amount of data on the effects of tropical land use on continental forest fauna and flora, it is debatable whether the choice of the indicator variables allows for a proper evaluation of the role of modified habitats in mitigating the global biodiversity crisis. While many single-taxon studies have highlighted that species with narrow geographic ranges especially suffer from habitat modification, there is no multi-taxa study available which consistently focuses on geographic range composition of the studied indicator groups. We compiled geographic range data for 180 bird, 119 butterfly, 204 tree and 219 understorey plant species sampled along a gradient of habitat modification ranging from near-primary forest through young secondary forest and agroforestry systems to annual crops in the southwestern lowlands of Cameroon. We found very similar patterns of declining species richness with increasing habitat modification between taxon-specific groups of similar geographic range categories. At the 8 km2 spatial level, estimated richness of endemic species declined in all groups by 21% (birds) to 91% (trees) from forests to annual crops, while estimated richness of widespread species increased by +101% (trees) to +275% (understorey plants), or remained stable (- 2%, butterflies). Even traditional agroforestry systems lost estimated endemic species richness by - 18% (birds) to - 90% (understorey plants). Endemic species richness of one taxon explained between 37% and 57% of others (positive correlations) and taxon-specific richness in widespread species explained up to 76% of variation in richness of endemic species (negative correlations). The key implication of this study is that the range size aspect is fundamental in assessments of conservation value via species inventory data from modified habitats. The study also suggests that even ecologically friendly agricultural matrices may be of much lower value for tropical conservation than indicated by

  9. Marine biodiversity baseline for Área de Conservación Guanacaste, Costa Rica: published records.

    PubMed

    Cortés, Jorge

    2017-01-01

    The diversity of tropical marine organisms has not been studied as intensively as the terrestrial biota worldwide. Additionally, marine biodiversity research in the tropics lags behind other regions. The 43,000 ha Sector Marino of Área de Conservación Guanacaste (ACG, Marine Sector of Guanacaste Conservation Area), on the North Pacific coast of Costa Rica is no exception. For more than four decades, the terrestrial flora and fauna has been studied continuously. The ACG marine biodiversity was studied in the 1930's by expeditions that passed through the area, but not much until the 1990's, except for the marine turtles. In the mid 1990's the Center for Research in Marine Science and Limnology (CIMAR) of the Universidad de Costa Rica (UCR) initiated the exploration of the marine environments and organisms of ACG. In 2015, ACG, in collaboration with CIMAR, started the BioMar project whose goal is to inventory the species of the marine sector of ACG (BioMar ACG project). As a baseline, here I have compiled the published records of marine ACG species, and found that 594 marine species have been reported, representing 15.5% of the known species of the Pacific coast of Costa Rica. The most diverse groups were the crustaceans, mollusks and cnidarians comprising 71.7% of the ACG species. Some taxa, such as mangroves and fish parasites are well represented in ACG when compared to the rest of the Costa Rican coast but others appear to be greatly underrepresented, for example, red algae, polychaetes, copepods, equinoderms, and marine fishes and birds, which could be due to sampling bias. Thirty species have been originally described with specimens from ACG, and 89 species are not known from other localities on the Pacific coast of Costa Rica except ACG. Most of the sampling has been concentrated in a few localities in Sector Marino, Playa Blanca and Islas Murciélago, and in the nearby waters of Bahía Santa Elena. In an effort to fill this gap, CIMAR is collaborating with

  10. Marine biodiversity baseline for Área de Conservación Guanacaste, Costa Rica: published records

    PubMed Central

    Cortés, Jorge

    2017-01-01

    Abstract The diversity of tropical marine organisms has not been studied as intensively as the terrestrial biota worldwide. Additionally, marine biodiversity research in the tropics lags behind other regions. The 43,000 ha Sector Marino of Área de Conservación Guanacaste (ACG, Marine Sector of Guanacaste Conservation Area), on the North Pacific coast of Costa Rica is no exception. For more than four decades, the terrestrial flora and fauna has been studied continuously. The ACG marine biodiversity was studied in the 1930’s by expeditions that passed through the area, but not much until the 1990’s, except for the marine turtles. In the mid 1990’s the Center for Research in Marine Science and Limnology (CIMAR) of the Universidad de Costa Rica (UCR) initiated the exploration of the marine environments and organisms of ACG. In 2015, ACG, in collaboration with CIMAR, started the BioMar project whose goal is to inventory the species of the marine sector of ACG (BioMar ACG project). As a baseline, here I have compiled the published records of marine ACG species, and found that 594 marine species have been reported, representing 15.5% of the known species of the Pacific coast of Costa Rica. The most diverse groups were the crustaceans, mollusks and cnidarians comprising 71.7% of the ACG species. Some taxa, such as mangroves and fish parasites are well represented in ACG when compared to the rest of the Costa Rican coast but others appear to be greatly underrepresented, for example, red algae, polychaetes, copepods, equinoderms, and marine fishes and birds, which could be due to sampling bias. Thirty species have been originally described with specimens from ACG, and 89 species are not known from other localities on the Pacific coast of Costa Rica except ACG. Most of the sampling has been concentrated in a few localities in Sector Marino, Playa Blanca and Islas Murciélago, and in the nearby waters of Bahía Santa Elena. In an effort to fill this gap, CIMAR is

  11. How do humans restructure the biodiversity of the Sonoran Desert?

    Treesearch

    Diane Hope; Corinna Gries; Paige Warren; Madhu Katti; Glenn Stuart; Jake Oleson; Jason Kaye

    2005-01-01

    We studied patterns of biodiversity across the entire urban, suburban, agricultural, and surrounding Sonoran Desert landscape of central Arizona-Phoenix. A probability-based extensive integrated field inventory was used to survey perennial plants, pollen, birds, and sample soil chemistry, supplemented by monthly or quarterly monitoring of arthropod and bird communities...

  12. Land market feedbacks can undermine biodiversity conservation

    PubMed Central

    Armsworth, Paul R.; Daily, Gretchen C.; Kareiva, Peter; Sanchirico, James N.

    2006-01-01

    The full or partial purchase of land has become a cornerstone of efforts to conserve biodiversity in countries with strong private property rights. Methods used to target areas for acquisition typically ignore land market dynamics. We show how conservation purchases affect land prices and generate feedbacks that can undermine conservation goals, either by displacing development toward biologically valuable areas or by accelerating its pace. The impact of these market feedbacks on the effectiveness of conservation depends on the ecological value of land outside nature reserves. Traditional, noneconomic approaches to site prioritization should perform adequately in places where land outside reserves supports little biodiversity. However, these approaches will perform poorly in locations where the countryside surrounding reserves is important for species’ persistence. Conservation investments can sometimes even be counterproductive, condemning more species than they save. Conservation is most likely to be compromised in the absence of accurate information on species distributions, which provides a strong argument for improving inventories of biodiversity. Accounting for land market dynamics in conservation planning is crucial for making smart investment decisions. PMID:16554375

  13. Land market feedbacks can undermine biodiversity conservation.

    PubMed

    Armsworth, Paul R; Daily, Gretchen C; Kareiva, Peter; Sanchirico, James N

    2006-04-04

    The full or partial purchase of land has become a cornerstone of efforts to conserve biodiversity in countries with strong private property rights. Methods used to target areas for acquisition typically ignore land market dynamics. We show how conservation purchases affect land prices and generate feedbacks that can undermine conservation goals, either by displacing development toward biologically valuable areas or by accelerating its pace. The impact of these market feedbacks on the effectiveness of conservation depends on the ecological value of land outside nature reserves. Traditional, noneconomic approaches to site prioritization should perform adequately in places where land outside reserves supports little biodiversity. However, these approaches will perform poorly in locations where the countryside surrounding reserves is important for species' persistence. Conservation investments can sometimes even be counterproductive, condemning more species than they save. Conservation is most likely to be compromised in the absence of accurate information on species distributions, which provides a strong argument for improving inventories of biodiversity. Accounting for land market dynamics in conservation planning is crucial for making smart investment decisions.

  14. Animal taxa contrast in their scale-dependent responses to land use change in rural Africa.

    PubMed

    Foord, Stefan Hendrik; Swanepoel, Lourens Hendrik; Evans, Steven William; Schoeman, Colin Stefan; Erasmus, Barend Frederik N; Schoeman, M Corrie; Keith, Mark; Smith, Alain; Mauda, Evans Vusani; Maree, Naudene; Nembudani, Nkhumeleni; Dippenaar-Schoeman, Anna Sophia; Munyai, Thinandavha Caswell; Taylor, Peter John

    2018-01-01

    Human-dominated landscapes comprise the bulk of the world's terrestrial surface and Africa is predicted to experience the largest relative increase over the next century. A multi-scale approach is required to identify processes that maintain diversity in these landscapes. Here we identify scales at which animal diversity responds by partitioning regional diversity in a rural African agro-ecosystem between one temporal and four spatial scales. Human land use practices are the main driver of diversity in all seven animal assemblages considered, with medium sized mammals and birds most affected. Even the least affected taxa, bats and non-volant small mammals (rodents), responded with increased abundance in settlements and agricultural sites respectively. Regional turnover was important to invertebrate taxa and their response to human land use was intermediate between that of the vertebrate extremes. Local scale (< 300 m) heterogeneity was the next most important level for all taxa, highlighting the importance of fine scale processes for the maintenance of biodiversity. Identifying the triggers of these changes within the context of functional landscapes would provide the context for the long-term sustainability of these rapidly changing landscapes.

  15. Animal taxa contrast in their scale-dependent responses to land use change in rural Africa

    PubMed Central

    Swanepoel, Lourens Hendrik; Evans, Steven William; Schoeman, Colin Stefan; Erasmus, Barend Frederik N.; Schoeman, M. Corrie; Keith, Mark; Smith, Alain; Mauda, Evans Vusani; Maree, Naudene; Nembudani, Nkhumeleni; Dippenaar-Schoeman, Anna Sophia; Munyai, Thinandavha Caswell; Taylor, Peter John

    2018-01-01

    Human-dominated landscapes comprise the bulk of the world’s terrestrial surface and Africa is predicted to experience the largest relative increase over the next century. A multi-scale approach is required to identify processes that maintain diversity in these landscapes. Here we identify scales at which animal diversity responds by partitioning regional diversity in a rural African agro-ecosystem between one temporal and four spatial scales. Human land use practices are the main driver of diversity in all seven animal assemblages considered, with medium sized mammals and birds most affected. Even the least affected taxa, bats and non-volant small mammals (rodents), responded with increased abundance in settlements and agricultural sites respectively. Regional turnover was important to invertebrate taxa and their response to human land use was intermediate between that of the vertebrate extremes. Local scale (< 300 m) heterogeneity was the next most important level for all taxa, highlighting the importance of fine scale processes for the maintenance of biodiversity. Identifying the triggers of these changes within the context of functional landscapes would provide the context for the long-term sustainability of these rapidly changing landscapes. PMID:29738559

  16. The underestimated biodiversity of tropical grassy biomes.

    PubMed

    Murphy, Brett P; Andersen, Alan N; Parr, Catherine L

    2016-09-19

    For decades, there has been enormous scientific interest in tropical savannahs and grasslands, fuelled by the recognition that they are a dynamic and potentially unstable biome, requiring periodic disturbance for their maintenance. However, that scientific interest has not translated into widespread appreciation of, and concern about threats to, their biodiversity. In terms of biodiversity, grassy biomes are considered poor cousins of the other dominant biome of the tropics-forests. Simple notions of grassy biomes being species-poor cannot be supported; for some key taxa, such as vascular plants, this may be valid, but for others it is not. Here, we use an analysis of existing data to demonstrate that high-rainfall tropical grassy biomes (TGBs) have vertebrate species richness comparable with that of forests, despite having lower plant diversity. The Neotropics stand out in terms of both overall vertebrate species richness and number of range-restricted vertebrate species in TGBs. Given high rates of land-cover conversion in Neotropical grassy biomes, they should be a high priority for conservation and greater inclusion in protected areas. Fire needs to be actively maintained in these systems, and in many cases re-introduced after decades of inappropriate fire exclusion. The relative intactness of TGBs in Africa and Australia make them the least vulnerable to biodiversity loss in the immediate future. We argue that, like forests, TGBs should be recognized as a critical-but increasingly threatened-store of global biodiversity.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  17. The underestimated biodiversity of tropical grassy biomes

    PubMed Central

    Andersen, Alan N.; Parr, Catherine L.

    2016-01-01

    For decades, there has been enormous scientific interest in tropical savannahs and grasslands, fuelled by the recognition that they are a dynamic and potentially unstable biome, requiring periodic disturbance for their maintenance. However, that scientific interest has not translated into widespread appreciation of, and concern about threats to, their biodiversity. In terms of biodiversity, grassy biomes are considered poor cousins of the other dominant biome of the tropics—forests. Simple notions of grassy biomes being species-poor cannot be supported; for some key taxa, such as vascular plants, this may be valid, but for others it is not. Here, we use an analysis of existing data to demonstrate that high-rainfall tropical grassy biomes (TGBs) have vertebrate species richness comparable with that of forests, despite having lower plant diversity. The Neotropics stand out in terms of both overall vertebrate species richness and number of range-restricted vertebrate species in TGBs. Given high rates of land-cover conversion in Neotropical grassy biomes, they should be a high priority for conservation and greater inclusion in protected areas. Fire needs to be actively maintained in these systems, and in many cases re-introduced after decades of inappropriate fire exclusion. The relative intactness of TGBs in Africa and Australia make them the least vulnerable to biodiversity loss in the immediate future. We argue that, like forests, TGBs should be recognized as a critical—but increasingly threatened—store of global biodiversity. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502382

  18. When does biodiversity matter? Assessing ecosystem services across broad regions using forest inventory and analysis data

    Treesearch

    Kevin M. Potter; Christopher W. Woodall; Christopher M. Oswalt; Basil V. III Iannone; Songlin Fei

    2015-01-01

    Biodiversity is expected to convey numerous functional benefits to forested ecosystems, including increased productivity and resilience. When assessing biodiversity, however, statistics that account for evolutionary relationships among species may be more ecologically meaningful than traditional measures such as species richness. In three broad-scale studies, we...

  19. Can rice field channels contribute to biodiversity conservation in Southern Brazilian wetlands?

    PubMed

    Maltchik, Leonardo; Rolon, Ana Silvia; Stenert, Cristina; Machado, Iberê Farina; Rocha, Odete

    2011-12-01

    Conservation of species in agroecosystems has attracted attention. Irrigation channels can improve habitats and offer conditions for freshwater species conservation. Two questions from biodiversity conservation point of view are: 1) Can the irrigated channels maintain a rich diversity of macrophytes, macroinvertebrates and amphibians over the cultivation cycle? 2) Do richness, abundance and composition of aquatic species change over the rice cultivation cycle? For this, a set of four rice field channels was randomly selected in Southern Brazilian wetlands. In each channel, six sample collection events were carried out over the rice cultivation cycle (June 2005 to June 2006). A total of 160 taxa were identified in irrigated channels, including 59 macrophyte species, 91 taxa of macroinvertebrate and 10 amphibian species. The richness and abundance of macrophytes, macroinvertebrates and amphibians did not change significantly over the rice cultivation cycle. However, the species composition of these groups in the irrigation channels varied between uncultivated and cultivated periods. Our results showed that the species diversity found in the irrigation channels, together with the permanence of water enables these man-made aquatic networks to function as important systems that can contribute to the conservation of biodiversity in regions where the wetlands were converted into rice fields. The conservation of the species in agriculture, such as rice field channels, may be an important alternative for biodiversity conservation in Southern Brazil, where more than 90% of wetland systems have already been lost and the remaining ones are still at high risk due to the expansion of rice production.

  20. Setting temporal baselines for biodiversity: the limits of available monitoring data for capturing the full impact of anthropogenic pressures

    PubMed Central

    Mihoub, Jean-Baptiste; Henle, Klaus; Titeux, Nicolas; Brotons, Lluís; Brummitt, Neil A.; Schmeller, Dirk S.

    2017-01-01

    Temporal baselines are needed for biodiversity, in order for the change in biodiversity to be measured over time, the targets for biodiversity conservation to be defined and conservation progress to be evaluated. Limited biodiversity information is widely recognized as a major barrier for identifying temporal baselines, although a comprehensive quantitative assessment of this is lacking. Here, we report on the temporal baselines that could be drawn from biodiversity monitoring schemes in Europe and compare those with the rise of important anthropogenic pressures. Most biodiversity monitoring schemes were initiated late in the 20th century, well after anthropogenic pressures had already reached half of their current magnitude. Setting temporal baselines from biodiversity monitoring data would therefore underestimate the full range of impacts of major anthropogenic pressures. In addition, biases among taxa and organization levels provide a truncated picture of biodiversity over time. These limitations need to be explicitly acknowledged when designing management strategies and policies as they seriously constrain our ability to identify relevant conservation targets aimed at restoring or reversing biodiversity losses. We discuss the need for additional research efforts beyond standard biodiversity monitoring to reconstruct the impacts of major anthropogenic pressures and to identify meaningful temporal baselines for biodiversity. PMID:28134310

  1. Effects of reduced impact logging on bat biodiversity in terra firme forest of lowland Amazonia.

    Treesearch

    Ivan Castro-Arellanos; Steven J. Presley; Luis Nelio Saldanha; Michael R. Willig; Joseph M. Wunderle Jr.

    2007-01-01

    Timber harvest is one of the main causes of degradation of Amazonian tropical forests, where bats represent important components of biodiversity. In addition, bats may represent keystone taxa in the Neotropics, as they are primary agents of pollination and seed dispersal for many pioneer plants. We assessed the impact of low harvest (18m3/ha),...

  2. Advances and emerging issues in national forest inventories

    Treesearch

    Ronald E. McRoberts; Erkki O. Tomppo; Erik Naesset

    2010-01-01

    National forest inventories (NFIs) have a long history, although their current major features date only to the early years of the twentieth century. Recent issues such as concern over the effects of acid deposition, biodiversity, forest sustainability, increased demand for forest data, international reporting requirements and climate change have led to the expansion of...

  3. Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Hauffe, T.; Albrecht, C.; Schreiber, K.; Birkhofer, K.; Trajanovski, S.; Wilke, T.

    2011-01-01

    The quality of spatial analyses of biodiversity is improved by (i) utilizing study areas with well defined physiogeographical boundaries, (ii) limiting the impact of widespread species, and (iii) using taxa with heterogeneous distributions. These conditions are typically met by ecosystems such as oceanic islands or ancient lakes and their biota. While research on ancient lakes has contributed significantly to our understanding of evolutionary processes, statistically sound studies of spatial variation of extant biodiversity have been hampered by the frequently vast size of ancient lakes, their limited accessibility, and the lack of scientific infrastructure. The European ancient Lake Ohrid provides a rare opportunity for such a reliable spatial study. The comprehensive horizontal and vertical sampling of a species-rich taxon, the Gastropoda, presented here, revealed interesting patterns of biodiversity, which, in part, have not been shown before for other ancient lakes. In a total of 284 samples from 224 different locations throughout the Ohrid Basin, 68 gastropod species, with 50 of them (= 73.5%) being endemic, could be reported. The spatial distribution of these species shows the following characteristics: (i) within Lake Ohrid, the most frequent species are endemic taxa with a wide depth range, (ii) widespread species (i.e. those occurring throughout the Balkans or beyond) are rare and mainly occur in the upper layer of the lake, (iii) while the total number of species decreases with water depth, the proportion of endemics increases, and (iv) the deeper layers of Lake Ohrid appear to have a higher spatial homogeneity of biodiversity. Moreover, gastropod communities of Lake Ohrid and its feeder springs are both distinct from each other and from the surrounding waters. The analysis also shows that community similarity of Lake Ohrid is mainly driven by niche processes (e.g. environmental factors), but also by neutral processes (e.g. dispersal limitation and

  4. Benefits to poorly studied taxa of conservation of bird and mammal diversity on islands.

    PubMed

    Aslan, Clare; Holmes, Nick; Tershy, Bernie; Spatz, Dena; Croll, Donald A

    2015-02-01

    Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well-known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well-known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well-known and little-known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km(2) and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km(2) and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to

  5. Carbon stock and plants biodiversity of pekarangan in Cisadane watershed West Java

    NASA Astrophysics Data System (ADS)

    Aisyah Filqisthi, Tatag; Leonardus Kaswanto, Regan

    2017-01-01

    The presence of vegetation in Pekarangan can be proposed to mitigate global climate change impacts by CO2 sequestration and at the same time to promote the availability of food for the community. The aims of this research is to calculate carbon stock and biodiversity in pekarangan, and to compare carbon stock and biodiversity on three levels of Cisadane Watershed. Four groups of Pekarangan defined on a purposive random sampling. Allometric models were developed to estimate aboveground biomass of vegetation, and an inventory was conducted in 48 pekarangan. Shannon Weiner Index (H’) and Margalef Index (Dm) are used to evaluate biodiversity, averaged 2,84 and 5,10 (G1); 2,55 and 4,27 (G2); 2,56 and 4,52 (G3); 2,68 and 4,84 (G4), while carbon stock averaged 33,20 Mg Carbon/ha (G1); 29,97 Mg/ha (G2); 59,18 Mg/ha (G3); and 40,98 Mg/ha (G4). There is no relationship between biodiversity with carbon stock on pekarangan (R2 = 0,02), or tree’s biodiversity with carbon stock (R2 = 0,23). High resolution satellite imagery can be used to extrapolate carbon stock and plants biodiversity of Pekarangan at watershed level.

  6. Overlooked mountain rock pools in deserts are critical local hotspots of biodiversity.

    PubMed

    Vale, Cândida Gomes; Pimm, Stuart L; Brito, José Carlos

    2015-01-01

    The world is undergoing exceptional biodiversity loss. Most conservation efforts target biodiversity hotspots at large scales. Such approach overlooks small-sized local hotspots, which may be rich in endemic and highly threatened species. We explore the importance of mountain rock pools (gueltas) as local biodiversity hotspots in the Sahara-Sahel. Specifically, we considered how many vertebrates (total and endemics) use gueltas, what factors predict species richness, and which gueltas are of most priority for conservation. We expected to provide management recommendations, improve local biodiversity conservation, and simultaneously contribute with a framework for future enhancement of local communities' economy. The identification of local hotspots of biodiversity is important for revaluating global conservation priorities. We quantified the number of vertebrate species from each taxonomic group and endemics present in 69 gueltas in Mauritania, then compared these with species present in a surrounding area and recorded in the country. We evaluated the predictors of species number's present in each guelta through a multiple regression model. We ranked gueltas by their priority for conservation taking into account the percentage of endemics and threats to each guelta. Within a mere aggregate extent of 43 ha, gueltas hold about 32% and 78% of the total taxa analysed and endemics of Mauritania, respectively. The number of species present in each guelta increased with the primary productivity and area of gueltas and occurrence of permanent water. Droughts and human activities threaten gueltas, while 64% of them are currently unprotected. Gueltas are crucial for local biodiversity conservation and human activities. They require urgent management plans in Mauritania's mountains. They could provide refugia under climate change being important for long-term conservation of Sahara-Sahel biodiversity. Given their disproportional importance in relation to their size, they are

  7. Overlooked Mountain Rock Pools in Deserts Are Critical Local Hotspots of Biodiversity

    PubMed Central

    Vale, Cândida Gomes; Pimm, Stuart L.; Brito, José Carlos

    2015-01-01

    Background The world is undergoing exceptional biodiversity loss. Most conservation efforts target biodiversity hotspots at large scales. Such approach overlooks small-sized local hotspots, which may be rich in endemic and highly threatened species. We explore the importance of mountain rock pools (gueltas) as local biodiversity hotspots in the Sahara-Sahel. Specifically, we considered how many vertebrates (total and endemics) use gueltas, what factors predict species richness, and which gueltas are of most priority for conservation. We expected to provide management recommendations, improve local biodiversity conservation, and simultaneously contribute with a framework for future enhancement of local communities’ economy. The identification of local hotspots of biodiversity is important for revaluating global conservation priorities. Methodology/Principal Findings We quantified the number of vertebrate species from each taxonomic group and endemics present in 69 gueltas in Mauritania, then compared these with species present in a surrounding area and recorded in the country. We evaluated the predictors of species number’s present in each guelta through a multiple regression model. We ranked gueltas by their priority for conservation taking into account the percentage of endemics and threats to each guelta. Within a mere aggregate extent of 43 ha, gueltas hold about 32% and 78% of the total taxa analysed and endemics of Mauritania, respectively. The number of species present in each guelta increased with the primary productivity and area of gueltas and occurrence of permanent water. Droughts and human activities threaten gueltas, while 64% of them are currently unprotected. Conclusion/Significance Gueltas are crucial for local biodiversity conservation and human activities. They require urgent management plans in Mauritania’s mountains. They could provide refugia under climate change being important for long-term conservation of Sahara-Sahel biodiversity

  8. Disentangling environmental correlates of vascular plant biodiversity in a Mediterranean hotspot.

    PubMed

    Molina-Venegas, Rafael; Aparicio, Abelardo; Pina, Francisco José; Valdés, Benito; Arroyo, Juan

    2013-10-01

    We determined the environmental correlates of vascular plant biodiversity in the Baetic-Rifan region, a plant biodiversity hotspot in the western Mediterranean. A catalog of the whole flora of Andalusia and northern Morocco, the region that includes most of the Baetic-Rifan complex, was compiled using recent comprehensive floristic catalogs. Hierarchical cluster analysis (HCA) and detrended correspondence analysis (DCA) of the different ecoregions of Andalusia and northern Morocco were conducted to determine their floristic affinities. Diversity patterns were studied further by focusing on regional endemic taxa. Endemic and nonendemic alpha diversities were regressed to several environmental variables. Finally, semi-partial regressions on distance matrices were conducted to extract the respective contributions of climatic, altitudinal, lithological, and geographical distance matrices to beta diversity in endemic and nonendemic taxa. We found that West Rifan plant assemblages had more similarities with Andalusian ecoregions than with other nearby northern Morocco ecoregions. The endemic alpha diversity was explained relatively well by the environmental variables related to summer drought and extreme temperature values. Of all the variables, geographical distance contributed by far the most to spatial turnover in species diversity in the Baetic-Rifan hotspot. In the Baetic range, elevation was the most significant driver of nonendemic species beta diversity, while lithology and elevation were the main drivers of endemic beta diversity. Despite the fact that Andalusia and northern Morocco are presently separated by the Atlantic Ocean and the Mediterranean Sea, the Baetic and Rifan mountain ranges have many floristic similarities - especially in their western ranges - due to past migration of species across the Strait of Gibraltar. Climatic variables could be shaping the spatial distribution of endemic species richness throughout the Baetic-Rifan hotspot. Determinants

  9. Dead wood inventory and assessment in South Korea

    Treesearch

    Jong-Su Yim; Rae Hyun Kim; Sun-Jeong Lee; Yeongmo Son

    2015-01-01

    Dead wood (DW) plays a critical role not only in maintaining biodiversity but also in stocking carbon under UNFCCC. From the 5th national forest inventory (NFI5; 2006-2010) in South Korea, field data relevant to the DW including standing and downed dead trees by four decay class, etc. were collected. Based on the NFI5 data,...

  10. Scorpion biodiversity and interslope divergence at "evolution canyon", lower Nahal Oren microsite, Mt. Carmel, Israel.

    PubMed

    Raz, Shmuel; Retzkin, Sion; Pavlícek, Tomás; Hoffman, Adam; Kimchi, Hagay; Zehavi, Dan; Beiles, Avigdor; Nevo, Eviatar

    2009-01-01

    Local natural laboratories, designated by us as the "Evolution Canyon" model, are excellent tools to study regional and global ecological dynamics across life. They present abiotic and biotic contrasts locally, permitting the pursuit of observations and experiments across diverse taxa sharing sharp microecological subdivisions. Higher solar radiation received by the "African savannah-like" south-facing slopes (AS) in canyons north of the equator than by the opposite "European maquis-like" north-facing slopes (ES) is associated with higher abiotic stress. Scorpions are a suitable taxon to study interslope biodiversity differences, associated with the differences in abiotic factors (climate, drought), due to their ability to adapt to dry environments. Scorpions were studied by the turning stone method and by UV light methods. The pattern observed in scorpions was contrasted with similar patterns in several other taxa at the same place. As expected, the AS proved to be significantly more speciose regarding scorpions, paralleling the interslope patterns in taxa such as lizards and snakes, butterflies (Rhopalocera), beetles (families Tenebrionidae, Dermestidae, Chrysomelidae), and grasshoppers (Orthoptera). Our results support an earlier conclusion stating that the homogenizing effects of migration and stochasticity are not able to eliminate the interslope intra- and interspecific differences in biodiversity despite an interslope distance of only 100 m at the "EC" valley bottom. In our opinion, the interslope microclimate selection, driven mainly by differences in insolance, could be the primary factor responsible for the observed interslope pattern.

  11. Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia.

    PubMed

    Foster, William A; Snaddon, Jake L; Turner, Edgar C; Fayle, Tom M; Cockerill, Timothy D; Ellwood, M D Farnon; Broad, Gavin R; Chung, Arthur Y C; Eggleton, Paul; Khen, Chey Vun; Yusah, Kalsum M

    2011-11-27

    The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.

  12. Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia

    PubMed Central

    Foster, William A.; Snaddon, Jake L.; Turner, Edgar C.; Fayle, Tom M.; Cockerill, Timothy D.; Ellwood, M. D. Farnon; Broad, Gavin R.; Chung, Arthur Y. C.; Eggleton, Paul; Khen, Chey Vun; Yusah, Kalsum M.

    2011-01-01

    The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape. PMID:22006968

  13. What we know and don't know about Earth's missing biodiversity.

    PubMed

    Scheffers, Brett R; Joppa, Lucas N; Pimm, Stuart L; Laurance, William F

    2012-09-01

    Estimates of non-microbial diversity on Earth range from 2 million to over 50 million species, with great uncertainties in numbers of insects, fungi, nematodes, and deep-sea organisms. We summarize estimates for major taxa, the methods used to obtain them, and prospects for further discoveries. Major challenges include frequent synonymy, the difficulty of discriminating certain species by morphology alone, and the fact that many undiscovered species are small, difficult to find, or have small geographic ranges. Cryptic species could be numerous in some taxa. Novel techniques, such as DNA barcoding, new databases, and crowd-sourcing, could greatly accelerate the rate of species discovery. Such advances are timely. Most missing species probably live in biodiversity hotspots, where habitat destruction is rife, and so current estimates of extinction rates from known species are too low. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Vascular Plant and Vertebrate Inventory of Saguaro National Park, Tucson Mountain District

    USGS Publications Warehouse

    Powell, Brian F.; Halvorson, William L.; Schmidt, Cecilia A.

    2007-01-01

    This report summarizes the results of the first comprehensive inventory of plants and vertebrates at the Tucson Mountain District (TMD) of Saguaro National Park, Arizona. From 2001 to 2003 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at the district to document the presence of species within its boundaries. Park staff also carried out extensive infrared-triggered camera work for medium and large mammals from 2002-2005 and results from that effort are reported here. Our spatial sampling design for all taxa employed a combination of random and nonrandom survey sites. Survey effort was greatest for medium and large mammals and herpetofauna. Because we used repeatable study designs and standardized field methods, these inventories can serve as the first step in a biological monitoring program for the district. We also provide an overview of previous survey efforts in the district. We use data from our inventory and other surveys to compile species lists and to assess inventory completeness. The survey effort for herpetofauna, birds, and medium and large mammals was the most comprehensive ever undertaken in the district. We recorded a total of 320 plant and vertebrate species, including 21 species not previously found in the district (Table 1). Based on a review of our inventory and past research at the district, there have been a total of 723 species of plants and vertebrates found there. We believe inventories for most taxonomic groups are nearly complete. Based on our surveys, we believe the native plant and vertebrate community compositions of the district are relatively intact, though some species loss has occurred and threats are increasing, particularly to herpetofauna and larger mammals. Of particular note is the relatively small number of non-native species and their low abundance in the district, which is in contrast to many nearby natural areas. Rapidly expanding development on the west, north, and east sides of

  15. Terrestrial biodiversity analyses in Dalmatia (Croatia): a complementary approach using diversity and rarity.

    PubMed

    Jelaska, Sven D; Nikolić, Toni; Serić Jelaska, Lucija; Kusan, Vladimir; Peternel, Hrvoje; Guzvica, Goran; Major, Zoran

    2010-03-01

    Here we present the methodology used for terrestrial biodiversity analysis and site selection in Phase B of the UNDP/GEF COAST project. The analysis was focused on the problem of biodiversity evaluation in four Croatian counties stretching from sea level to the highest mountain in Croatia. Data on habitats, vascular flora, and fauna (mammals, birds, reptiles, amphibians, butterflies, ground beetles, and underground invertebrates) were collected and analyzed for each of the four counties. Emphasis was given to the richness of endangered species and the rarity of endemic species. Based on the spatial analyses of habitat, fauna, and flora data, four to six areas were selected from each county and ranked according to their biodiversity importance. Overlap between areas important for richness and those important for rarity was highest for data on flora (65.5%) and lowest for data on fauna (16.7%). When different data sets were compared, the lowest overlap was between flora and fauna (17.1%) and largest between fauna and habitats (23.9%). Simultaneous overlap among all three data sets was found in just 6.5% of the overall selected areas. These results suggest that less specific data, with respect to taxa threat status, could better serve as surrogate data in estimating overall biodiversity. In summary, this analysis has demonstrated that Dalmatia is a region with a high overall biodiversity that is important in a broader European context.

  16. Terrestrial Biodiversity Analyses in Dalmatia (Croatia): A Complementary Approach Using Diversity and Rarity

    NASA Astrophysics Data System (ADS)

    Jelaska, Sven D.; Nikolić, Toni; Šerić Jelaska, Lucija; Kušan, Vladimir; Peternel, Hrvoje; Gužvica, Goran; Major, Zoran

    2010-03-01

    Here we present the methodology used for terrestrial biodiversity analysis and site selection in Phase B of the UNDP/GEF COAST project. The analysis was focused on the problem of biodiversity evaluation in four Croatian counties stretching from sea level to the highest mountain in Croatia. Data on habitats, vascular flora, and fauna (mammals, birds, reptiles, amphibians, butterflies, ground beetles, and underground invertebrates) were collected and analyzed for each of the four counties. Emphasis was given to the richness of endangered species and the rarity of endemic species. Based on the spatial analyses of habitat, fauna, and flora data, four to six areas were selected from each county and ranked according to their biodiversity importance. Overlap between areas important for richness and those important for rarity was highest for data on flora (65.5%) and lowest for data on fauna (16.7%). When different data sets were compared, the lowest overlap was between flora and fauna (17.1%) and largest between fauna and habitats (23.9%). Simultaneous overlap among all three data sets was found in just 6.5% of the overall selected areas. These results suggest that less specific data, with respect to taxa threat status, could better serve as surrogate data in estimating overall biodiversity. In summary, this analysis has demonstrated that Dalmatia is a region with a high overall biodiversity that is important in a broader European context.

  17. Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    PubMed

    Gilroy, James J; Woodcock, Paul; Edwards, Felicity A; Wheeler, Charlotte; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2014-07-01

    With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether benefits are maximized by including many small features throughout the landscape ('land-sharing' agriculture) or a few large contiguous blocks alongside intensive farmland ('land-sparing' agriculture). In this study, we are the first to integrate carbon storage alongside multi-taxa biodiversity assessments to compare land-sparing and land-sharing frameworks. We do so by sampling carbon stocks and biodiversity (birds and dung beetles) in landscapes containing agriculture and forest within the Colombian Chocó-Andes, a zone of high global conservation priority. We show that woodland fragments embedded within a matrix of cattle pasture hold less carbon per unit area than contiguous primary or advanced secondary forests (>15 years). Farmland sites also support less diverse bird and dung beetle communities than contiguous forests, even when farmland retains high levels of woodland habitat cover. Landscape simulations based on these data suggest that land-sparing strategies would be more beneficial for both carbon storage and biodiversity than land-sharing strategies across a range of production levels. Biodiversity benefits of land-sparing are predicted to be similar whether spared lands protect primary or advanced secondary forests, owing to the close similarity of bird and dung beetle communities between the two forest classes. Land-sparing schemes that encourage the protection and regeneration of natural forest blocks thus provide a synergy between carbon and biodiversity conservation, and represent a promising strategy for reducing the negative impacts of agriculture on tropical ecosystems. However, further studies examining a wider range of ecosystem

  18. Crisis of Japanese Vascular Flora Shown By Quantifying Extinction Risks for 1618 Taxa

    PubMed Central

    Kadoya, Taku; Takenaka, Akio; Ishihama, Fumiko; Fujita, Taku; Ogawa, Makoto; Katsuyama, Teruo; Kadono, Yasuro; Kawakubo, Nobumitsu; Serizawa, Shunsuke; Takahashi, Hideki; Takamiya, Masayuki; Fujii, Shinji; Matsuda, Hiroyuki; Muneda, Kazuo; Yokota, Masatsugu; Yonekura, Koji; Yahara, Tetsukazu

    2014-01-01

    Although many people have expressed alarm that we are witnessing a mass extinction, few projections have been quantified, owing to limited availability of time-series data on threatened organisms, especially plants. To quantify the risk of extinction, we need to monitor changes in population size over time for as many species as possible. Here, we present the world's first quantitative projection of plant species loss at a national level, with stochastic simulations based on the results of population censuses of 1618 threatened plant taxa in 3574 map cells of ca. 100 km2. More than 500 lay botanists helped monitor those taxa in 1994–1995 and in 2003–2004. We projected that between 370 and 561 vascular plant taxa will go extinct in Japan during the next century if past trends of population decline continue. This extinction rate is approximately two to three times the global rate. Using time-series data, we show that existing national protected areas (PAs) covering ca. 7% of Japan will not adequately prevent population declines: even core PAs can protect at best <60% of local populations from decline. Thus, the Aichi Biodiversity Target to expand PAs to 17% of land (and inland water) areas, as committed to by many national governments, is not enough: only 29.2% of currently threatened species will become non-threatened under the assumption that probability of protection success by PAs is 0.5, which our assessment shows is realistic. In countries where volunteers can be organized to monitor threatened taxa, censuses using our method should be able to quantify how fast we are losing species and to assess how effective current conservation measures such as PAs are in preventing species extinction. PMID:24922311

  19. IRBAS: An online database to collate, analyze, and synthesize data on the biodiversity and ecology of intermittent rivers worldwide.

    PubMed

    Leigh, Catherine; Laporte, Baptiste; Bonada, Núria; Fritz, Ken; Pella, Hervé; Sauquet, Eric; Tockner, Klement; Datry, Thibault

    2017-02-01

    Key questions dominating contemporary ecological research and management concern interactions between biodiversity, ecosystem processes, and ecosystem services provision in the face of global change. This is particularly salient for freshwater biodiversity and in the context of river drying and flow-regime change. Rivers that stop flowing and dry, herein intermittent rivers, are globally prevalent and dynamic ecosystems on which the body of research is expanding rapidly, consistent with the era of big data. However, the data encapsulated by this work remain largely fragmented, limiting our ability to answer the key questions beyond a case-by-case basis. To this end, the Intermittent River Biodiversity Analysis and Synthesis (IRBAS; http://irbas.cesab.org) project has collated, analyzed, and synthesized data from across the world on the biodiversity and environmental characteristics of intermittent rivers. The IRBAS database integrates and provides free access to these data, contributing to the growing, and global, knowledge base on these ubiquitous and important river systems, for both theoretical and applied advancement. The IRBAS database currently houses over 2000 data samples collected from six countries across three continents, primarily describing aquatic invertebrate taxa inhabiting intermittent rivers during flowing hydrological phases. As such, there is room to expand the biogeographic and taxonomic coverage, for example, through addition of data collected during nonflowing and dry hydrological phases. We encourage contributions and provide guidance on how to contribute and access data. Ultimately, the IRBAS database serves as a portal, storage, standardization, and discovery tool, enabling collation, synthesis, and analysis of data to elucidate patterns in river biodiversity and guide management. Contribution creates high visibility for datasets, facilitating collaboration. The IRBAS database will grow in content as the study of intermittent rivers

  20. Marine Biodiversity in Japanese Waters

    PubMed Central

    Fujikura, Katsunori; Lindsay, Dhugal; Kitazato, Hiroshi; Nishida, Shuhei; Shirayama, Yoshihisa

    2010-01-01

    To understand marine biodiversity in Japanese waters, we have compiled information on the marine biota in Japanese waters, including the number of described species (species richness), the history of marine biology research in Japan, the state of knowledge, the number of endemic species, the number of identified but undescribed species, the number of known introduced species, and the number of taxonomic experts and identification guides, with consideration of the general ocean environmental background, such as the physical and geological settings. A total of 33,629 species have been reported to occur in Japanese waters. The state of knowledge was extremely variable, with taxa containing many inconspicuous, smaller species tending to be less well known. The total number of identified but undescribed species was at least 121,913. The total number of described species combined with the number of identified but undescribed species reached 155,542. This is the best estimate of the total number of species in Japanese waters and indicates that more than 70% of Japan's marine biodiversity remains un-described. The number of species reported as introduced into Japanese waters was 39. This is the first attempt to estimate species richness for all marine species in Japanese waters. Although its marine biota can be considered relatively well known, at least within the Asian-Pacific region, considering the vast number of different marine environments such as coral reefs, ocean trenches, ice-bound waters, methane seeps, and hydrothermal vents, much work remains to be done. We expect global change to have a tremendous impact on marine biodiversity and ecosystems. Japan is in a particularly suitable geographic situation and has a lot of facilities for conducting marine science research. Japan has an important responsibility to contribute to our understanding of life in the oceans. PMID:20689840

  1. High-throughput biodiversity analysis: Rapid assessment of species richness and ecological interactions of Chrysomelidae (Coleoptera) in the tropics

    PubMed Central

    Gómez-Zurita, Jesús; Cardoso, Anabela; Coronado, Indiana; De la Cadena, Gissela; Jurado-Rivera, José A.; Maes, Jean-Michel; Montelongo, Tinguaro; Nguyen, Dinh Thi; Papadopoulou, Anna

    2016-01-01

    Abstract Biodiversity assessment has been the focus of intense debate and conceptual and methodological advances in recent years. The cultural, academic and aesthetic impulses to recognise and catalogue the diversity in our surroundings, in this case of living objects, is furthermore propelled by the urgency of understanding that we may be responsible for a dramatic reduction of biodiversity, comparable in magnitude to geological mass extinctions. One of the most important advances in this attempt to characterise biodiversity has been incorporating DNA-based characters and molecular taxonomy tools to achieve faster and more efficient species delimitation and identification, even in hyperdiverse tropical biomes. In this assay we advocate for a broad understanding of Biodiversity as the inventory of species in a given environment, but also the diversity of their interactions, with both aspects being attainable using molecular markers and phylogenetic approaches. We exemplify the suitability and utility of this framework for large-scale biodiversity assessment with the results of our ongoing projects trying to characterise the communities of leaf beetles and their host plants in several tropical setups. Moreover, we propose that approaches similar to ours, establishing the inventories of two ecologically inter-related and species-rich groups of organisms, such as insect herbivores and their angiosperm host-plants, can serve as the foundational stone to anchor a comprehensive assessment of diversity, also in tropical environments, by subsequent addition of trophic levels. PMID:27408583

  2. Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas?

    PubMed

    Brooks, T M; Cuttelod, A; Faith, D P; Garcia-Moreno, J; Langhammer, P; Pérez-Espona, S

    2015-02-19

    'Key biodiversity areas' are defined as sites contributing significantly to the global persistence of biodiversity. The identification of these sites builds from existing approaches based on measures of species and ecosystem diversity and process. Here, we therefore build from the work of Sgró et al. (2011 Evol. Appl. 4, 326-337. (doi:10.1111/j.1752-4571.2010.00157.x)) to extend a framework for how components of genetic diversity might be considered in the identification of key biodiversity areas. We make three recommendations to inform the ongoing process of consolidating a key biodiversity areas standard: (i) thresholds for the threatened species criterion currently consider a site's share of a threatened species' population; expand these to include the proportion of the species' genetic diversity unique to a site; (ii) expand criterion for 'threatened species' to consider 'threatened taxa' and (iii) expand the centre of endemism criterion to identify as key biodiversity areas those sites holding a threshold proportion of the compositional or phylogenetic diversity of species (within a taxonomic group) whose restricted ranges collectively define a centre of endemism. We also recommend consideration of occurrence of EDGE species (i.e. threatened phylogenetic diversity) in key biodiversity areas to prioritize species-specific conservation actions among sites.

  3. Monitoring Ecosystems and Biodiversity at a Continental Scale--A Proposal for South America

    Treesearch

    Xavier Silva

    2006-01-01

    A monitoring system plan is being developed in South America to assess critically endangered ecoregions. The system will be based on a previous ecosystem and biodiversity inventory developed through a large gap analysis program in five South American ecoregions. The monitoring system will include three main elements: (1) Landscape Ecology: vegetation cover,...

  4. Vast underestimation of Madagascar's biodiversity evidenced by an integrative amphibian inventory

    PubMed Central

    Vieites, David R.; Wollenberg, Katharina C.; Andreone, Franco; Köhler, Jörn; Glaw, Frank; Vences, Miguel

    2009-01-01

    Amphibians are in decline worldwide. However, their patterns of diversity, especially in the tropics, are not well understood, mainly because of incomplete information on taxonomy and distribution. We assess morphological, bioacoustic, and genetic variation of Madagascar's amphibians, one of the first near-complete taxon samplings from a biodiversity hotspot. Based on DNA sequences of 2,850 specimens sampled from over 170 localities, our analyses reveal an extreme proportion of amphibian diversity, projecting an almost 2-fold increase in species numbers from the currently described 244 species to a minimum of 373 and up to 465. This diversity is widespread geographically and across most major phylogenetic lineages except in a few previously well-studied genera, and is not restricted to morphologically cryptic clades. We classify the genealogical lineages in confirmed and unconfirmed candidate species or deeply divergent conspecific lineages based on concordance of genetic divergences with other characters. This integrative approach may be widely applicable to improve estimates of organismal diversity. Our results suggest that in Madagascar the spatial pattern of amphibian richness and endemism must be revisited, and current habitat destruction may be affecting more species than previously thought, in amphibians as well as in other animal groups. This case study suggests that worldwide tropical amphibian diversity is probably underestimated at an unprecedented level and stresses the need for integrated taxonomic surveys as a basis for prioritizing conservation efforts within biodiversity hotspots. PMID:19416818

  5. Vast underestimation of Madagascar's biodiversity evidenced by an integrative amphibian inventory.

    PubMed

    Vieites, David R; Wollenberg, Katharina C; Andreone, Franco; Köhler, Jörn; Glaw, Frank; Vences, Miguel

    2009-05-19

    Amphibians are in decline worldwide. However, their patterns of diversity, especially in the tropics, are not well understood, mainly because of incomplete information on taxonomy and distribution. We assess morphological, bioacoustic, and genetic variation of Madagascar's amphibians, one of the first near-complete taxon samplings from a biodiversity hotspot. Based on DNA sequences of 2,850 specimens sampled from over 170 localities, our analyses reveal an extreme proportion of amphibian diversity, projecting an almost 2-fold increase in species numbers from the currently described 244 species to a minimum of 373 and up to 465. This diversity is widespread geographically and across most major phylogenetic lineages except in a few previously well-studied genera, and is not restricted to morphologically cryptic clades. We classify the genealogical lineages in confirmed and unconfirmed candidate species or deeply divergent conspecific lineages based on concordance of genetic divergences with other characters. This integrative approach may be widely applicable to improve estimates of organismal diversity. Our results suggest that in Madagascar the spatial pattern of amphibian richness and endemism must be revisited, and current habitat destruction may be affecting more species than previously thought, in amphibians as well as in other animal groups. This case study suggests that worldwide tropical amphibian diversity is probably underestimated at an unprecedented level and stresses the need for integrated taxonomic surveys as a basis for prioritizing conservation efforts within biodiversity hotspots.

  6. Trophic and Non-Trophic Interactions in a Biodiversity Experiment Assessed by Next-Generation Sequencing

    PubMed Central

    Tiede, Julia; Wemheuer, Bernd; Traugott, Michael; Daniel, Rolf; Tscharntke, Teja; Ebeling, Anne; Scherber, Christoph

    2016-01-01

    Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research. PMID:26859146

  7. Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea): An update

    NASA Astrophysics Data System (ADS)

    Mastrototaro, F.; D'Onghia, G.; Corriero, G.; Matarrese, A.; Maiorano, P.; Panetta, P.; Gherardi, M.; Longo, C.; Rosso, A.; Sciuto, F.; Sanfilippo, R.; Gravili, C.; Boero, F.; Taviani, M.; Tursi, A.

    2010-03-01

    The biodiversity of the Santa Maria di Leuca (SML) coral bank is summarized and its description is updated using data collected by means of underwater video systems, benthic samplers and fishing gears. A total of 222 living species have been recorded within the coral bank area in the depth range 280-1121 m. The most abundant benthic taxa recorded are Porifera (36 species) followed by Mollusca (35) and Cnidaria (31). The scleractinian corals Madrepora oculata and Lophelia pertusa are the main colonial species in the structure of the SML bank. Annelida, Crustacea and Bryozoa have been found with 24, 23 and 19 species, respectively. A total of 40 species of demersal fish have been recorded. Other faunal taxa were found with small numbers of species. One hundred and thirty-five species are new for the SML bank, 31 of which represent new records for the north-western Ionian Sea (2 Porifera, 17 Cnidaria, 1 Mollusca, 3 Annelida, 2 Crustacea, 4 Bryozoa and 4 Echinodermata). The finding of the annelid Harmothoë vesiculosa represents the first record for the Mediterranean Sea. The SML coral bank represents a biodiversity "hot-spot" on the bathyal bottoms of the Mediterranean Sea.

  8. Predaceous water beetles (Coleoptera, Hydradephaga) of the Lake St Lucia system, South Africa: biodiversity, community ecology and conservation implications

    PubMed Central

    Perissinotto, Renzo; Bird, Matthew S.; Bilton, David T.

    2016-01-01

    Abstract Water beetles are one of the dominant macroinvertebrate groups in inland waters and are excellent ecological indicators, reflecting both the diversity and composition of the wider aquatic community. The predaceous water beetles (Hydradephaga) make up around one-third of known aquatic Coleoptera and, as predators, are a key group in the functioning of many aquatic habitats. Despite being relatively well-known taxonomically, ecological studies of these insects in tropical and subtropical systems remain rare. A dedicated survey of the hydradephagan beetles of the Lake St Lucia wetlands (South Africa) was undertaken between 2013 and 2015, providing the first biodiversity census for this important aquatic group in the iSimangaliso Wetland Park, a UNESCO World Heritage Site within the Maputaland biodiversity hotspot. A total of 32 sites covering the entire spectrum of waterbody types were sampled over the course of three collecting trips. The Lake St Lucia wetlands support at least 68 species of Hydradephaga, a very high level of diversity comparing favourably with other hotspots on the African continent and elsewhere in the world and a number of taxa are reported for South Africa for the first time. This beetle assemblage is dominated by relatively widespread Afrotropical taxa, with few locally endemic species, supporting earlier observations that hotspots of species richness and centres of endemism are not always coincident. Although there was no significant difference in the number of species supported by the various waterbody types sampled, sites with the highest species richness were mostly temporary depression wetlands. This contrasts markedly with the distribution of other taxa in the same system, such as molluscs and dragonflies, which are most diverse in permanent waters. Our study is the first to highlight the importance of temporary depression wetlands and emphasises the need to maintain a variety of wetland habitats for aquatic conservation in this

  9. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model.

    PubMed

    Yasuhara, Moriaki; Tittensor, Derek P; Hillebrand, Helmut; Worm, Boris

    2017-02-01

    There is growing interest in the integration of macroecology and palaeoecology towards a better understanding of past, present, and anticipated future biodiversity dynamics. However, the empirical basis for this integration has thus far been limited. Here we review prospects for a macroecology-palaeoecology integration in biodiversity analyses with a focus on marine microfossils [i.e. small (or small parts of) organisms with high fossilization potential, such as foraminifera, ostracodes, diatoms, radiolaria, coccolithophores, dinoflagellates, and ichthyoliths]. Marine microfossils represent a useful model system for such integrative research because of their high abundance, large spatiotemporal coverage, and good taxonomic and temporal resolution. The microfossil record allows for quantitative cross-scale research designs, which help in answering fundamental questions about marine biodiversity, including the causes behind similarities in patterns of latitudinal and longitudinal variation across taxa, the degree of constancy of observed gradients over time, and the relative importance of hypothesized drivers that may explain past or present biodiversity patterns. The inclusion of a deep-time perspective based on high-resolution microfossil records may be an important step for the further maturation of macroecology. An improved integration of macroecology and palaeoecology would aid in our understanding of the balance of ecological and evolutionary mechanisms that have shaped the biosphere we inhabit today and affect how it may change in the future. © 2015 Cambridge Philosophical Society.

  10. Five Years of Experimental Warming Increases the Biodiversity and Productivity of Phytoplankton

    PubMed Central

    Yvon-Durocher, Gabriel; Allen, Andrew P.; Cellamare, Maria; Dossena, Matteo; Gaston, Kevin J.; Leitao, Maria; Montoya, José M.; Reuman, Daniel C.; Woodward, Guy; Trimmer, Mark

    2015-01-01

    Phytoplankton are key components of aquatic ecosystems, fixing CO2 from the atmosphere through photosynthesis and supporting secondary production, yet relatively little is known about how future global warming might alter their biodiversity and associated ecosystem functioning. Here, we explore how the structure, function, and biodiversity of a planktonic metacommunity was altered after five years of experimental warming. Our outdoor mesocosm experiment was open to natural dispersal from the regional species pool, allowing us to explore the effects of experimental warming in the context of metacommunity dynamics. Warming of 4°C led to a 67% increase in the species richness of the phytoplankton, more evenly-distributed abundance, and higher rates of gross primary productivity. Warming elevated productivity indirectly, by increasing the biodiversity and biomass of the local phytoplankton communities. Warming also systematically shifted the taxonomic and functional trait composition of the phytoplankton, favoring large, colonial, inedible phytoplankton taxa, suggesting stronger top-down control, mediated by zooplankton grazing played an important role. Overall, our findings suggest that temperature can modulate species coexistence, and through such mechanisms, global warming could, in some cases, increase the species richness and productivity of phytoplankton communities. PMID:26680314

  11. Benthic biodiversity and ecological gradients in the Seno Magdalena (Puyuhuapi Fjord, Chile)

    NASA Astrophysics Data System (ADS)

    Betti, F.; Bavestrello, G.; Bo, M.; Enrichetti, F.; Loi, A.; Wanderlingh, A.; Pérez-Santos, I.; Daneri, G.

    2017-11-01

    Due to its complex hydrological, geomorphological and climatic features, the Chilean fjords region is considered among the most productive areas of the world. The benthic fauna of this region accounts for more than 1600 species showing marked latitudinal biogeographic differences characterizing this as one of the most important hotspot of biodiversity of cold-temperate environments. Despite numerous studies have been conducted to depict the biological characteristics of the fjords, the present situation is strongly unbalanced towards specific taxa. Hence, this study takes into consideration a community approach, highlighting the distribution of six benthic assemblages thriving on vertical walls along the Seno Magdalena fjord (Aysen region). Underwater pictures were used to characterize the trends in abundance and diversity of the main taxa showing distinct responses to salinity and turbidity. Among the less tolerant taxa to high fresh water inputs there are encrusting algae, mainly found in the most external sites lashed by outer currents, far from the estuarine plume. The bathymetric zonation of the assemblages, instead, is characterized by a dense mussel belt in the first 10 m, within a thick layer of low-salinity, nutrient-enriched waters. Rich assemblages of sponges, brachiopods, gorgonians and scleractinians thrive in deeper, marine, clear waters. The evaluation of the ecological role of benthic species leads both to the definition of potential bioindicator taxa responding to anthropic disturbances and to the promotion of protected areas.

  12. Marine biodiversity of Aotearoa New Zealand.

    PubMed

    Gordon, Dennis P; Beaumont, Jennifer; MacDiarmid, Alison; Robertson, Donald A; Ahyong, Shane T

    2010-08-02

    The marine-biodiversity assessment of New Zealand (Aotearoa as known to Māori) is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km(2), is one of the largest in the world. It spans 30 degrees of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA), which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New Zealand hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine) from 18 countries have been engaged in a project to review New Zealand's entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata) is more or less equivalent to that in the ERMS (European Register of Marine Species) region, which is 5.5 times larger in area than the New Zealand EEZ. The implication is that, when all other New Zealand phyla are equally well studied, total marine

  13. Marine Biodiversity of Aotearoa New Zealand

    PubMed Central

    Gordon, Dennis P.; Beaumont, Jennifer; MacDiarmid, Alison; Robertson, Donald A.; Ahyong, Shane T.

    2010-01-01

    The marine-biodiversity assessment of New Zealand (Aotearoa as known to Māori) is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km2, is one of the largest in the world. It spans 30° of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA), which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New Zealand hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine) from 18 countries have been engaged in a project to review New Zealand's entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata) is more or less equivalent to that in the ERMS (European Register of Marine Species) region, which is 5.5 times larger in area than the New Zealand EEZ. The implication is that, when all other New Zealand phyla are equally well studied, total marine diversity

  14. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India.

    PubMed

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km(2) (4.4%) of India, whereas according to the MODIS fire product about 2200 km(2) (1.4%) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  15. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India

    NASA Astrophysics Data System (ADS)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km2 (4.4 %) of India, whereas according to the MODIS fire product about 2200 km2 (1.4 %) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  16. Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record

    NASA Astrophysics Data System (ADS)

    Stigall, Alycia L.; Bauer, Jennifer E.; Lam, Adriane R.; Wright, David F.

    2017-01-01

    Biotic Immigration Events (BIMEs) record the large-scale dispersal of taxa from one biogeographic area to another and have significantly impacted biodiversity throughout geologic time. BIMEs associated with biodiversity increases have been linked to ecologic and evolutionary processes including niche partitioning, species packing, and higher speciation rates. Yet substantial biodiversity decline has also been documented following BIMEs due to elevated extinction and/or reduced speciation rates. In this review, we develop a conceptual model for biodiversity accumulation that links BIMEs and geographic isolation with local (α) diversity, regional (β) diversity, and global (γ) diversity metrics. Within the model, BIME intervals are characterized by colonization of existing species within new geographic regions and a lack of successful speciation events. Thus, there is no change in γ-diversity, and α-diversity increases at the cost of β-diversity. An interval of regional isolation follows in which lineage splitting results in successful speciation events and diversity increases across all three metrics. Alternation of these two regimes can result in substantial biodiversity accumulation. We tested this conceptual model using a series of case studies from the paleontological record. We primarily focus on two intervals during the Middle through Late Ordovician Period (470-458 Ma): the globally pervasive BIMEs during the Great Ordovician Biodiversification Event (GOBE) and a regional BIME, the Richmondian Invasion. We further test the conceptual model by examining the Great Devonian Interchange, Neogene mollusk migrations and diversification, and the Great American Biotic Interchange. Paleontological data accord well with model predictions. Constraining the mechanisms of biodiversity accumulation provides context for conservation biology. Because α-, β-, and γ-diversity are semi-independent, different techniques should be considered for sustaining various

  17. Scorpion Biodiversity and Interslope Divergence at “Evolution Canyon”, Lower Nahal Oren Microsite, Mt. Carmel, Israel

    PubMed Central

    Raz, Shmuel; Retzkin, Sion; Pavlíček, Tomáš; Hoffman, Adam; Kimchi, Hagay; Beiles, Avigdor; Nevo, Eviatar

    2009-01-01

    Background Local natural laboratories, designated by us as the “Evolution Canyon” model, are excellent tools to study regional and global ecological dynamics across life. They present abiotic and biotic contrasts locally, permitting the pursuit of observations and experiments across diverse taxa sharing sharp microecological subdivisions. Higher solar radiation received by the “African savannah-like” south-facing slopes (AS) in canyons north of the equator than by the opposite “European maquis-like” north-facing slopes (ES) is associated with higher abiotic stress. Scorpions are a suitable taxon to study interslope biodiversity differences, associated with the differences in abiotic factors (climate, drought), due to their ability to adapt to dry environments. Methodology/Principal Findings Scorpions were studied by the turning stone method and by UV light methods. The pattern observed in scorpions was contrasted with similar patterns in several other taxa at the same place. As expected, the AS proved to be significantly more speciose regarding scorpions, paralleling the interslope patterns in taxa such as lizards and snakes, butterflies (Rhopalocera), beetles (families Tenebrionidae, Dermestidae, Chrysomelidae), and grasshoppers (Orthoptera). Conclusions/Significance Our results support an earlier conclusion stating that the homogenizing effects of migration and stochasticity are not able to eliminate the interslope intra- and interspecific differences in biodiversity despite an interslope distance of only 100 m at the “EC” valley bottom. In our opinion, the interslope microclimate selection, driven mainly by differences in insolance, could be the primary factor responsible for the observed interslope pattern. PMID:19357787

  18. Towards biodiversity hotspots effective for conserving mammals with small geographic ranges

    NASA Astrophysics Data System (ADS)

    Carrara, Rodolfo; San Blas, Germán; Agrain, Federico; Roig-Juñent, Sergio

    2017-01-01

    The main goal of using global biodiversity hotspots for conservation purposes is to protect taxa with small geographic ranges because these are highly vulnerable to extinction. However, the extent to what different hotspots types are effective for meeting this goal remains controversial because hotspots have been previously defined as either the richest or most threatened and richest sites in terms of total, endemic or threatened species. In this regard, the use of species richness to set conservation priorities is widely discussed because strategies focused on this diversity measure tend to miss many of the taxa with small geographic ranges. Here we use data on global terrestrial mammal distributions to show that, hotspots of total species, endemism and threat defined in terms of species richness are effective in including 27%, 29% and 11% respectively, of the taxa with small geographic ranges. Whilst, the same hotspot types defined in terms of a simple diversity index, which is a function of species richness and range-size rarity, include 68%, 44% and 90% respectively, of these taxa. In addition, we demonstrate that index hotspot types are highly efficient because they conserve 79% of mammal species (21% more species than richness hotspot types), with 59% of species shared by three hotspot types (31% more than richness hotspot types). These results suggest that selection of different diversity measures to define hotspots may strongly affect the achievement of conservation goals.

  19. Mediterranean marine biodiversity under threat: Reviewing influence of marine litter on species.

    PubMed

    Deudero, Salud; Alomar, Carme

    2015-09-15

    The Mediterranean Sea is one of the most polluted seas worldwide, especially with regard to plastics. The presence of this emerging man made contaminant in marine environments precludes large effects and interactions with species exposed to massive litter quantities. In this review, available data of floating and seafloor litter around Mediterranean sub-basins are reported. A review of scientific literature on the interaction of plastic with marine biota resulted in the identification of 134 species, several taxa and feeding strategies affected from 1986 to 2014. Data from 17,334 individuals showed different levels of ingestion and effects on catalogued IUCN species (marine mammals and sea turtles) in addition to several pelagic fish and elasmobranchs. Biodiversity is certainly under threat, and knowledge of the extent of taxa affected is of concern considering the increasing plastic loads in the Mediterranean Sea and worldwide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Correlation of resource plays and biodiversity patterns: accumulation of organic-rich shale tracks taxonomic turnover

    USGS Publications Warehouse

    Eoff, Jennifer D.

    2012-01-01

    Similar paleogeographic and paleotectonic settings characterize most self-sourced shale hydrocarbon plays. Their deposition occurred within similar orders of magnitude of eustatic events and during geologic periods characterized by “warm” (or transitional) climates and calcitic seas. In addition, the stratigraphic occurrence of shale plays parallels certain historical patterns of marine metazoan biodiversity. Such strong agreement among several correlation tools elucidates why these resources may be limited to discrete intervals of geological time. Correlation of self-sourced shale with biodiversity trends indicates that the factors controlling the deposition of marine organic matter may not be independent of those that induced taxonomic turnover. Paleoecological changes promoted accumulation and preservation of Type II kerogen. Deposition of self-sourced shale appears to correspond to reductions in absolute biodiversity and declining percentages of bioturbating taxa, with concomitant increases in proportions of pelagic taxa relative to infaunal and epifaunal organisms. Whereas upwelling and anoxia may have contributed to the deposition of kerogen in source rocks throughout much of the sedimentary record, diminished consumption of biomass by benthic metazoans likely augmented the preservation of organic carbon during deposition of this shale type. Rapid tectonic-plate reconfiguration induced coeval events, creating basins with sufficiently high rates of accommodation creation necessary to preserve additional organic material accumulating as the heterotrophic benthos suffered in response to rapidly changing environments. Combining sea-level curves, paleogeography, climate, and seawater chemistry provides a first-order approximation of the distribution of potential self-sourced shale in the geologic record. A model that predicts the stratigraphic distribution of self-sourced-shale deposition can aid in exploration of continuous hydrocarbon accumulations in self

  1. Comprehensive inventory of true flies (Diptera) at a tropical site

    Treesearch

    Brian V. Brown; Art Borkent; Peter H. Adler; Dalton de Souza Amorim; Kevin Barber; Daniel Bickel; Stephanie Boucher; Scott E. Brooks; John Burger; Zelia L. Burington; Renato S. Capellari; Daniel N. R. Costa; Jeffrey M. Cumming; Greg Curler; Carl W. Dick; John H. Epler; Eric Fisher; Stephen D. Gaimari; Jon Gelhaus; David A. Grimaldi; John Hash; Martin Hauser; Heikki Hippa; Sergio Ibanez-Bernal; Mathias Jaschhof; Elena P. Kameneva; Peter H. Kerr; Valery Korneyev; Cheslavo A. Korytkowski; Giar-Ann Kung; Gunnar Mikalsen Kvifte; Owen Lonsdale; Stephen A. Marshall; Wayne Mathis; Verner Michelsen; Stefan Naglis; Allen L. Norrbom; Steven Paiero; Thomas Pape; Alessandre Pereira-Colavite; Marc Pollet; Sabrina Rochefort; Alessandra Rung; Justin B. Runyon; Jade Savage; Vera C. Silva; Bradley J. Sinclair; Jeffrey H. Skevington; John O. Stireman; John Swann; F. Christian Thompson; Pekka Vilkamaa; Terry Wheeler; Terry Whitworth; Maria Wong; D. Monty Wood; Norman Woodley; Tiffany Yau; Thomas J. Zavortink; Manuel A. Zumbado

    2018-01-01

    Estimations of tropical insect diversity generally suffer from lack of known groups or faunas against which extrapolations can be made, and have seriously underestimated the diversity of some taxa. Here we report the intensive inventory of a four-hectare tropical cloud forest in Costa Rica for one year, which yielded 4332 species of Diptera, providing the first...

  2. Use of ecoacoustics to determine biodiversity patterns across ecological gradients.

    PubMed

    Grant, Paul B C; Samways, Michael J

    2016-12-01

    The variety of local animal sounds characterizes a landscape. We used ecoacoustics to noninvasively assess the species richness of various biotopes typical of an ecofriendly forest plantation with diverse ecological gradients and both nonnative and indigenous vegetation. The reference area was an adjacent large World Heritage Site protected area (PA). All sites were in a global biodiversity hotspot. Our results showed how taxa segregated into various biotopes. We identified 65 singing species, including birds, frogs, crickets, and katydids. Large, natural, protected grassland sites in the PA had the highest mean acoustic diversity (14.1 species/site). Areas covered in nonnative timber or grass species were devoid of acoustic species. Sites grazed by native and domestic megaherbivores were fairly rich (5.1) in acoustic species but none were unique to this habitat type, where acoustic diversity was greater than in intensively managed grassland sites (0.04). Natural vegetation patches inside the plantation mosaic supported high mean acoustic diversity (indigenous forests 7.6, grasslands 8.0, wetlands 9.1), which increased as plant heterogeneity and patch size increased. Indigenous forest patches within the plantation mosaic contained a highly characteristic acoustic species assemblage, emphasizing their complementary contribution to local biodiversity. Overall, acoustic signals determined spatial biodiversity patterns and can be a useful tool for guiding conservation. © 2016 Society for Conservation Biology.

  3. Characterization of Two New Records of Zygomycete Species Belonging to Undiscovered Taxa in Korea.

    PubMed

    Nguyen, Thi Thuong Thuong; Lee, Seo Hee; Bae, Sarah; Jeon, Sun Jeong; Mun, Hye Yeon; Lee, Hyang Burm

    2016-03-01

    During a biodiversity survey of undiscovered taxa in Korea, two zygomycetous fungal strains were isolated. The first strain, EML-FSDY6-1 was isolated from a soil sample collected at Dokdo Island in the East Sea of Korea in 2013, and the second strain, EML-DG-NH3-1 was isolated from a rat dung sample collected at Chonnam National University garden, Gwangju, Korea in 2014. Based on the morphological characteristics and phylogenetic analysis of the internal transcribed spacer, 18S and 28S rDNA, actin and translation elongation factor-1α genes. EML-FSDY6-1 and EML-DG-NH3-1 isolates were confirmed as zygomycete species, Absidia pseudocylindrospora and Absidia glauca, respectively. Neither species has previously been described in Korea.

  4. Characterization of Two New Records of Zygomycete Species Belonging to Undiscovered Taxa in Korea

    PubMed Central

    Nguyen, Thi Thuong Thuong; Lee, Seo Hee; Bae, Sarah; Jeon, Sun Jeong; Mun, Hye Yeon

    2016-01-01

    During a biodiversity survey of undiscovered taxa in Korea, two zygomycetous fungal strains were isolated. The first strain, EML-FSDY6-1 was isolated from a soil sample collected at Dokdo Island in the East Sea of Korea in 2013, and the second strain, EML-DG-NH3-1 was isolated from a rat dung sample collected at Chonnam National University garden, Gwangju, Korea in 2014. Based on the morphological characteristics and phylogenetic analysis of the internal transcribed spacer, 18S and 28S rDNA, actin and translation elongation factor-1α genes. EML-FSDY6-1 and EML-DG-NH3-1 isolates were confirmed as zygomycete species, Absidia pseudocylindrospora and Absidia glauca, respectively. Neither species has previously been described in Korea. PMID:27103852

  5. Relevance of cryptic fishes in biodiversity assessments: A case study at Buck Island Reef National Monument, St. Croix

    USGS Publications Warehouse

    Smith-Vaniz, W.F.; Jelks, H.L.; Rocha, L.A.

    2006-01-01

    Because cryptic fishes are difficult to accurately survey, they are undersampled components of coral reef habitats, and their ecological roles have been generally ignored. Fifty-eight enclosed stations were sampled in shoreline, nearshore reef, lagoon, backreef, forereef, and bank/shelf habitats with an ichthyocide (rotenone) at Buck Island Reef National Monument, St. Croix, U.S. Virgin Islands. Our samples included 55 families and 228 species, 60 previously unreported from St. Croix. Fish assemblages varied across habitat zones with the shoreline assemblage the most distinct. Only 8% of the species were present in all habitats. Multi-dimensional scaling plots of habitat characteristics and Bray-Curtis similarities of fish assemblages revealed similar patterns. Dominant and rare taxa are enumerated for each habitat sampled. Rotenone and visual census data are compared. While visual surveys accumulated more species per unit of effort, rotenone samples accumulated more species by area. Only 36% of the 228 species sampled with rotenone were visually detected, while 70% of the 115 species visually detected were also collected with rotenone. The use of rotenone is controversial but important for obtaining reasonably complete inventories of reef fishes. Misconceptions about rotenone and the advantages and limitations of alternative biodiversity assessment methods are discussed. ?? 2006 Rosenstiel School of Marine and Atmospheric Science of the University of Miami.

  6. Bathymetric distribution patterns of Southern Ocean macrofaunal taxa: Bivalvia, Gastropoda, Isopoda and Polychaeta

    NASA Astrophysics Data System (ADS)

    Brandt, Angelika; Linse, Katrin; Schüller, Myriam

    2009-11-01

    The aim of this study is to compare the depth distributions of four major Southern Ocean macrobenthic epi- and infaunal taxa, the Bivalvia, Gastropoda, Isopoda, and Polychaeta, from subtidal to abyssal depth. All literature data up to summer 2008, as well as the unpublished data from the most recent ANDEEP I-III (Antarctic benthic deep-sea biodiversity: colonisation history and recent community patterns) expeditions to the Southern Ocean deep sea are included in the analysis. Benthic invertebrates in the Southern Ocean are known for their wide bathymetric ranges. We analysed the distributions of four of the most abundant and species-rich taxa from intertidal to abyssal (5200 m) depths in depth zones of 100 m. The depth distributions of three macrofaunal classes (Bivalvia, Gastropoda, Polychaeta) and one order (Isopoda) showed distinct differences. In the case of bivalves, gastropods and polychaetes, the number of species per depth zone decreased from the shelf to the slope at around 1000 m depth and then showed stable low numbers. The isopods showed the opposite trend; they were less species rich in the upper 1000 m but increased in species numbers from the slope to bathyal and abyssal depths. Depth ranges of families of the studied taxa (Bivalvia: 31 families, Gastropoda: 60, Isopoda: 32, and Polychaeta: 46 families) were compiled and illustrated. At present vast areas of the deep sea in the Southern Ocean remain unexplored and species accumulation curves showed that only a fraction of the species have been discovered to date. We anticipate that further investigations will greatly increase the number of species known in the Southern Ocean deep sea.

  7. The future of Arctic benthos: Expansion, invasion, and biodiversity

    NASA Astrophysics Data System (ADS)

    Renaud, Paul E.; Sejr, Mikael K.; Bluhm, Bodil A.; Sirenko, Boris; Ellingsen, Ingrid H.

    2015-12-01

    One of the logical predictions for a future Arctic characterized by warmer waters and reduced sea-ice is that new taxa will expand or invade Arctic seafloor habitats. Specific predictions regarding where this will occur and which taxa are most likely to become established or excluded are lacking, however. We synthesize recent studies and conduct new analyses in the context of climate forecasts and a paleontological perspective to make concrete predictions as to relevant mechanisms, regions, and functional traits contributing to future biodiversity changes. Historically, a warmer Arctic is more readily invaded or transited by boreal taxa than it is during cold periods. Oceanography of an ice-free Arctic Ocean, combined with life-history traits of invading taxa and availability of suitable habitat, determine expansion success. It is difficult to generalize as to which taxonomic groups or locations are likely to experience expansion, however, since species-specific, and perhaps population-specific autecologies, will determine success or failure. Several examples of expansion into the Arctic have been noted, and along with the results from the relatively few Arctic biological time-series suggest inflow shelves (Barents and Chukchi Seas), as well as West Greenland and the western Kara Sea, are most likely locations for expansion. Apparent temperature thresholds were identified for characteristic Arctic and boreal benthic fauna suggesting strong potential for range constrictions of Arctic, and expansions of boreal, fauna in the near future. Increasing human activities in the region could speed introductions of boreal fauna and reduce the value of a planktonic dispersal stage. Finally, shelf regions are likely to experience a greater impact, and also one with greater potential consequences, than the deep Arctic basin. Future research strategies should focus on monitoring as well as compiling basic physiological and life-history information of Arctic and boreal taxa, and

  8. PAD-US: National Inventory of Protected Areas

    USGS Publications Warehouse

    Gergely, Kevin J.; McKerrow, Alexa

    2013-11-12

    The Gap Analysis Program produces data and tools that help meet critical national challenges such as biodiversity conservation, renewable energy development, climate change adaptation, and infrastructure investment. The Protected Areas Database of the United States (PAD-US) is the official inventory of protected open space in the United States. With over 715 million acres in thousands of holdings, the spatial data in PAD-US include public lands held in trust by national, State, and some local governments, and by some nonprofit conservation organizations.

  9. Minimizing the biodiversity impact of Neotropical oil palm development.

    PubMed

    Gilroy, James J; Prescott, Graham W; Cardenas, Johann S; Castañeda, Pamela González del Pliego; Sánchez, Andrés; Rojas-Murcia, Luis E; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2015-04-01

    Oil palm agriculture is rapidly expanding in the Neotropics, at the expense of a range of natural and seminatural habitats. A key question is how this expansion should be managed to reduce negative impacts on biodiversity. Focusing on the Llanos of Colombia, a mixed grassland-forest system identified as a priority zone for future oil palm development, we survey communities of ants, dung beetles, birds and herpetofauna occurring in oil palm plantations and the other principal form of agriculture in the region--improved cattle pasture--together with those of surrounding natural forests. We show that oil palm plantations have similar or higher species richness across all four taxonomic groups than improved pasture. For dung beetles, species richness in oil palm was equal to that of forest, whereas the other three taxa had highest species richness in forests. Hierarchical modelling of species occupancy probabilities indicated that oil palm plantations supported a higher proportion of species characteristic of forests than did cattle pastures. Across the bird community, occupancy probabilities within oil palm were positively influenced by increasing forest cover in a surrounding 250 m radius, whereas surrounding forest cover did not strongly influence the occurrence of other taxonomic groups in oil palm. Overall, our results suggest that the conversion of existing improved pastures to oil palm has limited negative impacts on biodiversity. As such, existing cattle pastures of the Colombian Llanos could offer a key opportunity to meet governmental targets for oil palm development without incurring significant biodiversity costs. Our results also highlight the value of preserving remnant forests within these agricultural landscapes, protecting high biodiversity and exporting avian 'spill-over' effects into oil palm plantations. © 2014 John Wiley & Sons Ltd.

  10. Preventing Establishment: An Inventory of Introduced Plants in Puerto Villamil, Isabela Island, Galapagos

    PubMed Central

    Guézou, Anne; Pozo, Paola; Buddenhagen, Christopher

    2007-01-01

    As part of an island-wide project to identify and eradicate potentially invasive plant species before they become established, a program of inventories is being carried out in the urban and agricultural zones of the four inhabited islands in Galapagos. This study reports the results of the inventory from Puerto Villamil, a coastal village representing the urban zone of Isabela Island. We visited all 1193 village properties to record the presence of the introduced plants. In addition, information was collected from half of the properties to determine evidence for potential invasiveness of the plant species. We recorded 261 vascular taxa, 13 of which were new records for Galapagos. Most of the species were intentionally grown (cultivated) (73.3%) and used principally as ornamentals. The most frequent taxa we encountered were Cocos nucifera (coconut tree) (22.1%) as a cultivated plant and Paspalum vaginatum (salt water couch) (13.2%) as a non cultivated plant. In addition 39 taxa were naturalized. On the basis of the invasiveness study, we recommend five species for eradication (Abutilon dianthum, Datura inoxia, Datura metel, Senna alata and Solanum capsicoides), one species for hybridization studies (Opuntia ficus-indica) and three species for control (Furcraea hexapetala, Leucaena leucocephala and Paspalum vaginatum). PMID:17940606

  11. Spatially dynamic forest management to sustain biodiversity and economic returns.

    PubMed

    Mönkkönen, Mikko; Juutinen, Artti; Mazziotta, Adriano; Miettinen, Kaisa; Podkopaev, Dmitry; Reunanen, Pasi; Salminen, Hannu; Tikkanen, Olli-Pekka

    2014-02-15

    Production of marketed commodities and protection of biodiversity in natural systems often conflict and thus the continuously expanding human needs for more goods and benefits from global ecosystems urgently calls for strategies to resolve this conflict. In this paper, we addressed what is the potential of a forest landscape to simultaneously produce habitats for species and economic returns, and how the conflict between habitat availability and timber production varies among taxa. Secondly, we aimed at revealing an optimal combination of management regimes that maximizes habitat availability for given levels of economic returns. We used multi-objective optimization tools to analyze data from a boreal forest landscape consisting of about 30,000 forest stands simulated 50 years into future. We included seven alternative management regimes, spanning from the recommended intensive forest management regime to complete set-aside of stands (protection), and ten different taxa representing a wide variety of habitat associations and social values. Our results demonstrate it is possible to achieve large improvements in habitat availability with little loss in economic returns. In general, providing dead-wood associated species with more habitats tended to be more expensive than providing requirements for other species. No management regime alone maximized habitat availability for the species, and systematic use of any single management regime resulted in considerable reductions in economic returns. Compared with an optimal combination of management regimes, a consistent application of the recommended management regime would result in 5% reduction in economic returns and up to 270% reduction in habitat availability. Thus, for all taxa a combination of management regimes was required to achieve the optimum. Refraining from silvicultural thinnings on a proportion of stands should be considered as a cost-effective management in commercial forests to reconcile the conflict

  12. Biological inventory of anchialine pools in the Pu'uhonua o Hōnaunau National Historical Park and Pu'ukoholā Heiau National Historical Site, Hawaii Island

    USGS Publications Warehouse

    Tango, Lori K.; Foote, David; Magnacca, Karl N.; Foltz, Sarah J.; Cutler, Kerry

    2012-01-01

    Inventories for major groups of invertebrates were completed at anchialine pool complexes in Pu‘uhonua o Hōnaunau National Historical Park (PUHO) and Pu‘ukoholā Heiau National Historic Site (PUHE) on the island of Hawai‘i. Nine pools within two pool complexes were surveyed at PUHO, along with one extensive pool at the terminus of Makeāhua Gulch at PUHE. At both parks, inventories documented previously unreported diversity, with pool complexes at PUHO exhibiting greater species richness for most taxa than the pool at PUHE. Inventories at PUHO recorded five species of molluscs, four species of crustaceans (including the candidate endangered shrimp Metabetaeus lohena), two species of Orthoptera, four species of Odonata (including the candidate endangered damselfly Megalagrion xanthomelas), fourteen species of Diptera, nine taxa of plankton, and thirteen species of ants; inventories at the PUHE pool produced only one species of mollusc, two species of crustacean, at least one species of Orthoptera, four species of Odonata, thirty species of Diptera, five taxa of plankton, and four species of ants. Further survey work may be necessary to document the full diversity of pool fauna, especially in species-rich groups like the Diptera. Inventory data will be used to generate a network wide database of species presence and distribution, and will aid in developing management plans for anchialine pool resources.

  13. Habitat history improves prediction of biodiversity in rainforest fauna

    PubMed Central

    Graham, Catherine H.; Moritz, Craig; Williams, Stephen E.

    2006-01-01

    Patterns of biological diversity should be interpreted in light of both contemporary and historical influences; however, to date, most attempts to explain diversity patterns have largely ignored history or have been unable to quantify the influence of historical processes. The historical effects on patterns of diversity have been hypothesized to be most important for taxonomic groups with poor dispersal abilities. We quantified the relative stability of rainforests over the late Quaternary period by modeling rainforest expansion and contraction in 21 biogeographic subregions in northeast Australia across four time periods. We demonstrate that historical habitat stability can be as important, and in endemic low-dispersal taxa even more important, than current habitat area in explaining spatial patterns of species richness. In contrast, patterns of endemic species richness for taxa with high dispersal capacity are best predicted by using current environmental parameters. We also show that contemporary patterns of species turnover across the region are best explained by historical patterns of habitat connectivity. These results clearly demonstrate that spatially explicit analyses of the historical processes of persistence and colonization are both effective and necessary for understanding observed patterns of biodiversity. PMID:16407139

  14. Unlocking biodiversity and conservation studies in high diversity environments using environmental DNA (eDNA): a test with Guianese freshwater fishes.

    PubMed

    Cilleros, Kévin; Valentini, Alice; Allard, Luc; Dejean, Tony; Etienne, Roselyne; Grenouillet, Gaël; Iribar, Amaia; Taberlet, Pierre; Vigouroux, Régis; Brosse, Sébastien

    2018-05-16

    Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and non-destructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large-scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Oregon's forest resources, 2001-2005: five-year Forest Inventory and Analysis report.

    Treesearch

    Joseph Donnegan; Sally Campbell; Dave Azuma

    2008-01-01

    This report highlights key findings from the most recent (2001-2005) data collected by the Pacific Northwest Forest Inventory and Analysis (PNW-FIA) Program across all ownerships in Oregon. We present basic resource information such as forest area, land use change, ownership, volume, biomass, and carbon sequestration; structure and function topics such as biodiversity...

  16. California's forest resources, 2001-2005: five-year Forest Inventory and Analysis Report.

    Treesearch

    Glenn A. Christensen; Sally J. Campbell; Jeremy S. Fried

    2008-01-01

    This report highlights key findings from the most recent (2001-2005) data collected by the Forest Inventory and Analysis Program across all forest land in California. We summarize and interpret basic resource information such as forest area, ownership, volume, biomass, and carbon stocks; structure and function topics such as biodiversity, forest age, dead wood, and...

  17. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    PubMed

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  18. Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity

    USDA-ARS?s Scientific Manuscript database

    The extensive use of DNA barcoding technology in a large inventory of Macrolepidoptera and their parasitoids is documented. The methodology used and its practical applications are summarized, and numerous examples of how DNA barcoding has untangled complexes of cryptic species of butterflies, moths...

  19. Vulnerability of freshwater native biodiversity to non-native ...

    EPA Pesticide Factsheets

    Background/Question/Methods Non-native species pose one of the greatest threats to native biodiversity. The literature provides plentiful empirical and anecdotal evidence of this phenomenon; however, such evidence is limited to local or regional scales. Employing geospatial analyses, we investigate the potential threat of non-native species to threatened and endangered aquatic animal taxa inhabiting unprotected areas across the continental US. We compiled distribution information from existing publicly available databases at the watershed scale (12-digit hydrologic unit code). We mapped non-native aquatic plant and animal species richness, and an index of cumulative invasion pressure, which weights non-native richness by the time since invasion of each species. These distributions were compared to the distributions of native aquatic taxa (fish, amphibians, mollusks, and decapods) from the International Union for the Conservation of Nature (IUCN) database. We mapped the proportion of species listed by IUCN as threatened and endangered, and a species rarity index per watershed. An overlay analysis identified watersheds experiencing high pressure from non-native species and also containing high proportions of threatened and endangered species or exhibiting high species rarity. Conservation priorities were identified by generating priority indices from these overlays and mapping them relative to the distribution of protected areas across the US. Results/Conclusion

  20. Essential biodiversity variables

    USGS Publications Warehouse

    Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.G.; Scholes, Robert J.; Bruford, M.W.; Brummitt, N.; Butchart, S.H.M.; Cardoso, A.C.; Coops, N.C.; Dulloo, E.; Faith, D.P.; Freyhof, J.; Gregory, R.D.; Heip, C.; Höft, R.; Hurtt, G.; Jetz, W.; Karp, D.S.; McGeoch, M.A.; Obura, D.; Onada, Y.; Pettorelli, N.; Reyers, B.; Sayre, R.; Scharlemann, J.P.W.; Stuart, S.N.; Turak, E.; Walpole, M.; Wegmann, M.

    2013-01-01

    Reducing the rate of biodiversity loss and averting dangerous biodiversity change are international goals, reasserted by the Aichi Targets for 2020 by Parties to the United Nations (UN) Convention on Biological Diversity (CBD) after failure to meet the 2010 target (1, 2). However, there is no global, harmonized observation system for delivering regular, timely data on biodiversity change (3). With the first plenary meeting of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) soon under way, partners from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (4) are developing—and seeking consensus around—Essential Biodiversity Variables (EBVs) that could form the basis of monitoring programs worldwide.

  1. DNA barcoding the floras of biodiversity hotspots.

    PubMed

    Lahaye, Renaud; van der Bank, Michelle; Bogarin, Diego; Warner, Jorge; Pupulin, Franco; Gigot, Guillaume; Maurin, Olivier; Duthoit, Sylvie; Barraclough, Timothy G; Savolainen, Vincent

    2008-02-26

    DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern Africa). Using >1,600 samples, we compared eight potential barcodes. Going beyond previous plant studies, we assessed to what extent a "DNA barcoding gap" is present between intra- and interspecific variations, using multiple accessions per species. Given its adequate rate of variation, easy amplification, and alignment, we identified a portion of the plastid matK gene as a universal DNA barcode for flowering plants. Critically, we further demonstrate the applicability of DNA barcoding for biodiversity inventories. In addition, analyzing >1,000 species of Mesoamerican orchids, DNA barcoding with matK alone reveals cryptic species and proves useful in identifying species listed in Convention on International Trade of Endangered Species (CITES) appendixes.

  2. DNA barcoding the floras of biodiversity hotspots

    PubMed Central

    Lahaye, Renaud; van der Bank, Michelle; Bogarin, Diego; Warner, Jorge; Pupulin, Franco; Gigot, Guillaume; Maurin, Olivier; Duthoit, Sylvie; Barraclough, Timothy G.; Savolainen, Vincent

    2008-01-01

    DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern Africa). Using >1,600 samples, we compared eight potential barcodes. Going beyond previous plant studies, we assessed to what extent a “DNA barcoding gap” is present between intra- and interspecific variations, using multiple accessions per species. Given its adequate rate of variation, easy amplification, and alignment, we identified a portion of the plastid matK gene as a universal DNA barcode for flowering plants. Critically, we further demonstrate the applicability of DNA barcoding for biodiversity inventories. In addition, analyzing >1,000 species of Mesoamerican orchids, DNA barcoding with matK alone reveals cryptic species and proves useful in identifying species listed in Convention on International Trade of Endangered Species (CITES) appendixes. PMID:18258745

  3. Application of DNA barcodes in wildlife conservation in Tropical East Asia.

    PubMed

    Wilson, John-James; Sing, Kong-Wah; Lee, Ping-Shin; Wee, Alison K S

    2016-10-01

    Over the past 50 years, Tropical East Asia has lost more biodiversity than any tropical region. Tropical East Asia is a megadiverse region with an acute taxonomic impediment. DNA barcodes are short standardized DNA sequences used for taxonomic purposes and have the potential to lessen the challenges of biodiversity inventory and assessments in regions where they are most needed. We reviewed DNA barcoding efforts in Tropical East Asia relative to other tropical regions. We suggest DNA barcodes (or metabarcodes from next-generation sequencers) may be especially useful for characterizing and connecting species-level biodiversity units in inventories encompassing taxa lacking formal description (particularly arthropods) and in large-scale, minimal-impact approaches to vertebrate monitoring and population assessments through secondary sources of DNA (invertebrate derived DNA and environmental DNA). We suggest interest and capacity for DNA barcoding are slowly growing in Tropical East Asia, particularly among the younger generation of researchers who can connect with the barcoding analogy and understand the need for new approaches to the conservation challenges being faced. © 2016 Society for Conservation Biology.

  4. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale.

    PubMed

    Kissling, W Daniel; Ahumada, Jorge A; Bowser, Anne; Fernandez, Miguel; Fernández, Néstor; García, Enrique Alonso; Guralnick, Robert P; Isaac, Nick J B; Kelling, Steve; Los, Wouter; McRae, Louise; Mihoub, Jean-Baptiste; Obst, Matthias; Santamaria, Monica; Skidmore, Andrew K; Williams, Kristen J; Agosti, Donat; Amariles, Daniel; Arvanitidis, Christos; Bastin, Lucy; De Leo, Francesca; Egloff, Willi; Elith, Jane; Hobern, Donald; Martin, David; Pereira, Henrique M; Pesole, Graziano; Peterseil, Johannes; Saarenmaa, Hannu; Schigel, Dmitry; Schmeller, Dirk S; Segata, Nicola; Turak, Eren; Uhlir, Paul F; Wee, Brian; Hardisty, Alex R

    2018-02-01

    Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence-absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and

  5. Relationships between meiofaunal biodiversity and prokaryotic heterotrophic production in different tropical habitats and oceanic regions.

    PubMed

    Pusceddu, Antonio; Gambi, Cristina; Corinaldesi, Cinzia; Scopa, Mariaspina; Danovaro, Roberto

    2014-01-01

    Tropical marine ecosystems are among the most diverse of the world oceans, so that assessing the linkages between biodiversity and ecosystem functions (BEF) is a crucial step to predict consequences of biodiversity loss. Most BEF studies in marine ecosystems have been carried out on macrobenthic diversity, whereas the influence of the meiofauna on ecosystem functioning has received much less attention. We compared meiofaunal and nematode biodiversity and prokaryotic heterotrophic production across seagrass, mangrove and reef sediments in the Caribbean, Celebes and Red Seas. For all variables we report the presence of differences among habitats within the same region, and among regions within the same habitat. In all regions, the richness of meiofaunal taxa in reef and seagrass sediments is higher than in mangrove sediments. The sediments of the Celebes Sea show the highest meiofaunal biodiversity. The composition of meiofaunal assemblages varies significantly among habitats in the same region. The nematode beta diversity among habitats within the same region is higher than the beta diversity among regions. Although one site per habitat was considered in each region, these results suggest that the composition of meiofaunal assemblages varies primarily among biogeographic regions, whereas the composition of nematode assemblages varies more considerably among habitats. Meiofauna and nematode biodiversity and prokaryotic heterotrophic production, even after the removal of covariate effects linked with longitude and the quantity and nutritional quality of organic matter, are positively and linearly linked both across regions and within each habitat type. Our results confirm that meiofauna and nematode biodiversity may influence benthic prokaryotic activity, which, in turn, implies that diversity loss could have negative impacts on ecosystem functioning in these systems.

  6. Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean?

    PubMed Central

    Griffiths, Huw J.

    2010-01-01

    The remote and hostile Southern Ocean is home to a diverse and rich community of life that thrives in an environment dominated by glaciations and strong currents. Marine biological studies in the region date back to the nineteenth century, but despite this long history of research, relatively little is known about the complex interactions between the highly seasonal physical environment and the species that inhabit the Southern Ocean. Oceanographically, the Southern Ocean is a major driver of global ocean circulation and plays a vital role in interacting with the deep water circulation in each of the Pacific, Atlantic, and Indian oceans. The Census of Antarctic Marine Life and the Scientific Committee on Antarctic Research Marine Biodiversity Information Network (SCAR-MarBIN) have strived to coordinate and unify the available scientific expertise and biodiversity data to improve our understanding of Southern Ocean biodiversity. Taxonomic lists for all marine species have been compiled to form the Register of Antarctic Marine Species, which currently includes over 8,200 species. SCAR-MarBIN has brought together over 1 million distribution records for Southern Ocean species, forming a baseline against which future change can be judged. The sample locations and numbers of known species from different regions were mapped and the depth distributions of benthic samples plotted. Our knowledge of the biodiversity of the Southern Ocean is largely determined by the relative inaccessibility of the region. Benthic sampling is largely restricted to the shelf; little is known about the fauna of the deep sea. The location of scientific bases heavily influences the distribution pattern of sample and observation data, and the logistical supply routes are the focus of much of the at-sea and pelagic work. Taxa such as mollusks and echinoderms are well represented within existing datasets with high numbers of georeferenced records. Other taxa, including the species-rich nematodes, are

  7. Molecular dietary analysis of two sympatric felids in the Mountains of Southwest China biodiversity hotspot and conservation implications

    PubMed Central

    Xiong, Mengyin; Wang, Dajun; Bu, Hongliang; Shao, Xinning; Zhang, Dan; Li, Sheng; Wang, Rongjiang; Yao, Meng

    2017-01-01

    Dietary information is lacking in most of small to mid-sized carnivores due to their elusive predatory behaviour and versatile feeding habits. The leopard cat (LPC; Prionailurus bengalensis) and the Asiatic golden cat (AGC; Catopuma temminckii) are two important yet increasingly endangered carnivore species in the temperate mountain forest ecosystem in Southwest China, a global biodiversity hotspot and a significant reservoir of China’s endemic species. We investigated the vertebrate prey of the two sympatric felids using faecal DNA and a next-generation sequencing (NGS)/metabarcoding approach. Forty vertebrate prey taxa were identified from 93 LPC and 10 AGC faecal samples; 37 taxa were found in the LPC diet, and 20 were detected in the AGC diet. Prey included 27 mammalian taxa, 11 birds, one lizard and one fish, with 73% (29/40) of the taxa assigned to the species level. Rodents and pikas were the most dominant LPC prey categories, whereas rodents, pheasant, fowl and ungulates were the main AGC prey. We also analysed the seasonal and altitudinal variations in the LPC diet. Our results provide the most comprehensive dietary data for these felids and valuable information for their conservation planning. PMID:28195150

  8. Founder takes all: density-dependent processes structure biodiversity.

    PubMed

    Waters, Jonathan M; Fraser, Ceridwen I; Hewitt, Godfrey M

    2013-02-01

    Density-dependent processes play a key role in the spatial structuring of biodiversity. Specifically, interrelated demographic processes, such as gene surfing, high-density blocking, and competitive exclusion, can generate striking geographic contrasts in the distributions of genes and species. Here, we propose that well-studied evolutionary and ecological biogeographic patterns of postglacial recolonization, progressive island colonization, microbial sectoring, and even the 'Out of Africa' pattern of human expansion, are fundamentally similar, underpinned by a 'founder takes all' density-dependent principle. Additionally, we hypothesize that older historic constraints of density-dependent processes are seen today in the dramatic biogeographic shifts that occur in response to human-mediated extinction events, whereby surviving lineages rapidly expand their ranges to replace extinct sister taxa. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    PubMed Central

    Miloslavich, Patricia; Díaz, Juan Manuel; Klein, Eduardo; Alvarado, Juan José; Díaz, Cristina; Gobin, Judith; Escobar-Briones, Elva; Cruz-Motta, Juan José; Weil, Ernesto; Cortés, Jorge; Bastidas, Ana Carolina; Robertson, Ross; Zapata, Fernando; Martín, Alberto; Castillo, Julio; Kazandjian, Aniuska; Ortiz, Manuel

    2010-01-01

    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of

  10. Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change

    Treesearch

    Kevin M. Potter; Christopher W. Woodall

    2012-01-01

    Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years...

  11. Sinfonevada: Dataset of Floristic diversity in Sierra Nevada forests (SE Spain)

    PubMed Central

    Pérez-Luque, Antonio Jesús; Bonet, Francisco Javier; Pérez-Pérez, Ramón; Rut Aspizua; Lorite, Juan; Zamora, Regino

    2014-01-01

    Abstract The Sinfonevada database is a forest inventory that contains information on the forest ecosystem in the Sierra Nevada mountains (SE Spain). The Sinfonevada dataset contains more than 7,500 occurrence records belonging to 270 taxa (24 of these threatened) from floristic inventories of the Sinfonevada Forest inventory. Expert field workers collected the information. The whole dataset underwent a quality control by botanists with broad expertise in Sierra Nevada flora. This floristic inventory was created to gather useful information for the proper management of Pinus plantations in Sierra Nevada. This is the only dataset that shows a comprehensive view of the forest flora in Sierra Nevada. This is the reason why it is being used to assess the biodiversity in the very dense pine plantations on this massif. With this dataset, managers have improved their ability to decide where to apply forest treatments in order to avoid biodiversity loss. The dataset forms part of the Sierra Nevada Global Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area. PMID:24843285

  12. A freshwater biodiversity hotspot under pressure - assessing threats and identifying conservation needs for ancient Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Kostoski, G.; Albrecht, C.; Trajanovski, S.; Wilke, T.

    2010-07-01

    Freshwater habitats and species living in freshwater are generally more prone to extinction than terrestrial or marine ones. Immediate conservation measures for world-wide freshwater resources are thus of eminent importance. This is particularly true for so called ancient lakes. While these lakes are famous for being evolutionary theatres, often displaying an extraordinarily high degree of biodiversity and endemism, in many cases these biota are also experiencing extreme anthropogenic impact. Lake Ohrid, the European biodiversity hotspot, is a prime example for a lake with a magnitude of narrow range endemic taxa that are under increasing anthropogenic pressure. Unfortunately, evidence for a "creeping biodiversity crisis" has accumulated over the last decades, and major socio-political changes have gone along with human-mediated environmental changes. Based on field surveys, monitoring data, published records, and expert interviews, we aimed to (1) assess threats to Lake Ohrids' (endemic) biodiversity, (2) summarize existing conservation activities and strategies, and (3) outline future conservation needs for Lake Ohrid. We compiled threats to both specific taxa (and in cases to particular species) as well as to the lake ecosystems itself. Major conservation concerns identified for Lake Ohrid are: (1) watershed impacts, (2) agriculture and forestry, (3) tourism and population growth, (4) non-indigenous species, (5) habitat alteration or loss, (6) unsustainable exploitation of fisheries, and (7) global climate change. Of the 11 IUCN (International Union for Conservation of Nature and Natural Resources) threat classes scored, seven have moderate and three severe impacts. These latter threat classes are energy production and mining, biological resource use, and pollution. We review and discuss institutional responsibilities, environmental monitoring and ecosystem management, existing parks and reserves, biodiversity and species measures, international conservation

  13. A freshwater biodiversity hotspot under pressure - assessing threats and identifying conservation needs for ancient Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Kostoski, G.; Albrecht, C.; Trajanovski, S.; Wilke, T.

    2010-12-01

    Immediate conservation measures for world-wide freshwater resources are of eminent importance. This is particularly true for so-called ancient lakes. While these lakes are famous for being evolutionary theatres, often displaying an extraordinarily high degree of biodiversity and endemism, in many cases these biota are also experiencing extreme anthropogenic impact. Lake Ohrid, a major European biodiversity hotspot situated in a trans-frontier setting on the Balkans, is a prime example for a lake with a magnitude of narrow range endemic taxa that are under increasing anthropogenic pressure. Unfortunately, evidence for a "creeping biodiversity crisis" has accumulated over the last decades, and major socio-political changes have gone along with human-mediated environmental changes. Based on field surveys, monitoring data, published records, and expert interviews, we aimed to (1) assess threats to Lake Ohrids' (endemic) biodiversity, (2) summarize existing conservation activities and strategies, and (3) outline future conservation needs for Lake Ohrid. We compiled threats to both specific taxa (and in cases to particular species) as well as to the lake ecosystems itself. Major conservation concerns identified for Lake Ohrid are: (1) watershed impacts, (2) agriculture and forestry, (3) tourism and population growth, (4) non-indigenous species, (5) habitat alteration or loss, (6) unsustainable exploitation of fisheries, and (7) global climate change. Among the major (well-known) threats with high impact are nutrient input (particularly of phosphorus), habitat conversion and silt load. Other threats are potentially of high impact but less well known. Such threats include pollution with hazardous substances (from sources such as mines, former industries, agriculture) or climate change. We review and discuss institutional responsibilities, environmental monitoring and ecosystem management, existing parks and reserves, biodiversity and species measures, international

  14. Integrative taxonomy on the fast track - towards more sustainability in biodiversity research.

    PubMed

    Riedel, Alexander; Sagata, Katayo; Suhardjono, Yayuk R; Tänzler, Rene; Balke, Michael

    2013-03-27

    A so called "taxonomic impediment" has been recognized as a major obstacle to biodiversity research for the past two decades. Numerous remedies were then proposed. However, neither significant progress in terms of formal species descriptions, nor a minimum standard for descriptions have been achieved so far. Here, we analyze the problems of traditional taxonomy which often produces keys and descriptions of limited practical value. We suggest that phylogenetics and phenetics had a subtle and so far unnoticed effect on taxonomy leading to inflated species descriptions. The term "turbo-taxonomy" was recently coined for an approach combining cox1 sequences, concise morphological descriptions by an expert taxonomist, and high-resolution digital imaging to streamline the formal description of larger numbers of new species. We propose a further development of this approach which, together with open access web-publication and automated pushing of content from journal into a wiki, may create the most efficient and sustainable way to conduct taxonomy in the future. On demand, highly concise descriptions can be gradually updated or modified in the fully versioned wiki-framework we use. This means that the visibility of additional data is not compromised, while the original species description -the first version- remains preserved in the wiki, and of course in the journal version. A DNA sequence database with an identification engine replaces an identification key, helps to avoid synonyms and has the potential to detect grossly incorrect generic placements. We demonstrate the functionality of a species-description pipeline by naming 101 new species of hyperdiverse New Guinea Trigonopterus weevils in the open-access journal ZooKeys. Fast track taxonomy will not only increase speed, but also sustainability of global species inventories. It will be of great practical value to all the other disciplines that depend on a usable taxonomy and will change our perception of global

  15. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions.

    PubMed

    Hoyos-Carvajal, Lilliana; Orduz, Sergio; Bissett, John

    2009-09-01

    The genus Trichoderma has been studied for production of enzymes and other metabolites, as well as for exploitation as effective biological control agents. The biodiversity of Trichoderma has seen relatively limited study over much of the neotropical region. In the current study we assess the biodiversity of 183 isolates from Mexico, Guatemala, Panama, Ecuador, Peru, Brazil and Colombia, using morphological, metabolic and genetic approaches. A comparatively high diversity of species was found, comprising 29 taxa: Trichoderma asperellum (60 isolates), Trichoderma atroviride (3), Trichoderma brevicompactum (5), Trichoderma crassum (3), Trichoderma erinaceum (3), Trichoderma gamsii (2), Trichoderma hamatum (2), Trichoderma harzianum (49), Trichoderma koningiopsis (6), Trichoderma longibrachiatum (3), Trichoderma ovalisporum (1), Trichoderma pubescens (2), Trichoderma rossicum (4), Trichoderma spirale (1), Trichoderma tomentosum (3), Trichoderma virens (8), Trichoderma viridescens (7) and Hypocrea jecorina (3) (anamorph: Trichoderma reesei), along with 11 currently undescribed species. T. asperellum was the prevalent species and was represented by two distinct genotypes with different metabolic profiles and habitat preferences. The second predominant species, T. harzianum, was represented by three distinct genotypes. The addition of 11 currently undescribed species is evidence of the considerable unresolved biodiversity of Trichoderma in neotropical regions. Sequencing of the internal transcribed spacer regions (ITS) of the ribosomal repeat could not differentiate some species, and taken alone gave several misidentifications in part due to the presence of nonorthologous copies of the ITS in some isolates.

  16. Washington’s forest resources, 2002–2006: five-year Forest Inventory and Analysis report

    Treesearch

    Sally Campbell; Karen Waddell; Andrew Gray

    2010-01-01

    This report highlights key findings from the most recent (2002-2006) data collected by the Forest Inventory and Analysis Program across all ownerships in Washington. We present basic resource information such as forest area, land use change, ownership, volume, biomass, and carbon sequestration; structure and function topics such as biodiversity, older forests, dead...

  17. Evaluating green infrastructure in urban environments using a multi-taxa and functional diversity approach.

    PubMed

    Pinho, Pedro; Correia, Otília; Lecoq, Miguel; Munzi, Silvana; Vasconcelos, Sasha; Gonçalves, Paula; Rebelo, Rui; Antunes, Cristina; Silva, Patrícia; Freitas, Catarina; Lopes, Nuno; Santos-Reis, Margarida; Branquinho, Cristina

    2016-05-01

    Forested areas within cities host a large number of species, responsible for many ecosystem services in urban areas. The biodiversity in these areas is influenced by human disturbances such as atmospheric pollution and urban heat island effect. To ameliorate the effects of these factors, an increase in urban green areas is often considered sufficient. However, this approach assumes that all types of green cover have the same importance for species. Our aim was to show that not all forested green areas are equal in importance for species, but that based on a multi-taxa and functional diversity approach it is possible to value green infrastructure in urban environments. After evaluating the diversity of lichens, butterflies and other-arthropods, birds and mammals in 31 Mediterranean urban forests in south-west Europe (Almada, Portugal), bird and lichen functional groups responsive to urbanization were found. A community shift (tolerant species replacing sensitive ones) along the urbanization gradient was found, and this must be considered when using these groups as indicators of the effect of urbanization. Bird and lichen functional groups were then analyzed together with the characteristics of the forests and their surroundings. Our results showed that, contrary to previous assumptions, vegetation density and more importantly the amount of urban areas around the forest (matrix), are more important for biodiversity than forest quantity alone. This indicated that not all types of forested green areas have the same importance for biodiversity. An index of forest functional diversity was then calculated for all sampled forests of the area. This could help decision-makers to improve the management of urban green infrastructures with the goal of increasing functionality and ultimately ecosystem services in urban areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem

    PubMed Central

    Lee, Jonathan D.

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55–183 m depth) and slope habitats (184–1280 m depth) off the US West Coast (47°20′N—32°40′N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast

  19. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem.

    PubMed

    Piacenza, Susan E; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lee, Jonathan D; Lindsley, Amy J; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Thurman, Lindsey L; Heppell, Selina S

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55-183 m depth) and slope habitats (184-1280 m depth) off the US West Coast (47°20'N-32°40'N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale

  20. Soil Communities of Central Park, New York City: A Biodiversity Melting Pot

    NASA Astrophysics Data System (ADS)

    Ramirez, K. S.; Leff, J. W.; Wall, D. H.; Fierer, N.

    2013-12-01

    high: >540,000 bacterial and archaeal species; and >97,000 eukaryotic species (as determined using a 97% sequence similarity cutoff). The most dominant bacterial phyla include Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia and Actinobacteria, and Archaea represent 1-8% of the sequences. Additionally, the distribution patterns of Acidobacteria and consequently beta-diversity, was strongly related to soil pH. The most dominant eukaryotic taxa include many Protists (Rhizara, Gregarinia), Fungi (Basidiomycota, Ascomycota), and Metazoa (Nematodes, Rotifers, Arthropods and Annelids). No single soil factor could predict eukaryotic distribution. Central Park soil diversity was strikingly similar to the diversity of the 57 global soils. Central Park and the global soils had similarities in alpha diversity, taxon abundances. Interestingly, there was significant overlap in a number of dominant species between Central Park and the global soils. Together these results represent the most comprehensive analysis of soil biodiversity conducted to date. Our data suggest that even well-studied locations like Central Park harbor very high levels of unexplored biodiversity, and that Central Park biodiversity is comparable to soil biodiversity found globally.

  1. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss

    PubMed Central

    Pimm, Stuart L.; Jenkins, Clinton N.; Smith, Sharon J.

    2016-01-01

    Palm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems. PMID:27462984

  2. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss.

    PubMed

    Vijay, Varsha; Pimm, Stuart L; Jenkins, Clinton N; Smith, Sharon J

    2016-01-01

    Palm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems.

  3. The Pacific Northwest Research Station biodiversity initiative: collaborating for biodiversity management.

    Treesearch

    Peter Nelson; Rachel White; Randy Molina

    2006-01-01

    The Pacific Northwest Research Station launched a biodiversity initiative to assist natural resource professionals in integrating complex biodiversity concepts into natural resource management processes. We canvassed clients from various affiliations to determine the main challenges they face in biodiversity management, to define their information needs, and to...

  4. Numerical experiments with model monophyletic and paraphyletic taxa

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Kendrick, D. C.; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    The problem of how accurately paraphyletic taxa versus monophyletic (i.e., holophyletic) groups (clades) capture underlying species patterns of diversity and extinction is explored with Monte Carlo simulations. Phylogenies are modeled as stochastic trees. Paraphyletic taxa are defined in an arbitrary manner by randomly choosing progenitors and clustering all descendants not belonging to other taxa. These taxa are then examined to determine which are clades, and the remaining paraphyletic groups are dissected to discover monophyletic subgroups. Comparisons of diversity patterns and extinction rates between modeled taxa and lineages indicate that paraphyletic groups can adequately capture lineage information under a variety of conditions of diversification and mass extinction. This suggests that these groups constitute more than mere "taxonomic noise" in this context. But, strictly monophyletic groups perform somewhat better, especially with regard to mass extinctions. However, when low levels of paleontologic sampling are simulated, the veracity of clades deteriorates, especially with respect to diversity, and modeled paraphyletic taxa often capture more information about underlying lineages. Thus, for studies of diversity and taxic evolution in the fossil record, traditional paleontologic genera and families need not be rejected in favor of cladistically-defined taxa.

  5. Biodiversity and land degradation in the lower Euphrates subregion of Turkey.

    PubMed

    Ozturk, Munir; Kebapci, Umit; Gucel, Salih; Cetin, Esat; Altundag, Ernaz

    2012-04-01

    Atotal of 107 plant taxa were determined in this study, 24 being new records for the area. Out of 813 plant taxa reported from the study area 100 species couldn't be verified. The number of endemics in the study area is around 46. The majorfamilies and genera are Asteraceae, Fabaceae, and Poaceae and Astragalus, Euphorbia, Allium and Trigonella. The area shows a relatively rich and highly diverse fauna. For terrestrial vertebrate species peculiarly showing marginal distribution, this area forms their northernmost distributional limits. Avifauna along the Euphrates valley is quite rich with 207 species. Globally threatened species, Geronticus eremita (Waldrapp), has been observed locally in the area. Many macromammal species once common have gone extinct. Out of 18 lizard species, 3 lizards are known only from the study area. There are 20 species of snakes, one being exclusively endemic to the study area. Nearly 30 fish species are found in Euphrates system. Very scanty information is available for the invertebrate fauna except for some groups of Mollusca and Arthropoda. The biodiversity of the area is under threat from recent developments and abiotic interferences.

  6. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    PubMed Central

    Coll, Marta; Piroddi, Chiara; Steenbeek, Jeroen; Kaschner, Kristin; Ben Rais Lasram, Frida; Aguzzi, Jacopo; Ballesteros, Enric; Bianchi, Carlo Nike; Corbera, Jordi; Dailianis, Thanos; Danovaro, Roberto; Estrada, Marta; Froglia, Carlo; Galil, Bella S.; Gasol, Josep M.; Gertwagen, Ruthy; Gil, João; Guilhaumon, François; Kesner-Reyes, Kathleen; Kitsos, Miltiadis-Spyridon; Koukouras, Athanasios; Lampadariou, Nikolaos; Laxamana, Elijah; López-Fé de la Cuadra, Carlos M.; Lotze, Heike K.; Martin, Daniel; Mouillot, David; Oro, Daniel; Raicevich, Saša; Rius-Barile, Josephine; Saiz-Salinas, Jose Ignacio; San Vicente, Carles; Somot, Samuel; Templado, José; Turon, Xavier; Vafidis, Dimitris; Villanueva, Roger; Voultsiadou, Eleni

    2010-01-01

    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of

  7. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats.

    PubMed

    Coll, Marta; Piroddi, Chiara; Steenbeek, Jeroen; Kaschner, Kristin; Ben Rais Lasram, Frida; Aguzzi, Jacopo; Ballesteros, Enric; Bianchi, Carlo Nike; Corbera, Jordi; Dailianis, Thanos; Danovaro, Roberto; Estrada, Marta; Froglia, Carlo; Galil, Bella S; Gasol, Josep M; Gertwagen, Ruthy; Gil, João; Guilhaumon, François; Kesner-Reyes, Kathleen; Kitsos, Miltiadis-Spyridon; Koukouras, Athanasios; Lampadariou, Nikolaos; Laxamana, Elijah; López-Fé de la Cuadra, Carlos M; Lotze, Heike K; Martin, Daniel; Mouillot, David; Oro, Daniel; Raicevich, Sasa; Rius-Barile, Josephine; Saiz-Salinas, Jose Ignacio; San Vicente, Carles; Somot, Samuel; Templado, José; Turon, Xavier; Vafidis, Dimitris; Villanueva, Roger; Voultsiadou, Eleni

    2010-08-02

    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet-undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of

  8. Biodiversity inventories and conservation of the marine fishes of Bootless Bay, Papua New Guinea

    PubMed Central

    2012-01-01

    Background The effective management and conservation of biodiversity is predicated on clearly defined conservation targets. Species number is frequently used as a metric for conservation prioritization and monitoring changes in ecosystem health. We conducted a series of synoptic surveys focusing on the fishes of the Bootless Bay region of Papua New Guinea to generate a checklist of fishes of the region. Bootless Bay lies directly south of Port Moresby, the capital of Papua New Guinea, and experiences the highest human population density of any marine area in the country. Our checklist will set a baseline against which future environmental changes can be tracked. Results We generated a checklist of 488 fish species in 72 families found in Bootless Bay during a two-week sampling effort. Using incident-based methods of species estimation, we extrapolate there to be approximately 940 fish species in Bootless Bay, one of the lowest reported numbers in Papua New Guinea. Conclusions Our data suggest that the Bootless Bay ecosystem of Papua New Guinea, while diverse in absolute terms, has lower fish biodiversity compared to other shallow marine areas within the country. These differences in faunal diversity are most likely a combination of unequal sampling effort as well as biophysical factors within Bootless Bay compounded by historical and/or contemporary anthropogenic disturbances. PMID:22849436

  9. Postfire response and genetic diversity in Erica coccinea: connecting population dynamics and diversification in a biodiversity hotspot.

    PubMed

    Segarra-Moragues, José Gabriel; Ojeda, Fernando

    2010-12-01

    Understanding the processes of biological diversification is a central topic in evolutionary biology. The South African Cape fynbos, one of the major plant biodiversity hotspots out of the tropics, has prompted several hypotheses about the causes of generation and maintenance of biodiversity. Fire has been traditionally invoked as a key element to explain high levels of biodiversity in highly speciose fynbos taxa, such as the genus Erica. In this study, we have implemented a microevolutionary approach to elucidate how plant-response to fire may contribute to explain high levels of diversification in Erica. By using microsatellite markers, we investigated the genetic background of seeder (fire-sensitive) and resprouter (fire-resistant) populations of the fynbos species Erica coccinea. We found higher within-population genetic diversity and higher among-population differentiation in seeder populations and interpreted these higher levels of genetic diversification as a consequence of the comparatively shorter generation times and faster population turnover in the seeder form of this species. Considering that genetic divergence among populations may be seen as the initial step to speciation, the parallelism between these results and the pattern of biodiversity at the genus level offers stimulating insights into understanding causes of speciation of the genus Erica in the Cape fynbos. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  10. Net present biodiversity value and the design of biodiversity offsets.

    PubMed

    Overton, Jacob McC; Stephens, R T Theo; Ferrier, Simon

    2013-02-01

    There is an urgent need to develop sound theory and practice for biodiversity offsets to provide a better basis for offset multipliers, to improve accounting for time delays in offset repayments, and to develop a common framework for evaluating in-kind and out-of-kind offsets. Here, we apply concepts and measures from systematic conservation planning and financial accounting to provide a basis for determining equity across type (of biodiversity), space, and time. We introduce net present biodiversity value (NPBV) as a theoretical and practical measure for defining the offset required to achieve no-net-loss. For evaluating equity in type and space we use measures of biodiversity value from systematic conservation planning. Time discount rates are used to address risk of non-repayment, and loss of utility. We illustrate these concepts and measures with two examples of biodiversity impact-offset transactions. Considerable further work is required to understand the characteristics of these approaches.

  11. Operationalizing biodiversity for conservation planning.

    PubMed

    Sarkar, Sahotra; Margules, Chris

    2002-07-01

    Biodiversity has acquired such a general meaning that people now find it difficult to pin down a precise sense for planning and policy-making aimed at biodiversity conservation. Because biodiversity is rooted in place, the task of conserving biodiversity should target places for conservation action; and because all places contain biodiversity, but not all places can be targeted for action, places have to be prioritized. What is needed for this is a measure of the extent to which biodiversity varies from place to place. We do not need a precise measure of biodiversity to prioritize places. Relative estimates of similarity or difference can be derived using partial measures, or what have come to be called biodiversity surrogates. Biodiversity surrogates are supposed to stand in for general biodiversity in planning applications. We distinguish between true surrogates, those that might truly stand in for general biodiversity, and estimator surrogates, which have true surrogates as their target variable. For example, species richness has traditionally been the estimator surrogate for the true surrogate, species diversity. But species richness does not capture the differences in composition between places; the essence of biodiversity. Another measure, called complementarity, explicitly captures the differences between places as we iterate the process of place prioritization, starting with an initial place. The relative concept of biodiversity built into the definition of complementarity has the level of precision needed to undertake conservation planning.

  12. When is the best time to sample aquatic macroinvertebrates in ponds for biodiversity assessment?

    PubMed

    Hill, M J; Sayer, C D; Wood, P J

    2016-03-01

    Ponds are sites of high biodiversity and conservation value, yet there is little or no statutory monitoring of them across most of Europe. There are clear and standardised protocols for sampling aquatic macroinvertebrate communities in ponds, but the most suitable time(s) to undertake the survey(s) remains poorly specified. This paper examined the aquatic macroinvertebrate communities from 95 ponds within different land use types over three seasons (spring, summer and autumn) to determine the most appropriate time to undertake sampling to characterise biodiversity. The combined samples from all three seasons provided the most comprehensive record of the aquatic macroinvertebrate taxa recorded within ponds (alpha and gamma diversity). Samples collected during the autumn survey yielded significantly greater macroinvertebrate richness (76% of the total diversity) than either spring or summer surveys. Macroinvertebrate diversity was greatest during autumn in meadow and agricultural ponds, but taxon richness among forest and urban ponds did not differ significantly temporally. The autumn survey provided the highest measures of richness for Coleoptera, Hemiptera and Odonata. However, richness of the aquatic insect order Trichoptera was highest in spring and lowest in autumn. The results illustrate that multiple surveys, covering more than one season, provide the most comprehensive representation of macroinvertebrate biodiversity. When sampling can only be undertaken on one occasion, the most appropriate time to undertake surveys to characterise the macroinvertebrate community biodiversity is during autumn, although this may need to be modified if other floral and faunal groups need to be incorporated into the sampling programme.

  13. Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument

    USGS Publications Warehouse

    Schmidt, Cecilia A.; Drost, Charles A.; Halvorson, William Lee

    2006-01-01

    Executive Summary We summarize past inventory efforts for vascular plants and vertebrates at Montezuma Castle National Monument (NM) in Arizona. We used data from previous research to compile complete species lists for the monument and to assess inventory completeness. There have been 784 species recorded at Montezuma Castle NM, of which 85 (11%) are non-native. In each taxon-specific chapter we highlight areas of resources that contributed to species richness or unique species for the monument. Of particular importance are Montezuma Well and Beaver and Wet Beaver creeks and the surrounding riparian vegetation, which are responsible for the monument having one of the highest numbers of bird species in the Sonoran Desert Network of park units. Beaver Creek is also home to populations of federally-listed fish species of concern. Other important resources include the cliffs along the creeks and around Montezuma Well (for cliff and cave roosting bats). Based on the review of past studies, we believe the inventory for most taxa is nearly complete, though some rare or elusive species will be added with additional survey effort. We recommend additional inventory, monitoring and research studies.

  14. Biodiversity Prospecting.

    ERIC Educational Resources Information Center

    Sittenfeld, Ana; Lovejoy, Annie

    1994-01-01

    Examines the use of biodiversity prospecting as a method for tropical countries to value biodiversity and contribute to conservation upkeep costs. Discusses the first agreement between a public interest organization and pharmaceutical company for the extraction of plant and animal materials in Costa Rica. (LZ)

  15. Genetic Inventory Task Final Report. Volume 2

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; LaDuc, Myron T.; Vaishampayan, Parag

    2012-01-01

    Contaminant terrestrial microbiota could profoundly impact the scientific integrity of extraterrestrial life-detection experiments. It is therefore important to know what organisms persist on spacecraft surfaces so that their presence can be eliminated or discriminated from authentic extraterrestrial biosignatures. Although there is a growing understanding of the biodiversity associated with spacecraft and cleanroom surfaces, it remains challenging to assess the risk of these microbes confounding life-detection or sample-return experiments. A key challenge is to provide a comprehensive inventory of microbes present on spacecraft surfaces. To assess the phylogenetic breadth of microorganisms on spacecraft and associated surfaces, the Genetic Inventory team used three technologies: conventional cloning techniques, PhyloChip DNA microarrays, and 454 tag-encoded pyrosequencing, together with a methodology to systematically collect, process, and archive nucleic acids. These three analysis methods yielded considerably different results: Traditional approaches provided the least comprehensive assessment of microbial diversity, while PhyloChip and pyrosequencing illuminated more diverse microbial populations. The overall results stress the importance of selecting sample collection and processing approaches based on the desired target and required level of detection. The DNA archive generated in this study can be made available to future researchers as genetic-inventory-oriented technologies further mature.

  16. Mosquitoes of eastern Amazonian Ecuador: biodiversity, bionomics and barcodes

    PubMed Central

    Linton, Yvonne-Marie; Pecor, James E; Porter, Charles H; Mitchell, Luke Brett; Garzón-Moreno, Andrés; Foley, Desmond H; Pecor, David Brooks; Wilkerson, Richard C

    2013-01-01

    Two snapshot surveys to establish the diversity and ecological preferences of mosquitoes (Diptera: Culicidae) in the terra firme primary rain forest surrounding the Tiputini Biodiversity Station in the UNESCO Yasuní Biosphere Reserve of eastern Amazonian Ecuador were carried out in November 1998 and May 1999. The mosquito fauna of this region is poorly known; the focus of this study was to obtain high quality link-reared specimens that could be used to unequivocally confirm species level diversity through integrated systematic study of all life stages and DNA sequences. A total of 2,284 specimens were preserved; 1,671 specimens were link-reared with associated immature exuviae, all but 108 of which are slide mounted. This study identified 68 unique taxa belonging to 17 genera and 27 subgenera. Of these, 12 are new to science and 37 comprise new country records. DNA barcodes [658-bp of the mtDNA cytochrome c oxidase ( COI ) I gene] are presented for 58 individuals representing 20 species and nine genera. DNA barcoding proved useful in uncovering and confirming new species and we advocate an integrated systematics approach to biodiversity studies in future. Associated bionomics of all species collected are discussed. An updated systematic checklist of the mosquitoes of Ecuador (n = 179) is presented for the first time in 60 years. PMID:24473809

  17. Invasive species and biodiversity crises: testing the link in the late devonian.

    PubMed

    Stigall, Alycia L

    2010-12-29

    During the Late Devonian Biodiversity Crisis, the primary driver of biodiversity decline was the dramatic reduction in speciation rates, not elevated extinction rates; however, the causes of speciation decline have been previously unstudied. Speciation, the formation of new species from ancestral populations, occurs by two primary allopatric mechanisms: vicariance, where the ancestral population is passively divided into two large subpopulations that later diverge and form two daughter species, and dispersal, in which a small subset of the ancestral population actively migrates then diverges to form a new species. Studies of modern and fossil clades typically document speciation by vicariance in much higher frequencies than speciation by dispersal. To assess the mechanism behind Late Devonian speciation reduction, speciation rates were calculated within stratigraphically constrained species-level phylogenetic hypotheses for three representative clades and mode of speciation at cladogenetic events was assessed across four clades in three phyla: Arthropoda, Brachiopoda, and Mollusca. In all cases, Devonian taxa exhibited a congruent reduction in speciation rate between the Middle Devonian pre-crisis interval and the Late Devonian crisis interval. Furthermore, speciation via vicariance is almost entirely absent during the crisis interval; most episodes of speciation during this time were due to dispersal. The shutdown of speciation by vicariance during this interval was related to widespread interbasinal species invasions. The lack of Late Devonian vicariance is diametrically opposed to the pattern observed in other geologic intervals, which suggests the loss of vicariant speciation attributable to species invasions during the Late Devonian was a causal factor in the biodiversity crisis. Similarly, modern ecosystems, in which invasive species are rampant, may be expected to exhibit similar shutdown of speciation by vicariance as an outcome of the modern biodiversity

  18. Marine Biodiversity in the Australian Region

    PubMed Central

    Butler, Alan J.; Rees, Tony; Beesley, Pam; Bax, Nicholas J.

    2010-01-01

    The entire Australian marine jurisdictional area, including offshore and sub-Antarctic islands, is considered in this paper. Most records, however, come from the Exclusive Economic Zone (EEZ) around the continent of Australia itself. The counts of species have been obtained from four primary databases (the Australian Faunal Directory, Codes for Australian Aquatic Biota, Online Zoological Collections of Australian Museums, and the Australian node of the Ocean Biogeographic Information System), but even these are an underestimate of described species. In addition, some partially completed databases for particular taxonomic groups, and specialized databases (for introduced and threatened species) have been used. Experts also provided estimates of the number of known species not yet in the major databases. For only some groups could we obtain an (expert opinion) estimate of undiscovered species. The databases provide patchy information about endemism, levels of threat, and introductions. We conclude that there are about 33,000 marine species (mainly animals) in the major databases, of which 130 are introduced, 58 listed as threatened and an unknown percentage endemic. An estimated 17,000 more named species are either known from the Australian EEZ but not in the present databases, or potentially occur there. It is crudely estimated that there may be as many as 250,000 species (known and yet to be discovered) in the Australian EEZ. For 17 higher taxa, there is sufficient detail for subdivision by Large Marine Domains, for comparison with other National and Regional Implementation Committees of the Census of Marine Life. Taxonomic expertise in Australia is unevenly distributed across taxa, and declining. Comments are given briefly on biodiversity management measures in Australia, including but not limited to marine protected areas. PMID:20689847

  19. Biodiversity patterns of macrophyte and macroinvertebrate communities in two lagoons of Western Greece.

    NASA Astrophysics Data System (ADS)

    Fyttis, G.; Reizopoulou, S.; Papastergiadou, E.

    2012-04-01

    Aquatic macrophytes and benthic macroinvertebrates were studied seasonally (Spring, Autumn, Summer) between the years 2009 - 2011 in two coastal lagoons (Kotychi and Prokopos) located in Peloponnese, Greece, in order to investigate spatial and temporal biodiversity trends related to hydrological processes (degree of confinement, nitrates, phosphates, chl-a, total suspended materials, light irradiance, pH, salinity, temperature and dissolved oxygen). Kotychi lagoon presents a better communication with the sea, while Prokopos has a high degree of confinement. Both ecosystems seasonally receive freshwater input from streams. The submerged aquatic macrophytes constituted a major component of the ecosystems studied. In total, 22 taxa of aquatic macrophytes (angiosperms and macroalgae), 16 taxa for Kotychi (2 Rhodophyta, 8 Chlorophyta, 5 Magnoliophyta, 1 Streptophyta) and 14 taxa for Prokopos (1 Rhodophyta, 5 Chlorophyta, 5 Magnoliophyta, 3 Streptophyta) were found. Ruppia cirrhosa, and Potamogeton pectinatus were dominant in both lagoons. Kotychi lagoon was also dominated by Zostera noltii and Prokopos by Zannichellia pallustris ssp. pedicellata, while the biomass of aquatic species peaked during the summer periods, in both lagoons. The total number of macroinvertebrates found in the lagoons was 28 taxa for Kotychi and 19 for Prokopos. Chironomidae were dominant in both lagoons, while Kotychi was also dominated by Lekanesphaera monodi and Monocorophium insidiosum, and Prokopos by Ostracoda and Lekanesphaera monodi. Benthic diversity ranged from 1.33 to 2.57 in Kotychi and from 0.67 to 2.48 in Prokopos. Species richness, diversity, and abundance of benthic macroinvertebrates were strongly related to aquatic vegetation and to the degree of communication with the marine environment. Moreover, species richness and abundance of both macrophytes and macroinvertebrates were mainly dependent on depth, temperature, pH and concentration of total suspended materials (TSM). Results

  20. Monitoring biodiversity using ecosystem assessment surveys and regional ocean models within the California Current

    NASA Astrophysics Data System (ADS)

    Schroeder, I. D.; Santora, J. A.; Field, J. C.; Hazen, E. L.; Bograd, S. J.

    2016-02-01

    The National Marine Fisheries Service has conducted an annual midwater trawl survey for juvenile rockfish and other pelagic micronekton every May and June from 1983 to the present. Although both the spatial and temporal coverage have varied over time, a "core" region has been sampled continuously for the region that extends from Monterey Bay to just north of San Francisco Bay, California. Stations are located from nearshore waters to the offshore environment, but generally within 60 km from land. The mid-water trawl targets a diverse micronekton community spanning a range of juvenile stages of fishes, adult forage fishes and various invertebrates. Here we use the historical catch data to investigate biodiversity across space and time, specifically through developing indices of richness, diversity and evenness. The interannual variability of these indices is coherent over three unique ecological regions located along the shelf, Monterey Bay submarine canyon, and offshore habitats. Spatiotemporal changes in diversity reflect different taxa such as juvenile groundfish, rockfish and forage fish, and influx of oceanic species to nearshore habitat during anomalous years. Finally, data from CTD casts and from a data-assimilative ROMS model links changes in biodiversity with changing environmental conditions. The results of this project will be used to help inform researchers in the creation of a Marine Biodiversity Observation Network (MBON) in the Monterey Bay National Marine Sanctuary.

  1. Generation of Earth's first-order biodiversity pattern.

    PubMed

    Krug, Andrew Z; Jablonski, David; Valentine, James W; Roy, Kaustuv

    2009-01-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (> or =60 degrees ) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  2. Generation of Earth's First-Order Biodiversity Pattern

    NASA Astrophysics Data System (ADS)

    Krug, Andrew Z.; Jablonski, David; Valentine, James W.; Roy, Kaustuv

    2009-02-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (≥60°) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  3. Agricultural Biodiversity.

    ERIC Educational Resources Information Center

    Postance, Jim

    1998-01-01

    The extinction of farm animals and crops is rarely brought up during discussions of endangered species and biodiversity; however, the loss of diversity in crops and livestock threatens the sustainability of agriculture. Presents three activities: (1) "The Colors of Diversity"; (2) "Biodiversity among Animals"; and (3) "Heirloom Plants." Discusses…

  4. Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps.

    PubMed

    Miloslavich, Patricia; Klein, Eduardo; Díaz, Juan M; Hernández, Cristián E; Bigatti, Gregorio; Campos, Lucia; Artigas, Felipe; Castillo, Julio; Penchaszadeh, Pablo E; Neill, Paula E; Carranza, Alvar; Retana, María V; Díaz de Astarloa, Juan M; Lewis, Mirtha; Yorio, Pablo; Piriz, María L; Rodríguez, Diego; Yoneshigue-Valentin, Yocie; Gamboa, Luiz; Martín, Alberto

    2011-01-31

    The marine areas of South America (SA) include almost 30,000 km of coastline and encompass three different oceanic domains--the Caribbean, the Pacific, and the Atlantic--ranging in latitude from 12∘N to 55∘S. The 10 countries that border these coasts have different research capabilities and taxonomic traditions that affect taxonomic knowledge. This paper analyzes the status of knowledge of marine biodiversity in five subregions along the Atlantic and Pacific coasts of South America (SA): the Tropical East Pacific, the Humboldt Current,the Patagonian Shelf, the Brazilian Shelves, and the Tropical West Atlantic, and it provides a review of ecosystem threats and regional marine conservation strategies. South American marine biodiversity is least well known in the tropical subregions (with the exception of Costa Rica and Panama). Differences in total biodiversity were observed between the Atlantic and Pacific oceans at the same latitude. In the north of the continent, the Tropical East Pacific is richer in species than the Tropical West Atlantic, however, when standardized by coastal length, there is very little difference among them. In the south, the Humboldt Current system is much richer than the Patagonian Shelf. An analysis of endemism shows that 75% of the species are reported within only one of the SA regions, while about 22% of the species of SA are not reported elsewhere in the world. National and regional initiatives focusing on new exploration, especially to unknown areas and ecosystems, as well as collaboration among countries are fundamental to achieving the goal of completing inventories of species diversity and distribution.These inventories will allow accurate interpretation of the biogeography of its two oceanic coasts and latitudinal trends,and will also provide relevant information for science based policies.

  5. Scaling biodiversity responses to hydrological regimes.

    PubMed

    Rolls, Robert J; Heino, Jani; Ryder, Darren S; Chessman, Bruce C; Growns, Ivor O; Thompson, Ross M; Gido, Keith B

    2018-05-01

    Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water-resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape-scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi-scaled understanding of

  6. An Extensive Alien Plant Inventory from the Inhabited Areas of Galapagos

    PubMed Central

    Guézou, Anne; Trueman, Mandy; Buddenhagen, Christopher Evan; Chamorro, Susana; Guerrero, Ana Mireya; Pozo, Paola; Atkinson, Rachel

    2010-01-01

    Background Plant invasions are causing habitat degradation in Galapagos. Problems are concentrated on the four inhabited islands. Plants introduced to rural areas in the humid highlands and urban areas on the arid coast act as foci for invasion of the surrounding Galapagos National Park. Methodology/Principal Findings Here we present results of the most comprehensive inventory to date of alien vascular plants in the inhabited areas of Galapagos. The survey was conducted between 2002 and 2007, in 6031 properties (97% of the total) on Floreana, Isabela, San Cristobal and Santa Cruz Islands. In total 754 alien vascular plant taxa were recorded, representing 468 genera in 123 families. Dicotyledons represented 554 taxa, monocotyledons 183, there were 7 gymnosperms and 10 pteridophytes. Almost half (363) of the taxa were herbaceous. The most represented families were Fabaceae (sensu lato), Asteraceae and Poaceae. The three most recorded species in the humid rural areas were Psidium guajava, Passiflora edulis and Bryophyllum pinnatum, and in the dry urban areas, Aloe vera, Portulaca oleracea and Carica papaya. In total, 264 (35%) taxa were recorded as naturalized. The most common use for taxa was ornamental (52%). Conclusions/Significance This extensive survey has increased the known alien vascular flora of Galapagos by 257 species, giving a ratio of alien to native taxa of 1.57∶1. It provides a crucial baseline for plant invasion management in the archipelago and contributes data for meta analyses of invasion processes worldwide. A repeat of the survey in the future would act as an effective early detection tool to help avoid further invasion of the Galapagos National Park. PMID:20421999

  7. Vascular Plant and Vertebrate Inventory of Tuzigoot National Monument

    USGS Publications Warehouse

    Powell, Brian F.; Albrecht, E.W.; Halvorson, William Lee; Schmidt, Cecilia A.; Anning, P.; Docherty, K.

    2005-01-01

    Executive Summary From 2002 to 2004, we surveyed for plants and vertebrates (amphibians, reptiles, birds, and mammals) at Tuzigoot National Monument (NM) and adjacent areas in Arizona. This was the first effort of its kind in the area and was part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in Arizona and New Mexico. In addition to our own surveys, we also compiled a complete list of species that have been found by previous studies. We found 330 species, including 142 that had not previously been recorded at the monument (Table 1). We found 39 species of non-native plants, 11 non-native fishes, three non-native birds, and one non-native species each of amphibian and mammal. Based on our work and that of others, there have been 597 species of plants and vertebrates found at the monument. The bird community at the monument had the highest species richness of any national park unit in central and southern Arizona. We found all other taxa to have intermediate species richness compared to other park units in the region. This extraordinary species richness observed for birds, as well as for some other taxa, is due primarily to Tavasci Marsh and the Verde River, two critical sources of perennial water, which provide habitat for many regionally rare or uncommon species. The location of the monument at the northern edge of the Sonoran Desert and at the southern edge of the Mogollon Rim also plays an important role in determining the distribution and community composition of the plant and vertebrate communities. Based on our findings, we believe the high number of non-native species, especially fish and plants, should be of particular management concern. We detail other management challenges, most notably the rapid increase in housing and associated commercial development near the monument, which will continue to impact the plant and vertebrate communities. Based on our data and a review of past studies, we believe the

  8. Toward an integrated understanding of perceived biodiversity values and environmental conditions in a national park

    USGS Publications Warehouse

    van Riper, Carena J.; Kyle, Gerard T.; Sherrouse, Ben C.; Bagstad, Kenneth J.; Sutton, Stephen G.

    2016-01-01

    In spatial planning and management of protected areas, increased priority is being given to research that integrates social and ecological data. However, public viewpoints of the benefits provided by ecosystems are not easily quantified and often implicitly folded into natural resource management decisions. Drawing on a spatially explicit participatory mapping exercise and a Social Values for Ecosystem Services (SolVES) analysis tool, the present study empirically examined and integrated social values for ecosystem services and environmental conditions within Channel Islands National Park, California. Specifically, a social value indicator of perceived biodiversity was examined using on-site survey data collected from a sample of people who visited the park. This information was modeled alongside eight environmental conditions including faunal species richness for six taxa, vegetation density, categories of marine and terrestrial land cover, and distance to features relevant for decision-makers. Results showed that biodiversity value points assigned to places by the pooled sample of respondents were widely and unevenly mapped, which reflected the belief that biodiversity was embodied to varying degrees by multiple locations in the park. Models generated for two survey subgroups defined by their self-reported knowledge of the Channels Islands revealed distinct spatial patterns of these perceived values. Specifically, respondents with high knowledge valued large spaces that were publicly inaccessible and unlikely to contain on-ground biodiversity, whereas respondents with low knowledge valued places that were experienced first-hand. Accessibility and infrastructure were also important considerations for anticipating how and where people valued the protected land and seascapes of Channel Islands National Park.

  9. 'Citizen science' recording of fossils by adapting existing computer-based biodiversity recording tools

    NASA Astrophysics Data System (ADS)

    McGowan, Alistair

    2014-05-01

    Biodiversity recording activities have been greatly enhanced by the emergence of online schemes and smartphone applications for recording and sharing data about a wide variety of flora and fauna. As a palaeobiologist, one of the areas of research I have been heavily involved in is the question of whether the amount of rock available to sample acts as a bias on our estimates of biodiversity through time. Although great progress has been made on this question over the past ten years by a number of researchers, I still think palaeontology has not followed the lead offered by the 'citizen science' revolution in studies of extant biodiversity. By constructing clearly structured surveys with online data collection support, it should be possible to collect field data on the occurrence of fossils at the scale of individual exposures, which are needed to test competing hypotheses about these effects at relatively small spatial scales. Such data collection would be hard to justify for universities and museums with limited personnel but a co-ordinated citizen science programme would be capable of delivering such a programme. Data collection could be based on the MacKinnon's Lists method, used in rapid conservation assessment work. It relies on observers collecting lists of a fixed length (e.g. 10 species long) but what is important is that it focuses on getting observers to ignore sightings of the same species until that list is complete. This overcomes the problem of 'common taxa being commonly recorded' and encourages observers to seek out and identify the rarer taxa. This gives a targeted but finite task. Rather than removing fossils, participants would be encouraged to take photographs to share via a recording website. The success of iSpot, which allows users to upload photos of plants and animals for other users to help with identifications, offers a model for overcoming the problems of identifying fossils, which can often look nothing like the examples illustrated in

  10. Quantifying the relative irreplaceability of important bird and biodiversity areas.

    PubMed

    Di Marco, Moreno; Brooks, Thomas; Cuttelod, Annabelle; Fishpool, Lincoln D C; Rondinini, Carlo; Smith, Robert J; Bennun, Leon; Butchart, Stuart H M; Ferrier, Simon; Foppen, Ruud P B; Joppa, Lucas; Juffe-Bignoli, Diego; Knight, Andrew T; Lamoreux, John F; Langhammer, Penny F; May, Ian; Possingham, Hugh P; Visconti, Piero; Watson, James E M; Woodley, Stephen

    2016-04-01

    World governments have committed to increase the global protected areas coverage by 2020, but the effectiveness of this commitment for protecting biodiversity depends on where new protected areas are located. Threshold- and complementarity-based approaches have been independently used to identify important sites for biodiversity. We brought together these approaches by performing a complementarity-based analysis of irreplaceability in important bird and biodiversity areas (IBAs), which are sites identified using a threshold-based approach. We determined whether irreplaceability values are higher inside than outside IBAs and whether any observed difference depends on known characteristics of the IBAs. We focused on 3 regions with comprehensive IBA inventories and bird distribution atlases: Australia, southern Africa, and Europe. Irreplaceability values were significantly higher inside than outside IBAs, although differences were much smaller in Europe than elsewhere. Higher irreplaceability values in IBAs were associated with the presence and number of restricted-range species; number of criteria under which the site was identified; and mean geographic range size of the species for which the site was identified (trigger species). In addition, IBAs were characterized by higher irreplaceability values when using proportional species representation targets, rather than fixed targets. There were broadly comparable results when measuring irreplaceability for trigger species and when considering all bird species, which indicates a good surrogacy effect of the former. Recently, the International Union for Conservation of Nature has convened a consultation to consolidate global standards for the identification of key biodiversity areas (KBAs), building from existing approaches such as IBAs. Our results informed this consultation, and in particular a proposed irreplaceability criterion that will allow the new KBA standard to draw on the strengths of both threshold- and

  11. The crane flies (Diptera: Tipuloidea) of Great Smoky Mountains National Park

    USGS Publications Warehouse

    Petersen, Matthew J.; Parker, Charles R.; Bernard, Ernest

    2005-01-01

    The list of crane flies (Diptera: Ptychopteridae, Tipuloidea, Trichoceridae) known from Great Smoky Mountains National Park is updated. Sampling in association with the All Taxa Biodiversity Inventory of Great Smoky Mountains National Park resulted in the addition of 107 new Park records, bringing the current list to 250 species. This species assemblage is much richer than those of surrounding areas, although similar in composition. Total richness is estimated to be between 450 and 500 species for Great Smoky Mountains National Park.

  12. A cross-taxa study using environmental DNA/RNA metabarcoding to measure biological impacts of offshore oil and gas drilling and production operations.

    PubMed

    Laroche, Olivier; Wood, Susanna A; Tremblay, Louis A; Ellis, Joanne I; Lear, Gavin; Pochon, Xavier

    2018-02-01

    Standardized ecosystem-based monitoring surveys are critical for providing information on marine ecosystem health. Environmental DNA/RNA (eDNA/eRNA) metabarcoding may facilitate such surveys by quickly and effectively characterizing multi-trophic levels. In this study, we assessed the suitability of eDNA/eRNA metabarcoding to evaluate changes in benthic assemblages of bacteria, Foraminifera and other eukaryotes along transects at three offshore oil and gas (O&G) drilling and production sites, and compared these to morphologically characterized macro-faunal assemblages. Bacterial communities were the most responsive to O&G activities, followed by Foraminifera, and macro-fauna (the latter assessed by morphology). The molecular approach enabled detection of hydrocarbon degrading taxa such as the bacteria Alcanivorax and Microbulbifer at petroleum impacted stations. Most identified indicator taxa, notably among macro-fauna, were highly specific to site conditions. Based on our results we suggest that eDNA/eRNA metabarcoding can be used as a stand-alone method for biodiversity assessment or as a complement to morphology-based monitoring approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes

    PubMed Central

    Werling, Ben P.; Dickson, Timothy L.; Isaacs, Rufus; Gaines, Hannah; Gratton, Claudio; Gross, Katherine L.; Liere, Heidi; Malmstrom, Carolyn M.; Meehan, Timothy D.; Ruan, Leilei; Robertson, Bruce A.; Robertson, G. Philip; Schmidt, Thomas M.; Schrotenboer, Abbie C.; Teal, Tracy K.; Wilson, Julianna K.; Landis, Douglas A.

    2014-01-01

    Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands—farmland suboptimal for food crops—could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks—primarily annual grain crops—on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services. PMID:24474791

  14. Rogue taxa phenomenon: a biological companion to simulation analysis

    PubMed Central

    Westover, Kristi M.; Rusinko, Joseph P.; Hoin, Jon; Neal, Matthew

    2013-01-01

    To provide a baseline biological comparison to simulation study predictions about the frequency of rogue taxa effects, we evaluated the frequency of a rogue taxa effect using viral data sets which differed in diversity. Using a quartet-tree framework, we measured the frequency of a rogue taxa effect in three data sets of increasing genetic variability (within viral serotype, between viral serotype, and between viral family) to test whether the rogue taxa was correlated with the mean sequence diversity of the respective data sets. We found a slight increase in the percentage of rogues as nucleotide diversity increased. Even though the number of rogues increased with diversity, the distribution of the types of rogues (friendly, crazy, or evil) did not depend on the diversity and in the case of the order-level data set the net rogue effect was slightly positive. This study, assessing frequency of the rogue taxa effect using biological data, indicated that simulation studies may over-predict the prevalence of the rogue taxa effect. Further investigations are necessary to understand which types of data sets are susceptible to a negative rogue effect and thus merit the removal of taxa from large phylogenetic reconstructions. PMID:23707704

  15. Can Artificial Ecosystems Enhance Local Biodiversity? The Case of a Constructed Wetland in a Mediterranean Urban Context

    NASA Astrophysics Data System (ADS)

    De Martis, Gabriele; Mulas, Bonaria; Malavasi, Veronica; Marignani, Michela

    2016-05-01

    Constructed wetlands (CW) are considered a successful tool to treat wastewater in many countries: their success is mainly assessed observing the rate of pollution reduction, but CW can also contribute to the conservation of ecosystem services. Among the many ecosystem services provided, the biodiversity of CW has received less attention. The EcoSistema Filtro (ESF) of the Molentargius-Saline Regional Natural Park is a constructed wetland situated in Sardinia (Italy), built to filter treated wastewater, increase habitat diversity, and enhance local biodiversity. A floristic survey has been carried out yearly 1 year after the construction of the artificial ecosystem in 2004, observing the modification of the vascular flora composition in time. The flora of the ESF accounted for 54 % of the whole Regional Park's flora; alien species amount to 12 %; taxa of conservation concern are 6 %. Comparing the data in the years, except for the biennium 2006/2007, we observed a continuous increase of species richness, together with an increase of endemics, species of conservation concern, and alien species too. Once the endemics appeared, they remained part of the flora, showing a good persistence in the artificial wetland. Included in a natural park, but trapped in a sprawling and fast growing urban context, this artificial ecosystem provides multiple uses, by preserving and enhancing biodiversity. This is particularly relevant considering that biodiversity can act as a driver of sustainable development in urban areas where most of the world's population lives and comes into direct contact with nature.

  16. Can Artificial Ecosystems Enhance Local Biodiversity? The Case of a Constructed Wetland in a Mediterranean Urban Context.

    PubMed

    De Martis, Gabriele; Mulas, Bonaria; Malavasi, Veronica; Marignani, Michela

    2016-05-01

    Constructed wetlands (CW) are considered a successful tool to treat wastewater in many countries: their success is mainly assessed observing the rate of pollution reduction, but CW can also contribute to the conservation of ecosystem services. Among the many ecosystem services provided, the biodiversity of CW has received less attention. The EcoSistema Filtro (ESF) of the Molentargius-Saline Regional Natural Park is a constructed wetland situated in Sardinia (Italy), built to filter treated wastewater, increase habitat diversity, and enhance local biodiversity. A floristic survey has been carried out yearly 1 year after the construction of the artificial ecosystem in 2004, observing the modification of the vascular flora composition in time. The flora of the ESF accounted for 54% of the whole Regional Park's flora; alien species amount to 12%; taxa of conservation concern are 6%. Comparing the data in the years, except for the biennium 2006/2007, we observed a continuous increase of species richness, together with an increase of endemics, species of conservation concern, and alien species too. Once the endemics appeared, they remained part of the flora, showing a good persistence in the artificial wetland. Included in a natural park, but trapped in a sprawling and fast growing urban context, this artificial ecosystem provides multiple uses, by preserving and enhancing biodiversity. This is particularly relevant considering that biodiversity can act as a driver of sustainable development in urban areas where most of the world's population lives and comes into direct contact with nature.

  17. Biodiversity and Climate Modeling Workshop Series: Identifying gaps and needs for improving large-scale biodiversity models

    NASA Astrophysics Data System (ADS)

    Weiskopf, S. R.; Myers, B.; Beard, T. D.; Jackson, S. T.; Tittensor, D.; Harfoot, M.; Senay, G. B.

    2017-12-01

    At the global scale, well-accepted global circulation models and agreed-upon scenarios for future climate from the Intergovernmental Panel on Climate Change (IPCC) are available. In contrast, biodiversity modeling at the global scale lacks analogous tools. While there is great interest in development of similar bodies and efforts for international monitoring and modelling of biodiversity at the global scale, equivalent modelling tools are in their infancy. This lack of global biodiversity models compared to the extensive array of general circulation models provides a unique opportunity to bring together climate, ecosystem, and biodiversity modeling experts to promote development of integrated approaches in modeling global biodiversity. Improved models are needed to understand how we are progressing towards the Aichi Biodiversity Targets, many of which are not on track to meet the 2020 goal, threatening global biodiversity conservation, monitoring, and sustainable use. We brought together biodiversity, climate, and remote sensing experts to try to 1) identify lessons learned from the climate community that can be used to improve global biodiversity models; 2) explore how NASA and other remote sensing products could be better integrated into global biodiversity models and 3) advance global biodiversity modeling, prediction, and forecasting to inform the Aichi Biodiversity Targets, the 2030 Sustainable Development Goals, and the Intergovernmental Platform on Biodiversity and Ecosystem Services Global Assessment of Biodiversity and Ecosystem Services. The 1st In-Person meeting focused on determining a roadmap for effective assessment of biodiversity model projections and forecasts by 2030 while integrating and assimilating remote sensing data and applying lessons learned, when appropriate, from climate modeling. Here, we present the outcomes and lessons learned from our first E-discussion and in-person meeting and discuss the next steps for future meetings.

  18. Biodiversity inventory and conservation opportunity of Suwi wetlands, Muara Ancalong, East Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyudi, Deni; Kusneti, Monica; Suimah

    2017-02-01

    Suwi wetlands lays in location permit of palm oil plantation, which has been cleared partially, but then abandoned because is not suitable for palm oil. Considering the biological richness and the usage, the wetlands is important to be conserved, the most possible is managed as an Essential Ecosystem. The main objective of this study was to conduct an inventory of species diversity of Suwi wetlands. Habitat condition and utilization was recorded as important supporting information. The fieldworks have been done from 2013 to 2016. Camera traps and mistnetts were used and randomly done several times in a place where animal were suspected presence. Direct observations were done in the morning and afternoon especially for bird and mammal inventory while dark night observations were done for the presence of crocodile. The result of fieldworks found 12 species of mammals, 63 species of birds, 9 species of reptiles and 38 species of fish, which 30 of the total 122 species are protected, based on Indonesian law as well as international rule. Proboscis monkey (Nasalis larvatus) is an endemic and one of conservation priority species of Indonesia. Meanwhile, Siamese crocodile (Crocodylus siamensis) is one of the most world's endangered crocodilians.

  19. The SCOPSCO deep drilling program in ancient Lake Ohrid: Unravelling the driving forces of speciation in Europe's oldest and most biodiverse lake

    NASA Astrophysics Data System (ADS)

    Wilke, Thomas; Wagner, Bernd; Albrecht, Christian; Levkov, Zlatko; Francke, Alexander; Hauffe, Torsten; Cvetkoska, Aleksandra; Jovanovska, Elena; Zhang, Xiaosen; Reed, Jane M.; Wagner-Cremer, Friederike; Stelbrink, Björn; Viehberg, Finn

    2015-04-01

    Ancient Lake Ohrid on the Balkan Peninsula constitutes the oldest and most biodiverse lake in Europe. The processes generating this extraordinary species richness with a high share of endemic taxa, however, are poorly understood. In order to unravel the geological and biological history of the lake and to study, among others, the influence of major geological and environmental events on the evolution of endemic taxa, an international research initiative - the SCOPSCO project - was launched. The project combines sedimentological, tephro-stratigraphical, seismic and paleontological (diatoms, mollusks, ostracods) studies of lake sediment cores with molecular-dating and empirical modelling approaches applied to extant taxa. Preliminary analyses of sediment core and borehole logging data from drill sites with a maximum penetration depth of 569 m below lake floor and an overall recovery of > 95 % indicate that Lake Ohrid is roughly 1.3 to 1.5 My old. Intriguingly, these data fully reinforce the results of molecular clock analyses conducted prior to the drilling operation. Moreover, the combined geological and biological studies suggest that the extraordinary biodiversity in Lake Ohrid is largely driven by 1) the long and continuous existence of the lake, 2) the lack of catastrophic events (e.g., desiccation, full glaciation or salinization) during its lifetime potentially causing massive extinctions, 3) the high buffer capacity of the lake to environmental change and/or the high resilience of its taxa, and 4) distinct turnovers in species composition over time promoting frequency dependent selection. The cumulative effect of these factors, in turn, resulted in overall low extinction rates and continuous speciation and radiation events. These findings not only shed new light on patterns and processes of evolution in Europe's oldest lake, they also show that data from sediment cores can contribute to a better understanding of the driving forces of biotic evolution

  20. Biodiverse planting for carbon and biodiversity on indigenous land.

    PubMed

    Renwick, Anna R; Robinson, Catherine J; Martin, Tara G; May, Tracey; Polglase, Phil; Possingham, Hugh P; Carwardine, Josie

    2014-01-01

    Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local communities. So far it has been unclear how Indigenous communities can benefit from such initiatives. We provide a spatial analysis of the carbon and biodiversity potential of one offset method, planting biodiverse native vegetation, on Indigenous land across Australia. We discover significant potential for opportunities for Indigenous communities to achieve carbon sequestration and biodiversity goals through biodiverse plantings, largely in southern and eastern Australia, but the economic feasibility of these projects depend on carbon market assumptions. Our national scale cost-effectiveness analysis is critical to enable Indigenous communities to maximise the benefits available to them through participation in carbon offset schemes.

  1. Biodiverse Planting for Carbon and Biodiversity on Indigenous Land

    PubMed Central

    Renwick, Anna R.; Robinson, Catherine J.; Martin, Tara G.; May, Tracey; Polglase, Phil; Possingham, Hugh P.; Carwardine, Josie

    2014-01-01

    Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local communities. So far it has been unclear how Indigenous communities can benefit from such initiatives. We provide a spatial analysis of the carbon and biodiversity potential of one offset method, planting biodiverse native vegetation, on Indigenous land across Australia. We discover significant potential for opportunities for Indigenous communities to achieve carbon sequestration and biodiversity goals through biodiverse plantings, largely in southern and eastern Australia, but the economic feasibility of these projects depend on carbon market assumptions. Our national scale cost-effectiveness analysis is critical to enable Indigenous communities to maximise the benefits available to them through participation in carbon offset schemes. PMID:24637736

  2. Morphological and molecular evidence reveals recent hybridization between gorilla taxa.

    PubMed

    Ackermann, Rebecca Rogers; Bishop, Jacqueline M

    2010-01-01

    Molecular studies have demonstrated a deep lineage split between the two gorilla species, as well as divisions within these taxa; estimates place this divergence in the mid-Pleistocene, with gene flow continuing until approximately 80,000 years ago. Here, we present analyses of skeletal data indicating the presence of substantial recent gene flow among gorillas at all taxonomic levels: between populations, subspecies, and species. Complementary analyses of DNA sequence variation suggest that low-level migration occurred primarily in a westerly-to-easterly direction. In western gorillas, the locations of hybrid phenotypes map closely to expectations based on population refugia and riverine barrier hypotheses, supporting the presence of significant vicariance-driven structuring and occasional admixture within this taxon. In eastern lowland gorillas, the high frequency of hybrid phenotypes is surprising, suggesting that this region represents a zone of introgression between eastern gorillas and migrants from the west, and underscoring the conservation priority of this critically endangered group. These results highlight the complex nature of evolutionary divergence in this genus, indicate that historical gene flow has played a major role in structuring gorilla diversity, and demonstrate that our understanding of the evolutionary processes responsible for shaping biodiversity can benefit immensely from consideration of morphological and molecular data in conjunction.

  3. Keystone taxa as drivers of microbiome structure and functioning.

    PubMed

    Banerjee, Samiran; Schlaeppi, Klaus; van der Heijden, Marcel G A

    2018-05-22

    Microorganisms have a pivotal role in the functioning of ecosystems. Recent studies have shown that microbial communities harbour keystone taxa, which drive community composition and function irrespective of their abundance. In this Opinion article, we propose a definition of keystone taxa in microbial ecology and summarize over 200 microbial keystone taxa that have been identified in soil, plant and marine ecosystems, as well as in the human microbiome. We explore the importance of keystone taxa and keystone guilds for microbiome structure and functioning and discuss the factors that determine their distribution and activities.

  4. Rogue taxa phenomenon: a biological companion to simulation analysis.

    PubMed

    Westover, Kristi M; Rusinko, Joseph P; Hoin, Jon; Neal, Matthew

    2013-10-01

    To provide a baseline biological comparison to simulation study predictions about the frequency of rogue taxa effects, we evaluated the frequency of a rogue taxa effect using viral data sets which differed in diversity. Using a quartet-tree framework, we measured the frequency of a rogue taxa effect in three data sets of increasing genetic variability (within viral serotype, between viral serotype, and between viral family) to test whether the rogue taxa was correlated with the mean sequence diversity of the respective data sets. We found a slight increase in the percentage of rogues as nucleotide diversity increased. Even though the number of rogues increased with diversity, the distribution of the types of rogues (friendly, crazy, or evil) did not depend on the diversity and in the case of the order-level data set the net rogue effect was slightly positive. This study, assessing frequency of the rogue taxa effect using biological data, indicated that simulation studies may over-predict the prevalence of the rogue taxa effect. Further investigations are necessary to understand which types of data sets are susceptible to a negative rogue effect and thus merit the removal of taxa from large phylogenetic reconstructions. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics.

    PubMed

    Weber, Marc; Teeling, Hanno; Huang, Sixing; Waldmann, Jost; Kassabgy, Mariette; Fuchs, Bernhard M; Klindworth, Anna; Klockow, Christine; Wichels, Antje; Gerdts, Gunnar; Amann, Rudolf; Glöckner, Frank Oliver

    2011-05-01

    Next-generation sequencing (NGS) technologies have enabled the application of broad-scale sequencing in microbial biodiversity and metagenome studies. Biodiversity is usually targeted by classifying 16S ribosomal RNA genes, while metagenomic approaches target metabolic genes. However, both approaches remain isolated, as long as the taxonomic and functional information cannot be interrelated. Techniques like self-organizing maps (SOMs) have been applied to cluster metagenomes into taxon-specific bins in order to link biodiversity with functions, but have not been applied to broad-scale NGS-based metagenomics yet. Here, we provide a novel implementation, demonstrate its potential and practicability, and provide a web-based service for public usage. Evaluation with published data sets mimicking varyingly complex habitats resulted into classification specificities and sensitivities of close to 100% to above 90% from phylum to genus level for assemblies exceeding 8 kb for low and medium complexity data. When applied to five real-world metagenomes of medium complexity from direct pyrosequencing of marine subsurface waters, classifications of assemblies above 2.5 kb were in good agreement with fluorescence in situ hybridizations, indicating that biodiversity was mostly retained within the metagenomes, and confirming high classification specificities. This was validated by two protein-based classifications (PBCs) methods. SOMs were able to retrieve the relevant taxa down to the genus level, while surpassing PBCs in resolution. In order to make the approach accessible to a broad audience, we implemented a feature-rich web-based SOM application named TaxSOM, which is freely available at http://www.megx.net/toolbox/taxsom. TaxSOM can classify reads or assemblies exceeding 2.5 kb with high accuracy and thus assists in linking biodiversity and functions in metagenome studies, which is a precondition to study microbial ecology in a holistic fashion.

  6. Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics

    PubMed Central

    Weber, Marc; Teeling, Hanno; Huang, Sixing; Waldmann, Jost; Kassabgy, Mariette; Fuchs, Bernhard M; Klindworth, Anna; Klockow, Christine; Wichels, Antje; Gerdts, Gunnar; Amann, Rudolf; Glöckner, Frank Oliver

    2011-01-01

    Next-generation sequencing (NGS) technologies have enabled the application of broad-scale sequencing in microbial biodiversity and metagenome studies. Biodiversity is usually targeted by classifying 16S ribosomal RNA genes, while metagenomic approaches target metabolic genes. However, both approaches remain isolated, as long as the taxonomic and functional information cannot be interrelated. Techniques like self-organizing maps (SOMs) have been applied to cluster metagenomes into taxon-specific bins in order to link biodiversity with functions, but have not been applied to broad-scale NGS-based metagenomics yet. Here, we provide a novel implementation, demonstrate its potential and practicability, and provide a web-based service for public usage. Evaluation with published data sets mimicking varyingly complex habitats resulted into classification specificities and sensitivities of close to 100% to above 90% from phylum to genus level for assemblies exceeding 8 kb for low and medium complexity data. When applied to five real-world metagenomes of medium complexity from direct pyrosequencing of marine subsurface waters, classifications of assemblies above 2.5 kb were in good agreement with fluorescence in situ hybridizations, indicating that biodiversity was mostly retained within the metagenomes, and confirming high classification specificities. This was validated by two protein-based classifications (PBCs) methods. SOMs were able to retrieve the relevant taxa down to the genus level, while surpassing PBCs in resolution. In order to make the approach accessible to a broad audience, we implemented a feature-rich web-based SOM application named TaxSOM, which is freely available at http://www.megx.net/toolbox/taxsom. TaxSOM can classify reads or assemblies exceeding 2.5 kb with high accuracy and thus assists in linking biodiversity and functions in metagenome studies, which is a precondition to study microbial ecology in a holistic fashion. PMID:21160538

  7. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation.

    PubMed

    Beninde, Joscha; Veith, Michael; Hochkirch, Axel

    2015-06-01

    Understanding varying levels of biodiversity within cities is pivotal to protect it in the face of global urbanisation. In the early stages of urban ecology studies on intra-urban biodiversity focused on the urban-rural gradient, representing a broad generalisation of features of the urban landscape. Increasingly, studies classify the urban landscape in more detail, quantifying separately the effects of individual urban features on biodiversity levels. However, while separate factors influencing biodiversity variation among cities worldwide have recently been analysed, a global analysis on the factors influencing biodiversity levels within cities is still lacking. We here present the first meta-analysis on intra-urban biodiversity variation across a large variety of taxonomic groups of 75 cities worldwide. Our results show that patch area and corridors have the strongest positive effects on biodiversity, complemented by vegetation structure. Local, biotic and management habitat variables were significantly more important than landscape, abiotic or design variables. Large sites greater than 50 ha are necessary to prevent a rapid loss of area-sensitive species. This indicates that, despite positive impacts of biodiversity-friendly management, increasing the area of habitat patches and creating a network of corridors is the most important strategy to maintain high levels of urban biodiversity. © 2015 John Wiley & Sons Ltd/CNRS.

  8. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa.

    PubMed

    Corbelli, Julian Martin; Zurita, Gustavo Andres; Filloy, Julieta; Galvis, Juan Pablo; Vespa, Natalia Isabel; Bellocq, Isabel

    2015-01-01

    The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic (PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools) and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland), and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation.

  9. Toward a Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa

    PubMed Central

    Hettling, Hannes; Condamine, Fabien L.; Vos, Karin; Nilsson, R. Henrik; Sanderson, Michael J.; Sauquet, Hervé; Scharn, Ruud; Silvestro, Daniele; Töpel, Mats; Bacon, Christine D.; Oxelman, Bengt; Vos, Rutger A.

    2017-01-01

    Abstract Rapidly growing biological data—including molecular sequences and fossils—hold an unprecedented potential to reveal how evolutionary processes generate and maintain biodiversity. However, researchers often have to develop their own idiosyncratic workflows to integrate and analyze these data for reconstructing time-calibrated phylogenies. In addition, divergence times estimated under different methods and assumptions, and based on data of various quality and reliability, should not be combined without proper correction. Here we introduce a modular framework termed SUPERSMART (Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa), and provide a proof of concept for dealing with the moving targets of evolutionary and biogeographical research. This framework assembles comprehensive data sets of molecular and fossil data for any taxa and infers dated phylogenies using robust species tree methods, also allowing for the inclusion of genomic data produced through next-generation sequencing techniques. We exemplify the application of our method by presenting phylogenetic and dating analyses for the mammal order Primates and for the plant family Arecaceae (palms). We believe that this framework will provide a valuable tool for a wide range of hypothesis-driven research questions in systematics, biogeography, and evolution. SUPERSMART will also accelerate the inference of a “Dated Tree of Life” where all node ages are directly comparable. PMID:27616324

  10. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa

    PubMed Central

    Corbelli, Julian Martin; Zurita, Gustavo Andres; Filloy, Julieta; Galvis, Juan Pablo; Vespa, Natalia Isabel; Bellocq, Isabel

    2015-01-01

    The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic (PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools) and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland), and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation. PMID:25978319

  11. Phylogenetic diversity and biodiversity indices on phylogenetic networks.

    PubMed

    Wicke, Kristina; Fischer, Mareike

    2018-04-01

    In biodiversity conservation it is often necessary to prioritize the species to conserve. Existing approaches to prioritization, e.g. the Fair Proportion Index and the Shapley Value, are based on phylogenetic trees and rank species according to their contribution to overall phylogenetic diversity. However, in many cases evolution is not treelike and thus, phylogenetic networks have been developed as a generalization of phylogenetic trees, allowing for the representation of non-treelike evolutionary events, such as hybridization. Here, we extend the concepts of phylogenetic diversity and phylogenetic diversity indices from phylogenetic trees to phylogenetic networks. On the one hand, we consider the treelike content of a phylogenetic network, e.g. the (multi)set of phylogenetic trees displayed by a network and the so-called lowest stable ancestor tree associated with it. On the other hand, we derive the phylogenetic diversity of subsets of taxa and biodiversity indices directly from the internal structure of the network. We consider both approaches that are independent of so-called inheritance probabilities as well as approaches that explicitly incorporate these probabilities. Furthermore, we introduce our software package NetDiversity, which is implemented in Perl and allows for the calculation of all generalized measures of phylogenetic diversity and generalized phylogenetic diversity indices established in this note that are independent of inheritance probabilities. We apply our methods to a phylogenetic network representing the evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by widespread hybridization. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. A suite of essential biodiversity variables for detecting critical biodiversity change.

    PubMed

    Schmeller, Dirk S; Weatherdon, Lauren V; Loyau, Adeline; Bondeau, Alberte; Brotons, Lluis; Brummitt, Neil; Geijzendorffer, Ilse R; Haase, Peter; Kuemmerlen, Mathias; Martin, Corinne S; Mihoub, Jean-Baptiste; Rocchini, Duccio; Saarenmaa, Hannu; Stoll, Stefan; Regan, Eugenie C

    2018-02-01

    Key global indicators of biodiversity decline, such as the IUCN Red List Index and the Living Planet Index, have relatively long assessment intervals. This means they, due to their inherent structure, function as late-warning indicators that are retrospective, rather than prospective. These indicators are unquestionably important in providing information for biodiversity conservation, but the detection of early-warning signs of critical biodiversity change is also needed so that proactive management responses can be enacted promptly where required. Generally, biodiversity conservation has dealt poorly with the scattered distribution of necessary detailed information, and needs to find a solution to assemble, harmonize and standardize the data. The prospect of monitoring essential biodiversity variables (EBVs) has been suggested in response to this challenge. The concept has generated much attention, but the EBVs themselves are still in development due to the complexity of the task, the limited resources available, and a lack of long-term commitment to maintain EBV data sets. As a first step, the scientific community and the policy sphere should agree on a set of priority candidate EBVs to be developed within the coming years to advance both large-scale ecological research as well as global and regional biodiversity conservation. Critical ecological transitions are of high importance from both a scientific as well as from a conservation policy point of view, as they can lead to long-lasting biodiversity change with a high potential for deleterious effects on whole ecosystems and therefore also on human well-being. We evaluated candidate EBVs using six criteria: relevance, sensitivity to change, generalizability, scalability, feasibility, and data availability and provide a literature-based review for eight EBVs with high sensitivity to change. The proposed suite of EBVs comprises abundance, allelic diversity, body mass index, ecosystem heterogeneity, phenology

  13. The Biodiversity Informatics Potential Index

    PubMed Central

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  14. Essential Biodiversity Variables: A framework for communication between the biodiversity community and space agencies

    NASA Astrophysics Data System (ADS)

    Leidner, A. K.; Skidmore, A. K.; Turner, W. W.; Geller, G. N.

    2017-12-01

    The biodiversity community is working towards developing a consensus on a set of Essential Biodiversity Variables (EBVs) that can be used to measure and monitor biodiversity change over time. These EBVs will inform research, modeling, policy, and assessment efforts. The synoptic coverage provided by satellite data make remote sensing a particularly important observation tool to inform many EBVs. Biodiversity is a relatively new subject matter for space agencies, and thus the definition, description, and requirements of EBVs with a significant remote sensing component can foster ways for the biodiversity community to clearly and concisely communicate observational needs to space agencies and the Committee on Earth Observing Satellites (CEOS, the international coordinating body for civilian space agencies). Here, we present an overview of EBVs with a particular emphasis on those for which remote sensing will play a significant role and also report on the results of recent workshops to prioritize and refine EBVs. Our goal is to provide a framework for the biodiversity community to coalesce around a set of observational needs to convey to space agencies. Compared to many physical science disciplines, the biodiversity community represents a wide range of sub-disciplines and organizations (academia, non-governmental organizations, research institutes, national and local natural resource management agencies, etc.), which creates additional challenges when communicating needs to space agencies unfamiliar with the topic. EBVs thus offer a communication pathway that could increase awareness within space agencies of the uses of remote sensing for biodiversity research and applications, which in turn could foster greater use of remote sensing in the broader biodiversity community.

  15. A phylogeny for the pomatiopsidae (Gastropoda: Rissooidea): a resource for taxonomic, parasitological and biodiversity studies.

    PubMed

    Liu, Liang; Huo, Guan-Nan; He, Hong-Bin; Zhou, Benjiang; Attwood, Stephen W

    2014-02-18

    The Pomatiopsidae are reported from northern India into southern China and Southeast Asia, with two sub-families, the Pomatiopsinae (which include freshwater, amphibious, terrestrial and marine species) and the freshwater Triculinae. Both include species acting as intermediate host for species of the blood-fluke Schistosoma which cause a public health problem in East Asia. Also, with around 120 species, triculine biodiversity exceeds that of any other endemic freshwater molluscan fauna. Nevertheless, the origins of the Pomatiopsidae, the factors driving such a diverse radiation and aspects of their co-evolution with Schistosoma are not fully understood. Many taxonomic questions remain; there are problems identifying medically relevant species. The predicted range is mostly unsurveyed and the true biodiversity of the family is underestimated. Consequently, the aim of the study was to collect DNA-sequence data for as many pomatiopsid taxa as possible, as a first step in providing a resource for identification of epidemiologically significant species (by non-malacologists), for use in resolving taxonomic confusion and for testing phylogeographical hypotheses. The evolutionary radiation of the Triculinae was shown to have been rapid and mostly post late Miocene. Molecular dating indicated that the radiation of these snails was driven first by the uplift of the Himalaya and onset of a monsoon system, and then by late-Pliocene global warming. The status of Erhaia as Anmicolidae is supported. The genera Tricula and Neotricula are shown to be non-monophyletic and the tribe Jullieniini may be polyphyletic (based on convergent characters). Triculinae from northern Vietnam could be derived from Gammatricula of Fujian/Yunnan, China. The molecular dates and phylogenetic estimates in this study are consistent with an Australasian origin for the Pomatiopsidae and an East to West radiation via Oligocene Borneo-Philippines island hopping to Japan and then China (Triculinae arising

  16. A phylogeny for the pomatiopsidae (Gastropoda: Rissooidea): a resource for taxonomic, parasitological and biodiversity studies

    PubMed Central

    2014-01-01

    Background The Pomatiopsidae are reported from northern India into southern China and Southeast Asia, with two sub-families, the Pomatiopsinae (which include freshwater, amphibious, terrestrial and marine species) and the freshwater Triculinae. Both include species acting as intermediate host for species of the blood-fluke Schistosoma which cause a public health problem in East Asia. Also, with around 120 species, triculine biodiversity exceeds that of any other endemic freshwater molluscan fauna. Nevertheless, the origins of the Pomatiopsidae, the factors driving such a diverse radiation and aspects of their co-evolution with Schistosoma are not fully understood. Many taxonomic questions remain; there are problems identifying medically relevant species. The predicted range is mostly unsurveyed and the true biodiversity of the family is underestimated. Consequently, the aim of the study was to collect DNA-sequence data for as many pomatiopsid taxa as possible, as a first step in providing a resource for identification of epidemiologically significant species (by non-malacologists), for use in resolving taxonomic confusion and for testing phylogeographical hypotheses. Results The evolutionary radiation of the Triculinae was shown to have been rapid and mostly post late Miocene. Molecular dating indicated that the radiation of these snails was driven first by the uplift of the Himalaya and onset of a monsoon system, and then by late-Pliocene global warming. The status of Erhaia as Anmicolidae is supported. The genera Tricula and Neotricula are shown to be non-monophyletic and the tribe Jullieniini may be polyphyletic (based on convergent characters). Triculinae from northern Vietnam could be derived from Gammatricula of Fujian/Yunnan, China. Conclusions The molecular dates and phylogenetic estimates in this study are consistent with an Australasian origin for the Pomatiopsidae and an East to West radiation via Oligocene Borneo-Philippines island hopping to Japan and

  17. Evaluating plant biodiversity measurements and exotic species detection in National Resources Inventory Sampling protocols using examples from the Northern Great Plains of the USA

    USDA-ARS?s Scientific Manuscript database

    Native plant biodiversity loss and exotic species invasions are threatening the ability of many ecosystems to maintain key functions and processes. We currently lack detailed plant biodiversity data at a national scale with which to make management decisions and recommendations based on current cons...

  18. Glacial influence and stream macroinvertebrate biodiversity under climate change: Lessons from the Southern Alps.

    PubMed

    Lencioni, Valeria

    2018-05-01

    The aim of this work was to highlight the main ecological predictors driving invertebrate distribution in eight glacier-fed streams in the Southern Alps. Thirty-five sites belonging to four stream types were sampled monthly during the ablation season of one, two or three years between 1996 and 2014. Taxa from glacial (kryal and glacio-rhithral) and non-glacial (kreno-rhithral and lake outlet) sites were separated by canonical correspondence analysis (CCA) along a glacial influence gradient and a hydrological-altitudinal gradient. High glacial influence was associated mainly with low maximum water temperature (Tmax), high Glacial Index (calculated as a function of glacier area and distance from the glacier), and the abundance of Diamesa species (D. steinboecki, D. goetghebueri, D. zernyi, and D. latitarsis). Change-point analysis and Threshold Indicator Taxa Analysis confirmed the CCA results in identifying these Diamesa species as the taxa with the strongest preference for high percent glacier cover in the catchment (change point~30%) and low Tmax (change point~6°C). Temporal changes in community structure were highlighted in seven sites fed by glaciers under different retreat rates. Where the rate was faster and the remaining glacier smaller (≪1km 2 ), the most cold-stenothermal kryal inhabitant, D. steinboecki, almost disappeared or survived only as brachypterous populations, whereas other Diamesinae (Pseudokiefferiella parva), Orthocladiinae (e.g. Eukiefferiella, Orthocladius), Limoniidae, Baetidae, Nemouridae, and non-insect taxa (e.g. Oligochaeta, Hydracarina) became more abundant. Upstream migration was observed in Diamesa spp. which conquered new stream reaches left free by the retreating glacier, and euriecious taxa which colonized reaches with ameliorated environmental conditions, no longer the exclusive habitat of Diamesa spp. Co-occurrence of stochastic and deterministic assembly processes seem to drive spatio-temporal changes in these invertebrate

  19. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea).

    PubMed

    Berry, Tina E; Osterrieder, Sylvia K; Murray, Dáithí C; Coghlan, Megan L; Richardson, Anthony J; Grealy, Alicia K; Stat, Michael; Bejder, Lars; Bunce, Michael

    2017-07-01

    The analysis of apex predator diet has the ability to deliver valuable insights into ecosystem health, and the potential impacts a predator might have on commercially relevant species. The Australian sea lion ( Neophoca cinerea ) is an endemic apex predator and one of the world's most endangered pinnipeds. Given that prey availability is vital to the survival of top predators, this study set out to understand what dietary information DNA metabarcoding could yield from 36 sea lion scats collected across 1,500 km of its distribution in southwest Western Australia. A combination of PCR assays were designed to target a variety of potential sea lion prey, including mammals, fish, crustaceans, cephalopods, and birds. Over 1.2 million metabarcodes identified six classes from three phyla, together representing over 80 taxa. The results confirm that the Australian sea lion is a wide-ranging opportunistic predator that consumes an array of mainly demersal fauna. Further, the important commercial species Sepioteuthis australis (southern calamari squid) and Panulirus cygnus (western rock lobster) were detected, but were present in <25% of samples. Some of the taxa identified, such as fish, sharks and rays, clarify previous knowledge of sea lion prey, and some, such as eel taxa and two gastropod species, represent new dietary insights. Even with modest sample sizes, a spatial analysis of taxa and operational taxonomic units found within the scat shows significant differences in diet between many of the sample locations and identifies the primary taxa that are driving this variance. This study provides new insights into the diet of this endangered predator and confirms the efficacy of DNA metabarcoding of scat as a noninvasive tool to more broadly define regional biodiversity.

  20. Reconciling biodiversity and carbon conservation.

    PubMed

    Thomas, Chris D; Anderson, Barbara J; Moilanen, Atte; Eigenbrod, Felix; Heinemeyer, Andreas; Quaife, Tristan; Roy, David B; Gillings, Simon; Armsworth, Paul R; Gaston, Kevin J

    2013-05-01

    Climate change is leading to the development of land-based mitigation and adaptation strategies that are likely to have substantial impacts on global biodiversity. Of these, approaches to maintain carbon within existing natural ecosystems could have particularly large benefits for biodiversity. However, the geographical distributions of terrestrial carbon stocks and biodiversity differ. Using conservation planning analyses for the New World and Britain, we conclude that a carbon-only strategy would not be effective at conserving biodiversity, as have previous studies. Nonetheless, we find that a combined carbon-biodiversity strategy could simultaneously protect 90% of carbon stocks (relative to a carbon-only conservation strategy) and > 90% of the biodiversity (relative to a biodiversity-only strategy) in both regions. This combined approach encapsulates the principle of complementarity, whereby locations that contain different sets of species are prioritised, and hence disproportionately safeguard localised species that are not protected effectively by carbon-only strategies. It is efficient because localised species are concentrated into small parts of the terrestrial land surface, whereas carbon is somewhat more evenly distributed; and carbon stocks protected in one location are equivalent to those protected elsewhere. Efficient compromises can only be achieved when biodiversity and carbon are incorporated together within a spatial planning process. © 2012 John Wiley & Sons Ltd/CNRS.

  1. [Ants’ higher taxa as surrogates of species richness in a chronosequence of fallows, old-grown forests and agroforestry systems in the Eastern Amazon, Brazil].

    PubMed

    Muñoz Gutiérrez, Jhonatan Andrés; Roussea, Guillaume Xavier; Andrade-Silva, Joudellys; Delabie, Jacques Hubert Charles

    2017-03-01

    Deforestation in Amazon forests is one of the main causes for biodiversity loss worldwide. Ants are key into the ecosystem because act like engineers; hence, the loss of ants’ biodiversity may be a guide to measure the loss of essential functions into the ecosystems. The aim of this study was to evaluate soil ant’s richness and to estimate whether higher taxa levels (Subfamily and Genus) can be used as surrogates of species richness in different vegetation types (fallows, old-growth forests and agroforestry systems) in Eastern Amazon. The samples were taken in 65 areas in the Maranhão and Pará States in the period 2011-2014. The sampling scheme followed the procedure of Tropical Soil Biology and Fertility (TSBF). Initially, the vegetation types were characterized according to their age and estimated species richness. Linear and exponential functions were applied to evaluate if higher taxa can be used as surrogates and correlated with the Pearson coefficient. In total, 180 species distributed in 60 genera were identified. The results showed that ant species richness was higher in intermediate fallows (88) and old secondary forest (76), and was lower in agroforestry systems (38) and mature riparian forest (35). The genus level was the best surrogate to estimate the ant’s species richness across the different vegetation types, and explained 72-97 % (P < 0.001) of the total species variability. The results confirmed that the genus level is an excellent surrogate to estimate the ant’s species richness in the region and that both fallows and agroforestry systems may contribute in the conservation of Eastern Amazon ant community.

  2. Biodiversity informatics: managing and applying primary biodiversity data.

    PubMed Central

    Soberón, Jorge; Peterson, A Townsend

    2004-01-01

    Recently, advances in information technology and an increased willingness to share primary biodiversity data are enabling unprecedented access to it. By combining presences of species data with electronic cartography via a number of algorithms, estimating niches of species and their areas of distribution becomes feasible at resolutions one to three orders of magnitude higher than it was possible a few years ago. Some examples of the power of that technique are presented. For the method to work, limitations such as lack of high-quality taxonomic determination, precise georeferencing of the data and availability of high-quality and updated taxonomic treatments of the groups must be overcome. These are discussed, together with comments on the potential of these biodiversity informatics techniques not only for fundamental studies but also as a way for developing countries to apply state of the art bioinformatic methods and large quantities of data, in practical ways, to tackle issues of biodiversity management. PMID:15253354

  3. Achieving Aichi Biodiversity Target 11 to improve the performance of protected areas and conserve freshwater biodiversity

    Treesearch

    Diego Juffe-Bignoli; Ian Harrison; Stuart HM Butchart; Rebecca Flitcroft; Virgilio Hermoso; Harry Jonas; Anna Lukasiewicz; Michele Thieme; Eren Turak; Heather Bingham; James Dalton; William Darwall; Marine Deguignet; Nigel Dudley; Royal Gardner; Jonathan Higgins; Ritesh Kumar; Simon Linke; G Randy Milton; Jamie Pittock; Kevin G Smith; Arnout van Soesbergen

    2016-01-01

    1. The Strategic Plan for Biodiversity (2011–2020), adopted at the 10th meeting of the Conference of the Parties to the Convention on Biological Diversity, sets 20 Aichi Biodiversity Targets to be met by 2020 to address biodiversity loss and ensure its sustainable and equitable use. Aichi Biodiversity Target 11 describes what an improved conservation network would look...

  4. Biodiversity and emerging diseases.

    PubMed

    Maillard, Jean-Charles; Gonzalez, Jean-Paul

    2006-10-01

    First we remind general considerations concerning biodiversity on earth and particularly the loss of genetic biodiversity that seems irreversible whether its origin is directly or indirectly linked to human activities. Urgent and considerable efforts must be made from now on to cataloge, understand, preserve, and enhance the value of biodiversity while ensuring food safety and human and animal health. Ambitious integrated and multifield research programs must be implemented in order to understand the causes and anticipate the consequences of loss of biodiversity. Such losses are a serious threat to sustainable development and to the quality of life of future generations. They have an influence on the natural balance of global biodiversity in particularly in reducing the capability of species to adapt rapidly by genetic mutations to survive in modified ecosystems. Usually, the natural immune systems of mammals (both human and animal), are highly polymorphic and able to adapt rapidly to new situations. We more specifically discuss the fact that if the genetic diversity of the affected populations is low the invading microorganisms, will suddenly expand and create epidemic outbreaks with risks of pandemic. So biodiversity appears to function as an important barrier (buffer), especially against disease-causing organisms, which can function in different ways. Finally, we discuss the importance of preserving biodiversity mainly in the wildlife ecosystems as an integrated and sustainable approach among others in order to prevent and control the emergence or reemergence of diseases in animals and humans (zoonosis). Although plants are also part of this paradigm, they fall outside our field of study.

  5. Biodiversity and the lexicon zoo.

    Treesearch

    B.G. Marcot

    2007-01-01

    Ecologists and natural resource managers struggle to define and relate biodiversity, biocomplexity, ecological integrity, ecosystem services, and related concepts; to describe effects of disturbance dynamics on biodiversity; and to understand how biodiversity relates to resilience, resistance, and stability of ecosystems and sustainability of resource conditions. To...

  6. Biodiversity of Jinggangshan Mountain: The Importance of Topography and Geographical Location in Supporting Higher Biodiversity

    PubMed Central

    Liu, Gang; Huang, Fang-Fang; Liu, Jin-Gang; Liao, Wen-Bo; Wang, Ying-Yong; Ren, Si-Jie; Chen, Chun-Quan; Peng, Shao-Lin

    2015-01-01

    Diversity is mainly determined by climate and environment. In addition, topography is a complex factor, and the relationship between topography and biodiversity is still poorly understood. To understand the role of topography, i.e., altitude and slope, in biodiversity, we selected Jinggangshan Mountain (JGM), an area with unique topography, as the study area. We surveyed plant and animal species richness of JGM and compared the biodiversity and the main geographic characteristics of JGM with the adjacent 4 mountains. Gleason’s richness index was calculated to assess the diversity of species. In total, 2958 spermatophyte species, 418 bryophyte species, 355 pteridophyte species and 493 species of vertebrate animals were recorded in this survey. In general, the JGM biodiversity was higher than that of the adjacent mountains. Regarding topographic characteristics, 77% of JGM’s area was in the mid-altitude region and approximately 40% of JGM’s area was in the 10°–20° slope range, which may support more vegetation types in JGM area and make it a biodiversity hotspot. It should be noted that although the impact of topography on biodiversity was substantial, climate is still a more general factor driving the formation and maintenance of higher biodiversity. Topographic conditions can create microclimates, and both climatic and topographic conditions contribute to the formation of high biodiversity in JGM. PMID:25763820

  7. I-HEDGE: determining the optimum complementary sets of taxa for conservation using evolutionary isolation

    PubMed Central

    Mooers, Arne Ø.; Caccone, Adalgisa; Russello, Michael A.

    2016-01-01

    In the midst of the current biodiversity crisis, conservation efforts might profitably be directed towards ensuring that extinctions do not result in inordinate losses of evolutionary history. Numerous methods have been developed to evaluate the importance of species based on their contribution to total phylogenetic diversity on trees and networks, but existing methods fail to take complementarity into account, and thus cannot identify the best order or subset of taxa to protect. Here, we develop a novel iterative calculation of the heightened evolutionary distinctiveness and globally endangered metric (I-HEDGE) that produces the optimal ranked list for conservation prioritization, taking into account complementarity and based on both phylogenetic diversity and extinction probability. We applied this metric to a phylogenetic network based on mitochondrial control region data from extant and recently extinct giant Galápagos tortoises, a highly endangered group of closely related species. We found that the restoration of two extinct species (a project currently underway) will contribute the greatest gain in phylogenetic diversity, and present an ordered list of rankings that is the optimum complementarity set for conservation prioritization. PMID:27635324

  8. I-HEDGE: determining the optimum complementary sets of taxa for conservation using evolutionary isolation.

    PubMed

    Jensen, Evelyn L; Mooers, Arne Ø; Caccone, Adalgisa; Russello, Michael A

    2016-01-01

    In the midst of the current biodiversity crisis, conservation efforts might profitably be directed towards ensuring that extinctions do not result in inordinate losses of evolutionary history. Numerous methods have been developed to evaluate the importance of species based on their contribution to total phylogenetic diversity on trees and networks, but existing methods fail to take complementarity into account, and thus cannot identify the best order or subset of taxa to protect. Here, we develop a novel iterative calculation of the heightened evolutionary distinctiveness and globally endangered metric (I-HEDGE) that produces the optimal ranked list for conservation prioritization, taking into account complementarity and based on both phylogenetic diversity and extinction probability. We applied this metric to a phylogenetic network based on mitochondrial control region data from extant and recently extinct giant Galápagos tortoises, a highly endangered group of closely related species. We found that the restoration of two extinct species (a project currently underway) will contribute the greatest gain in phylogenetic diversity, and present an ordered list of rankings that is the optimum complementarity set for conservation prioritization.

  9. Prosopis: a global assessment of the biogeography, benefits, impacts and management of one of the world's worst woody invasive plant taxa

    PubMed Central

    Shackleton, Ross T.; Le Maitre, David C.; Pasiecznik, Nick M.; Richardson, David M.

    2014-01-01

    Invasive species cause ecological, economic and social impacts and are key drivers of global change. This is the case for the genus Prosopis (mesquite; Fabaceae) where several taxa are among the world's most damaging invasive species. Many contentious issues (‘conflicts of interest’) surround these taxa, and management interventions have not yet sustainably reduced the negative impacts. There is an urgent need to better understand the factors that drive invasions and shape management actions, and to compare the effectiveness of different management approaches. This paper presents a global review of Prosopis, focusing on its distribution, impacts, benefits and approaches to management. Prosopis was found to occur in a 129 countries globally and many more countries are climatically suitable. All areas with naturalized or invasive Prosopis species at present are suitable for more taxa and many Asian and Mediterranean countries with no records of Prosopis are bioclimatically suitable. Several Prosopis species have substantial impacts on biodiversity, ecosystem services, and local and regional economies in their native and even more so in their invasive ranges; others provide multiple benefits to local communities. Management efforts are underway in only a small part of the invaded range. Countries where more research has been done are more likely to implement formal management than those where little published research is available. Management strategies differ among countries; developed nations use mainly mechanical and chemical control whereas developing nations tend to apply control through utilization approaches. A range of countries are also using biological control. Key gaps in knowledge and promising options for management are highlighted. PMID:24899150

  10. Vascular Plant and Vertebrate Inventory of Coronado National Memorial

    USGS Publications Warehouse

    Schmidt, Cecilia A.; Powell, Brian F.; Swann, Don E.; Halvorson, William L.

    2007-01-01

    We conducted inventories for amphibians and reptiles, birds, and mammals; and summarized past inventories for vascular plants at Coronado National Memorial (NM) in Arizona. We used our data as well as data from previous research to compile species lists for the memorial, assess inventory completeness, and make suggestions on future monitoring efforts. There have been 940 species of plants and vertebrates recorded at Coronado NM (Table 1), of which 46 (5%) are non-native. The species richness of the memorial is one of the highest in the Sonoran Desert Network of park units, third only to park units that are two and one-half (Chiricahua National Monument), 19 (Saguaro National Park) and 70 (Organ Pipe Cactus National Monument) times larger in area. The high species diversities are due to the large elevational gradient, overlap of bigeographical regions, wide range of geology and soils, and diverse vegetation communities present at the memorial. Changes in species composition have occurred at the memorial over the last 20 years in all major taxonomic groups. These changes are likely due to increases in grassy plant species (both native and non-native) at the lower elevations of the memorial. We suspect that grassy plant cover has increased because of changes in grazing intensity, introduction of some non-native species, and a recent fire. All recent vertebrate inventories have yielded grassland obligate species not previously recorded at the memorial. Based on the review of past studies, we believe the inventory for most taxa, except bats, is nearly complete, though some rare or elusive species will likely be added with additional survey effort.

  11. Soil biodiversity and human health

    NASA Astrophysics Data System (ADS)

    Wall, Diana H.; Nielsen, Uffe N.; Six, Johan

    2015-12-01

    Soil biodiversity is increasingly recognized as providing benefits to human health because it can suppress disease-causing soil organisms and provide clean air, water and food. Poor land-management practices and environmental change are, however, affecting belowground communities globally, and the resulting declines in soil biodiversity reduce and impair these benefits. Importantly, current research indicates that soil biodiversity can be maintained and partially restored if managed sustainably. Promoting the ecological complexity and robustness of soil biodiversity through improved management practices represents an underutilized resource with the ability to improve human health.

  12. Insular ecosystems of the southeastern United States—A regional synthesis to support biodiversity conservation in a changing climate

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Wolfe, William J.

    2016-08-11

    In the southeastern United States, insular ecosystems—such as rock outcrops, depression wetlands, high-elevation balds, flood-scoured riparian corridors, and insular prairies and barrens—occupy a small fraction of land area but constitute an important source of regional and global biodiversity, including concentrations of rare and endemic plant taxa. Maintenance of this biodiversity depends upon regimes of abiotic stress and disturbance, incorporating factors such as soil surface temperature, widely fluctuating hydrologic conditions, fires, flood scouring, and episodic droughts that may be subject to alteration by climate change. Over several decades, numerous localized, site-level investigations have yielded important information about the floristics, physical environments, and ecological dynamics of these insular ecosystems; however, the literature from these investigations has generally remained fragmented. This report consists of literature syntheses for eight categories of insular ecosystems of the southeastern United States, concerning (1) physical geography, (2) ecological determinants of community structures including vegetation dynamics and regimes of abiotic stress and disturbance, (3) contributions to regional and global biodiversity, (4) historical and current anthropogenic threats and conservation approaches, and (5) key knowledge gaps relevant to conservation, particularly in terms of climate-change effects on biodiversity. This regional synthesis was undertaken to discern patterns across ecosystems, identify knowledge gaps, and lay the groundwork for future analyses of climate-change vulnerability. Findings from this synthesis indicate that, despite their importance to regional and global biodiversity, insular ecosystems of the southeastern United States have been subjected to a variety of direct and indirect human alterations. In many cases, important questions remain concerning key determinants of ecosystem function. In particular, few

  13. Global biodiversity: indicators of recent declines

    USGS Publications Warehouse

    Butchart, Stuart H.M.; Walpole, Matt; Collen, Ben; Van Strien, Arco; Scharlemann, Jorn P.W.; Almond, Rosamunde E.A.; Baillie, Jonathan E.M.; Bomhard, Bastian; Brown, Claire; Bruno, John; Carpenter, Kent E.; Carr, Genevieve M.; Chanson, Janice; Chenery, Anna M.; Csirke, Jorge; Davidson, Nick C.; Dentener, Frank; Foster, Matt; Galli, Alessandro; Galloway, James N.; Genovesi, Piero; Gregory, Richard D.; Hockings, Marc; Kapos, Valerie; Lamarque, Jean-Francois; Leverington, Fiona; Loh, Jonathan; McGeoch, Melodie A.; McRae, Louise; Minasyan, Anahit; Morcillo, Monica Hernandez; Oldfield, Thomasina E.E.; Pauly, Daniel; Quader, Suhel; Revenga, Carmen; Sauer, John R.; Skolnik, Benjamin; Spear, Dian; Stanwell-Smith, Damon; Stuart, Simon N.; Symes, Andy; Tierney, Megan; Tyrrell, Tristan D.; Vie, Jean-Christophe; Watson, Reg

    2011-01-01

    In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species' population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.

  14. The Pacific Northwest Research Station biodiversity initiative: scooping out the challenges in managing for biodiversity.

    Treesearch

    Rachel White; Randy Molina

    2006-01-01

    The USDA Forest Service Pacific Northwest Research Station's Biodiversity Initiative seeks to determine the types of science tools needed by natural resource professionals to meet diverse and complex biodiversity goals. During the scoping phase of this Initiative, we asked a broad cross-section of people whose work involves managing for biodiversity, from state...

  15. Biodiversity in a complex world: consolidation and progress in functional biodiversity research.

    PubMed

    Hillebrand, Helmut; Matthiessen, Birte

    2009-12-01

    The global decline of biodiversity caused by human domination of ecosystems worldwide is supposed to alter important process rates and state variables in these ecosystems. However, there is considerable debate on the prevalence and importance of biodiversity effects on ecosystem function (BDEF). Here, we argue that much of the debate stems from two major shortcomings. First, most studies do not directly link the traits leading to increased or decreased function to the traits needed for species coexistence and dominance. We argue that implementing a trait-based approach and broadening the perception of diversity to include trait dissimilarity or trait divergence will result in more realistic predictions on the consequences of altered biodiversity. Second, the empirical and theoretical studies do not reflect the complexity of natural ecosystems, which makes it difficult to transfer the results to natural situations of species loss. We review how different aspects of complexity (trophic structure, multifunctionality, spatial or temporal heterogeneity, and spatial population dynamics) alter our perception of BDEF. We propose future research avenues concisely testing whether acknowledging this complexity will strengthen the observed biodiversity effects. Finally, we propose that a major future task is to disentangle biodiversity effects on ecosystem function from direct changes in function due to human alterations of abiotic constraints.

  16. [Some problems of the study and representation of Siberian flora biodiversity in connection with its conservation].

    PubMed

    Olonova, M V

    2007-01-01

    The present knowledge of flora of Siberia is quite insufficient, which is a considerable obstacle to the detection of its biodiversity for conserving the gene pool. Planning conservation measures should be focused not only on species, but also on intraspecific taxa and their phylogenetic uniqueness. In the absence of genetic data, available morphological and geographical methods should be used, so that, when it is impossible to establish the actual origin and relationship of taxa, the existing morphological diverstity is at least represented, as far as it is known to be based on genetic diversity. Phenetic maps can be of much use in the study of intraspecific morphological diversity. The estimation of geographic variability and morphological diversity, as well as the evaluation of territories, can be based on such maps. To represent adequately the biodiversity existing within poorly studied, presumably hybrid plant groups, until actual origin and relationship are known, they should probably be forcedly and provisionally considered as a special type of hybrid complexes, representing the unclear present day taxonomic situation. Such complexes could include populations and individuals with morphological characters of two or more different species, until the systematic position of such populations and individuals is further explored. Until the actual taxonomic status and relationship of the components are established, they could be regarded as subspecies permitted by the Code, or as certain recorded morphological deviations from the type, without assigning any taxonomic status to them--depending on the available data on variability and distribution. In the future, the resulting provisional information on morphological diversity would help to concentrate the efforts of biologists, in possession of the newest methods, on the most important objects, and serve as the scientific base for effective measures aimed at the conservation and management of the vast gene pool of

  17. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa.

    PubMed

    Stork, N E; Srivastava, D S; Eggleton, P; Hodda, M; Lawson, G; Leakey, R R B; Watt, A D

    2017-08-01

    Lawton et al. (1998) found, in a highly cited study, that the species richness of 8 taxa each responds differently to anthropogenic disturbance in Cameroon forests. Recent developments in conservation science suggest that net number of species is an insensitive measure of change and that understanding which species are affected by disturbance is more important. It is also recognized that all disturbance types are not equal in their effect on species and that grouping species according to function rather than taxonomy is more informative of responses of biodiversity to change. In a reanalysis of most of the original Cameroon data set (canopy and ground ants, termites, canopy beetles, nematodes, and butterflies), we focused on changes in species and functional composition rather than richness and used a more inclusive measure of forest disturbance based on 4 component drivers of change: years since disturbance, tree cover, soil compaction, and degree of tree removal. Effects of disturbance on compositional change were largely concordant between taxa. Contrary to Lawton et al.'s findings, species richness for most groups did not decline with disturbance level, providing support for the view that trends in species richness at local scales do not reflect the resilience of ecosystems to disturbance. Disturbance affected species composition more strongly than species richness for butterflies, canopy beetles, and litter ants. For these groups, disturbance caused species replacements rather than just species loss. Only termites showed effects of disturbance on species richness but not composition, indicating species loss without replacement. Although disturbance generally caused changes in composition, the strength of this relationship depended on the disturbance driver. Butterflies, litter ants, and nematodes were correlated with amount of tree cover, canopy beetles were most strongly correlated with time since disturbance, and termites were most strongly correlated with

  18. Caribbean landscapes and their biodiversity

    Treesearch

    A. E. Lugo; E. H. Helmer; E. Santiago Valentín

    2012-01-01

    Both the biodiversity and the landscapes of the Caribbean have been greatly modified as a consequence of human activity. In this essay we provide an overview of the natural landscapes and biodiversity of the Caribbean and discuss how human activity has affected both. Our Caribbean geographic focus is on the insular Caribbean and the biodiversity focus is on the flora,...

  19. The taxonomic distinctness of macroinvertebrate communities of Atlantic Forest streams cannot be predicted by landscape and climate variables, but traditional biodiversity indices can.

    PubMed

    Roque, F O; Guimarães, E A; Ribeiro, M C; Escarpinati, S C; Suriano, M T; Siqueira, T

    2014-11-01

    Predicting how anthropogenic activities may influence the various components of biodiversity is essential for finding ways to reduce diversity loss. This challenge involves: a) understanding how environmental factors influence diversity across different spatial scales, and b) developing ways to measure these relationships in a way that is fast, economical, and easy to communicate. In this study, we investigate whether landscape and bioclimatic variables could explain variation in biodiversity indices in macroinvertebrate communities from 39 Atlantic Forest streams. In addition to traditional diversity measures, i.e., species richness, abundance and Shannon index, we used a taxonomic distinctness index that measures the degree of phylogenetic relationship among taxa. The amount of variation in the diversity measures that was explained by environmental and spatial variables was estimated using variation partitioning based on multiple regression. Our study demonstrates that taxonomic distinctness does not respond in the same way as the traditional used in biodiversity studies. We found no evidence that taxonomic distinctness responds predictably to variation in landscape metrics, indicating the need for the incorporation of predictors at multiple scales in this type of study. The lack of congruence between taxonomic distinctness and other indices and its low predictability may be related to the fact that this measure expresses long-term evolutionary adaptation to ecosystem conditions, while the other traditional biodiversity metrics respond to short-term environmental changes.

  20. The biodiversity of species and their rates of extinction, distribution, and protection.

    PubMed

    Pimm, S L; Jenkins, C N; Abell, R; Brooks, T M; Gittleman, J L; Joppa, L N; Raven, P H; Roberts, C M; Sexton, J O

    2014-05-30

    Recent studies clarify where the most vulnerable species live, where and how humanity changes the planet, and how this drives extinctions. We assess key statistics about species, their distribution, and their status. Most are undescribed. Those we know best have large geographical ranges and are often common within them. Most known species have small ranges. The numbers of small-ranged species are increasing quickly, even in well-known taxa. They are geographically concentrated and are disproportionately likely to be threatened or already extinct. Current rates of extinction are about 1000 times the likely background rate of extinction. Future rates depend on many factors and are poised to increase. Although there has been rapid progress in developing protected areas, such efforts are not ecologically representative, nor do they optimally protect biodiversity. Copyright © 2014, American Association for the Advancement of Science.

  1. Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots.

    PubMed

    Cowman, P F; Bellwood, D R

    2011-12-01

    Diversification rates within four conspicuous coral reef fish families (Labridae, Chaetodontidae, Pomacentridae and Apogonidae) were estimated using Bayesian inference. Lineage through time plots revealed a possible late Eocene/early Oligocene cryptic extinction event coinciding with the collapse of the ancestral Tethyan/Arabian hotspot. Rates of diversification analysis revealed elevated cladogenesis in all families in the Oligocene/Miocene. Throughout the Miocene, lineages with a high percentage of coral reef-associated taxa display significantly higher net diversification rates than expected. The development of a complex mosaic of reef habitats in the Indo-Australian Archipelago (IAA) during the Oligocene/Miocene appears to have been a significant driver of cladogenesis. Patterns of diversification suggest that coral reefs acted as a refuge from high extinction, as reef taxa are able to sustain diversification at high extinction rates. The IAA appears to support both cladogenesis and survival in associated lineages, laying the foundation for the recent IAA marine biodiversity hotspot. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  2. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America—Modern data for climatic estimation from vegetation inventories

    USGS Publications Warehouse

    Thompson, Robert S.; Anderson, Katherine H.; Pelltier, Richard T.; Strickland, Laura E.; Shafer, Sarah L.; Bartlein, Patrick J.

    2012-01-01

    Vegetation inventories (plant taxa present in a vegetation assemblage at a given site) can be used to estimate climatic parameters based on the identification of the range of a given parameter where all taxa in an assemblage overlap ("Mutual Climatic Range"). For the reconstruction of past climates from fossil or subfossil plant assemblages, we assembled the data necessary for such analyses for 530 woody plant taxa and eight climatic parameters in North America. Here we present examples of how these data can be used to obtain paleoclimatic estimates from botanical data in a straightforward, simple, and robust fashion. We also include matrices of climate parameter versus occurrence or nonoccurrence of the individual taxa. These relations are depicted graphically as histograms of the population distributions of the occurrences of a given taxon plotted against a given climatic parameter. This provides a new method for quantification of paleoclimatic parameters from fossil plant assemblages.

  3. Hydrologic drivers of tree biodiversity: The impact of climate change (Invited)

    NASA Astrophysics Data System (ADS)

    Rodriguez-Iturbe, I.; Konar, M.; Muneepeerakul, R.; Azaele, S.; Bertuzzo, E.; Rinaldo, A.

    2009-12-01

    Biodiversity of forests is of major importance for society. The possible impact of climate change on the characteristics of tree diversity is a topic of crucial importance with relevant implications for conservation campaigns and resource management. Here we present the main results of the expected biodiversity changes in the Mississippi-Missouri River Basin (MMRS) and two of its subregions under different scenarios of possible climate change. A mechanistic neutral metapopulation model is developed to study the main drivers of large scale biodiversity signatures in the MMRS system. The region is divided into 824 Direct Tributary Areas (DTAs), each one characterized by its own habitat capacity. Data for the spatial occurrence of the 231 species present in the system is taken from the US Forest Service Inventory and Analysis Database. The model has permeable boundaries to account for immigration from the regions surrounding the MMRS. The model accounts for key aspects of ecological dynamics (e.g., birth, death, speciation, and migration) and is fundamentally driven by the mean annual precipitation characteristic of each of the DTAs in the system. It is found that such a simple model, with only four parameters, yields an excellent representation of the observed local species richness (LSR), between-community (β) diversity, and species rank-occupancy function. The mean annual rainfall of each DTA is then changed according to the climate scenarios and new habitat capacities are thus obtained throughout the MMRS and its subregions. The resulting large-scale biodiversity signatures are computed and compared with those of the present scenario, showing that there are very important changes arising from the climate change conditions. For the dry scenarios, it is shown that there is a considerable decrease of species richness, both at local and regional scales, and a contraction of species' geographic ranges. These findings link the hydrologic and ecological dynamics of the

  4. Biodiversity in the Anthropocene: prospects and policy.

    PubMed

    Seddon, Nathalie; Mace, Georgina M; Naeem, Shahid; Tobias, Joseph A; Pigot, Alex L; Cavanagh, Rachel; Mouillot, David; Vause, James; Walpole, Matt

    2016-12-14

    Meeting the ever-increasing needs of the Earth's human population without excessively reducing biological diversity is one of the greatest challenges facing humanity, suggesting that new approaches to biodiversity conservation are required. One idea rapidly gaining momentum-as well as opposition-is to incorporate the values of biodiversity into decision-making using economic methods. Here, we develop several lines of argument for how biodiversity might be valued, building on recent developments in natural science, economics and science-policy processes. Then we provide a synoptic guide to the papers in this special feature, summarizing recent research advances relevant to biodiversity valuation and management. Current evidence suggests that more biodiverse systems have greater stability and resilience, and that by maximizing key components of biodiversity we maximize an ecosystem's long-term value. Moreover, many services and values arising from biodiversity are interdependent, and often poorly captured by standard economic models. We conclude that economic valuation approaches to biodiversity conservation should (i) account for interdependency and (ii) complement rather than replace traditional approaches. To identify possible solutions, we present a framework for understanding the foundational role of hard-to-quantify 'biodiversity services' in sustaining the value of ecosystems to humanity, and then use this framework to highlight new directions for pure and applied research. In most cases, clarifying the links between biodiversity and ecosystem services, and developing effective policy and practice for managing biodiversity, will require a genuinely interdisciplinary approach. © 2016 The Author(s).

  5. Biodiversity in the Anthropocene: prospects and policy

    PubMed Central

    Mace, Georgina M.; Mouillot, David; Vause, James; Walpole, Matt

    2016-01-01

    Meeting the ever-increasing needs of the Earth’s human population without excessively reducing biological diversity is one of the greatest challenges facing humanity, suggesting that new approaches to biodiversity conservation are required. One idea rapidly gaining momentum—as well as opposition—is to incorporate the values of biodiversity into decision-making using economic methods. Here, we develop several lines of argument for how biodiversity might be valued, building on recent developments in natural science, economics and science-policy processes. Then we provide a synoptic guide to the papers in this special feature, summarizing recent research advances relevant to biodiversity valuation and management. Current evidence suggests that more biodiverse systems have greater stability and resilience, and that by maximizing key components of biodiversity we maximize an ecosystem’s long-term value. Moreover, many services and values arising from biodiversity are interdependent, and often poorly captured by standard economic models. We conclude that economic valuation approaches to biodiversity conservation should (i) account for interdependency and (ii) complement rather than replace traditional approaches. To identify possible solutions, we present a framework for understanding the foundational role of hard-to-quantify ‘biodiversity services’ in sustaining the value of ecosystems to humanity, and then use this framework to highlight new directions for pure and applied research. In most cases, clarifying the links between biodiversity and ecosystem services, and developing effective policy and practice for managing biodiversity, will require a genuinely interdisciplinary approach. PMID:27928040

  6. Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview.

    PubMed

    Macedo, Maria Filomena; Miller, Ana Zélia; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2009-11-01

    The presence and deteriorating action of micro-organisms on monuments and stone works of art have received considerable attention in the last few years. Knowledge of the microbial populations living on stone materials is the starting point for successful conservation treatment and control. This paper reviews the literature on cyanobacteria and chlorophyta that cause deterioration of stone cultural heritage (outdoor monuments and stone works of art) in European countries of the Mediterranean Basin. Some 45 case studies from 32 scientific papers published between 1976 and 2009 were analysed. Six lithotypes were considered: marble, limestone, travertine, dolomite, sandstone and granite. A wide range of stone monuments in the Mediterranean Basin support considerable colonization of cyanobacteria and chlorophyta, showing notable biodiversity. About 172 taxa have been described by different authors, including 37 genera of cyanobacteria and 48 genera of chlorophyta. The most widespread and commonly reported taxa on the stone cultural heritage in the Mediterranean Basin are, among cyanobacteria, Gloeocapsa, Phormidium and Chroococcus and, among chlorophyta, Chlorella, Stichococcus and Chlorococcum. The results suggest that cyanobacteria and chlorophyta colonize a wide variety of substrata and that this is related primarily to the physical characteristics of the stone surface, microclimate and environmental conditions and secondarily to the lithotype.

  7. Challenges of Biodiversity Education: A Review of Education Strategies for Biodiversity Education

    ERIC Educational Resources Information Center

    Navarro-Perez, Moramay; Tidball, Keith G.

    2012-01-01

    Biodiversity conservation has increasingly gained recognition in national and international agendas. The Convention on Biological Diversity (CBD) has positioned biodiversity as a key asset to be protected to ensure our well-being and that of future generations. Nearly 20 years after its inception, results are not as expected, as shown in the…

  8. The inventory of the Portuguese geological heritage: a good example of scientific cooperation between universities

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Brilha, J.; Pereira, D.

    2012-04-01

    Initiatives of identification, protection, and valuation of the Portuguese abiotic natural heritage have been carried out mainly by the scientific community, and particularly by the academic community. The official institutions responsible for nature conservation have focused their policies primarily on biodiversity issues and the relevance of geoconservation in the Portuguese geological survey was always minor, compared with homologous institutions from countries like Spain, for example. In this context, the academic community has led geoconservation research and activities in Portugal, especially since the late 1990s, following the development of this theme in the European continent. The first systematic inventory of the Portuguese geological heritage is a clear example of the academic collaboration that characterizes the geoconservation in Portugal. Three hundred and twenty six geosites with international or national relevance have been inventoried under the scope of the scientific research project "Identification, characterisation and conservation of geological heritage: a geoconservation strategy for Portugal", financed by the Portuguese Foundation for Science and Technology between 2007 and 2010 (PTDC/CTE-GEX/64966/2006). The inventory (one of the project's outputs) was coordinated by the University of Minho team with the participation of the universities of Algarve, Aveiro, Azores, Coimbra, Évora, Lisboa, Madeira, Nova de Lisboa, Porto, and Trás-os-Montes e Alto Douro. The inventory procedures were based on the ProGEO methodology, i.e., definition of geological frameworks followed by the identification of representative geosites with national and international relevance for each framework. The geosites were selected exclusively based on their scientific value and support twenty-seven frameworks. For each geological framework a leading geoscientist from a university was responsible for the scientific characterization of the framework, to invite

  9. A Biodiversity Indicators Dashboard: Addressing Challenges to Monitoring Progress towards the Aichi Biodiversity Targets Using Disaggregated Global Data

    PubMed Central

    Han, Xuemei; Smyth, Regan L.; Young, Bruce E.; Brooks, Thomas M.; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H. M.; Larsen, Frank W.; Hamilton, Healy; Hansen, Matthew C.; Turner, Will R.

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's “Aichi Targets”. These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity “dashboard” – a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the

  10. A biodiversity indicators dashboard: addressing challenges to monitoring progress towards the Aichi biodiversity targets using disaggregated global data.

    PubMed

    Han, Xuemei; Smyth, Regan L; Young, Bruce E; Brooks, Thomas M; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H M; Larsen, Frank W; Hamilton, Healy; Hansen, Matthew C; Turner, Will R

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's "Aichi Targets". These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity "dashboard"--a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the protection of

  11. Economic growth, biodiversity loss and conservation effort.

    PubMed

    Dietz, Simon; Adger, W Neil

    2003-05-01

    This paper investigates the relationship between economic growth, biodiversity loss and efforts to conserve biodiversity using a combination of panel and cross section data. If economic growth is a cause of biodiversity loss through habitat transformation and other means, then we would expect an inverse relationship. But if higher levels of income are associated with increasing real demand for biodiversity conservation, then investment to protect remaining diversity should grow and the rate of biodiversity loss should slow with growth. Initially, economic growth and biodiversity loss are examined within the framework of the environmental Kuznets hypothesis. Biodiversity is represented by predicted species richness, generated for tropical terrestrial biodiversity using a species-area relationship. The environmental Kuznets hypothesis is investigated with reference to comparison of fixed and random effects models to allow the relationship to vary for each country. It is concluded that an environmental Kuznets curve between income and rates of loss of habitat and species does not exist in this case. The role of conservation effort in addressing environmental problems is examined through state protection of land and the regulation of trade in endangered species, two important means of biodiversity conservation. This analysis shows that the extent of government environmental policy increases with economic development. We argue that, although the data are problematic, the implications of these models is that conservation effort can only ever result in a partial deceleration of biodiversity decline partly because protected areas serve multiple functions and are not necessarily designated to protect biodiversity. Nevertheless institutional and policy response components of the income biodiversity relationship are important but are not well captured through cross-country regression analysis.

  12. Protection alone may not promote natural recovery of biogenic habitats of high biodiversity damaged by mobile fishing gears.

    PubMed

    Fariñas-Franco, Jose M; Allcock, A Louise; Roberts, Dai

    2018-04-01

    The horse mussel Modiolus modiolus (L.) is a large marine bivalve that aggregates to create complex habitats of high biodiversity. As a keystone species, M. modiolus is of great importance for the functioning of marine benthic ecosystems, forming biogenic habitats used to designate Marine Protected Areas (MPAs). The present study investigates the condition of M. modiolus beds historically subjected to intense scallop fishing using mobile fishing gears. The study, conducted seven years after the introduction of legislation banning all forms of fishing, aimed to establish whether natural habitat recovery occurs after protection measures are put in place. Lower biodiversity and up to 80% decline in densities of M. modiolus were recorded across the current distributional range of the species in Strangford Lough, Northern Ireland. The decline in biodiversity in most areas surveyed was consistent with that observed in biogenic reefs impacted by mobile fishing gears elsewhere. Epifauna, including sponges, hydroids and tunicates, experienced the most substantial decline in biodiversity, with up to 64% fewer taxa recorded in 2010 compared with 2003. Higher variability in community composition and a shift towards faunal assemblages dominated by opportunistic infaunal species typical of softer substrata were also detected. Based on these observations we suggest that, for biogenic habitats, the designation of MPAs and the introduction of fishing bans alone may not be sufficient to reverse or halt the negative effects caused by past anthropogenic impacts. Direct intervention, including habitat restoration based on translocation of native keystone species, should be considered as part of management strategies for MPAs which host similar biogenic reef habitats where condition and natural recovery have been compromised. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Biodiversity assessment among two Nebraska prairies: a comparison between traditional and phylogenetic diversity indices.

    PubMed

    Aust, Shelly K; Ahrendsen, Dakota L; Kellar, P Roxanne

    2015-01-01

    Conservation of the evolutionary diversity among organisms should be included in the selection of priority regions for preservation of Earth's biodiversity. Traditionally, biodiversity has been determined from an assessment of species richness (S), abundance, evenness, rarity, etc. of organisms but not from variation in species' evolutionary histories. Phylogenetic diversity (PD) measures evolutionary differences between taxa in a community and is gaining acceptance as a biodiversity assessment tool. However, with the increase in the number of ways to calculate PD, end-users and decision-makers are left wondering how metrics compare and what data are needed to calculate various metrics. In this study, we used massively parallel sequencing to generate over 65,000 DNA characters from three cellular compartments for over 60 species in the asterid clade of flowering plants. We estimated asterid phylogenies from character datasets of varying nucleotide quantities, and then assessed the effect of varying character datasets on resulting PD metric values. We also compared multiple PD metrics with traditional diversity indices (including S) among two endangered grassland prairies in Nebraska (U.S.A.). Our results revealed that PD metrics varied based on the quantity of genes used to infer the phylogenies; therefore, when comparing PD metrics between sites, it is vital to use comparable datasets. Additionally, various PD metrics and traditional diversity indices characterize biodiversity differently and should be chosen depending on the research question. Our study provides empirical results that reveal the value of measuring PD when considering sites for conservation, and it highlights the usefulness of using PD metrics in combination with other diversity indices when studying community assembly and ecosystem functioning. Ours is just one example of the types of investigations that need to be conducted across the tree of life and across varying ecosystems in order to build

  14. Biodiversity assessment among two Nebraska prairies: a comparison between traditional and phylogenetic diversity indices

    PubMed Central

    Aust, Shelly K.; Ahrendsen, Dakota L.

    2015-01-01

    Abstract Background Conservation of the evolutionary diversity among organisms should be included in the selection of priority regions for preservation of Earth’s biodiversity. Traditionally, biodiversity has been determined from an assessment of species richness (S), abundance, evenness, rarity, etc. of organisms but not from variation in species’ evolutionary histories. Phylogenetic diversity (PD) measures evolutionary differences between taxa in a community and is gaining acceptance as a biodiversity assessment tool. However, with the increase in the number of ways to calculate PD, end-users and decision-makers are left wondering how metrics compare and what data are needed to calculate various metrics. New information In this study, we used massively parallel sequencing to generate over 65,000 DNA characters from three cellular compartments for over 60 species in the asterid clade of flowering plants. We estimated asterid phylogenies from character datasets of varying nucleotide quantities, and then assessed the effect of varying character datasets on resulting PD metric values. We also compared multiple PD metrics with traditional diversity indices (including S) among two endangered grassland prairies in Nebraska (U.S.A.). Our results revealed that PD metrics varied based on the quantity of genes used to infer the phylogenies; therefore, when comparing PD metrics between sites, it is vital to use comparable datasets. Additionally, various PD metrics and traditional diversity indices characterize biodiversity differently and should be chosen depending on the research question. Our study provides empirical results that reveal the value of measuring PD when considering sites for conservation, and it highlights the usefulness of using PD metrics in combination with other diversity indices when studying community assembly and ecosystem functioning. Ours is just one example of the types of investigations that need to be conducted across the tree of life and

  15. Eco-engineered rock pools: a concrete solution to biodiversity loss and urban sprawl in the marine environment

    NASA Astrophysics Data System (ADS)

    Firth, Louise B.; Browne, Keith A.; Knights, Antony M.; Hawkins, Stephen J.; Nash, Róisín

    2016-09-01

    In coastal habitats artificial structures typically support lower biodiversity and can support greater numbers of non-native and opportunistic species than natural rocky reefs. Eco-engineering experiments are typically trialed to succeed; but arguably as much is learnt from failure than from success. Our goal was to trial a generic, cost effective, eco-engineering technique that could be incorporated into rock armouring anywhere in the world. Artificial rock pools were created from manipulated concrete between boulders on the exposed and sheltered sides of a causeway. Experimental treatments were installed in locations where they were expected to fail and compared to controls installed in locations in which they were expected to succeed. Control pools were created lower on the structure where they were immersed on every tidal cycle; experimental pools were created above mean high water spring tide which were only immersed on spring tides. We hypothesised that lower and exposed pools would support significantly higher taxon and functional diversity than upper and sheltered pools. The concrete pools survived the severe winter storms of 2013/14. After 12 months, non-destructive sampling revealed significantly higher mean taxon and functional richness in lower pools than upper pools on the exposed side only. After 24 months the sheltered pools had become inundated with sediments, thus failing to function as rock pools as intended. Destructive sampling on the exposed side revealed significantly higher mean functional richness in lower than upper pools. However, a surprisingly high number of taxa colonised the upper pools leading to no significant difference in mean taxon richness among shore heights. A high number of rare taxa in the lower pools led to total taxon richness being almost twice that of upper pools. These findings highlight that even when expected to fail concrete pools supported diverse assemblages, thus representing an affordable, replicable means of

  16. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    PubMed Central

    Naeem, S.; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F. B.; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. PMID:27928041

  17. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity.

    PubMed

    Naeem, S; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F B; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-12-14

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. © 2016 The Authors.

  18. Biodiversity and Southern forests

    Treesearch

    Eric T. Linder

    2004-01-01

    Biological diversity encompasses all levels of natural variation and includes molecular, genetic, and species levels. All of these factors contribute to diversity accumulated at the landscape scale. However, biodiversity is not equally dispersed across the landscape, but rather clustered in pockets. The Southeastern United States supports several biodiversity hotspots...

  19. Climate-smart management of biodiversity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.; Rosenblatt, Daniel L.

    2015-01-01

    Determining where biodiversity is likely to be most vulnerable to climate change and methods to reduce that vulnerability are necessary first steps to incorporate climate change into biodiversity management plans. Here, we use a spatial climate change vulnerability assessment to (1) map the potential vulnerability of terrestrial biodiversity to climate change in the northeastern United States and (2) provide guidance on how and where management actions for biodiversity could provide long-term benefits under climate change (i.e., climate-smart management considerations). Our model suggests that biodiversity will be most vulnerable in Delaware, Maryland, and the District of Columbia due to the combination of high climate change velocity, high landscape resistance, and high topoclimate homogeneity. Biodiversity is predicted to be least vulnerable in Vermont, Maine, and New Hampshire because large portions of these states have low landscape resistance, low climate change velocity, and low topoclimate homogeneity. Our spatial climate-smart management considerations suggest that: (1) high topoclimate diversity could moderate the effects of climate change across 50% of the region; (2) decreasing local landscape resistance in conjunction with other management actions could increase the benefit of those actions across 17% of the region; and (3) management actions across 24% of the region could provide long-term benefits by promoting short-term population persistence that provides a source population capable of moving in the future. The guidance and framework we provide here should allow conservation organizations to incorporate our climate-smart management considerations into management plans without drastically changing their approach to biodiversity conservation.

  20. Biodiversity: molecular biological domains, symbiosis and kingdom origins

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1992-01-01

    The number of extant species of organisms is estimated to be from fewer than 3 to more than 30 x 10(6) (May, 1992). Molecular biology, comparative genetics and ultrastructural analyses provide new insights into evolutionary relationships between these species, including increasingly precise ideas of how species and higher taxa have evolved from common ancestors. Accumulation of random mutations and large macromolecular sequence change in all organisms since the Proterozoic Eon has been importantly supplemented by acquisition of inherited genomes ('symbiogenesis'). Karyotypic alterations (polyploidization and karyotypic fissioning) have been added to these other mechanisms of species origin in plants and animals during the Phanerozoic Eon. The new evolution concepts (coupled with current rapid rates of species extinction and ignorance of the extent of biodiversity) prompted this analysis of the field of systematic biology and its role in the reorganization of extant species into higher taxa. Two superkingdoms (= Domains: Prokaryotae and Eukaryotae) and five kingdoms (Monera = Procaryotae or Bacteria; Protoctista: algae, amoebae, ciliates, foraminifera, oomycetes, slime molds, etc.; Mychota: 'true' fungi; Plantae: one phylum (division) of bryophytes and nine phyla of tracheophytes; and Animalia) are recognized. Two subkingdoms comprise the monera: the great diverse lineages are Archaebacteria and Eubacteria. The criteria for classification using molecular, ultrastructural and genetic data for this scheme are mentioned. For the first time since the nineteenth century, logical, technical definitions for each group are given with their time of appearance as inferred from the fossil record in the primary scientific literature. This classification scheme, which most closely reflects the evolutionary history, molecular biology, genetics and ultrastructure of extant life, requires changes in social organization of biologists, many of whom as botanists and zoologists, still

  1. The Hawaiian Algal Database: a laboratory LIMS and online resource for biodiversity data

    PubMed Central

    Wang, Norman; Sherwood, Alison R; Kurihara, Akira; Conklin, Kimberly Y; Sauvage, Thomas; Presting, Gernot G

    2009-01-01

    Background Organization and presentation of biodiversity data is greatly facilitated by databases that are specially designed to allow easy data entry and organized data display. Such databases also have the capacity to serve as Laboratory Information Management Systems (LIMS). The Hawaiian Algal Database was designed to showcase specimens collected from the Hawaiian Archipelago, enabling users around the world to compare their specimens with our photographs and DNA sequence data, and to provide lab personnel with an organizational tool for storing various biodiversity data types. Description We describe the Hawaiian Algal Database, a comprehensive and searchable database containing photographs and micrographs, geo-referenced collecting information, taxonomic checklists and standardized DNA sequence data. All data for individual samples are linked through unique accession numbers. Users can search online for sample information by accession number, numerous levels of taxonomy, or collection site. At the present time the database contains data representing over 2,000 samples of marine, freshwater and terrestrial algae from the Hawaiian Archipelago. These samples are primarily red algae, although other taxa are being added. Conclusion The Hawaiian Algal Database is a digital repository for Hawaiian algal samples and acts as a LIMS for the laboratory. Users can make use of the online search tool to view and download specimen photographs and micrographs, DNA sequences and relevant habitat data, including georeferenced collecting locations. It is publicly available at . PMID:19728892

  2. Macroecology of biodiversity: disentangling local and regional effects.

    PubMed

    Pärtel, Meelis; Bennett, Jonathan A; Zobel, Martin

    2016-07-01

    Contents 404 I. 404 II. 404 III. 405 IV. 406 V. 407 VI. 408 409 References 409 SUMMARY: Macroecology of biodiversity disentangles local and regional drivers of biodiversity by exploring large-scale biodiversity relationships with environmental or biotic gradients, generalizing local biodiversity relationships across regions, or comparing biodiversity patterns among species groups. A macroecological perspective is also important at local scales: a full understanding of local biodiversity drivers, including human impact, demands that regional processes be taken into account. This requires knowledge of which species could inhabit a site (the species pool), including those that are currently absent (dark diversity). Macroecology of biodiversity is currently advancing quickly owing to an unprecedented accumulation of biodiversity data, new sampling techniques and analytical methods, all of which better equip us to face current and future challenges in ecology and biodiversity conservation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Biodiversity losses and conservation trade-offs: Assessing future urban growth scenarios for a North American trade corridor

    USGS Publications Warehouse

    Villarreal, Miguel; Norman, Laura M.; Wallace, Cynthia S.A.; Boykin, Kenneth

    2013-01-01

    The Sonoran Desert and Apache Highlands ecoregions of North America are areas of exceptionally high plant and vertebrate biodiversity. However, much of the vertebrate biodiversity is supported by only a few vegetation types with limited distributions, some of which are increasingly threatened by changing land uses. We assessed the impacts of two future urban growth scenarios on biodiversity in a binational watershed in Arizona, USA and Sonora, Mexico. We quantified and mapped terrestrial vertebrate species richness using Wildlife Habitat Relation models and validated the results with data from National Park Service biological inventories. Future urban growth, based on historical trends, was projected to the year 2050 for 1) a “Current Trends” scenario and, 2) a “Megalopolis” scenario that represented a transnational growth corridor with open-space conservation attributes. Based on Current Trends, 45% of existing riparian woodland (267 of 451species), and 34% of semi-desert grasslands (215 of 451 species) will be lost, whereas, in the Megalopolis scenario, these types would decline by 44% and 24% respectively. Outcomes of the two models suggest a trade-off at the taxonomic class level: Current Trends would reduce and fragment mammal and herpetofauna habitat, while Megalopolis would result in loss of avian-rich riparian habitat.

  4. Symbiont acquisition as neoseme: origin of species and higher taxa

    NASA Technical Reports Server (NTRS)

    Bermudes, D.; Margulis, L.

    1987-01-01

    We examine the hypothesis that, in the origin of species and higher taxa of eukaryotes, symbiont acquisition followed by partner integration has been equivalent to neoseme appearance leading to speciation. The formation of stable symbiotic associations involves partner-surface recognition, behavioral and metabolic interaction, and, in some cases, gene product (RNA, protein) and genic (RNA, DNA) integration. This analysis is applied here to examples of neosemes that define specific taxa and to neosemes in plants, fungi, and animals that involve the appearance of new types of tissue. If this hypothesis is correct--if the origin of major genetic variation leading to speciation and even higher taxa may occur through symbiont acquisition and integration--then the analysis of "origins of species and higher taxa" becomes analogous to the study of microbial community ecology.

  5. Arctic biodiversity: Increasing richness accompanies shrinking refugia for a cold-associated tundra fauna

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Malaney, Jason L.; Payer, David C.; Cook, J.A.; Talbot, Sandra L.

    2015-01-01

    As ancestral biodiversity responded dynamically to late-Quaternary climate changes, so are extant organisms responding to the warming trajectory of the Anthropocene. Ecological predictive modeling, statistical hypothesis tests, and genetic signatures of demographic change can provide a powerful integrated toolset for investigating these biodiversity responses to climate change, and relative resiliency across different communities. Within the biotic province of Beringia, we analyzed specimen localities and DNA sequences from 28 mammal species associated with boreal forest and Arctic tundra biomes to assess both historical distributional and evolutionary responses and then forecasted future changes based on statistical assessments of past and present trajectories, and quantified distributional and demographic changes in relation to major management regions within the study area. We addressed three sets of hypotheses associated with aspects of methodological, biological, and socio-political importance by asking (1) what is the consistency among implications of predicted changes based on the results of both ecological and evolutionary analyses; (2) what are the ecological and evolutionary implications of climate change considering either total regional diversity or distinct communities associated with major biomes; and (3) are there differences in management implications across regions? Our results indicate increasing Arctic richness through time that highlights a potential state shift across the Arctic landscape. However, within distinct ecological communities, we found a predicted decline in the range and effective population size of tundra species into several discrete refugial areas. Consistency in results based on a combination of both ecological and evolutionary approaches demonstrates increased statistical confidence by applying cross-discipline comparative analyses to conservation of biodiversity, particularly considering variable management regimes that seek

  6. International Center for Himalayan Biodiversity (ICHB): Conserving Himalayan Biodiversity--A Global Responsibility

    Treesearch

    Ram Bhandari

    2006-01-01

    Biodiversity is a global endowment of nature. Conservation of biodiversity includes all species of plants, animals and other organisms, the range of genetic stocks within each species, and ecosystem diversity. Food, many types of medicine and industrial products are provided by the biological resources that are the basis of life on Earth. The value of the Earth’s...

  7. The origins of tropical marine biodiversity.

    PubMed

    Bowen, Brian W; Rocha, Luiz A; Toonen, Robert J; Karl, Stephen A

    2013-06-01

    Recent phylogeographic studies have overturned three paradigms for the origins of marine biodiversity. (i) Physical (allopatric) isolation is not the sole avenue for marine speciation: many species diverge along ecological boundaries. (ii) Peripheral habitats such as oceanic archipelagos are not evolutionary graveyards: these regions can export biodiversity. (iii) Speciation in marine and terrestrial ecosystems follow similar processes but are not the same: opportunities for allopatric isolation are fewer in the oceans, leaving greater opportunity for speciation along ecological boundaries. Biodiversity hotspots such as the Caribbean Sea and the Indo-Pacific Coral Triangle produce and export species, but can also accumulate biodiversity produced in peripheral habitats. Both hotspots and peripheral ecosystems benefit from this exchange in a process dubbed biodiversity feedback. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Accounting for biodiversity in the dairy industry.

    PubMed

    Sizemore, Grant C

    2015-05-15

    Biodiversity is an essential part of properly functioning ecosystems, yet the loss of biodiversity currently occurs at rates unparalleled in the modern era. One of the major causes of this phenomenon is habitat loss and modification as a result of intensified agricultural practices. This paper provides a starting point for considering biodiversity within dairy production, and, although focusing primarily on the United States, findings are applicable broadly. Biodiversity definitions and assessments (e.g., indicators, tools) are proposed and reviewed. Although no single indicator or tool currently meets all the needs of comprehensive assessment, many sustainable practices are readily adoptable as ways to conserve and promote biodiversity. These practices, as well as potential funding opportunities are identified. Given the state of uncertainty in addressing the complex nature of biodiversity assessments, the adoption of generally sustainable environmental practices may be the best currently available option for protecting biodiversity on dairy lands. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The soul-sucking wasp by popular acclaim--museum visitor participation in biodiversity discovery and taxonomy.

    PubMed

    Ohl, Michael; Lohrmann, Volker; Breitkreuz, Laura; Kirschey, Lukas; Krause, Stefanie

    2014-01-01

    Taxonomy, the science of describing and naming of the living world, is recognized as an important and relevant field in modern biological science. While there is wide agreement on the importance of a complete inventory of all organisms on Earth, the public is partly unaware of the amount of known and unknown biodiversity. Out of the enormous number of undescribed (but already recognized) species in natural history museum collections, we selected an attractive example of a wasp, which was presented to museum visitors at a special museum event. We asked 300 visitors to vote on a name for the new species and out of four preselected options, Ampulex dementor Ohl n. sp. was selected. The name, derived from the 'soul sucking' dementors from the popular Harry Potter books is an allusion to the wasps' behavior to selectively paralyze its cockroach prey. In this example, public voting on a scientific name has been shown to be an appropriate way to link museum visitors emotionally to biodiversity and its discovery.

  10. Biodiversity conservation in local planning.

    PubMed

    Miller, James R; Groom, Martha; Hess, George R; Steelman, Toddi; Stokes, David L; Thompson, Jan; Bowman, Troy; Fricke, Laura; King, Brandon; Marquardt, Ryan

    2009-02-01

    Local land-use policy is increasingly being recognized as fundamental to biodiversity conservation in the United States. Many planners and conservation scientists have called for broader use of planning and regulatory tools to support the conservation of biodiversity at local scales. Yet little is known about the pervasiveness of these practices. We conducted an on-line survey of county, municipal, and tribal planning directors (n =116) in 3 geographic regions of the United States: metropolitan Seattle, Washington; metropolitan Des Moines, Iowa; and the Research Triangle, North Carolina. Our objectives were to gauge the extent to which local planning departments address biodiversity conservation and to identify factors that facilitate or hinder conservation actions in local planning. We found that biodiversity conservation was seldom a major consideration in these departments. Staff time was mainly devoted to development mandates and little time was spent on biodiversity conservation. Regulations requiring conservation actions that might benefit biodiversity were uncommon, with the exception of rules governing water quality in all 3 regions and the protection of threatened and endangered species in the Seattle region. Planning tools that could enhance habitat conservation were used infrequently. Collaboration across jurisdictions was widespread, but rarely focused on conservation. Departments with a conservation specialist on staff tended to be associated with higher levels of conservation actions. Jurisdictions in the Seattle region also reported higher levels of conservation action, largely driven by state and federal mandates. Increased funding was most frequently cited as a factor that would facilitate greater consideration of biodiversity in local planning. There are numerous opportunities for conservation biologists to play a role in improving conservation planning at local scales.

  11. Warfare in biodiversity hotspots.

    PubMed

    Hanson, Thor; Brooks, Thomas M; Da Fonseca, Gustavo A B; Hoffmann, Michael; Lamoreux, John F; Machlis, Gary; Mittermeier, Cristina G; Mittermeier, Russell A; Pilgrim, John D

    2009-06-01

    Conservation efforts are only as sustainable as the social and political context within which they take place. The weakening or collapse of sociopolitical frameworks during wartime can lead to habitat destruction and the erosion of conservation policies, but in some cases, may also confer ecological benefits through altered settlement patterns and reduced resource exploitation. Over 90% of the major armed conflicts between 1950 and 2000 occurred within countries containing biodiversity hotspots, and more than 80% took place directly within hotspot areas. Less than one-third of the 34 recognized hotspots escaped significant conflict during this period, and most suffered repeated episodes of violence. This pattern was remarkably consistent over these 5 decades. Evidence from the war-torn Eastern Afromontane hotspot suggests that biodiversity conservation is improved when international nongovernmental organizations support local protected area staff and remain engaged throughout the conflict. With biodiversity hotspots concentrated in politically volatile regions, the conservation community must maintain continuous involvement during periods of war, and biodiversity conservation should be incorporated into military, reconstruction, and humanitarian programs in the world's conflict zones. ©2009 Society for Conservation Biology.

  12. Core issues in the economics of biodiversity conservation.

    PubMed

    Tisdell, Clement A

    2011-02-01

    Economic evaluations are essential for assessing the desirability of biodiversity conservation. This article highlights significant advances in theories and methods of economic evaluation and their relevance and limitations as a guide to biodiversity conservation; considers the implications of the phylogenetic similarity principle for the survival of species; discusses consequences of the Noah's Ark problem for selecting features of biodiversity to be saved; analyzes the extent to which the precautionary principle can be rationally used to support the conservation of biodiversity; explores the impact of market extensions, market and other institutional failures, and globalization on biodiversity loss; examines the relationship between the rate of interest and biodiversity depletion; and investigates the implications of intergenerational equity for biodiversity conservation. The consequences of changes in biodiversity for sustainable development are given particular attention. © 2011 New York Academy of Sciences.

  13. Biodiversity informatics: challenges and opportunities for applying biodiversity information to management and conservation

    Treesearch

    James S. Kagan

    2006-01-01

    Researchers, land managers, and the public currently often are unable to obtain useful biodiversity information because the subject represents such a large component of biology and ecology, and systems to compile and organize this information do not exist. Information on vascular plant taxonomy, as addressed by the Global Biodiversity Information Facility and key...

  14. Changing Patterns of Emerging Zoonotic Diseases in Wildlife, Domestic Animals, and Humans Linked to Biodiversity Loss and Globalization.

    PubMed

    Aguirre, A Alonso

    2017-12-15

    The fundamental human threats to biodiversity including habitat destruction, globalization, and species loss have led to ecosystem disruptions altering infectious disease transmission patterns, the accumulation of toxic pollutants, and the invasion of alien species and pathogens. To top it all, the profound role of climate change on many ecological processes has affected the inability of many species to adapt to these relatively rapid changes. This special issue, "Zoonotic Disease Ecology: Effects on Humans, Domestic Animals and Wildlife," explores the complex interactions of emerging infectious diseases across taxa linked to many of these anthropogenic and environmental drivers. Selected emerging zoonoses including RNA viruses, Rift Valley fever, trypanosomiasis, Hanta virus infection, and other vector-borne diseases are discussed in detail. Also, coprophagous beetles are proposed as important vectors in the transmission and maintenance of infectious pathogens. An overview of the impacts of climate change in emerging disease ecology within the context of Brazil as a case study is provided. Animal Care and Use Committee requirements were investigated, concluding that ecology journals have low rates of explicit statements regarding the welfare and wellbing of wildlife during experimental studies. Most of the solutions to protect biodiversity and predicting and preventing the next epidemic in humans originating from wildlife are oriented towards the developed world and are less useful for biodiverse, low-income economies. We need the development of regional policies to address these issues at the local level.

  15. Collapse of biodiversity in fractured metacommunities

    NASA Astrophysics Data System (ADS)

    Fisher, Charles; Mehta, Pankaj

    2014-03-01

    The increasing threat to global biodiversity from climate change, habitat destruction, and other anthropogenic factors motivates the search for features that increase the resistance of ecological communities to destructive disturbances. Recently, Gibson et al (Science 2013) observed that the damming of the Khlong Saeng river in Thailand caused a rapid collapse of biodiversity in the remaining tropical forests. Using a theoretical model that maps the distribution of coexisting species in an ecological community to a disordered system of Ising spins, we show that fracturing a metacommunity by inhibiting species dispersal leads to a collapse in biodiversity in the constituent local communities. The biodiversity collapse can be modeled as a diffusion on a rough energy landscape, and the resulting estimate for the rate of extinction highlights the role of species functional diversity in maintaining biodiversity following a disturbance.

  16. Synonymy of two recently described taxa of Phaneropterinae (Orthoptera, Tettigoniidae).

    PubMed

    Massa, Bruno

    2018-03-14

    Specimens of the two taxa Terpnistriella bredoi Massa, 2017 and Pseudogoetia constanti Massa, 2017 from Democratic Republic of Congo were certainly erroneously labeled, because they resulted synonymous with neotropical taxa Vellea cruenta (Burmeister, 1838) and Philophyllia guttulata Stål, 1873.

  17. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots.

    PubMed

    Katouzian, Ahmad-Reza; Sari, Alireza; Macher, Jan N; Weiss, Martina; Saboori, Alireza; Leese, Florian; Weigand, Alexander M

    2016-03-01

    Biodiversity hotspots are centers of biological diversity and particularly threatened by anthropogenic activities. Their true magnitude of species diversity and endemism, however, is still largely unknown as species diversity is traditionally assessed using morphological descriptions only, thereby ignoring cryptic species. This directly limits evidence-based monitoring and management strategies. Here we used molecular species delimitation methods to quantify cryptic diversity of the montane amphipods in the Irano-Anatolian and Caucasus biodiversity hotspots. Amphipods are ecosystem engineers in rivers and lakes. Species diversity was assessed by analysing two genetic markers (mitochondrial COI and nuclear 28S rDNA), compared with morphological assignments. Our results unambiguously demonstrate that species diversity and endemism is dramatically underestimated, with 42 genetically identified freshwater species in only five reported morphospecies. Over 90% of the newly recovered species cluster inside Gammarus komareki and G. lacustris; 69% of the recovered species comprise narrow range endemics. Amphipod biodiversity is drastically underestimated for the studied regions. Thus, the risk of biodiversity loss is significantly greater than currently inferred as most endangered species remain unrecognized and/or are only found locally. Integrative application of genetic assessments in monitoring programs will help to understand the true magnitude of biodiversity and accurately evaluate its threat status.

  18. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots

    PubMed Central

    Katouzian, Ahmad-Reza; Sari, Alireza; Macher, Jan N.; Weiss, Martina; Saboori, Alireza; Leese, Florian; Weigand, Alexander M.

    2016-01-01

    Biodiversity hotspots are centers of biological diversity and particularly threatened by anthropogenic activities. Their true magnitude of species diversity and endemism, however, is still largely unknown as species diversity is traditionally assessed using morphological descriptions only, thereby ignoring cryptic species. This directly limits evidence-based monitoring and management strategies. Here we used molecular species delimitation methods to quantify cryptic diversity of the montane amphipods in the Irano-Anatolian and Caucasus biodiversity hotspots. Amphipods are ecosystem engineers in rivers and lakes. Species diversity was assessed by analysing two genetic markers (mitochondrial COI and nuclear 28S rDNA), compared with morphological assignments. Our results unambiguously demonstrate that species diversity and endemism is dramatically underestimated, with 42 genetically identified freshwater species in only five reported morphospecies. Over 90% of the newly recovered species cluster inside Gammarus komareki and G. lacustris; 69% of the recovered species comprise narrow range endemics. Amphipod biodiversity is drastically underestimated for the studied regions. Thus, the risk of biodiversity loss is significantly greater than currently inferred as most endangered species remain unrecognized and/or are only found locally. Integrative application of genetic assessments in monitoring programs will help to understand the true magnitude of biodiversity and accurately evaluate its threat status. PMID:26928527

  19. The hominin fossil record: taxa, grades and clades

    PubMed Central

    Wood, Bernard; Lonergan, Nicholas

    2008-01-01

    This paper begins by reviewing the fossil evidence for human evolution. It presents summaries of each of the taxa recognized in a relatively speciose hominin taxonomy. These taxa are grouped in grades, namely possible and probable hominins, archaic hominins, megadont archaic hominins, transitional hominins, pre-modern Homo and anatomically modern Homo. The second part of this contribution considers some of the controversies that surround hominin taxonomy and systematics. The first is the vexed question of how you tell an early hominin from an early panin, or from taxa belonging to an extinct clade closely related to the Pan-Homo clade. Secondly, we consider how many species should be recognized within the hominin fossil record, and review the philosophies and methods used to identify taxa within the hominin fossil record. Thirdly, we examine how relationships within the hominin clade are investigated, including descriptions of the methods used to break down an integrated structure into tractable analytical units, and then how cladograms are generated and compared. We then review the internal structure of the hominin clade, including the problem of how many subclades should be recognized within the hominin clade, and we examine the reliability of hominin cladistic hypotheses. The last part of the paper reviews the concepts of a genus, including the criteria that should be used for recognizing genera within the hominin clade. PMID:18380861

  20. Inventory of Amphibians and Reptiles in Southern Colorado Plateau National Parks

    USGS Publications Warehouse

    Persons, Trevor B.; Nowak, Erika M.

    2006-01-01

    In fiscal year 2000, the National Park Service (NPS) initiated a nationwide program to inventory vertebrates andvascular plants within the National Parks, and an inventory plan was developed for the 19 park units in the Southern Colorado Plateau Inventory & Monitoring Network. We surveyed 12 parks in this network for reptiles and amphibians between 2001 and 2003. The overall goals of our herpetofaunal inventories were to document 90% of the species present, identify park-specific species of special concern, and, based on the inventory results, make recommendations for the development of an effective monitoring program. We used the following standardized herpetological methods to complete the inventories: time-area constrained searches, visual encounter ('general') surveys, and nighttime road cruising. We also recorded incidental species sightings and surveyed existing literature and museum specimen databases. We found 50 amphibian and reptile species during fieldwork. These included 1 salamander, 11 anurans, 21 lizards, and 17 snakes. Literature reviews, museum specimen data records, and personal communications with NPS staff added an additional eight species, including one salamander, one turtle, one lizard, and five snakes. It was necessary to use a variety of methods to detect all species in each park. Randomly-generated 1-ha time-area constrained searches and night drives produced the fewest species and individuals of all the methods, while general surveys and randomly-generated 10-ha time-areas constrained searches produced the most. Inventory completeness was likely compromised by a severe drought across the region during our surveys. In most parks we did not come close to the goal of detecting 90% of the expected species present; however, we did document several species range extensions. Effective monitoring programs for herpetofauna on the Colorado Plateau should use a variety of methods to detect species, and focus on taxa-specific methods. Randomly

  1. Spectrum of concepts associated with the term "biodiversity": a case study in a biodiversity hotspot in South America.

    PubMed

    Cerda, Claudia; Bidegain, Iñigo

    2018-03-10

    In most conservation programs that include public participation, the word "biodiversity" is used. However, many variables influence the public understanding of the term and determine what biodiversity means to local stakeholders. Those representations of the concept must be addressed and included in conservation actions. We asked 47 local stakeholders in a biosphere reserve (BR) located in a biodiversity hotspot in South America, for whom the conservation of biodiversity is not the main focus of interest, to explain how they understand the term "biodiversity." Twenty-two different definitions were provided, ranging from purely ecological concepts to the human dimension. Although the diversity of animals and plants was the most frequently mentioned concept, the variety of concepts that emerged suggested that more explicit examples of social constructions must be considered in public participatory projects and environmental education programs. Actors living in a close relationship with nature provide a greater diversity of elements in defining biodiversity, visualizing ecological but also instrumental values.

  2. Speciation gradients and the distribution of biodiversity.

    PubMed

    Schluter, Dolph; Pennell, Matthew W

    2017-05-31

    Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.

  3. Community level patterns in diverse systems: A case study of litter fauna in a Mexican pine-oak forest using higher taxa surrogates and re-sampling methods

    NASA Astrophysics Data System (ADS)

    Moreno, Claudia E.; Guevara, Roger; Sánchez-Rojas, Gerardo; Téllez, Dianeis; Verdú, José R.

    2008-01-01

    Environmental assessment at the community level in highly diverse ecosystems is limited by taxonomic constraints and statistical methods requiring true replicates. Our objective was to show how diverse systems can be studied at the community level using higher taxa as biodiversity surrogates, and re-sampling methods to allow comparisons. To illustrate this we compared the abundance, richness, evenness and diversity of the litter fauna in a pine-oak forest in central Mexico among seasons, sites and collecting methods. We also assessed changes in the abundance of trophic guilds and evaluated the relationships between community parameters and litter attributes. With the direct search method we observed differences in the rate of taxa accumulation between sites. Bootstrap analysis showed that abundance varied significantly between seasons and sampling methods, but not between sites. In contrast, diversity and evenness were significantly higher at the managed than at the non-managed site. Tree regression models show that abundance varied mainly between seasons, whereas taxa richness was affected by litter attributes (composition and moisture content). The abundance of trophic guilds varied among methods and seasons, but overall we found that parasitoids, predators and detrivores decreased under management. Therefore, although our results suggest that management has positive effects on the richness and diversity of litter fauna, the analysis of trophic guilds revealed a contrasting story. Our results indicate that functional groups and re-sampling methods may be used as tools for describing community patterns in highly diverse systems. Also, the higher taxa surrogacy could be seen as a preliminary approach when it is not possible to identify the specimens at a low taxonomic level in a reasonable period of time and in a context of limited financial resources, but further studies are needed to test whether the results are specific to a system or whether they are general

  4. Steel and biodiversity: a promising alliance

    NASA Astrophysics Data System (ADS)

    Peters, Klaus; Colla, Valentina; Moonen, Anna Camilla; Branca, Teresa Annunziata; Moretto, Deny Del; Ragaglini, Giorgio; Delmiro, Vanesa Maria Menendez; Romaniello, Lea; Carler, Sophie; Hodges, Jennifer; Bullock, Matthew; Malfa, Enrico

    2018-06-01

    The term "Biodiversity" derives from a contraction of "biological diversity" and commonly refers to a measure of the variety of organisms, which are present in different ecosystems, by considering genetic variation, ecosystem variation, or species variation within an area, biome, or planet. Biodiversity is receiving an ever-increasing attention at many levels of European society as well as from many industrial sectors, and a variety of actions are being put in place in order to protect, preserve and increase it. The present paper provides examples of the capabilities and potentials of the steel sector with respect to biodiversity. In effect, steel is a valuable and fundamental structural material in order to develop measures and systems for protection of biodiversity. On the other hand, biodiversity can represent for the steel industry not only a heritage to preserve, but, through its functional traits, it can become an opportunity, offering an ecosystem's perspective to all industrial companies. In the paper, steel relevant topics and applications are analyzed leading to the conclusion that biodiversity should be exploited and can play a role with potentially relevant benefits both for the company and for local communities. Sustainability and Ecodesign of processes, products and services

  5. An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert

    PubMed Central

    Souza, Valeria; Espinosa-Asuar, Laura; Escalante, Ana E.; Eguiarte, Luis E.; Farmer, Jack; Forney, Larry; Lloret, Lourdes; Rodríguez-Martínez, Juan M.; Soberón, Xavier; Dirzo, Rodolfo; Elser, James J.

    2006-01-01

    The Cuatro Cienegas basin in the Chihuahuan desert is a system of springs, streams, and pools. These ecosystems support >70 endemic species and abundant living stromatolites and other microbial communities, representing a desert oasis of high biodiversity. Here, we combine data from molecular microbiology and geology to document the microbial biodiversity of this unique environment. Ten water samples from locations within the Cuatro Cienegas basin and two neighboring valleys as well as three samples of wet sediments were analyzed. The phylogeny of prokaryotic populations in the samples was determined by characterizing cultured organisms and by PCR amplification and sequencing of 16S rRNA genes from total community DNA. The composition of microbial communities was also assessed by determining profiles of terminal restriction site polymorphisms of 16S rRNA genes in total community DNA. There were 250 different phylotypes among the 350 cultivated strains. Ninety-eight partial 16S rRNA gene sequences were obtained and classified. The clones represented 38 unique phylotypes from ten major lineages of Bacteria and one of Archaea. Unexpectedly, 50% of the phylotypes were most closely related to marine taxa, even though these environments have not been in contact with the ocean for tens of millions of years. Furthermore, terminal restriction site polymorphism profiles and geological data suggest that the aquatic ecosystems of Cuatro Cienegas are hydrologically interconnected with adjacent valleys recently targeted for agricultural intensification. The findings underscore the conservation value of desert aquatic ecosystems and the urgent need for study and preservation of freshwater microbial communities. PMID:16618921

  6. DNA barcoding of Rhododendron (Ericaceae), the largest Chinese plant genus in biodiversity hotspots of the Himalaya-Hengduan Mountains.

    PubMed

    Yan, Li-Jun; Liu, Jie; Möller, Michael; Zhang, Lin; Zhang, Xue-Mei; Li, De-Zhu; Gao, Lian-Ming

    2015-07-01

    The Himalaya-Hengduan Mountains encompass two global biodiversity hotspots with high levels of biodiversity and endemism. This area is one of the diversification centres of the genus Rhododendron, which is recognized as one of the most taxonomically challenging plant taxa due to recent adaptive radiations and rampant hybridization. In this study, four DNA barcodes were evaluated on 531 samples representing 173 species of seven sections of four subgenera in Rhododendron, with a high sampling density from the Himalaya-Hengduan Mountains employing three analytical methods. The varied approaches (nj, pwg and blast) had different species identification powers with blast performing best. With the pwg analysis, the discrimination rates for single barcodes varied from 12.21% to 25.19% with ITS < rbcL < matK < psbA-trnH. Combinations of ITS + psbA-trnH + matK and the four barcodes showed the highest discrimination ability (both 41.98%) among all possible combinations. As a single barcode, psbA-trnH performed best with a relatively high performance (25.19%). Overall, the three-marker combination of ITS + psbA-trnH + matK was found to be the best DNA barcode for identifying Rhododendron species. The relatively low discriminative efficiency of DNA barcoding in this genus (~42%) may possibly be attributable to too low sequence divergences as a result of a long generation time of Rhododendron and complex speciation patterns involving recent radiations and hybridizations. Taking the morphology, distribution range and habitat of the species into account, DNA barcoding provided additional information for species identification and delivered a preliminary assessment of biodiversity for the large genus Rhododendron in the biodiversity hotspots of the Himalaya-Hengduan Mountains. © 2014 John Wiley & Sons Ltd.

  7. Global biodiversity monitoring: from data sources to essential biodiversity variables

    USGS Publications Warehouse

    Proenca, Vania; Martin, Laura J.; Pereira, Henrique M.; Fernandez, Miguel; McRae, Louise; Belnap, Jayne; Böhm, Monika; Brummitt, Neil; Garcia-Moreno, Jaime; Gregory, Richard D.; Honrado, Joao P; Jürgens, Norbert; Opige, Michael; Schmeller, Dirk S.; Tiago, Patricia; van Sway, Chris A

    2016-01-01

    Essential Biodiversity Variables (EBVs) consolidate information from varied biodiversity observation sources. Here we demonstrate the links between data sources, EBVs and indicators and discuss how different sources of biodiversity observations can be harnessed to inform EBVs. We classify sources of primary observations into four types: extensive and intensive monitoring schemes, ecological field studies and satellite remote sensing. We characterize their geographic, taxonomic and temporal coverage. Ecological field studies and intensive monitoring schemes inform a wide range of EBVs, but the former tend to deliver short-term data, while the geographic coverage of the latter is limited. In contrast, extensive monitoring schemes mostly inform the population abundance EBV, but deliver long-term data across an extensive network of sites. Satellite remote sensing is particularly suited to providing information on ecosystem function and structure EBVs. Biases behind data sources may affect the representativeness of global biodiversity datasets. To improve them, researchers must assess data sources and then develop strategies to compensate for identified gaps. We draw on the population abundance dataset informing the Living Planet Index (LPI) to illustrate the effects of data sources on EBV representativeness. We find that long-term monitoring schemes informing the LPI are still scarce outside of Europe and North America and that ecological field studies play a key role in covering that gap. Achieving representative EBV datasets will depend both on the ability to integrate available data, through data harmonization and modeling efforts, and on the establishment of new monitoring programs to address critical data gaps.

  8. Biodiversity scenarios neglect future land-use changes.

    PubMed

    Titeux, Nicolas; Henle, Klaus; Mihoub, Jean-Baptiste; Regos, Adrián; Geijzendorffer, Ilse R; Cramer, Wolfgang; Verburg, Peter H; Brotons, Lluís

    2016-07-01

    Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge. © 2016 John Wiley & Sons Ltd.

  9. Modeling the impacts of phenological and inter-annual changes in landscape metrics on local biodiversity of agricultural lands of Eastern Ontario using multi-spatial and multi-temporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Alavi-Shoushtari, N.; King, D.

    2017-12-01

    Agricultural landscapes are highly variable ecosystems and are home to many local farmland species. Seasonal, phenological and inter-annual agricultural landscape dynamics have potential to affect the richness and abundance of farmland species. Remote sensing provides data and techniques which enable monitoring landscape changes in multiple temporal and spatial scales. MODIS high temporal resolution remote sensing images enable detection of seasonal and phenological trends, while Landsat higher spatial resolution images, with its long term archive enables inter-annual trend analysis over several decades. The objective of this study to use multi-spatial and multi-temporal remote sensing data to model the response of farmland species to landscape metrics. The study area is the predominantly agricultural region of eastern Ontario. 92 sample landscapes were selected within this region using a protocol designed to maximize variance in composition and configuration heterogeneity while controlling for amount of forest and spatial autocorrelation. Two sample landscape extents (1×1km and 3×3km) were selected to analyze the impacts of spatial scale on biodiversity response. Gamma diversity index data for four taxa groups (birds, butterflies, plants, and beetles) were collected during the summers of 2011 and 2012 within the cropped area of each landscape. To extract the seasonal and phenological metrics a 2000-2012 MODIS NDVI time-series was used, while a 1985-2012 Landsat time-series was used to model the inter-annual trends of change in the sample landscapes. The results of statistical modeling showed significant relationships between farmland biodiversity for several taxa and the phenological and inter-annual variables. The following general results were obtained: 1) Among the taxa groups, plant and beetles diversity was most significantly correlated with the phenological variables; 2) Those phenological variables which are associated with the variability in the start of

  10. Is biodiversity friendly fisheries management possible on Issyk-Kul Lake in the Kyrgyz Republic?

    PubMed

    Alamanov, Azat; Mikkola, Heimo

    2011-07-01

    This paper aims to identify challenges, and threats, and further explore opportunities for a new Biodiversity Friendly Fisheries Management Regime on the Issyk-Kul Lake in the Kyrgyz Republic. This lake is the second largest high-altitude lake in the world providing recreational and small-scale fishing activities as well as cage culture of introduced species. The populations of several indigenous species are seriously threatened, because many of the introduced species are potential predators. We examine the root causes for overfishing and relationships of alien and endemic fish species in Issyk-Kul Lake and give possible policy options that can help remediate or mitigate the biodiversity degradation. This analysis focuses on necessary legal modifications, institutional cooperation, the protection of selected endemic fish species, control of the alien species, the sustainable extension services and management of fish ponds. Fisheries co-management is one option to explore shared stewardship and empowering user groups on the lake. A comprehensive fisheries management plan is also needed, in addition to immediate action and further studies on the following wider aspects: water management/irrigation issues, water-quality assessment near cage cultures, sociocultural issues, resource inventory, and assessing fish biology and the lake ecosystem.

  11. Biodiversity loss and turnover in alternative states in the Mediterranean Sea: a case study on meiofauna

    PubMed Central

    Bianchelli, Silvia; Buschi, Emanuela; Danovaro, Roberto; Pusceddu, Antonio

    2016-01-01

    In the Mediterranean Sea hard-bottom macroalgal meadows may switch to alternative and less-productive barrens grounds, as a result of sea urchins overgrazing. Meiofauna (and especially nematodes) represent key components of benthic ecosystems, are highly-diversified, sensitive to environmental change and anthropogenic impacts, but, so-far, have been neglected in studies on regime shifts. We report here that sedimentary organic matter contents, meiofaunal taxa richness and community composition, nematode α- and β-biodiversity vary significantly between alternative macroalgal and barren states. The observed differences are consistent in six areas spread across the Mediterranean Sea, irrespective of barren extent. Our results suggest also that the low biodiversity levels in barren states are the result of habitat loss/fragmentation, which is associated also with a lower availability of trophic resources. Furthermore, differences in meiofaunal and nematode abundance, biomass and diversity between macroalgal meadow and barren states persist when the latter is not fully formed, or consists of patches interspersed in macroalgal meadows. Since barren grounds are expanding rapidly along the Mediterranean Sea and meiofauna are a key trophic component in marine ecosystems, we suggest that the extension and persistence of barrens at the expenses of macroalgal meadows could also affect resilience of higher trophic level. PMID:27708343

  12. Biodiversity loss and turnover in alternative states in the Mediterranean Sea: a case study on meiofauna.

    PubMed

    Bianchelli, Silvia; Buschi, Emanuela; Danovaro, Roberto; Pusceddu, Antonio

    2016-10-06

    In the Mediterranean Sea hard-bottom macroalgal meadows may switch to alternative and less-productive barrens grounds, as a result of sea urchins overgrazing. Meiofauna (and especially nematodes) represent key components of benthic ecosystems, are highly-diversified, sensitive to environmental change and anthropogenic impacts, but, so-far, have been neglected in studies on regime shifts. We report here that sedimentary organic matter contents, meiofaunal taxa richness and community composition, nematode α- and β-biodiversity vary significantly between alternative macroalgal and barren states. The observed differences are consistent in six areas spread across the Mediterranean Sea, irrespective of barren extent. Our results suggest also that the low biodiversity levels in barren states are the result of habitat loss/fragmentation, which is associated also with a lower availability of trophic resources. Furthermore, differences in meiofaunal and nematode abundance, biomass and diversity between macroalgal meadow and barren states persist when the latter is not fully formed, or consists of patches interspersed in macroalgal meadows. Since barren grounds are expanding rapidly along the Mediterranean Sea and meiofauna are a key trophic component in marine ecosystems, we suggest that the extension and persistence of barrens at the expenses of macroalgal meadows could also affect resilience of higher trophic level.

  13. Biodiversity loss and turnover in alternative states in the Mediterranean Sea: a case study on meiofauna

    NASA Astrophysics Data System (ADS)

    Bianchelli, Silvia; Buschi, Emanuela; Danovaro, Roberto; Pusceddu, Antonio

    2016-10-01

    In the Mediterranean Sea hard-bottom macroalgal meadows may switch to alternative and less-productive barrens grounds, as a result of sea urchins overgrazing. Meiofauna (and especially nematodes) represent key components of benthic ecosystems, are highly-diversified, sensitive to environmental change and anthropogenic impacts, but, so-far, have been neglected in studies on regime shifts. We report here that sedimentary organic matter contents, meiofaunal taxa richness and community composition, nematode α- and β-biodiversity vary significantly between alternative macroalgal and barren states. The observed differences are consistent in six areas spread across the Mediterranean Sea, irrespective of barren extent. Our results suggest also that the low biodiversity levels in barren states are the result of habitat loss/fragmentation, which is associated also with a lower availability of trophic resources. Furthermore, differences in meiofaunal and nematode abundance, biomass and diversity between macroalgal meadow and barren states persist when the latter is not fully formed, or consists of patches interspersed in macroalgal meadows. Since barren grounds are expanding rapidly along the Mediterranean Sea and meiofauna are a key trophic component in marine ecosystems, we suggest that the extension and persistence of barrens at the expenses of macroalgal meadows could also affect resilience of higher trophic level.

  14. Economic inequality predicts biodiversity loss.

    PubMed

    Mikkelson, Gregory M; Gonzalez, Andrew; Peterson, Garry D

    2007-05-16

    Human activity is causing high rates of biodiversity loss. Yet, surprisingly little is known about the extent to which socioeconomic factors exacerbate or ameliorate our impacts on biological diversity. One such factor, economic inequality, has been shown to affect public health, and has been linked to environmental problems in general. We tested how strongly economic inequality is related to biodiversity loss in particular. We found that among countries, and among US states, the number of species that are threatened or declining increases substantially with the Gini ratio of income inequality. At both levels of analysis, the connection between income inequality and biodiversity loss persists after controlling for biophysical conditions, human population size, and per capita GDP or income. Future research should explore potential mechanisms behind this equality-biodiversity relationship. Our results suggest that economic reforms would go hand in hand with, if not serving as a prerequisite for, effective conservation.

  15. The Soul-Sucking Wasp by Popular Acclaim – Museum Visitor Participation in Biodiversity Discovery and Taxonomy

    PubMed Central

    Ohl, Michael; Lohrmann, Volker; Breitkreuz, Laura; Kirschey, Lukas; Krause, Stefanie

    2014-01-01

    Taxonomy, the science of describing and naming of the living world, is recognized as an important and relevant field in modern biological science. While there is wide agreement on the importance of a complete inventory of all organisms on Earth, the public is partly unaware of the amount of known and unknown biodiversity. Out of the enormous number of undescribed (but already recognized) species in natural history museum collections, we selected an attractive example of a wasp, which was presented to museum visitors at a special museum event. We asked 300 visitors to vote on a name for the new species and out of four preselected options, Ampulex dementor Ohl n. sp. was selected. The name, derived from the ‘soul sucking’ dementors from the popular Harry Potter books is an allusion to the wasps' behavior to selectively paralyze its cockroach prey. In this example, public voting on a scientific name has been shown to be an appropriate way to link museum visitors emotionally to biodiversity and its discovery. PMID:24755672

  16. Biodiversity technologies: tools as change agents

    PubMed Central

    Snaddon, Jake; Petrokofsky, Gillian; Jepson, Paul; Willis, Katherine J.

    2013-01-01

    A meeting on Biodiversity Technologies was held by the Biodiversity Institute, Oxford on the 27–28 of September 2012 at the Department of Zoology, University of Oxford. The symposium brought together 36 speakers from North America, Australia and across Europe, presenting the latest research on emerging technologies in biodiversity science and conservation. Here we present a perspective on the general trends emerging from the symposium. PMID:23221877

  17. Undergraduate Students' Attitudes toward Biodiversity

    ERIC Educational Resources Information Center

    Huang, Hui-Ju; Lin, Yu-Teh Kirk

    2014-01-01

    The study investigated American and Taiwan undergraduate students' attitudes toward biodiversity. The survey questionnaire consisted of statements prompted by the question "To what extent do you agree with the following statements about problems with the biodiversity issues." Students indicated strongly disagree, disagree, agree,…

  18. Space can substitute for time in predicting climate-change effects on biodiversity

    USGS Publications Warehouse

    Blois, Jessica L.; Williams, John W.; Fitzpatrick, Matthew C.; Jackson, Stephen T.; Ferrier, Simon

    2013-01-01

    “Space-for-time” substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption—that drivers of spatial gradients of species composition also drive temporal changes in diversity—rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as “time-for-time” predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.

  19. Space can substitute for time in predicting climate-change effects on biodiversity.

    PubMed

    Blois, Jessica L; Williams, John W; Fitzpatrick, Matthew C; Jackson, Stephen T; Ferrier, Simon

    2013-06-04

    "Space-for-time" substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption--that drivers of spatial gradients of species composition also drive temporal changes in diversity--rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as "time-for-time" predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.

  20. The biodiversity-dependent ecosystem service debt.

    PubMed

    Isbell, Forest; Tilman, David; Polasky, Stephen; Loreau, Michel

    2015-02-01

    Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity-dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2-21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity-dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services. © 2014 John Wiley & Sons Ltd/CNRS.

  1. Biology Student Teachers' Conceptual Frameworks regarding Biodiversity

    ERIC Educational Resources Information Center

    Dikmenli, Musa

    2010-01-01

    In recent years, biodiversity has received a great deal of attention worldwide, especially in environmental education. The reasons for this attention are the increase of human activities on biodiversity and environmental problems. The purpose of this study is to investigate biology student teachers' conceptual frameworks regarding biodiversity.…

  2. Teaching Biodiversity & Evolution through Travel Course Experiences

    ERIC Educational Resources Information Center

    Zervanos, Stam. M.; McLaughlin, Jacqueline S.

    2003-01-01

    Biodiversity is the extraordinary variety of life in this planet. In order to be fully appreciated, biodiversity needs to be experienced firsthand, or "experientially." Thus, the standard classroom lecture format is not the ideal situation for teaching biodiversity and evolutionary concepts, in that student interest and understanding are…

  3. On biodiversity conservation and poverty traps.

    PubMed

    Barrett, Christopher B; Travis, Alexander J; Dasgupta, Partha

    2011-08-23

    This paper introduces a special feature on biodiversity conservation and poverty traps. We define and explain the core concepts and then identify four distinct classes of mechanisms that define important interlinkages between biodiversity and poverty. The multiplicity of candidate mechanisms underscores a major challenge in designing policy appropriate across settings. This framework is then used to introduce the ensuing set of papers, which empirically explore these various mechanisms linking poverty traps and biodiversity conservation.

  4. Economic Inequality Predicts Biodiversity Loss

    PubMed Central

    Mikkelson, Gregory M.; Gonzalez, Andrew; Peterson, Garry D.

    2007-01-01

    Human activity is causing high rates of biodiversity loss. Yet, surprisingly little is known about the extent to which socioeconomic factors exacerbate or ameliorate our impacts on biological diversity. One such factor, economic inequality, has been shown to affect public health, and has been linked to environmental problems in general. We tested how strongly economic inequality is related to biodiversity loss in particular. We found that among countries, and among US states, the number of species that are threatened or declining increases substantially with the Gini ratio of income inequality. At both levels of analysis, the connection between income inequality and biodiversity loss persists after controlling for biophysical conditions, human population size, and per capita GDP or income. Future research should explore potential mechanisms behind this equality-biodiversity relationship. Our results suggest that economic reforms would go hand in hand with, if not serving as a prerequisite for, effective conservation. PMID:17505535

  5. Reef-associated crustacean fauna: biodiversity estimates using semi-quantitative sampling and DNA barcoding

    NASA Astrophysics Data System (ADS)

    Plaisance, L.; Knowlton, N.; Paulay, G.; Meyer, C.

    2009-12-01

    The cryptofauna associated with coral reefs accounts for a major part of the biodiversity in these ecosystems but has been largely overlooked in biodiversity estimates because the organisms are hard to collect and identify. We combine a semi-quantitative sampling design and a DNA barcoding approach to provide metrics for the diversity of reef-associated crustacean. Twenty-two similar-sized dead heads of Pocillopora were sampled at 10 m depth from five central Pacific Ocean localities (four atolls in the Northern Line Islands and in Moorea, French Polynesia). All crustaceans were removed, and partial cytochrome oxidase subunit I was sequenced from 403 individuals, yielding 135 distinct taxa using a species-level criterion of 5% similarity. Most crustacean species were rare; 44% of the OTUs were represented by a single individual, and an additional 33% were represented by several specimens found only in one of the five localities. The Northern Line Islands and Moorea shared only 11 OTUs. Total numbers estimated by species richness statistics (Chao1 and ACE) suggest at least 90 species of crustaceans in Moorea and 150 in the Northern Line Islands for this habitat type. However, rarefaction curves for each region failed to approach an asymptote, and Chao1 and ACE estimators did not stabilize after sampling eight heads in Moorea, so even these diversity figures are underestimates. Nevertheless, even this modest sampling effort from a very limited habitat resulted in surprisingly high species numbers.

  6. Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes.

    PubMed

    Geiger, M F; Herder, F; Monaghan, M T; Almada, V; Barbieri, R; Bariche, M; Berrebi, P; Bohlen, J; Casal-Lopez, M; Delmastro, G B; Denys, G P J; Dettai, A; Doadrio, I; Kalogianni, E; Kärst, H; Kottelat, M; Kovačić, M; Laporte, M; Lorenzoni, M; Marčić, Z; Özuluğ, M; Perdices, A; Perea, S; Persat, H; Porcelotti, S; Puzzi, C; Robalo, J; Šanda, R; Schneider, M; Šlechtová, V; Stoumboudi, M; Walter, S; Freyhof, J

    2014-11-01

    Incomplete knowledge of biodiversity remains a stumbling block for conservation planning and even occurs within globally important Biodiversity Hotspots (BH). Although technical advances have boosted the power of molecular biodiversity assessments, the link between DNA sequences and species and the analytics to discriminate entities remain crucial. Here, we present an analysis of the first DNA barcode library for the freshwater fish fauna of the Mediterranean BH (526 spp.), with virtually complete species coverage (498 spp., 98% extant species). In order to build an identification system supporting conservation, we compared species determination by taxonomists to multiple clustering analyses of DNA barcodes for 3165 specimens. The congruence of barcode clusters with morphological determination was strongly dependent on the method of cluster delineation, but was highest with the general mixed Yule-coalescent (GMYC) model-based approach (83% of all species recovered as GMYC entity). Overall, genetic morphological discontinuities suggest the existence of up to 64 previously unrecognized candidate species. We found reduced identification accuracy when using the entire DNA-barcode database, compared with analyses on databases for individual river catchments. This scale effect has important implications for barcoding assessments and suggests that fairly simple identification pipelines provide sufficient resolution in local applications. We calculated Evolutionarily Distinct and Globally Endangered scores in order to identify candidate species for conservation priority and argue that the evolutionary content of barcode data can be used to detect priority species for future IUCN assessments. We show that large-scale barcoding inventories of complex biotas are feasible and contribute directly to the evaluation of conservation priorities. © 2014 John Wiley & Sons Ltd.

  7. Eliciting the Functional Taxonomy from protein annotations and taxa

    PubMed Central

    Falda, Marco; Lavezzo, Enrico; Fontana, Paolo; Bianco, Luca; Berselli, Michele; Formentin, Elide; Toppo, Stefano

    2016-01-01

    The advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.e. how functions are distributed over taxa) combining functional and taxonomic information. FunTaxIS is able to define a taxon specific functional space by exploiting annotation frequencies in order to establish if a function can or cannot be used to annotate a certain species. The tool generates constraints between GO terms and taxa and then propagates these relations over the taxonomic tree and the GO graph. Since these constraints nearly cover the whole taxonomy, it is possible to obtain the mapping of a function over the taxonomy. FunTaxIS can be used to make functional comparative analyses among taxa, to detect improper associations between taxa and functions, and to discover how functional knowledge is either distributed or missing. A benchmark test set based on six different model species has been devised to get useful insights on the generated taxonomic rules. PMID:27534507

  8. On biodiversity conservation and poverty traps

    PubMed Central

    Barrett, Christopher B.; Travis, Alexander J.; Dasgupta, Partha

    2011-01-01

    This paper introduces a special feature on biodiversity conservation and poverty traps. We define and explain the core concepts and then identify four distinct classes of mechanisms that define important interlinkages between biodiversity and poverty. The multiplicity of candidate mechanisms underscores a major challenge in designing policy appropriate across settings. This framework is then used to introduce the ensuing set of papers, which empirically explore these various mechanisms linking poverty traps and biodiversity conservation. PMID:21873176

  9. Effectiveness of amphibians as biodiversity surrogates in pond conservation.

    PubMed

    Ilg, Christiane; Oertli, Beat

    2017-04-01

    Amphibian decline has led to worldwide conservation efforts, including the identification and designation of sites for their protection. These sites could also play an important role in the conservation of other freshwater taxa. In 89 ponds in Switzerland, we assessed the effectiveness of amphibians as a surrogate for 4 taxonomic groups that occur in the same freshwater ecosystems as amphibians: dragonflies, aquatic beetles, aquatic gastropods, and aquatic plants. The ponds were all of high value for amphibian conservation. Cross-taxon correlations were tested for species richness and conservation value, and Mantel tests were used to investigate community congruence. Species richness, conservation value, and community composition of amphibians were weakly congruent with these measures for the other taxonomic groups. Paired comparisons for the 5 groups considered showed that for each metric, amphibians had the lowest degree of congruence. Our results imply that site designation for amphibian conservation will not necessarily provide protection for freshwater biodiversity as a whole. To provide adequate protection for freshwater species, we recommend other taxonomic groups be considered in addition to amphibians in the prioritization and site designation process. © 2016 Society for Conservation Biology.

  10. Ecology and evolution of mammalian biodiversity

    PubMed Central

    Jones, Kate E.; Safi, Kamran

    2011-01-01

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future. PMID:21807728

  11. Ecology and evolution of mammalian biodiversity.

    PubMed

    Jones, Kate E; Safi, Kamran

    2011-09-12

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future.

  12. Reconstructing the Genomic Content of Microbiome Taxa through Shotgun Metagenomic Deconvolution

    PubMed Central

    Carr, Rogan; Shen-Orr, Shai S.; Borenstein, Elhanan

    2013-01-01

    Metagenomics has transformed our understanding of the microbial world, allowing researchers to bypass the need to isolate and culture individual taxa and to directly characterize both the taxonomic and gene compositions of environmental samples. However, associating the genes found in a metagenomic sample with the specific taxa of origin remains a critical challenge. Existing binning methods, based on nucleotide composition or alignment to reference genomes allow only a coarse-grained classification and rely heavily on the availability of sequenced genomes from closely related taxa. Here, we introduce a novel computational framework, integrating variation in gene abundances across multiple samples with taxonomic abundance data to deconvolve metagenomic samples into taxa-specific gene profiles and to reconstruct the genomic content of community members. This assembly-free method is not bounded by various factors limiting previously described methods of metagenomic binning or metagenomic assembly and represents a fundamentally different approach to metagenomic-based genome reconstruction. An implementation of this framework is available at http://elbo.gs.washington.edu/software.html. We first describe the mathematical foundations of our framework and discuss considerations for implementing its various components. We demonstrate the ability of this framework to accurately deconvolve a set of metagenomic samples and to recover the gene content of individual taxa using synthetic metagenomic samples. We specifically characterize determinants of prediction accuracy and examine the impact of annotation errors on the reconstructed genomes. We finally apply metagenomic deconvolution to samples from the Human Microbiome Project, successfully reconstructing genus-level genomic content of various microbial genera, based solely on variation in gene count. These reconstructed genera are shown to correctly capture genus-specific properties. With the accumulation of metagenomic

  13. Building capacity in biodiversity monitoring at the global scale

    USGS Publications Warehouse

    Schmeller, Dirk S.; Bohm, Monika; Arvanitidis, Christos; Barber-Meyer, Shannon; Brummitt, Neil; Chandler, Mark; Chatzinikolaou, Eva; Costello, Mark J.; Ding, Hui; García-Moreno, Jaime; Gill, Michael J.; Haase, Peter; Jones, Miranda; Juillard, Romain; Magnusson, William E.; Martin, Corinne S.; McGeoch, Melodie A.; Mihoub, Jean-Baptiste; Pettorelli, Nathalie; Proença, Vânia; Peng, Cui; Regan, Eugenie; Schmiedel, Ute; Simsika, John P.; Weatherdon, Lauren; Waterman, Carly; Xu, Haigen; Belnap, Jayne

    2017-01-01

    Human-driven global change is causing ongoing declines in biodiversity worldwide. In order to address these declines, decision-makers need accurate assessments of the status of and pressures on biodiversity. However, these are heavily constrained by incomplete and uneven spatial, temporal and taxonomic coverage. For instance, data from regions such as Europe and North America are currently used overwhelmingly for large-scale biodiversity assessments due to lesser availability of suitable data from other, more biodiversity-rich, regions. These data-poor regions are often those experiencing the strongest threats to biodiversity, however. There is therefore an urgent need to fill the existing gaps in global biodiversity monitoring. Here, we review current knowledge on best practice in capacity building for biodiversity monitoring and provide an overview of existing means to improve biodiversity data collection considering the different types of biodiversity monitoring data. Our review comprises insights from work in Africa, South America, Polar Regions and Europe; in government-funded, volunteer and citizen-based monitoring in terrestrial, freshwater and marine ecosystems. The key steps to effectively building capacity in biodiversity monitoring are: identifying monitoring questions and aims; identifying the key components, functions, and processes to monitor; identifying the most suitable monitoring methods for these elements, carrying out monitoring activities; managing the resultant data; and interpreting monitoring data. Additionally, biodiversity monitoring should use multiple approaches including extensive and intensive monitoring through volunteers and professional scientists but also harnessing new technologies. Finally, we call on the scientific community to share biodiversity monitoring data, knowledge and tools to ensure the accessibility, interoperability, and reporting of biodiversity data at a global scale.

  14. Inventory Control System by Using Vendor Managed Inventory (VMI)

    NASA Astrophysics Data System (ADS)

    Sabila, Alzena Dona; Mustafid; Suryono

    2018-02-01

    The inventory control system has a strategic role for the business in managing inventory operations. Management of conventional inventory creates problems in the stock of goods that often runs into vacancies and excess goods at the retail level. This study aims to build inventory control system that can maintain the stability of goods availability at the retail level. The implementation of Vendor Managed Inventory (VMI) method on inventory control system provides transparency of sales data and inventory of goods at retailer level to supplier. Inventory control is performed by calculating safety stock and reorder point of goods based on sales data received by the system. Rule-based reasoning is provided on the system to facilitate the monitoring of inventory status information, thereby helping the process of inventory updates appropriately. Utilization of SMS technology is also considered as a medium of collecting sales data in real-time due to the ease of use. The results of this study indicate that inventory control using VMI ensures the availability of goods ± 70% and can reduce the accumulation of goods ± 30% at the retail level.

  15. Biological Soil Crusts of Arctic Svalbard-Water Availability as Potential Controlling Factor for Microalgal Biodiversity.

    PubMed

    Borchhardt, Nadine; Baum, Christel; Mikhailyuk, Tatiana; Karsten, Ulf

    2017-01-01

    In the present study the biodiversity of biological soil crusts (BSCs) formed by phototrophic organisms were investigated on Arctic Svalbard (Norway). These communities exert several important ecological functions and constitute a significant part of vegetation at high latitudes. Non-diatom eukaryotic microalgal species of BSCs from 20 sampling stations around Ny-Ålesund and Longyearbyen were identified by morphology using light microscopy, and the results revealed a high species richness with 102 species in total. 67 taxa belonged to Chlorophyta (31 Chlorophyceae and 36 Trebouxiophyceae), 13 species were Streptophyta (11 Klebsormidiophyceae and two Zygnematophyceae) and 22 species were Ochrophyta (two Eustigmatophyceae and 20 Xanthophyceae). Surprisingly, Klebsormidium strains belonging to clade G (Streptophyta), which were so far described from Southern Africa, could be determined at 5 sampling stations. Furthermore, comparative analyses of Arctic and Antarctic BSCs were undertaken to outline differences in species composition. In addition, a pedological analysis of BSC samples included C, N, S, TP (total phosphorus), and pH measurements to investigate the influence of soil properties on species composition. No significant correlation with these chemical soil parameters was confirmed but the results indicated that pH might affect the BSCs. In addition, a statistically significant influence of precipitation on species composition was determined. Consequently, water availability was identified as one key driver for BSC biodiversity in Arctic regions.

  16. Linking EfS and Biodiversity? A UK-wide Survey of the Status of Education within Local Biodiversity Action Plans.

    ERIC Educational Resources Information Center

    Young, Jennifer

    2001-01-01

    Explores potential for developing education for sustainability (EfS) through biodiversity planning in the UK based on a survey conducted in April 1999. Concludes that biodiversity practitioners have the tools to deliver EfS through implementation of local biodiversity action plans (LBAPs), the concept allowing close links to Local Agenda 21,…

  17. Motivations for conserving urban biodiversity.

    PubMed

    Dearborn, Donald C; Kark, Salit

    2010-04-01

    In a time of increasing urbanization, the fundamental value of conserving urban biodiversity remains controversial. How much of a fixed budget should be spent on conservation in urban versus nonurban landscapes? The answer should depend on the goals that drive our conservation actions, yet proponents of urban conservation often fail to specify the motivation for protecting urban biodiversity. This is an important shortcoming on several fronts, including a missed opportunity to make a stronger appeal to those who believe conservation biology should focus exclusively on more natural, wilder landscapes. We argue that urban areas do offer an important venue for conservation biology, but that we must become better at choosing and articulating our goals. We explored seven possible motivations for urban biodiversity conservation: preserving local biodiversity, creating stepping stones to nonurban habitat, understanding and facilitating responses to environmental change, conducting environmental education, providing ecosystem services, fulfilling ethical responsibilities, and improving human well-being. To attain all these goals, challenges must be faced that are common to the urban environment, such as localized pollution, disruption of ecosystem structure, and limited availability of land. There are, however, also challenges specific only to particular goals, meaning that different goals will require different approaches and actions. This highlights the importance of specifying the motivations behind urban biodiversity conservation. If the goals are unknown, progress cannot be assessed.

  18. Investigation of Antarctic Marine Metazoan Biodiversity Through Metagenomic Analysis of Environmental DNA

    NASA Astrophysics Data System (ADS)

    Cowart, D. A.; Cheng, C. C.; Murphy, K.

    2016-02-01

    Environmental DNA (eDNA), or DNA extracted from environmental collections, is frequently used to gauge biodiversity and identify the presence of rare or invasive species within a habitat. Previous studies have demonstrated that compared to traditional surveying methods, high-throughput sequencing of eDNA can provide increased detection sensitivity of aquatic taxa, holding promise for various conservation applications. To determine the potential of eDNA for assessing biodiversity of Antarctic marine metazoan communities, we have extracted eDNA from seawater sampled from four regions near Palmer Station in West Antarctic Peninsula. Metagenomic sequencing of the eDNA was performed on Illumina HiSeq2500, and produced 325 million quality-processed reads. Preliminary read mapping for two regions, Gerlache Strait and Bismarck Strait, identified approximately 4% of reads mapping to eukaryotes for each region, with >50% of the those reads mapping to metazoan animals. Key groups investigated include the nototheniidae family of Antarctic fishes, to which 0.2 and 0.8 % of the metazoan reads were assigned for each region respectively. The presence of the recently invading lithodidae king crabs was also detected at both regions. Additionally, to estimate the persistence of eDNA in polar seawater, a rate of eDNA decay will be quantified from seawater samples collected over 20 days from Antarctic fish holding tanks and held at ambient Antarctic water temperatures. The ability to detect animal signatures from eDNA, as well as the quantification of eDNA decay over time, could provide another method for reliable monitoring of polar habitats at various spatial and temporal scales.

  19. Backyard Biodiversity.

    ERIC Educational Resources Information Center

    Thompson, Sarah S.

    2002-01-01

    Describes a field trip experience for the Earth Odyssey project for elementary school students focusing on biodiversity. Introduces the concept of diversity, field work, species richness, and the connection between animals and their habitat. (YDS)

  20. Does biodiversity protect humans against infectious disease?

    PubMed

    Wood, Chelsea L; Lafferty, Kevin D; DeLeo, Giulio; Young, Hillary S; Hudson, Peter J; Kuris, Armand M

    2014-04-01

    Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.

  1. Biodiversity of Coreoidea and Pentatomidae (Heteroptera) from Atlantic forest protected areas. Insights into their conservation.

    PubMed

    Dellapé, Gimena; Colpo, Karine D; Melo, María C; Montemayor, Sara I; Dellapé, Pablo M

    2018-01-01

    Although the majority of threatened species are likely to be tropical insects, knowledge of the diversity, ecological role and impact of insect biodiversity loss on ecosystem processes is very limited. Specimens belonging to four families of Heteroptera: Pentatomidae, Coreidae, Alydidae and Rhopalidae, were collected from a protected area in the Paraná Forest, the largest ecoregion of the Atlantic Forest, in Argentina. The assemblages were characterized and the biodiversity estimated, and they were compared with the assemblages found in five other protected areas in the Brazilian Atlantic Forest. In our study area, Pentatomidae had the greatest richness and diversity; Coreidae was the second most diverse family, with highest sampling deficit, highest percentage of singletons, and lowest inventory completeness; and Rhopalidae was the best sampled family with asymptotic rarefaction curves. We explored the application of the Species Conservation Importance index, following four criteria, to evaluate the relative importance of the pentatomid species studied and its usefulness for assigning conservation values to areas. We found similar Site Conservation Values among the six areas and noted that the use of criteria was limited by the lack of information, being crucial to increase the knowledge of most of the species.

  2. Habitat modeling for biodiversity conservation.

    Treesearch

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  3. Biodiversity and industry ecosystem management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, W.G.

    1996-11-01

    Biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they are functioning parts. Ecosystem health is a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability an sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics,more » leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the fact of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish {open_quotes}near-trump{close_quotes} (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-side, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute incrementally to the broader agenda of rebuilding or maintaining biodiversity. 40 refs., 8

  4. Biodiversity and industry ecosystem management

    NASA Astrophysics Data System (ADS)

    Coleman, William G.

    1996-11-01

    The term biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they comprise, and the variety of ecosystems of which they are functioning parts. Ecosystem health, a closely related concept, is described in terms of a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability and sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the face of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish “near-trump” (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-wide, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute

  5. Biodiversity: Who Knows, Who Cares?

    ERIC Educational Resources Information Center

    Zemits, Birut

    2006-01-01

    Biodiversity is an abstract concept, attracting various responses from different people according to where they have come from and what ecosystems they have been closely linked to. In theory, most people would agree that protecting biodiversity is an important process, but in practice, few people commit to actions on a local level. This paper…

  6. Quantifying temporal change in biodiversity: challenges and opportunities

    PubMed Central

    Dornelas, Maria; Magurran, Anne E.; Buckland, Stephen T.; Chao, Anne; Chazdon, Robin L.; Colwell, Robert K.; Curtis, Tom; Gaston, Kevin J.; Gotelli, Nicholas J.; Kosnik, Matthew A.; McGill, Brian; McCune, Jenny L.; Morlon, Hélène; Mumby, Peter J.; Øvreås, Lise; Studeny, Angelika; Vellend, Mark

    2013-01-01

    Growing concern about biodiversity loss underscores the need to quantify and understand temporal change. Here, we review the opportunities presented by biodiversity time series, and address three related issues: (i) recognizing the characteristics of temporal data; (ii) selecting appropriate statistical procedures for analysing temporal data; and (iii) inferring and forecasting biodiversity change. With regard to the first issue, we draw attention to defining characteristics of biodiversity time series—lack of physical boundaries, uni-dimensionality, autocorrelation and directionality—that inform the choice of analytic methods. Second, we explore methods of quantifying change in biodiversity at different timescales, noting that autocorrelation can be viewed as a feature that sheds light on the underlying structure of temporal change. Finally, we address the transition from inferring to forecasting biodiversity change, highlighting potential pitfalls associated with phase-shifts and novel conditions. PMID:23097514

  7. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity

    NASA Astrophysics Data System (ADS)

    Powell, Thomas W. R.; Lenton, Timothy M.

    2013-06-01

    We assess the potential for future biodiversity loss due to three interacting factors: energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. We develop four scenarios to 2050 with different combinations of high or low agricultural efficiency and high or low meat diets, and use species-energy and species-area relationships to estimate their effects on biodiversity. In our scenarios, natural ecosystems are protected except when additional land is necessary to fulfil the increasing dietary demands of the global population. Biomass energy with carbon capture and storage (BECCS) is used as a means of carbon dioxide removal (CDR) from the atmosphere (and offsetting fossil fuel emissions). BECCS is based on waste biomass, with the addition of bio-energy crops only when already managed land is no longer needed for food production. Forecast biodiversity loss from natural biomes increases by more than a factor of five in going from high to low agricultural efficiency scenarios, due to destruction of productive habitats by the expansion of pasture. Biodiversity loss from energy withdrawal on managed land varies by a factor of two across the scenarios. Biodiversity loss due to climate change varies only modestly across the scenarios. Climate change is lowest in the ‘low meat high efficiency’ scenario, in which by 2050 around 660 million hectares of pasture are converted to biomass plantation that is used for BECCS. However, the resulting withdrawal of energy from managed ecosystems has a large negative impact on biodiversity. Although the effects of energy withdrawal and climate change on biodiversity cannot be directly compared, this suggests that using bio-energy to tackle climate change in order to limit biodiversity loss could instead have the opposite effect.

  8. Amphibian and reptile biodiversity in the semi-arid region of the municipality of Nopala de Villagrán, Hidalgo, Mexico

    PubMed Central

    Mendoza-Hernández, Andrés Alberto; Flores-Villela, Oscar

    2018-01-01

    Current global changes are putting both biodiversity and the processes that depend on it at risk. This is especially true for semi-arid regions and the flagship groups that inhabit them, such as amphibians and reptiles. Semi-arid regions are often thought to have lower biodiversity and thus have been overlooked, resulting in the underestimation of their biological richness. Therefore, the aim of this study was to conduct an inventory of amphibians and reptiles in the semi-arid municipality of Nopala de Villagrán, Mexico, and analyze its biodiversity in relation to the seasons, vegetation and microhabitat. During a year of fieldwork, we found 24 species in the area, most of them of low abundance, and one of which was recorded for the first time for the state of Hidalgo. We documented five amphibian species and 19 reptile species. We also found that observed species richness was higher in the rainy season and in xeric scrub vegetation, although only the season differences were significant according to rarefaction curves. Our findings highlight the importance of seasonality and vegetation type for the species that inhabit this semi-arid region. This study broadens our understanding of the importance of semi-arid regions and, by extension, that of other areas with similar characteristics. PMID:29312825

  9. Amphibian and reptile biodiversity in the semi-arid region of the municipality of Nopala de Villagrán, Hidalgo, Mexico.

    PubMed

    Roth-Monzón, Andrea J; Mendoza-Hernández, Andrés Alberto; Flores-Villela, Oscar

    2018-01-01

    Current global changes are putting both biodiversity and the processes that depend on it at risk. This is especially true for semi-arid regions and the flagship groups that inhabit them, such as amphibians and reptiles. Semi-arid regions are often thought to have lower biodiversity and thus have been overlooked, resulting in the underestimation of their biological richness. Therefore, the aim of this study was to conduct an inventory of amphibians and reptiles in the semi-arid municipality of Nopala de Villagrán, Mexico, and analyze its biodiversity in relation to the seasons, vegetation and microhabitat. During a year of fieldwork, we found 24 species in the area, most of them of low abundance, and one of which was recorded for the first time for the state of Hidalgo. We documented five amphibian species and 19 reptile species. We also found that observed species richness was higher in the rainy season and in xeric scrub vegetation, although only the season differences were significant according to rarefaction curves. Our findings highlight the importance of seasonality and vegetation type for the species that inhabit this semi-arid region. This study broadens our understanding of the importance of semi-arid regions and, by extension, that of other areas with similar characteristics.

  10. Student Teachers' Understanding of the Terminology, Distribution, and Loss of Biodiversity: Perspectives from a Biodiversity Hotspot and an Industrialized Country

    ERIC Educational Resources Information Center

    Fiebelkorn, Florian; Menzel, Susanne

    2013-01-01

    The loss of biodiversity is one of the most urgent global environmental problems of our time. Public education and awareness building is key to successful biodiversity protection. Knowledgeable and skilled student teachers are a key component for the successful implementation of biodiversity education in schools. Yet, little empirical evidence…

  11. Mapping Biodiversity.

    ERIC Educational Resources Information Center

    World Wildlife Fund, Washington, DC.

    This document features a lesson plan that examines how maps help scientists protect biodiversity and how plants and animals are adapted to specific ecoregions by comparing biome, ecoregion, and habitat. Samples of instruction and assessment are included. (KHR)

  12. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA.

    PubMed

    Lodge, David M; Turner, Cameron R; Jerde, Christopher L; Barnes, Matthew A; Chadderton, Lindsay; Egan, Scott P; Feder, Jeffrey L; Mahon, Andrew R; Pfrender, Michael E

    2012-06-01

    Three mantras often guide species and ecosystem management: (i) for preventing invasions by harmful species, 'early detection and rapid response'; (ii) for conserving imperilled native species, 'protection of biodiversity hotspots'; and (iii) for assessing biosecurity risk, 'an ounce of prevention equals a pound of cure.' However, these and other management goals are elusive when traditional sampling tools (e.g. netting, traps, electrofishing, visual surveys) have poor detection limits, are too slow or are not feasible. One visionary solution is to use an organism's DNA in the environment (eDNA), rather than the organism itself, as the target of detection. In this issue of Molecular Ecology, Thomsen et al. (2012) provide new evidence demonstrating the feasibility of this approach, showing that eDNA is an accurate indicator of the presence of an impressively diverse set of six aquatic or amphibious taxa including invertebrates, amphibians, a fish and a mammal in a wide range of freshwater habitats. They are also the first to demonstrate that the abundance of eDNA, as measured by qPCR, correlates positively with population abundance estimated with traditional tools. Finally, Thomsen et al. (2012) demonstrate that next-generation sequencing of eDNA can quantify species richness. Overall, Thomsen et al. (2012) provide a revolutionary roadmap for using eDNA for detection of species, estimates of relative abundance and quantification of biodiversity. © 2012 Blackwell Publishing Ltd.

  13. Biodiversity of macrofaunal assemblages from three Portuguese submarine canyons (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Cunha, Marina R.; Paterson, Gordon L. J.; Amaro, Teresa; Blackbird, Sabena; de Stigter, Henko C.; Ferreira, Clarisse; Glover, Adrian; Hilário, Ana; Kiriakoulakis, Konstadinos; Neal, Lenka; Ravara, Ascensão; Rodrigues, Clara F.; Tiago, Áurea; Billett, David S. M.

    2011-12-01

    The macrofaunal assemblages from three Portuguese submarine canyons, Nazaré, Cascais and Setúbal were studied from samples collected at their upper (900-1000 m), middle (3200-3500 m) and lower sections (4200-4500 m) and at the adjacent open slopes (˜1000 m), during the HERMES cruises D297 (R.R.S. Discovery, 2005) CD179 (R.R.S. Charles Darwin, 2006) and 64PE252 (R.V. Pelagia, 2006). The taxonomic composition and patterns in biodiversity, abundance and community structure of the benthic macrofauna were described. Annelida (42.1% of total abundance; 137 species) and Arthropoda (20.6%; 162 species) were, respectively, the most abundant and the most species-rich Phyla among the 342 taxa identified during this study. Multivariate analyses showed significant differences between and within canyons and between canyons and open slope assemblages. At their upper section, canyons supported higher macrofauna abundance but slightly lower biodiversity than the adjacent slopes at similar depth. In all canyons abundance reached the highest value in the middle section and the lowest in the upper section, with marked fluctuations in Nazaré (474-4599 ind. m -2) and lower variability in Cascais (583-1125 ind. m -2). The high abundance and dominance of the assemblages in the middle section of Nazaré and Setúbal was accompanied by depressed biodiversity, while in Cascais, Hurlbert's expected species richness showed increasing values from the upper to the middle canyon, and maintained the high values at the lower section. Overall, the Nazaré Canyon showed the lowest expected species richness (ES (100): 16-39) and the Cascais Canyon the highest (39-54). There was a significant negative Kendall's correlation between total organic carbon concentrations in the superficial sediments and ES (100) and a significant positive correlation between total nitrogen and macrofauna density. The influences of organic enrichment, sediment heterogeneity and hydrodynamic regime on the abundance

  14. Maximizing biodiversity co-benefits under REDD+: a decoupled approach

    NASA Astrophysics Data System (ADS)

    Potts, Matthew D.; Kelley, Lisa C.; Doll, Hannah M.

    2013-06-01

    Current debates on biodiversity co-benefits under REDD+ are marked by considerable ambiguity and contention. Nevertheless, REDD+ continues to represent one of the most important opportunities for global biodiversity conservation, and the question of how best to achieve biodiversity co-benefits remains an important one. Thus far, most biodiversity conservation in the context of REDD+ is predicated on the notion that services are co-located on a landscape. In contrast, this letter argues that decoupling biodiversity and carbon services on a landscape through national-level planning is a better approach to biodiversity conservation under REDD+. We discuss the fundamental ecological differences between the two services and use principles of resource economics to demonstrate that a decoupled approach will be more efficient, more flexible, and better able to mobilize sufficient finance for biodiversity conservation than a coupled approach.

  15. Trait-based diversification shifts reflect differential extinction among fossil taxa

    PubMed Central

    Wagner, Peter J.; Estabrook, George F.

    2014-01-01

    Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models. PMID:25331898

  16. Trait-based diversification shifts reflect differential extinction among fossil taxa.

    PubMed

    Wagner, Peter J; Estabrook, George F

    2014-11-18

    Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models.

  17. Biodiversity: past, present, and future

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1997-01-01

    Data from the fossil record are used to illustrate biodiversity in the past and estimate modern biodiversity and loss. This data is used to compare current rates of extinction with past extinction events. Paleontologists are encouraged to use this data to understand the course and consequences of current losses and to share this knowledge with researchers interested in conservation and ecology.

  18. Antarctica and the strategic plan for biodiversity

    PubMed Central

    Chown, Steven L.; Brooks, Cassandra M.; Terauds, Aleks; Le Bohec, Céline; van Klaveren-Impagliazzo, Céline; Whittington, Jason D.; Butchart, Stuart H. M.; Coetzee, Bernard W. T.; Collen, Ben; Convey, Peter; Gaston, Kevin J.; Gilbert, Neil; Gill, Mike; Höft, Robert; Johnston, Sam; Kennicutt, Mahlon C.; Kriesell, Hannah J.; Le Maho, Yvon; Lynch, Heather J.; Palomares, Maria; Puig-Marcó, Roser; Stoett, Peter; McGeoch, Melodie A.

    2017-01-01

    The Strategic Plan for Biodiversity, adopted under the auspices of the Convention on Biological Diversity, provides the basis for taking effective action to curb biodiversity loss across the planet by 2020—an urgent imperative. Yet, Antarctica and the Southern Ocean, which encompass 10% of the planet’s surface, are excluded from assessments of progress against the Strategic Plan. The situation is a lost opportunity for biodiversity conservation globally. We provide such an assessment. Our evidence suggests, surprisingly, that for a region so remote and apparently pristine as the Antarctic, the biodiversity outlook is similar to that for the rest of the planet. Promisingly, however, much scope for remedial action exists. PMID:28350825

  19. Impact of GM crops on biodiversity.

    PubMed

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  20. Biodiversity Conservation in the REDD

    PubMed Central

    2010-01-01

    Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG) emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics. PMID:21092321

  1. AMBON - the Arctic Marine Biodiversity Observing Network

    NASA Astrophysics Data System (ADS)

    Iken, K.; Danielson, S. L.; Grebmeier, J. M.; Cooper, L. W.; Hopcroft, R. R.; Kuletz, K.; Stafford, K.; Mueter, F. J.; Collins, E.; Bluhm, B.; Moore, S. E.; Bochenek, R. J.

    2016-02-01

    The goal of the Arctic Marine Biodiversity Observing Network (AMBON) is to build an operational and sustainable marine biodiversity observing network for the US Arctic Chukchi Sea continental shelf. The AMBON has four main goals: 1. To close current gaps in taxonomic biodiversity observations from microbes to whales, 2. To integrate results of past and ongoing research programs on the US Arctic shelf into a biodiversity observation network, 3. To demonstrate at a regional level how an observing network could be developed, and 4. To link with programs on the pan-Arctic to global scale. The AMBON fills taxonomic (from microbes to mammals), functional (food web structure), spatial and temporal (continuing time series) gaps, and includes new technologies such as state-of-the-art genomic tools, with biodiversity and environmental observations linked through central data management through the Alaska Ocean Observing System. AMBON is a 5-year partnership between university and federal researchers, funded through the National Ocean Partnership Program (NOPP), with partners in the National Oceanographic and Atmospheric Administration (NOAA), the Bureau of Ocean and Energy Management (BOEM), and Shell industry. AMBON will allow us to better coordinate, sustain, and synthesize biodiversity research efforts, and make data available to a broad audience of users, stakeholders, and resource managers.

  2. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    PubMed Central

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  3. Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot.

    PubMed

    Rix, Michael G; Edwards, Danielle L; Byrne, Margaret; Harvey, Mark S; Joseph, Leo; Roberts, J Dale

    2015-08-01

    The south-western land division of Western Australia (SWWA), bordering the temperate Southern and Indian Oceans, is the only global biodiversity hotspot recognised in Australia. Renowned for its extraordinary diversity of endemic plants, and for some of the largest and most botanically significant temperate heathlands and woodlands on Earth, SWWA has long fascinated biogeographers. Its flat, highly weathered topography and the apparent absence of major geographic factors usually implicated in biotic diversification have challenged attempts to explain patterns of biogeography and mechanisms of speciation in the region. Botanical studies have always been central to understanding the biodiversity values of SWWA, although surprisingly few quantitative botanical analyses have allowed for an understanding of historical biogeographic processes in both space and time. Faunistic studies, by contrast, have played little or no role in defining hotspot concepts, despite several decades of accumulating quantitative research on the phylogeny and phylogeography of multiple lineages. In this review we critically analyse datasets with explicit supporting phylogenetic data and estimates of the time since divergence for all available elements of the terrestrial fauna, and compare these datasets to those available for plants. In situ speciation has played more of a role in shaping the south-western Australian fauna than has long been supposed, and has occurred in numerous endemic lineages of freshwater fish, frogs, reptiles, snails and less-vagile arthropods. By contrast, relatively low levels of endemism are found in birds, mammals and highly dispersive insects, and in situ speciation has played a negligible role in generating local endemism in birds and mammals. Quantitative studies provide evidence for at least four mechanisms driving patterns of endemism in south-western Australian animals, including: (i) relictualism of ancient Gondwanan or Pangaean taxa in the High Rainfall

  4. Biodiversity Performs!

    ERIC Educational Resources Information Center

    World Wildlife Fund, Washington, DC.

    This document features a lesson plan in which students work in teams to act out different ecosystem services, describe several free services that biodiversity provides to human, and explain how these services make life on earth possible. Samples of instruction and assessment are included. (KHR)

  5. PROTECTING BIODIVERSITY

    EPA Science Inventory

    At present, over 40% of the earth's land surface has been converted from its natural state to one dominated by human activities such as agriculture and development. The destruction and degradation of natural habitats has been clearly linked to the loss of biodiversity. Biodiver...

  6. Primary forests are irreplaceable for sustaining tropical biodiversity.

    PubMed

    Gibson, Luke; Lee, Tien Ming; Koh, Lian Pin; Brook, Barry W; Gardner, Toby A; Barlow, Jos; Peres, Carlos A; Bradshaw, Corey J A; Laurance, William F; Lovejoy, Thomas E; Sodhi, Navjot S

    2011-09-14

    Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.

  7. Focusing biodiversity research on the needs of decision makers

    NASA Astrophysics Data System (ADS)

    Smythe, Katie D.; Bernabo, J. Christopher; Carter, Thomas B.; Jutro, Peter R.

    1996-11-01

    The project on Biodiversity Uncertainties and Research Needs (BURN) ensures the advancement of usable knowledge on biodiversity by obtaining input from decision makers on their priority information needs about biodiversity and then using this input to engage leading scientists in designing policy-relevant research. Decision makers articulated concerns related to four issues: significance of biodiversity; status and trends of biodiversity; management for biodiversity; and the linkage of social, cultural, economic, legal, and biological objectives. Leading natural and social scientists then identified the research required to address the decision makers' needs and determined the probability of success. The diverse group of experts reached consensus on several fundamental issues, helping to clarify the role of biodiversity in land and resource management. The BURN participants identified several features that should be incorporated into policy-relevant research plans and management strategies for biodiversity. Research and assessment efforts should be: multidisciplinary and integrative, participatory with stakeholder involvement, hierarchical (multiple scales), and problem- and region-specific. The activities should be focused regionally within a global perspective. Meta-analysis of existing data is needed on all fronts to assess the state of the science. More specifically, the scientists recommended six priority research areas that should be pursued to address the information needs articulated by decision makers: (1) characterization of biodiversity, (2) environmental valuation, (3) management for sustainability—for humans and the environment (adaptive management), (4) information management strategies, (5) governance and stewardship issues, and (6) communication and outreach. Broad recommendations were developed for each research area to provide direction for research planning and resource management strategies. The results will directly benefit those groups that

  8. Experiencing biodiversity as a bridge over the science-society communication gap.

    PubMed

    Meinard, Yves; Quétier, Fabien

    2014-06-01

    Drawing on the idea that biodiversity is simply the diversity of living things, and that everyone knows what diversity and living things mean, most conservation professionals eschew the need to explain the many complex ways in which biodiversity is understood in science. On many biodiversity-related issues, this lack of clarity leads to a communication gap between science and the general public, including decision makers who must design and implement biodiversity policies. Closing this communication gap is pivotal to the ability of science to inform sound environmental decision making. To address this communication gap, we propose a surrogate of biodiversity for communication purposes that captures the scientific definition of biodiversity yet can be understood by nonscientists; that is, biodiversity as a learning experience. The prerequisites of this or any other biodiversity communication surrogate are that it should have transdisciplinary relevance; not be measurable; be accessible to a wide audience; be usable to translate biodiversity issues; and understandably encompass biodiversity concepts. Biodiversity as a learning experience satisfies these prerequisites and is philosophically robust. More importantly, it can effectively contribute to closing the communication gap between biodiversity science and society at large. © 2013 Society for Conservation Biology.

  9. Vascular plant biodiversity of the lower Coppermine River valley and vicinity (Nunavut, Canada): an annotated checklist of an Arctic flora

    PubMed Central

    Bull, Roger D.

    2017-01-01

    The Coppermine River in western Nunavut is one of Canada’s great Arctic rivers, yet its vascular plant flora is poorly known. Here, we report the results of a floristic inventory of the lower Coppermine River valley and vicinity, including Kugluk (Bloody Falls) Territorial Park and the hamlet of Kugluktuk. The study area is approximately 1,200 km2, extending from the forest-tundra south of the treeline to the Arctic coast. Vascular plant floristic data are based on a review of all previous collections from the area and more than 1,200 new collections made in 2014. Results are presented in an annotated checklist, including citation of all specimens examined, comments on taxonomy and distribution, and photographs for a subset of taxa. The vascular plant flora comprises 300 species (311 taxa), a 36.6% increase from the 190 species documented by previous collections made in the area over the last century, and is considerably more diverse than other local floras on mainland Nunavut. We document 207 taxa for Kugluk (Bloody Falls) Territorial Park, an important protected area for plants on mainland Nunavut. A total of 190 taxa are newly recorded for the study area. Of these, 14 taxa (13 species and one additional variety) are newly recorded for Nunavut (Allium schoenoprasum, Carex capitata, Draba lonchocarpa, Eremogone capillaris subsp. capillaris, Sabulina elegans, Eleocharis quinqueflora, Epilobium cf. anagallidifolium, Botrychium neolunaria, Botrychium tunux, Festuca altaica, Polygonum aviculare, Salix ovalifolia var. arctolitoralis, Salix ovalifolia var. ovalifolia and Stuckenia pectinata), seven species are newly recorded for mainland Nunavut (Carex gynocrates, Carex livida, Cryptogramma stelleri, Draba simmonsii, Festuca viviparoidea subsp. viviparoidea, Juncus alpinoarticulatus subsp. americanus and Salix pseudomyrsinites) and 56 range extensions are reported. The psbA-trnH and rbcL DNA sequence data were used to help identify the three Botrychium taxa recorded

  10. Can we detect oceanic biodiversity hotspots from space?

    PubMed

    De Monte, Silvia; Soccodato, Alice; Alvain, Séverine; d'Ovidio, Francesco

    2013-10-01

    Understanding the variability of marine biodiversity is a central issue in microbiology. Current observational programs are based on in situ studies, but their implementation at the global scale is particularly challenging, owing to the ocean extent, its temporal variability and the heterogeneity of the data sources on which compilations are built. Here, we explore the possibility of identifying phytoplanktonic biodiversity hotspots from satellite. We define a Shannon entropy index based on patchiness in ocean color bio-optical anomalies. This index provides a high resolution (1 degree) global coverage. It shows a relation to temperature and mid-latitude maxima in accordance with those previously evidenced in microbiological biodiversity model and observational studies. Regional maxima are in remarkable agreement with several known biodiversity hotspots for plankton organisms and even for higher levels of the marine trophic chain, as well as with some in situ planktonic biodiversity estimates (from Atlantic Meridional Transect cruise). These results encourage to explore marine biodiversity with a coordinated effort of the molecular, ecological and remote sensing communities.

  11. Zulma Ageitos de Castellanos: Publications and status of described taxa.

    PubMed

    Signorelli, Javier H; Urteaga, Diego; Teso, Valeria

    2015-10-28

    Zulma Ageitos de Castellanos was an Argentinian malacologist working in the "Facultad de Ciencias Naturales y Museo" at La Plata University where she taught invertebrate zoology between 1947 and 1990. Her scientific publications are listed in chronological order. Described genus-group and species-group taxa are listed. Information about the type locality and type material, and taxonomic remarks are also provided. Finally, type material of all described taxa was requested and, when located, illustrated.

  12. WOW! Windows on the Wild: A Biodiversity Primer.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.; And Others

    Windows on the Wild is an environmental education program of the World Wildlife Fund. This issue of WOW! focuses on biodiversity. Topics include: an interview with one of the world's leading experts on biodiversity; the lighter side of biodiversity through comics and cartoons; a species-scape that compares the number of species on the planet;…

  13. Towards a Duty of Care for Biodiversity

    NASA Astrophysics Data System (ADS)

    Earl, G.; Curtis, A.; Allan, C.

    2010-04-01

    The decline in biodiversity is a worldwide phenomenon, with current rates of species extinction more dramatic than any previously recorded. Habitat loss has been identified as the major cause of biodiversity decline. In this article we suggest that a statutory duty of care would complement the current mix of policy options for biodiversity conservation. Obstacles hindering the introduction of a statutory duty of care include linguistic ambiguity about the terms ‘duty of care’ and ‘stewardship’ and how they are applied in a natural resource management context, and the absence of a mechanism to guide its implementation. Drawing on international literature and key informant interviews we have articulated characteristics of duty of care to reduce linguistic ambiguity, and developed a framework for implementing a duty of care for biodiversity at the regional scale. The framework draws on key elements of the common law ‘duty of care’, the concepts of ‘taking reasonable care’ and ‘avoiding foreseeable harm’, in its logic. Core elements of the framework include desired outcomes for biodiversity, supported by current recommended practices. The focus on outcomes provides opportunities for the development of innovative management practices. The framework incorporates multiple pathways for the redress of non-compliance including tiered negative sanctions, and positive measures to encourage compliance. Importantly, the framework addresses the need for change and adaptation that is a necessary part of biodiversity management.

  14. Towards a duty of care for biodiversity.

    PubMed

    Earl, G; Curtis, A; Allan, C

    2010-04-01

    The decline in biodiversity is a worldwide phenomenon, with current rates of species extinction more dramatic than any previously recorded. Habitat loss has been identified as the major cause of biodiversity decline. In this article we suggest that a statutory duty of care would complement the current mix of policy options for biodiversity conservation. Obstacles hindering the introduction of a statutory duty of care include linguistic ambiguity about the terms 'duty of care' and 'stewardship' and how they are applied in a natural resource management context, and the absence of a mechanism to guide its implementation. Drawing on international literature and key informant interviews we have articulated characteristics of duty of care to reduce linguistic ambiguity, and developed a framework for implementing a duty of care for biodiversity at the regional scale. The framework draws on key elements of the common law 'duty of care', the concepts of 'taking reasonable care' and 'avoiding foreseeable harm', in its logic. Core elements of the framework include desired outcomes for biodiversity, supported by current recommended practices. The focus on outcomes provides opportunities for the development of innovative management practices. The framework incorporates multiple pathways for the redress of non-compliance including tiered negative sanctions, and positive measures to encourage compliance. Importantly, the framework addresses the need for change and adaptation that is a necessary part of biodiversity management.

  15. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands

    PubMed Central

    Helmers, Matthew J.; Liebman, Matt; James, David E.; Kolka, Randall K.; O’Neal, Matthew E.; Tomer, Mark D.; Tyndall, John C.; Asbjornsen, Heidi; Drobney, Pauline; Neal, Jeri; Van Ryswyk, Gary; Witte, Chris

    2017-01-01

    Loss of biodiversity and degradation of ecosystem services from agricultural lands remain important challenges in the United States despite decades of spending on natural resource management. To date, conservation investment has emphasized engineering practices or vegetative strategies centered on monocultural plantings of nonnative plants, largely excluding native species from cropland. In a catchment-scale experiment, we quantified the multiple effects of integrating strips of native prairie species amid corn and soybean crops, with prairie strips arranged to arrest run-off on slopes. Replacing 10% of cropland with prairie strips increased biodiversity and ecosystem services with minimal impacts on crop production. Compared with catchments containing only crops, integrating prairie strips into cropland led to greater catchment-level insect taxa richness (2.6-fold), pollinator abundance (3.5-fold), native bird species richness (2.1-fold), and abundance of bird species of greatest conservation need (2.1-fold). Use of prairie strips also reduced total water runoff from catchments by 37%, resulting in retention of 20 times more soil and 4.3 times more phosphorus. Corn and soybean yields for catchments with prairie strips decreased only by the amount of the area taken out of crop production. Social survey results indicated demand among both farming and nonfarming populations for the environmental outcomes produced by prairie strips. If federal and state policies were aligned to promote prairie strips, the practice would be applicable to 3.9 million ha of cropland in Iowa alone. PMID:28973922

  16. Filling Gaps in Biodiversity Knowledge for Macrofungi: Contributions and Assessment of an Herbarium Collection DNA Barcode Sequencing Project

    PubMed Central

    Osmundson, Todd W.; Robert, Vincent A.; Schoch, Conrad L.; Baker, Lydia J.; Smith, Amy; Robich, Giovanni; Mizzan, Luca; Garbelotto, Matteo M.

    2013-01-01

    Despite recent advances spearheaded by molecular approaches and novel technologies, species description and DNA sequence information are significantly lagging for fungi compared to many other groups of organisms. Large scale sequencing of vouchered herbarium material can aid in closing this gap. Here, we describe an effort to obtain broad ITS sequence coverage of the approximately 6000 macrofungal-species-rich herbarium of the Museum of Natural History in Venice, Italy. Our goals were to investigate issues related to large sequencing projects, develop heuristic methods for assessing the overall performance of such a project, and evaluate the prospects of such efforts to reduce the current gap in fungal biodiversity knowledge. The effort generated 1107 sequences submitted to GenBank, including 416 previously unrepresented taxa and 398 sequences exhibiting a best BLAST match to an unidentified environmental sequence. Specimen age and taxon affected sequencing success, and subsequent work on failed specimens showed that an ITS1 mini-barcode greatly increased sequencing success without greatly reducing the discriminating power of the barcode. Similarity comparisons and nonmetric multidimensional scaling ordinations based on pairwise distance matrices proved to be useful heuristic tools for validating the overall accuracy of specimen identifications, flagging potential misidentifications, and identifying taxa in need of additional species-level revision. Comparison of within- and among-species nucleotide variation showed a strong increase in species discriminating power at 1–2% dissimilarity, and identified potential barcoding issues (same sequence for different species and vice-versa). All sequences are linked to a vouchered specimen, and results from this study have already prompted revisions of species-sequence assignments in several taxa. PMID:23638077

  17. Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of an herbarium collection DNA barcode sequencing project.

    PubMed

    Osmundson, Todd W; Robert, Vincent A; Schoch, Conrad L; Baker, Lydia J; Smith, Amy; Robich, Giovanni; Mizzan, Luca; Garbelotto, Matteo M

    2013-01-01

    Despite recent advances spearheaded by molecular approaches and novel technologies, species description and DNA sequence information are significantly lagging for fungi compared to many other groups of organisms. Large scale sequencing of vouchered herbarium material can aid in closing this gap. Here, we describe an effort to obtain broad ITS sequence coverage of the approximately 6000 macrofungal-species-rich herbarium of the Museum of Natural History in Venice, Italy. Our goals were to investigate issues related to large sequencing projects, develop heuristic methods for assessing the overall performance of such a project, and evaluate the prospects of such efforts to reduce the current gap in fungal biodiversity knowledge. The effort generated 1107 sequences submitted to GenBank, including 416 previously unrepresented taxa and 398 sequences exhibiting a best BLAST match to an unidentified environmental sequence. Specimen age and taxon affected sequencing success, and subsequent work on failed specimens showed that an ITS1 mini-barcode greatly increased sequencing success without greatly reducing the discriminating power of the barcode. Similarity comparisons and nonmetric multidimensional scaling ordinations based on pairwise distance matrices proved to be useful heuristic tools for validating the overall accuracy of specimen identifications, flagging potential misidentifications, and identifying taxa in need of additional species-level revision. Comparison of within- and among-species nucleotide variation showed a strong increase in species discriminating power at 1-2% dissimilarity, and identified potential barcoding issues (same sequence for different species and vice-versa). All sequences are linked to a vouchered specimen, and results from this study have already prompted revisions of species-sequence assignments in several taxa.

  18. Insular threat associations within taxa worldwide.

    PubMed

    Leclerc, Camille; Courchamp, Franck; Bellard, Céline

    2018-04-23

    The global loss of biodiversity can be attributed to numerous threats. While pioneer studies have investigated their relative importance, the majority of those studies are restricted to specific geographic regions and/or taxonomic groups and only consider a small subset of threats, generally in isolation despite their frequent interaction. Here, we investigated 11 major threats responsible for species decline on islands worldwide. We applied an innovative method of network analyses to disentangle the associations of multiple threats on vertebrates, invertebrates, and plants in 15 insular regions. Biological invasions, wildlife exploitation, and cultivation, either alone or in association, were found to be the three most important drivers of species extinction and decline on islands. Specifically, wildlife exploitation and cultivation are largely associated with the decline of threatened plants and terrestrial vertebrates, whereas biological invasions mostly threaten invertebrates and freshwater fish. Furthermore, biodiversity in the Indian Ocean and near the Asian coasts is mostly affected by wildlife exploitation and cultivation compared to biological invasions in the Pacific and Atlantic insular regions. We highlighted specific associations of threats at different scales, showing that the analysis of each threat in isolation might be inadequate for developing effective conservation policies and managements.

  19. Biodiversity of shallow subtidal, under-rock invertebrates in Europe's first marine reserve: Effects of physical factors and scientific sampling

    NASA Astrophysics Data System (ADS)

    Trowbridge, Cynthia D.; Kachmarik, Katy; Plowman, Caitlin Q.; Little, Colin; Stirling, Penny; McAllen, Rob

    2017-03-01

    At Lough Hyne Marine Reserve in SW Ireland, shallow subtidal, under-rock biodiversity was investigated to assess (i) any deleterious effects of scientific sampling and (ii) quantitative baseline community patterns. Comparisons were made between 10 sites with annual rock-turning disturbance and 10 with multi-decadal (historical) disturbance. At each site, shallow subtidal rocks (N = 1289 total) were lifted, organisms recorded, and rocks replaced in their original position. Biodiversity indices were calculated to evaluate how diversity varied with location within the lough, frequency of sampling disturbance, degree of hypoxia/anoxia, dissolved oxygen (DO) concentration, and number of rocks turned. The richness of solitary invertebrates surveyed in situ averaged 21 taxa per site with significantly more in the South Basin (near the lough's connection to the ocean) than in the North Basin. The Shannon-Wiener Index did not differ significantly with variables investigated. However, evenness was higher at annually disturbed sites than at historical ones where anemones with algal symbionts often dominated. Several sites were hypoxic to anoxic under the shallow subtidal rocks. Cup corals were most abundant in the South Basin; DO was a crucial explanatory variable of these sensitive species. Solitary ascidians were most abundant at South-Basin annual sites with DO levels being a highly significant explanatory variable.

  20. CALICE: Calibrating Plant Biodiversity in Glacier Ice

    NASA Astrophysics Data System (ADS)

    Festi, Daniela; Cristofori, Antonella; Vernesi, Cristiano; Zerbe, Stefan; Wellstein, Camilla; Maggi, Valter; Oeggl, Klaus

    2017-04-01

    The objective of the project is to reconstruct plant biodiversity and its trend archived in Alpine glacier ice by pollen and eDNA (environmental DNA) during the last five decades by analyzing a 40 m ice core. For our study we chose the Adamello glacier (Trentino - Südtirol, Lombardia) because of i) the good preservation conditions for pollen and eDNA in ice, ii) the thickness of the ice cap (270m) and iii) the expected high time resolution. The biodiversity estimates gained by pollen analysis and eDNA will be validated by historical biodiversity assessments mainly based on vegetation maps, aerial photos and vegetation surveys in the catchment area of the Adamello glacier for the last five decades. This historical reconstruction of biodiversity trends will be performed on a micro-, meso- and macro-scale (5, 20-50 and 50-100 Km radius, respectively). The results will serve as a calibration data set on biodiversity for future studies, such as the second step of the coring by the POLLiCE research consortium (pollice.fmach.it). In fact, arrangements are currently been made to drill the complete ice cap and retrieve a 270 m thick core which has the potential to cover a time span of minimum 400 years up to several millennia. This second stage will extend the time scale and enable the evaluation of dissimilarity/similarity of modern biodiversity in relation to Late Holocene trends. Finally, we believe this case study has the potential to be applied in other glaciated areas to evaluate biodiversity for large regions (e.g. central Asian mountain ranges, Tibet and Tian Shan or the Andes).

  1. Information technology challenges of biodiversity and ecosystems informatics

    USGS Publications Warehouse

    Schnase, J.L.; Cushing, J.; Frame, M.; Frondorf, A.; Landis, E.; Maier, D.; Silberschatz, A.

    2003-01-01

    Computer scientists, biologists, and natural resource managers recently met to examine the prospects for advancing computer science and information technology research by focusing on the complex and often-unique challenges found in the biodiversity and ecosystem domain. The workshop and its final report reveal that the biodiversity and ecosystem sciences are fundamentally information sciences and often address problems having distinctive attributes of scale and socio-technical complexity. The paper provides an overview of the emerging field of biodiversity and ecosystem informatics and demonstrates how the demands of biodiversity and ecosystem research can advance our understanding and use of information technologies.

  2. Soil biodiversity and human health

    NASA Astrophysics Data System (ADS)

    Six, Johan; Pereg, Lily; Brevik, Eric

    2017-04-01

    Biodiversity is important for the maintenance of soil quality. Healthy, biodiverse soils are crucial for human health and wellbeing from several reasons, for example: biodiversity has been shown to be important in controlling populations of pathogens; healthy, well-covered soils can reduce disease outbreaks; carbon-rich soils may also reduce outbreaks of human and animal parasites; exposure to soil microbes can reduce allergies; soils have provided many of our current antibiotics; soil organisms can provide biological disease and pest control agents, healthy soils mean healthier and more abundant foods; soil microbes can enhance crop plant resilience; healthy soils promote good clean air quality, less prone to wind and water erosion; and healthy soils provide clean and safe water through filtration, decontamination by microbes and removal of pollutants. Soil microbes and other biota provide many benefits to human health. Soil microbes are a source of medicines, such as antibiotics, anticancer drugs and many more. Organisms that affect soil health and thus human health include those involved in nutrient cycling, decomposition of organic matter and determining soil structure (e.g. aggregation). Again these are related to food security but also affect human health in other ways. Many beneficial organisms have been isolated from soil - plant growth promoting and disease suppressive microbes used as inoculants, foliar inoculants for improvement of ruminant digestion systems and inoculants used in bioremediation of toxic compounds in the environment. Soil biodiversity is highly recognised now as an important feature of healthy soil and imbalances have been shown to give advantage to harmful over beneficial organisms. This presentation will highlight the many connections of biodiversity to soil quality and human health.

  3. Positive biodiversity-productivity relationship predominant in global forests.

    PubMed

    Liang, Jingjing; Crowther, Thomas W; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B; Glick, Henry B; Hengeveld, Geerten M; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V; Chen, Han Y H; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B; Neldner, Victor J; Ngugi, Michael R; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M; Peri, Pablo L; Gonmadje, Christelle; Marthy, William; O'Brien, Timothy; Martin, Emanuel H; Marshall, Andrew R; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L; Ferreira, Leandro V; Odeke, David E; Vasquez, Rodolfo M; Lewis, Simon L; Reich, Peter B

    2016-10-14

    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities. Copyright © 2016, American Association for the Advancement of Science.

  4. Conditionally Rare Taxa Disproportionately Contribute to Temporal Changes in Microbial Diversity

    DOE PAGES

    Shade, Ashley; Jones, Stuart E.; Caporaso, J. Gregory; ...

    2014-07-15

    Microbial communities typically contain many rare taxa that make up the majority of the observed membership, yet the contribution of this microbial “rare biosphere” to community dynamics is unclear. Using 16S rRNA amplicon sequencing of 3,237 samples from 42 time series of microbial communities from nine different ecosystems (air; marine; lake; stream; adult human skin, tongue, and gut; infant gut; and brewery wastewater treatment), we introduce a new method to detect typically rare microbial taxa that occasionally become very abundant (conditionally rare taxa [CRT]) and then quantify their contributions to temporal shifts in community structure. We discovered that CRT mademore » up 1.5 to 28% of the community membership, represented a broad diversity of bacterial and archaeal lineages, and explained large amounts of temporal community dissimilarity (i.e., up to 97% of Bray-Curtis dissimilarity). Most of the CRT were detected at multiple time points, though we also identified “one-hit wonder” CRT that were observed at only one time point. Using a case study from a temperate lake, we gained additional insights into the ecology of CRT by comparing routine community time series to large disturbance events. Our results reveal that many rare taxa contribute a greater amount to microbial community dynamics than is apparent from their low proportional abundances. In conclusion, this observation was true across a wide range of ecosystems, indicating that these rare taxa are essential for understanding community changes over time.« less

  5. Biodiversity of Aspergillus species in some important agricultural products.

    PubMed

    Perrone, G; Susca, A; Cozzi, G; Ehrlich, K; Varga, J; Frisvad, J C; Meijer, M; Noonim, P; Mahakarnchanakul, W; Samson, R A

    2007-01-01

    The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A. flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different species in relation to their different adaptation to environmental and geographical conditions, and to their potential toxigenicity. Here we analyzed the biodiversity of ochratoxin producing species occurring on two important crops: grapes and coffee, and the genetic diversity of A. flavus populations occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A. ibericus, and A. uvarum. Similar studies on the Aspergillus species occurring on coffee beans have evidenced in the last five years that A. carbonarius is an important source of ochratoxin A in coffee. Four new species within the black aspergilli were also identified in coffee beans: A. sclerotioniger, A. lacticoffeatus, A. sclerotiicarbonarius, and A. aculeatinus. The genetic diversity within A. flavus populations has been widely studied in relation to their potential aflatoxigenicity and morphological variants L- and S-strains. Within A. flavus and other Aspergillus species capable of aflatoxin production, considerable diversity is found. We summarise the main recent achievements in the diversity of the aflatoxin gene cluster in A. flavus populations, A. parasiticus and the non

  6. Beyond Biodiversity: Fish Metagenomes

    PubMed Central

    Ardura, Alba; Planes, Serge; Garcia-Vazquez, Eva

    2011-01-01

    Biodiversity and intra-specific genetic diversity are interrelated and determine the potential of a community to survive and evolve. Both are considered together in Prokaryote communities treated as metagenomes or ensembles of functional variants beyond species limits. Many factors alter biodiversity in higher Eukaryote communities, and human exploitation can be one of the most important for some groups of plants and animals. For example, fisheries can modify both biodiversity and genetic diversity (intra specific). Intra-specific diversity can be drastically altered by overfishing. Intense fishing pressure on one stock may imply extinction of some genetic variants and subsequent loss of intra-specific diversity. The objective of this study was to apply a metagenome approach to fish communities and explore its value for rapid evaluation of biodiversity and genetic diversity at community level. Here we have applied the metagenome approach employing the Barcoding target gene COI as a model sequence in catch from four very different fish assemblages exploited by fisheries: freshwater communities from the Amazon River and northern Spanish rivers, and marine communities from the Cantabric and Mediterranean seas. Treating all sequences obtained from each regional catch as a biological unit (exploited community) we found that metagenomic diversity indices of the Amazonian catch sample here examined were lower than expected. Reduced diversity could be explained, at least partially, by overexploitation of the fish community that had been independently estimated by other methods. We propose using a metagenome approach for estimating diversity in Eukaryote communities and early evaluating genetic variation losses at multi-species level. PMID:21829636

  7. Beyond biodiversity: fish metagenomes.

    PubMed

    Ardura, Alba; Planes, Serge; Garcia-Vazquez, Eva

    2011-01-01

    Biodiversity and intra-specific genetic diversity are interrelated and determine the potential of a community to survive and evolve. Both are considered together in Prokaryote communities treated as metagenomes or ensembles of functional variants beyond species limits.Many factors alter biodiversity in higher Eukaryote communities, and human exploitation can be one of the most important for some groups of plants and animals. For example, fisheries can modify both biodiversity and genetic diversity (intra specific). Intra-specific diversity can be drastically altered by overfishing. Intense fishing pressure on one stock may imply extinction of some genetic variants and subsequent loss of intra-specific diversity. The objective of this study was to apply a metagenome approach to fish communities and explore its value for rapid evaluation of biodiversity and genetic diversity at community level. Here we have applied the metagenome approach employing the barcoding target gene coi as a model sequence in catch from four very different fish assemblages exploited by fisheries: freshwater communities from the Amazon River and northern Spanish rivers, and marine communities from the Cantabric and Mediterranean seas.Treating all sequences obtained from each regional catch as a biological unit (exploited community) we found that metagenomic diversity indices of the Amazonian catch sample here examined were lower than expected. Reduced diversity could be explained, at least partially, by overexploitation of the fish community that had been independently estimated by other methods.We propose using a metagenome approach for estimating diversity in Eukaryote communities and early evaluating genetic variation losses at multi-species level.

  8. Shrubland ecosystem genetics and biodiversity: proceedings

    Treesearch

    E. Durant McArthur; Daniel J. Fairbanks

    2001-01-01

    The 53 papers in this proceedings include a section celebrating the 25-year anniversary of the Shrub Sciences Laboratory (4 papers), three sections devoted to themes, genetics, and biodiversity (12 papers), disturbance ecology and biodiversity (14 papers), ecophysiology (13 papers), community ecology (9 papers), and field trip section (1 paper). The anniversary session...

  9. Digital Geogames to Foster Local Biodiversity

    ERIC Educational Resources Information Center

    Schaal, Sonja; Schaal, Steffen; Lude, Armin

    2015-01-01

    The valuing of biodiversity is considered to be a first step towards its conservation. Therefore, the aim of the BioDiv2Go project is to combine sensuous experiences discovering biodiversity with mobile technology and a game-based learning approach. Following the competence model for environmental education (Roczen et al, 2014), Geogames (location…

  10. Response of Marine Taxa to Climate Variability in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Morley, J. W.; Pinsky, M. L.; Batt, R. D.

    2016-02-01

    Climate change has led to large-scale redistributions of marine taxa in many coastal regions around North America. Specifically, marine populations respond to spatial shifts in their preferred temperature conditions, or thermal envelope, as they shift across a seascape. The influence of climate change on the coastal fisheries of the southeast U.S. has been largely unexplored. We analyzed 25 years of trawl survey data (1990-2014) from the Southeast Area Monitoring and Assessment Program (SEAMAP), which samples the nearshore continental shelf of the South Atlantic Bight during spring, summer, and fall. Bottom temperatures exhibited no trend over this period and the assemblage showed no net shift north or south. However, taxa distributions were sensitive to interannual temperature variation. Annual projections of taxa thermal envelopes explained variation in centroid location for many species, particularly during spring. Accordingly, long-term latitudinal shifts in taxa-specific thermal envelopes, which trended to the north or south depending on the species, were highly correlated with centroid shifts during spring. One explanation for our results is that the phenology of taxa migration is adaptable to temperature variation. In particular, the inshore-offshore movement of species during spring and fall appears quite responsive to interannual temperature variability.

  11. Predicting ecosystem stability from community composition and biodiversity

    USGS Publications Warehouse

    Mazancourt, Claire de; Isbell, Forest; Larocque, Allen; Berendse, Frank; De Luca, Enrica; Grace, James B.; Haegeman, Bart; Polley, H. Wayne; Roscher, Christiane; Schmid, Bernhard; Tilman, David; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian J.; Loreau, Michel

    2013-01-01

    As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species’ responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22–75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability.

  12. Biodiversity offsets and the challenge of achieving no net loss.

    PubMed

    Gardner, Toby A; VON Hase, Amrei; Brownlie, Susie; Ekstrom, Jonathan M M; Pilgrim, John D; Savy, Conrad E; Stephens, R T Theo; Treweek, Jo; Ussher, Graham T; Ward, Gerri; Ten Kate, Kerry

    2013-12-01

    Businesses, governments, and financial institutions are increasingly adopting a policy of no net loss of biodiversity for development activities. The goal of no net loss is intended to help relieve tension between conservation and development by enabling economic gains to be achieved without concomitant biodiversity losses. biodiversity offsets represent a necessary component of a much broader mitigation strategy for achieving no net loss following prior application of avoidance, minimization, and remediation measures. However, doubts have been raised about the appropriate use of biodiversity offsets. We examined what no net loss means as a desirable conservation outcome and reviewed the conditions that determine whether, and under what circumstances, biodiversity offsets can help achieve such a goal. We propose a conceptual framework to substitute the often ad hoc approaches evident in many biodiversity offset initiatives. The relevance of biodiversity offsets to no net loss rests on 2 fundamental premises. First, offsets are rarely adequate for achieving no net loss of biodiversity alone. Second, some development effects may be too difficult or risky, or even impossible, to offset. To help to deliver no net loss through biodiversity offsets, biodiversity gains must be comparable to losses, be in addition to conservation gains that may have occurred in absence of the offset, and be lasting and protected from risk of failure. Adherence to these conditions requires consideration of the wider landscape context of development and offset activities, timing of offset delivery, measurement of biodiversity, accounting procedures and rule sets used to calculate biodiversity losses and gains and guide offset design, and approaches to managing risk. Adoption of this framework will strengthen the potential for offsets to provide an ecologically defensible mechanism that can help reconcile conservation and development. Balances de Biodiversidad y el Reto de No Obtener P

  13. How economic contexts shape calculations of yield in biodiversity offsetting.

    PubMed

    Carver, L; Sullivan, S

    2017-10-01

    We examined and analyzed methods used to create numerical equivalence between sites affected by development and proposed conservation offset sites. Application of biodiversity offsetting metrics in development impact and mitigation assessments is thought to standardize biodiversity conservation outcomes, sometimes termed yield by those conducting these calculations. The youth of biodiversity offsetting in application, however, means little is known about how biodiversity valuations and offset contracts between development and offset sites are agreed on in practice or about long-term conservation outcomes. We examined how sites were made commensurable and how biodiversity gains or yields were calculated and negotiated for a specific offset contract in a government-led pilot study of biodiversity offsets in England. Over 24 months, we conducted participant observations of various stages in the negotiation of offset contracts through repeated visits to 3 (anonymized) biodiversity offset contract sites. We conducted 50 semistructured interviews of stakeholders in regional and local government, the private sector, and civil society. We used a qualitative data analysis software program (DEDOOSE) to textually analyze interview transcriptions. We also compared successive iterations of biodiversity-offsetting calculation spreadsheets and planning documents. A particular focus was the different iterations of a specific biodiversity impact assessment in which the biodiversity offsetting metric developed by the U.K.'s Department for Environment, Food and Rural Affairs was used. We highlight 3 main findings. First, biodiversity offsetting metrics were amended in creative ways as users adapted inputs to metric calculations to balance and negotiate conflicting requirements. Second, the practice of making different habitats equivalent to each other through the application of biodiversity offsetting metrics resulted in commensuration outcomes that may not provide projected

  14. Connecting Earth observation to high-throughput biodiversity data.

    PubMed

    Bush, Alex; Sollmann, Rahel; Wilting, Andreas; Bohmann, Kristine; Cole, Beth; Balzter, Heiko; Martius, Christopher; Zlinszky, András; Calvignac-Spencer, Sébastien; Cobbold, Christina A; Dawson, Terence P; Emerson, Brent C; Ferrier, Simon; Gilbert, M Thomas P; Herold, Martin; Jones, Laurence; Leendertz, Fabian H; Matthews, Louise; Millington, James D A; Olson, John R; Ovaskainen, Otso; Raffaelli, Dave; Reeve, Richard; Rödel, Mark-Oliver; Rodgers, Torrey W; Snape, Stewart; Visseren-Hamakers, Ingrid; Vogler, Alfried P; White, Piran C L; Wooster, Martin J; Yu, Douglas W

    2017-06-22

    Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could be misleading and reduce the effectiveness of nature conservation and even unintentionally decrease conservation effort. We describe an approach that combines automated recording devices, high-throughput DNA sequencing and modern ecological modelling to extract much more of the information available in Earth observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services.

  15. Data hosting infrastructure for primary biodiversity data

    PubMed Central

    2011-01-01

    Background Today, an unprecedented volume of primary biodiversity data are being generated worldwide, yet significant amounts of these data have been and will continue to be lost after the conclusion of the projects tasked with collecting them. To get the most value out of these data it is imperative to seek a solution whereby these data are rescued, archived and made available to the biodiversity community. To this end, the biodiversity informatics community requires investment in processes and infrastructure to mitigate data loss and provide solutions for long-term hosting and sharing of biodiversity data. Discussion We review the current state of biodiversity data hosting and investigate the technological and sociological barriers to proper data management. We further explore the rescuing and re-hosting of legacy data, the state of existing toolsets and propose a future direction for the development of new discovery tools. We also explore the role of data standards and licensing in the context of data hosting and preservation. We provide five recommendations for the biodiversity community that will foster better data preservation and access: (1) encourage the community's use of data standards, (2) promote the public domain licensing of data, (3) establish a community of those involved in data hosting and archival, (4) establish hosting centers for biodiversity data, and (5) develop tools for data discovery. Conclusion The community's adoption of standards and development of tools to enable data discovery is essential to sustainable data preservation. Furthermore, the increased adoption of open content licensing, the establishment of data hosting infrastructure and the creation of a data hosting and archiving community are all necessary steps towards the community ensuring that data archival policies become standardized. PMID:22373257

  16. Polyhedral geometry of phylogenetic rogue taxa.

    PubMed

    Cueto, María Angélica; Matsen, Frederick A

    2011-06-01

    It is well known among phylogeneticists that adding an extra taxon (e.g. species) to a data set can alter the structure of the optimal phylogenetic tree in surprising ways. However, little is known about this "rogue taxon" effect. In this paper we characterize the behavior of balanced minimum evolution (BME) phylogenetics on data sets of this type using tools from polyhedral geometry. First we show that for any distance matrix there exist distances to a "rogue taxon" such that the BME-optimal tree for the data set with the new taxon does not contain any nontrivial splits (bipartitions) of the optimal tree for the original data. Second, we prove a theorem which restricts the topology of BME-optimal trees for data sets of this type, thus showing that a rogue taxon cannot have an arbitrary effect on the optimal tree. Third, we computationally construct polyhedral cones that give complete answers for BME rogue taxon behavior when our original data fits a tree on four, five, and six taxa. We use these cones to derive sufficient conditions for rogue taxon behavior for four taxa, and to understand the frequency of the rogue taxon effect via simulation.

  17. Climate impacts on global hot spots of marine biodiversity

    PubMed Central

    Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S.; Chiaradia, André

    2017-01-01

    Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world’s richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation. PMID:28261659

  18. Climate impacts on global hot spots of marine biodiversity.

    PubMed

    Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S; Chiaradia, André

    2017-02-01

    Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world's richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation.

  19. Sampling strategies and biodiversity of influenza A subtypes in wild birds

    USGS Publications Warehouse

    Olson, Sarah H.; Parmley, Jane; Soos, Catherine; Gilbert, Martin; Latore-Margalef, Neus; Hall, Jeffrey S.; Hansbro, Phillip M.; Leighton, Frank; Munster, Vincent; Joly, Damien

    2014-01-01

    Wild aquatic birds are recognized as the natural reservoir of avian influenza A viruses (AIV), but across high and low pathogenic AIV strains, scientists have yet to rigorously identify most competent hosts for the various subtypes. We examined 11,870 GenBank records to provide a baseline inventory and insight into patterns of global AIV subtype diversity and richness. Further, we conducted an extensive literature review and communicated directly with scientists to accumulate data from 50 non-overlapping studies and over 250,000 birds to assess the status of historic sampling effort. We then built virus subtype sample-based accumulation curves to better estimate sample size targets that capture a specific percentage of virus subtype richness at seven sampling locations. Our study identifies a sampling methodology that will detect an estimated 75% of circulating virus subtypes from a targeted bird population and outlines future surveillance and research priorities that are needed to explore the influence of host and virus biodiversity on emergence and transmission.

  20. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification

    PubMed Central

    Steffan-Dewenter, Ingolf; Kessler, Michael; Barkmann, Jan; Bos, Merijn M.; Buchori, Damayanti; Erasmi, Stefan; Faust, Heiko; Gerold, Gerhard; Glenk, Klaus; Gradstein, S. Robbert; Guhardja, Edi; Harteveld, Marieke; Hertel, Dietrich; Höhn, Patrick; Kappas, Martin; Köhler, Stefan; Leuschner, Christoph; Maertens, Miet; Marggraf, Rainer; Migge-Kleian, Sonja; Mogea, Johanis; Pitopang, Ramadhaniel; Schaefer, Matthias; Schwarze, Stefan; Sporn, Simone G.; Steingrebe, Andrea; Tjitrosoedirdjo, Sri S.; Tjitrosoemito, Soekisman; Twele, André; Weber, Robert; Woltmann, Lars; Zeller, Manfred; Tscharntke, Teja

    2007-01-01

    Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by ≈75% and species richness of forest-using species by ≈60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by ≈40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends. PMID:17360392

  1. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification.

    PubMed

    Steffan-Dewenter, Ingolf; Kessler, Michael; Barkmann, Jan; Bos, Merijn M; Buchori, Damayanti; Erasmi, Stefan; Faust, Heiko; Gerold, Gerhard; Glenk, Klaus; Gradstein, S Robbert; Guhardja, Edi; Harteveld, Marieke; Hertel, Dietrich; Höhn, Patrick; Kappas, Martin; Köhler, Stefan; Leuschner, Christoph; Maertens, Miet; Marggraf, Rainer; Migge-Kleian, Sonja; Mogea, Johanis; Pitopang, Ramadhaniel; Schaefer, Matthias; Schwarze, Stefan; Sporn, Simone G; Steingrebe, Andrea; Tjitrosoedirdjo, Sri S; Tjitrosoemito, Soekisman; Twele, André; Weber, Robert; Woltmann, Lars; Zeller, Manfred; Tscharntke, Teja

    2007-03-20

    Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by approximately 75% and species richness of forest-using species by approximately 60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by approximately 40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends.

  2. Pruning Rogue Taxa Improves Phylogenetic Accuracy: An Efficient Algorithm and Webservice

    PubMed Central

    Aberer, Andre J.; Krompass, Denis; Stamatakis, Alexandros

    2013-01-01

    Abstract The presence of rogue taxa (rogues) in a set of trees can frequently have a negative impact on the results of a bootstrap analysis (e.g., the overall support in consensus trees). We introduce an efficient graph-based algorithm for rogue taxon identification as well as an interactive webservice implementing this algorithm. Compared with our previous method, the new algorithm is up to 4 orders of magnitude faster, while returning qualitatively identical results. Because of this significant improvement in scalability, the new algorithm can now identify substantially more complex and compute-intensive rogue taxon constellations. On a large and diverse collection of real-world data sets, we show that our method yields better supported reduced/pruned consensus trees than any competing rogue taxon identification method. Using the parallel version of our open-source code, we successfully identified rogue taxa in a set of 100 trees with 116 334 taxa each. For simulated data sets, we show that when removing/pruning rogue taxa with our method from a tree set, we consistently obtain bootstrap consensus trees as well as maximum-likelihood trees that are topologically closer to the respective true trees. PMID:22962004

  3. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice.

    PubMed

    Aberer, Andre J; Krompass, Denis; Stamatakis, Alexandros

    2013-01-01

    The presence of rogue taxa (rogues) in a set of trees can frequently have a negative impact on the results of a bootstrap analysis (e.g., the overall support in consensus trees). We introduce an efficient graph-based algorithm for rogue taxon identification as well as an interactive webservice implementing this algorithm. Compared with our previous method, the new algorithm is up to 4 orders of magnitude faster, while returning qualitatively identical results. Because of this significant improvement in scalability, the new algorithm can now identify substantially more complex and compute-intensive rogue taxon constellations. On a large and diverse collection of real-world data sets, we show that our method yields better supported reduced/pruned consensus trees than any competing rogue taxon identification method. Using the parallel version of our open-source code, we successfully identified rogue taxa in a set of 100 trees with 116 334 taxa each. For simulated data sets, we show that when removing/pruning rogue taxa with our method from a tree set, we consistently obtain bootstrap consensus trees as well as maximum-likelihood trees that are topologically closer to the respective true trees.

  4. Do diatoms run downhill? Using biodiversity of terrestrial and aquatic diatoms to identify hydrological connectivity between aquatic zones in Luxembourg

    NASA Astrophysics Data System (ADS)

    Pfister, L.; Wetzel, C. E.; Martinez-Carreras, N.; Frentress, J.; Ector, L.; Hoffmann, L.; McDonnell, J. J.

    2011-12-01

    have been represented mainly by monoraphid species such as Achnanthidium subatomoides and Achnanthidium minutissimum. A general qualitative overview of the diatom flora - concerning specific ecological requirements of the taxa - showed that most diatom species are characteristic of the riparian zone (30%), while 12% are typical of the riparian/upland transition zone. Only 3% of species are strictly freshwater (Aquatic zone) forms and 8% stem from the aquatic/riparian zone. The qualitative analysis of drift collected by automatic samplers showed that during floods the origin of diatom species partly stems from riparian and/or terrestrial-upland habitats. Additional investigations over a longer period and range of events are being conducted. Furthermore, the study of the biodiversity of diatoms in this small catchment will also contribute to a better definition of the ecological preferences of many species which are still poorly known to date.

  5. Forest Resilience, Biodiversity, and Climate Change

    Treesearch

    I. Thompson; B. Mackey; S. McNulty; A. Mosseler

    2009-01-01

    This paper reviews the concepts of ecosystem resilience, resistance, and stability in forests and their relationship to biodiversity, with particular reference to climate change. The report is a direct response to a request by the ninth meeting of the Conference of the Parties to the CBD, in decision IX/51, to explore the links between biodiversity, forest ecosystem...

  6. Interactive inventory monitoring

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan M. (Inventor); Udoh, Usen E. (Inventor)

    2009-01-01

    Method and system for monitoring present location and/or present status of a target inventory item, where the inventory items are located on one or more inventory shelves or other inventory receptacles that communicate with an inventory base station through use of responders such as RFIDs. A user operates a hand held interrogation and display (IAD) module that communicates with, or is part of, the base station, to provide an initial inquiry. Information on location(s) of the target inventory item is also indicated visibly and/or audibly on the receptacle(s) for the user. Status information includes an assessment of operation readiness and a time, if known, that the specified inventory item or class was last removed or examined or modified. Presentation of a user access level may be required for access to the target inventory item. Another embodiment provides inventory information for a stack as a sight-impaired or hearing-impaired person passes adjacent to that stack.

  7. Differentiating Iconella from Surirella (Bacillariophyceae): typifying four Ehrenberg names and a preliminary checklist of the African taxa

    PubMed Central

    Jahn, Regine; Kusber, Wolf-Henning; Cocquyt, Christine

    2017-01-01

    Abstract To comply with the new phylogeny within the Surirellales as supported by molecular and morphological data, re-evaluations and re-combinations of taxa from and within the genera Surirella, Cymatopleura, and Stenopterobia and with the re-established genus Iconella are necessary. Since the African diatom flora is rich with taxa from these genera, especially Iconella, and the authors have studied these taxa recently, describing also new taxa, a preliminary checklist of African Iconella and Surirella is here presented. 94 names are contained on this list. 57 taxa have been transferred to Iconella; 55 taxa were formerly ranked within Surirella and two taxa within Stenopterobia. 10 taxa have stayed within Surirella and six taxa have been transferred from Cymatopleura to Surirella. 20 Surirella and 1 Stenopterobia names are listed which are either unrevised or unrevisable since morphological data is missing. Four names and taxa described by Ehrenberg are here typified. Two had been transferred to Iconella already: Iconella bifrons (Ehrenb.) Ruck & Nakov and Iconella splendida (Ehrenb.) Ruck & Nakov. Two are re-transferred from Cymatopleura to Surirella: Surirella librile (Ehrenb.) Ehrenb. and Surirella undulata (Ehrenb.) Ehrenb.; both taxa are currently known by their younger synonyms: Cymatopleura solea (Bréb.) W. Smith and Cymatopleura elliptica (Bréb. ex Kützing) W. Smith. Lectotypes for Iconella bifrons, I. splendida, Surirella librile, and S. undulata were designated. PMID:28794683

  8. High congruence of isotope sewage signals in multiple marine taxa.

    PubMed

    Connolly, Rod M; Gorman, Daniel; Hindell, Jeremy S; Kildea, Timothy N; Schlacher, Thomas A

    2013-06-15

    Assessments of sewage pollution routinely employ stable nitrogen isotope analysis (δ(15)N) in biota, but multiple taxa are rarely used. This single species focus leads to underreporting of whether derived spatial N patterns are consistent. Here we test the question of 'reproducibility', incorporating 'taxonomic replication' in the measurement of δ(15)N gradients in algae, seagrasses, crabs and fish with distance from a sewage outfall on the Adelaide coast (southern Australia). Isotopic sewage signals were equally strong in all taxa and declined at the same rate. This congruence amongst taxa has not been reported previously. It implies that sewage-N propagates to fish via a tight spatial coupling between production and consumption processes, resulting from limited animal movement that closely preserves the spatial pollution imprint. In situations such as this where consumers mirror pollution signals of primary producers, analyses of higher trophic levels will capture a broader ambit of ecological effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Contribution of natural history collection data to biodiversity assessment in national parks

    USGS Publications Warehouse

    O'Connell, A.F.; Gilbert, A.T.; Hatfield, J.S.

    2004-01-01

    There has been mounting interest in the use of museum and herbaria collections to assess biodiversity; information is often difficult to locate and access, however, and few recommendations are available for effectively using natural history collections. As part of an effort to inventory vertebrates and vascular plants in U.S. national parks, we searched manually and by computer for specimens originating within or adjacent to 14 parks throughout the northeastern United States. We compared the number of specimens located to collection size to determine whether there was any effect on detection rate of specimens. We evaluated the importance of park characteristics (e.g., age since establishment, size, theme [natural vs. cultural]) for influencing the number of specimens found in a collection. We located >31,000 specimens and compiled associated records (hereafter referred to as specimens) from 78 collections; >9000 specimens were park-significant, originating either within park boundaries or in the local township where the park was located. We found >2000 specimens by means of manual searches, which cost $0.001?0.15 per specimen searched and $0.81?151.95 per specimen found. Collection effort appeared relatively uniform between 1890 and 1980, with low periods corresponding to significant sociopolitical events. Detection rates for specimens were inversely related to collection size. Although specimens were most often located in collections within the region of interest, specimens can be found anywhere, particularly in large collections international in scope, suggesting that global searches will be necessary to evaluate historical biodiversity. Park characteristics indicated that more collecting effort occurred within or adjacent to larger parks established for natural resources than in smaller historical sites. Because many institutions have not yet established electronic databases for collections, manual searches can be useful for retrieving specimens. Our results

  10. Organic matter pools, C turnover and meiofaunal biodiversity in the sediments of the western Spitsbergen deep continental margin, Svalbard Archipelago

    NASA Astrophysics Data System (ADS)

    Pusceddu, A.; Carugati, L.; Gambi, C.; Mienert, J.; Petani, B.; Sanchez-Vidal, A.; Canals, M.; Heussner, S.; Danovaro, R.

    2016-01-01

    We investigated organic matter (OM) quantity, nutritional quality and degradation rates, as well as abundance and biodiversity of meiofauna and nematodes along the deep continental margin off Spitsbergen, in the Svalbard Archipelago. Sediment samples were collected in July 2010 and 2011 along a bathymetric gradient between 600 m and 2000 m depth, and total mass flux measured at the same depths from July 2010 to July 2011. In both sampling periods sedimentary OM contents and C degradation rates increased significantly with water depth, whereas OM nutritional quality was generally higher at shallower depths, with the unique exception at 600 m depth in 2010. Meiofaunal abundance and biomass (largely dominated by nematodes) showed the highest values at intermediate depths (ca 1500 m) in both sampling periods. The richness of meiofaunal higher taxa and nematode species richness did not vary significantly with water depth in both sampling periods. We suggest here that patterns in OM quantity, C degradation rates, and meiofauna community composition in 2011 were likely influenced by the intensification of the warm West Spitsbergen Current (WSC). We hypothesize that the intensity of the WSC inflow to the Arctic Ocean could have an important role on benthic biodiversity and functioning of deep-sea Arctic ecosystems.

  11. Ambiguous taxa: Effects on the characterization and interpretation of invertebrate assemblages

    USGS Publications Warehouse

    Cuffney, T.F.; Bilger, Michael D.; Haigler, A.M.

    2007-01-01

    Damaged and immature specimens often result in macroinvertebrate data that contain ambiguous parent-child pairs (i.e., abundances associated with multiple related levels of the taxonomic hierarchy such as Baetis pluto and the associated ambiguous parent Baetis sp.). The choice of method used to resolve ambiguous parent-child pairs may have a very large effect on the characterization of invertebrate assemblages and the interpretation of responses to environmental change because very large proportions of taxa richness (73-78%) and abundance (79-91%) can be associated with ambiguous parents. To address this issue, we examined 16 variations of 4 basic methods for resolving ambiguous taxa: RPKC (remove parent, keep child), MCWP (merge child with parent), RPMC (remove parent or merge child with parent depending on their abundances), and DPAC (distribute parents among children). The choice of method strongly affected assemblage structure, assemblage characteristics (e.g., metrics), and the ability to detect responses along environmental (urbanization) gradients. All methods except MCWP produced acceptable results when used consistently within a study. However, the assemblage characteristics (e.g., values of assemblage metrics) differed widely depending on the method used, and data should not be combined unless the methods used to resolve ambiguous taxa are well documented and are known to be comparable. The suitability of the methods was evaluated and compared on the basis of 13 criteria that considered conservation of taxa richness and abundance, consistency among samples, methods, and studies, and effects on the interpretation of the data. Methods RPMC and DPAC had the highest suitability scores regardless of whether ambiguous taxa were resolved for each sample separately or for a group of samples. Method MCWP gave consistently poor results. Methods MCWP and DPAC approximate the use of family-level identifications and operational taxonomic units (OTU), respectively. Our

  12. [Landscape planning approaches for biodiversity conservation in agriculture].

    PubMed

    Liu, Yun-hui; Li, Liang-tao; Yu, Zhen-rong

    2008-11-01

    Biodiversity conservation in agriculture not only relates to the sustainable development of agriculture, but also is an essential part of species conservation. In recent years, the landscape planning approach for biodiversity was highlighted instead of species-focused approach. In this paper, the landscape factors affecting the biodiversity in agriculture were reviewed, and the possible landscape approaches at three different scales for more efficient conservation of biodiversity in agro-landscape were suggested, including: (1) the increase of the proportion of natural or semi-natural habitats in agriculture, diversification of land use or crop pattern, and protection or construction of corridor at landscape level; (2) the establishment of non-cropping elements such as field margin at between-field level; and (3) the application of reasonable crop density, crop distribution pattern and rotation, and intercrop etc. at within-field level. It was suggested that the relevant policies for natural conservation, land use planning, and ecological compensation should be made to apply the landscape approaches for biodiversity conservation at larger scale.

  13. Towards a collaborative, global infrastructure for biodiversity assessment

    PubMed Central

    Guralnick, Robert P; Hill, Andrew W; Lane, Meredith

    2007-01-01

    Biodiversity data are rapidly becoming available over the Internet in common formats that promote sharing and exchange. Currently, these data are somewhat problematic, primarily with regard to geographic and taxonomic accuracy, for use in ecological research, natural resources management and conservation decision-making. However, web-based georeferencing tools that utilize best practices and gazetteer databases can be employed to improve geographic data. Taxonomic data quality can be improved through web-enabled valid taxon names databases and services, as well as more efficient mechanisms to return systematic research results and taxonomic misidentification rates back to the biodiversity community. Both of these are under construction. A separate but related challenge will be developing web-based visualization and analysis tools for tracking biodiversity change. Our aim was to discuss how such tools, combined with data of enhanced quality, will help transform today's portals to raw biodiversity data into nexuses of collaborative creation and sharing of biodiversity knowledge. PMID:17594421

  14. Predicting ecosystem stability from community composition and biodiversity.

    PubMed

    de Mazancourt, Claire; Isbell, Forest; Larocque, Allen; Berendse, Frank; De Luca, Enrica; Grace, James B; Haegeman, Bart; Wayne Polley, H; Roscher, Christiane; Schmid, Bernhard; Tilman, David; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian J; Loreau, Michel

    2013-05-01

    As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability. © 2013 Blackwell Publishing Ltd/CNRS.

  15. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related services

    Treesearch

    Eckehard G. Brockerhoff; Hervé Jactel; John A. Parrotta; Silvio F.B. Ferraz

    2013-01-01

    Forests provide important habitat for much of the world’s biodiversity, and the continuing global deforestation is one of our greatest environmental concerns. Planted forests represent an increasing proportion of the global forest area and partly compensate for the loss of natural forest in terms of forest area, habitat for biodiversity and ecological function. At...

  16. Predatory Ground Beetles (Insecta: Coleoptera: Carabidae) of the Gaoligong Mountain Region of Western Yunnan Province, China: the Tribe Cyclosomini

    NASA Astrophysics Data System (ADS)

    Cueva-Dabkoski, M.; Kavanaugh, D.

    2013-12-01

    Between 1998 and 2007, the California Academy of Sciences (CAS) was the lead institution in a multi-national, multi-disciplinary biodiversity inventory project in the Gaoligong Shan region (GLGS) in the Yunnan province of China. The project surveyed the species diversity of both higher plants and bryophytes, fishes, amphibians, reptiles, birds, mammals and selected groups of arachnids and insects. The GLGS of China is one of the most biodiverse areas in all of Asia, yet it is also very poorly sampled and in great threat from increasing human activities in the region. CAS's biodiversity inventory project there has increased the number of carabid species known from just 50 to more than 550 species, an eleven-fold increase. The task that remains is to identify all of those 500 additional species and describe any that are new to science. This project is part of that larger biodiversity survey. Our objective was to identify and/or describe carabid beetles of the tribe Cyclosomini represented by nearly a hundred specimens collected in the GLSG. Among those specimens, six morphospecies were identified - one belonging to the genus Cyclosomus Latreille 1829, and the other five belonging to the genus Tetragonoderus Dejean 1829. Following this initial identification process, a list of known distributions of taxa in both genera was assembled to determine which described species to consider for comparative work. Original descriptions were then located for candidate species with known distributions in or near the GLGS; and these are being used now in morphological comparison of specimens. Type specimens for each of the candidate species have been requested from various academic institutions, and morphological comparisons with these types are underway. Morphological characteristics being examined include body proportions and overall shape, color of appendages, color and shape of pronotum, elytral color patterns, and shape and internal structure of male genitalia.

  17. Biodiversity losses and conservation responses in the Anthropocene.

    PubMed

    Johnson, Christopher N; Balmford, Andrew; Brook, Barry W; Buettel, Jessie C; Galetti, Mauro; Guangchun, Lei; Wilmshurst, Janet M

    2017-04-21

    Biodiversity is essential to human well-being, but people have been reducing biodiversity throughout human history. Loss of species and degradation of ecosystems are likely to further accelerate in the coming years. Our understanding of this crisis is now clear, and world leaders have pledged to avert it. Nonetheless, global goals to reduce the rate of biodiversity loss have mostly not been achieved. However, many examples of conservation success show that losses can be halted and even reversed. Building on these lessons to turn the tide of biodiversity loss will require bold and innovative action to transform historical relationships between human populations and nature. Copyright © 2017, American Association for the Advancement of Science.

  18. Rediscovery of Bembidion (Lymnaeum) nigropiceum (Marsham) (= puritanum Hayward) in Massachusetts, with remarks on biology and habitat (Coleoptera, Carabidae, Bembidiini)

    PubMed Central

    Davidson, Robert L.; Rykken, Jessica

    2011-01-01

    Abstract Bembidion (Lymnaeum) nigropiceum (Marsham) (=puritanum Hayward), a European species introduced into Massachusetts but presumed not to have become established, has been rediscovered during the Boston Harbor Islands All Taxa Biodiversity Inventory undertaken by the Museum of Comparative Zoology and the National Park Service. A summary is presented of treatment of this species in North America. Data on specimens collected are presented, along with observations on habitat and biology. Some speculations are presented about its highly specialized habitat in the gravel pushed up by high tide, which may act as a food-trapping sieve. A few words are included about future actions needed to resolve questions of distribution and behavior. PMID:22379389

  19. The potential for biodiversity offsetting to fund effective invasive species control.

    PubMed

    Norton, David A; Warburton, Bruce

    2015-02-01

    Compensating for biodiversity losses in 1 location by conserving or restoring biodiversity elsewhere (i.e., biodiversity offsetting) is being used increasingly to compensate for biodiversity losses resulting from development. We considered whether a form of biodiversity offsetting, enhancement offsetting (i.e., enhancing the quality of degraded natural habitats through intensive ecological management), can realistically secure additional funding to control biological invaders at a scale and duration that results in enhanced biodiversity outcomes. We suggest that biodiversity offsetting has the potential to enhance biodiversity values through funding of invasive species control, but it needs to meet 7 key conditions: be technically possible to reduce invasive species to levels that enhance native biodiversity; be affordable; be sufficiently large to compensate for the impact; be adaptable to accommodate new strategic and tactical developments while not compromising biodiversity outcomes; acknowledge uncertainties associated with managing pests; be based on an explicit risk assessment that identifies the cost of not achieving target outcomes; and include financial mechanisms to provide for in-perpetuity funding. The challenge then for conservation practitioners, advocates, and policy makers is to develop frameworks that allow for durable and effective partnerships with developers to realize the full potential of enhancement offsets, which will require a shift away from traditional preservation-focused approaches to biodiversity management. © 2014 Society for Conservation Biology.

  20. Inventory of echinoderms in the Iles Eparses (Europa, Glorieuses, Juan de Nova), Mozambique Channel, France

    NASA Astrophysics Data System (ADS)

    Conand, C.; Mulochau, T.; Stöhr, S.; Eléaume, M.; Chabanet, P.

    2016-04-01

    The multidisciplinary programme BioReCIE (Biodiversity, Resources and Conservation of coral reefs at Eparses Is.) inventoried multiple marine animal groups in order to provide information on the coral reef health of the Iles Eparses. All five classes of echinoderms were observed by visual census, photographed and later identified. About 100 species are reported, including a few unidentified ones which require further studies. The Holothuroidea and Ophiuroidea are the most diverse. One new species, the asterinid Aquilonastra chantalae O'Loughlin and McKenzie (2013), was discovered in addition to several new records of echinoderms. The illegal fishery targeting holothurians, which are presently highly valuable resources in this zone, is discussed.

  1. Environmental biodiversity, human microbiota, and allergy are interrelated

    PubMed Central

    Hanski, Ilkka; von Hertzen, Leena; Fyhrquist, Nanna; Koskinen, Kaisa; Torppa, Kaisa; Laatikainen, Tiina; Karisola, Piia; Auvinen, Petri; Paulin, Lars; Mäkelä, Mika J.; Vartiainen, Erkki; Kosunen, Timo U.; Alenius, Harri; Haahtela, Tari

    2012-01-01

    Rapidly declining biodiversity may be a contributing factor to another global megatrend—the rapidly increasing prevalence of allergies and other chronic inflammatory diseases among urban populations worldwide. According to the “biodiversity hypothesis,” reduced contact of people with natural environmental features and biodiversity may adversely affect the human commensal microbiota and its immunomodulatory capacity. Analyzing atopic sensitization (i.e., allergic disposition) in a random sample of adolescents living in a heterogeneous region of 100 × 150 km, we show that environmental biodiversity in the surroundings of the study subjects’ homes influenced the composition of the bacterial classes on their skin. Compared with healthy individuals, atopic individuals had lower environmental biodiversity in the surroundings of their homes and significantly lower generic diversity of gammaproteobacteria on their skin. The functional role of the Gram-negative gammaproteobacteria is supported by in vitro measurements of expression of IL-10, a key anti-inflammatory cytokine in immunologic tolerance, in peripheral blood mononuclear cells. In healthy, but not in atopic, individuals, IL-10 expression was positively correlated with the abundance of the gammaproteobacterial genus Acinetobacter on the skin. These results raise fundamental questions about the consequences of biodiversity loss for both allergic conditions and public health in general. PMID:22566627

  2. Global Genome Biodiversity Network: saving a blueprint of the Tree of Life - a botanical perspective.

    PubMed

    Seberg, O; Droege, G; Barker, K; Coddington, J A; Funk, V; Gostel, M; Petersen, G; Smith, P P

    2016-09-01

    Genomic research depends upon access to DNA or tissue collected and preserved according to high-quality standards. At present, the collections in most natural history museums do not sufficiently address these standards, making them often hard or impossible to use for whole-genome sequencing or transcriptomics. In response to these challenges, natural history museums, herbaria, botanical gardens and other stakeholders have started to build high-quality biodiversity biobanks. Unfortunately, information about these collections remains fragmented, scattered and largely inaccessible. Without a central registry or even an overview of relevant institutions, it is difficult and time-consuming to locate the needed samples. The Global Genome Biodiversity Network (GGBN) was created to fill this vacuum by establishing a one-stop access point for locating samples meeting quality standards for genome-scale applications, while complying with national and international legislations and conventions. Increased accessibility to genomic samples will further genomic research and development, conserve genetic resources, help train the next generation of genome researchers and raise the visibility of biodiversity collections. Additionally, the availability of a data-sharing platform will facilitate identification of gaps in the collections, thereby empowering targeted sampling efforts, increasing the breadth and depth of preservation of genetic diversity. The GGBN is rapidly growing and currently has 41 members. The GGBN covers all branches of the Tree of Life, except humans, but here the focus is on a pilot project with emphasis on 'harvesting' the Tree of Life for vascular plant taxa to enable genome-level studies. While current efforts are centred on getting the existing samples of all GGBN members online, a pilot project, GGI-Gardens, has been launched as proof of concept. Over the next 6 years GGI-Gardens aims to add to the GGBN high-quality genetic material from at least one

  3. Biodiversity influences plant productivity through niche-efficiency.

    PubMed

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C; McGuire, A David; Reich, Peter B

    2015-05-05

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity-ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche-efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche-efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species' inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  4. Biodiversity and Edge Effects: An Activity in Landscape Ecology

    ERIC Educational Resources Information Center

    Hart, Justin L.

    2007-01-01

    Biodiversity and the conservation of biodiversity have received increased attention during the last few decades and these topics have been implemented into many G7-12 science curricula. This work presents an exercise that may be used in middle and high school classrooms to help students better understand spatial aspects of biodiversity. The…

  5. Does conservation on farmland contribute to halting the biodiversity decline?

    PubMed

    Kleijn, David; Rundlöf, Maj; Scheper, Jeroen; Smith, Henrik G; Tscharntke, Teja

    2011-09-01

    Biodiversity continues to decline, despite the implementation of international conservation conventions and measures. To counteract biodiversity loss, it is pivotal to know how conservation actions affect biodiversity trends. Focussing on European farmland species, we review what is known about the impact of conservation initiatives on biodiversity. We argue that the effects of conservation are a function of conservation-induced ecological contrast, agricultural land-use intensity and landscape context. We find that, to date, only a few studies have linked local conservation effects to national biodiversity trends. It is therefore unknown how the extensive European agri-environmental budget for conservation on farmland contributes to the policy objectives to halt biodiversity decline. Based on this review, we identify new research directions addressing this important knowledge gap. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Impacts of biodiversity on the emergence and transmission of infectious diseases.

    PubMed

    Keesing, Felicia; Belden, Lisa K; Daszak, Peter; Dobson, Andrew; Harvell, C Drew; Holt, Robert D; Hudson, Peter; Jolles, Anna; Jones, Kate E; Mitchell, Charles E; Myers, Samuel S; Bogich, Tiffany; Ostfeld, Richard S

    2010-12-02

    Current unprecedented declines in biodiversity reduce the ability of ecological communities to provide many fundamental ecosystem services. Here we evaluate evidence that reduced biodiversity affects the transmission of infectious diseases of humans, other animals and plants. In principle, loss of biodiversity could either increase or decrease disease transmission. However, mounting evidence indicates that biodiversity loss frequently increases disease transmission. In contrast, areas of naturally high biodiversity may serve as a source pool for new pathogens. Overall, despite many remaining questions, current evidence indicates that preserving intact ecosystems and their endemic biodiversity should generally reduce the prevalence of infectious diseases.

  7. Mapping and Quantifying Terrestrial Vertebrate Biodiversity at ...

    EPA Pesticide Factsheets

    The ability to assess, report, map, and forecast functions of ecosystems is critical to our capacity to make informed decisions to maintain the sustainable nature of our environment. Because of the variability among living organisms and levels of organization (e.g. genetic, species, ecosystem), biodiversity has always been difficult to measure precisely, especially within a systematic manner and over multiple scales. In answer to this challenge, the U.S. Environmental Protection Agency has created a partnership with other Federal agencies, academic institutions, and Non-Governmental Organizations to develop the EnviroAtlas (https://www.epa.gov/enviroatlas), an online national Decision Support Tool that allows users to view and analyze the geographical description of the supply and demand for ecosystem services, as well as the drivers of change. As part of the EnviroAtlas, an approach has been developed that uses deductive habitat models for all terrestrial vertebrates of the conterminous United States and clusters them into biodiversity metrics that relate to ecosystem service-relevant categories. Metrics, such as species and taxon richness, have been developed and integrated with other measures of biodiversity. Collectively, these metrics provide a consistent scalable process from which to make geographic comparisons, provide thematic assessments, and to monitor status and trends in biodiversity. The national biodiversity component operates across approximatel

  8. Resource Inventories.

    ERIC Educational Resources Information Center

    Council for Exceptional Children, Reston, VA. Center for Special Education Technology.

    The series of "Resource Inventories" is designed to encourage wider use of available information and services in the field of special education technology. A resource inventory is provided for each of 46 states of the United States. Each inventory includes directory information on public and private agencies and organizations that offer…

  9. Biodiversity, conservation biology, and rational choice.

    PubMed

    Frank, David

    2014-03-01

    This paper critically discusses two areas of Sahotra Sarkar's recent work in environmental philosophy: biodiversity and conservation biology and roles for decision theory in incorporating values explicitly in the environmental policy process. I argue that Sarkar's emphasis on the practices of conservation biologists, and especially the role of social and cultural values in the choice of biodiversity constituents, restricts his conception of biodiversity to particular practical conservation contexts. I argue that life scientists have many reasons to measure many types of diversity, and that biodiversity metrics could be value-free. I argue that Sarkar's emphasis on the limitations of normative decision theory is in tension with his statement that decision theory can "put science and ethics together." I also challenge his claim that multi-criteria decision tools lacking axiomatic foundations in preference and utility theory are "without a rational basis," by presenting a case of a simple "outranking" multi-criteria decision rule that can violate a basic normative requirement of preferences (transitivity) and ask whether there may nevertheless be contexts in which such a procedure might assist decision makers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Reintroducing Environmental Change Drivers in Biodiversity-Ecosystem Functioning Research.

    PubMed

    De Laender, Frederik; Rohr, Jason R; Ashauer, Roman; Baird, Donald J; Berger, Uta; Eisenhauer, Nico; Grimm, Volker; Hommen, Udo; Maltby, Lorraine; Meliàn, Carlos J; Pomati, Francesco; Roessink, Ivo; Radchuk, Viktoriia; Van den Brink, Paul J

    2016-12-01

    For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only implicitly considered the underlying role of environmental change. We illustrate that explicitly reintroducing environmental change drivers in B-EF research is needed to predict the functioning of ecosystems facing changes in biodiversity. Next we show how this reintroduction improves experimental control over community composition and structure, which helps to provide mechanistic insight on how multiple aspects of biodiversity relate to function and how biodiversity and function relate in food webs. We also highlight challenges for the proposed reintroduction and suggest analyses and experiments to better understand how random biodiversity changes, as studied by classic approaches in B-EF research, contribute to the shifts in function that follow environmental change. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Spatial Representativeness of Environmental DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural Freshwater System.

    PubMed

    Civade, Raphaël; Dejean, Tony; Valentini, Alice; Roset, Nicolas; Raymond, Jean-Claude; Bonin, Aurélie; Taberlet, Pierre; Pont, Didier

    2016-01-01

    In the last few years, the study of environmental DNA (eDNA) has drawn attention for many reasons, including its advantages for monitoring and conservation purposes. So far, in aquatic environments, most of eDNA research has focused on the detection of single species using species-specific markers. Recently, species inventories based on the analysis of a single generalist marker targeting a larger taxonomic group (eDNA metabarcoding) have proven useful for bony fish and amphibian biodiversity surveys. This approach involves in situ filtering of large volumes of water followed by amplification and sequencing of a short discriminative fragment from the 12S rDNA mitochondrial gene. In this study, we went one step further by investigating the spatial representativeness (i.e. ecological reliability and signal variability in space) of eDNA metabarcoding for large-scale fish biodiversity assessment in a freshwater system including lentic and lotic environments. We tested the ability of this approach to characterize large-scale organization of fish communities along a longitudinal gradient, from a lake to the outflowing river. First, our results confirm that eDNA metabarcoding is more efficient than a single traditional sampling campaign to detect species presence, especially in rivers. Second, the species list obtained using this approach is comparable to the one obtained when cumulating all traditional sampling sessions since 1995 and 1988 for the lake and the river, respectively. In conclusion, eDNA metabarcoding gives a faithful description of local fish biodiversity in the study system, more specifically within a range of a few kilometers along the river in our study conditions, i.e. longer than a traditional fish sampling site.

  12. New taxa, notes and new synonymy in Neoibidionini (Cerambycidae, Coleoptera).

    PubMed

    Martins, Ubirajara R; Galileo, Maria Helena M

    2014-04-11

    New taxa, notes, and new synonymy in Neoibidionini (Cerambycidae, Coleoptera) are given. New taxa are described from Ecuador: Compsibidion inflatum sp. nov., Bezarkia gen. nov. and B. suturalis sp. nov., Corimbion antennatum sp. nov. and Neocompsa muira sp. nov.; from México: Neocompsa chiapensis sp. nov., and from French Guyana: Kunaibidion giesberti sp. nov. Pygmodeon maculatum Martins & Galileo, 2012 is considered a new synonym of Heterachthes xyleus Martins, 1974 which is transferred to the genus Pygmodeon as a new combination. Notes on variability and new records of Asynapteron equatorianum (Martins, 1960) are presented.

  13. Biodiversity of the Deep-Sea Benthic Fauna in the Sangihe-Talaud Region, Indonesia: Observations from the INDEX-SATAL 2010 Expedition

    NASA Astrophysics Data System (ADS)

    Herrera, S.; Munro, C.; Nganro, N.; Tunnicliffe, V.; Wirasantosa, S.; Sibert, E.; Hammond, S. R.; Bors, E.; Butterfield, D.; Holden, J. F.; Baker, E. T.; Sherrin, J.; Makarim, S.; Troa, R.; Shank, T. M.

    2010-12-01

    The benthic ecosystems found in the deep-sea promontories of Sangihe Talaud region were explored, between June and August 2010, using the ROV Little Hercules aboard the NOAA ship Okeanos Explorer. The Sangihe-Talaud region is part of the Coral Triangle (CT) an area known for harboring the most biodiverse shallow-water coral reefs in the world. Notwithstanding the significant research efforts that have been undertaken to catalog and protect the biodiversity of the CT prior this expedition, virtually nothing was known about the life inhabiting the deep sea. The high-resolution imagery obtained from the 27 ROV dives revealed remarkably high abundances and diversity of animal species, many of which appear to be novel. On hard bottom substrates, cold-water corals were the dominant sessile macrofauna, in terms of biomass, followed by glass sponges (Hexactinellida) and sea lilies (Crinoidea). The coral taxa observed in this area represent six large orders of cnidarians: antipatharians (black corals), scleractinians (stony corals), zoanthideans (gold corals), alcyonaceans (octocorals), pennatulaceans (sea pens), and anthoathecates (hydrocorals). Most sessile species, independently of their size class or taxonomic affiliation, harbor a wide variety of associated fauna. Brittle stars (Ophiuroidea), squat lobsters (Galatheoidea), shrimp (Caridea), amphipods (Amphipoda), anemones (Actinaria), zanthideans, barnacles (Cirripedia), hydroids (Hydrozoa) and worms (Polychaeta) are the animal groups most commonly found forming these associations. In contrast, soft bottom habitats were dominated by stalked sponges, sea pens, sea cucumbers (Holothuroidea) and brittle stars. Other conspicuous fauna include fish, hermit crabs (Paguridae), urchins (Echinoidea) and octopuses (Cephalopoda). The abundance of habitats generated by the high number of geological and biological features and depth ranges present in the deep coral triangle (e.g., ridges, seamounts, island margins, plains, and rock

  14. State-of-Science Approaches to Determine Sensitive Taxa for Water Quality Criteria Derivation

    EPA Science Inventory

    Current Ambient Water Quality Criteria (AWQC) guidelines specify pre-defined taxa diversity requirements, which has limited chemical-specific criteria development in the U.S. to less than 100 chemicals. A priori knowledge of sensitive taxa to toxicologically similar groups of che...

  15. Circumpolar Biodiversity Monitoring Programme coastal biodiversity monitoring background paper

    USGS Publications Warehouse

    McLennan, Donald; Anderson, Rebecca D.; Wegeberg, S.; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, S.; Markon, Carl J.; Christensen, T.; Barry, T.; Price, C.

    2016-01-01

    In 2014, the United States (U.S.) and Canada agreed to act as co-lead countries for the initial development of the Coastal Expert Monitoring Group (CEMG) as part of the Circumpolar Biodiversity Monitoring Program (CBMP, www. cbmp.is) under the Arctic Council’s Conservation of Arctic Flora and Fauna (CAFF, www.caff.is) working group. The CAFF Management Board approved Terms of Reference for the CEMG in the spring of 2014. The primary goal of the CEMG is to develop a long term, integrated, multi-disciplinary, circumpolar Arctic Coastal Biodiversity Monitoring Plan (the Coastal Plan) that relies on science and Traditional Knowledge, and has direct and relevant application for communities, industry, government decision makers, and other users. In addition to the monitoring plan, the CAFF working group has asked the CBMP, and thus the CEMG, to develop an implementation plan that identifies timeline, costs, organizational structure and partners. This background paper provides a platform for the guidance for the development of the Coastal Plan and is produced by the CEMG with assistance from a number of experts in multiple countries.

  16. [Ecological indicators of habitat and biodiversity in a Neotropical landscape: multitaxonomic perspective].

    PubMed

    González-Valdivia, Noel; Ochoa-Gaona, Susana; Pozo, Carmen; Ferguson, Bruce Gordon; Rangel-Ruiz, Luis José; Arriaga-Weiss, Stefan Louis; Ponce-Mendoza, Alejandro; Kampichler, Christian

    2011-09-01

    Ecological indicators of habitat and biodiversity in a Neotropical landscape: multitaxonomic perspective. The use of indicator species to characterize specific ecological areas is of high importance in conservation/restoration biology. The objective of this study was to identify indicator species of diverse taxa that characterize different landscape units, and to better understand how management alters species composition. We identified two ecomosaics, tropical rain forest and the agricultural matrix, each one comprised of four landscape units. The taxonomic groups studied included birds (highly mobile), butterflies (moderately mobile), terrestrial gastropods (less mobile) and trees (sessile). Sampling efficiency for both ecomosaics was > or = 86%. We found 50 mollusks, 74 butterflies, 218 birds and 172 tree species, for a total of 514 species. Using ordination and cluster analysis, we distinguished three habitat types in the landscape: tropical rainforest, secondary vegetation and pastures with scattered trees and live fences. The InVal (> or = 50%) method identified 107 indicator species, including 45 tree species, 38 birds, 14 butterflies and 10 gastropods. Of these, 35 trees, 10 birds, four butterflies and eight gastropods were forest indicators. Additionally, 10, 28, 10 and two species, respectively per group, were characteristic of the agricultural matrix. Our results revealed a pattern of diversity decrease of indicator species along the rainforest-secondary forest-pasture gradient. In the forest, the gastropods Carychium exiguum, Coelocentrum turris, Glyphyalinia aff. indentata y Helicina oweniana were significantly correlated (p < 0.05) with 90% of the other groups of flora and fauna indicator species. These findings suggest that gastropods may be good indicators of forest habitat quality and biodiversity. The secondary vegetation is an intermediate disturbance phase that fosters high diversity in the agricultural matrix. We exemplify a multitaxa approach

  17. BIOFRAG – a new database for analyzing BIOdiversity responses to forest FRAGmentation

    PubMed Central

    Pfeifer, Marion; Lefebvre, Veronique; Gardner, Toby A; Arroyo-Rodriguez, Victor; Baeten, Lander; Banks-Leite, Cristina; Barlow, Jos; Betts, Matthew G; Brunet, Joerg; Cerezo, Alexis; Cisneros, Laura M; Collard, Stuart; D'Cruze, Neil; da Silva Motta, Catarina; Duguay, Stephanie; Eggermont, Hilde; Eigenbrod, Felix; Hadley, Adam S; Hanson, Thor R; Hawes, Joseph E; Heartsill Scalley, Tamara; Klingbeil, Brian T; Kolb, Annette; Kormann, Urs; Kumar, Sunil; Lachat, Thibault; Lakeman Fraser, Poppy; Lantschner, Victoria; Laurance, William F; Leal, Inara R; Lens, Luc; Marsh, Charles J; Medina-Rangel, Guido F; Melles, Stephanie; Mezger, Dirk; Oldekop, Johan A; Overal, William L; Owen, Charlotte; Peres, Carlos A; Phalan, Ben; Pidgeon, Anna M; Pilia, Oriana; Possingham, Hugh P; Possingham, Max L; Raheem, Dinarzarde C; Ribeiro, Danilo B; Ribeiro Neto, Jose D; Douglas Robinson, W; Robinson, Richard; Rytwinski, Trina; Scherber, Christoph; Slade, Eleanor M; Somarriba, Eduardo; Stouffer, Philip C; Struebig, Matthew J; Tylianakis, Jason M; Tscharntke, Teja; Tyre, Andrew J; Urbina Cardona, Jose N; Vasconcelos, Heraldo L; Wearn, Oliver; Wells, Konstans; Willig, Michael R; Wood, Eric; Young, Richard P; Bradley, Andrew V; Ewers, Robert M

    2014-01-01

    Habitat fragmentation studies have produced complex results that are challenging to synthesize. Inconsistencies among studies may result from variation in the choice of landscape metrics and response variables, which is often compounded by a lack of key statistical or methodological information. Collating primary datasets on biodiversity responses to fragmentation in a consistent and flexible database permits simple data retrieval for subsequent analyses. We present a relational database that links such field data to taxonomic nomenclature, spatial and temporal plot attributes, and environmental characteristics. Field assessments include measurements of the response(s) (e.g., presence, abundance, ground cover) of one or more species linked to plots in fragments within a partially forested landscape. The database currently holds 9830 unique species recorded in plots of 58 unique landscapes in six of eight realms: mammals 315, birds 1286, herptiles 460, insects 4521, spiders 204, other arthropods 85, gastropods 70, annelids 8, platyhelminthes 4, Onychophora 2, vascular plants 2112, nonvascular plants and lichens 320, and fungi 449. Three landscapes were sampled as long-term time series (>10 years). Seven hundred and eleven species are found in two or more landscapes. Consolidating the substantial amount of primary data available on biodiversity responses to fragmentation in the context of land-use change and natural disturbances is an essential part of understanding the effects of increasing anthropogenic pressures on land. The consistent format of this database facilitates testing of generalizations concerning biologic responses to fragmentation across diverse systems and taxa. It also allows the re-examination of existing datasets with alternative landscape metrics and robust statistical methods, for example, helping to address pseudo-replication problems. The database can thus help researchers in producing broad syntheses of the effects of land use. The database

  18. BIDDSAT: visualizing the content of biodiversity data publishers in the Global Biodiversity Information Facility network.

    PubMed

    Otegui, Javier; Ariño, Arturo H

    2012-08-15

    In any data quality workflow, data publishers must become aware of issues in their data so these can be corrected. User feedback mechanisms provide one avenue, while global assessments of datasets provide another. To date, there is no publicly available tool to allow both biodiversity data institutions sharing their data through the Global Biodiversity Information Facility network and its potential users to assess datasets as a whole. Contributing to bridge this gap both for publishers and users, we introduce BIoDiversity DataSets Assessment Tool, an online tool that enables selected diagnostic visualizations on the content of data publishers and/or their individual collections. The online application is accessible at http://www.unav.es/unzyec/mzna/biddsat/ and is supported by all major browsers. The source code is licensed under the GNU GPLv3 license (http://www.gnu.org/licenses/gpl-3.0.txt) and is available at https://github.com/jotegui/BIDDSAT.

  19. Long-term monitoring data provide evidence of declining species richness in a river valued for biodiversity conservation

    USGS Publications Warehouse

    Freeman, Mary C.; Hagler, Megan M.; Bumpers, Phillip M.; Wheeler, Kit; Wengerd, Seth J.; Freeman, Byron J.

    2017-01-01

    Free-flowing river segments provide refuges for many imperiled aquatic biota that have been extirpated elsewhere in their native ranges. These biodiversity refuges are also foci of conservation concerns because species persisting within isolated habitat fragments may be particularly vulnerable to local environmental change. We have analyzed long-term (14- and 20-y) survey data to assess evidence of fish species declines in two southeastern U.S. rivers where managers and stakeholders have identified potentially detrimental impacts of current and future land uses. The Conasauga River (Georgia and Tennessee) and the Etowah River (Georgia) form free-flowing headwaters of the extensively dammed Coosa River system. These rivers are valued in part because they harbor multiple species of conservation concern, including three federally endangered and two federally threatened fishes. We used data sets comprising annual surveys for fish species at multiple, fixed sites located at river shoals to analyze occupancy dynamics and temporal changes in species richness. Our analyses incorporated repeated site-specific surveys in some years to estimate and account for incomplete species detection, and test for species-specific (rarity, mainstem-restriction) and year-specific (elevated frequencies of low- or high-flow days) covariates on occupancy dynamics. In the Conasauga River, analysis of 26 species at 13 sites showed evidence of temporal declines in colonization rates for nearly all taxa, accompanied by declining species richness. Four taxa (including one federally endangered species) had reduced occupancy across the Conasauga study sites, with three of these taxa apparently absent for at least the last 5 y of the study. In contrast, a similar fauna of 28 taxa at 10 sites in the Etowah River showed no trends in species persistence, colonization, or occupancy. None of the tested covariates showed strong effects on persistence or colonization rates in either river. Previous studies

  20. New records for Albania based on taxa from the Prespa National Park

    PubMed Central

    2013-01-01

    Abstract Twelve taxa are enumerated as new and three taxa confirmed for the flora of Albania. They were collected between 2007 and 2012 in the Prespa National Park of Albania which is part of the Prespa International Park, a biological protected area at the borders with F.Y.R. Macedonia and Greece. Four taxa, viz., Centaurea galicicae, Festuca galicicae, Laserpitium ochridanum and Micromeria cristata subsp. kosaninii are restricted to Dry and Galičica Mountains. Centaurea decora, a recently described species, is treated as a synonym of Centaurea soskae thus extending the known localities of the latter to the southeast. Detailed information on distribution, occurrence and habitats in Albania are provided for each taxon. PMID:24723753

  1. Marine biodiversity, ecosystem functioning, and carbon cycles.

    PubMed

    Beaugrand, Grégory; Edwards, Martin; Legendre, Louis

    2010-06-01

    Although recent studies suggest that climate change may substantially accelerate the rate of species loss in the biosphere, only a few studies have focused on the potential consequences of a spatial reorganization of biodiversity with global warming. Here, we show a pronounced latitudinal increase in phytoplanktonic and zooplanktonic biodiversity in the extratropical North Atlantic Ocean in recent decades. We also show that this rise in biodiversity paralleled a decrease in the mean size of zooplanktonic copepods and that the reorganization of the planktonic ecosystem toward dominance by smaller organisms may influence the networks in which carbon flows, with negative effects on the downward biological carbon pump and demersal Atlantic cod (Gadus morhua). Our study suggests that, contrary to the usual interpretation of increasing biodiversity being a positive emergent property promoting the stability/resilience of ecosystems, the parallel decrease in sizes of planktonic organisms could be viewed in the North Atlantic as reducing some of the services provided by marine ecosystems to humans.

  2. Towards a data publishing framework for primary biodiversity data: challenges and potentials for the biodiversity informatics community

    PubMed Central

    Chavan, Vishwas S; Ingwersen, Peter

    2009-01-01

    Background Currently primary scientific data, especially that dealing with biodiversity, is neither easily discoverable nor accessible. Amongst several impediments, one is a lack of professional recognition of scientific data publishing efforts. A possible solution is establishment of a 'Data Publishing Framework' which would encourage and recognise investments and efforts by institutions and individuals towards management, and publishing of primary scientific data potentially on a par with recognitions received for scholarly publications. Discussion This paper reviews the state-of-the-art of primary biodiversity data publishing, and conceptualises a 'Data Publishing Framework' that would help incentivise efforts and investments by institutions and individuals in facilitating free and open access to biodiversity data. It further postulates the institutionalisation of a 'Data Usage Index (DUI)', that would attribute due recognition to multiple players in the data collection/creation, management and publishing cycle. Conclusion We believe that institutionalisation of such a 'Data Publishing Framework' that offers socio-cultural, legal, technical, economic and policy environment conducive for data publishing will facilitate expedited discovery and mobilisation of an exponential increase in quantity of 'fit-for-use' primary biodiversity data, much of which is currently invisible. PMID:19900298

  3. Towards a data publishing framework for primary biodiversity data: challenges and potentials for the biodiversity informatics community.

    PubMed

    Chavan, Vishwas S; Ingwersen, Peter

    2009-11-10

    Currently primary scientific data, especially that dealing with biodiversity, is neither easily discoverable nor accessible. Amongst several impediments, one is a lack of professional recognition of scientific data publishing efforts. A possible solution is establishment of a 'Data Publishing Framework' which would encourage and recognise investments and efforts by institutions and individuals towards management, and publishing of primary scientific data potentially on a par with recognitions received for scholarly publications. This paper reviews the state-of-the-art of primary biodiversity data publishing, and conceptualises a 'Data Publishing Framework' that would help incentivise efforts and investments by institutions and individuals in facilitating free and open access to biodiversity data. It further postulates the institutionalisation of a 'Data Usage Index (DUI)', that would attribute due recognition to multiple players in the data collection/creation, management and publishing cycle. We believe that institutionalisation of such a 'Data Publishing Framework' that offers socio-cultural, legal, technical, economic and policy environment conducive for data publishing will facilitate expedited discovery and mobilisation of an exponential increase in quantity of 'fit-for-use' primary biodiversity data, much of which is currently invisible.

  4. Bottom-up biodiversity effects increase resource subsidy flux between ecosystems.

    PubMed

    Allen, Daniel C; Vaughn, Caryn C; Kelly, Jeffrey F; Cooper, Joshua T; Engel, Michael H

    2012-10-01

    Although biodiversity can increase ecosystem productivity and adjacent ecosystems are often linked by resource flows between them, the relationship between biodiversity and resource subsidies is not well understood. Here we test the influence of biodiversity on resource subsidy flux by manipulating freshwater mussel species richness and documenting the effects on a trophic cascade from aquatic to terrestrial ecosystems. In a mesocosm experiment, mussel effects on algae were linked through stable isotope analyses to mussel-derived nitrogen subsidies, but mussel biodiversity effects on algal accumulation were not significant. In contrast, mussel biodiversity significantly increased aquatic insect emergence rates, because aquatic insects were responding to mussel-induced changes in algal community structure instead of algal accumulation. In turn, mussel biodiversity also significantly increased terrestrial spider abundance as spiders tracked increases in aquatic insect prey after a reproduction event. In a comparative field study, we found that sites with greater mussel species richness had higher aquatic insect emergence rates. These results show that, because food webs in adjacent ecosystems are often linked, biodiversity effects in one ecosystem can influence adjacent ecosystems as well.

  5. Remote-sensing supported monitoring of global biodiversity change

    NASA Astrophysics Data System (ADS)

    Jetz, W.; Tuanmu, M. N.; W, A.; Melton, F. S.; Parmentier, B.; Amatulli, G.; Guzman, A.

    2016-12-01

    Remote sensing combined with biodiversity observation offers an unrivalled tool for understanding and predicting species distributions and their changes at the planetary scale. I will illustrate recently developed high-resolution remote-sensing based layers targeted for spatiotemporal biodiversity modeling, addressing climate, environment, topography, and habitat heterogeneity. In particular, I will illustrate the development and use of global MODIS-derived environmental layers for biodiversity assessment and change monitoring. Remote-sensing based capture of these putative predictors of biodiversity dynamics provides more a reliable signal than spatially interpolated layers and avoids inflated spatial autocorrelation. The layers result in more accurate models of species occurrence and are more readily able to address the scale of processes underpinning species distributions, e.g. when combined with emerging hierarchical, cross-scale models. I illustrate the multiple ways in which this type of information, based on continuously collected data, supports the prediction of not just spatial but also temporal variation in biodiversity. Using implementations in the Map of Life infrastructure I will showcase new indicators of species distribution and change that demonstrate these new opportunities.

  6. Biodiversity analysis in the digital era

    PubMed Central

    2016-01-01

    This paper explores what the virtual biodiversity e-infrastructure will look like as it takes advantage of advances in ‘Big Data’ biodiversity informatics and e-research infrastructure, which allow integration of various taxon-level data types (genome, morphology, distribution and species interactions) within a phylogenetic and environmental framework. By overcoming the data scaling problem in ecology, this integrative framework will provide richer information and fast learning to enable a deeper understanding of biodiversity evolution and dynamics in a rapidly changing world. The Atlas of Living Australia is used as one example of the advantages of progressing towards this future. Living in this future will require the adoption of new ways of integrating scientific knowledge into societal decision making. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481789

  7. Biodiversity and Resilience of Ecosystem Functions.

    PubMed

    Oliver, Tom H; Heard, Matthew S; Isaac, Nick J B; Roy, David B; Procter, Deborah; Eigenbrod, Felix; Freckleton, Rob; Hector, Andy; Orme, C David L; Petchey, Owen L; Proença, Vânia; Raffaelli, David; Suttle, K Blake; Mace, Georgina M; Martín-López, Berta; Woodcock, Ben A; Bullock, James M

    2015-11-01

    Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their 'resilience') is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Testing scale-dependent effects of seminatural habitats on farmland biodiversity.

    PubMed

    Dainese, Matteo; Luna, Diego Inclán; Sitzia, Tommaso; Marini, Lorenzo

    2015-09-01

    The effectiveness of conservation interventions for maximizing biodiversity benefits from agri-environment schemes (AESs) is expected to depend on the quantity of seminatural habitats in the surrounding landscape. To verify this hypothesis, we developed a hierarchical sampling design to assess the effects of field boundary type and cover of seminatural habitats in the landscape at two nested spatial scales. We sampled three types of field boundaries with increasing structural complexity (grass margin, simple hedgerow, complex hedgerow) in paired landscapes with the presence or absence of seminatural habitats (radius 0.5 km), that in turn, were nested within 15 areas with different proportions of seminatural habitats at a larger spatial scale (10 X 10 km). Overall, 90 field boundaries were sampled across a Mediterranean'region (northeastern Italy). We considered species richness response across three different taxonomic groups: vascular plants, butterflies, and tachinid flies. No interactions between type of field boundary and surrounding landscape were found at either 0.5 and 10 km, indicating that the quality of field boundary had the same effect irrespective of the cover of seminatural habitats. At the local scale, extended-width grass margins yielded higher plant species richness, while hedgerows yielded higher species richness of butterflies and tachinids. At the 0.5-km landscape scale, the effect of the proportion of seminatural habitats was neutral for plants and tachinids, while butterflies were positively related to the proportion of forest. At the 10-km landscape scale, only butterflies responded positively to the proportion of seminatural habitats. Our study confirmed the importance of testing multiple scales when considering species from different taxa and with different mobility. We showed that the quality of field boundaries at the local scale was an important factor in enhancing farmland biodiversity. For butterflies, AESs should focus particular

  9. INVENTORY OF MOSQUITOES (DIPTERA: CULICIDAE) IN CONSERVATION UNITS IN BRAZILIAN TROPICAL DRY FORESTS.

    PubMed

    Santos, Cleandson Ferreira; Silva, Alex Chavier; Rodrigues, Raquel Andrade; de Jesus, Jamilli Sanndy Ramos; Borges, Magno Augusto Zazá

    2015-01-01

    In Brazil, most studies of the Culicidae family are concentrated in rainforest regions. As such, there is a lack of knowledge regarding the diversity of Culicidae in regions with different climatic and vegetational characteristics. The aim of this study was to compile an inventory of Culicidae in protected areas of the semi-arid region of the state of Minas Gerais, Brazil, in order to better understand the diversity of the family within this region. The study was conducted across four protected areas in the northern region of the state, in tropical dry forest (TDF) fragments. Sampling methods included Shannon trap and CDC light trap, as well as active collection. A total of 11,219 mosquito specimens were collected between August 2008 and July 2012, belonging to 11 genera and 45 species; 15 new records for the state of Minas Gerais were registered, as well as 26 new records for semi-arid regions within the state. The high number of new Culicidae records in this region demonstrates the importance of inventory studies for increasing the knowledge of culicid biodiversity in Minas Gerais, and in particular within semi-arid regions of the state.

  10. EXCLUSION OF RARE TAXA AFFECTS PERFORMANCE OF THE O/E INDEX IN BIOASSESSMENTS

    EPA Science Inventory

    The contribution of rare taxa to bioassessments based on multispecies assemblages is the subject of continued debate. As a result, users of predictive models such as River InVertebrate Prediction and Classification System (RIVPACS) disagree on whether to exclude locally rare taxa...

  11. Intentional systems management: managing forests for biodiversity.

    Treesearch

    A.B. Carey; B.R. Lippke; J. Sessions

    1999-01-01

    Conservation of biodiversity provides for economic, social, and environmental sustainability. Intentional management is designed to manage conflicts among groups with conflicting interests. Our goal was to ascertain if intentional management and principles of conservation of biodiversity could be combined into upland and riparian forest management strategies that would...

  12. A terrain-based paired-site sampling design to assess biodiversity losses from eastern hemlock decline

    USGS Publications Warehouse

    Young, J.A.; Smith, D.R.; Snyder, C.D.; Lemarie, D.P.

    2002-01-01

    Biodiversity surveys are often hampered by the inability to control extraneous sources of variability introduced into comparisons of populations across a heterogenous landscape. If not specifically accounted for a priori, this noise can weaken comparisons between sites, and can make it difficult to draw inferences about specific ecological processes. We developed a terrain-based, paired-site sampling design to analyze differences in aquatic biodiversity between streams draining eastern hemlock (Tsuga canadensis) forests, and those draining mixed hardwood forests in Delaware Water Gap National Recreation Area (USA). The goal of this design was to minimize variance due to terrain influences on stream communities, while representing the range of hemlock dominated stream environments present in the park. We used geographic information systems (GIS) and cluster analysis to define and partition hemlock dominated streams into terrain types based on topographic variables and stream order. We computed similarity of forest stands within terrain types and used this information to pair hemlock-dominated streams with hardwood counterparts prior to sampling. We evaluated the effectiveness of the design through power analysis and found that power to detect differences in aquatic invertebrate taxa richness was highest when sites were paired and terrain type was included as a factor in the analysis. Precision of the estimated difference in mean richness was nearly doubled using the terrain-based, paired site design in comparison to other evaluated designs. Use of this method allowed us to sample stream communities representative of park-wide forest conditions while effectively controlling for landscape variability.

  13. Taxa: An R package implementing data standards and methods for taxonomic data

    PubMed Central

    Foster, Zachary S.L.; Chamberlain, Scott; Grünwald, Niklaus J.

    2018-01-01

    The taxa R package provides a set of tools for defining and manipulating taxonomic data. The recent and widespread application of DNA sequencing to community composition studies is making large data sets with taxonomic information commonplace. However, compared to typical tabular data, this information is encoded in many different ways and the hierarchical nature of taxonomic classifications makes it difficult to work with. There are many R packages that use taxonomic data to varying degrees but there is currently no cross-package standard for how this information is encoded and manipulated. We developed the R package taxa to provide a robust and flexible solution to storing and manipulating taxonomic data in R and any application-specific information associated with it. Taxa provides parsers that can read common sources of taxonomic information (taxon IDs, sequence IDs, taxon names, and classifications) from nearly any format while preserving associated data. Once parsed, the taxonomic data and any associated data can be manipulated using a cohesive set of functions modeled after the popular R package dplyr. These functions take into account the hierarchical nature of taxa and can modify the taxonomy or associated data in such a way that both are kept in sync. Taxa is currently being used by the metacoder and taxize packages, which provide broadly useful functionality that we hope will speed adoption by users and developers. PMID:29707201

  14. Biodiversity at risk under future cropland expansion and intensification.

    PubMed

    Kehoe, Laura; Romero-Muñoz, Alfredo; Polaina, Ester; Estes, Lyndon; Kreft, Holger; Kuemmerle, Tobias

    2017-08-01

    Agriculture is the leading driver of biodiversity loss. However, its future impact on biodiversity remains unclear, especially because agricultural intensification is often neglected, and high path-dependency is assumed when forecasting agricultural development-although the past suggests that shock events leading to considerable agricultural change occur frequently. Here, we investigate the possible impacts on biodiversity of pathways of expansion and intensification. Our pathways are not built to reach equivalent production targets, and therefore they should not be directly compared; they instead highlight areas at risk of high biodiversity loss across the entire option space of possible agricultural change. Based on an extensive database of biodiversity responses to agriculture, we find 30% of species richness and 31% of species abundances potentially lost because of agricultural expansion across the Amazon and Afrotropics. Only 21% of high-risk expansion areas in the Afrotropics overlap with protected areas (compared with 43% of the Neotropics). Areas at risk of biodiversity loss from intensification are found in India, Eastern Europe and the Afromontane region (7% species richness, 13% abundance loss). Many high-risk regions are not adequately covered by conservation prioritization schemes, and have low national conservation spending and high agricultural growth. Considering rising agricultural demand, we highlight areas where timely land-use planning may proactively mitigate biodiversity loss.

  15. Seabirds drive plant species turnover on small Mediterranean islands at the expense of native taxa.

    PubMed

    Vidal, E; Médail, F; Tatoni, T; Bonnet, V

    2000-02-01

    The analysis of long-term floristic changes was conducted on nine west-Mediterranean limestone islands (size range: 2-95 ha) which have recently undergone a severe demographic explosion in their yellow-legged gull Larus cachinnans colonies. A comparison of past and present plant inventories was used to quantify extinction-colonization events, both from a classical biogeographical perspective (per island approach) and a metapopulational perspective (per species approach). In the first approach, floristic turnover intensity was negatively related to island area and positively to gull nesting density, but was independent of island isolation. In the second, species turnover rate was compared with a set of plant species life history traits (dispersal mode, Grime CSR strategy, growth form, biogeographical type). Plants which exhibited the highest turnover rate were primarily ruderal, annual, wind-dispersed species with a wide geographic range. The severe disturbance induced by seabird activities has tended to select and favour some adapted plant species groups at the expense of indigenous island taxa. The relationships between specific turnover intensity and plant life history traits justify using the metapopulation approach and point to the importance of interspecific variations in extinction-colonization patterns.

  16. Safeguarding biodiversity and ecosystem services in the Little Karoo, South Africa.

    PubMed

    Egoh, Benis N; Reyers, Belinda; Carwardine, Josie; Bode, Michael; O'Farrell, Patrick J; Wilson, Kerrie A; Possingham, Hugh P; Rouget, Mathieu; de Lange, Willem; Richardson, David M; Cowling, Richard M

    2010-08-01

    Global declines in biodiversity and the widespread degradation of ecosystem services have led to urgent calls to safeguard both. Responses to this urgency include calls to integrate the needs of ecosystem services and biodiversity into the design of conservation interventions. The benefits of such integration are purported to include improvements in the justification and resources available for these interventions. Nevertheless, additional costs and potential trade-offs remain poorly understood in the design of interventions that seek to conserve biodiversity and ecosystem services. We sought to investigate the synergies and trade-offs in safeguarding ecosystem services and biodiversity in South Africa's Little Karoo. We used data on three ecosystem services--carbon storage, water recharge, and fodder provision--and data on biodiversity to examine several conservation planning scenarios. First, we investigated the amount of each ecosystem service captured incidentally by a conservation plan to meet targets for biodiversity only while minimizing opportunity costs. We then examined the costs of adding targets for ecosystem services into this conservation plan. Finally, we explored trade-offs between biodiversity and ecosystem service targets at a fixed cost. At least 30% of each ecosystem service was captured incidentally when all of biodiversity targets were met. By including data on ecosystem services, we increased the amount of services captured by at least 20% for all three services without additional costs. When biodiversity targets were reduced by 8%, an extra 40% of fodder provision and water recharge were obtained and 58% of carbon could be captured for the same cost. The opportunity cost (in terms of forgone production) of safeguarding 100% of the biodiversity targets was about US$500 million. Our results showed that with a small decrease in biodiversity target achievement, substantial gains for the conservation of ecosystem services can be achieved within

  17. Discrete taxa of saprotrophic fungi respire different ages of carbon from Antarctic soils.

    PubMed

    Newsham, Kevin K; Garnett, Mark H; Robinson, Clare H; Cox, Filipa

    2018-05-18

    Different organic compounds have distinct residence times in soil and are degraded by specific taxa of saprotrophic fungi. It hence follows that specific fungal taxa should respire carbon of different ages from these compounds to the atmosphere. Here, we test whether this is the case by radiocarbon ( 14 C) dating CO 2 evolved from two gamma radiation-sterilised maritime Antarctic soils inoculated with pure single cultures of four fungi. We show that a member of the Helotiales, which accounted for 41-56% of all fungal sequences in the two soils, respired soil carbon that was aged up to 1,200 years BP and which was 350-400 years older than that respired by the other three taxa. Analyses of the enzyme profile of the Helotialean fungus and the fluxes and δ 13 C values of CO 2 that it evolved suggested that its release of old carbon from soil was associated with efficient cellulose decomposition. Our findings support suggestions that increases in the ages of carbon respired from warmed soils may be caused by changes to the abundances or activities of discrete taxa of microbes, and indicate that the loss of old carbon from soils is driven by specific fungal taxa.

  18. Agaricus section Xanthodermatei: a phylogenetic reconstruction with commentary on taxa.

    PubMed

    Kerrigan, Richard W; Callac, Philippe; Guinberteau, Jacques; Challen, Michael P; Parra, Luis A

    2005-01-01

    Agaricus section Xanthodermatei comprises a group of species allied to A. xanthodermus and generally characterized by basidiomata having phenolic odors, transiently yellowing discolorations in some parts of the basidiome, Schaeffer's reaction negative, and mild to substantial toxicity. The section has a global distribution, while most included species have distributions restricted to regions of single continents. Using specimens and cultures from Europe, North America, and Hawaii, we analyzed DNA sequences from the ITS1+2 region of the nuclear rDNA to identify and characterize phylogenetically distinct entities and to construct a hypothesis of relationships, both among members of the section and with representative taxa from other sections of the genus. 61 sequences from affiliated taxa, plus 20 from six (or seven) other sections of Agaricus, and one Micropsalliota sequence, were evaluated under distance, maximum parsimony and maximum likelihood methods. We recognized 21 discrete entities in Xanthodermatei, including 14 established species and 7 new ones, three of which are described elsewhere. Four species from California, New Mexico, and France deserve further study before they are described. Type studies of American taxa are particularly emphasized, and a lectotype is designated for A. californicus. Section Xanthodermatei formed a single clade in most analyses, indicating that the traditional sectional characters noted above are good unifying characters that appear to have arisen only once within Agaricus. Deep divisions within the sequence-derived structure of the section could be interpreted as subsections in Xanthodermatei; however, various considerations led us to refrain from proposing new supraspecific taxa. The nearest neighbors of section Xanthodermatei are putatively in section Duploannulati.

  19. Filling in the GAPS: evaluating completeness and coverage of open-access biodiversity databases in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troia, Matthew J.; McManamay, Ryan A.

    Primary biodiversity data constitute observations of particular species at given points in time and space. Open-access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open-access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records frommore » the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). In this study, we aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well-surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well-surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well-surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional

  20. Filling in the GAPS: evaluating completeness and coverage of open-access biodiversity databases in the United States

    DOE PAGES

    Troia, Matthew J.; McManamay, Ryan A.

    2016-06-12

    Primary biodiversity data constitute observations of particular species at given points in time and space. Open-access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open-access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records frommore » the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). In this study, we aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well-surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well-surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well-surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional

  1. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    PubMed

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  2. Quantifying Biodiversity Losses Due to Human Consumption: A Global-Scale Footprint Analysis.

    PubMed

    Wilting, Harry C; Schipper, Aafke M; Bakkenes, Michel; Meijer, Johan R; Huijbregts, Mark A J

    2017-03-21

    It is increasingly recognized that human consumption leads to considerable losses of biodiversity. This study is the first to systematically quantify these losses in relation to land use and greenhouse gas (GHG) emissions associated with the production and consumption of (inter)nationally traded goods and services by presenting consumption-based biodiversity losses, in short biodiversity footprint, for 45 countries and world regions globally. Our results showed that (i) the biodiversity loss per citizen shows large variations among countries, with higher values when per-capita income increases; (ii) the share of biodiversity losses due to GHG emissions in the biodiversity footprint increases with income; (iii) food consumption is the most important driver of biodiversity loss in most of the countries and regions, with a global average of 40%; (iv) more than 50% of the biodiversity loss associated with consumption in developed economies occurs outside their territorial boundaries; and (v) the biodiversity footprint per dollar consumed is lower for wealthier countries. The insights provided by our analysis might support policymakers in developing adequate responses to avert further losses of biodiversity when population and incomes increase. Both the mitigation of GHG emissions and land use related reduction options in production and consumption should be considered in strategies to protect global biodiversity.

  3. Climate change: potential implications for Ireland's biodiversity

    NASA Astrophysics Data System (ADS)

    Donnelly, Alison

    2018-03-01

    A national biodiversity and climate change adaptation plan is being developed for Ireland by the Department of Communications, Climate Action, and Environment. In order to inform such a plan, it was necessary to review and synthesize some of the recent literature pertaining to the impact of climate change on biodiversity in Ireland. Published research on this topic fell within three broad categories: (i) changes in the timing of life-cycle events (phenology) of plants, birds, and insects; (ii) changes in the geographic range of some bird species; and (iii) changes in the suitable climatic zones of key habitats and species. The synthesis revealed evidence of (i) a trend towards earlier spring activity of plants, birds, and insects which may result in a change in ecosystem function; (ii) an increase in the number of bird species; and (iii) both increases and decreases in the suitable climatic area of key habitats and species, all of which are expected to impact Ireland's future biodiversity. This process identified data gaps and limitations in available information both of which could be used to inform a focused research strategy. In addition, it raises awareness of the potential implications of climate change for biodiversity in Ireland and elsewhere and demonstrates the need for biodiversity conservation plans to factor climate change into future designs.

  4. Climate change: potential implications for Ireland's biodiversity.

    PubMed

    Donnelly, Alison

    2018-03-12

    A national biodiversity and climate change adaptation plan is being developed for Ireland by the Department of Communications, Climate Action, and Environment. In order to inform such a plan, it was necessary to review and synthesize some of the recent literature pertaining to the impact of climate change on biodiversity in Ireland. Published research on this topic fell within three broad categories: (i) changes in the timing of life-cycle events (phenology) of plants, birds, and insects; (ii) changes in the geographic range of some bird species; and (iii) changes in the suitable climatic zones of key habitats and species. The synthesis revealed evidence of (i) a trend towards earlier spring activity of plants, birds, and insects which may result in a change in ecosystem function; (ii) an increase in the number of bird species; and (iii) both increases and decreases in the suitable climatic area of key habitats and species, all of which are expected to impact Ireland's future biodiversity. This process identified data gaps and limitations in available information both of which could be used to inform a focused research strategy. In addition, it raises awareness of the potential implications of climate change for biodiversity in Ireland and elsewhere and demonstrates the need for biodiversity conservation plans to factor climate change into future designs.

  5. Geography of conservation spending, biodiversity, and culture.

    PubMed

    McClanahan, T R; Rankin, P S

    2016-10-01

    We used linear and multivariate models to examine the associations between geography, biodiversity, per capita economic output, national spending on conservation, governance, and cultural traits in 55 countries. Cultural traits and social metrics of modernization correlated positively with national spending on conservation. The global distribution of this spending culture was poorly aligned with the distribution of biodiversity. Specifically, biodiversity was greater in the tropics where cultures tended to spend relatively less on conservation and tended to have higher collectivism, formalized and hierarchical leadership, and weaker governance. Consequently, nations lacking social traits frequently associated with modernization, environmentalism, and conservation spending have the largest component of Earth's biodiversity. This has significant implications for setting policies and priorities for resource management given that biological diversity is rapidly disappearing and cultural traits change slowly. Therefore, we suggest natural resource management adapt to and use characteristics of existing social organization rather than wait for or promote social values associated with conservation spending. Supporting biocultural traditions, engaging leaders to increase conservation commitments, cross-national efforts that complement attributes of cultures, and avoiding interference with nature may work best to conserve nature in collective and hierarchical societies. Spending in modernized nations may be a symbolic response to a symptom of economic development and environmental degradation, and here conservation actions need to ensure that biodiversity is not being lost. © 2016 Society for Conservation Biology.

  6. Inventory Management

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Known as MRO for Maintenance, Repair and Operating supplies, Tropicana Products, Inc.'s automated inventory management system is an adaptation of the Shuttle Inventory Management System (SIMS) developed by NASA to assure adequate supply of every item used in support of the Space Shuttle. The Tropicana version monitors inventory control, purchasing receiving and departmental costs for eight major areas of the company's operation.

  7. Multilevel regularized regression for simultaneous taxa selection and network construction with metagenomic count data.

    PubMed

    Liu, Zhenqiu; Sun, Fengzhu; Braun, Jonathan; McGovern, Dermot P B; Piantadosi, Steven

    2015-04-01

    Identifying disease associated taxa and constructing networks for bacteria interactions are two important tasks usually studied separately. In reality, differentiation of disease associated taxa and correlation among taxa may affect each other. One genus can be differentiated because it is highly correlated with another highly differentiated one. In addition, network structures may vary under different clinical conditions. Permutation tests are commonly used to detect differences between networks in distinct phenotypes, and they are time-consuming. In this manuscript, we propose a multilevel regularized regression method to simultaneously identify taxa and construct networks. We also extend the framework to allow construction of a common network and differentiated network together. An efficient algorithm with dual formulation is developed to deal with the large-scale n ≪ m problem with a large number of taxa (m) and a small number of samples (n) efficiently. The proposed method is regularized with a general Lp (p ∈ [0, 2]) penalty and models the effects of taxa abundance differentiation and correlation jointly. We demonstrate that it can identify both true and biologically significant genera and network structures. Software MLRR in MATLAB is available at http://biostatistics.csmc.edu/mlrr/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Catalog of taxa introduced by Luitfried Salvini-Plawen (1939-2014).

    PubMed

    Affenzeller, Susanne; Steiner, Gerhard

    2017-10-17

    Luitfried Salvini-Plawen was one of the most distinguished researchers for molluscan phylogenetic systematics of the last decades. In his publications he described a total of 193 species: 134 Solenogastres, 34 Caudofoveata, 14 interstitial Gastropoda, one polyplacophoran and the remaining comprising Cnidaria, Priapulida, Kamptozoa, and Echinodermata. In addition, he introduced 47 genus-group names and 54 names for family-level and higher taxa. This catalog comprises lists of all taxon names published by Luitfried Salvini-Plawen. The catalog entries contain taxonomic information, original citations, type localities and type collections. It aims to facilitate further research on these and related taxa.

  9. Combining high biodiversity with high yields in tropical agroforests.

    PubMed

    Clough, Yann; Barkmann, Jan; Juhrbandt, Jana; Kessler, Michael; Wanger, Thomas Cherico; Anshary, Alam; Buchori, Damayanti; Cicuzza, Daniele; Darras, Kevin; Putra, Dadang Dwi; Erasmi, Stefan; Pitopang, Ramadhanil; Schmidt, Carsten; Schulze, Christian H; Seidel, Dominik; Steffan-Dewenter, Ingolf; Stenchly, Kathrin; Vidal, Stefan; Weist, Maria; Wielgoss, Arno Christian; Tscharntke, Teja

    2011-05-17

    Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland.

  10. Parasitism and the biodiversity-functioning relationship

    USGS Publications Warehouse

    Frainer, André; McKie, Brendan G.; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D.

    2018-01-01

    Biodiversity affects ecosystem functioning.Biodiversity may decrease or increase parasitism.Parasites impair individual hosts and affect their role in the ecosystem.Parasitism, in common with competition, facilitation, and predation, could regulate BD-EF relationships.Parasitism affects host phenotypes, including changes to host morphology, behavior, and physiology, which might increase intra- and interspecific functional diversity.The effects of parasitism on host abundance and phenotypes, and on interactions between hosts and the remaining community, all have potential to alter community structure and BD-EF relationships.Global change could facilitate the spread of invasive parasites, and alter the existing dynamics between parasites, communities, and ecosystems.Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions – parasitism – has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite–host interactions should be incorporated into the BD-EF framework.

  11. Temperature impacts on deep-sea biodiversity.

    PubMed

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. © 2014 Cambridge Philosophical Society.

  12. Global Genome Biodiversity Network: saving a blueprint of the Tree of Life – a botanical perspective

    PubMed Central

    Seberg, O.; Droege, G.; Barker, K.; Coddington, J. A.; Funk, V.; Gostel, M.; Petersen, G.; Smith, P. P.

    2016-01-01

    Background Genomic research depends upon access to DNA or tissue collected and preserved according to high-quality standards. At present, the collections in most natural history museums do not sufficiently address these standards, making them often hard or impossible to use for whole-genome sequencing or transcriptomics. In response to these challenges, natural history museums, herbaria, botanical gardens and other stakeholders have started to build high-quality biodiversity biobanks. Unfortunately, information about these collections remains fragmented, scattered and largely inaccessible. Without a central registry or even an overview of relevant institutions, it is difficult and time-consuming to locate the needed samples. Scope The Global Genome Biodiversity Network (GGBN) was created to fill this vacuum by establishing a one-stop access point for locating samples meeting quality standards for genome-scale applications, while complying with national and international legislations and conventions. Increased accessibility to genomic samples will further genomic research and development, conserve genetic resources, help train the next generation of genome researchers and raise the visibility of biodiversity collections. Additionally, the availability of a data-sharing platform will facilitate identification of gaps in the collections, thereby empowering targeted sampling efforts, increasing the breadth and depth of preservation of genetic diversity. The GGBN is rapidly growing and currently has 41 members. The GGBN covers all branches of the Tree of Life, except humans, but here the focus is on a pilot project with emphasis on ‘harvesting’ the Tree of Life for vascular plant taxa to enable genome-level studies. Conclusion While current efforts are centred on getting the existing samples of all GGBN members online, a pilot project, GGI-Gardens, has been launched as proof of concept. Over the next 6 years GGI-Gardens aims to add to the GGBN high-quality genetic

  13. Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere

    PubMed Central

    Yousaf, Sohail; Bulgari, Daniela; Bergna, Alessandro; Pancher, Michael; Quaglino, Fabio; Casati, Paola; Campisano, Andrea

    2014-01-01

    Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment. PMID:25071740

  14. Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere.

    PubMed

    Yousaf, Sohail; Bulgari, Daniela; Bergna, Alessandro; Pancher, Michael; Quaglino, Fabio; Casati, Paola; Campisano, Andrea

    2014-01-01

    Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment.

  15. Inventory and Comparison of Floodplain Embankment along Large Rivers

    NASA Astrophysics Data System (ADS)

    Hudson, Paul

    2016-04-01

    Flood control is a fundamental human response to flood risk, and floodplain embankment by dike (levee) construction is among the oldest forms of societal impacts to natural systems. Large lowland alluvial valleys are some of Earth's most distinctive environments and represent high levels of geodiversity and biodiversity. Embankment of large lowland alluvial river valleys alters fundamental processes related to floodplain hydrology, sedimentation, and ecology and eventually results in a transformation of the embanked floodplain environment. Since embankment, many large lowland floodplains have been heaviliy modified for floodplain agriculture and include high population densities, increasing flood risk. While there is much discussion about the pros and cons of dike construction and the impact to floodplain environments there is no systematic inventory which documents the magnitude and intensity of floodplain embankment to lowland rivers. In this study we characterize and inventory floodplain embankment along large lowland alluvial valleys. The review includes some of Earth's largest embanked fluvial systems, and primarilly focuses on northern hemisphere rivers in the United States, Europe and Asia. Data sources includes the U.S. National Levee Database, SRTM DEM, recently obtained high resolution satellite imagery, various national topographic map series, and hydrologic data from the published literature. These data are integrated into a GIS framework to facilitate the measurement and characterisation of floodplain embankment. Spatial indices of floodplain embankment are constructed, including the intensity of embankment and how it relates to the natural floodplain and constriction of flooding.

  16. Interactive Inventory Monitoring

    NASA Technical Reports Server (NTRS)

    Garud, Sumedha

    2013-01-01

    Method and system for monitoring present location and/or present status of a target inventory item, where the inventory items are located on one or more inventory shelves or other inventory receptacles that communicate with an inventory base station through use of responders such as RFIDs. A user operates a hand held interrogation and display (lAD) module that communicates with, or is part of the base station to provide an initial inquiry. lnformation on location(s) of the larget invenlory item is also indicated visibly and/or audibly on the receptacle(s) for the user. Status information includes an assessment of operation readiness and a time, if known, that the specified inventory item or class was last removed or examined or modified. Presentation of a user access level may be required for access to the target inventgory item. Another embodiment provides inventory informatin for a stack as a sight-impaired or hearing-impaired person adjacent to that stack.

  17. Plantation forests and biodiversity: oxymoron or opportunity?

    Treesearch

    Eckehard G. Brockerhoff; Hervé Jactel; John A. Parrotta; Christopher Quine; Jeffrey Sayer

    2008-01-01

    Losses of natural and semi-natural forests, mostly to agriculture, are a significant concern for biodiversity. Against this trend, the area of intensively managed plantation forests increases, and there is much debate about the implications for biodiversity. We provide a comprehensive review of the function of plantation forests as habitat compared with other land...

  18. Biodiversity of plankton by species oscillations and chaos

    NASA Astrophysics Data System (ADS)

    Huisman, Jef; Weissing, Franz J.

    1999-11-01

    Biodiversity has both fascinated and puzzled biologists. In aquatic ecosystems, the biodiversity puzzle is particularly troublesome, and known as the `paradox of the plankton'. Competition theory predicts that, at equilibrium, the number of coexisting species cannot exceed the number of limiting resources. For phytoplankton, only a few resources are potentially limiting: nitrogen, phosphorus, silicon, iron, light, inorganic carbon, and sometimes a few trace metals or vitamins. However, in natural waters dozens of phytoplankton species coexist. Here we offer a solution to the plankton paradox. First, we show that resource competition models can generate oscillations and chaos when species compete for three or more resources. Second, we show that these oscillations and chaotic fluctuations in species abundances allow the coexistence of many species on a handful of resources. This model of planktonic biodiversity may be broadly applicable to the biodiversity of many ecosystems.

  19. Roles of epi-anecic taxa of earthworms in the organic matter recycling

    NASA Astrophysics Data System (ADS)

    Hoeffner, Kevin; Monard, Cécile; Santonja, Mathieu; Pérès, Guénola; Cluzeau, Daniel

    2017-04-01

    Given their impact on soil functioning and their interactions with soil organisms, earthworms contribute to the recycling of organic matter and participate significantly in the numerous ecosystem services provided by soils. Most studies on the role of earthworms in organic matter recycling were conducted at the level of the four functional groups (epigeic, epi-anecic, anecic strict and endogeic), but their effects at taxa level remain largely unknown. Still, within a functional group, anatomic and physiologic earthworm taxa traits are different, which should impact organic matter recycling. This study aims at determining, under controlled conditions, epi-anecic taxa differences in (i) leaf litter mass loss, (ii) assimilation and (iii) impact on microorganisms communities implied in organic matter degradation. In seperate microcosms, we chose 4 epi anecic taxa (Lumbricus rubellus, Lumbricus festivus, Lumbricus centralis and Lumbricus terrestris). Each taxon was exposed separately to leaves of three different plants (Holcus lanatus, Lolium perenne and Corylus avellana). In the same microcosm, leaves of each plant was both placed on the surface and buried 10cm deep. The experiment lasted 10 days for half of the samples and 20 days for the second half. Microorganisms communities were analysed using TRFLP in each earthworm taxon burrow walls at 20 days. We observed differences between epi-anecic taxa depending on species of plant and the duration of the experiment. Results are discussed taking into account physical and chemical properties of these 3 trophic resources (e.g. C/N ratio, phenolic compounds, percentage of lignin and cellulose...).

  20. Influence of anglers' specializations on catch, harvest, and bycatch of targeted taxa

    USGS Publications Warehouse

    Pope, Kevin L.; Chizinski, Christopher J.; Wiley, Christopher L.; Martin, Dustin R.

    2016-01-01

    Fishery managers often use catch per unit effort (CPUE) of a given taxon derived from a group of anglers, those that sought said taxon, to evaluate fishery objectives because managers assume CPUE for this group of anglers is most sensitive to changes in fish taxon density. Further, likelihood of harvest may differ for sought and non-sought taxa if taxon sought is a defining characteristic of anglers’ attitude toward harvest. We predicted that taxon-specific catch across parties and reservoirs would be influenced by targeted taxon after controlling for number of anglers in a party and time spent fishing (combine to quantify fishing effort of party); we also predicted similar trends for taxon-specific harvest. We used creel-survey data collected from anglers that varied in taxon targeted, from generalists (targeting “anything” [no primary target taxa, but rather targeting all fishes]) to target specialists (e.g., anglers targeting largemouth bass Micropterus salmoides) in 19 Nebraska reservoirs during 2009–2011 to test our predictions. Taxon-specific catch and harvest were, in general, positively related to fishing effort. More importantly, we observed differences of catch and harvest among anglers grouped by taxon targeted for each of the eight taxa assessed. Anglers targeting a specific taxon had the greatest catch for that taxon and anglers targeting anything typically had the second highest catch for that taxon. In addition, anglers tended to catch more of closely related taxa and of taxa commonly targeted with similar fishing techniques. We encourage managers to consider taxon-specific objectives of target and non-target catch and harvest.

  1. A nomenclator of extant and fossil taxa of the Valvatidae (Gastropoda, Ectobranchia)

    PubMed Central

    Haszprunar, Gerhard

    2014-01-01

    Abstract A compilation of all supra- and (infra-) specific taxa of extant and fossil Valvatidae, a group of freshwater operculate snails, is provided, including taxa initially described in this family and subsequently classified in other families, as well as names containing errors or misspellings. The extensive reference list is directly linked to the available electronic source (digital view or pdf-download) of the respective papers. PMID:24578604

  2. Biodiversity in environmental assessment-current practice and tools for prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gontier, Mikael; Balfors, Berit; Moertberg, Ulla

    Habitat loss and fragmentation are major threats to biodiversity. Environmental impact assessment and strategic environmental assessment are essential instruments used in physical planning to address such problems. Yet there are no well-developed methods for quantifying and predicting impacts of fragmentation on biodiversity. In this study, a literature review was conducted on GIS-based ecological models that have potential as prediction tools for biodiversity assessment. Further, a review of environmental impact statements for road and railway projects from four European countries was performed, to study how impact prediction concerning biodiversity issues was addressed. The results of the study showed the existing gapmore » between research in GIS-based ecological modelling and current practice in biodiversity assessment within environmental assessment.« less

  3. Biodiversity conservation and armed conflict: a warfare ecology perspective.

    PubMed

    Hanson, Thor

    2018-04-23

    The activities involved in preparing for, executing, and recovering from armed conflict are globally pervasive and consequential, with significant impacts on natural systems. Effects on biodiversity are predominantly negative, produced by direct and indirect battlefield impacts, as well as the general breakdown of social, economic, and governance systems during wartime. Certain conservation opportunities do occur, however, particularly on lands set aside for training exercises, buffer zones, and peace parks. Here, the relationship between armed conflict and biodiversity is reviewed using the temporal framework of warfare ecology, which defines warfare as an ongoing process of three overlapping stages: preparations, war (armed conflict), and postwar activities. Several themes emerge from recent studies, including a heightened awareness of biodiversity conservation on military lands, the potential for scientific and conservation engagement to mitigate negative biodiversity impacts in war zones, and the importance of the postwar period for incorporating biodiversity priorities into reconstruction and recovery efforts. Research limitations and knowledge gaps are also discussed. © 2018 New York Academy of Sciences.

  4. Combining high biodiversity with high yields in tropical agroforests

    PubMed Central

    Clough, Yann; Barkmann, Jan; Juhrbandt, Jana; Kessler, Michael; Wanger, Thomas Cherico; Anshary, Alam; Buchori, Damayanti; Cicuzza, Daniele; Darras, Kevin; Putra, Dadang Dwi; Erasmi, Stefan; Pitopang, Ramadhanil; Schmidt, Carsten; Schulze, Christian H.; Seidel, Dominik; Steffan-Dewenter, Ingolf; Stenchly, Kathrin; Vidal, Stefan; Weist, Maria; Wielgoss, Arno Christian; Tscharntke, Teja

    2011-01-01

    Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland. PMID:21536873

  5. An Integrated Korean Biodiversity and Genetic Information Retrieval System

    PubMed Central

    Lim, Jeongheui; Bhak, Jong; Oh, Hee-Mock; Kim, Chang-Bae; Park, Yong-Ha; Paek, Woon Kee

    2008-01-01

    Background On-line biodiversity information databases are growing quickly and being integrated into general bioinformatics systems due to the advances of fast gene sequencing technologies and the Internet. These can reduce the cost and effort of performing biodiversity surveys and genetic searches, which allows scientists to spend more time researching and less time collecting and maintaining data. This will cause an increased rate of knowledge build-up and improve conservations. The biodiversity databases in Korea have been scattered among several institutes and local natural history museums with incompatible data types. Therefore, a comprehensive database and a nation wide web portal for biodiversity information is necessary in order to integrate diverse information resources, including molecular and genomic databases. Results The Korean Natural History Research Information System (NARIS) was built and serviced as the central biodiversity information system to collect and integrate the biodiversity data of various institutes and natural history museums in Korea. This database aims to be an integrated resource that contains additional biological information, such as genome sequences and molecular level diversity. Currently, twelve institutes and museums in Korea are integrated by the DiGIR (Distributed Generic Information Retrieval) protocol, with Darwin Core2.0 format as its metadata standard for data exchange. Data quality control and statistical analysis functions have been implemented. In particular, integrating molecular and genetic information from the National Center for Biotechnology Information (NCBI) databases with NARIS was recently accomplished. NARIS can also be extended to accommodate other institutes abroad, and the whole system can be exported to establish local biodiversity management servers. Conclusion A Korean data portal, NARIS, has been developed to efficiently manage and utilize biodiversity data, which includes genetic resources. NARIS aims

  6. Designer policy for carbon and biodiversity co-benefits under global change

    NASA Astrophysics Data System (ADS)

    Bryan, Brett A.; Runting, Rebecca K.; Capon, Tim; Perring, Michael P.; Cunningham, Shaun C.; Kragt, Marit E.; Nolan, Martin; Law, Elizabeth A.; Renwick, Anna R.; Eber, Sue; Christian, Rochelle; Wilson, Kerrie A.

    2016-03-01

    Carbon payments can help mitigate both climate change and biodiversity decline through the reforestation of agricultural land. However, to achieve biodiversity co-benefits, carbon payments often require support from other policy mechanisms such as regulation, targeting, and complementary incentives. We evaluated 14 policy mechanisms for supplying carbon and biodiversity co-benefits through reforestation of carbon plantings (CP) and environmental plantings (EP) in Australia’s 85.3 Mha agricultural land under global change. The reference policy--uniform payments (bidders are paid the same price) with land-use competition (both CP and EP eligible for payments), targeting carbon--achieved significant carbon sequestration but negligible biodiversity co-benefits. Land-use regulation (only EP eligible) and two additional incentives complementing the reference policy (biodiversity premium, carbon levy) increased biodiversity co-benefits, but mostly inefficiently. Discriminatory payments (bidders are paid their bid price) with land-use competition were efficient, and with multifunctional targeting of both carbon and biodiversity co-benefits increased the biodiversity co-benefits almost 100-fold. Our findings were robust to uncertainty in global outlook, and to key agricultural productivity and land-use adoption assumptions. The results suggest clear policy directions, but careful mechanism design will be key to realising these efficiencies in practice. Choices remain for society about the amount of carbon and biodiversity co-benefits desired, and the price it is prepared to pay for them.

  7. Conserving biodiversity on native rangelands: Symposium proceedings

    Treesearch

    Daniel W. Uresk; Greg L. Schenbeck; James T. O' Rourke

    1997-01-01

    These proceedings are the result of a symposium, "Conserving biodiversity on native rangelands" held on August 17, 1995 in Fort Robinson State Park, NE. The purpose of this symposium was to provide a forum to discuss how elements of rangeland biodiversity are being conserved today. We asked, "How resilient and sustainable are rangeland systems to the...

  8. Interactive Effects of Nitrogen and Climate Change on Biodiversity

    NASA Astrophysics Data System (ADS)

    Porter, E. M.; Bowman, W. D.; Clark, C. M.; Compton, J. E.; Pardo, L. H.; Soong, J.

    2011-12-01

    Biodiversity has been described as the diversity of life on earth within species, between species and in ecosystems. Biodiversity contributes to regulating ecosystem services like climate, flood, disease, and water quality regulation. Biodiversity also supports and sustains ecosystem services that provide material goods like food, fiber, fuel, timber and water, and to non-material benefits like educational, recreational, spiritual, and aesthetic ecosystem services. The Millennium Ecosystem Assessment estimated that the rate of biodiversity loss due to human activity in the last 50 years has been more rapid than at any other time in human history, and that many of the drivers of biodiversity loss are increasing. The strongest drivers of biodiversity loss include habitat loss, overexploitation, invasive species, climate change, and pollution, including pollution from reactive nitrogen. Of these stressors, climate change and reactive nitrogen from anthropogenic activities are causing some of the most rapid changes. Climate change is causing warming trends that result in consistent patterns of poleward and elevational range shifts of flora and fauna, causing changes in biodiversity. Warming has also resulted in changes in phenology, particularly the earlier onset of spring events, migration, and lengthening of the growing season, disrupting predator-prey and plant-pollinator interactions. In addition to warming, elevated carbon dioxide by itself can affect biodiversity by influencing plant growth, soil water, tissue stoichiometry, and trophic interactions. Nitrogen enrichment also impacts ecosystems and biodiversity in a variety of ways. Nitrogen enhances plant growth, but has been shown to favor invasive, fast-growing species over native species adapted to low nitrogen conditions. Although there have been a limited number of empirical studies on climate change and nitrogen interactions, inferences can be drawn from observed responses to each stressor by itself. For

  9. BIODIVERSITY CONSERVATION INCENTIVE PROGRAMS FOR PRIVATELY OWNED FORESTS

    EPA Science Inventory

    In many countries, a large proportion of forest biodiversity exists on private land. Legal restrictions are often inadequate to prevent loss of habitat and encourage forest owners to manage areas for biodiversity, especially when these management actions require time, money, and ...

  10. Relative differences in susceptibility of Pieris taxa (Ericaceae) to Stephanitis spp. lace bugs (Hemiptera: Tingidae).

    PubMed

    Nair, Shakunthala; Braman, S Kristine; Knauft, D A

    2012-10-01

    Over 60 Pieris taxa (Ericaceae) were measured for their susceptibility to the Andromeda lace bug, Stephanitis takeyai Drake and Maa, and the azalea lace bug, Stephanitis pyrioides (Scott) (Hemiptera: Tingidae) based on leaf damage, adult survival on leaves, and emergence of nymphs in no-choice petri dish assays. Pieris phillyreifolia (Hook.) DC. and P. japonica (Thunb.) D.Don ex G.Don 'Variegata' were consistently resistant to both species of lace bugs, whereas P. japonica 'Cavatine' was consistently susceptible to both. Pieris japonica 'Temple Bells' was highly susceptible to S. takeyai, but resistant to S. pyrioides. Nymph emergence was noted only with S. takeyai, on 46 Pieris taxa, whereas S. pyrioides nymphs were not observed on any of the Pieris taxa. Choice assays (with 10 Pieris taxa) and whole plant assays (with five Pieris taxa) using S. takeyai alone also were conducted, confirming the resistance of P. phillyreifolia and susceptibility of P. japonica Temple Bells to lace bug feeding.

  11. Urban park tree inventories

    Treesearch

    Joe R. McBride; David J. Nowak

    1989-01-01

    A survey of published reports on urban park tree inventories in the United States and the United Kingdom reveal two types of inventories: (1) Tree Location Inventories and (2) Generalized Information Inventories. Tree location inventories permit managers to relocate specific park trees, along with providing individual tree characteristics and condition data. In...

  12. In silico assessment of primers for eDNA studies using PrimerTree and application to characterize the biodiversity surrounding the Cuyahoga River

    NASA Astrophysics Data System (ADS)

    Cannon, M. V.; Hester, J.; Shalkhauser, A.; Chan, E. R.; Logue, K.; Small, S. T.; Serre, D.

    2016-03-01

    Analysis of environmental DNA (eDNA) enables the detection of species of interest from water and soil samples, typically using species-specific PCR. Here, we describe a method to characterize the biodiversity of a given environment by amplifying eDNA using primer pairs targeting a wide range of taxa and high-throughput sequencing for species identification. We tested this approach on 91 water samples of 40 mL collected along the Cuyahoga River (Ohio, USA). We amplified eDNA using 12 primer pairs targeting mammals, fish, amphibians, birds, bryophytes, arthropods, copepods, plants and several microorganism taxa and sequenced all PCR products simultaneously by high-throughput sequencing. Overall, we identified DNA sequences from 15 species of fish, 17 species of mammals, 8 species of birds, 15 species of arthropods, one turtle and one salamander. Interestingly, in addition to aquatic and semi-aquatic animals, we identified DNA from terrestrial species that live near the Cuyahoga River. We also identified DNA from one Asian carp species invasive to the Great Lakes but that had not been previously reported in the Cuyahoga River. Our study shows that analysis of eDNA extracted from small water samples using wide-range PCR amplification combined with high-throughput sequencing can provide a broad perspective on biological diversity.

  13. In silico assessment of primers for eDNA studies using PrimerTree and application to characterize the biodiversity surrounding the Cuyahoga River

    PubMed Central

    Cannon, M. V.; Hester, J.; Shalkhauser, A.; Chan, E. R.; Logue, K.; Small, S. T.; Serre, D.

    2016-01-01

    Analysis of environmental DNA (eDNA) enables the detection of species of interest from water and soil samples, typically using species-specific PCR. Here, we describe a method to characterize the biodiversity of a given environment by amplifying eDNA using primer pairs targeting a wide range of taxa and high-throughput sequencing for species identification. We tested this approach on 91 water samples of 40 mL collected along the Cuyahoga River (Ohio, USA). We amplified eDNA using 12 primer pairs targeting mammals, fish, amphibians, birds, bryophytes, arthropods, copepods, plants and several microorganism taxa and sequenced all PCR products simultaneously by high-throughput sequencing. Overall, we identified DNA sequences from 15 species of fish, 17 species of mammals, 8 species of birds, 15 species of arthropods, one turtle and one salamander. Interestingly, in addition to aquatic and semi-aquatic animals, we identified DNA from terrestrial species that live near the Cuyahoga River. We also identified DNA from one Asian carp species invasive to the Great Lakes but that had not been previously reported in the Cuyahoga River. Our study shows that analysis of eDNA extracted from small water samples using wide-range PCR amplification combined with high-throughput sequencing can provide a broad perspective on biological diversity. PMID:26965911

  14. [Advances in the research on hyperspectral remote sensing in biodiversity and conservation].

    PubMed

    He, Cheng; Feng, Zhong-Ke; Yuan, Jin-Jun; Wang, Jia; Gong, Yin-Xi; Dong, Zhi-Hai

    2012-06-01

    With the species reduction and the habitat destruction becoming serious increasingly, the biodiversity conservation has become one of the hottest topics. Remote sensing, the science of non-contact collection information, has the function of corresponding estimates of biodiversity, building model between species diversity relationship and mapping the index of biodiversity, which has been used widely in the field of biodiversity conservation. The present paper discussed the application of hyperspectral technology to the biodiversity conservation from two aspects, remote sensors and remote sensing techniques, and after, enumerated successful applications for emphasis. All these had a certain reference value in the development of biodiversity conservation.

  15. Differences among Major Taxa in the Extent of Ecological Knowledge across Four Major Ecosystems

    PubMed Central

    Fisher, Rebecca; Knowlton, Nancy; Brainard, Russell E.; Caley, M. Julian

    2011-01-01

    Existing knowledge shapes our understanding of ecosystems and is critical for ecosystem-based management of the world's natural resources. Typically this knowledge is biased among taxa, with some taxa far better studied than others, but the extent of this bias is poorly known. In conjunction with the publically available World Registry of Marine Species database (WoRMS) and one of the world's premier electronic scientific literature databases (Web of Science®), a text mining approach is used to examine the distribution of existing ecological knowledge among taxa in coral reef, mangrove, seagrass and kelp bed ecosystems. We found that for each of these ecosystems, most research has been limited to a few groups of organisms. While this bias clearly reflects the perceived importance of some taxa as commercially or ecologically valuable, the relative lack of research of other taxonomic groups highlights the problem that some key taxa and associated ecosystem processes they affect may be poorly understood or completely ignored. The approach outlined here could be applied to any type of ecosystem for analyzing previous research effort and identifying knowledge gaps in order to improve ecosystem-based conservation and management. PMID:22073172

  16. Molecular biodiversity of Red Sea demosponges.

    PubMed

    Erpenbeck, Dirk; Voigt, Oliver; Al-Aidaroos, Ali M; Berumen, Michael L; Büttner, Gabriele; Catania, Daniela; Guirguis, Adel Naguib; Paulay, Gustav; Schätzle, Simone; Wörheide, Gert

    2016-04-30

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Relating remotely sensed optical variability to marine benthic biodiversity.

    PubMed

    Herkül, Kristjan; Kotta, Jonne; Kutser, Tiit; Vahtmäe, Ele

    2013-01-01

    Biodiversity is important in maintaining ecosystem viability, and the availability of adequate biodiversity data is a prerequisite for the sustainable management of natural resources. As such, there is a clear need to map biodiversity at high spatial resolutions across large areas. Airborne and spaceborne optical remote sensing is a potential tool to provide such biodiversity data. The spectral variation hypothesis (SVH) predicts a positive correlation between spectral variability (SV) of a remotely sensed image and biodiversity. The SVH has only been tested on a few terrestrial plant communities. Our study is the first attempt to apply the SVH in the marine environment using hyperspectral imagery recorded by Compact Airborne Spectrographic Imager (CASI). All coverage-based diversity measures of benthic macrophytes and invertebrates showed low but statistically significant positive correlations with SV whereas the relationship between biomass-based diversity measures and SV were weak or lacking. The observed relationships did not vary with spatial scale. SV had the highest independent effect among predictor variables in the statistical models of coverage-derived total benthic species richness and Shannon index. Thus, the relevance of SVH in marine benthic habitats was proved and this forms a prerequisite for the future use of SV in benthic biodiversity assessments.

  18. Enriched biodiversity data as a resource and service

    PubMed Central

    Balech, Bachir; Beard, Niall; Blissett, Matthew; Brenninkmeijer, Christian; van Dooren, Tom; Eades, David; Gosline, George; Groom, Quentin John; Hamann, Thomas D.; Hettling, Hannes; Hoehndorf, Robert; Holleman, Ayco; Hovenkamp, Peter; Kelbert, Patricia; King, David; Kirkup, Don; Lammers, Youri; DeMeulemeester, Thibaut; Mietchen, Daniel; Miller, Jeremy A.; Mounce, Ross; Nicolson, Nicola; Page, Rod; Pawlik, Aleksandra; Pereira, Serrano; Penev, Lyubomir; Richards, Kevin; Sautter, Guido; Shorthouse, David Peter; Tähtinen, Marko; Weiland, Claus; Williams, Alan R.; Sierra, Soraya

    2014-01-01

    Abstract Background: Recent years have seen a surge in projects that produce large volumes of structured, machine-readable biodiversity data. To make these data amenable to processing by generic, open source “data enrichment” workflows, they are increasingly being represented in a variety of standards-compliant interchange formats. Here, we report on an initiative in which software developers and taxonomists came together to address the challenges and highlight the opportunities in the enrichment of such biodiversity data by engaging in intensive, collaborative software development: The Biodiversity Data Enrichment Hackathon. Results: The hackathon brought together 37 participants (including developers and taxonomists, i.e. scientific professionals that gather, identify, name and classify species) from 10 countries: Belgium, Bulgaria, Canada, Finland, Germany, Italy, the Netherlands, New Zealand, the UK, and the US. The participants brought expertise in processing structured data, text mining, development of ontologies, digital identification keys, geographic information systems, niche modeling, natural language processing, provenance annotation, semantic integration, taxonomic name resolution, web service interfaces, workflow tools and visualisation. Most use cases and exemplar data were provided by taxonomists. One goal of the meeting was to facilitate re-use and enhancement of biodiversity knowledge by a broad range of stakeholders, such as taxonomists, systematists, ecologists, niche modelers, informaticians and ontologists. The suggested use cases resulted in nine breakout groups addressing three main themes: i) mobilising heritage biodiversity knowledge; ii) formalising and linking concepts; and iii) addressing interoperability between service platforms. Another goal was to further foster a community of experts in biodiversity informatics and to build human links between research projects and institutions, in response to recent calls to further such

  19. Enriched biodiversity data as a resource and service.

    PubMed

    Vos, Rutger Aldo; Biserkov, Jordan Valkov; Balech, Bachir; Beard, Niall; Blissett, Matthew; Brenninkmeijer, Christian; van Dooren, Tom; Eades, David; Gosline, George; Groom, Quentin John; Hamann, Thomas D; Hettling, Hannes; Hoehndorf, Robert; Holleman, Ayco; Hovenkamp, Peter; Kelbert, Patricia; King, David; Kirkup, Don; Lammers, Youri; DeMeulemeester, Thibaut; Mietchen, Daniel; Miller, Jeremy A; Mounce, Ross; Nicolson, Nicola; Page, Rod; Pawlik, Aleksandra; Pereira, Serrano; Penev, Lyubomir; Richards, Kevin; Sautter, Guido; Shorthouse, David Peter; Tähtinen, Marko; Weiland, Claus; Williams, Alan R; Sierra, Soraya

    2014-01-01

    Recent years have seen a surge in projects that produce large volumes of structured, machine-readable biodiversity data. To make these data amenable to processing by generic, open source "data enrichment" workflows, they are increasingly being represented in a variety of standards-compliant interchange formats. Here, we report on an initiative in which software developers and taxonomists came together to address the challenges and highlight the opportunities in the enrichment of such biodiversity data by engaging in intensive, collaborative software development: The Biodiversity Data Enrichment Hackathon. The hackathon brought together 37 participants (including developers and taxonomists, i.e. scientific professionals that gather, identify, name and classify species) from 10 countries: Belgium, Bulgaria, Canada, Finland, Germany, Italy, the Netherlands, New Zealand, the UK, and the US. The participants brought expertise in processing structured data, text mining, development of ontologies, digital identification keys, geographic information systems, niche modeling, natural language processing, provenance annotation, semantic integration, taxonomic name resolution, web service interfaces, workflow tools and visualisation. Most use cases and exemplar data were provided by taxonomists. One goal of the meeting was to facilitate re-use and enhancement of biodiversity knowledge by a broad range of stakeholders, such as taxonomists, systematists, ecologists, niche modelers, informaticians and ontologists. The suggested use cases resulted in nine breakout groups addressing three main themes: i) mobilising heritage biodiversity knowledge; ii) formalising and linking concepts; and iii) addressing interoperability between service platforms. Another goal was to further foster a community of experts in biodiversity informatics and to build human links between research projects and institutions, in response to recent calls to further such integration in this research domain

  20. Biodiversity enhances reef fish biomass and resistance to climate change.

    PubMed

    Duffy, J Emmett; Lefcheck, Jonathan S; Stuart-Smith, Rick D; Navarrete, Sergio A; Edgar, Graham J

    2016-05-31

    Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey's global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean.