Sample records for taylor rt instability

  1. Rayleigh-Taylor instability in an equal mass plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    The Rayleigh-Taylor (RT) instability in an inhomogeneous pair-ion plasma has been analyzed. Considering two fluid model for two species of ions (positive and negative), we obtain the possibility of the existence of RT instability. The growth rate of the RT instability as usual depends on gravity and density gradient scale length. The results are discussed in context of pair-ion plasma experiments.

  2. Taylor instability in rhyolite lava flows

    NASA Technical Reports Server (NTRS)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  3. Simulation, Theory, and Observations of the Spectrum of the Rayleigh-Taylor Instability due to Laser Imprint of Planar Targets

    NASA Astrophysics Data System (ADS)

    Keskinen, M. J.; Karasik, Max; Bates, J. W.; Schmitt, A. J.

    2006-10-01

    A limitation on the efficiency of high gain direct drive inertial confinement fusion is the extent of pellet disruption caused by the Rayleigh-Taylor (RT) instability. The RT instability can be seeded by pellet surface irregularities and/or laser imprint nonuniformities. It is important to characterize the evolution of the RT instability, e.g., the k-spectrum of areal mass. In this paper we study the time-dependent evolution of the spectrum of the Rayleigh-Taylor instability due to laser imprint in planar targets. This is achieved using the NRL FAST hydrodynamic simulation code together with analytical models. It is found that the optically smoothed laser imprint-driven RT spectrum develops into an inverse power law in k-space after several linear growth times. FAST simulation code results are compared with recent NRL Nike KrF laser experimental data. An analytical model, which is a function of Froude and Atwood numbers, is derived for the RT spectrum and favorably compared with both FAST simulation and Nike observations.

  4. Magnetic Rayleigh-Taylor instability in radiative flows

    NASA Astrophysics Data System (ADS)

    Yaghoobi, Asiyeh; Shadmehri, Mohsen

    2018-06-01

    We present a linear analysis of the radiative Rayleigh-Taylor (RT) instability in the presence of magnetic field for both optically thin and thick regimes. When the flow is optically thin, magnetic field not only stabilizes perturbations with short wavelengths, but also growth rate of the instability at long wavelengths is reduced compared to a non-magnetized case. Then, we extend our analysis to the optically thick flows with a conserved total specific entropy, and properties of the unstable perturbations are investigated in detail. Growth rate of the instability at short wavelengths is suppressed due to the presence of the magnetic field; however, growth rate is nearly constant at long wavelengths because of the radiation field. Since the radiative bubbles around massive protostars are subject to the RT instability, we also explore implications of our results in this context. In the non-magnetized case, the growth time-scale of the instability for a typical bubble is found to be less than 1000 yr, which is very short compared to the typical star formation time-scale. Magnetic field with a reasonable strength significantly increases the growth time-scale to more than hundreds of thousand years. The instability, furthermore, is more efficient at large wavelengths, whereas in the non-magnetized case, growth rate at short wavelengths is more significant.

  5. Nonlinear evolution of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimonte, G

    Scaled experiments on the nonlinear evolution of the Rayleigh- Taylor (RT) and Richtmyer-Meshkov (RM) instabilities are described under a variety, of conditions that occur in nature. At high Reynolds number, the mixing layer grows self-similarly - {alpha}{sub i}Agt{sup 2} for a constant acceleration (g), and as a power law t{sup {theta}{sub i}} for impulsive accelerations U{delta}(t) at low and high Mach numbers. The growth coefficients {alpha}{sub i} and {theta}{sub i} exponents are measured over a comprehensive range of Atwood numbers A. The RT instability is also investigated with Non- Newtonian materials which are independently characterized. A critical wavelength and amplitudemore » for instability is observed associated with the shear modulus and tensile yield of the material. The results are applicable from supernova explosions to geophysical flows subject to these hydrodynamic instabilities.« less

  6. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ye

    Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. Furthermore, the objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin–Helmholtz (KH) instabilities. Historical efforts to study these instabilitiesmore » are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion.« less

  7. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I

    DOE PAGES

    Zhou, Ye

    2017-09-06

    Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. Furthermore, the objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin–Helmholtz (KH) instabilities. Historical efforts to study these instabilitiesmore » are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion.« less

  8. Centrifugally Driven Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Scase, Matthew; Hill, Richard

    2017-11-01

    The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.

  9. Suppression of the Rayleigh Taylor instability and its implication for the impact ignition

    NASA Astrophysics Data System (ADS)

    Azechi, H.; Shiraga, H.; Nakai, M.; Shigemori, K.; Fujioka, S.; Sakaiya, T.; Tamari, Y.; Ohtani, K.; Murakami, M.; Sunahara, A.; Nagatomo, H.; Nishihara, K.; Miyanaga, N.; Izawa, Y.

    2004-12-01

    The Rayleigh Taylor (RT) instability with material ablation through an unstable interface is the key physics that determines the success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate a double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating with short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high-velocity fuel colliding with a preformed main fuel.

  10. Experimental investigation of Rayleigh Taylor instability in elastic-plastic materials

    NASA Astrophysics Data System (ADS)

    Haley, Aaron Alan; Banerjee, Arindam

    2010-11-01

    The interface of an elastic-plastic plate accelerated by a fluid of lower density is Rayleigh Taylor (RT) unstable, the growth being mitigated by the mechanical strength of the plate. The instability is observed when metal plates are accelerated by high explosives, in explosive welding, and in volcanic island formation due to the strength of the inner crust. In contrast to the classical case involving Newtonian fluids, RT instability in accelerated solids is not well understood. The difficulties for constructing a theory for the linear growth phase in solids is essentially due to the character of elastic-plastic constitutive properties which has a nonlinear dependence on the magnitude of the rate of deformation. Experimental investigation of the phenomena is difficult due to the exceedingly small time scales (in high energy density experiments) and large measurement uncertainties of material properties. We performed experiments on our Two-Wheel facility to study the linear stage of the incompressible RT instability in elastic-plastic materials (yogurt) whose properties were well characterized. Rotation of the wheels imparted a constant centrifugal acceleration on the material interface that was cut with a small sinusoidal ripple. The controlled initial conditions and precise acceleration amplitudes are levied to investigate transition from elastic to plastic deformation and allow accurate and detailed measurements of flow properties.

  11. Energy balance in a Z pinch with suppressed Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Baksht, R. B.; Oreshkin, V. I.; Rousskikh, A. G.; Zhigalin, A. S.

    2018-03-01

    At present Z-pinch has evolved into a powerful plasma source of soft x-ray. This paper considers the energy balance in a radiating metallic gas-puff Z pinch. In this type of Z pinch, a power-law density distribution is realized, promoting suppression of Rayleigh-Taylor (RT) instabilities that occur in the pinch plasma during compression. The energy coupled into the pinch plasma, is determined as the difference between the total energy delivered to the load from the generator and the magnetic energy of the load inductance. A calibrated voltage divider and a Rogowski coil were used to determine the coupled energy and the load inductance. Time-gated optical imaging of the pinch plasma showed its stable compression up to the stagnation phase. The pinch implosion was simulated using a 1D two-temperature radiative magnetohydrodynamic code. Comparison of the experimental and simulation results has shown that the simulation adequately describes the pinch dynamics for conditions in which RT instability is suppressed. It has been found that the proportion of the Ohmic heating in the energy balance of a Z pinch with suppressed RT instability is determined by Spitzer resistance and makes no more than ten percent.

  12. Large Eddy Simulations of the Tilted Rig Experiment: A Two-dimensional Rayleigh-Taylor Instability Case

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Denissen, Nicholas A.; Reisner, Jon M.; Andrews, Malcolm J.

    2012-11-01

    The tilted rig experiment is a derivative of the rocket rig experiment designed to investigate turbulent mixing induced by the Rayleigh-Taylor (RT) instability. A tank containing two fluids of different densities is accelerated downwards between two parallel guiding rods by rocket motors. The acceleration is such that the pressure and density gradients face opposite directions at the fluids interface, creating a Rayleigh-Taylor unstable configuration. The rig is tilted such that the tank is initially at an angle and the acceleration is not perpendicular to the fluids interface when the rockets fire. This results in a two dimensional Rayleigh-Taylor instability case where the fluids experience RT mixing and a bulk overturning motion. The tilted rig is therefore a valuable experiment to help calibrating two-dimensional mixing models. Large Eddy Simulations of the tilted rig experiments will be compared to available experimental results. A study of the behavior of turbulence variables relevant to turbulence modeling will be presented. LA-UR 12-23829. This work was performed for the U.S. Department of Energy by Los Alamos National Laboratory under Contract No.DEAC52- 06NA2-5396.

  13. Lateral movements in Rayleigh-Taylor instabilities due to frontiers. Numerical analysis

    NASA Astrophysics Data System (ADS)

    Fernandez, D.; Binda, L.; Zalts, A.; El Hasi, C.; D'Onofrio, A.

    2018-01-01

    Numerical simulations were performed for Rayleigh-Taylor (RT) hydrodynamic instabilities when a frontier is present. The frontier formed by the interface between two fluids prevents the free movement of the fingers created by the instability. As a consequence, transversal movements at the rear of the fingers are observed in this area. These movements produce collapse of the fingers (two or more fingers join in one finger) or oscillations in the case that there is no collapse. The transversal velocity of the fingers, the amplitude of the oscillations, and the wave number of the RT instabilities as a function of the Rayleigh number (Ra) were studied near the frontier. We verified numerically that in classical RT instabilities, without a frontier, these lateral movements do not occur; only with a physical frontier, the transversal displacements of the fingers appear. The transverse displacement velocity and the initial wave number increase with Ra. This leads to the collapse of the fingers, diminishing the wave number of the instabilities at the interface. Instead, no significant changes in the amplitude of the oscillations are observed modifying Ra. The numerical results are independent of the type or origin of the frontier (gas-liquid, liquid-liquid, or solid-liquid). The numerical results are in good agreement with the experimental results reported by Binda et al. [Chaos 28, 013107 (2018)]. Based on these results, it was possible to determine the cause of the transverse displacements, which had not been explained until now.

  14. Rayleigh-Taylor instability of two-specie laser-accelerated foils

    NASA Astrophysics Data System (ADS)

    Ratliff, T. H.; Yi, S. A.; Khudik, V.; Yu, T. P.; Pukhov, A.; Chen, M.; Shvets, G.

    2010-11-01

    When an ultra intense circularly polarized laser pulse irradiates an ultra thin film, a monoenergetic ion beam is produced with characteristics well suited for applications in science and medicine. Upon laser incidence, the electrons in the foil are pushed via the ponderomotive force to the foil rear; the charge separation field then accelerates ions. In the accelerating frame the ions are trapped in a potential well formed by the electrostatic and inertial forces. However, their energy spectrum can be quickly degraded by the Rayleigh-Taylor (RT) instability. Stabilization in the case of a two-specie foil is the subject of this poster. First, we use a 1D particle-in-cell (PIC) simulation to establish an equilibrium state of the two-specie foil in the accelerating frame. Next we perturb this equilibrium and analytically investigate the 2D RT instability. Analytical results are compared with 2-D simulations. We also investigate parametrically various effects on the RT growth rate. The protons completely separate from the carbons, and although the vacuum-carbon interface remains unstable, the large spatial extent of the carbon layer prevents perturbations from feeding through to the proton layer. The monoenergetic proton beam is shown to persist beyond the conclusion of the laser pulse interaction. [1] T.P. Yu, A. Pukhov, G. Shvets, and M Chen, Phys. Rev. Lett. (in press)

  15. Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Delamere, P. A.; Stauffer, B. H.; Ma, X.

    2017-12-01

    Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.

  16. Magnetically Induced Rotating Rayleigh-Taylor Instability.

    PubMed

    Scase, Matthew M; Baldwin, Kyle A; Hill, Richard J A

    2017-03-03

    Classical techniques for investigating the Rayleigh-Taylor instability include using compressed gasses 1 , rocketry 2 or linear electric motors 3 to reverse the effective direction of gravity, and accelerate the lighter fluid toward the denser fluid. Other authors e.g. 4 , 5 , 6 have separated a gravitationally unstable stratification with a barrier that is removed to initiate the flow. However, the parabolic initial interface in the case of a rotating stratification imposes significant technical difficulties experimentally. We wish to be able to spin-up the stratification into solid-body rotation and only then initiate the flow in order to investigate the effects of rotation upon the Rayleigh-Taylor instability. The approach we have adopted here is to use the magnetic field of a superconducting magnet to manipulate the effective weight of the two liquids to initiate the flow. We create a gravitationally stable two-layer stratification using standard flotation techniques. The upper layer is less dense than the lower layer and so the system is Rayleigh-Taylor stable. This stratification is then spun-up until both layers are in solid-body rotation and a parabolic interface is observed. These experiments use fluids with low magnetic susceptibility, |χ| ~ 10 -6 - 10 -5 , compared to a ferrofluids. The dominant effect of the magnetic field applies a body-force to each layer changing the effective weight. The upper layer is weakly paramagnetic while the lower layer is weakly diamagnetic. When the magnetic field is applied, the lower layer is repelled from the magnet while the upper layer is attracted towards the magnet. A Rayleigh-Taylor instability is achieved with application of a high gradient magnetic field. We further observed that increasing the dynamic viscosity of the fluid in each layer, increases the length-scale of the instability.

  17. Experimental Observation of Nonlinear Mode Coupling In the Ablative Rayleigh-Taylor Instability on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, David

    2015-11-01

    We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  18. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

    NASA Astrophysics Data System (ADS)

    Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.

    2018-05-01

    The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].

  19. Taylor instability in the shock layer on a Jovian atmosphere entry probe.

    NASA Technical Reports Server (NTRS)

    Compton, D. L.

    1972-01-01

    Investigation of the Taylor instability relative to the dynamical instability whose presence in the shock layer on a spacecraft entering the Jovian atmosphere is to be expected because of the difference in velocity across the shear layer. Presented calculations show that the Taylor instability at the interface between shock-heated freestream gas and ablation products is inconsequential in comparison to the shear layer instability.

  20. Viscoelastic Taylor-Couette instability as analog of the magnetorotational instability.

    PubMed

    Bai, Yang; Crumeyrolle, Olivier; Mutabazi, Innocent

    2015-09-01

    A linear stability analysis and an experimental study of a viscoelastic Taylor-Couette flow corotating in the Keplerian ratio allow us to elucidate the analogy between the viscoelastic instability and the magnetorotational instability (MRI). A generalized Rayleigh criterion allows us to determine the potentially unstable zone to pure-elasticity-driven perturbations. Experiments with a viscoelastic polymer solution yield four modes: one pure-elasticity mode and three elastorotational instability (ERI) modes that represent the MRI-analog modes. The destabilization by the polymer viscosity is evidenced for the ERI modes.

  1. Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses.

    PubMed

    Wu, D; Zheng, C Y; Qiao, B; Zhou, C T; Yan, X Q; Yu, M Y; He, X T

    2014-08-01

    It is shown that the transverse Rayleigh-Taylor-like (RT) instability in the hole-boring radiation pressure acceleration can be suppressed by using an elliptically polarized (EP) laser. A moderate J×B heating of the EP laser will thermalize the local electrons, which leads to the transverse diffusion of ions, suppressing the short wavelength perturbations of RT instability. A proper condition of polarization ratio is obtained analytically for the given laser intensity and plasma density. The idea is confirmed by two-dimensional particle-in-cell simulations, showing that the ion beam driven by the EP laser is more concentrated and intense compared with that of the circularly polarized laser.

  2. Dynamic stabilization of classical Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Piriz, S. A.; Tahir, N. A.

    2011-09-15

    Dynamic stabilization of classical Rayleigh-Taylor instability is studied by modeling the interface vibration with the simplest possible wave form, namely, a sequence of Dirac deltas. As expected, stabilization results to be impossible. However, in contradiction to previously reported results obtained with a sinusoidal driving, it is found that in general the perturbation amplitude is larger than in the classical case. Therefore, no beneficial effect can be obtained from the vertical vibration of a Rayleigh-Taylor unstable interface between two ideal fluids.

  3. How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, C. C.; Park, H.-S.; Huntington, C. M.; Miles, A. R.; Remington, B. A.; Drake, R. P.; Tranthan, M. A.; Handy, T. A.; Shvarts, D.; Malamud, G.; Shimony, A.; Shvarts, D.; Kline, J.; Flippo, K. A.; Doss, F. W.; Plewa, T.

    2017-10-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. We present data and simulations from Rayleigh-Taylor instability experiments in high- and low- energy flux experiments performed at the National Ignition Facility. We also will discuss the apparent, larger role of heat conduction when we closely examined the comparison between the experimental results, and the SNR observations and models. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  4. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I

    NASA Astrophysics Data System (ADS)

    Zhou, Ye

    2017-12-01

    Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. The objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin-Helmholtz (KH) instabilities. Historical efforts to study these instabilities are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion. Early experimental efforts are described, and analytical attempts to model the linear, and nonlinear regimes of these mixing layers are examined. These analytical efforts include models for both single-mode and multi-mode initial conditions, as well as multi-scale models to describe the evolution. Comparisons of these models and theories to experimental and simulation studies are then presented. Next, attention is paid to the issue of the influence of stabilizing mechanisms (e.g., viscosity, surface tension, and diffuse interface) on the evolution of these instabilities, as well as the limitations and successes of numerical methods. Efforts to study these instabilities and mixing layers using group-theoretic ideas, as well as more formal notions of turbulence cascade processes during the later stages of the induced mixing layers, are inspected. A key element of the review is the discussion of the late-time self-similar scaling for the RT and RM growth factors, α and θ. These parameters are influenced by the initial conditions and much of the observed variation can be explained by this. In some cases, these instabilities

  5. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2009-12-15

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  6. Evolution of mixing width induced by general Rayleigh-Taylor instability.

    PubMed

    Zhang, You-Sheng; He, Zhi-Wei; Gao, Fu-Jie; Li, Xin-Liang; Tian, Bao-Lin

    2016-06-01

    Turbulent mixing induced by Rayleigh-Taylor (RT) instability occurs ubiquitously in many natural phenomena and engineering applications. As the simplest and primary descriptor of the mixing process, the evolution of mixing width of the mixing zone plays a notable role in the flows. The flows generally involve complex varying acceleration histories and widely varying density ratios, two dominant factors affecting the evolution of mixing width. However, no satisfactory theory for predicting the evolution has yet been established. Here a theory determining the evolution of mixing width in general RT flows is established to reproduce, first, all of the documented experiments conducted for diverse (i.e., constant, impulsive, oscillating, decreasing, increasing, and complex) acceleration histories and all density ratios. The theory is established in terms of the conservation principle, with special consideration given to the asymmetry of the volume-averaged density fields occurring in actual flows. The results reveal the sensitivity or insensitivity of the evolution of a mixing front of a neighboring light or heavy fluid to the degree of asymmetry and thus explain the distinct evolutions in two experiments with the same configurations.

  7. Some observations of a sheared Rayleigh-Taylor/Benard instability

    NASA Technical Reports Server (NTRS)

    Humphrey, J. A. C.; Marcus, D. L.

    1987-01-01

    An account is provided of preliminary flow visualization observations made in an unstably stratified flow with shear superimposed. The structures observed appear to be the superposition of a Rayleigh-Taylor/Benard instability and a Kelvin-Helmholtz instability. Aside from its intrinsic fundamental value, the study of these structures is of special interest to theoreticians developing nonlinear stability calculation methodologies.

  8. A hybrid Rayleigh-Taylor-current-driven coupled instability in a magnetohydrodynamically collimated cylindrical plasma with lateral gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Xiang, E-mail: xzhai@caltech.edu; Bellan, Paul M., E-mail: pbellan@caltech.edu

    We present an MHD theory of Rayleigh-Taylor instability on the surface of a magnetically confined cylindrical plasma flux rope in a lateral external gravity field. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability that cannot be described by either of the two instabilities alone. The lateral gravity breaks the axisymmetry of the system and couples all azimuthal modes together. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring atmore » a two-dimensional planar interface. The theory successfully explains the lateral Rayleigh-Taylor instability observed in the Caltech plasma jet experiment [Moser and Bellan, Nature 482, 379 (2012)]. Potential applications of the theory include magnetic controlled fusion, solar emerging flux, solar prominences, coronal mass ejections, and other space and astrophysical plasma processes.« less

  9. Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets

    NASA Astrophysics Data System (ADS)

    Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu

    2004-09-01

    Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.

  10. Scaling Laws of Nonlinear Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Two and Three Dimensions (IFSA 1999)

    NASA Astrophysics Data System (ADS)

    Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ofer, D.; Levin, A.; Sarid, E.; Ben-Dor, G.; Erez, L.; Erez, G.; Yosef-Hai, A.; Alon, U.; Arazi, L.

    2016-10-01

    The late-time nonlinear evolution of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities for random initial perturbations is investigated using a statistical mechanics model based on single-mode and bubble-competition physics at all Atwood numbers (A) and full numerical simulations in two and three dimensions. It is shown that the RT mixing zone bubble and spike fronts evolve as h ~ α · A · gt2 with different values of a for the bubble and spike fronts. The RM mixing zone fronts evolve as h ~ tθ with different values of θ for bubbles and spikes. Similar analysis yields a linear growth with time of the Kelvin-Helmholtz mixing zone. The dependence of the RT and RM scaling parameters on A and the dimensionality will be discussed. The 3D predictions are found to be in good agreement with recent Linear Electric Motor (LEM) experiments.

  11. The Inhibition of the Rayleigh-Taylor Instability by Rotation.

    PubMed

    Baldwin, Kyle A; Scase, Matthew M; Hill, Richard J A

    2015-07-01

    It is well-established that the Coriolis force that acts on fluid in a rotating system can act to stabilise otherwise unstable flows. Chandrasekhar considered theoretically the effect of the Coriolis force on the Rayleigh-Taylor instability, which occurs at the interface between a dense fluid lying on top of a lighter fluid under gravity, concluding that rotation alone could not stabilise this system indefinitely. Recent numerical work suggests that rotation may, nevertheless, slow the growth of the instability. Experimental verification of these results using standard techniques is problematic, owing to the practical difficulty in establishing the initial conditions. Here, we present a new experimental technique for studying the Rayleigh-Taylor instability under rotation that side-steps the problems encountered with standard techniques by using a strong magnetic field to destabilize an otherwise stable system. We find that rotation about an axis normal to the interface acts to retard the growth rate of the instability and stabilise long wavelength modes; the scale of the observed structures decreases with increasing rotation rate, asymptoting to a minimum wavelength controlled by viscosity. We present a critical rotation rate, dependent on Atwood number and the aspect ratio of the system, for stabilising the most unstable mode.

  12. The Inhibition of the Rayleigh-Taylor Instability by Rotation

    PubMed Central

    Baldwin, Kyle A.; Scase, Matthew M.; Hill, Richard J. A.

    2015-01-01

    It is well-established that the Coriolis force that acts on fluid in a rotating system can act to stabilise otherwise unstable flows. Chandrasekhar considered theoretically the effect of the Coriolis force on the Rayleigh-Taylor instability, which occurs at the interface between a dense fluid lying on top of a lighter fluid under gravity, concluding that rotation alone could not stabilise this system indefinitely. Recent numerical work suggests that rotation may, nevertheless, slow the growth of the instability. Experimental verification of these results using standard techniques is problematic, owing to the practical difficulty in establishing the initial conditions. Here, we present a new experimental technique for studying the Rayleigh-Taylor instability under rotation that side-steps the problems encountered with standard techniques by using a strong magnetic field to destabilize an otherwise stable system. We find that rotation about an axis normal to the interface acts to retard the growth rate of the instability and stabilise long wavelength modes; the scale of the observed structures decreases with increasing rotation rate, asymptoting to a minimum wavelength controlled by viscosity. We present a critical rotation rate, dependent on Atwood number and the aspect ratio of the system, for stabilising the most unstable mode. PMID:26130005

  13. Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor

    NASA Astrophysics Data System (ADS)

    Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.

    2017-10-01

    The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.

  14. Instability of Taylor-Sedov blast waves propagating through a uniform gas

    NASA Astrophysics Data System (ADS)

    Grun, J.; Stamper, J.; Manka, C.; Resnick, J.; Burris, R.; Crawford, J.; Ripin, B. H.

    1991-05-01

    An instability in Taylor-Sedov blast waves was measured as the waves propagated through a uniform gas with a low adiabatic index. The first measurements of the instability are given and compared to theoretical predictions. The classical Taylor-Sedov blast waves resulted from the expansion of ablation plasma into an ambient gas from laser-irradiated foils, and photographs were taken using the dark-field imaging method. Visible emission from the blasts were recorded with a four-frame microchannel-plate intensifier camera. Blast waves formed in nitrogen gas are shown to be stable and smooth, whereas the waves propagating through xenon gas are found to be unstable and wrinkled. A power law is fitted to the experimental data, and the adiabatic indices are theorized to cause the different responses in the two gases. The results generally agree with theoretical predictions in spite of some minor discrepancies, and an explanation of the instability mechanism is developed. When the adiabatic index is sufficiently low, the Taylor-Sedov blast waves in a uniform gas will be unstable, and the perturbed amplitudes will grow as a power of time.

  15. Rayleigh-Taylor instability in soft elastic layers

    NASA Astrophysics Data System (ADS)

    Riccobelli, D.; Ciarletta, P.

    2017-04-01

    This work investigates the morphological stability of a soft body composed of two heavy elastic layers attached to a rigid surface and subjected only to the bulk gravity force. Using theoretical and computational tools, we characterize the selection of different patterns as well as their nonlinear evolution, unveiling the interplay between elastic and geometric effects for their formation. Unlike similar gravity-induced shape transitions in fluids, such as the Rayleigh-Taylor instability, we prove that the nonlinear elastic effects saturate the dynamic instability of the bifurcated solutions, displaying a rich morphological diagram where both digitations and stable wrinkling can emerge. The results of this work provide important guidelines for the design of novel soft systems with tunable shapes, with several applications in engineering sciences. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  16. Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Leclercq, Colin; Nguyen, Florian; Kerswell, Rich R.

    2016-10-01

    The "Rayleigh line" μ =η2 , where μ =Ωo/Ωi and η =ri/ro are respectively the rotation and radius ratios between inner (subscript i ) and outer (subscript o ) cylinders, is regarded as marking the limit of centrifugal instability (CI) in unstratified inviscid Taylor-Couette flow, for both axisymmetric and nonaxisymmetric modes. Nonaxisymmetric stratorotational instability (SRI) is known to set in for anticyclonic rotation ratios beyond that line, i.e., η2<μ <1 for axially stably stratified Taylor-Couette flow, but the competition between CI and SRI in the range μ <η2 has not yet been addressed. In this paper, we establish continuous connections between the two instabilities at finite Reynolds number Re, as previously suggested by Le Bars and Le Gal [Phys. Rev. Lett. 99, 064502 (2007), 10.1103/PhysRevLett.99.064502], making them indistinguishable at onset. Both instabilities are also continuously connected to the radiative instability at finite Re. These results demonstrate the complex impact viscosity has on the linear stability properties of this flow. Several other qualitative differences with inviscid theory were found, among which are the instability of a nonaxisymmetric mode localized at the outer cylinder without stratification and the instability of a mode propagating against the inner cylinder rotation with stratification. The combination of viscosity and stratification can also lead to a "collision" between (axisymmetric) Taylor vortex branches, causing the axisymmetric oscillatory state already observed in past experiments. Perhaps more surprising is the instability of a centrifugal-like helical mode beyond the Rayleigh line, caused by the joint effects of stratification and viscosity. The threshold μ =η2 seems to remain, however, an impassable instability limit for axisymmetric modes, regardless of stratification, viscosity, and even disturbance amplitude.

  17. Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments

    NASA Astrophysics Data System (ADS)

    Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  18. Viscous Rayleigh-Taylor instability in spherical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikaelian, Karnig O.

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.

  19. Viscous Rayleigh-Taylor instability in spherical geometry

    DOE PAGES

    Mikaelian, Karnig O.

    2016-02-08

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.

  20. Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Andrews, Malcolm J.

    2011-04-01

    We extended the Goncharov model [V. N. Goncharov, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.88.134502 88, 134502 (2002)] for nonlinear Rayleigh-Taylor instability of perfect fluids to the case of Rivlin-Ericksen viscoelastic fluids [R. S. Rivlin and J. L. Ericksen, Rat. Mech. Anal. 4, 323 (1955)], with surface tension. For Rayleigh-Taylor instability, viscosity, surface tension, and viscoelasticity decrease the exponential growth rate predicted by linear stability analysis. In particular, we find that viscosity and surface tension decrease the terminal bubble velocity, whereas viscoelasticity is found to have no effect. All three properties increase the saturation height of the bubble. In Richmyer-Meshkov instability, the decay of the asymptotic velocity depends on the balance between viscosity and surface tension, and viscoelasticity tends to slow the asymptotic velocity decay.

  1. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II

    NASA Astrophysics Data System (ADS)

    Zhou, Ye

    2017-12-01

    Rayleigh-Taylor (RT) and Richtmyer-Meshkov(RM) instabilities are well-known pathways towards turbulent mixing layers, in many cases characterized by significant mass and species exchange across the mixing layers (Zhou, 2017. Physics Reports, 720-722, 1-136). Mathematically, the pathway to turbulent mixing requires that the initial interface be multimodal, to permit cross-mode coupling leading to turbulence. Practically speaking, it is difficult to experimentally produce a non-multi-mode initial interface. Numerous methods and approaches have been developed to describe the late, multimodal, turbulent stages of RT and RM mixing layers. This paper first presents the initial condition dependence of RT mixing layers, and introduces parameters that are used to evaluate the level of "mixedness" and "mixed mass" within the layers, as well as the dependence on density differences, as well as the characteristic anisotropy of this acceleration-driven flow, emphasizing some of the key differences between the two-dimensional and three-dimensional RT mixing layers. Next, the RM mixing layers are discussed, and differences with the RT mixing layer are elucidated, including the RM mixing layers dependence on the Mach number of the initiating shock. Another key feature of the RM induced flows is its response to a reshock event, as frequently seen in shock-tube experiments as well as inertial confinement events. A number of approaches to modeling the evolution of these mixing layers are then described, in order of increasing complexity. These include simple buoyancy-drag models, Reynolds-averaged Navier-Stokes models of increased complexity, including K- ε, K-L, and K- L- a models, up to full Reynolds-stress models with more than one length-scale. Multifield models and multiphase models have also been implemented. Additional complexities to these flows are examined as well as modifications to the models to understand the effects of these complexities. These complexities include the

  2. Elimination of Gravity Influence on Flame Propagation Via Enhancement of the Saffman-Taylor Instability

    NASA Technical Reports Server (NTRS)

    Aldredge, R. C.

    2003-01-01

    In this analytical work the influence of the Saffman-Taylor instability on flame propagation is formulated for computational investigation. Specifically, it is of interest to examine the influence of this instability as a potential means of eliminating the effect of gravitational acceleration on the development of thermoacoustic instability. Earlier experimental investigations of thermoacoustic instability employed tubes of large circular or annular cross-section, such that neither heat loss nor viscosity at the burner walls was of significant importance in influencing flame behavior. However, it has been demonstrated recently that flames propagating between closely spaced walls, may be subject to long-wavelength wrinkling associated with the Saffman-Taylor instability, known to be relevant when a less-viscous fluid pushes a more-viscous fluid through a porous medium or between two closely spaced walls.

  3. Surfactants and the Rayleigh-Taylor instability of Couette type flows

    NASA Astrophysics Data System (ADS)

    Frenkel, A. L.; Halpern, D.; Schweiger, A. S.

    2011-11-01

    We study the Rayleigh-Taylor instability of slow Couette- type flows in the presence of insoluble surfactants. It is known that with zero gravity, the surfactant makes the flow unstable to longwave disturbances in certain regions of the parameter space; while in other parametric regions, it reinforces the flow stability (Frenkel and Halpern 2002). Here, we show that in the latter parametric sectors, and when the (gravity) Bond number Bo is below a certain threshold value, the Rayleigh-Taylor instability is completely stabilized for a finite interval of Ma, the (surfactant) Marangoni number: MaL instability is longwave: the finite interval of unstable wavenumbers borders on the zero value. For Ma >Ma2, and also for MaL instability is ``midwave'': the interval of unstable wavenumbers is bounded away from both the zero and infinity. By numerical and asymptotic means, we determine typical dispersion curves and also characteristic dependencies such as the critical Marangoni numbers MaL, Ma1, and Ma2 as functions of the Bond number. We note that (for an interval of the Bond number) there are two distinct criticalities with nonzero (and distinct) critical wavenumbers.

  4. Charge-Induced Saffman-Taylor Instabilities in Toroidal Droplets

    NASA Astrophysics Data System (ADS)

    Fragkopoulos, A. A.; Aizenman, A.; Fernández-Nieves, A.

    2017-06-01

    We show that charged toroidal droplets can develop fingerlike structures as they expand due to Saffman-Taylor instabilities. While these are commonly observed in quasi-two-dimensional geometries when a fluid displaces another fluid of higher viscosity, we show that the toroidal confinement breaks the symmetry of the problem, effectively making it quasi-two-dimensional and enabling the instability to develop in this three-dimensional situation. We control the expansion speed of the torus with the imposed electric stress and show that fingers are observed provided the characteristic time scale associated with this instability is smaller than the characteristic time scale associated with Rayleigh-Plateau break-up. We confirm our interpretation of the results by showing that the number of fingers is consistent with expectations from linear stability analysis in radial Hele-Shaw cells.

  5. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  6. Rayleigh-Taylor-instability evolution in colliding-plasma-jet experiments with magnetic and viscous stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Colin Stuart

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictionsmore » for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.« less

  7. Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow.

    PubMed

    Priede, Jānis; Gerbeth, Gunter

    2009-04-01

    We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field [helical magnetorotational instability (HMRI)] using the inductionless approximation defined by a zero magnetic Prandtl number (Pr_{m}=0) . The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small-amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the threshold of absolute instability is just slightly above the convective one although the critical wavelength of the former is noticeably shorter than that of the latter. Beyond the Rayleigh line the lower threshold of absolute instability rises significantly above the corresponding convective one while the upper one descends significantly below its convective counterpart. As a result, the extension of the absolute HMRI beyond the Rayleigh line is considerably shorter than that of the convective instability. The absolute HMRI is supposed to be self-sustained and, thus, experimentally observable without any external excitation in a system of sufficiently large axial extension.

  8. Rayleigh-Taylor instability in accelerated elastic-solid slabs

    NASA Astrophysics Data System (ADS)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-12-01

    We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ1<ρ2 . It extends previous results for Atwood number AT=1 [B. J. Plohr and D. H. Sharp, Z. Angew. Math. Phys. 49, 786 (1998), 10.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .

  9. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Betti, R.; Sanz, J.

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  10. LSWS linked with the low-latitude Es and its implications for the growth of the R-T instability

    NASA Astrophysics Data System (ADS)

    Joshi, L. M.

    2016-07-01

    A comprehensive investigation of spread F irregularities over the Indian sector has been carried out using VHF radar and ionosonde observations. Two different categories of spread F observations, one where the onset of the range spread F (RSF) was concurrent with the peak h'F (category 1) and another where the RSF onset happened ~90 min after the peak h'F time (category 2), are presented. RSF in category 2 was preceded by the presence of oblique echoes in ionograms, indicating the irregularity genesis westward of Sriharikota. The average peak h'F in category 1 was ~30 km higher than that in category 2 indicating the presence of standing large-scale wave structure (LSWS). Occurrence of the blanketing Es during 19:30 to 20:30 Indian Standard Time in category 1 (category 2) was 0% (>50%). Model computation is also carried out to further substantiate the observational results. Model computation indicates that zonal variation of low-latitude Es can generate zonal modulation in the F layer height rise. It is found that the modulation of the F layer height, linked with the low-latitude Es, assists the equatorial spread F onset by modifying both the growth rate of the collisional Rayleigh-Taylor (R-T) instability and also its efficiency. A predominant presence of low-latitude Es has been observed, but the increase in the F layer height and the R-T instability growth in the evening hours will maximize with complete absence of low-latitude Es. A new mechanism for the generation of LSWS and its implications on R-T instability is discussed.

  11. The Rayleigh-Taylor instability in a self-gravitating two-layer viscous sphere

    NASA Astrophysics Data System (ADS)

    Mondal, Puskar; Korenaga, Jun

    2018-03-01

    The dispersion relation of the Rayleigh-Taylor instability in the spherical geometry is of profound importance in the context of the Earth's core formation. Here we present a complete derivation of this dispersion relation for a self-gravitating two-layer viscous sphere. Such relation is, however, obtained through the solution of a complex transcendental equation, and it is difficult to gain physical insights directly from the transcendental equation itself. We thus also derive an empirical formula to compute the growth rate, by combining the Monte Carlo sampling of the relevant model parameter space with linear regression. Our analysis indicates that the growth rate of Rayleigh-Taylor instability is most sensitive to the viscosity of inner layer in a physical setting that is most relevant to the core formation.

  12. Effects of laser energy fluence on the onset and growth of the Rayleigh-Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, S.; Department of Physics, University of Karachi, Karachi 75270; Rawat, R. S.

    2012-10-15

    The effect of laser energy fluence on the onset and growth of Rayleigh-Taylor (RT) instabilities in laser induced Fe plasma is investigated using time-resolved fast gated imaging. The snow plow and shock wave models are fitted to the experimental results and used to estimate the ablation parameters and the density of gas atoms that interact with the ablated species. It is observed that RT instability develops during the interface deceleration stage and grows for a considerable time for higher laser energy fluence. The effects of RT instabilities formation on the surface topography of the Fe thin films grown in pulsedmore » laser deposition system are investigated (i) using different laser energy fluences for the same wavelength of laser radiation and (ii) using different laser wavelengths keeping the energy fluence fixed. It is concluded that the deposition achieved under turbulent condition leads to less smooth deposition surfaces with bigger sized particle agglomerates or network.« less

  13. Rayleigh-Taylor instability-fascinating gateway to the study of fluid dynamics

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert F.

    1999-09-01

    A series of low-cost simple, "kitchen-physics" experiments demonstrates Rayleigh-Taylor Instability (RTI), the growth of ripples at an interface between fluids when the higher-density fluid is on top. We also describe the importance of RTI in ocean dynamics and commercial products.

  14. Singularities in water waves and Rayleigh-Taylor instability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1991-01-01

    Singularities in inviscid two-dimensional finite-amplitude water waves and inviscid Rayleigh-Taylor instability are discussed. For the deep water gravity waves of permanent form, through a combination of analytical and numerical methods, results describing the precise form, number, and location of singularities in the unphysical domain as the wave height is increased are presented. It is shown how the information on the singularity in the unphysical region has the same form as for deep water waves. However, associated with such a singularity is a series of image singularities at increasing distances from the physical plane with possibly different behavior. Furthermore, for the Rayleigh-Taylor problem of motion of fluid over a vacuum and for the unsteady water wave problem, integro-differential equations valid in the unphysical region are derived, and how these equations can give information on the nature of singularities for arbitrary initial conditions is shown.

  15. A platform for studying the Rayleigh-Taylor and Richtmyer-Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Nagel, S. R.; Raman, K. S.; Huntington, C. M.; MacLaren, S. A.; Wang, P.; Barrios, M. A.; Baumann, T.; Bender, J. D.; Benedetti, L. R.; Doane, D. M.; Felker, S.; Fitzsimmons, P.; Flippo, K. A.; Holder, J. P.; Kaczala, D. N.; Perry, T. S.; Seugling, R. M.; Savage, L.; Zhou, Y.

    2017-07-01

    A new experimental platform has been developed at the National Ignition Facility (NIF) for studying the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities in a planar geometry at high-energy-densities. The platform uses 60 beams of the NIF laser to drive an initially solid shock tube containing a pre-machined interface between dense and light materials. The strong shock turns the initially solid target into a plasma and the material boundary into a fluid interface with the imprinted initial condition. The interface evolves by action of the RT and RM instabilities, and the growth is imaged with backlit x-ray radiography. We present our first data involving sinusoidal interface perturbations driven from the heavy side to the light side. Late-time radiographic images show the initial conditions reaching the deeply nonlinear regime, and an evolution of fine structure consistent with a transition to turbulence. We show preliminary comparisons with post-shot numerical simulations and discuss the implications for future campaigns.

  16. The Magnetic Rayleigh-Taylor Instability in Astrophysical Discs

    NASA Technical Reports Server (NTRS)

    Contopoulos, I.; Kazanas, D.; Papadopoulos, D. B.

    2016-01-01

    This is our first study of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disc around a central back hole. We derive the equations governing small-amplitude oscillations in general relativistic ideal magnetodydrodynamics and obtain a criterion for the onset of the instability. We suggest that static disc configurations where magnetic field is held by the disc material are unstable around a Schwarzschild black hole. On the other hand, we find that such configurations are stabilized by the space-time rotation around a Kerr black hole. We obtain a crude estimate of the maximum amount of poloidal magnetic flux that can be accumulated around the centre, and suggest that it is proportional to the black hole spin. Finally, we discuss the astrophysical implications of our result for the theoretical and observational estimations of the black hole jet power.

  17. Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.

    In this paper, the Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters themore » self-similar regime, in agreement with experimental observations. Finally, for the conditions simulated, diffusion can influence the initial instability growth significantly.« less

  18. Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability

    DOE PAGES

    Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.; ...

    2016-08-31

    In this paper, the Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters themore » self-similar regime, in agreement with experimental observations. Finally, for the conditions simulated, diffusion can influence the initial instability growth significantly.« less

  19. A Validation Study of the Compressible Rayleigh–Taylor Instability Comparing the Ares and Miranda Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehagen, Thomas J.; Greenough, Jeffrey A.; Olson, Britton J.

    In this paper, the compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution.more » The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. Finally, to have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).« less

  20. A Validation Study of the Compressible Rayleigh–Taylor Instability Comparing the Ares and Miranda Codes

    DOE PAGES

    Rehagen, Thomas J.; Greenough, Jeffrey A.; Olson, Britton J.

    2017-04-20

    In this paper, the compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution.more » The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. Finally, to have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).« less

  1. Helical magnetorotational instability in magnetized Taylor-Couette flow.

    PubMed

    Liu, Wei; Goodman, Jeremy; Herron, Isom; Ji, Hantao

    2006-11-01

    Hollerbach and Rüdiger have reported a new type of magnetorotational instability (MRI) in magnetized Taylor-Couette flow in the presence of combined axial and azimuthal magnetic fields. The salient advantage of this "helical" MRI (HMRI) is that marginal instability occurs at arbitrarily low magnetic Reynolds and Lundquist numbers, suggesting that HMRI might be easier to realize than standard MRI (axial field only), and that it might be relevant to cooler astrophysical disks, especially those around protostars, which may be quite resistive. We confirm previous results for marginal stability and calculate HMRI growth rates. We show that in the resistive limit, HMRI is a weakly destabilized inertial oscillation propagating in a unique direction along the axis. But we report other features of HMRI that make it less attractive for experiments and for resistive astrophysical disks. Large axial currents are required. More fundamentally, instability of highly resistive flow is peculiar to infinitely long or periodic cylinders: finite cylinders with insulating endcaps are shown to be stable in this limit, at least if viscosity is neglected. Also, Keplerian rotation profiles are stable in the resistive limit regardless of axial boundary conditions. Nevertheless, the addition of a toroidal field lowers thresholds for instability even in finite cylinders.

  2. Simulations of Rayleigh Taylor Instabilities in the presence of a Strong Radiative shock

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Shvarts, Dov; Drake, R. P.

    2016-10-01

    Recent Supernova Rayleigh Taylor experiments on the National Ignition Facility (NIF) are relevant to the evolution of core-collapse supernovae in which red supergiant stars explode. Here we report simulations of these experiments using the CRASH code. The CRASH code, developed at the University of Michigan to design and analyze high-energy-density experiments, is an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction. We explore two cases, one in which the shock is strongly radiative, and another with negligible radiation. The experiments in all cases produced structures at embedded interfaces by the Rayleigh Taylor instability. The weaker shocked environment is cooler and the instability grows classically. The strongly radiative shock produces a warm environment near the instability, ablates the interface, and alters the growth. We compare the simulated results with the experimental data and attempt to explain the differences. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  3. Dynamic Stabilization of the Ablative Rayleigh-Taylor Instability for Heavy Ion Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hong; Davidson, Ronald C.; Logan, B. Grant

    2012-10-04

    Dynamic stabilization of the ablative Rayleigh-Taylor instability of a heavy ion fusion target induced by a beam wobbling system is studied. Using a sharp-boundary model and Courant-Synder theory, it is shown, with an appropriately chosen modulation waveform, that the instability can be sta- bilized in certain parameter regimes. It is found that the stabilization e ect has a strong dependence on the modulation frequency and the waveform. Modulation with frequency comparable to the instability growth rate is the most e ective in terms of stabilizing the instability. A modulation with two frequency components can result in a reduction of themore » growth rate larger than the sum of that due to the two components when applied separately.« less

  4. Rayleigh-Taylor Unstable Flames -- Fast or Faster?

    NASA Astrophysics Data System (ADS)

    Hicks, E. P.

    2015-04-01

    Rayleigh-Taylor (RT) unstable flames play a key role in the explosions of supernovae Ia. However, the dynamics of these flames are still not well understood. RT unstable flames are affected by both the RT instability of the flame front and by RT-generated turbulence. The coexistence of these factors complicates the choice of flame speed subgrid models for full-star Type Ia simulations. Both processes can stretch and wrinkle the flame surface, increasing its area and, therefore, the burning rate. In past research, subgrid models have been based on either the RT instability or turbulence setting the flame speed. We evaluate both models, checking their assumptions and their ability to correctly predict the turbulent flame speed. Specifically, we analyze a large parameter study of 3D direct numerical simulations of RT unstable model flames. This study varies both the simulation domain width and the gravity in order to probe a wide range of flame behaviors. We show that RT unstable flames are different from traditional turbulent flames: they are thinner rather than thicker when turbulence is stronger. We also show that none of the several different types of turbulent flame speed models accurately predicts measured flame speeds. In addition, we find that the RT flame speed model only correctly predicts the measured flame speed in a certain parameter regime. Finally, we propose that the formation of cusps may be the factor causing the flame to propagate more quickly than predicted by the RT model.

  5. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smitherman, D.P.

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}mmore » aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.« less

  6. Viscous Rayleigh-Taylor instability in spherical geometry

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2016-02-01

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955), 10.1093/qjmam/8.1.1] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer a somewhat improved one. A third DR, based on transforming a planar DR into a spherical one, suffers no unphysical predictions and compares reasonably well with the exact work of Chandrasekhar and a more recent numerical analysis of the problem [Terrones and Carrara, Phys. Fluids 27, 054105 (2015), 10.1063/1.4921648].

  7. Simulating the Rayleigh-Taylor instability with the Ising model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, Justin R.; Elliott, James B.

    2011-08-26

    The Ising model, implemented with the Metropolis algorithm and Kawasaki dynamics, makes a system with its own physics, distinct from the real world. These physics are sophisticated enough to model behavior similar to the Rayleigh-Taylor instability and by better understanding these physics, we can learn how to modify the system to better re ect reality. For example, we could add a v x and a v y to each spin and modify the exchange rules to incorporate them, possibly using two body scattering laws to construct a more realistic system.

  8. Interface coupling and growth rate measurements in multilayer Rayleigh-Taylor instabilities

    NASA Astrophysics Data System (ADS)

    Adkins, Raymond; Shelton, Emily M.; Renoult, Marie-Charlotte; Carles, Pierre; Rosenblatt, Charles

    2017-06-01

    Magnetic levitation was used to measure the growth rate Σ vs wave vector k of a Rayleigh-Taylor instability in a three-layer fluid system, a crucial step in the elucidation of interface coupling in finite-layer instabilities. For a three-layer (low-high-low density) system, the unstable mode growth rate decreases as both the height h of the middle layer and k are reduced, consistent with an interface coupling ∝e-k h . The ratios of the three-layer to the established two-layer growth rates are in good agreement with those of classic linear stability theory, which has long resisted verification in that configuration.

  9. Dynamic stabilization of Rayleigh-Taylor instability in an ablation front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Di Lucchio, L.; Rodriguez Prieto, G.

    2011-01-15

    Dynamic stabilization of Rayleigh-Taylor instability in an ablation front is studied by considering a modulation in the acceleration that consists of sequences of Dirac deltas. This allows obtaining explicit analytical expressions for the instability growth rate as well as for the boundaries of the stability region. As a general rule, it is found that it is possible to stabilize all wave numbers above a certain minimum value k{sub m}, but the requirements in the modulation amplitude and frequency become more exigent with smaller k{sub m}. The essential role of compressibility is phenomenologically addressed in order to find the constraint itmore » imposes on the stability region. The results for some different wave forms of the acceleration modulation are also presented.« less

  10. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Turbulent Regime

    NASA Astrophysics Data System (ADS)

    Dimonte, G.

    1998-11-01

    The Rayleigh-Taylor instability (RTI) and its shock driven analog, the Richtmyer-Meshkov instability (RMI), affect a wide variety of important phenomena from sub-terrainian to astrophysical environments. The ``fluids" are equally varied from plasmas and magnetic fields to elastic-plastic solids. In most applications, the instabilities occur with a complex acceleration history and evolve to a highly nonlinear state, making the theoretical description formidable. We will link the fluid and plasma regimes while describing the theoretical issues and basic experiments in different venues to isolate key physics issues. RMI experiments on the Nova laser investigate the affects of compressibility with strong radiatively driven shocks (Mach > 10) in near solid density plasmas of sub-millimeter scale. The growth of single sinusoidal and random 3-D perturbations are measured using backlit radiography. RTI experiments with the Linear Electric Motor (LEM) are conducted with a variety of acceleration (<< 10^4 m/s^2) histories and fluids of 10 cm scale. Turbulent RTI experiments with high Reynolds number liquids show self-similar growth which is characterized with laser induced fluorescence. LEM experiments with an elastic-plastic material (yogurt) exhibit a critical wavelength and amplitude for instability. The experimental results will be compared with linear and nonlinear theories and hydrodynamic simulations.

  11. Rayleigh-Taylor instability experiments in cryogenic deuterium

    NASA Astrophysics Data System (ADS)

    Hansen, J. F.; Smalyuk, V. A.

    2005-10-01

    We report on experiments under way at the Omega laser, using cryogenic deuterium to study Rayleigh-Taylor instabilities in laser targets. These instabilities are important in astrophysical situations (e.g., mixing of the different shells during a supernova explosion) and in inertial fusion (during the compression stage of a fusion target). They can be studied in small (˜1 mm) shock tubes filled with one heavy and one light material, with an interface between the two materials that is machined to seed the instability. A high-energy laser (˜5 kJ) drives a shock from the heavy to the light material. The evolution of the interface is studied using gated x-ray cameras, where x-ray illumination is obtained from additional laser beams focused on metal backlighter foils. Traditionally the heavy material is CH (1 g/cm^3) doped with I or Br for improved contrast, while the light material is a low-density (˜0.1 g/cm^3) C foam. The goal of the current experiments is to determine if contrast can be improved even further by replacing the foam with cryogenic deuterium, which has a density similar to the foam, but a lower x-ray opacity allowing clearer images, including images taken at late times in the evolution. Work performed under the auspices of the Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

  12. LAD Early Career Prize Talk:Laboratory astrophysics experiments investigating the effects of high energy fluxes on Rayleigh-Taylor instability growth relevant to young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn C.; Drake, R. Paul; Park, Hye Sook; Huntington, Channing; Miles, Aaron R.; Remington, Bruce A.; Plewa, Tomek; Trantham, Matt; Shvarts, Dov; Raman, Kumar; MacLaren, Steven; Wan, Wesley; Doss, Forrest; Kline, John; Flippos, Kirk; Malamud, Guy; Handy, Timothy; Prisbey, Shon; Grosskopf, Michael; Krauland, Christine; Klein, Sallee; Harding, Eric; Wallace, Russell; Marion, Donna; Kalantar, Dan

    2017-06-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor (RT) instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter (CSM), based on simple models and hydrodynamic simulations. When a blast wave emerges from an exploding star, it drives a forward shock into the CSM and a reverse shock forms in the expanding stellar ejecta, creating a young supernova remnant (SNR). As mass accumulates in the shocked layers, the interface between these two shocks decelerates, becoming unstable to the RT instability. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility (NIF) to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. The experiment used NIF to create a RT unstable interface subject to a high energy flux by the emergence of a blast wave into lower-density matter, in analogy to the SNR. We also preformed and with a low energy flux to compare the affect of the energy flux on the instability growth. We found that the RT growth was reduced in the experiments with a high energy flux. In analyzing the comparison with SN 1993J, we discovered that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling SNRs.

  13. RAYLEIGH–TAYLOR UNSTABLE FLAMES—FAST OR FASTER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, E. P., E-mail: eph2001@columbia.edu

    2015-04-20

    Rayleigh–Taylor (RT) unstable flames play a key role in the explosions of supernovae Ia. However, the dynamics of these flames are still not well understood. RT unstable flames are affected by both the RT instability of the flame front and by RT-generated turbulence. The coexistence of these factors complicates the choice of flame speed subgrid models for full-star Type Ia simulations. Both processes can stretch and wrinkle the flame surface, increasing its area and, therefore, the burning rate. In past research, subgrid models have been based on either the RT instability or turbulence setting the flame speed. We evaluate bothmore » models, checking their assumptions and their ability to correctly predict the turbulent flame speed. Specifically, we analyze a large parameter study of 3D direct numerical simulations of RT unstable model flames. This study varies both the simulation domain width and the gravity in order to probe a wide range of flame behaviors. We show that RT unstable flames are different from traditional turbulent flames: they are thinner rather than thicker when turbulence is stronger. We also show that none of the several different types of turbulent flame speed models accurately predicts measured flame speeds. In addition, we find that the RT flame speed model only correctly predicts the measured flame speed in a certain parameter regime. Finally, we propose that the formation of cusps may be the factor causing the flame to propagate more quickly than predicted by the RT model.« less

  14. Experimental Evidence for Magnetorotational Instability in a Taylor-Couette Flow under the Influence of a Helical Magnetic Field

    NASA Astrophysics Data System (ADS)

    Stefani, Frank; Gundrum, Thomas; Gerbeth, Gunter; Rüdiger, Günther; Schultz, Manfred; Szklarski, Jacek; Hollerbach, Rainer

    2006-11-01

    A recent Letter [R. Hollerbach and G. Rüdiger, Phys. Rev. Lett. 95, 124501 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.124501] has shown that the threshold for the onset of the magnetorotational instability in a Taylor-Couette flow is dramatically reduced if both axial and azimuthal magnetic fields are imposed. In agreement with this prediction, we present results of a Taylor-Couette experiment with the liquid metal alloy GaInSn, showing evidence for the existence of the magnetorotational instability at Reynolds numbers of order 1000 and Hartmann numbers of order 10.

  15. Ablative Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Laser-Accelerated Colliding Foils

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Metzler, N.; Karasik, M.; Serlin, V.; Weaver, J.; Obenschain, S. P.; Oh, J.; Schmitt, A. J.; Velikovich, A. L.; Zalesak, S. T.; Gardner, J. H.; Harding, E. C.

    2008-11-01

    In our experiments done on the Nike KrF laser, we study instability growth at shock-decelerated interfaces in planar colliding-foil experiments. We use streaked monochromatic (1.86 keV) x-ray face-on imaging diagnostics to measure the areal mass modulation growth caused by the instability. Higher x-ray energies up to 5.25 keV are used to follow the shock propagation as well as the 1D dynamics of the collision. While a laser-driven foil is accelerated towards the stationary low-density foam layer, an ablative RT instability develops. Having reached a high velocity, the foil hits the foam layer. The impact generates strong shocks in the plastic and in the foam. The reflected shock wave re-shocks the ablation front, its acceleration stops, and so does the observed RT growth. This is followed by areal mass oscillations due to the ablative RM instability and feedout mechanisms, of which the latter dominates.

  16. Particle drift model for Z-pinch-driven magneto-Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Xu, Qiang; Wang, Kun Lun; Ren, Xiao Dong; Huang, Xian Bin

    2016-09-01

    A theoretical model of Z-pinch driven magneto-Rayleigh-Taylor instability is proposed based on the particle drift point of view, which can explain the helical instability structure observed in premagnetized imploding liner experiments. It is demonstrated that all possible drift motions, including polarization drift, gradient drift, and curvature drift, which can lead to charge separations, each will attribute to an effective gravity acceleration. Theoretical predictions given by this model are dramatically different from those given by previous theories which have been readily recovered in the theory presented here as a limiting case. The theory shows qualitative agreement with available experimental data of the pitch angle and provides certain predictions to be verified.

  17. On the Rayleigh-Taylor Instability in Presence of a Background Shear

    NASA Astrophysics Data System (ADS)

    Shvydkoy, Roman

    2018-01-01

    In this note we revisit the classical subject of the Rayleigh-Taylor instability in presence of an incompressible background shear flow. We derive a formula for the essential spectral radius of the evolution group generated by the linearization near the steady state and reveal that the velocity variations neutralize shortwave instabilities. The formula is a direct generalization of the result of Hwang and Guo (Arch Ration Mech Anal 167(3):235-253, (2003). Furthermore, we construct a class of steady states which posses unstable discrete spectrum with neutral essential spectrum. The technique involves the WKB analysis of the evolution equation and contains novel compactness criterion for pseudo-differential operators on unbounded domains.

  18. Stability and instability of hydromagnetic Taylor-Couette flows

    NASA Astrophysics Data System (ADS)

    Rüdiger, Günther; Gellert, Marcus; Hollerbach, Rainer; Schultz, Manfred; Stefani, Frank

    2018-04-01

    Decades ago S. Lundquist, S. Chandrasekhar, P. H. Roberts and R. J. Tayler first posed questions about the stability of Taylor-Couette flows of conducting material under the influence of large-scale magnetic fields. These and many new questions can now be answered numerically where the nonlinear simulations even provide the instability-induced values of several transport coefficients. The cylindrical containers are axially unbounded and penetrated by magnetic background fields with axial and/or azimuthal components. The influence of the magnetic Prandtl number Pm on the onset of the instabilities is shown to be substantial. The potential flow subject to axial fields becomes unstable against axisymmetric perturbations for a certain supercritical value of the averaged Reynolds number Rm bar =√{ Re ṡ Rm } (with Re the Reynolds number of rotation, Rm its magnetic Reynolds number). Rotation profiles as flat as the quasi-Keplerian rotation law scale similarly but only for Pm ≫ 1 while for Pm ≪ 1 the instability instead sets in for supercritical Rm at an optimal value of the magnetic field. Among the considered instabilities of azimuthal fields, those of the Chandrasekhar-type, where the background field and the background flow have identical radial profiles, are particularly interesting. They are unstable against nonaxisymmetric perturbations if at least one of the diffusivities is non-zero. For Pm ≪ 1 the onset of the instability scales with Re while it scales with Rm bar for Pm ≫ 1. Even superrotation can be destabilized by azimuthal and current-free magnetic fields; this recently discovered nonaxisymmetric instability is of a double-diffusive character, thus excluding Pm = 1. It scales with Re for Pm → 0 and with Rm for Pm → ∞. The presented results allow the construction of several new experiments with liquid metals as the conducting fluid. Some of them are described here and their results will be discussed together with relevant diversifications of

  19. In search of late time evolution self-similar scaling laws of Rayleigh-Taylor and Richtmyer-Meshkov hydrodynamic instabilities - recent theorical advance and NIF Discovery-Science experiments

    NASA Astrophysics Data System (ADS)

    Shvarts, Dov

    2017-10-01

    Hydrodynamic instabilities, and the mixing that they cause, are of crucial importance in describing many phenomena, from very large scales such as stellar explosions (supernovae) to very small scales, such as inertial confinement fusion (ICF) implosions. Such mixing causes the ejection of stellar core material in supernovae, and impedes attempts at ICF ignition. The Rayleigh-Taylor instability (RTI) occurs at an accelerated interface between two fluids with the lower density accelerating the higher density fluid. The Richtmyer-Meshkov (RM) instability occurs when a shock wave passes an interface between the two fluids of different density. In the RTI, buoyancy causes ``bubbles'' of the light fluid to rise through (penetrate) the denser fluid, while ``spikes'' of the heavy fluid sink through (penetrate) the lighter fluid. With realistic multi-mode initial conditions, in the deep nonlinear regime, the mixing zone width, H, and its internal structure, progress through an inverse cascade of spatial scales, reaching an asymptotic self-similar evolution: hRTRT Agt2 for RT and hRM =αRM tθ for RM. While this characteristic behavior has been known for years, the self-similar parameters αRT and θRM and their dependence on dimensionality and density ratio have continued to be intensively studied and a relatively wide distribution of those values have emerged. This talk will describe recent theoretical advances in the description of this turbulent mixing evolution that sheds light on the spread in αRT and θRM. Results of new and specially designed experiments, done by scientists from several laboratories, were performed recently using NIF, the only facility that is powerful enough to reach the self-similar regime, for quantitative testing of this theoretical advance, will be presented.

  20. Nonideal Rayleigh–Taylor mixing

    PubMed Central

    Lim, Hyunkyung; Iwerks, Justin; Glimm, James; Sharp, David H.

    2010-01-01

    Rayleigh–Taylor mixing is a classical hydrodynamic instability that occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh–Taylor (RT) mixing are regularizations (physical and numerical), which produce deviations from a pure Euler equation, scale invariant formulation, and nonideal (i.e., experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We interpret mathematical theories of existence and nonuniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations; in other words, indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as nonunique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, in the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and Prandtl numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength initial conditions and long wavelength perturbations are observed to play a role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing in different proportions in these two different contexts. PMID:20615983

  1. Progress toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike laser

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.; Dwarkadas, V. V.

    2008-04-01

    In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities of concern: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been readily observed and diagnosed in the laboratory, the KH instability remains relatively unexplored in HED plasmas. Unlike the RT and RM instabilities, the KH instability is driven by a lifting force generated by a strong velocity gradient in a stratified fluid. Understanding the KH instability mechanism in HED plasmas will provide essential insight into oblique shock systems, jets, mass stripping, and detailed RT-spike development. In addition, our KH experiment will help provide the groundwork for future transition to turbulence experiments. We present 2D FLASH simulations and experimental data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.

  2. Progress Toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike Laser

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Dwarkadas, V. V.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Gjeci, N.; Campbell, D. A.; Marion, D. C.

    2007-11-01

    In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been observed in the laboratory, no experiment to our knowledge has cleanly diagnosed the KH instability. While the RT instability results from the acceleration of a more dense fluid into a less dense fluid and the RM instability is due to shock deposited vorticity onto an interface, the KH instability is driven by a lifting force generated by velocity shear at a perturbed fluid interface. Understanding the KH instability mechanism in HED plasmas will provide essential insight into detailed RT-spike development, mass stripping, many astrophysical processes, as well as laying the groundwork for future transition to turbulence experiments. We present 2D simulations and data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.

  3. On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully developed flows

    NASA Technical Reports Server (NTRS)

    Bennett, James; Hall, Philip

    1988-01-01

    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmien-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poiseuille flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

  4. On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully-developed flows

    NASA Technical Reports Server (NTRS)

    Bennett, James; Hall, Philip

    1986-01-01

    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmein-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poisseulle flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

  5. A solution to Rayleigh-Taylor instabilities. Bubbles, spikes, and their scalings

    DOE PAGES

    Mikaelian, Karnig O.

    2014-05-12

    A fluid that pushes on and accelerates a heavier fluid, small perturbations at their interface grows with time and lead. to turbulent mixing. The same instability, known as the Rayleigh-Taylor instability, operates when a heavy fluid is supported by a lighter fluid in a gravitational field. Moreover, it has a particularly deleterious effect on inertial-confinement-fusion implosions and is known to operate over 18 orders of magnitude in dimension. We propose analytic expressions for the bubble and spike amplitudes and mixing widths in the linear, nonlinear, and turbulent regimes. They cover arbitrary density ratios and accelerations that are constant or changingmore » relatively slowly with time. Here, we discuss their scalings and compare them with simulations and experiments.« less

  6. Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondic, L.; Shelley, M.J.; Palffy-Muhoray, P.

    We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid in a radial Hele-Shaw cell. Using Darcy{close_quote}s law generalized for non-Newtonian fluids, we perform simulations of the full dynamical problem. The simulations show that shear thinning significantly influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable agreement with a general linear stability analysis. {copyright} {ital 1998} {ital The American Physical Society}

  7. Observation of Rayleigh-Taylor-instability evolution in a plasma with magnetic and viscous effects

    DOE PAGES

    Adams, Colin S.; Moser, Auna L.; Hsu, Scott C.

    2015-11-06

    We present time-resolved observations of Rayleigh-Taylor-instability (RTI) evolution at the interface between an unmagnetized plasma jet colliding with a stagnated, magnetized plasma. The observed instability growth time (~10μs) is consistent with the estimated linear RTI growth rate calculated using experimentally inferred values of density (~10 14cm–3) and deceleration (~10 9 m/s 2). The observed mode wavelength (≳1 cm) nearly doubles within a linear growth time. Furthermore, theoretical estimates of magnetic and viscous stabilization and idealized magnetohydrodynamic simulations including a physical viscosity model both suggest that the observed instability evolution is subject to magnetic and/or viscous effects.

  8. Taylor-Goertler instabilities of Tollmien-Schlichting waves and other flows governed by the interactive boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Bennett, James

    1986-01-01

    The Taylor-Goertler vortex instability equations are formulated for steady and unsteady interacting boundary-layer flows. The effective Goertler number is shown to be a function of the wall shape in the boundary layer and the possibility of both steady and unsteady Taylor-Goertler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Goertler vortices exist before the boundary layers at the wall develop the Goldstein singularity discussed by Smith and Daniels (1981). As an example of an unsteady spatially varying basic state, it is considered the instability of high-frequency large-amplitude two- and three-dimensional Tollmien-Schlichting waves in a curved channel. It is shown that they are unstable in the first 'Stokes-layer stage' of the hierarchy of nonlinear states discussed by Smith and Burggraf (1985). This instability of Tollmien-Schlichting waves in an internal flow can occur in the presence of either convex or concave curvature. Some discussion of this instability in external flows is given.

  9. Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott

    2017-11-01

    The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.

  10. Vibration waveform effects on dynamic stabilization of ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Lucchio, L. Di; Rodriguez Prieto, G.

    2011-08-15

    An analysis of dynamic stabilization of Rayleigh-Taylor instability in an ablation front is performed by considering a general square wave for modulating the vertical acceleration of the front. Such a kind of modulation allows for clarifying the role of thermal conduction in the mechanism of dynamic stabilization. In addition, the study of the effect of different modulations by varying the duration and amplitude of the square wave in each half-period provides insight on the optimum performance of dynamic stabilization.

  11. Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Duan, Shuchao; Xie, Weiping; Cao, Jintao; Li, Ding

    2018-04-01

    In this paper, we analyze theoretically the magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Slab configurations of finite thickness are treated both with and without using the Wenzel-Kramers-Brillouin approximation. Regardless of the slab thickness, the directional rotation of the driving magnetic field contributes to suppressing these instabilities. The two factors of the finite thickness and directional rotation of the magnetic field cooperate to enhance suppression, with the finite thickness playing a role only when the orientation of the magnetic field is time varying. The suppression becomes stronger as the driving magnetic field rotates faster, and all modes are suppressed, in contrast to the case of a non-rotating magnetic field, for which the vertical mode cannot be suppressed. This implies that the dynamically alternate configuration of a Theta-pinch and a Z-pinch may be applicable to the concept of Theta-Z liner inertial fusion.

  12. Lessons Learned from Numerical Simulations of Interfacial Instabilities

    NASA Astrophysics Data System (ADS)

    Cook, Andrew

    2015-11-01

    Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instabilities serve as efficient mixing mechanisms in a wide variety of flows, from supernovae to jet engines. Over the past decade, we have used the Miranda code to temporally integrate the multi-component Navier-Stokes equations at spatial resolutions up to 29 billion grid points. The code employs 10th-order compact schemes for spatial derivatives, combined with 4th-order Runge-Kutta time advancement. Some of our major findings are as follows: The rate of growth of a mixing layer is equivalent to the net mass flux through the equi-molar plane. RT growth rates can be significantly reduced by adding shear. RT instability can produce shock waves. The growth rate of RM instability can be predicted from known interfacial perturbations. RM vortex projectiles can far outrun the mixing region. Thermal fluctuations in molecular dynamics simulations can seed instabilities along the braids in KH instability. And finally, enthalpy diffusion is essential in preserving the second law of thermodynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width

    NASA Astrophysics Data System (ADS)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2018-04-01

    The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number AT=1 and for sufficiently small values of AT. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.

  14. Competitions between Rayleigh-Taylor instability and Kelvin-Helmholtz instability with continuous density and velocity profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, W. H.; He, X. T.; CAPT, Peking University, Beijing 100871

    2011-02-15

    In this research, competitions between Rayleigh-Taylor instability (RTI) and Kelvin-Helmholtz instability (KHI) in two-dimensional incompressible fluids within a linear growth regime are investigated analytically. Normalized linear growth rate formulas for both the RTI, suitable for arbitrary density ratio with continuous density profile, and the KHI, suitable for arbitrary density ratio with continuous density and velocity profiles, are obtained. The linear growth rates of pure RTI ({gamma}{sub RT}), pure KHI ({gamma}{sub KH}), and combined RTI and KHI ({gamma}{sub total}) are investigated, respectively. In the pure RTI, it is found that the effect of the finite thickness of the density transition layermore » (L{sub {rho}}) reduces the linear growth of the RTI (stabilizes the RTI). In the pure KHI, it is found that conversely, the effect of the finite thickness of the density transition layer increases the linear growth of the KHI (destabilizes the KHI). It is found that the effect of the finite thickness of the density transition layer decreases the ''effective'' or ''local'' Atwood number (A) for both the RTI and the KHI. However, based on the properties of {gamma}{sub RT}{proportional_to}{radical}(A) and {gamma}{sub KH}{proportional_to}{radical}(1-A{sup 2}), the effect of the finite thickness of the density transition layer therefore has a completely opposite role on the RTI and the KHI noted above. In addition, it is found that the effect of the finite thickness of the velocity shear layer (L{sub u}) stabilizes the KHI, and for the most cases, the combined effects of the finite thickness of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}) also stabilize the KHI. Regarding the combined RTI and KHI, it is found that there is a competition between the RTI and the KHI because of the completely opposite effect of the finite thickness of the density transition layer on these two kinds of instability. It is found that the

  15. Suppression of the Saffman-Taylor instability through injection of a finite slug of polymer

    NASA Astrophysics Data System (ADS)

    Beeson-Jones, Timothy H.; Woods, Andrew W.

    2014-11-01

    During secondary oil recovery, relatively mobile water can channel through oil owing to the Saffman-Taylor instability. Injection of a finite slug of polymer solution from a central well prior to the water flood suppresses the growth of the instability by reducing the adverse mobility ratio at the leading interface. A linear stability analysis of an axisymmetric base state identifies how perturbations on the leading and trailing interfaces become coupled. It also reveals the dependence of the long-time algebraic growth of each mode on the mobility ratios across the two interfaces. The viscosity of the polymer solution which minimizes the growth rate of the instability is identified, and the impact of different slug sizes on this growth is described. Funded by EPSRC & BP.

  16. Nonlinear saturation amplitude of cylindrical Rayleigh—Taylor instability

    NASA Astrophysics Data System (ADS)

    Liu, Wan-Hai; Yu, Chang-Ping; Ye, Wen-Hua; Wang, Li-Feng

    2014-09-01

    The nonlinear saturation amplitude (NSA) of the fundamental mode in the classical Rayleigh—Taylor instability with a cylindrical geometry for an arbitrary Atwood number is analytically investigated by considering the nonlinear corrections up to the third order. The analytic results indicate that the effects of the initial radius of the interface (r0) and the Atwood number (A) play an important role in the NSA of the fundamental mode. The NSA of the fundamental mode first increases gently and then decreases quickly with increasing A. For a given A, the smaller the r0/λ (λ is the perturbation wavelength), the larger the NSA of the fundamental mode. When r0/λ is large enough (r0 ≫ λ), the NSA of the fundamental mode is reduced to the prediction in the previous literatures within the framework of the third-order perturbation theory.

  17. Rayleigh-Taylor Instabilities as a Mechanism for Coronae Formation on Venus

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Houseman, G. A.

    2002-12-01

    Coronae are Venusian quasi-circular volcano-tectonic features that range in size from 60km-1000km. They are believed to form over small-scale mantle upwellings. Previous models of corona formation can best match the observed topographic morphology when the upwellings cause the cold, dense lower lithosphere to delaminate, sinking into the mantle and deforming the surface. These complex evolutionary models can predict the general topography of most classes of coronae and can also account for most of the deformation observed around coronae. The size and depth at which these plumes might originate is unclear, however, and the relatively close spacing of coronae is surprising if these plumes originate from deep in the mantle. We here investigate an alternative causal mechanism for coronae based on the idea that gravitational instability of the dense mantle lithosphere could also explain the observed topography and gravity. In Rayleigh-Taylor instability, coupled downwelling and upwelling develops from an initial perturbation in lithospheric thickness. Recent analysis of gravity data suggests that deformation of the crustal layer may play an important role in causing surface topography for coronae and explaining volcano-tectonic deformation features. We examine the role of crustal thickness in forming specific corona morphologies using "basil", a 2D finite deformation program adapted to calculate viscous deformation assuming cylindrical axisymmetry. Instantaneous flow fields are integrated forward in time in order to compute the final strain field. Rayleigh-Taylor instability with imposed cylindrical axisymmetry produces either central depression surrounded by a positive topographic annulus (or vice-versa). If deformation is small we observe that linear growth rates q are the same for either form of the instability. We find this rate to be maximum at wavenumber k=2.5 for rigid boundary models, but the wavelength of deformation lengthens to k=0.32 for free-slip boundaries

  18. Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, D. A.; Smalyuk, V. A.; Kane, J. O.; Casner, A.; Liberatore, S.; Masse, L. P.

    2015-05-01

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μ m thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  19. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Betti, R.; Gopalaswamy, V.

    Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2D and 3D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes are more easily destabilized in 3D than in 2D. In conclusion, it is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble densitymore » increases with the wave number and small scale bubbles carry a larger mass flux of mixed material.« less

  20. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers

    DOE PAGES

    Zhang, H.; Betti, R.; Gopalaswamy, V.; ...

    2018-01-16

    Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2D and 3D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes are more easily destabilized in 3D than in 2D. In conclusion, it is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble densitymore » increases with the wave number and small scale bubbles carry a larger mass flux of mixed material.« less

  1. Size invariance of the granular Rayleigh-Taylor instability.

    PubMed

    Vinningland, Jan Ludvig; Johnsen, Øistein; Flekkøy, Eirik G; Toussaint, Renaud; Måløy, Knut Jørgen

    2010-04-01

    The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.

  2. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF.

    PubMed

    Martinez, D A; Smalyuk, V A; Kane, J O; Casner, A; Liberatore, S; Masse, L P

    2015-05-29

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130  μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  3. Numerical simulation of the hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor

    NASA Astrophysics Data System (ADS)

    Fortova, S. V.; Shepelev, V. V.; Troshkin, O. V.; Kozlov, S. A.

    2017-09-01

    The paper presents the results of numerical simulation of the development of hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor encountered in experiments [1-3]. For the numerical solution used the TPS software package (Turbulence Problem Solver) that implements a generalized approach to constructing computer programs for a wide range of problems of hydrodynamics, described by the system of equations of hyperbolic type. As numerical methods are used the method of large particles and ENO-scheme of the second order with Roe solver for the approximate solution of the Riemann problem.

  4. Saffman-Taylor Instability for a non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2013-11-01

    Motivated by applications, we study classical Saffman-Taylor instability involving displacement of an Oldroyd-B fluid displaced by air in a Hele-Shaw cell. The lubrication approximation is used by neglecting the vertical component of the velocity. We obtain an explicit expression of one of the components of the extra-stress perturbations tensor in terms of the horizontal velocity perturbations. The main result is an explicit formula for the growth constant (in time) of perturbations, given by a ratio in which a term depending on the relaxation and retardation (time) constants appears in the denominator of the ratio. This exact result compares extremely well with known numerical results. It is found that flow is more unstable than the corresponding Newtonian case. This is a joint work with Gelu Pasa. The research has been made possible by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation).

  5. Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF

    DOE PAGES

    Martinez, D. A.; Smalyuk, V. A.; Kane, J. O.; ...

    2015-05-29

    In this paper, we investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation frontmore » is achieved for the first time in indirect drive. Finally, the mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.« less

  6. Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wanhai; LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190; Chen, Yulian

    Harmonic growth in classical Rayleigh-Taylor instability (RTI) on a spherical interface is analytically investigated using the method of the parameter expansion up to the third order. Our results show that the amplitudes of the first four harmonics will recover those in planar RTI as the interface radius tends to infinity compared against the initial perturbation wavelength. The initial radius dramatically influences the harmonic development. The appearance of the second-order feedback to the initial unperturbed interface (i.e., the zeroth harmonic) makes the interface move towards the spherical center. For these four harmonics, the smaller the initial radius is, the faster theymore » grow.« less

  7. Instability of the heliopause driven by charge exchange interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avinash, K.; Zank, G. P.; Dasgupta, B.

    2014-08-20

    The stability of the heliopause that separates the tenuous hot magnetized heliosheath plasma from the dense cool local interstellar magnetized plasma is examined using a fully general model that includes all the essential physical processes. Charge exchange coupling between plasma protons and primary interstellar neutral atoms provides an effective gravity that drives Rayleigh-Taylor (RT)-like instabilities. The velocity difference or shear between the heliosheath and interstellar flows, when coupled to energetic neutral atoms (ENAs), drives a Kelvin-Helmholtz (KH)-like instability on the heliopause. The shoulder region of the heliopause is unstable to a new instability that has characteristics of a mixed RT-KH-likemore » mode. The instabilities are not stabilized by typical values of the magnetic fields in the inner and outer heliosheath (OHS). ENAs play an essential role in driving the KH-like instability, which is fully stabilized in their absence by magnetic fields. The nonlinear phase of these instabilities is briefly discussed. We also discuss the possibility that RT-like or mixed KH-RT-like instabilities drag outer heliosheath/very local interstellar medium (OHS/VLISM) magnetic field lines into the inner heliosheath (IHS) with the VLISM flow, and the possibility that IHS and VLISM magnetic field lines experience reconnection. Such reconnection may (1) greatly enhance the mixing of plasmas across the heliopause and (2) provide open magnetic field lines that allow easy ingress of galactic cosmic rays into the heliosphere and corresponding easy loss of anomalous cosmic rays from the heliosphere.« less

  8. Magneto-Rayleigh-Taylor instability in solid media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y. B.; School of Physical Science and Technology, Lanzhou University, Lanzhou 73000; University of Chinese Academy of Sciences, Beijing 100049

    2014-07-15

    A linear analysis of the magneto-Rayleigh-Taylor instability at the interface between a Newtonian fluid and an elastic-plastic solid is performed by considering a uniform magnetic B{sup →}, parallel to the interface, which has diffused into the fluid but not into the solid. It is found that the magnetic field attributes elastic properties to the viscous fluid which enhance the stability region by stabilizing all the perturbation wavelengths shorter than λ{sub 0}∝B{sup 2} for any initial perturbation amplitude. Longer wavelengths are stabilized by the mechanical properties of the solid provided that the initial perturbation wavelength is smaller than a threshold valuemore » determined by the yield strength and the shear modulus of the solid. Beyond this threshold, the amplitude grows initially with a growth rate reduced by the solid strength properties. However, such properties do not affect the asymptotic growth rate which is only determined by the magnetic field and the fluid viscosity. The described physical situation intends to resemble some of the features present in recent experiments involving the magnetic shockless acceleration of flyers plates.« less

  9. Interfacial instability of wormlike micellar solutions sheared in a Taylor-Couette cell

    NASA Astrophysics Data System (ADS)

    Mohammadigoushki, Hadi; Muller, Susan J.

    2014-11-01

    We report experiments on wormlike micellar solutions sheared in a custom-made Taylor-Couette (TC) cell. The computer controlled TC cell allows us to rotate both cylinders independently. Wormlike micellar solutions containing water, CTAB, and NaNo3 with different compositions are highly elastic and exhibit shear banding. We visualized the flow field in the θ-z as well as r-z planes, using multiple cameras. When subject to low shear rates, the flow is stable and azimuthal, but becomes unstable above a certain threshold shear rate. This shear rate coincides with the onset of shear banding. Visualizing the θ-z plane shows that this instability is characterized by stationary bands equally spaced in the z direction. Increasing the shear rate results to larger wave lengths. Above a critical shear rate, experiments reveal a chaotic behavior reminiscent of elastic turbulence. We also studied the effect of ramp speed on the onset of instability and report an acceleration below which the critical Weissenberg number for onset of instability is unaffected. Moreover, visualizations in the r-z direction reveals that the interface between the two bands undulates with shear bands evolving towards the outer cylinder regardless of which cylinder is rotating.

  10. Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reckinger, Scott James; Livescu, Daniel; Vasilyev, Oleg V.

    A comprehensive numerical methodology has been developed that handles the challenges introduced by considering the compressive nature of Rayleigh-Taylor instability (RTI) systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification-dependent vorticity production. The computational framework is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.

  11. A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Meakin, Paul

    2005-08-10

    A numerical model based on smoothed particle hydrodynamics (SPH) has been developed and used to simulate the classical two-dimensional Rayleigh–Taylor instability and three-dimensional miscible flow in fracture apertures with complex geometries. To model miscible flow fluid particles with variable, composition dependent, masses were used. By basing the SPH equations on the particle number density artificial surface tension effects were avoided. The simulation results for the growth of a single perturbation driven by the Rayleigh – Taylor instability compare well with numerical results obtained by Fournier et al., and the growth of a perturbation with time can be represented quite wellmore » by a second-degree polynomial, in accord with the linear stability analysis of Duff et al. The dispersion coefficient found from SPH simulation of flow and diffusion in an ideal fracture was in excellent agreement with the value predicted by the theory of Taylor and Aris. The simulations of miscible flow in fracture apertures can be used to determination dispersion coefficients for transport in fractured media - a parameter used in large-scale simulations of contaminant transport.« less

  12. Effects of acceleration rate on Rayleigh-Taylor instability in elastic-plastic materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; Polavarapu, Rinosh

    2016-11-01

    The effect of acceleration rate in the elastic-plastic transition stage of Rayleigh-Taylor instability in an accelerated non-Newtonian material is investigated experimentally using a rotating wheel experiment. A non-Newtonian material (mayonnaise) was accelerated at different rates by varying the angular acceleration of a rotating wheel and growth patterns of single mode perturbations with different combinations of amplitude and wavelength were analyzed. Experiments were run at two different acceleration rates to compare with experiments presented in prior years at APS DFD meetings and the peak amplitude responses are captured using a high-speed camera. Similar to the instability acceleration, the elastic-plastic transition acceleration is found to be increasing with increase in acceleration rate for a given amplitude and wavelength. The experimental results will be compared to various analytical strength models and prior experimental studies using Newtonian fluids. Authors acknowledge funding support from Los Alamos National Lab subcontract(370333) and DOE-SSAA Grant (DE-NA0001975).

  13. Experiments of the highly non-linear Rayleigh-Taylor instability regime and dependence on Atwood Number

    NASA Astrophysics Data System (ADS)

    Elgin, L.; Handy, T.; Malamud, G.; Huntington, C. M.; Trantham, M. R.; Klein, S. R.; Kuranz, C. C.; Drake, R. P.; Shvarts, D.

    2017-10-01

    Potential flow models predict that a Rayleigh-Taylor unstable system will reach a terminal velocity (and constant Froude number) at low Atwood numbers. Numerical simulations predict a re-acceleration phase of Rayleigh-Taylor Instability (RTI) and higher Froude number at late times. To observe this effect, we are conducting a series of experiments at OMEGA 60 to measure single-mode RTI growth at low and high Atwood numbers and late times. X-ray radiographs spanning 40 + ns capture the evolution of these systems. Experimental design challenges and initial results are discussed here. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  14. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  15. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE PAGES

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.; ...

    2018-04-19

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  16. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations

    NASA Astrophysics Data System (ADS)

    Ramaprabhu, P.; Karkhanis, V.; Banerjee, R.; Varshochi, H.; Khan, M.; Lawrie, A. G. W.

    2016-01-01

    From nonlinear models and direct numerical simulations we report on several findings of relevance to the single-mode Rayleigh-Taylor (RT) instability driven by time-varying acceleration histories. The incompressible, direct numerical simulations (DNSs) were performed in two (2D) and three dimensions (3D), and at a range of density ratios of the fluid combinations (characterized by the Atwood number). We investigated several acceleration histories, including acceleration profiles of the general form g (t ) ˜tn , with n ≥0 and acceleration histories reminiscent of the linear electric motor experiments. For the 2D flow, results from numerical simulations compare well with a 2D potential flow model and solutions to a drag-buoyancy model reported as part of this work. When the simulations are extended to three dimensions, bubble and spike growth rates are in agreement with the so-called level 2 and level 3 models of Mikaelian [K. O. Mikaelian, Phys. Rev. E 79, 065303(R) (2009), 10.1103/PhysRevE.79.065303], and with corresponding 3D drag-buoyancy model solutions derived in this article. Our generalization of the RT problem to study variable g (t ) affords us the opportunity to investigate the appropriate scaling for bubble and spike amplitudes under these conditions. We consider two candidates, the displacement Z and width s2, but find the appropriate scaling is dependent on the density ratios between the fluids—at low density ratios, bubble and spike amplitudes are explained by both s2 and Z , while at large density differences the displacement collapses the spike data. Finally, for all the acceleration profiles studied here, spikes enter a free-fall regime at lower Atwood numbers than predicted by all the models.

  17. Small-Amplitude Richtmyer-Meshkov Instability at a Re-Shocked Material Interface

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Zalesak, S. T.; Metzler, N.; Aglitskiy, Y.

    2008-11-01

    We report an exact small-amplitude theory of the Richtmyer-Meshkov (RM) instability developing at a re-shocked material interface and favorably compare it to our simulations. The re-shock is seen to restart the classical RM instability growth from a larger initial amplitude, at a higher rate, and change its direction from heavy-to-light to light-to heavy and vice versa. Similarly, if a Rayleigh-Taylor (RT) unstable interface is strongly re-shocked from either the heavy or light fluid side, the fast RM growth is triggered. If a RT-unstable ablation front is re-shocked, it exhibits the ablative RM-instability, that is, low-frequency decaying oscillations [V. N. Goncharov, PRL 82, 2091 (1998); Y. Aglitskiy et al., PRL 87, 265001 (2001)]. This is predicted for colliding foil experiments on the Nike laser, where a RT-unstable ablation front is re-shocked by the strong shock wave produced in the collision of the laser-driven plastic foil with a stationary foam layer. The re-shock stops the acceleration and switches the perturbation evolution from the ablative RT to the ablative RM regime.

  18. Non-linear instability analysis of the two-dimensional Navier-Stokes equation: The Taylor-Green vortex problem

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi

    2018-05-01

    An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).

  19. A propagator matrix method for the Rayleigh-Taylor instability of multiple layers: a case study on crustal delamination in the early Earth

    NASA Astrophysics Data System (ADS)

    Mondal, Puskar; Korenaga, Jun

    2018-03-01

    The dispersion relation of the Rayleigh-Taylor instability, a gravitational instability associated with unstable density stratification, is of profound importance in various geophysical contexts. When more than two layers are involved, a semi-analytical technique based on the biharmonic formulation of Stokes flow has been extensively used to obtain such dispersion relation. However, this technique may become cumbersome when applied to lithospheric dynamics, where a number of layers are necessary to represent the continuous variation of viscosity over many orders of magnitude. Here, we present an alternative and more efficient method based on the propagator matrix formulation of Stokes flow. With this approach, the original instability problem is reduced to a compact eigenvalue equation whose size is solely determined by the number of primary density contrasts. We apply this new technique to the stability of the early crust, and combined with the Monte Carlo sensitivity analysis, we derive an empirical formula to compute the growth rate of the Rayleigh-Taylor instability for this particular geophysical setting. Our analysis indicates that the likelihood of crustal delamination hinges critically on the effective viscosity of eclogite.

  20. Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2011-04-01

    The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.

  1. Interfacial instability of wormlike micellar solutions sheared in a Taylor-Couette cell

    NASA Astrophysics Data System (ADS)

    Mohammadigoushki, Hadi; Muller, Susan J.

    2014-10-01

    We report experiments on wormlike micellar solutions sheared in a custom-made Taylor-Couette (TC) cell. The computer controlled TC cell allows us to rotate both cylinders independently. Wormlike micellar solutions containing water, CTAB, and NaNo3 with different compositions are highly elastic and exhibit shear banding within a range of shear rate. We visualized the flow field in the θ-z as well as r-z planes, using multiple cameras. When subject to low shear rates, the flow is stable and azimuthal, but becomes unstable above a certain threshold shear rate. This shear rate coincides with the onset of shear banding. Visualizing the θ-z plane shows that this instability is characterized by stationary bands equally spaced in the z direction. Increasing the shear rate results to larger wave lengths. Above a critical shear rate, experiments reveal a chaotic behavior reminiscent of elastic turbulence. We also studied the effect of ramp speed on the onset of instability and report an acceleration below which the critical Weissenberg number for onset of instability is unaffected. Moreover, visualizations in the r-z direction reveals that the interface between the two bands undulates. The shear band evolves towards the outer cylinder upon increasing the shear rate, regardless of which cylinder is rotating.

  2. The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator

    NASA Astrophysics Data System (ADS)

    Yamashita, Nicholas; Jacobs, Jeffrey

    2009-11-01

    The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.

  3. Finite plate thickness effects on the Rayleigh-Taylor instability in elastic-plastic materials

    NASA Astrophysics Data System (ADS)

    Polavarapu, Rinosh; Banerjee, Arindam

    2017-11-01

    The majority of theoretical studies have tackled the Rayleigh-Taylor instability (RTI) problem in solids using an infinitely thick plate. Recent theoretical studies by Piriz et al. (PRE 95, 053108, 2017) have explored finite thickness effects. We seek to validate this recent theoretical estimate experimentally using our rotating wheel RTI experiment in an accelerated elastic-plastic material. The test section consists of a container filled with air and mayonnaise (a non-Newtonian emulsion) with an initial perturbation between two materials. The plate thickness effects are studied by varying the depth of the soft-solid. A set of experiments is run by employing different initial conditions with different container dimensions. Additionally, the effect of acceleration rate (driving pressure rise time) on the instability threshold with reference to the finite thickness will also be inspected. Furthermore, the experimental results are compared to the analytical strength models related to finite thickness effects on RTI. Authors acknowledge financial support from DOE-SSAA Grant # DE-NA0003195 and LANL subcontract #370333.

  4. Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.

    PubMed

    Youngs, David L

    2009-07-28

    Rayleigh-Taylor (RT) instability occurs when a dense fluid rests on top of a light fluid in a gravitational field. It also occurs in an equivalent situation (in the absence of gravity) when an interface between fluids of different density is accelerated by a pressure gradient, e.g. in inertial confinement fusion implosions. Engineering models (Reynolds-averaged Navier-Stokes models) are needed to represent the effect of mixing in complex applications. However, large eddy simulation (LES) currently makes an essential contribution to understanding the mixing process and calibration or validation of the engineering models. In this paper, three cases are used to illustrate the current role of LES: (i) mixing at a plane boundary, (ii) break-up of a layer of dense fluid due to RT instability, and (iii) mixing in a simple spherical implosion. A monotone integrated LES approach is preferred because of the need to treat discontinuities in the flow, i.e. the initial density discontinuities or shock waves. Of particular interest is the influence of initial conditions and how this needs to be allowed for in engineering modelling. It is argued that loss of memory of the initial conditions is unlikely to occur in practical applications.

  5. Viscous-resistive layer in Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Silveira, F. E. M.; Orlandi, H. I.

    2017-03-01

    In this work, new scaling laws of the time growth rate γ of the Rayleigh-Taylor instability with the plasma resistivity η, kinematic viscosity ν, and electron number density ne are derived. A viscosity scale is defined in terms of the time decay of the perturbative fluid flow perpendicular to the equilibrium magnetic field, at the quasi-static approximation. Such a scale provides the identification of a viscous layer that can be combined with the resistive layer to produce a viscous-resistive layer. The latter, in turn, is found to satisfy an algebraic biquadratic equation. When viscous effects are negligible, it is shown that the viscous-resistive layer is given by the resistive layer. Somewhat surprisingly, when viscous effects cannot be neglected, it is shown that the viscous-resistive layer is given by the geometric mean of the resistive and viscous layers. A dispersion relation for the time growth rate is derived in terms of the viscous-resistive layer. When viscous effects cannot be neglected, two new scaling laws are found. At the quasi-static approximation, it is shown that γ ˜ (ην)1/4. However, on account of a finite electron mass, it is shown that γ˜(ν/ne ) 1 /3 . Further developments of our formulation are addressed in connection with a finite compressibility in the perturbative flow.

  6. Finite-thickness effects on the Rayleigh-Taylor instability in accelerated elastic solids

    NASA Astrophysics Data System (ADS)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-05-01

    A physical model has been developed for the linear Rayleigh-Taylor instability of a finite-thickness elastic slab laying on top of a semi-infinite ideal fluid. The model includes the nonideal effects of elasticity as boundary conditions at the top and bottom interfaces of the slab and also takes into account the finite transit time of the elastic waves across the slab thickness. For Atwood number AT=1 , the asymptotic growth rate is found to be in excellent agreement with the exact solution [Plohr and Sharp, Z. Angew. Math. Mech. 49, 786 (1998), 10.1007/s000330050121], and a physical explanation is given for the reduction of the stabilizing effectiveness of the elasticity for the thinner slabs. The feedthrough factor is also calculated.

  7. Thin film instabilities: Rayleigh-Taylor with thermocapillarity and Kolmogorov flow in a soap film

    NASA Astrophysics Data System (ADS)

    Burgess, John Matthew

    The Rayleigh-Taylor instability occurs when a more dense fluid layer is suspended above a less dense fluid layer in a gravitational field. The horizontal interface between the two fluids is unstable to infinitesimal deformations and the dense fluid falls. To counteract the destabilizing effects of gravity on the interface between two thin fluid layers, we apply a vertical temperature gradient, heating from below. The dependence of surface tension on temperature (``thermocapillarity'') can cause spatially-varying interfacial forces between two immiscible fluid layers if a variation in temperature along the interface is introduced. With an applied vertical temperature gradient, the deforming interface spontaneously develops temperature variations which locally adjust the surface tension to restore a flat interface. We find that these surface tension gradients can stabilize a more dense thin fluid layer (silicone oil, 0.015 cm thick) above a less dense thin fluid layer (air, 0.025 cm thick) in a gravitational field, in qualitative agreement with linear stability analysis. This is the first experimental observation of the stabilization of Rayleigh-Taylor instability by thermocapillary forces. We also examine the instability of a soap film flow driven by a time-independent force that is spatially periodic in the direction perpendicular to the forcing (Kolmogorov flow). The film is in the x- y plane, where the forcing approximates a shape sin (y)x̂. Linear stability analysis of an idealized model of this flow predicts a critical Reynolds number Rc~2 . In our soap film experiment, we find a critical value Rc~70 . This discrepancy can be ascribed to frictional effects from viscous coupling of gas to the film, which is neglected in the idealized model. The kinematic viscosity of the surrounding gas and the thickness of gas layers on each side of the soap film are varied in the experiments to better understand these frictional effects. We conclude that

  8. Nonlinear Excitation of the Ablative Rayleigh-Taylor Instability for All Wave Numbers

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Betti, R.; Gopalaswamy, V.; Aluie, H.; Yan, R.

    2017-10-01

    Small-scale modes of the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2-D and 3-D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations. Compared to 2-D, linearly stable ARTI modes are more easily destabilized in 3-D and the penetrating bubbles have a higher density because of enhanced vorticity. It is shown that for conditions found in laser fusion targets, short-wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material. This work was supported by the Office of Fusion Energy Sciences Nos. DE-FG02-04ER54789, DE-SC0014318, the Department of Energy National Nuclear Security Administration under Award No. DE-NA0001944, the Ministerio de Ciencia e Innovacion of Spain (Grant No. ENE2011-28489), and the NANL LDRD program through Project Number 20150568ER.

  9. Effect of bromine-dopant on radiation-driven Rayleigh-Taylor instability in plastic foil

    NASA Astrophysics Data System (ADS)

    Xu, Binbin; Ma, Yanyun; Yang, Xiaohu; Tang, Wenhui; Ge, Zheyi; Zhao, Yuan; Ke, Yanzhao; Kawata, Shiego

    2017-10-01

    Effects of bromine (Br) dopant on the growth of radiation-driven ablative Rayleigh-Taylor instability (RTI) in plastic foils are studied by radiation hydrodynamics simulations and theoretical analysis. It is found that the Br-dopant in plastic foil reduces the seed of ablative RTI. The main reasons of the reduction are attributed to the smaller oscillation amplitude of ablative Richtmyer-Meshkov instability (RMI) induced by the smaller post-shock sound speed, and the smaller oscillation frequency of ablative RMI induced by the smaller ablation velocity and blow-off plasma velocity. The Br-dopant also decreases the linear growth rate of ablative RTI due to the smaller acceleration. Treating the perturbation growth as a function of foil’s displacement, the perturbation growth would increase in Br-doped foil at the phase of ablative RTI, which is attributed to the decrease of the ablation velocity and the density gradient scale length. The results are helpful for further understanding the influence of high-Z dopant on the radiation-driven ablative RTI.

  10. A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum

    NASA Astrophysics Data System (ADS)

    Sternberger, Z.; Maddox, B. R.; Opachich, Y. P.; Wehrenberg, C. E.; Kraus, R. G.; Remington, B. A.; Randall, G. C.; Farrell, M.; Ravichandran, G.

    2017-01-01

    Driving a shock wave through the interface between two materials with different densities can result in the Richtmyer-Meshkov or Rayleigh-Taylor instability and initial perturbations at the interface will grow. If the shock wave is sufficiently strong, the instability will lead to plastic flow at the interface. Material strength will reduce the amount of plastic flow and suppress growth. While such instabilities have been investigated in 2D, no studies of this phenomena have been performed in 3D on materials with strength. Initial perturbations to seed the hydrodynamic instability were coined into tantalum recovery targets. Two types of perturbations were used, two dimensional (2D) perturbations (hill and valley) and three-dimensional (3D) perturbations (egg crate pattern). The targets were subjected to dynamic loading using the Janus laser at the Jupiter Laser Facility. Shock pressures ranged from 50 GPa up to 150 GPa and were calibrated using VISAR drive targets.

  11. Ablative Rayleigh Taylor instability in the limit of an infinitely large density ratio

    NASA Astrophysics Data System (ADS)

    Clavin, Paul; Almarcha, Christophe

    2005-05-01

    The instability of ablation fronts strongly accelerated toward the dense medium under the conditions of inertial confinement fusion (ICF) is addressed in the limit of an infinitely large density ratio. The analysis serves to demonstrate that the flow is irrotational to first order, reducing the nonlinear analysis to solve a two-potential flows problem. Vorticity appears at the following orders in the perturbation analysis. This result simplifies greatly the analysis. The possibility for using boundary integral methods opens new perspectives in the nonlinear theory of the ablative RT instability in ICF. A few examples are given at the end of the Note. To cite this article: P. Clavin, C. Almarcha, C. R. Mecanique 333 (2005).

  12. Mode selection of magneto-Rayleigh-Taylor instability from the point of view of Landau phase transition theory

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Huang, Xian Bin; Ren, Xiao Dong; Wei, Bing

    2017-08-01

    A theoretical model referring to mode selection of Z-pinch-driven magneto-Rayleigh-Taylor (MRT) instability, which explains the generation of fundamental instability mode and evolution of fundamental wavelength in experiments, is proposed on the basis of the Landau theory of phase transition. The basic idea of this phase transition model lies in that the appearance of MRT instability pattern can be considered as a consequence of the spontaneous generation of interfacial structure like the spontaneous magnetization in a ferromagnetic system. It is demonstrated that the amplitude of instability is responsible for the order parameter in the Landau theory of phase transition and the fundamental wavelength appears to play a role analogous to inverse temperature in thermodynamics. Further analysis indicates that the MRT instability is characterized by first order phase transition and the fundamental wavelength is proportional to the square root of energy entering into the system from the driving source. The theory predicts that the fundamental wavelength grows rapidly and saturates reaching a limiting wavelength of the order of the liner's final outer radius. The results given by this theory show qualitative agreement with the available experimental data of MRT instability of liner implosions conducted on the Sandia Z machine as well as Primary Test Stand facility at the Institute of Fluid Physics.

  13. Rarefaction-driven Rayleigh–Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W.

    Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order ofmore » $$1000g_{0}$$, where$$g_{0}$$is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duffet al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duffet al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a$$1/k^{2}$$decay in growth rates as$$k\\rightarrow \\infty$$for large-wavenumber perturbations.« less

  14. Rarefaction-driven Rayleigh–Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory

    DOE PAGES

    Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W.

    2016-02-15

    Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order ofmore » $$1000g_{0}$$, where$$g_{0}$$is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duffet al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duffet al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a$$1/k^{2}$$decay in growth rates as$$k\\rightarrow \\infty$$for large-wavenumber perturbations.« less

  15. Rayleigh-Taylor mixing with time-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-10-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  16. Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical geometry

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Wang, L. F.; Ye, W. H.; Wu, J. F.; Guo, H. Y.; Zhang, W. Y.; He, X. T.

    2017-06-01

    In this research, a weakly nonlinear (WN) model for the incompressible Rayleigh-Taylor instability in cylindrical geometry [Wang et al., Phys. Plasmas 20, 042708 (2013)] is generalized to spherical geometry. The evolution of the interface with an initial small-amplitude single-mode perturbation in the form of Legendre mode (Pn) is analysed with the third-order WN solutions. The transition of the small-amplitude perturbed spherical interface to the bubble-and-spike structure can be observed by our model. For single-mode perturbation Pn, besides the generation of P 2 n and P 3 n , which are similar to the second and third harmonics in planar and cylindrical geometries, many other modes in the range of P0- P 3 n are generated by mode-coupling effects up to the third order. With the same initial amplitude, the bubbles at the pole grow faster than those at the equator in the WN regime. Furthermore, it is found that the behavior of the bubbles at the pole is similar to that of three-dimensional axisymmetric bubbles, while the behavior of the bubbles at the equator is similar to that of two-dimensional bubbles.

  17. Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A., E-mail: abos@lle.rochester.edu; Woo, K. M.; Betti, R.

    2015-07-15

    The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of χ{sub Ω} ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less

  18. Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A.; Woo, K. M.; Nora, R.

    2015-07-02

    The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of ΧΩ ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less

  19. A k-ɛ model for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Gauthier, Serge; Bonnet, Michel

    1990-09-01

    A k-ɛ model for turbulent mixing induced by Rayleigh-Taylor instability is described. The classical linear closure relations are supplemented with algebraic relations in order to be valid under strong gradients. Calibrations were made against two shock-tube experiments (Andronov et al. [Sov. Phys. JETP 44, 424 (1976); Sov. Phys. Dokl. 27, 393 (1982)] and Houas et al. [Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes (Stanford U.P., Stanford, CA, 1986)]) using the same set of constants. The new interpretation of the experimental data of Brouillette and Sturtevant [Physica D 37, 248 (1989)], where the mixing length is discriminated from the wall jet, requires a different numerical value for the Rayleigh-Taylor source term coefficient. A detailed physical study is given in both cases. It turns out that the spectrum is narrower in the Brouillette and Sturtevant case than in the Andronov et al. case but the small length scales are of the same magnitude.

  20. A new data processing technique for Rayleigh-Taylor instability growth experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yongteng; Tu, Shaoyong; Miao, Wenyong

    Typical face-on experiments for Rayleigh-Taylor instability study involve the time-resolved radiography of an accelerated foil with line-of-sight of the radiography along the direction of motion. The usual method which derives perturbation amplitudes from the face-on images reverses the actual image transmission procedure, so the obtained results will have a large error in the case of large optical depth. In order to improve the accuracy of data processing, a new data processing technique has been developed to process the face-on images. This technique based on convolution theorem, refined solutions of optical depth can be achieved by solving equations. Furthermore, we discussmore » both techniques for image processing, including the influence of modulation transfer function of imaging system and the backlighter spatial profile. Besides, we use the two methods to the process the experimental results in Shenguang-II laser facility and the comparison shows that the new method effectively improve the accuracy of data processing.« less

  1. Rayleigh-Taylor mixing with space-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-11-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  2. Granular Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinningland, Jan Ludvig; Johnsen, Oistein; Flekkoey, Eirik G.

    2009-06-18

    A granular instability driven by gravity is studied experimentally and numerically. The instability arises as grains fall in a closed Hele-Shaw cell where a layer of dense granular material is positioned above a layer of air. The initially flat front defined by the grains subsequently develops into a pattern of falling granular fingers separated by rising bubbles of air. A transient coarsening of the front is observed right from the start by a finger merging process. The coarsening is later stabilized by new fingers growing from the center of the rising bubbles. The structures are quantified by means of Fouriermore » analysis and quantitative agreement between experiment and computation is shown. This analysis also reveals scale invariance of the flow structures under overall change of spatial scale.« less

  3. Roles of bulk viscosity on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Tapan K., E-mail: tksen@iitk.ac.in; Bhole, Ashish; Shruti, K. S.

    Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximationmore » commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes’ hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes’ hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes’ hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.« less

  4. Numerical Experiments with a Turbulent Single-Mode Rayleigh-Taylor Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cloutman, L.D.

    2000-04-01

    Direct numerical simulation is a powerful tool for studying turbulent flows. Unfortunately, it is also computationally expensive and often beyond the reach of the largest, fastest computers. Consequently, a variety of turbulence models have been devised to allow tractable and affordable simulations of averaged flow fields. Unfortunately, these present a variety of practical difficulties, including the incorporation of varying degrees of empiricism and phenomenology, which leads to a lack of universality. This unsatisfactory state of affairs has led to the speculation that one can avoid the expense and bother of using a turbulence model by relying on the grid andmore » numerical diffusion of the computational fluid dynamics algorithm to introduce a spectral cutoff on the flow field and to provide dissipation at the grid scale, thereby mimicking two main effects of a large eddy simulation model. This paper shows numerical examples of a single-mode Rayleigh-Taylor instability in which this procedure produces questionable results. We then show a dramatic improvement when two simple subgrid-scale models are employed. This study also illustrates the extreme sensitivity to initial conditions that is a common feature of turbulent flows.« less

  5. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, M. L.; Liu, B.; Hu, R. H.

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with highermore » energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.« less

  6. Lateral movements in Rayleigh-Taylor instabilities due to frontiers. Experimental study

    NASA Astrophysics Data System (ADS)

    Binda, L.; Fernández, D.; El Hasi, C.; Zalts, A.; D'Onofrio, A.

    2018-01-01

    Lateral movements of the fingers in Rayleigh-Taylor hydrodynamic instabilities at the interface between two fluids are studied. We show that transverse movements appear when a physical boundary is present; these phenomena have not been explained until now. The boundary prevents one of the fluids from crossing it. Such frontiers can be buoyancy driven as, for example, the frontier to the passage of a less dense solution through a denser solution or when different aggregation states coexist (liquid and gaseous phases). An experimental study of the lateral movement velocity of the fingers was performed for different Rayleigh numbers (Ra), and when oscillations were detected, their amplitudes were studied. Liquid-liquid (L-L) and gas-liquid (G-L) systems were analysed. Aqueous HCl and Bromocresol Green (sodium salt, NaBCG) solutions were used in L-L experiments, and CO2 (gas) and aqueous NaOH, NaHCO3, and CaCl2 solutions were employed for the G-L studies. We observed that the lateral movement of the fingers and finger collapses near the interface are more notorious when Ra increases. The consequences of this, for each experience, are a decrease in the number of fingers and an increase in the velocity of the lateral finger movement close to the interface as time evolves. We found that the amplitude of the oscillations did not vary significantly within the considered Ra range. These results have an important implication when determining the wave number of instabilities in an evolving system. The wave number could be strongly diminished if there is a boundary.

  7. Rayleigh-Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface

    DOE PAGES

    Terrones, Guillermo; Carrara, Mark D.

    2015-05-01

    For a spherical interface of radius R separating two different homogeneous regions of incompressible viscous fluids under the action of a radially directed acceleration, we perform a linear stability analysis in terms of spherical surface harmonics Y n to derive the dispersion relation. The instability behavior is investigated by computing the growth rates and the most-unstable modes as a function of the spherical harmonic degree n. This general methodology is applicable to the entire parameter space spanned by the Atwood number, the viscosity ratio, and the dimensionless number B = (α RΡ² 2/μ² ²)¹ /³ R (where α R, Ρmore » 2 and μ 2 are the local radial acceleration at the interface, and the density and viscosity of the denser overlying fluid, respectively). While the mathematical formulation here is general, this paper focuses on instability that arises at a spherical viscous fluid/vacuum interface as there is a great deal to be learned from the effects of one-fluid viscosity and sphericity alone. To quantify and understand the effect that curvature and radial accelerationhave on the Rayleigh-Taylor instability, a comparison of the growth rates, under homologous driving conditions, between the planar and spherical interfaces is performed. The derived dispersion relation for the planar interface accounts for an underlying finite fluid region of thickness L and normal acceleration α R. Under certain conditions, the development of the most-unstable modes at a spherical interface can take place via the superposition of two adjacent spherical harmonics Y n and Y n+1. This bimodality in the evolution of disturbances in the linear regime does not have a counterpart in the planar configuration where the most-unstable modes are associated with a unique wave number.« less

  8. Temporal evolution of surface ripples on a finite plasma slab subject to the magneto-Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weis, M. R.; Zhang, P.; Lau, Y. Y., E-mail: yylau@umich.edu

    2014-12-15

    Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Thus, the instability may be driven by a combination of magnetic pressure and kinetic pressure. The general dispersion relation is derived, together with the feedthrough factor between the two interfaces. Themore » temporal evolution is constructed from the superposition of the eigenmodes. Previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab.« less

  9. Temporal evolution of surface ripples on a finite plasma slab subject to the magneto-Rayleigh-Taylor instability

    DOE PAGES

    Weis, Matthew Robert; Zhang, Peng; Lau, Yue Ying; ...

    2014-12-17

    Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Then, the instability may be driven by a combination of magnetic pressure and kinetic pressure. Thus the general dispersion relation is derived, together with the feedthrough factor between the two interfaces.more » The temporal evolution is constructed from the superposition of the eigenmodes. Those previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab.« less

  10. Evolution of Magnetic Rayleigh–Taylor Instability into the Outer Solar Corona and Low Interplanetary Space

    NASA Astrophysics Data System (ADS)

    Mishra, Sudheer K.; Singh, Talwinder; Kayshap, P.; Srivastava, A. K.

    2018-03-01

    We analyze the observations from Solar TErrestrial RElations Observatory (STEREO)-A and B/COR-1 of an eruptive prominence in the intermediate corona on 2011 June 7 at 08:45 UT, which consists of magnetic Rayleigh–Taylor (MRT) unstable plasma segments. Its upper-northward segment shows spatio-temporal evolution of MRT instability in form of finger structures up to the outer corona and low interplanetary space. Using the method of Dolei et al., It is estimated that the density in each bright finger is greater than the corresponding dark region lying below it in the surrounding intermediate corona. The instability is evolved due to wave perturbations that are parallel to the magnetic field at the density interface. We conjecture that the prominence plasma is supported by tension component of the magnetic field against gravity. Through the use of linear stability theory, the magnetic field is estimated as 21–40 mG to suppress growth of MRT instability in the observed finger structures. In the southward plasma segment, a horn-like structure is observed at 11:55 UT in the intermediate corona that also indicates MRT instability. Falling blobs are also observed in both of the plasma segments. In the outer corona, up to 6–13 solar radii, the mushroom-like plasma structures have been identified in the upper-northward MRT unstable plasma segment using STEREO-A/COR-2. These structures most likely grew due to the breaking and twisting of fingers at large spatial scales in weaker magnetic fields. In the lower interplanetary space up to 20 solar radii, these structures are fragmented into various small-scale localized plasma spikes, most likely due to turbulent mixing.

  11. Asymptotic behavior of the mixed mass in Rayleigh–Taylor and Richtmyer–Meshkov instability induced flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ye; Cabot, William H.; Thornber, Ben

    Rayleigh–Taylor instability (RTI) and Richtmyer–Meshkov instability (RMI) are serious practical issues in inertial confinement fusion research, and also have relevance to many cases of astrophysical fluid dynamics. So far, much of the attention has been paid to the late-time scaling of the mixed width, which is used as a surrogate to how well the fluids have been mixed. Yet, the actual amount of mixed mass could be viewed as a more direct indicator on the evolution of the mixing layers due to hydrodynamic instabilities. Despite its importance, there is no systematic study as yet on the scaling of the mixedmore » mass for either the RTI or the RMI induced flow. In this article, the normalized mixed mass (Ψ) is introduced for measuring the efficiency of the mixed mass. Six large numerical simulation databases have been employed: the RTI cases with heavy-to-light fluid density ratios of 1.5, 3, and 9; the single shock RMI cases with density ratios of 3 and 20; and a reshock RMI case with density ratio of 3. Using simulated flow fields, the normalized mixed mass Ψ is shown to be more sensitive in discriminating the variation with Atwood number for the RTI flows. Moreover, Ψ is demonstrated to provide more consistent results for both the RTI and RMI flows when compared with the traditional mixedness parameters, Ξ and Θ.« less

  12. Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows.

    PubMed

    Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Luo, Kai Hong; Li, Yingjun

    2017-11-01

    A discrete Boltzmann model (DBM) is proposed to probe the Rayleigh-Taylor instability (RTI) in two-component compressible flows. Each species has a flexible specific-heat ratio and is described by one discrete Boltzmann equation (DBE). Independent discrete velocities are adopted for the two DBEs. The collision and force terms in the DBE account for the molecular collision and external force, respectively. Two types of force terms are exploited. In addition to recovering the modified Navier-Stokes equations in the hydrodynamic limit, the DBM has the capability of capturing detailed nonequilibrium effects. Furthermore, we use the DBM to investigate the dynamic process of the RTI. The invariants of tensors for nonequilibrium effects are presented and studied. For low Reynolds numbers, both global nonequilibrium manifestations and the growth rate of the entropy of mixing show three stages (i.e., the reducing, increasing, and then decreasing trends) in the evolution of the RTI. On the other hand, the early reducing tendency is suppressed and even eliminated for high Reynolds numbers. Relevant physical mechanisms are analyzed and discussed.

  13. Controlling Rayleigh-Taylor instabilities in solid liner implosions with rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Schmit, P. F.; McBride, R. D.; Robertson, G. K.; Velikovich, A. L.

    2016-10-01

    We report calculations demonstrating that a remarkable reduction in the growth of the magneto-Rayleigh-Taylor instability (MRTI) in initially solid, cylindrical metal shells can be achieved by applying a magnetic drive with a tilted, dynamic polarization, forming a solid-liner dynamic screw pinch (SLDSP). Using a self-consistent analytic framework, we demonstrate that MRTI growth factors of the most detrimental modes may be reduced by up to two orders of magnitude relative to conventional z-pinch implosions. One key application of this technique is to enable increasingly stable, higher performance liner implosions to achieve fusion. We weigh the potentially dramatic benefits of the SLDSP against the practical tradeoffs required to achieve the desired drive field history and identify promising target designs for future experimental and computational investigations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Rayleigh-Taylor Instability as the Reason for the Particle Acceleration and Plasma Heating in Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Zaitsev, Valerii

    New mechanism of electron acceleration in the solar chromosphere and chromospheric plasma heating is proposed. The main role in acceleration and heating belongs to the Rayleigh-Tailor instability. Ballooning mode of the instability develops at the chromospheric footpoints of a flare loop and deforms here the magnetic field. Thus the electric current flowing in the loop changes and an inductive electric field appears. This electric field is the reason for the acceleration of 300-500 keV electrons which do not escape from the chromosphere, providing the excitation of plasma waves and the heating of chromospheric plasma in situ. Observations with New Solar Telescope at Big Bear Solar Observatory (Ji et al. ApJ 750, L25, 2012) give us good evidences on the heating of chromospheric footpoints of coronal loops to the coronal temperatures as well as upward injection of hot plasma that excite the fine loops from the photosphere to the base of the corona. We discuss also other consequences of the Rayleigh-Taylor instability: non-thermal plasma emission at 212 and 405 GHz from the ionized chromosphere with the electron density as high as 10 (15) cm (-3) (Zaitsev et al. Astron.Lett. 39, 650, 2013), and the model of sub-second pulsations at THz observed by Kaufmann et al. (ApJ 697, 420, 2009).

  15. Hydrodynamic Instabilities in High-Energy-Density Settings

    NASA Astrophysics Data System (ADS)

    Smalyuk, Vladimir

    2016-10-01

    Our understanding of hydrodynamic instabilities, such as the Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities, in high-energy-density (HED) settings over past two decades has progressed enormously. The range of conditions where hydrodynamic instabilities are experimentally observed now includes direct and indirect drive inertial confinement fusion (ICF) where surprises continue to emerge, linear and nonlinear regimes, classical interfaces vs. stabilized ablation fronts, tenuous ideal plasmas vs. high density Fermi degenerate plasmas, bulk fluid interpenetration vs. mixing down to the atomic level, in the presence of magnetic fields and/or intense radiation, and in solid state plastic flow at high pressures and strain rates. Regimes in ICF can involve extreme conditions of matter with temperatures up to kilovolts, densities of a thousand times solid densities, and time scales of nanoseconds. On the other hand, scaled conditions can be generated that map to exploding stars (supernovae) with length and time scales of millions of kilometers and hours to days or even years of instability evolution, planetary formation dynamics involving solid-state plastic flow which severely modifies the RT growth and continues to challenge reliable theoretical descriptions. This review will look broadly at progress in probing and understanding hydrodynamic instabilities in these very diverse HED settings, and then will examine a few cases in more depth to illustrate the detailed science involved. Experimental results on large-scale HED facilities such as the Omega, Nike, Gekko, and Shenguang lasers will be reviewed and the latest developments at the National Ignition Facility (NIF) and Z machine will be covered. Finally, current overarching questions and challenges will be summarized to motivate research directions for future. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  16. Rayleigh-Taylor mixing in supernova experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swisher, N. C.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com; Kuranz, C. C.

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properlymore » accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.« less

  17. Dynamic stabilization of Rayleigh-Taylor instability: Experiments with Newtonian fluids as surrogates for ablation fronts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez Prieto, G.; Piriz, A. R.; Lopez Cela, J. J.

    2013-01-15

    A previous theory on dynamic stabilization of Rayleigh-Taylor instability at interfaces between Newtonian fluids is reformulated in order to make evident the analogy of this problem with the related one on dynamic stabilization of ablation fronts in the framework of inertial confinement fusion. Explicit analytical expressions are obtained for the boundaries of the dynamically stable region which turns out to be completely analogue to the stability charts obtained for the case of ablation fronts. These results allow proposing experiments with Newtonian fluids as surrogates for studying the case of ablation fronts. Experiments with Newtonian fluids are presented which demonstrate themore » validity of the theoretical approach and encourage to pursue experimental research on ablation fronts to settle the feasibility of dynamic stabilization in the inertial confinement fusion scenario.« less

  18. Nonlinear Evolution of Rayleigh-Taylor Instability in a Radiation-supported Atmosphere

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2013-02-01

    The nonlinear regime of Rayleigh-Taylor instability (RTI) in a radiation supported atmosphere, consisting of two uniform fluids with different densities, is studied numerically. We perform simulations using our recently developed numerical algorithm for multi-dimensional radiation hydrodynamics based on a variable Eddington tensor (VET) as implemented in Athena, focusing on the regime where scattering opacity greatly exceeds absorption opacity. We find that the radiation field can reduce the growth and mixing rate of RTI, but this reduction is only significant when radiation pressure significantly exceeds gas pressure. Small-scale structures are also suppressed in this case. In the nonlinear regime, dense fingers sink faster than rarefied bubbles can rise, leading to asymmetric structures about the interface. By comparing the calculations that use a VET versus the Eddington approximation, we demonstrate that anisotropy in the radiation field can affect the nonlinear development of RTI significantly. We also examine the disruption of a shell of cold gas being accelerated by strong radiation pressure, motivated by models of radiation driven outflows in ultraluminous infrared galaxies. We find that when the growth timescale of RTI is smaller than acceleration timescale, the amount of gas that would be pushed away by the radiation field is reduced due to RTI.

  19. Single-Mode Deceleration Stage Rayleigh-Taylor Instability Growth in Cylindrical Implosions

    NASA Astrophysics Data System (ADS)

    Sauppe, J. P.; Palaniyappan, S.; Bradley, P. A.; Batha, S. H.; Loomis, E. N.; Kline, J. L.; Srinivasan, B.; Bose, A.; Malka, E.; Shvarts, D.

    2017-10-01

    We present design calculations demonstrating the feasibility of measuring single-mode deceleration stage Rayleigh-Taylor instability (RTI) growth at a factor of four convergence. RTI growth rates are modified as a result of convergence [Bell LA-1321, 1951], and cylindrical targets are considered here, as they allow direct diagnostic access along the interface. The 2D computations, performed with the radiation-hydrodynamics code xRAGE [Gittings et al., CSD 2008] utilizing a new laser ray-tracing package, predict growth factors of 6 to 10 for mode 10 and 4 to 6 for mode 4, both of high interest in evaluating inertial confinement fusion capsule degradation mechanisms [Bose et al., this conference]. These results compare favorably to a linear theory [Epstein, PoP 2004] and to a buoyancy-drag model [Srebro et al., LPB 2003], which accounts for the linear and non-linear stages. Synthetic radiographs, produced by combining 2D computations of axial and transverse cross-sections, indicate this growth will be observable, and these will be compared to experimental data obtained at the OMEGA laser facility. Work performed by Los Alamos National Laboratory under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy. (LA-UR-17-25608).

  20. Nonlinear viscoelasticity of entangled wormlike micellar fluid under large-amplitude oscillatory shear: Role of elastic Taylor-Couette instability

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Sood, A. K.

    2014-06-01

    The role of elastic Taylor-Couette flow instabilities in the dynamic nonlinear viscoelastic response of an entangled wormlike micellar fluid is studied by large-amplitude oscillatory shear (LAOS) rheology and in situ polarized light scattering over a wide range of strain and angular frequency values, both above and below the linear crossover point. Well inside the nonlinear regime, higher harmonic decomposition of the resulting stress signal reveals that the normalized third harmonic I3/I1 shows a power-law behavior with strain amplitude. In addition, I3/I1 and the elastic component of stress amplitude σ0E show a very prominent maximum at the strain value where the number density (nv) of the Taylor vortices is maximum. A subsequent increase in applied strain (γ) results in the distortions of the vortices and a concomitant decrease in nv, accompanied by a sharp drop in I3 and σ0E. The peak position of the spatial correlation function of the scattered intensity along the vorticity direction also captures the crossover. Lissajous plots indicate an intracycle strain hardening for the values of γ corresponding to the peak of I3, similar to that observed for hard-sphere glasses.

  1. NIF laboratory astrophysics simulations investigating the effects of a radiative shock on hydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Angulo, A. A.; Kuranz, C. C.; Drake, R. P.; Huntington, C. M.; Park, H.-S.; Remington, B. A.; Kalantar, D.; MacLaren, S.; Raman, K.; Miles, A.; Trantham, Matthew; Kline, J. L.; Flippo, K.; Doss, F. W.; Shvarts, D.

    2016-10-01

    This poster will describe simulations based on results from ongoing laboratory astrophysics experiments at the National Ignition Facility (NIF) relevant to the effects of radiative shock on hydrodynamically unstable surfaces. The experiments performed on NIF uniquely provide the necessary conditions required to emulate radiative shock that occurs in astrophysical systems. The core-collapse explosions of red supergiant stars is such an example wherein the interaction between the supernova ejecta and the circumstellar medium creates a region susceptible to Rayleigh-Taylor (R-T) instabilities. Radiative and nonradiative experiments were performed to show that R-T growth should be reduced by the effects of the radiative shocks that occur during this core-collapse. Simulations were performed using the radiation hydrodynamics code Hyades using the experimental conditions to find the mean interface acceleration of the instability and then further analyzed in the buoyancy drag model to observe how the material expansion contributes to the mix-layer growth. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas under Grant Number DE-FG52-09NA29548.

  2. Linear stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1992-01-01

    A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.

  3. Rayleigh Taylor growth at an embedded interface driven by a radiative shock

    NASA Astrophysics Data System (ADS)

    Huntington, Channing

    2016-10-01

    Radiative shocks are those where the radiation generated by the shock influences the hydrodynamics of the matter in the system. Radiative shocks are common in astrophysics, including during type II supernovae, and have also been observed in the rebound phase of a compressed inertial confinement fusion (ICF) capsule. It is predicted that the radiative heating serves to stabilize hydrodynamic instabilities in these systems, but studying the effect is challenging. Only in recent experiments at the National Ignition Facility has the energy been available to drive a radiative shock across a planar, Rayleigh-Taylor unstable interface in solid-density materials. Because the generation of radiation at the shock front is a strong function of shock velocity (v8) , the RT growth rates in the presence of fast and slow shockas were directly compared. We observe reduced RT spike development when the driving shock is expected to be radiative. Both low drive (225 eV) hydrodynamic RT growth and high drive (325 eV), radiatively-stabilized growth rates are in good agreement with 2D models. This NIF Discovery Science result has important implications for our understanding of astrophysical radiative shocks, as well as the dynamics of ICF capsules. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Stabilization of the Rayleigh-Taylor instability in quantum magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. F.; Ye, W. H.; He, X. T.

    2012-07-15

    In this research, stabilization of the Rayleigh-Taylor instability (RTI) due to density gradients, magnetic fields, and quantum effects, in an ideal incompressible plasma, is studied analytically and numerically. A second-order ordinary differential equation (ODE) for the RTI including quantum corrections, with a continuous density profile, in a uniform external magnetic field, is obtained. Analytic expressions of the linear growth rate of the RTI, considering modifications of density gradients, magnetic fields, and quantum effects, are presented. Numerical approaches are performed to solve the second-order ODE. The analytical model proposed here agrees with the numerical calculation. It is found that the densitymore » gradients, the magnetic fields, and the quantum effects, respectively, have a stabilizing effect on the RTI (reduce the linear growth of the RTI). The RTI can be completely quenched by the magnetic field stabilization and/or the quantum effect stabilization in proper circumstances leading to a cutoff wavelength. The quantum effect stabilization plays a central role in systems with large Atwood number and small normalized density gradient scale length. The presence of external transverse magnetic fields beside the quantum effects will bring about more stability on the RTI. The stabilization of the linear growth of the RTI, for parameters closely related to inertial confinement fusion and white dwarfs, is discussed. Results could potentially be valuable for the RTI treatment to analyze the mixing in supernovas and other RTI-driven objects.« less

  5. Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical and planar geometries

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Wang, L. F.; Ye, W. H.; Guo, H. Y.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.; He, X. T.

    2018-02-01

    The relationship between the weakly nonlinear (WN) solutions of the Rayleigh-Taylor instability in spherical geometry [Zhang et al., Phys. Plasmas 24, 062703 (2017)] and those in planar geometry [Wang et al., Phys. Plasmas 19, 112706 (2012)] is analyzed. In the high-mode perturbation limit ( Pn(cos θ), n ≫1 ), it is found that at the equator, the contributions of mode P2 n along with its neighboring modes, mode P3 n along with its neighboring modes, and mode Pn at the third order along with its neighboring modes are equal to those of the second harmonic, the third harmonic, and the third-order feedback to the fundamental mode, respectively, in the planar case with a perturbation of the same wave vector and amplitude as those at the equator. The trends of WN results in spherical geometry towards the corresponding planar counterparts are found, and the convergence behaviors of the neighboring modes of Pn, P2 n , and P3 n are analyzed. Moreover, the spectra generated from the high-mode perturbations in the WN regime are provided. For low-mode perturbations, it is found that the fundamental modes saturate at larger amplitudes than the planar result. The geometry effect makes the bubbles at or near the equator grow faster than the bubbles in planar geometry in the WN regime.

  6. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  7. PREFACE: The 15th International Couette-Taylor Worskhop

    NASA Astrophysics Data System (ADS)

    Mutabazi, Innocent; Crumeyrolle, Olivier

    2008-07-01

    The 15th International Couette-Taylor Worskhop (ICTW15) was held in Le Havre, France from 9-12 July 2007. This regular international conference started in 1979 in Leeds, UK when the research interest in simple models of fluid flows was revitalized by systematic investigation of Rayleigh-Bénard convection and the Couette-Taylor flow. These two flow systems are good prototypes for the study of the transition to chaos and turbulence in closed flows. The workshop themes have been expanded from the original Couette-Taylor flow to include other centrifugal instabilities (Dean, Görtler, Taylor-Dean), spherical Couette flows, thermal convection instabilities, MHD, nonlinear dynamics and chaos, transition to turbulence, development of numerical and experimental techniques. The impressive longevity of the ICTW is due to the close interaction and fertile exchanges between international research groups from different disciplines: Physics and Astrophysics, Applied Mathematics, Mechanical Engineering, Chemical Engineering. The present workshop was attended by 100 participants, the program included over 83 contributions with 4 plenary lectures, 68 oral communications and 17 posters. The topics include, besides the classical Couette-Taylor flows, the centrifugal flows with longitudinal vortices, the shear flows, the thermal convection in curved geometries, the spherical Couette-Taylor flow, the geophysical flows, the magneto-hydrodynamic effects including the dynamo effect, the complex flows (viscoelasticity, immiscible fluids, bubbles and migration). Selected papers have been processed through the peer review system and are published in this issue of the Journal of Physics: Conference Series. The Workshop has been sponsored by Le Havre University, the Region Council of Haute-Normandie, Le Havre City Council, CNRS (ST2I, GdR-DYCOEC), and the European Space Agency through GEOFLOW program. The French Ministry of Defense (DGA), the Ministry of Foreign Affairs, the Ministry of

  8. Self-similarity in high Atwood number Rayleigh-Taylor experiments

    NASA Astrophysics Data System (ADS)

    Mikhaeil, Mark; Suchandra, Prasoon; Pathikonda, Gokul; Ranjan, Devesh

    2017-11-01

    Self-similarity is a critical concept in turbulent and mixing flows. In the Rayleigh-Taylor instability, theory and simulations have shown that the flow exhibits properties of self-similarity as the mixing Reynolds number exceeds 20000 and the flow enters the turbulent regime. Here, we present results from the first large Atwood number (0.7) Rayleigh-Taylor experimental campaign for mixing Reynolds number beyond 20000 in an effort to characterize the self-similar nature of the instability. Experiments are performed in a statistically steady gas tunnel facility, allowing for the evaluation of turbulence statistics. A visualization diagnostic is used to study the evolution of the mixing width as the instability grows. This allows for computation of the instability growth rate. For the first time in such a facility, stereoscopic particle image velocimetry is used to resolve three-component velocity information in a plane. Velocity means, fluctuations, and correlations are considered as well as their appropriate scaling. Probability density functions of velocity fields, energy spectra, and higher-order statistics are also presented. The energy budget of the flow is described, including the ratio of the kinetic energy to the released potential energy. This work was supported by the DOE-NNSA SSAA Grant DE-NA0002922.

  9. Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. F.; He, X. T.; HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871

    2013-04-15

    A weakly nonlinear (WN) model has been developed for the incompressible Rayleigh-Taylor instability (RTI) in cylindrical geometry. The transition from linear to nonlinear growth is analytically investigated via a third-order solutions for the cylindrical RTI initiated by a single-mode velocity perturbation. The third-order solutions can depict the early stage of the interface asymmetry due to the bubble-spike formation, as well as the saturation of the linear (exponential) growth of the fundamental mode. The WN results in planar RTI [Wang et al., Phys. Plasmas 19, 112706 (2012)] are recovered in the limit of high-mode number perturbations. The difference between the WNmore » growth of the RTI in cylindrical geometry and in planar geometry is discussed. It is found that the interface of the inward (outward) development spike/bubble is extruded (stretched) by the additional inertial force in cylindrical geometry compared with that in planar geometry. For interfaces with small density ratios, the inward growth bubble can grow fast than the outward growth spike in cylindrical RTI. Moreover, a reduced formula is proposed to describe the WN growth of the RTI in cylindrical geometry with an acceptable precision, especially for small-amplitude perturbations. Using the reduced formula, the nonlinear saturation amplitude of the fundamental mode and the phases of the Fourier harmonics are studied. Thus, it should be included in applications where converging geometry effects play an important role, such as the supernova explosions and inertial confinement fusion implosions.« less

  10. Rayleigh-Taylor instability under curved substrates: An optimal transient growth analysis

    NASA Astrophysics Data System (ADS)

    Balestra, Gioele; Brun, P.-T.; Gallaire, François

    2016-12-01

    We investigate the stability of thin viscous films coated on the inside of a horizontal cylindrical substrate. In such a case, gravity acts both as a stabilizing force through the progressive drainage of the film and as a destabilizing force prone to form droplets via the Rayleigh-Taylor instability. The drainage solution, derived from lubrication equations, is found asymptotically stable with respect to infinitesimally small perturbations, although in reality, droplets often form. To resolve this paradox, we perform an optimal transient growth analysis for the first-order perturbations of the liquid's interface, generalizing the results of Trinh et al. [Phys. Fluids 26, 051704 (2014), 10.1063/1.4876476]. We find that the system displays a linear transient growth potential that gives rise to two different scenarios depending on the value of the Bond number (prescribing the relative importance of gravity and surface tension forces). At low Bond numbers, the optimal perturbation of the interface does not generate droplets. In contrast, for higher Bond numbers, perturbations on the upper hemicircle yield gains large enough to potentially form droplets. The gain increases exponentially with the Bond number. In particular, depending on the amplitude of the initial perturbation, we find a critical Bond number above which the short-time linear growth is sufficient to trigger the nonlinear effects required to form dripping droplets. We conclude that the transition to droplets detaching from the substrate is noise and perturbation dependent.

  11. Volcanism by melt-driven Rayleigh-Taylor instabilities and possible consequences of melting for admittance ratios on Venus

    NASA Technical Reports Server (NTRS)

    Tackley, P. J.; Stevenson, D. J.; Scott, D. R.

    1992-01-01

    A large number of volcanic features exist on Venus, ranging from tens of thousands of small domes to large shields and coronae. It is difficult to reconcile all these with an explanation involving deep mantle plumes, since a number of separate arguments lead to the conclusion that deep mantle plumes reaching the base of the lithosphere must exceed a certain size. In addition, the fraction of basal heating in Venus' mantle may be significantly lower than in Earth's mantle reducing the number of strong plumes from the core-mantle boundary. In three-dimensional convection simulations with mainly internal heating, weak, distributed upwellings are usually observed. We present an alternative mechanism for such volcanism, originally proposed for the Earth and for Venus, involving Rayleigh-Taylor instabilities driven by melt buoyancy, occurring spontaneously in partially or incipiently molten regions.

  12. The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen

    2017-10-01

    In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.

  13. Numerical investigation on the effects of acceleration reversal times in Rayleigh-Taylor Instability with multiple reversals

    NASA Astrophysics Data System (ADS)

    Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.

    2017-11-01

    An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  14. Experimental evidence of a bubble-merger regime for the Rayleigh-Taylor Instability at the ablation front

    NASA Astrophysics Data System (ADS)

    Casner, A.; Liberatore, S.; Masse, L.; Martinez, D.; Haan, S. W.; Kane, J.; Moore, A. S.; Seugling, R.; Farrell, M.; Giraldez, E.; Nikroo, A.; Smalyuk, V. A.; Remington, B. A.

    2016-05-01

    Under the Discovery Science program, the longer pulses and higher laser energies provided by the National Ignition Facility (NIF) have been harnessed to study, first time in indirect-drive, the highly nonlinear stage of the Rayleigh-Taylor Instability (RTI) at the ablation front. A planar plastic package with pre-imposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled gold radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil, a factor 3x larger than previously achieved on other laser facilities. As a consequence, we have measured the ablative RTI in transition from the weakly nonlinear stage up to the deep nonlinear stage for various initial conditions. A bubble merger regime has been observed and the ablative stabilization strength varied by changing the plastic dopant from iodine to germanium.

  15. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density

    NASA Astrophysics Data System (ADS)

    Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.

    2018-01-01

    In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.

  16. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Schmit, P. F.

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  17. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmit, P. F.

    2015-12-01

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining the "instantaneous growth rate" are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].

  18. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Metzler, N.; Oh, J.

    2012-10-01

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. We observed a transition between two qualitatively distinct types of perturbation evolution: jet formation at low shock pressure and areal mass oscillations at high shock pressure, which correspond respectively to high and low values of effective adiabatic index. The experiments were done on the KrF Nike laser facility with laser wavelength 248 nm and a 4 ns pulse. We varied the number of beams overlapped on the plastic target to change the ablative pressure driving the shock wave through the target: 36 beams produce pressure of ˜8 Mbar, whereas a single beam irradiation reduces the pressure to ˜0.7 Mbar. With the help of side-on monochromatic x-ray imaging, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed at sub-megabar shock pressure. As the shock pressure exceeds 1 Mbar, instead of jet formation an oscillatory rippled expansion wave is observed, followed by the ``feedout'' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  19. Instabilities in a staircase stratified shear flow

    NASA Astrophysics Data System (ADS)

    Ponetti, G.; Balmforth, N. J.; Eaves, T. S.

    2018-01-01

    We study stratified shear flow instability where the density profile takes the form of a staircase of interfaces separating uniform layers. Internal gravity waves riding on density interfaces can resonantly interact due to a background shear flow, resulting in the Taylor-Caulfield instability. The many steps of the density profile permit a multitude of interactions between different interfaces, and a rich variety of Taylor-Caulfield instabilities. We analyse the linear instability of a staircase with piecewise-constant density profile embedded in a background linear shear flow, locating all the unstable modes and identifying the strongest. The interaction between nearest-neighbour interfaces leads to the most unstable modes. The nonlinear dynamics of the instabilities are explored in the long-wavelength, weakly stratified limit (the defect approximation). Unstable modes on adjacent interfaces saturate by rolling up the intervening layer into a distinctive billow. These nonlinear structures coexist when stacked vertically and are bordered by the sharp density gradients that are the remnants of the steps of the original staircase. Horizontal averages remain layer-like.

  20. A variational approach to the strongly nonlinear regime of the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Toshio

    The Rayleigh-Taylor instability is the instability of the interface between two fluids of different densities. When a heavy fluid is superposed over a light fluid. small disturbances on the interface develop into a complex form with heavy fluid ``fingers'' and light fluid ``bubbles.'' We propose a variational method for the description of the evolution of the fingers and bubbles in the late stage of the instability. In this method, the fluid region is represented as the image of a time-dependent conformal mapping; the dynamics of the mapping is determined by the least action principle for the Lagrangian. i.e., the kinetic energy minus the potential energy. The evolution of a single finger and bubble is investigated by this method. We first consider a symmetric finger and bubble in a zero gravitational field. We derive an integrable Hamiltonian system with two degrees of freedom that governs the dynamics of the symmetric finger and bubble. We present a general solution of the system. The solution predicts the linear growth of the finger and the saturation of the bubble growth. It is shown that this solution is asymptotically exact. We consider a symmetric finger and bubble with perturbations. We show that the dynamics of the finger and bubble and that of the perturbations are decoupled. We next consider an inclined finger and bubble in a zero gravitational field. We derive a Hamiltonian system with four degrees of freedom that governs the dynamics of the inclined finger and bubble. The system has four integrals of motion, one of them depends on time explicitly. When there is no lateral motion, the system reduces to an integrable Hamiltonian system with three degrees of freedom. A general solution of the system is presented. The solution predicts the linear growth of the finger toward a direction and the saturation of the bubble growth. Finally, we consider a symmetric finger and bubble in a uniform gravitational field. We derive a Hamiltonian system with two degrees

  1. Quasi-two-dimensional nonlinear evolution of helical magnetorotational instability in a magnetized Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.

    2018-01-01

    Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.

  2. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Schmit, P. F.

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  3. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE PAGES

    Velikovich, A. L.; Schmit, P. F.

    2015-12-28

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  4. Magneto Rayleigh-Taylor, Sausage, and Kink Instability Experiments on a MegaAmpere Linear Transformer Driver

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Gilgenbach, R. M.; Lau, Y. Y.; Weis, M. R.; Zhang, P.

    2015-11-01

    At the Michigan Accelerator for Inductive Z-Pinch Experiments (MAIZE) facility, a 1-MA Linear Transformer Driver (LTD) is being used to deliver 500-600 kA to cylindrical liners in order to study the magneto Rayleigh-Taylor (MRT), sausage, and kink instabilities in imploding and exploding Al plasmas. The liners studied in this experiment had thicknesses of 400 nm to 30 μm, heights of 1-2 cm, and diameters of 1-6 mm. The plasmas were imaged using 4-time-frame, laser shadowgraphy and shearing-interferometry at 532 nm. For imploding liners, the measured acceleration was found to be less than predicted from the current pulse, indicating significant diffusion of the azimuthal magnetic field. A simple experimental configuration is presented for ``end-on'' laser probing in the r- θ plane in order to study the interior of the liner. Finally, the effects of axial magnetic fields are determined by modifying the return current posts and incorporating external coils. Experimental growth rates are determined and discussed. This work was supported by DOE award DE-SC0012328. S.G. Patel supported by Sandia National Labs. D.A. Yager was supported by NSF fellowship grant DGE 1256260.

  5. Nonlinear saturation amplitudes in classical Rayleigh-Taylor instability at arbitrary Atwood numbers

    NASA Astrophysics Data System (ADS)

    Liu, W. H.; Wang, L. F.; Ye, W. H.; He, X. T.

    2012-04-01

    In this research, nonlinear saturation amplitudes (NSAs) of the first two harmonics in Rayleigh-Taylor instability (RTI) for irrotational, incompressible, and inviscid fluids, with a discontinuous profile at arbitrary Atwood numbers, are investigated analytically, by considering nonlinear corrections up to the tenth-order. The NSA of the fundamental mode is defined as the linear (purely exponential) growth amplitude of the fundamental mode at the saturation time when the growth of the fundamental mode (first harmonic) is reduced by 10% in comparison to its corresponding linear growth. The NSA of the second harmonic can be obtained in the same way. The analytic results indicate that the effects of the higher-order correction (HOC) and the Atwood number (A) play an important role in the NSA of the RTI. It is found that the NSA of the fundamental mode decreases with increasing A. And when the HOC effects are considered, the NSA of the fundamental mode is significantly larger than the prediction of previous literatures within the framework of third-order perturbation theory [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988); S. W. Haan, Phys. Fluids B 3, 2349 (1991)]. We find that the NSA of the second harmonic first decreases quickly with increasing A, reaching a minimum, and then increases slowly. Furthermore, the NSAs of the first two harmonics demonstrate the trend of convergence as the order of corrections increases. Thus, it should be included in applications where the NSAs play a role, such as inertial confinement fusion ignition target design.

  6. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerashchenko, Sergiy; Livescu, Daniel

    Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  7. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerashchenko, S.; Livescu, D., E-mail: livescu@lanl.gov

    The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. An analyticalmore » solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ = 0. Compared to Θ = 0 case, the role of Θ < 0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ > 0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ < 0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  8. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE PAGES

    Gerashchenko, Sergiy; Livescu, Daniel

    2016-07-28

    Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  9. Study of the Reynolds Number Effect on the Process of Instability Transition Into the Turbulent Stage.

    PubMed

    Nevmerzhitskiy, N V; Sotskov, E A; Sen'kovskiy, E D; Krivonos, O L; Polovnikov, A A; Levkina, E V; Frolov, S V; Abakumov, S A; Marmyshev, V V

    2014-09-01

    The results of the experimental study of the Reynolds number effect on the process of the Rayleigh-Taylor (R-T) instability transition into the turbulent stage are presented. The experimental liquid layer was accelerated by compressed gas. Solid particles were scattered on the layer free surface to specify the initial perturbations in some experiments. The process was recorded with the use of a high-speed motion picture camera. The following results were obtained in experiments: (1) Long-wave perturbation is developed at the interface at the Reynolds numbers Re < 10 4 . If such perturbation growth is limited by a hard wall, the jet directed in gas is developed. If there is no such limitation, this perturbation is resolved into the short-wave ones with time, and their growth results in gas-liquid mixing. (2) Short-wave perturbations specified at the interface significantly reduce the Reynolds number Re for instability to pass into the turbulent mixing stage.

  10. Experimental Investigation of the Effects of an Axial Magnetic Field on the Magneto-Rayleigh-Taylor Instability in Ablating Planar Foils

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Patel, S. G.; Steiner, A. M.; Jordan, N. M.; Weiss, M. R.; Gilgenbach, R. M.; Lau, Y. Y.

    2014-10-01

    Experiments are underway to study the effects an axial magnetic field on the magneto-Rayleigh-Taylor instability (MRT) in ablating planar foils on the 1-MA LTD at the Michigan Accelerator for Inductive Z-pinch Experiments (MAIZE) facility at the University of Michigan. For 600 kA drive current, a 15 T axial magnetic field is produced using helical return current posts. During the current pulse, the magnetic field may diffuse into the foil, creating a sheared magnetic field along with the possibility of shear stabilization of the MRT instability. Theoretical investigation at UM has shown that a sheared azimuthal magnetic field coupled with an axial magnetic field reduces the MRT growth rate in general. In order to study this effect, the amount of magnetic shear is controlled by offsetting the initial position of the foil. A 775 nm Ti:sapphire laser will be used to shadowgraph the foil in order to measure the MRT growth rate. By comparing these results to previous experiments at UM, the effects of magnetic shear and an axial magnetic field will be determined. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager-Elorriaga supported by NSF fellowship Grant DGE 1256260.

  11. Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. F.; State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083; Ye, W. H.

    2010-05-15

    In this paper, the interface width effects (i.e., the density gradient effects or the density transition layer effects) on the Rayleigh-Taylor instability (RTI) in the weakly nonlinear (WN) regime are investigated by numerical simulation (NS). It is found that the interface width effects dramatically influence the linear growth rate in the linear growth regime and the mode coupling process in the WN growth regime. First, the interface width effects decrease the linear growth rate of the RTI, particularly for the short perturbation wavelengths. Second, the interface width effects suppress (reduce) the third-order feedback to the fundamental mode, which induces themore » nonlinear saturation amplitude (NSA) to exceed the classical prediction, 0.1lambda. The wider the density transition layer is, the larger the NSA is. The NSA in our NS can reach a half of its perturbation wavelength. Finally, the interface width effects suppress the generation and the growth of the second and the third harmonics. The ability to suppress the harmonics' growth increases with the interface width but decreases with the perturbation wavelength. On the whole, in the WN regime, the interface width effects stabilize the RTI, except for an enhancement of the NSA, which is expected to improve the understanding of the formation mechanism for the astrophysical jets, and for the jetlike long spikes in the high energy density physics.« less

  12. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmit, P. F.

    2015-11-01

    Bell-Plesset effects accounting for the time dependence of the radius, velocity and acceleration of the Rayleigh-Taylor-unstable surface are ubiquitous in the instability of spherical laser targets and magnetically driven cylindrical liners. We present an analytical model that, for an ideal incompressible fluid and small perturbation amplitudes, exactly accounts for the Bell-Plesset effects in finite-thickness targets and liners through acceleration and deceleration phases. We derive the time-dependent dispersion equations determining the ``instantaneous growth rate'' and demonstrate that by integrating this growth rate over time (the WKB approximation) we accurately evaluate the number of perturbation e-foldings during the acceleration phase. In the limit of the small target/liner thickness, we obtain the exact thin-shell perturbation equations and approximate thin-shell dispersion relations, generalizing the earlier results of Harris (1962), Ott (1972) and Bud'ko et al. (1989). This research was supported by the US DOE/NNSA (A.L.V.), and in part by appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering (P.F.S.), which is part of the Laboratory Directed Research and Development (LDRD) Program, Project No. 165746, and sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S. Department of Energy Contract No. DE-AC04-94AL85000.

  13. Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Vastano, John A.; Moser, Robert D.

    1991-01-01

    The physical mechanism driving the weakly chaotic Taylor-Couette flow is investigated using the short-time Liapunov exponent analysis. In this procedure, the transition from quasi-periodicity to chaos is studied using direct numerical 3D simulations of axially periodic Taylor-Couette flow, and a partial Liapunov exponent spectrum for the flow is computed by simultaneously advancing the full solution and a set of perturbations. It is shown that the short-time Liapunov exponent analysis yields more information on the exponents and dimension than that obtained from the common Liapunov exponent calculations. Results show that the chaotic state studied here is caused by a Kelvin-Helmholtz-type instability of the outflow boundary jet of Taylor vortices.

  14. Lithospheric Instability beneath the Southeast Carpathians

    NASA Astrophysics Data System (ADS)

    Houseman, G. A.; Lorinczi, P.; Ren, Y.; Stuart, G. W.

    2012-12-01

    The South Carpathian Project, a major seismological experiment carried out during 2009-2011 by the University of Leeds, the National Institute of Earth Physics in Bucharest, the Eötvös Loránd Geophysical Institute in Budapest, and the Seismological Survey of Serbia in Belgrade, has resulted in the most detailed tomographic images yet obtained of the upper mantle structure beneath the Pannonian - Carpathian region (Ren et al., EPSL, 2012). These images illuminate the upper mantle over a wide region, but they specifically shed new light on the unique geological structure which is responsible for the damaging earthquakes that occur in the upper mantle beneath the Vrancea Zone of the South-east Carpathians. The earthquakes occur at the NE end of an asymmetric high velocity structure that extends upward to the SW, oblique to the southern edge of the South Carpathians. This sub-vertical high-velocity body is bounded by slow anomalies to the NW and SE, which extend down to the top of the Mantle Transition Zone. With increasing depth, the fast region becomes more circular in cross-section until about 400 km where the fast anomaly fades out. The main mass of fast (presumably dense) material is located directly beneath the seismic activity. The earthquakes are all characterised by near-vertical T-axes, which means they are caused by vertical stretching. The seismic moment release rate can be used to estimate vertical strain rates; these strain-rates imply that the mantle at 200 km is moving downward at about 20 mm/yr relative to the surface. The depth distribution of seismic-moment release rate follows a characteristic pattern that is most easily explained if this high velocity structure is produced by a Rayleigh-Taylor instability acting on an unstable stratification of mantle lithosphere above asthenosphere. Three-dimensional numerical experiments assuming viscous flow confirm that the drip-like structure that we image may be a natural consequence of a Rayleigh-Taylor

  15. Taylor Instability of Incompressible Liquids

    DOE R&D Accomplishments Database

    Fermi, E.; von Neumann, J.

    1955-11-01

    A discussion is presented in simplified form of the problem of the growth of an initial ripple on the surface of an incompressible liquid in the presence of an acceleration, g, directed from the outside into the liquid. The model is that of a heavy liquid occupying at t = 0 the half space above the plane z = 0, and a rectangular wave profile is assumed. The theory is found to represent correctly one feature of experimental results, namely the fact that the half wave of the heavy liquid into the vacuum becomes rapidly narrower while the half wave pushing into the heavy liquid becomes more and more blunt. The theory fails to account for the experimental results according to which the front of the wave pushing into the heavy liquid moves with constant velocity. The case of instability at the boundary of 2 fluids of different densities is also explored. Similar results are obtained except that the acceleration of the heavy liquid into the light liquid is reduced.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang, E-mail: cq0405@126.com; Luoyang Electronic Equipment Testing Center, Luoyang 471000; Chen, Bin, E-mail: emcchen@163.com

    The Rayleigh-Taylor (R-T) instabilities are important hydrodynamics and magnetohydrodynamics (MHD) phenomena that are found in systems in high energy density physics and normal fluids. The formation and evolution of the R-T instability at channel boundary during back-flow of the lightning return stroke are analyzed using the linear perturbation theory and normal mode analysis methods, and the linear growth rate of the R-T instability in typical condition for lightning return stroke channel is obtained. Then, the R-T instability phenomena of lightning return stroke are simulated using a two-dimensional Eulerian finite volumes resistive radiation MHD code. The numerical results show that themore » evolution characteristics of the R-T instability in the early stage of back-flow are consistent with theoretical predictions obtained by linear analysis. The simulation also yields more evolution characteristics for the R-T instability beyond the linear theory. The results of this work apply to some observed features of the return stroke channel and further advance previous theoretical and experimental work.« less

  17. Rayleigh--Taylor spike evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schappert, G. T.; Batha, S. H.; Klare, K. A.

    2001-09-01

    Laser-based experiments have shown that Rayleigh--Taylor (RT) growth in thin, perturbed copper foils leads to a phase dominated by narrow spikes between thin bubbles. These experiments were well modeled and diagnosed until this '' spike'' phase, but not into this spike phase. Experiments were designed, modeled, and performed on the OMEGA laser [T. R. Boehly, D. L. Brown, R. S. Craxton , Opt. Commun. 133, 495 (1997)] to study the late-time spike phase. To simulate the conditions and evolution of late time RT, a copper target was fabricated consisting of a series of thin ridges (spikes in cross section) 150more » {mu}m apart on a thin flat copper backing. The target was placed on the side of a scale-1.2 hohlraum with the ridges pointing into the hohlraum, which was heated to 190 eV. Side-on radiography imaged the evolution of the ridges and flat copper backing into the typical RT bubble and spike structure including the '' mushroom-like feet'' on the tips of the spikes. RAGE computer models [R. M. Baltrusaitis, M. L. Gittings, R. P. Weaver, R. F. Benjamin, and J. M. Budzinski, Phys. Fluids 8, 2471 (1996)] show the formation of the '' mushrooms,'' as well as how the backing material converges to lengthen the spike. The computer predictions of evolving spike and bubble lengths match measurements fairly well for the thicker backing targets but not for the thinner backings.« less

  18. A scheme for reducing deceleration-phase Rayleigh-Taylor growth in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-05-01

    It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.

  19. A scheme for reducing deceleration-phase Rayleigh–Taylor growth in inertial confinement fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. F., E-mail: wang-lifeng@iapcm.ac.cn; Ye, W. H.; Liu, Jie

    It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh–Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.

  20. Front fingering and complex dynamics driven by the interaction of buoyancy and diffusive instabilities.

    PubMed

    D'Hernoncourt, J; Merkin, J H; De Wit, A

    2007-09-01

    Traveling fronts can become transversally unstable either because of a diffusive instability arising when the key variables diffuse at sufficiently different rates or because of a buoyancy-driven Rayleigh-Taylor mechanism when the density jump across the front is statically unfavorable. The interaction between such diffusive and buoyancy instabilities of fronts is analyzed theoretically for a simple model system. Linear stability analysis and nonlinear simulations show that their interplay changes considerably the stability properties with regard to the pure Rayleigh-Taylor or diffusive instabilities of fronts. In particular, an instability scenario can arise which triggers convection around statically stable fronts as a result of differential diffusion. Moreover, spatiotemporal chaos can be observed when both buoyancy and diffusive effects cooperate to destabilize the front. Experimental conditions to test our predictions are suggested.

  1. Richtmyer-Meshkov instability of a sinusoidal interface driven by a cylindrical shock

    NASA Astrophysics Data System (ADS)

    Liu, L.; Ding, J.; Zhai, Z.; Luo, X.

    2018-04-01

    Evolution of a single-mode interface triggered by a cylindrically converging shock in a V-shaped geometry is investigated numerically using an adaptive multi-phase solver. Several physical mechanisms, including the Bell-Plesset (BP) effect, the Rayleigh-Taylor (RT) effect, the nonlinearity, and the compressibility are found to be pronounced in the converging environment. Generally, the BP and nonlinear effects play an important role at early stages, while the RT effect and the compressibility dominate the late-stage evolution. Four sinusoidal interfaces with different initial amplitudes (a_0 ) and wavelengths (λ ) are found to evolve differently in the converging geometry. For the very small a_0 /λ interfaces, nonlinearity is negligible at the early stages and the sole presence of the BP effect results in an increasing growth rate, confining the linear growth of the instability to a relatively small amount of time. For the moderately small a_0 /λ cases, the BP and nonlinear effects, which, respectively, promote and inhibit the perturbation development, coexist in the early stage. The counterbalancing effects between them produce a very long period of growth that is linear in time, even to a moment when the amplitude over wavelength ratio approaches 0.6. The RT stabilization effect at late stages due to the interface deceleration significantly inhibits the perturbation growth, which can be reasonably predicted by a modified Bell model.

  2. Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmit, P. F.; Velikovich, A. L.; McBride, R. D.

    Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstratemore » that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.« less

  3. Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch

    DOE PAGES

    Schmit, P. F.; Velikovich, A. L.; McBride, R. D.; ...

    2016-11-11

    Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstratemore » that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.« less

  4. Monoenergetic ion acceleration and Rayleigh-Taylor instability of the composite target irradiated by the laser pulse

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Yi, S. Austin; Shvets, Gennady

    2012-10-01

    Acceleration of ions in the two-specie composite target irradiated by a circularly polarized laser pulse is studied analytically and via particle-in-cell (PIC) simulations. A self-consistent analytical model of the composite target is developed. In this model, target parameters are stationary in the center of mass of the system: heavy and light ions are completely separated from each other and form two layers, while electrons are bouncing in the potential well formed by the laser ponderomotive and electrostatic potentials. They are distributed in the direction of acceleration by the Boltzmann law and over velocities by the Maxwell-Juttner law. The laser pulse interacts directly only with electrons in a thin sheath layer, and these electrons transfer the laser pressure to the target ions. In the fluid approximation it is shown, the composite target is still susceptible to the Rayleigh-Taylor instability [1]. Using PIC simulations we found the growth rate of initially seeded perturbations as a function of their wavenumber for different composite target parameters and compare it with analytical results. Useful scaling laws between this rate and laser pulse pressure and target parameters are discussed.[4pt] [1] T.P. Yu, A. Pukhov, G. Shvets, M. Chen, T. H. Ratliff, S. A. Yi, and V. Khudik, Phys. Plasmas, 18, 043110 (2011).

  5. Shock Corrugation by Rayleigh-Taylor Instability in Gamma-Ray Burst Afterglow Jets

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2014-08-01

    Afterglow jets are Rayleigh-Taylor unstable and therefore turbulent during the early part of their deceleration. There are also several processes which actively cool the jet. In this Letter, we demonstrate that if cooling significantly increases the compressibility of the flow, the turbulence collides with the forward shock, destabilizing and corrugating it. In this case, the forward shock is turbulent enough to produce the magnetic fields responsible for synchrotron emission via small-scale turbulent dynamo. We calculate light curves assuming the magnetic field is in energy equipartition with the turbulent kinetic energy and discover that dynamic magnetic fields are well approximated by a constant magnetic-to-thermal energy ratio of 1%, though there is a sizeable delay in the time of peak flux as the magnetic field turns on only after the turbulence has activated. The reverse shock is found to be significantly more magnetized than the forward shock, with a magnetic-to-thermal energy ratio of the order of 10%. This work motivates future Rayleigh-Taylor calculations using more physical cooling models.

  6. An experimental study of the Rayleigh-Taylor instability critical wave length

    NASA Astrophysics Data System (ADS)

    Kong, Xujing; Wang, Youchun; Zhang, Shufei; Xu, Hongkun

    1992-06-01

    A physical model has been constructed to represent the condensate film pattern on a horizontal downward-facing surface with fins, which is based on visual observation in experiment. The results of analysis using this model confirms the validity of the critical wave length formula obtained from Rayleigh-Taylor stability analysis. This formula may be used as a criterion to design horizontal downward-facing surfaces with fins that can best destabilize the condensate film, thus enhancing condensation heat transfer.

  7. Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casner, A., E-mail: alexis.casner@cea.fr; Masse, L.; Liberatore, S.

    2015-05-15

    Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF lasermore » beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front.« less

  8. Coupled Hydrodynamic Instability Growth on Oblique Interfaces with a Reflected Rarefaction

    NASA Astrophysics Data System (ADS)

    Rasmus, A. M.; Flippo, K. A.; di Stefano, C. A.; Doss, F. W.; Hager, J. D.; Merritt, E. C.; Cardenas, T.; Schmidt, D. W.; Kline, J. L.; Kuranz, C. C.

    2017-10-01

    Hydrodynamic instabilities play an important role in the evolution of inertial confinement fusion and astrophysical phenomena. Three of the Omega-EP long pulse beams (10 ns square pulse, 14 kJ total energy, 1.1 mm spot size) drive a supported shock across a heavy-to-light, oblique, interface. Single- and double-mode initial conditions seed coupled Richtmyer-Meshkov (RM), Rayleigh-Taylor (RT), and Kelvin-Helmholtz (KH) growth. At early times, growth is dominated by RM and KH, whereas at late times a rarefaction from laser turn-off reaches the interface, leading to decompression and RT growth. The addition of a thirty degree tilt does not alter mix width to within experimental error bars, even while significantly altering spike and bubble morphology. The results of single and double-mode experiments along with simulations using the multi-physics hydro-code RAGE will be presented. This work performed under the auspices of the U.S. Department of Energy by LANL under contract DE-AC52-06NA25396. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956. This material is partially supported by DOE Office of Science Graduate Student Research (SCGSR) program.

  9. Gravitational instability of thin gas layer between two thick liquid layers

    NASA Astrophysics Data System (ADS)

    Pimenova, A. V.; Goldobin, D. S.

    2016-12-01

    We consider the problem of gravitational instability (Rayleigh-Taylor instability) of a horizontal thin gas layer between two liquid half-spaces (or thick layers), where the light liquid overlies the heavy one. This study is motivated by the phenomenon of boiling at the surface of direct contact between two immiscible liquids, where the rate of the "break-away" of the vapor layer growing at the contact interface due to development of the Rayleigh-Taylor instability on the upper liquid-gas interface is of interest. The problem is solved analytically under the assumptions of inviscid liquids and viscous weightless vapor. These assumptions correspond well to the processes in real systems, e.g., they are relevant for the case of interfacial boiling in the system water- n-heptane. In order to verify the results, the limiting cases of infinitely thin and infinitely thick gas layers were considered, for which the results can be obviously deduced from the classical problem of the Rayleigh-Taylor instability. These limiting cases are completely identical to the well-studied cases of gravity waves at the liquidliquid and liquid-gas interfaces. When the horizontal extent of the system is long enough, the wavenumber of perturbations is not limited from below, and the system is always unstable. The wavelength of the most dangerous perturbations and the rate of their exponential growth are derived as a function of the layer thickness. The dependence of the exponential growth rate on the gas layer thickness is cubic.

  10. Finite Atwood Number Effects on Deceleration-Phase Instability in Room-Temperature Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Miller, S.; Knauer, J. P.; Radha, P. B.; Goncharov, V. N.

    2017-10-01

    Performance degradation in direct-drive inertial confinement fusion implosions can be caused by several effects, one of which is Rayleigh-Taylor (RT) instability growth during the deceleration phase. In room-temperature plastic target implosions, this deceleration-phase RT growth is enhanced by the density discontinuity and finite Atwood numbers at the fuel-pusher interface. For the first time, an experimental campaign at the Omega Laser Facility systematically varied the ratio of deuterium-to-tritium (D-to-T) within the DT gas fill to change the Atwood number. The goal of the experiment was to understand the effects of Atwood number variation on observables like apparent ion temperature, yield, and variations in areal density and bulk fluid motion, which lead to broadening of neutron spectra along different lines of sight. Simulations by the hydrodynamic codes LILAC and DRACO were used to study growth rates for different D-to-T ratios and identify observable quantities effected by Atwood number variation. Results from simulations and the experiment are presented. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. Radiatively driven Rayleigh-Taylor instability candidates around a forming massive star system. NACO adaptive optics and VISIR study of G333.6-0.2

    NASA Astrophysics Data System (ADS)

    Kumar, M. S. N.

    2013-10-01

    The formation of the highest mass stars are thought to be dominated by instabilities resulting from gravitation and radiation. Instabilities due to gravitation are commonly demonstrated by observations of fragmentation, but those due to effects of radiation have thus far not been found. Here I report on the NACO adaptive optics and mid-infrared diffraction-limited VISIR imaging data of an extemely luminous ultra-compact HII region G333.6-0.2. Two infrared sources, one bright in the near-infrared (appearing point-like) and another in the mid-infrared (resolved with an elliptical shape) are uncovered through this data, which are located at the heart of this region. These infrared sources appear to be embedded in the waist of a bipolar-shaped nebula and UCHII region, the lobes of which are separated by a dark patch. Dense filamentary features with finger/hook morphology are found; they appear to be connected to the two bright infrared sources and the sizes of these hook features are sharply limited to <5000 AU. The observed properties of this target and a large amount of previous data obtained from the literature are compared together with the results of various numerical simulations of high-mass star formation. This comparison favours the interpretation that the finger/hook-like structures likely represent radiatively driven Rayleigh-Taylor instabilities arising in the outflow cavity of a forming high-mass binary star system.

  12. Coupling between interface and velocity perturbations in the weakly nonlinear Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. F.; Ye, W. H.; He, X. T.

    2012-11-15

    Weakly nonlinear (WN) Rayleigh-Taylor instability (RTI) initiated by single-mode cosinusoidal interface and velocity perturbations is investigated analytically up to the third order. Expressions of the temporal evolutions of the amplitudes of the first three harmonics are derived. It is shown that there are coupling between interface and velocity perturbations, which plays a prominent role in the WN growth. When the 'equivalent amplitude' of the initial velocity perturbation, which is normalized by its linear growth rate, is compared to the amplitude of the initial interface perturbation, the coupling between them dominates the WN growth of the RTI. Furthermore, the RTI wouldmore » be mitigated by initiating a velocity perturbation with a relative phase shift against the interface perturbation. More specifically, when the phase shift between the interface perturbation and the velocity perturbation is {pi} and their equivalent amplitudes are equal, the RTI could be completely quenched. If the equivalent amplitude of the initial velocity perturbation is equal to the initial interface perturbation, the difference between the WN growth of the RTI initiated by only an interface perturbation and by only a velocity perturbation is found to be asymptotically negligible. The dependence of the WN growth on the Atwood numbers and the initial perturbation amplitudes is discussed. In particular, we investigate the dependence of the saturation amplitude (time) of the fundamental mode on the Atwood numbers and the initial perturbation amplitudes. It is found that the Atwood numbers and the initial perturbation amplitudes play a crucial role in the WN growth of the RTI. Thus, it should be included in applications where the seeds of the RTI have velocity perturbations, such as inertial confinement fusion implosions and supernova explosions.« less

  13. Effects of a semi-infinite stratification on the Rayleigh-Taylor instability in an interface with surface tension

    NASA Astrophysics Data System (ADS)

    de Andrea González, Ángel; González-Gutiérrez, Leo M.

    2017-09-01

    The Rayleigh-Taylor instability (RTI) in an infinite slab where a constant density lower fluid is initially separated from an upper stratified fluid is discussed in linear regime. The upper fluid is of increasing exponential density and surface tension is considered between both of them. It was found useful to study stability by using the initial value problem approach (IVP), so that we ensure the inclusion of certain continuum modes, otherwise neglected. This methodology includes the branch cut in the complex plane, consequently, in addition to discrete modes (surface RTI modes), a set of continuum modes (internal RTI modes) also appears. As a result, the usual information given by the normal mode method is now complete. Furthermore, a new role is found for surface tension: to transform surface RTI modes (discrete spectrum) into internal RTI modes belonging to a continuous spectrum at a critical wavenumber. As a consequence, the cut-off wavenumber disappears: i.e. the growth rate of the RTI surface mode does not decay to zero at the cut-off wavenumber, as previous researchers used to believe. Finally, we found that, due to the continuum, the asymptotic behavior of the perturbation with respect to time is slower than the exponential when only the continuous spectrum exists.

  14. The effect of crossflow on Taylor vortices: A model problem

    NASA Technical Reports Server (NTRS)

    Otto, S. R.; Bassom, Andrew P.

    1993-01-01

    A number of practically relevant problems involving the impulsive motion or the rapid rotation of bodies immersed in fluid are susceptible to vortex-like instability modes. Depending upon the configuration of any particular problem the stability properties of any high-wavenumber vortices can take on one of two distinct forms. One of these is akin to the structure of Gortler vortices in boundary layer flows while the other is similar to the situation for classical Taylor vortices. Both the Gortler and Taylor problems have been extensively studied when crossflow effects are excluded from the underlying base flows. Recently, studies were made concerning the influence of crossflow on Gortler modes and a linearized stability analysis is used to examine crossflow properties for the Taylor mode. This work allows us to identify the most unstable vortex as the crossflow component increases and it is shown how, like the Gortler case, only a very small crossflow component is required in order to completely stabilize the flow. Our investigation forms the basis for an extension to the nonlinear problem and is of potential applicability to a range of pertinent flows.

  15. Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szklarski, Jacek; Ruediger, Guenther

    2007-12-15

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic (MHD) Taylor-Couette flow at the finite aspect ratio H/D=10. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed with Hartmann number Ha{approx_equal}10, and the rotation rates correspond to Reynolds numbers of order 10{sup 2}-10{sup 3}. We show that the end plates introduce, besides the well-known Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by any walls. In particular, there exists the Hartmannmore » current, which penetrates the fluid, turns in the radial direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such flows and show that the currents induced by the plates can give rise to instability for the considered parameters. When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical magnetic boundaries so that they do not significantly alter the rotational profile.« less

  16. Relativistic centrifugal instability

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  17. Taylor Curtis | NREL

    Science.gov Websites

    , The Environmental Law Institute, Washington, D.C. (2014) Featured Publication Curtis, Taylor L., Aaron . Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-70098. Levine, Aaron. Taylor L. Curtis . Golden, CO: National Renewable Energy Laboratory: NREL/TP-6A20-70121. Kevin B. Jones, Curtis, Taylor L

  18. Electrothermal instability growth in magnetically driven pulsed power liners

    NASA Astrophysics Data System (ADS)

    Peterson, Kyle J.; Sinars, Daniel B.; Yu, Edmund P.; Herrmann, Mark C.; Cuneo, Michael E.; Slutz, Stephen A.; Smith, Ian C.; Atherton, Briggs W.; Knudson, Marcus D.; Nakhleh, Charles

    2012-09-01

    This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone.

  19. Application of Self-Similarity Constrained Reynolds-Averaged Turbulence Models to Rayleigh-Taylor and Richtmyer-Meshkov Unstable Turbulent Mixing

    NASA Astrophysics Data System (ADS)

    Hartland, Tucker A.; Schilling, Oleg

    2016-11-01

    Analytical self-similar solutions corresponding to Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholtz instability are combined with observed values of the growth parameters in these instabilities to derive coefficient sets for K- ɛ and K- L- a Reynolds-averaged turbulence models. It is shown that full numerical solutions of the model equations give mixing layer widths, fields, and budgets in good agreement with the corresponding self-similar quantities for small Atwood number. Both models are then applied to Rayleigh-Taylor instability with increasing density contrasts to estimate the Atwood number above which the self-similar solutions become invalid. The models are also applied to a reshocked Richtmyer-Meshkov instability, and the predictions are compared with data. The expressions for the growth parameters obtained from the similarity analysis are used to develop estimates for the sensitivity of their values to changes in important model coefficients. Numerical simulations using these modified coefficient values are then performed to provide bounds on the model predictions associated with uncertainties in these coefficient values. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the 2016 LLNL High-Energy-Density Physics Summer Student Program.

  20. The strong nonlinear interaction of Tollmien-Schlichting waves and Taylor-Goertler vortices in curved channel flow

    NASA Technical Reports Server (NTRS)

    Bennett, J.; Hall, P.; Smith, F. T.

    1988-01-01

    Viscous fluid flows with curved streamlines can support both centrifugal and viscous traveling wave instabilities. Here the interaction of these instabilities in the context of the fully developed flow in a curved channel is discussed. The viscous (Tollmein-Schlichting) instability is described asymptotically at high Reynolds numbers and it is found that it can induce a Taylor-Goertler flow even at extremely small amplitudes. In this interaction, the Tollmein-Schlichting wave can drive a vortex state with wavelength either comparable with the channel width or the wavelength of lower branch viscous modes. The nonlinear equations which describe these interactions are solved for nonlinear equilibrium states.

  1. Small-amplitude magnetic Rayleigh-Taylor instability growth in cylindrical liners and Z-pinches imploded in an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Clark, R. W.; Mikitchuk, D.; Kroupp, E.; Maron, Y.; Fisher, A.; Schmit, P. F.

    2014-10-01

    Recent progress in developing the MagLIF approach to pulsed-power driven inertial confinement fusion has stimulated the interest in observation and mitigation of the magnetic Rayleigh-Taylor instability (MRTI) of liners and Z-pinches imploded in an axial magnetic field. Theoretical analysis of these issues is particularly important because direct numerical simulation of the MRTI development is challenging due to intrinsically 3D helical structure of the fastest-growing modes. We review the analytical small-amplitude theory of the MRTI perturbation development and the weakly nonlinear theory of MRTI mode interaction, emphasizing basic physics, opportunity for 3D code verification against exact analytical solutions, and stabilization criteria. The theory is compared to the experimental results obtained at Weizmann Institute with gas-puff Z pinches and on the Z facility at Sandia with solid liners imploded in an axial magnetic field. Work supported by the US DOE/NNSA, and by the US-Israel Binational Science Foundation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  2. An instability in neutron stars at birth

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Fryxell, Bruce A.

    1992-01-01

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supernova explosion may be inadequate. Whether this 'convective' instability is pivotal to the supernova mechanism, pulsar nagnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  3. On the stability of radiation-pressure-dominated cavities

    NASA Astrophysics Data System (ADS)

    Kuiper, R.; Klahr, H.; Beuther, H.; Henning, Th.

    2012-01-01

    Context. When massive stars exert a radiation pressure onto their environment that is higher than their gravitational attraction (super-Eddington condition), they launch a radiation-pressure-driven outflow, which creates cleared cavities. These cavities should prevent any further accretion onto the star from the direction of the bubble, although it has been claimed that a radiative Rayleigh-Taylor instability should lead to the collapse of the outflow cavity and foster the growth of massive stars. Aims: We investigate the stability of idealized radiation-pressure-dominated cavities, focusing on its dependence on the radiation transport approach used in numerical simulations for the stellar radiation feedback. Methods: We compare two different methods for stellar radiation feedback: gray flux-limited diffusion (FLD) and ray-tracing (RT). Both methods are implemented in our self-gravity radiation hydrodynamics simulations for various initial density structures of the collapsing clouds, eventually forming massive stars. We also derive simple analytical models to support our findings. Results: Both methods lead to the launch of a radiation-pressure-dominated outflow cavity. However, only the FLD cases lead to prominent instability in the cavity shell. The RT cases do not show such instability; once the outflow has started, it precedes continuously. The FLD cases display extended epochs of marginal Eddington equilibrium in the cavity shell, making them prone to the radiative Rayleigh-Taylor instability. In the RT cases, the radiation pressure exceeds gravity by 1-2 orders of magnitude. The radiative Rayleigh-Taylor instability is then consequently suppressed. It is a fundamental property of the gray FLD method to neglect the stellar radiation temperature at the location of absorption and thus to underestimate the opacity at the location of the cavity shell. Conclusions: Treating the stellar irradiation in the gray FLD approximation underestimates the radiative forces

  4. Sedimentation and gravitational instability of Escherichia coli Suspension

    NASA Astrophysics Data System (ADS)

    Douarche, Carine; Salin, Dominique; Collaboration between Laboratory FAST; LPS Collaboration

    2016-11-01

    The successive run and tumble of Escherichia coli bacteria provides an active matter suspension of rod-like particles with a large swimming diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering and instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analyzing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume.

  5. Three-dimensional Rayleigh-Taylor convection of miscible fluids in a porous medium

    NASA Astrophysics Data System (ADS)

    Suekane, Tetsuya; Nakanishi, Yuji; Wang, Lei

    2017-11-01

    Natural convection of miscible fluids in a porous medium is relevant for fields, such as geoscience and geoengineering, and for the geological storage of CO2. In this study, we use X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appears at the interface. As the wavelength and amplitude increase, descending fingers form on the interface and extend vertically downward; moreover, ascending and highly symmetric fingers form. The adjacent fingers are cylindrical in shape and coalesce to form large fingers. Fingers appearing on the interface tend to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. If the Péclet number exceeds 10, the transverse dispersion increases the finger diameter and enhances finger coalescence, strongly impacting the decay in finger number density. When mechanical dispersion is negligible, the finger-extension velocity, the mass-transfer rate, and the onset time scale with Rayleigh number. Mechanical dispersion not only reduces the onset time but also enhances mass transport, which indicates that mechanical dispersion influences the long-term dissolution process of CO2 injected into aquifers.

  6. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauer, J.P.; Verdon, C.P.; Meyerhofer, D.D.

    1997-04-01

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5{times}10{sup 14}W/cm{sup 2}. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4{percent}{endash}7{percent} over a 600-{mu}m-diam region defined by the 90{percent} intensity contour. The temporal growth of the modulation in optical depth was measured usingmore » through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-{mu}m and 60-{mu}m wavelength perturbations was found to be in good agreement with {ital ORCHID} simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-{mu}m-thick polystyrene foam buffer layer resulted in reduced growth of the 31-{mu}m perturbation and essentially unchanged growth for the 60-{mu}m case when compared to targets without foam. {copyright} {ital 1997 American Institute of Physics.}« less

  7. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauer, J. P.; Verdon, C. P.; Meyerhofer, D. D.

    1997-04-15

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600-{mu}m-diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measuredmore » using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-{mu}m and 60-{mu}m wavelength perturbations was found to be in good agreement with ORCHID simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-{mu}m-thick polystyrene foam buffer layer resulted in reduced growth of the 31-{mu}m perturbation and essentially unchanged growth for the 60-{mu}m case when compared to targets without foam.« less

  8. Interfacial fluid instabilities and Kapitsa pendula.

    PubMed

    Krieger, Madison S

    2017-07-01

    The onset and development of instabilities is one of the central problems in fluid mechanics. Here we develop a connection between instabilities of free fluid interfaces and inverted pendula. When acted upon solely by the gravitational force, the inverted pendulum is unstable. This position can be stabilized by the Kapitsa phenomenon, in which high-frequency low-amplitude vertical vibrations of the base creates a fictitious force which opposes the gravitational force. By transforming the dynamical equations governing a fluid interface into an appropriate pendulum-type equation, we demonstrate how stability can be induced in fluid systems by properly tuned vibrations. We construct a "dictionary"-type relationship between various pendula and the classical Rayleigh-Taylor, Kelvin-Helmholtz, Rayleigh-Plateau and the self-gravitational instabilities. This makes several results in control theory and dynamical systems directly applicable to the study of tunable fluid instabilities, where the critical wavelength depends on the external forces or the instability is suppressed entirely. We suggest some applications and instances of the effect ranging in scale from microns to the radius of a galaxy.

  9. Electrohydrodynamic instabilities of viscous drops*

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia M.

    2016-10-01

    A classic result due to Taylor is that a weakly conducting drop bearing zero net charge placed in a uniform electric field adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. Here I overview some intriguing symmetry-breaking instabilities occurring in strong applied dc fields: Quincke rotation resulting in drop steady tilt or tumbling, and pattern formation on the surface of a particle-coated drop.

  10. Suppressing Taylor vortices in a Taylor-Couette flow system with free surface

    NASA Astrophysics Data System (ADS)

    Bouabdallah, A.; Oualli, H.; Mekadem, M.; Gad-El-Hak, M.

    2016-11-01

    Taylor-Couette flows have been extensively investigated due to their many industrial applications, such as catalytic reactors, electrochemistry, photochemistry, biochemistry, and polymerization. Mass transfer applications include extraction, tangential filtration, crystallization, and dialysis. A 3D study is carried out to simulate a Taylor-Couette flow with a rotating and pulsating inner cylinder. We utilize FLUENT to simulate the incompressible flow with a free surface. The study reveals that flow structuring is initiated with the development of an Ekman vortex at low Taylor number, Ta = 0 . 01 . For all encountered flow regimes, the Taylor vortices are systematically inhibited by the pulsatile motion of the inner cylinder. A spectral analysis shows that this pulsatile motion causes a rapid decay of the free surface oscillations, from a periodic wavy movement to a chaotic one, then to a fully turbulent motion. This degenerative free surface behavior is interpreted as the underlying mechanism responsible for the inhibition of the Taylor vortices.

  11. The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh–Taylor instability

    DOE PAGES

    Roberts, M. S.; Jacobs, J. W.

    2015-12-07

    Rayleigh–Taylor instability experiments are performed using both immiscible and miscible incompressible liquid combinations having a relatively large Atwood number ofmore » $$A\\equiv ({\\it\\rho}_{2}-{\\it\\rho}_{1})/({\\it\\rho}_{2}+{\\it\\rho}_{1})=0.48$$. The liquid-filled tank is attached to a test sled that is accelerated downwards along a vertical rail system using a system of weights and pulleys producing approximately$1g$$net acceleration. The tank is backlit and images are digitally recorded using a high-speed video camera. The experiments are either initiated with forced initial perturbations or are left unforced. The forced experiments have an initial perturbation imposed by vertically oscillating the liquid-filled tank to produce Faraday waves at the interface. The unforced experiments rely on random interfacial fluctuations, resulting from background noise, to seed the instability. The main focus of this study is to determine the effects of forced initial perturbations and the effects of miscibility on the growth parameter,$${\\it\\alpha}$$. Measurements of the mixing-layer width,$$h$$, are acquired, from which$${\\it\\alpha}$$is determined. It is found that initial perturbations of the form used in this study do not affect measured$${\\it\\alpha}$$values. However, miscibility is observed to strongly affect$${\\it\\alpha}$$, resulting in a factor of two reduction in its value, a finding not previously observed in past experiments. In addition, all measured$${\\it\\alpha}$values are found to be smaller than those obtained in previous experimental studies.« less

  12. Transverse electron-scale instability in relativistic shear flows.

    PubMed

    Alves, E P; Grismayer, T; Fonseca, R A; Silva, L O

    2015-08-01

    Electron-scale surface waves are shown to be unstable in the transverse plane of a sheared flow in an initially unmagnetized collisionless plasma, not captured by (magneto)hydrodynamics. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroomlike electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. This transverse electron-scale instability may play an important role in relativistic and supersonic sheared flow scenarios, which are stable at the (magneto)hydrodynamic level. Macroscopic (≫c/ωpe) fields are shown to be generated by this microscopic shear instability, which are relevant for particle acceleration, radiation emission, and to seed magnetohydrodynamic processes at long time scales.

  13. Studies of fluid instabilities in flows of lava and debris

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.

    1987-01-01

    At least two instabilities have been identified and utilized in lava flow studies: surface folding and gravity instability. Both lead to the development of regularly spaced structures on the surfaces of lava flows. The geometry of surface folds have been used to estimate the rheology of lava flows on other planets. One investigation's analysis assumed that lava flows have a temperature-dependent Newtonian rheology, and that the lava's viscosity decreased exponentially inward from the upper surface. The author reviews studies by other investigators on the analysis of surface folding, the analysis of Taylor instability in lava flows, and the effect of surface folding on debris flows.

  14. Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, R.; Hatori, T.; Miura, H., E-mail: miura.hideaki@nifs.ac.jp

    Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. Themore » formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability.« less

  15. Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration.

    PubMed

    Piriz, A R; Sun, Y B; Tahir, N A

    2015-03-01

    A model is presented for the linear Rayleigh-Taylor instability taking place at the early stage of acceleration of an elastic-plastic solid, when the shock wave is still running into the solid and is driven by a time varying pressure on the interface. When the the shock is formed sufficiently close to the interface, this stage is considered to follow a previous initial phase controlled by the Ritchmyer-Meshkov instability that settles new initial conditions. The model reproduces the behavior of the instability observed in former numerical simulation results and provides a relatively simpler physical picture than the currently existing one for this stage of the instability evolution.

  16. Laboratory Study of Magnetorotational Instability and Hydrodynamic Stability at Large Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Ji, H.; Burin, M.; Schartman, E.; Goodman, J.; Liu, W.

    2006-01-01

    Two plausible mechanisms have been proposed to explain rapid angular momentum transport during accretion processes in astrophysical disks: nonlinear hydrodynamic instabilities and magnetorotational instability (MRI). A laboratory experiment in a short Taylor-Couette flow geometry has been constructed in Princeton to study both mechanisms, with novel features for better controls of the boundary-driven secondary flows (Ekman circulation). Initial results on hydrodynamic stability have shown negligible angular momentum transport in Keplerian-like flows with Reynolds numbers approaching one million, casting strong doubt on the viability of nonlinear hydrodynamic instability as a source for accretion disk turbulence.

  17. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem

    NASA Astrophysics Data System (ADS)

    Ramaprabhu, P.; Dimonte, Guy; Young, Yuan-Nan; Calder, A. C.; Fryxell, B.

    2006-12-01

    We report on the behavior of a single-wavelength Rayleigh-Taylor flow at late times. The calculations were performed in a long square duct (λ×λ×8λ) , using four different numerical simulations. In contradiction with potential flow theories that predict a constant terminal velocity, the single-wavelength Rayleigh-Taylor problem exhibits late-time acceleration. The onset of acceleration occurs as the bubble penetration depth exceeds the diameter of bubbles, and is observed for low and moderate density differences. Based on our simulations, we provide a phenomenological description of the observed acceleration, and ascribe this behavior to the formation of Kelvin-Helmholtz vortices on the bubble-spike interface that diminish the friction drag, while the associated induced flow propels the bubbles forward. For large density ratios, the formation of secondary instabilities is suppressed, and the bubbles remain terminal consistent with potential flow models.

  18. Taylor-Made Libraries

    ERIC Educational Resources Information Center

    Lonergan, David

    2011-01-01

    Frederick Winslow Taylor (1856-1915) was an efficiency expert whose concerns were less about avoiding worker fatigue and more about increasing profit margins by any means necessary. Taylor was devoted to finding the One Best Way to carry out a task and then training workers to do that task unvaryingly; attempts by employees to improve their own…

  19. Experiments on the Richtmyer-Meshkov Instability of Incompressible Fluids

    NASA Technical Reports Server (NTRS)

    Jacobs, J.; Niederhaus, C.

    2000-01-01

    Richtmyer-Meshkov (R-M) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and possibly become turbulent given the proper initial conditions. R-M instability is similar to the Rayleigh-Taylor (R-T) instability, which is generated when the two fluids undergo a constant acceleration. R-M instability is a fundamental fluid instability that is important to fields ranging from astrophysics to high-speed combustion. For example, R-M instability is currently the limiting factor in achieving a net positive yield with inertial confinement fusion. The experiments described here utilize a novel technique that circumvents many of the experimental difficulties previously limiting the study of the R-M instability. A Plexiglas tank contains two unequal density liquids and is gently oscillated horizontally to produce a controlled initial fluid interface shape. The tank is mounted to a sled on a high speed, low friction linear rail system, constraining the main motion to the vertical direction. The sled is released from an initial height and falls vertically until it bounces off of a movable spring, imparting an impulsive acceleration in the upward direction. As the sled travels up and down the rails, the spring retracts out of the way, allowing the instability to evolve in free-fall until impacting a shock absorber at the end of the rails. The impulsive acceleration provided to the system is measured by a piezoelectric accelerometer mounted on the tank, and a capacitive accelerometer measures the low-level drag of the bearings. Planar Laser-Induced Fluorescence is used for flow visualization, which uses an Argon ion laser to illuminate the flow and a CCD camera, mounted to the sled, to capture images of the interface. This experimental study investigates the instability of an interface between incompressible, miscible liquids

  20. On the compressible Taylor?Couette problem

    NASA Astrophysics Data System (ADS)

    Manela, A.; Frankel, I.

    We consider the linear temporal stability of a Couette flow of a Maxwell gas within the gap between a rotating inner cylinder and a concentric stationary outer cylinder both maintained at the same temperature. The neutral curve is obtained for arbitrary Mach (Ma) and arbitrarily small Knudsen (Kn) numbers by use of a continuum model and is verified via comparison to direct simulation Monte Carlo results. At subsonic rotation speeds we find, for the radial ratios considered here, that the neutral curve nearly coincides with the constant-Reynolds-number curve pertaining to the critical value for the onset of instability in the corresponding incompressible-flow problem. With increasing Mach number, transition is deferred to larger Reynolds numbers. It is remarkable that for a fixed Reynolds number, instability is always eventually suppressed beyond some supersonic rotation speed. To clarify this we examine the variation with increasing (Ma) of the reference Couette flow and analyse the narrow-gap limit of the compressible TC problem. The results of these suggest that, as in the incompressible problem, the onset of instability at supersonic speeds is still essentially determined through the balance of inertial and viscous-dissipative effects. Suppression of instability is brought about by increased rates of dissipation associated with the elevated bulk-fluid temperatures occurring at supersonic speeds. A useful approximation is obtained for the neutral curve throughout the entire range of Mach numbers by an adaptation of the familiar incompressible stability criteria with the critical Reynolds (or Taylor) numbers now based on average fluid properties. The narrow-gap analysis further indicates that the resulting approximate neutral curve obtained in the (Ma, Kn) plane consists of two branches: (i) the subsonic part corresponding to a constant ratio (Ma/Kn) (i.e. a constant critical Reynolds number) and (ii) a supersonic branch which at large Ma values corresponds to a

  1. Instability Coupling Experiments*

    NASA Astrophysics Data System (ADS)

    Chrien, R. E.; Hoffman, N. M.; Magelssen, G. R.; Schappert, G. T.; Smitherman, D. P.

    1996-11-01

    The coupling of Richtmyer-Meshkov (RM) and ablative Rayleigh-Taylor (ART) instabilities is being studied with indirectly-driven planar foil experiments on the Nova laser at Livermore. The foil is attached to a 1.6-mm-diameter, 2.75-mm-long Au hohlraum driven by a 2.2-ns long, 1:5-contrast-ratio shaped laser pulse. A shock is generated in 35-μm or 86-μm thick Al foils with a 50-μm-wavelength, 4-μm-amplitude sinusoidal perturbation on its rear surface. In some experiments, the perturbation is applied to a 10-μm Be layer on the Al. A RM instability develops when the shock encounters the perturbed surface. The flow field of the RM instability can ``feed out'' to the ablation surface of the foil and provide the seed for ART perturbation growth. Face-on and side-on x-radiography are used to observe areal density perturbations in the foil. For the 86-μm foil, the perturbation arrives at the ablation surface while the hohlraum drive is dropping and the data are consistent with RM instability alone. For the 35-μm foil, the perturbation feeds out while the hohlraum drive is close to its peak and the data appear to show strong ART perturbation growth. Comparisons with LASNEX simulations will be presented. *This work supported under USDOE contract W-7405-ENG-36.

  2. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability

    DOE PAGES

    Gallis, Michail A.; Koehler, Timothy P.; Torczynski, John R.; ...

    2015-08-14

    The Rayleigh-Taylor instability (RTI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce all qualitative features of the RTI and are in reasonable quantitative agreement with existing theoretical and empirical models in the linear, nonlinear, and self-similar regimes. At late times, the instability is seen to exhibit a self-similar behavior, in agreement with experimental observations. Formore » the conditions simulated, diffusion can influence the initial instability growth significantly.« less

  3. Rarefaction-driven Rayleigh–Taylor instability. Part 2. Experiments and simulations in the nonlinear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, R. V.; Cabot, W. H.; Greenough, J. A.

    Experiments and large eddy simulation (LES) were performed to study the development of the Rayleigh–Taylor instability into the saturated, nonlinear regime, produced between two gases accelerated by a rarefaction wave. Single-mode two-dimensional, and single-mode three-dimensional initial perturbations were introduced on the diffuse interface between the two gases prior to acceleration. The rarefaction wave imparts a non-constant acceleration, and a time decreasing Atwood number,more » $$A=(\\unicode[STIX]{x1D70C}_{2}-\\unicode[STIX]{x1D70C}_{1})/(\\unicode[STIX]{x1D70C}_{2}+\\unicode[STIX]{x1D70C}_{1})$$, where$$\\unicode[STIX]{x1D70C}_{2}$$and$$\\unicode[STIX]{x1D70C}_{1}$$are the densities of the heavy and light gas, respectively. Experiments and simulations are presented for initial Atwood numbers of$A=0.49$$,$$A=0.63$$,$$A=0.82$$and$$A=0.94$$. Nominally two-dimensional (2-D) experiments (initiated with nearly 2-D perturbations) and 2-D simulations are observed to approach an intermediate-time velocity plateau that is in disagreement with the late-time velocity obtained from the incompressible model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502). Reacceleration from an intermediate velocity is observed for 2-D bubbles in large wavenumber,$$k=2\\unicode[STIX]{x03C0}/\\unicode[STIX]{x1D706}=0.247~\\text{mm}^{-1}$$, experiments and simulations, where$$\\unicode[STIX]{x1D706}$is the wavelength of the initial perturbation. At moderate Atwood numbers, the bubble and spike velocities approach larger values than those predicted by Goncharov’s model. These late-time velocity trends are predicted well by numerical simulations using the LLNL Miranda code, and by the 2009 model of Mikaelian (Phys. Fluids., vol. 21, 2009, 024103) that extends Layzer type models to variable acceleration and density. Large Atwood number experiments show a delayed roll up, and exhibit a free-fall like behaviour. Finally, experiments initiated with three

  4. Rarefaction-driven Rayleigh–Taylor instability. Part 2. Experiments and simulations in the nonlinear regime

    DOE PAGES

    Morgan, R. V.; Cabot, W. H.; Greenough, J. A.; ...

    2018-01-12

    Experiments and large eddy simulation (LES) were performed to study the development of the Rayleigh–Taylor instability into the saturated, nonlinear regime, produced between two gases accelerated by a rarefaction wave. Single-mode two-dimensional, and single-mode three-dimensional initial perturbations were introduced on the diffuse interface between the two gases prior to acceleration. The rarefaction wave imparts a non-constant acceleration, and a time decreasing Atwood number,more » $$A=(\\unicode[STIX]{x1D70C}_{2}-\\unicode[STIX]{x1D70C}_{1})/(\\unicode[STIX]{x1D70C}_{2}+\\unicode[STIX]{x1D70C}_{1})$$, where$$\\unicode[STIX]{x1D70C}_{2}$$and$$\\unicode[STIX]{x1D70C}_{1}$$are the densities of the heavy and light gas, respectively. Experiments and simulations are presented for initial Atwood numbers of$A=0.49$$,$$A=0.63$$,$$A=0.82$$and$$A=0.94$$. Nominally two-dimensional (2-D) experiments (initiated with nearly 2-D perturbations) and 2-D simulations are observed to approach an intermediate-time velocity plateau that is in disagreement with the late-time velocity obtained from the incompressible model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502). Reacceleration from an intermediate velocity is observed for 2-D bubbles in large wavenumber,$$k=2\\unicode[STIX]{x03C0}/\\unicode[STIX]{x1D706}=0.247~\\text{mm}^{-1}$$, experiments and simulations, where$$\\unicode[STIX]{x1D706}$is the wavelength of the initial perturbation. At moderate Atwood numbers, the bubble and spike velocities approach larger values than those predicted by Goncharov’s model. These late-time velocity trends are predicted well by numerical simulations using the LLNL Miranda code, and by the 2009 model of Mikaelian (Phys. Fluids., vol. 21, 2009, 024103) that extends Layzer type models to variable acceleration and density. Large Atwood number experiments show a delayed roll up, and exhibit a free-fall like behaviour. Finally, experiments initiated with three

  5. On the spreading and instability of gravity current fronts of arbitrary shape

    NASA Astrophysics Data System (ADS)

    Zgheib, N.; Bonometti, T.; Balachandar, S.

    2012-11-01

    Experiments, simulations and theoretical analysis were carried out to study the influence of geometry on the spreading of gravity currents. The horizontal spreading of three different intial planforms of initial release were investigated: an extended ellipse, a cross, and a circle. The experiments used a pulley system for a swift nearly instantaneous release. The case of the axisymmetric cylinder compared favorably with earlier simulations. We ran experiments for multiple aspect ratios for all three configurations. Perhaps the most intriguing of the three cases is the ``ellipse,'' which within a short period of release flipped the major and minor axes. This behavior cannot be captured by current theoretical methods (such as the Box Model). These cases have also been investigated using shallow water and direct numerical simulations. Also, in this study, we investigate the possibility of a Rayleigh-Taylor (RT) instability of the radially moving, but decelerating front. We present a simple theoretical framework based on the inviscid Shallow Water Equations. The theoretical results are supplemented and compared to highly resolved three-dimensional simulations with the Boussinesq approximation. Chateaubriand Fellowship - NSF PIRE grant OISE-0968313.

  6. Experimental demonstration of laser imprint reduction using underdense foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delorme, B.; Casner, A.; CELIA, University of Bordeaux-CNRS-CEA, F-33400 Talence

    2016-04-15

    Reducing the detrimental effect of the Rayleigh-Taylor (RT) instability on the target performance is a critical challenge. In this purpose, the use of targets coated with low density foams is a promising approach to reduce the laser imprint. This article presents results of ablative RT instability growth measurements, performed on the OMEGA laser facility in direct-drive for plastic foils coated with underdense foams. The laser beam smoothing is explained by the parametric instabilities developing in the foam and reducing the laser imprint on the plastic (CH) foil. The initial perturbation pre-imposed by the means of a specific phase plate wasmore » shown to be smoothed using different foam characteristics. Numerical simulations of the laser beam smoothing in the foam and of the RT growth are performed with a suite of paraxial electromagnetic and radiation hydrodynamic codes. They confirmed the foam smoothing effect in the experimental conditions.« less

  7. Taylor Elected to Royal Society of London

    Science.gov Websites

    SLAC, 28 May 1997 Taylor Elected to Royal Society of London Richard Taylor, physics professor at statements must be verified by facts. Taylor will travel to London in the near future for his induction, part Isaac Newton and Michael Faraday. Taylor, a Canadian citizen, received his Ph.D. at Stanford in 1962 and

  8. Spatiotemporal chaos in the dynamics of buoyantly and diffusively unstable chemical fronts

    NASA Astrophysics Data System (ADS)

    Baroni, M. P. M. A.; Guéron, E.; De Wit, A.

    2012-03-01

    Nonlinear dynamics resulting from the interplay between diffusive and buoyancy-driven Rayleigh-Taylor (RT) instabilities of autocatalytic traveling fronts are analyzed numerically for various values of the relevant parameters. These are the Rayleigh numbers of the reactant A and autocatalytic product B solutions as well as the ratio D =DB/DA between the diffusion coefficients of the two key chemical species. The interplay between the coarsening dynamics characteristic of the RT instability and the constant short wavelength modulation of the diffusive instability can lead in some regimes to complex dynamics dominated by irregular succession of birth and death of fingers. By using spectral entropy measurements, we characterize the transition between order and spatial disorder in this system. The analysis of the power spectrum and autocorrelation function, moreover, identifies similarities between the various spatial patterns. The contribution of the diffusive instability to the complex dynamics is discussed.

  9. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales II

    PubMed Central

    Abarzhi, S. I.; Gauthier, S.; Sreenivasan, K. R.

    2013-01-01

    This Introduction summarizes and provides a perspective on the papers representing one of the key themes of the ‘Turbulent mixing and beyond’ programme—the hydrodynamic instabilities of the Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) type and their applications in nature and technology. The collection is intended to present the reader a balanced overview of the theoretical, experimental and numerical studies of the subject and to assess what is firm in our knowledge of the RT and RM turbulent mixing. PMID:24146016

  10. Evolution of a double-front Rayleigh-Taylor system using a graphics-processing-unit-based high-resolution thermal lattice-Boltzmann model.

    PubMed

    Ripesi, P; Biferale, L; Schifano, S F; Tripiccione, R

    2014-04-01

    We study the turbulent evolution originated from a system subjected to a Rayleigh-Taylor instability with a double density at high resolution in a two-dimensional geometry using a highly optimized thermal lattice-Boltzmann code for GPUs. Our investigation's initial condition, given by the superposition of three layers with three different densities, leads to the development of two Rayleigh-Taylor fronts that expand upward and downward and collide in the middle of the cell. By using high-resolution numerical data we highlight the effects induced by the collision of the two turbulent fronts in the long-time asymptotic regime. We also provide details on the optimized lattice-Boltzmann code that we have run on a cluster of GPUs.

  11. Sedimentation and gravitational instability of Escherichia coli Suspension

    NASA Astrophysics Data System (ADS)

    Salin, Dominique; Douarche, Carine

    2017-11-01

    The successive runs and tumbles of Escherichia coli bacteria provide an active matter suspension of rod-like particles with a large swimming, Brownian like, diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering of the particles and hence instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analysing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume. Comparing these quantities to the ones of equivalent passive particles (ellipsoid, rod) we tentatively infer the effective shape and size of the bacteria involved in its buoyancy induced advection and diffusion. Laboratoire FAST University Paris Saclay France.

  12. Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow

    NASA Astrophysics Data System (ADS)

    Cagney, Neil; Balabani, Stavroula

    2017-11-01

    Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.

  13. Investigations of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccardo Bonazza; Mark Anderson; Jason Oakley

    2008-03-14

    The present program is centered on the experimental study of shock-induced interfacial fluid instabilities. Both 2-D (near-sinusoids) and 3-D (spheres) initial conditions are studied in a large, vertical square shock tube facility. The evolution of the interface shape, its distortion, the modal growth rates and the mixing of the fluids at the interface are all objectives of the investigation. In parallel to the experiments, calculations are performed using the Raptor code, on platforms made available by LLNL. These flows are of great relevance to both ICF and stockpile stewardship. The involvement of four graduate students is in line with themore » national laboratories' interest in the education of scientists and engineers in disciplines and technologies consistent with the labs' missions and activities.« less

  14. Droplet formation at the non-equilibrium water/water (w/w) interface

    NASA Astrophysics Data System (ADS)

    Chao, Youchuang; Mak, Sze Yi; Kong, Tiantian; Ding, Zijing; Shum, Ho Cheung

    2017-11-01

    The interfacial instability at liquid-liquid interfaces has been intensively studied in recent years due to their important role in nature and technology. Among them, two classic instabilities are Rayleigh-Taylor (RT) and double diffusive (DD) instabilities, which are practically relevant to many industrial processes, such as geologic CO2 sequestration. Most experimental and theoretical works have focused on RT or DD instability in binary systems. However, the study of such instability in complex systems, such as non-equilibrium ternary systems that involves mass-transfer-induced phase separation, has received less attention. Here, by using a ternary system known as the aqueous two-phase system (ATPS), we investigate experimentally the behavior of non-equilibrium water/water (w/w) interfaces in a vertically orientated Hele-Shaw cell. We observe that an array of fingers emerge at the w/w interface, and then break into droplets. We explore the instability using different concentrations of two aqueous phases. Our experimental findings are expected to inspire the mass production of all-aqueous emulsions in a simple setup.

  15. Experimental study of mixing mechanisms in stably stratified Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Augier, Pierre; Caulfield, Colm-Cille; Dalziel, Stuart

    2014-11-01

    We consider experimentally the mechanisms of mixing in stably stratified Taylor-Couette (TC) flow in a TC apparatus for which both cylinders can rotate independently. In the case for which only the inner cylinder rotates, centrifugal instability rapidly splits an initially linear density profile into an array of thin nearly homogeneous layers. Shadowgraph, PIV and density profiles measured by a moving conductivity probe allow us to characterise this process and the resulting flow. In particular, we observe turbulent intrusions of mixed fluid propagating relatively slowly around the tank at the interfaces between the layers, leading to a time-dependent variation in the sharpness and turbulent activity at these interfaces, whose period scales with (but is much larger than) the rotation period. Interestingly, the turbulent intrusions are anti-correlated between adjacent interfaces leading to snake-skin-like patterns in the spatio-temporal diagrams of the density profiles. We also explore how the presence of a density stratification modifies end effects at the top and bottom of the cylinders, in both the presence and absence of primary centrifugal instability.

  16. 3D broadband Bubbles Dynamics for the imprinted ablative Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Casner, Alexis; Khan, S.; Mailliet, C.; Martinez, D.; Izumi, N.; Le Bel, E.; Remington, B. A.; Masse, L.; Smalyuk, V. A.

    2017-10-01

    We report on highly nonlinear ablative Rayleigh-Taylor growth measurements of 3D laser imprinted modulations. These experiments are part of the Discovery Science Program on NIF. Planar plastic samples were irradiated by 450 kJ of 3w laser light and the growth of 3D laser imprinted modulations is quantified through face-on radiography. The initial seed of the imprinted RTI is imposed by one beam focused in advance (-300 ps) without any optical smoothing (no CPP, no SSD). For the first time four generations of bubbles were created as larger bubbles overtake and merge with smaller bubbles because of the unprecedented long laser drive (30 ns). The experimental data, analyzed both in real and Fourier space, are compared with classical bubble-merger models, as well as recent theory and simulations predicting 3D bubbles reacceleration due to vorticity accumulation caused by mass ablation. These experiments are of crucial importance for benchmarking 2D and 3D radiation hydrodynamics code for Inertial Confinement Fusion.

  17. Observation of a free-Shercliff-layer instability in cylindrical geometry.

    PubMed

    Roach, Austin H; Spence, Erik J; Gissinger, Christophe; Edlund, Eric M; Sloboda, Peter; Goodman, Jeremy; Ji, Hantao

    2012-04-13

    We report on observations of a free-Shercliff-layer instability in a Taylor-Couette experiment using a liquid metal over a wide range of Reynolds numbers, Re∼10(3)-10(6). The free Shercliff layer is formed by imposing a sufficiently strong axial magnetic field across a pair of differentially rotating axial end cap rings. This layer is destabilized by a hydrodynamic Kelvin-Helmholtz-type instability, characterized by velocity fluctuations in the r-θ plane. The instability appears with an Elsasser number above unity, and saturates with an azimuthal mode number m which increases with the Elsasser number. Measurements of the structure agree well with 2D global linear mode analyses and 3D global nonlinear simulations. These observations have implications for a range of rotating MHD systems in which similar shear layers may be produced.

  18. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauer, J. P.; Betti, R.; Bradley, D. K.

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 {mu}m diam region defined bymore » the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 {mu}m wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics.« less

  19. The nonlinear interaction of Tollmien-Schlichting waves and Taylor-Goertler vortices in curved channel flows

    NASA Technical Reports Server (NTRS)

    Hall, P.; Smith, F. T.

    1987-01-01

    It is known that a viscous fluid flow with curved streamlines can support both Tollmien-Schlichting and Taylor-Goertler instabilities. In a situation where both modes are possible on the basis of linear theory a nonlinear theory must be used to determine the effect of the interaction of the instabilities. The details of this interaction are of practical importance because of its possible catastrophic effects on mechanisms used for laminar flow control. This interaction is studied in the context of fully developed flows in curved channels. A part form technical differences associated with boundary layer growth the structures of the instabilities in this flow are very similar to those in the practically more important external boundary layer situation. The interaction is shown to have two distinct phases depending on the size of the disturbances. At very low amplitudes two oblique Tollmein-Schlichting waves interact with a Goertler vortex in such a manner that the amplitudes become infinite at a finite time. This type of interaction is described by ordinary differential amplitude equations with quadratic nonlinearities.

  20. The investigation of flow instabilities on a rotating disk with curvature in the radial direction

    NASA Technical Reports Server (NTRS)

    Intemann, P. A.; Clarkson, M. H.

    1982-01-01

    The major objective is to explore any visible differences of the flow field with wall curvature of the test body, including possible interaction between Taylor-Gortler instabilities present along concave walls and the inflexional instabilities investigated here. An experimental study was conducted with emphasis placed on making visual observations and recording photographically the flow instabilities present under three different rotating bodies: a flat disk, a concave paraboloid, and a convex paraboloid. The data collected for the three test bodies lead to the conclusion that the wall curvature of the concave and convex paraboloids did not alter the observed flow field significantly from that observed on the flat disk.

  1. Can the magnetic field in the Orion arm inhibit the growth of instabilities in the bow shock of Betelgeuse?

    NASA Astrophysics Data System (ADS)

    van Marle, A. J.; Decin, L.; Meliani, Z.

    2014-01-01

    Context. Many evolved stars travel through space at supersonic velocities, which leads to the formation of bow shocks ahead of the star where the stellar wind collides with the interstellar medium (ISM). Herschel observations of the bow shock of α-Orionis show that the shock is almost free of instabilities, despite being, at least in theory, subject to both Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Aims: A possible explanation for the lack of instabilities lies in the presence of an interstellar magnetic field. We wish to investigate whether the magnetic field of the ISM in the Orion arm can inhibit the growth of instabilities in the bow shock of α-Orionis. Methods: We used the code MPI-AMRVAC to make magneto-hydrodynamic simulations of a circumstellar bow shock, using the wind parameters derived for α-Orionis and interstellar magnetic field strengths of B = 1.4, 3.0, and 5.0 μG, which fall within the boundaries of the observed magnetic field strength in the Orion arm of the Milky Way. Results: Our results show that even a relatively weak magnetic field in the ISM can suppress the growth of Rayleigh-Taylor and Kelvin-Helmholtz instabilities, which occur along the contact discontinuity between the shocked wind and the shocked ISM. Conclusions: The presence of even a weak magnetic field in the ISM effectively inhibits the growth of instabilities in the bow shock. This may explain the absence of such instabilities in the Herschel observations of α-Orionis. Appendix A and associated movies are available in electronic form at http://www.aanda.org

  2. The dynamical oscillation and propulsion of magnetic fields in the convective zone of a star. II - Thermal shadows. III - Accumulation of heat and the onset of the Rayleigh-Taylor instability

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1987-01-01

    The dynamics of thermal shadows which develop in the convective zone of a star around an insulating obstacle such as a horizontal band in intense magnetic field are studied. The depth of the shadow on the cool side of the obstacle is found to depend largely on the width of the obstacle multiplied by the temperature gradient. Thermal shadows pressing fields up to 10,000 G downward against the bottom of the convective zone are produced by the broad bands of the azimuthal field in the sun's convective zone. In the third part, the time-dependent accumulation of heat beneath a thermal barrier simulating such a band in the lower convective zone of the sun is considered. The resulting Rayleigh-Taylor instability is shown to cause tongues of heated gas to penetrate upward through the field, providing the emerging magnetic fields that give rise to the activity of the sun.

  3. Azimuthal magnetorotational instability with super-rotation

    NASA Astrophysics Data System (ADS)

    Rüdiger, G.; Schultz, M.; Gellert, M.; Stefani, F.

    2018-02-01

    It is demonstrated that the azimuthal magnetorotational instability (AMRI) also works with radially increasing rotation rates contrary to the standard magnetorotational instability for axial fields which requires negative shear. The stability against non-axisymmetric perturbations of a conducting Taylor-Couette flow with positive shear under the influence of a toroidal magnetic field is considered if the background field between the cylinders is current free. For small magnetic Prandtl number the curves of neutral stability converge in the (Hartmann number,Reynolds number) plane approximating the stability curve obtained in the inductionless limit . The numerical solutions for indicate the existence of a lower limit of the shear rate. For large the curves scale with the magnetic Reynolds number of the outer cylinder but the flow is always stable for magnetic Prandtl number unity as is typical for double-diffusive instabilities. We are particularly interested to know the minimum Hartmann number for neutral stability. For models with resting or almost resting inner cylinder and with perfectly conducting cylinder material the minimum Hartmann number occurs for a radius ratio of \\text{in}=0.9$ . The corresponding critical Reynolds numbers are smaller than 4$ .

  4. Effects of Phase Transformations and Dynamic Material Strength on Hydrodynamic Instability Evolution in Metals

    NASA Astrophysics Data System (ADS)

    Opie, Saul

    Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and partially validated with a novel RM-based instability experiment in addition to existing data from the literature. With the validated material model additional simulations are performed to provide insight into to the role that robust material constitutive behavior (e.g., pressure, temperature, rate dependence) has on RM instability and how RM instability experiments can be used to characterize and validated expected material behavior. For phase aware materials, particularly iron in this work, the simulations predict a strong dependence on the Atwood number that single phase materials do not have. At Atwood numbers close to unity, and pressures in the high pressure stability region, the high pressure phase dominates the RM evolution. However, at Atwood numbers close to negative one, the RM evolution is only weakly affected by the high-pressure phase even for shocks well above the phase transformation threshold. In addition to RM evolution this work looks at the closely related shock front perturbation evolution. Existing analytical models for isentropic processes in gases and liquids are modified for metal equation of states and plastic behavior for the first time. It is found that the presence of a volume collapsing phase transformation with increased

  5. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  6. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  7. Herringbone streaks in Taylor-Couette turbulence.

    PubMed

    Dong, S

    2008-03-01

    We study near-wall streaks that form herringbonelike patterns in Taylor-Couette turbulence and in counter-rotating Taylor-Couette turbulence through three-dimensional direct numerical simulations. The orientation, axial distribution, onset, and tilting angle of these streaks are characterized.

  8. Comparing Split and Unsplit Numerical Methods for Simulating Low and High Mach Number Turbulent Flows in Xrage

    NASA Astrophysics Data System (ADS)

    Saenz, Juan; Grinstein, Fernando; Dolence, Joshua; Rauenzahn, Rick; Masser, Thomas; Francois, Marianne; LANL Team

    2017-11-01

    We report progress in evaluating an unsplit hydrodynamic solver being implemented in the radiation adaptive grid Eulerian (xRAGE) code, and compare to a split scheme. xRage is a Eulerian hydrodynamics code used for implicit large eddy simulations (ILES) of multi-material, multi-physics flows where low and high Mach number (Ma) processes and instabilities interact and co-exist. The hydrodynamic solver in xRAGE uses a directionally split, second order Godunov, finite volume (FV) scheme. However, a standard, unsplit, Godunov-type FV scheme with 2nd and 3rd order reconstruction options, low Ma correction and a variety of Riemann solvers has recently become available. To evaluate the hydrodynamic solvers for turbulent low Ma flows, we use simulations of the Taylor Green Vortex (TGV), where there is a transition to turbulence via vortex stretching and production of small-scale eddies. We also simulate a high-low Ma shock-tube flow, where a shock passing over a perturbed surface generates a baroclinic Richtmyer-Meshkov instability (RMI); after the shock has passed, the turbulence in the accelerated interface region resembles Rayleigh Taylor (RT) instability. We compare turbulence spectra and decay in simulated TGV flows, and we present progress in simulating the high-low Ma RMI-RT flow. LANL is operated by LANS LLC for the U.S. DOE NNSA under Contract No. DE-AC52-06NA25396.

  9. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts.

    PubMed

    D'Hernoncourt, J; Zebib, A; De Wit, A

    2007-03-01

    Exothermic autocatalytic fronts traveling in the gravity field can be deformed by buoyancy-driven convection due to solutal and thermal contributions to changes in the density of the product versus the reactant solutions. We classify the possible instability mechanisms, such as Rayleigh-Benard, Rayleigh-Taylor, and double-diffusive mechanisms known to operate in such conditions in a parameter space spanned by the corresponding solutal and thermal Rayleigh numbers. We also discuss a counterintuitive instability leading to buoyancy-driven deformation of statically stable fronts across which a solute-light and hot solution lies on top of a solute-heavy and colder one. The mechanism of this chemically driven instability lies in the coupling of a localized reaction zone and of differential diffusion of heat and mass. Dispersion curves of the various cases are analyzed. A discussion of the possible candidates of autocatalytic reactions and experimental conditions necessary to observe the various instability scenarios is presented.

  10. Effects of initial radius of the interface and Atwood number on nonlinear saturation amplitudes in cylindrical Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Liu, Wanhai; Yu, Changping; Li, Xinliang

    2014-11-01

    Nonlinear saturation amplitudes (NSAs) of the first two harmonics in classical Rayleigh-Taylor instability (RTI) in cylindrical geometry for arbitrary Atwood numbers have been analytically investigated considering nonlinear corrections up to the fourth-order. The NSA of the fundamental mode is defined as the linear (purely exponential) growth amplitude of the fundamental mode at the saturation time when the growth of the fundamental mode (first harmonic) is reduced by 10% in comparison to its corresponding linear growth, and the NSA of the second harmonic can be obtained in the same way. The analytic results indicate that the effects of the initial radius of the interface (r0) and the Atwood number (A) play an important role in the NSAs of the first two harmonics in cylindrical RTI. On the one hand, the NSA of the fundamental mode first increases slightly and then decreases quickly with increasing A. For given A, the smaller the r0/λ (with λ perturbation wavelength) is, the larger the NSA of the fundamental mode is. When r0/λ is large enough ( r0≫λ ), the NSA of the fundamental mode is reduced to the prediction of previous literatures within the framework of third-order perturbation theory [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988); S. W. Haan, Phys. Fluids B 3, 2349 (1991)]. On the other hand, the NSA of the second harmonic first decreases quickly with increasing A, reaching a minimum, and then increases slowly. Furthermore, the r0 can reduce the NSA of the second harmonic for arbitrary A at r0≲ 2 λ while increase it for A ≲ 0.6 at r0≳ 2 λ . Thus, it should be included in applications where the NSA has a role, such as inertial confinement fusion ignition target design.

  11. Multi-dimensional effects in radiation pressure acceleration of ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, V. K., E-mail: tripathivipin@yahoo.co.in

    A laser carries momentum. On reflection from an ultra-thin overdense plasma foil, it deposits recoil momentum on the foil, i.e. exerts radiation pressure on the foil electrons and pushes them to the rear. The space charge field thus created takes the ions along, accelerating the electron-ion double layer as a single unit. When the foil has surface ripple, of wavelength comparable to laser wavelength, the radiation pressure acts non-uniformly on the foil and the perturbation grows as Reyleigh-Taylor (RT) instability as the foil moves. The finite spot size of the laser causes foil to bend. These effects limit the quasi-monomore » energy acceleration of ions. Multi-ion foils, e.g., diamond like carbon foil embedded with protons offer the possibility of suppressing RT instability.« less

  12. 33 CFR 117.987 - Taylor Bayou.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union Pacific...

  13. 33 CFR 117.987 - Taylor Bayou.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union Pacific...

  14. Experimental Investigation of the Electrothermal Instability on Planar Foil Ablation Experiments

    NASA Astrophysics Data System (ADS)

    Steiner, Adam; Patel, Sonal; Yager-Elorriaga, David; Jordan, Nicholas; Gilgenbach, Ronald; Lau, Y. Y.

    2014-10-01

    The electrothermal instability (ETI) is an important early-time physical effect on pulsed power foil ablation experiments due to its ability to seed the destructive magneto-Rayleigh-Taylor (MRT) instability. ETI occurs whenever electrical resistivity has temperature dependence; when resistivity increases with temperature, as with solid metal liners or foils, ETI forms striation structures perpendicular to current flow. These striations provide an initial perturbation for the MRT instability, which is the dominant late-time instability in planar foil ablations. The MAIZE linear transformer driver was used to drive current pulses of approximately 600 kA into 400 nm-thick aluminum foils in order to study ETI in planar geometry. Shadowgraph images of the aluminum plasmas were taken for multiple shots at various times within approximately 50 ns of current start. Fourier analysis extracted the approximate wavelengths of the instability structures on the plasma-vacuum interface. Surface metrology of pre-shot foils was performed to provide a comparison between surface roughness features and resulting plasma structure. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager supported by NSF fellowship Grant # DGE 1256260.

  15. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  16. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  17. Instability mechanisms and transition scenarios of spiral turbulence in Taylor-Couette flow.

    PubMed

    Meseguer, Alvaro; Mellibovsky, Fernando; Avila, Marc; Marques, Francisco

    2009-10-01

    Alternating laminar and turbulent helical bands appearing in shear flows between counterrotating cylinders are accurately computed and the near-wall instability phenomena responsible for their generation identified. The computations show that this intermittent regime can only exist within large domains and that its spiral coherence is not dictated by endwall boundary conditions. A supercritical transition route, consisting of a progressive helical alignment of localized turbulent spots, is carefully studied. Subcritical routes disconnected from secondary laminar flows have also been identified.

  18. String-theoretic deformation of the Parke-Taylor factor

    NASA Astrophysics Data System (ADS)

    Mizera, Sebastian; Zhang, Guojun

    2017-09-01

    Scattering amplitudes in a range of quantum field theories can be computed using the Cachazo-He-Yuan (CHY) formalism. In theories with color ordering, the key ingredient is the so-called Parke-Taylor factor. In this paper we give a fully SL (2 ,C )-covariant definition and study the properties of a new integrand called the "string Parke-Taylor" factor. It has an α' expansion whose leading coefficient is the field-theoretic Parke-Taylor factor. Its main application is that it leads to a CHY formulation of open string tree-level amplitudes. In fact, the definition of the string Parke-Taylor factor was motivated by trying to extend the compact formula for the first α' correction found by He and Zhang, while the main ingredient in its definition is a determinant of a matrix introduced in the context of string theory by Stieberger and Taylor.

  19. Observations of supra-arcade fans: instabilities at the head of reconnection jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innes, D. E.; Guo, L.-J.; Schmit, D.

    2014-11-20

    Supra-arcade fans are bright, irregular regions of emission that develop during eruptive flares above flare arcades. The underlying flare arcades are thought to be a consequence of magnetic reconnection along a current sheet in the corona. At the same time, theory predicts plasma jets from the reconnection sites which are extremely difficult to observe directly because of their low densities. It has been suggested that the dark supra-arcade downflows (SADs) seen falling through supra-arcade fans may be low-density jet plasma. The head of a low-density jet directed toward higher-density plasma would be Rayleigh-Taylor unstable, and lead to the development ofmore » rapidly growing low- and high-density fingers along the interface. Using Solar Dynamics Observatory/Atmospheric Imaging Assembly 131 Å images, we show details of SADs seen from three different orientations with respect to the flare arcade and current sheet, and highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with three-dimensional magnetohydrodynamic simulations suggests that SADs are the result of secondary instabilities of the Rayleigh-Taylor type in the exhaust of reconnection jets.« less

  20. Adverse Outcomes After Palliative Radiation Therapy for Uncomplicated Spine Metastases: Role of Spinal Instability and Single-Fraction Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Tai-Chung, E-mail: lamtaichung@gmail.com; Uno, Hajime; Krishnan, Monica

    2015-10-01

    Purpose: Level I evidence demonstrates equivalent pain response after single-fraction (SF) or multifraction (MF) radiation therapy (RT) for bone metastases. The purpose of this study is to provide additional data to inform the incidence and predictors of adverse outcomes after RT for spine metastases. Methods and Materials: At a single institution, 299 uncomplicated spine metastases (without cord compression, prior RT, or surgery) treated with RT from 2008 to 2013 were retrospectively reviewed. The spinal instability neoplastic score (SINS) was used to assess spinal instability. The primary outcome was time to first spinal adverse event (SAE) at the site, including symptomaticmore » vertebral fracture, hospitalization for site-related pain, salvage surgery, interventional procedure, new neurologic symptoms, or cord compression. Fine and Gray's multivariable model assessed associations of the primary outcome with SINS, SF RT, and other significant baseline factors. Propensity score matched analysis further assessed the relationship of SF RT to first SAEs. Results: The cumulative incidence of first SAE after SF RT (n=66) was 6.8% at 30 days, 16.9% at 90 days, and 23.6% at 180 days. For MF RT (n=233), the incidence was 3.5%, 6.4%, and 9.2%, respectively. In multivariable analysis, SF RT (hazard ratio [HR] = 2.8, 95% confidence interval [CI] 1.5-5.2, P=.001) and SINS ≥11 (HR=2.5 , 95% CI 1.3-4.9, P=.007) were predictors of the incidence of first SAE. In propensity score matched analysis, first SAEs had developed in 22% of patients with SF RT versus 6% of those with MF RT cases (HR=3.9, 95% CI 1.6-9.6, P=.003) at 90 days after RT. Conclusion: In uncomplicated spinal metastases treated with RT alone, spinal instability with SINS ≥11 and SF RT were associated with a higher rate of SAEs.« less

  1. Multiscale Modeling of Ionospheric Irregularities

    DTIC Science & Technology

    2014-10-22

    REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Taylor (RT) instabilities, occurs in settings that are as varied as exploding stars (supernovae), inertial confinement fusion (ICF) and macroscopic...These global models, together with the large observational data sets that have been accu- mulated over the years, have led to a much greater under

  2. Mixing of a passive scalar by the instability of a differentially rotating axial pinch

    NASA Astrophysics Data System (ADS)

    Paredes, A.; Gellert, M.; Rüdiger, G.

    2016-04-01

    The mean-field diffusion of passive scalars such as lithium, beryllium or temperature dispersals due to the magnetic Tayler instability of a rotating axial pinch is considered. Our study is carried out within a Taylor-Couette setup for two rotation laws: solid-body quasi-Kepler rotation. The minimum magnetic Prandtl number used is 0.05, and the molecular Schmidt number Sc of the fluid varies between 0.1 and 2. An effective diffusivity coefficient for the mixing is numerically measured by the decay of a prescribed concentration peak located between both cylinder walls. We find that only models with Sc exceeding 0.1 basically provide finite instability-induced diffusivity values. We also find that for quasi-Kepler rotation at a magnetic Mach number Mm ≃ 2, the flow transits from the slow-rotation regime to the fast-rotation regime that is dominated by the Taylor-Proudman theorem. For fixed Reynolds number, the relation between the normalized turbulent diffusivity and the Schmidt number of the fluid is always linear so that also a linear relation between the instability-induced diffusivity and the molecular viscosity results, just in the sense proposed by Schatzman (1977, A&A, 573, 80). The numerical value of the coefficient in this relation reaches a maximum at Mm ≃ 2 and decreases for larger Mm, implying that only toroidal magnetic fields on the order of 1 kG can exist in the solar tachocline.

  3. Taylorism and the Logic of Learning Outcomes

    ERIC Educational Resources Information Center

    Stoller, Aaron

    2015-01-01

    This essay examines the shared philosophical foundations of Fredrick W. Taylor's scientific management principles and the contemporary learning outcomes movement (LOM). It analyses the shared philosophical ground between the focal point of Taylor's system--"the task"--and the conceptualization and deployment of "learning…

  4. The Life and Legacy of G. I. Taylor

    NASA Astrophysics Data System (ADS)

    Batchelor, G. K.

    1996-07-01

    G.I. Taylor, one of the most distinguished physical scientists of this century, used his deep insight and originality to increase our understanding of phenomena such as the turbulent flow of fluids. His interest in the science of fluid flow was not confined to theory; he was one of the early pioneers of aeronautics, and designed a new type of anchor that was inspired by his passion for sailing. Taylor spent most of his working life in the Cavendish Laboratory in Cambridge, where he investigated the mechanics of fluid and solid materials; his discoveries and ideas have had application throughout mechanical, civil, and chemical engineering, meteorology, oceanography and materials science. He was also a noted research leader, and his group in Cambridge became one of the most productive centers for the study of fluid mechanics. How was Taylor able to be innovative in so many different ways? This interesting and unusual biography helps answer that question. Professor Batchelor, himself a student and close collaborator of Taylor, is ideally placed to describe Taylor's life, achievements and background. He does so without introducing any mathematical details, making this book enjoyable reading for a wide range of people--and especially those whose own interests have brought them into contact with the legacy of Taylor.

  5. Multi-modal investigations of compressible Rayleigh-Taylor instability in stratified media Project: w17_multirti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livescu, Daniel; Wieland, Scott A.; Reckinger, Scott

    The simulations compare, for the first time, three practically important background stratifications under thermal equilibrium and out of equilibrium (isentropic, isopycnic) and show significant differences on the instability growth

  6. Studies of Plasma Instabilities using Unstructured Discontinuous Galerkin Method with the Two-Fluid Plasma Model

    NASA Astrophysics Data System (ADS)

    Song, Yang; Srinivasan, Bhuvana

    2017-10-01

    The discontinuous Galerkin (DG) method has the advantage of resolving shocks and sharp gradients that occur in neutral fluids and plasmas. An unstructured DG code has been developed in this work to study plasma instabilities using the two-fluid plasma model. Unstructured meshes are known to produce small and randomized grid errors compared to traditional structured meshes. Computational tests for Rayleigh-Taylor instabilities in radially-converging flows are performed using the MHD model. Choice of grid geometry is not obvious for simulations of instabilities in these circular configurations. Comparisons of the effects for different grids are made. A 2D magnetic nozzle simulation using the two-fluid plasma model is also performed. A vacuum boundary condition technique is applied to accurately solve the Riemann problem on the edge of the plume.

  7. 76 FR 3570 - Proposed Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...-1189; Airspace Docket No. 10-AWP-19] Proposed Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal... proposes to modify Class E airspace at Taylor Airport, Taylor, AZ. Controlled airspace is necessary to accommodate aircraft using the CAMBO One Departure Area Navigation (RNAV) out of Taylor Airport. The FAA is...

  8. The New Taylorism: Hacking at the Philosophy of the University's End

    ERIC Educational Resources Information Center

    Goodman, Robin Truth

    2012-01-01

    This article looks at the critical writings of Mark C. Taylor. It suggests that Mark C. Taylor is rewriting a global imaginary devoid of the kind of citizenship that Henry Giroux claims as the basis for public education. Instead, Taylor wants to see the university take shape as profit-generating. According to Taylor, in lieu of learning to take…

  9. Effects of initial radius of the interface and Atwood number on nonlinear saturation amplitudes in cylindrical Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wanhai; LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190; Yu, Changping

    2014-11-15

    Nonlinear saturation amplitudes (NSAs) of the first two harmonics in classical Rayleigh-Taylor instability (RTI) in cylindrical geometry for arbitrary Atwood numbers have been analytically investigated considering nonlinear corrections up to the fourth-order. The NSA of the fundamental mode is defined as the linear (purely exponential) growth amplitude of the fundamental mode at the saturation time when the growth of the fundamental mode (first harmonic) is reduced by 10% in comparison to its corresponding linear growth, and the NSA of the second harmonic can be obtained in the same way. The analytic results indicate that the effects of the initial radiusmore » of the interface (r{sub 0}) and the Atwood number (A) play an important role in the NSAs of the first two harmonics in cylindrical RTI. On the one hand, the NSA of the fundamental mode first increases slightly and then decreases quickly with increasing A. For given A, the smaller the r{sub 0}/λ (with λ perturbation wavelength) is, the larger the NSA of the fundamental mode is. When r{sub 0}/λ is large enough (r{sub 0}≫λ), the NSA of the fundamental mode is reduced to the prediction of previous literatures within the framework of third-order perturbation theory [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988); S. W. Haan, Phys. Fluids B 3, 2349 (1991)]. On the other hand, the NSA of the second harmonic first decreases quickly with increasing A, reaching a minimum, and then increases slowly. Furthermore, the r{sub 0} can reduce the NSA of the second harmonic for arbitrary A at r{sub 0}≲2λ while increase it for A ≲ 0.6 at r{sub 0}≳2λ. Thus, it should be included in applications where the NSA has a role, such as inertial confinement fusion ignition target design.« less

  10. 20. TURNTABLE WITH CABLE CAR BAY & TAYLOR: View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. TURNTABLE WITH CABLE CAR - BAY & TAYLOR: View to northwest of the Bay and Taylor turntable. The gripman and conductor are turning the car around. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  11. Taylor dispersion of colloidal particles in narrow channels

    NASA Astrophysics Data System (ADS)

    Sané, Jimaan; Padding, Johan T.; Louis, Ard A.

    2015-09-01

    We use a mesoscopic particle-based simulation technique to study the classic convection-diffusion problem of Taylor dispersion for colloidal discs in confined flow. When the disc diameter becomes non-negligible compared to the diameter of the pipe, there are important corrections to the original Taylor picture. For example, the colloids can flow more rapidly than the underlying fluid, and their Taylor dispersion coefficient is decreased. For narrow pipes, there are also further hydrodynamic wall effects. The long-time tails in the velocity autocorrelation functions are altered by the Poiseuille flow.

  12. Simultaneous measurements of concentration and velocity in the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Reese, Dan; Ames, Alex; Noble, Chris; Oakley, Jason; Rothamer, David; Bonazza, Riccardo

    2017-11-01

    The Richtmyer-Meshkov instability (RMI) is studied experimentally in the Wisconsin Shock Tube Laboratory (WiSTL) using a broadband, shear layer initial condition at the interface between a helium-acetone mixture and argon. This interface (Atwood number A=0.7) is accelerated by either a M=1.6 or M=2.2 planar shock wave, and the development of the RMI is investigated through simultaneous planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) measurements at the initial condition and four post-shock times. Three Reynolds stresses, the planar turbulent kinetic energy, the Taylor microscale are calculated from the concentration and velocity fields. The external Reynolds number is estimated from the Taylor scale and the velocity statistics. The results suggest that the flow transitions to fully developed turbulence by the third post-shock time for the high Mach number case, while it may not at the lower Mach number. The authors would like to acknowledge the support of the Department of Energy.

  13. 76 FR 18378 - Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ...-1189; Airspace Docket No. 10-AWP-19] Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will amend Class E airspace at Taylor Airport, Taylor, AZ, to accommodate aircraft using the CAMBO One Departure, and the Area Navigation (RNAV...

  14. Modeling, measuring, and mitigating instability growth in liner implosions on Z

    NASA Astrophysics Data System (ADS)

    Peterson, Kyle

    2015-11-01

    Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. In this talk, we will discuss the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. We present simulations that show electro-thermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent magneto-Rayleigh-Taylor (MRT) instability growth. We discuss measurement results from experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electro-thermal instability growth on well-characterized initially solid aluminum or beryllium rods driven with a 20 MA, 100 ns risetime current pulse. These measurements show good agreement with electro-thermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone. Recent experiments have confirmed simulation predictions of dramatically reduced instability growth in solid metallic rods when thick dielectric coatings are used to mitigate density perturbations arising from the electro-thermal instability. These results provide further evidence that the inherent surface roughness of the target is not the dominant seed for the MRT instability, in contrast with most inertial confinement fusion approaches. These results suggest a new technique for substantially reducing the integral MRT growth in magnetically driven implosions. Indeed, recent results on the Z facility with 100 km/s Al and Be liner implosions show substantially reduced growth. These new results include axially magnetized, CH-coated beryllium liner radiographs in which the inner liner surface is observed to be remarkably straight and uniform at a radius of about 120 microns (convergence ratio ~20). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under

  15. G.I. Taylor and the Trinity Test

    ERIC Educational Resources Information Center

    Deakin, Michael A. B.

    2011-01-01

    The story is often told of the calculation by G.I. Taylor of the yield of the first ever atomic bomb exploded in New Mexico in 1945. It has indeed become a staple of the classroom whenever dimensional analysis is taught. However, while it is true that Taylor succeeded in calculating this figure at a time when it was still classified, most versions…

  16. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  17. Cathedral house & crocker fence, Taylor Street east and north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cathedral house & crocker fence, Taylor Street east and north elevations, perspective view from the northeast - Grace Cathedral, George William Gibbs Memorial Hall, 1051 Taylor Street, San Francisco, San Francisco County, CA

  18. Torque Balances on the Taylor Cylinders in the Geomagnetic Data Assimilation

    NASA Astrophysics Data System (ADS)

    Kuang, W.; Tangborn, A.

    2004-05-01

    In this presentation we report on our continuing effort in geomagnetic data assimilation, aiming at understanding and predicting geomagnetic secular variation on decadal time scales. In particular, we focus on the effect of the torque balances on the cylindrical surfaces in the core co-axial with the Earth's rotation axis (the Taylor cylinders) on the time evolution of assimilated solutions. We use our MoSST core dynamics model and observed geomagnetic field at the Earth's surface derived via Comprehensive Field Model (CFM) for the geomagnetic data assimilation. In our earlier studies, a model solution is selected randomly from our numerical database. It is then assimilated with the observations such that the poloidal field possesses the same field tomography on the core-mantel boundary (CMB) continued downward from surface observations. This tomography change is assumed to be effective through out the outer core. While this approach allows rapid convergence between model solutions and the observations, it also generates sever numerical instabilities: the delicate balance between weak fluid inertia and the magnetic torques on the Taylor cylinders are completely altered. Consequently, the assimilated solution diverges quickly (in approximately 10% of the magnetic free-decay time in the core). To improve the assimilation, we propose a partial penetration of the assimilation from the CMB: The full-scale modification at the CMB decreases linearly and vanish at an interior radius ra. We shall examine from our assimilation tests possible relationships between the convergence rate of the model solutions to observations and the cut-off radius ra. A better assimilation shall serve our nudging tests in near future.

  19. Flute Instability of Expanding Plasma Cloud

    NASA Astrophysics Data System (ADS)

    Dudnikova, Galina; Vshivkov, Vitali

    2000-10-01

    The expansion of plasma against a magnetized background where collisions play no role is a situation common to many plasma phenomena. The character of interaction between expanding plasma and background plasma is depending of the ratio of the expansion velocity to the ambient Alfven velocity. If the expansion speed is greater than the background Alfven speed (super-Alfvenic flows) a collisionless shock waves are formed in background plasma. It is originally think that if the expansion speed is less than Alfvenic speed (sub-Alfvenic flows) the interaction of plasma flows will be laminar in nature. However, the results of laboratory experiments and chemical releases in magnetosphere have shown the development of flute instability on the boundary of expanding plasma (Rayleigh-Taylor instability). A lot of theoretical and experimental papers have been devoted to study the Large Larmor Flute Instability (LLFI) of plasma expanding into a vacuum magnetic field. In the present paper on the base of computer simulation of plasma cloud expansion in magnetizied background plasma the regimes of development and stabilization LLFI for super- and sub-Alfvenic plasma flows are investigated. 2D hybrid numerical model is based on kinetic Vlasov equation for ions and hydrodynamic approximation for electrons. The similarity parameters characterizing the regimes of laminar flows are founded. The stabilization of LLFI takes place with the transition from sub- to super-Alfvenic plasma cloud expansion. The results of the comparision between computer simulation and laboratory simulation are described.

  20. 15. TURNTABLE RECONSTRUCTION BAY & TAYLOR: Photocopy of January ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. TURNTABLE RECONSTRUCTION - BAY & TAYLOR: Photocopy of January 1941 photograph taken during reconstruction of the Bay and Taylor turntable. View to the south. The 'spider' that carries the actual turntable is in place in the pit. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  1. Fisheries Aspects of Seamounts and Taylor Columns

    DTIC Science & Technology

    1986-09-01

    the armorhead population. Due to a probable combination of overfishing and poor recruitment, the large fishery of the early 1970’s began a rapid...ACCESSION NO T I TLE (include Security Classification) FISHERIES ASPECTS OF SEAMOUNTS AND TAYLOR COLUMNS 2 PERSONAL AUTHOR(S) Brainard, Russell E. 13a...retention Seamount oceanography Taylor column Fisheries Nutrient enrichment 𔄃 3ASTRACT (Continue on reverse of necessary and identify by block number

  2. Bright and durable field emission source derived from refractory taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tipmore » end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.« less

  3. Animating Nested Taylor Polynomials to Approximate a Function

    ERIC Educational Resources Information Center

    Mazzone, Eric F.; Piper, Bruce R.

    2010-01-01

    The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…

  4. An imprecise probability approach for squeal instability analysis based on evidence theory

    NASA Astrophysics Data System (ADS)

    Lü, Hui; Shangguan, Wen-Bin; Yu, Dejie

    2017-01-01

    An imprecise probability approach based on evidence theory is proposed for squeal instability analysis of uncertain disc brakes in this paper. First, the squeal instability of the finite element (FE) model of a disc brake is investigated and its dominant unstable eigenvalue is detected by running two typical numerical simulations, i.e., complex eigenvalue analysis (CEA) and transient dynamical analysis. Next, the uncertainty mainly caused by contact and friction is taken into account and some key parameters of the brake are described as uncertain parameters. All these uncertain parameters are usually involved with imprecise data such as incomplete information and conflict information. Finally, a squeal instability analysis model considering imprecise uncertainty is established by integrating evidence theory, Taylor expansion, subinterval analysis and surrogate model. In the proposed analysis model, the uncertain parameters with imprecise data are treated as evidence variables, and the belief measure and plausibility measure are employed to evaluate system squeal instability. The effectiveness of the proposed approach is demonstrated by numerical examples and some interesting observations and conclusions are summarized from the analyses and discussions. The proposed approach is generally limited to the squeal problems without too many investigated parameters. It can be considered as a potential method for squeal instability analysis, which will act as the first step to reduce squeal noise of uncertain brakes with imprecise information.

  5. An Experimental Investigation of Incompressible Richtmyer-Meshkov Instability

    NASA Technical Reports Server (NTRS)

    Jacobs, J. W.; Niederhaus, C. E.

    2002-01-01

    Richtmyer-Meshkov (RM) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and eventually become a turbulent flow. It is closely related to Rayleigh-Taylor instability, which is the instability of a planar interface undergoing constant acceleration, such as caused by the suspension of a heavy fluid over a lighter one in the earth's gravitational field. Like the well-known Kelvin-Helmholtz instability, RM instability is a fundamental hydrodynamic instability which exhibits many of the nonlinear complexities that transform simple initial conditions into a complex turbulent flow. Furthermore, the simplicity of RM instability (in that it requires very few defining parameters), and the fact that it can be generated in a closed container, makes it an excellent test bed to study nonlinear stability theory as well as turbulent transport in a heterogeneous system. However, the fact that RM instability involves fluids of unequal densities which experience negligible gravitational force, except during the impulsive acceleration, requires RM instability experiments to be carried out under conditions of microgravity. This experimental study investigates the instability of an interface between incompressible, miscible liquids with an initial sinusoidal perturbation. The impulsive acceleration is generated by bouncing a rectangular tank containing two different density liquids off a retractable vertical spring. The initial perturbation is produced prior to release by oscillating the tank in the horizontal direction to produce a standing wave. The instability evolves in microgravity as the tank travels up and then down the vertical rails of a drop tower until hitting a shock absorber at the bottom. Planar Laser Induced Fluorescence (PLIF) is employed to visualize the flow. PLIF images are captured by a video camera that travels

  6. The Kelvin-Helmholtz instability in National Ignition Facility hohlraums as a source of gold-gas mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandenboomgaerde, M.; Bonnefille, M.; Gauthier, P.

    Highly resolved radiation-hydrodynamics FCI2 simulations have been performed to model laser experiments on the National Ignition Facility. In these experiments, cylindrical gas-filled hohlraums with gold walls are driven by a 20 ns laser pulse. For the first time, simulations show the appearance of Kelvin-Helmholtz (KH) vortices at the interface between the expanding wall material and the gas fill. In this paper, we determine the mechanisms which generate this instability: the increase of the gas pressure around the expanding gold plasma leads to the aggregation of an over-dense gold layer simultaneously with shear flows. At the surface of this layer, all themore » conditions are met for a KH instability to grow. Later on, as the interface decelerates, the Rayleigh-Taylor instability also comes into play. A potential scenario for the generation of a mixing zone at the gold-gas interface due to the KH instability is presented. Our estimates of the Reynolds number and the plasma diffusion width at the interface support the possibility of such a mix. The key role of the first nanosecond of the laser pulse in the instability occurrence is also underlined.« less

  7. High Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2008-01-01

    Taylor series integration is implemented in a spacecraft trajectory analysis code-the Spacecraft N-body Analysis Program (SNAP) - and compared with the code s existing eighth-order Runge-Kutta Fehlberg time integration scheme. Nine trajectory problems, including near Earth, lunar, Mars and Europa missions, are analyzed. Head-to-head comparison at five different error tolerances shows that, on average, Taylor series is faster than Runge-Kutta Fehlberg by a factor of 15.8. Results further show that Taylor series has superior convergence properties. Taylor series integration proves that it can provide rapid, highly accurate solutions to spacecraft trajectory problems.

  8. Torque Balances on the Taylor Cylinders in the Geomagnetic Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew

    2004-01-01

    In this presentation we report on our continuing effort in geomagnetic data assimilation, aiming at understanding and predicting geomagnetic secular variation on decadal time scales. In particular, we focus on the effect of the torque balances on the cylindrical surfaces in the core co-axial with the Earth's rotation axis (the Taylor cylinders) on the time evolution of assimilated solutions. We use our MoSST core dynamics,model and observed geomagnetic field at the Earth's surface derived via Comprehensive Field Model (CFM) for the geomagnetic data assimilation. In our earlier studies, a model solution is selected randomly from our numerical database. It is then assimilated with the observations such that the poloidal field possesses the same field tomography on the core-mantel boundary (CMB) continued downward from surface observations. This tomography change is assumed to be effective through out the outer core. While this approach allows rapid convergence between model solutions and the observations, it also generates sevee numerical instabilities: the delicate balance between weak fluid inertia and the magnetic torques on the Taylor cylinders are completely altered. Consequently, the assimilated solution diverges quickly (in approximately 10% of the magnetic free-decay time in the core). To improve the assimilation, we propose a partial penetration of the assimilation from the CMB: The full-scale modification at the CMB decreases linearly and vanish at an interior radius r(sub a). We shall examine from our assimilation tests possible relationships between the convergence rate of the model solutions to observations and the cut-off radius r(sub a). A better assimilation shall serve our nudging tests in near future.

  9. Techniques for optimizing nanotips derived from frozen taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the lasermore » to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.« less

  10. Post-midnight equatorial irregularity distributions and vertical drift velocity variations during solstices

    NASA Astrophysics Data System (ADS)

    Su, S.-Y.; Liu, C. H.; Chao, C.-K.

    2018-04-01

    Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.

  11. Fluid-structure interaction in Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Kempf, Martin Horst Willi

    1998-10-01

    The linear stability of a viscous fluid between two concentric, rotating cylinders is considered. The inner cylinder is a rigid boundary and the outer cylinder has an elastic layer exposed to the fluid. The subject is motivated by flow between two adjoining rollers in a printing press. The governing equations of the fluid layer are the incompressible Navier-Stokes equations, and the governing equations of the elastic layer are Navier's equations. A narrow gap, neutral stability, and axisymmetric disturbances are assumed. The solution involves a novel technique for treating two layer stability problems, where an exact solution in the elastic layer is used to isolate the problem in the fluid layer. The results show that the presence of the elastic layer has only a slight effect on the critical Taylor numbers for the elastic parameters of modern printing presses. However, there are parameter values where the critical Taylor number is dramatically different than the classical Taylor-Couette problem.

  12. Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a cylindrical liner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weis, M. R.; Zhang, P.; Lau, Y. Y., E-mail: yylau@umich.edu

    This paper analyzes the coupling of magneto-Rayleigh-Taylor (MRT), sausage, and kink modes in an imploding cylindrical liner, using ideal MHD. A uniform axial magnetic field of arbitrary value is included in each region: liner, its interior, and its exterior. The dispersion relation is solved exactly, for arbitrary radial acceleration (-g), axial wavenumber (k), azimuthal mode number (m), liner aspect ratio, and equilibrium quantities in each region. For small k, a positive g (inward radial acceleration in the lab frame) tends to stabilize the sausage mode, but destabilize the kink mode. For large k, a positive g destabilizes both the kinkmore » and sausage mode. Using the 1D-HYDRA simulation results for an equilibrium model that includes a pre-existing axial magnetic field and a preheated fuel, we identify several stages of MRT-sausage-kink mode evolution. We find that the m = 1 kink-MRT mode has a higher growth rate at the initial stage and stagnation stage of the implosion, and that the m = 0 sausage-MRT mode dominates at the main part of implosion. This analysis also sheds light on a puzzling feature in Harris' classic paper of MRT [E. G. Harris, Phys. Fluids 5, 1057 (1962)]. An attempt is made to interpret the persistence of the observed helical structures [Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] in terms of non-axisymmetric eigenmode.« less

  13. DSM-5 and ADHD - an interview with Eric Taylor.

    PubMed

    Taylor, Eric

    2013-09-12

    In this podcast we talk to Prof Eric Taylor about the changes to the diagnosis of Attention Deficit Hyperactivity Disorder (ADHD) in DSM-5 and how these changes will affect clinical practice. The podcast for this interview is available at: http://www.biomedcentral.com/sites/2999/download/Taylor.mp3.

  14. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan

    2017-05-01

    Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has

  15. Angular Momentum Transport in Thin Magnetically Arrested Disks

    NASA Astrophysics Data System (ADS)

    Marshall, Megan D.; Avara, Mark J.; McKinney, Jonathan C.

    2018-05-01

    In accretion disks with large-scale ordered magnetic fields, the magnetorotational instability (MRI) is marginally suppressed, so other processes may drive angular momentum transport leading to accretion. Accretion could then be driven by large-scale magnetic fields via magnetic braking, and large-scale magnetic flux can build-up onto the black hole and within the disk leading to a magnetically-arrested disk (MAD). Such a MAD state is unstable to the magnetic Rayleigh-Taylor (RT) instability, which itself leads to vigorous turbulence and the emergence of low-density highly-magnetized bubbles. This instability was studied in a thin (ratio of half-height H to radius R, H/R ≈ 0.1) MAD simulation, where it has a more dramatic effect on the dynamics of the disk than for thicker disks. Large amounts of flux are pushed off the black hole into the disk, leading to temporary decreases in stress, then this flux is reprocessed as the stress increases again. Throughout this process, we find that the dominant component of the stress is due to turbulent magnetic fields, despite the suppression of the axisymmetric MRI and the dominant presence of large-scale magnetic fields. This suggests that the magnetic RT instability plays a significant role in driving angular momentum transport in MADs.

  16. A litmus test for exploitation: James Stacey Taylor's stakes and kidneys.

    PubMed

    Kuntz, J R

    2009-12-01

    James Stacy Taylor advances a thorough argument for the legalization of markets in current (live) human kidneys. The market is seemly the most abhorrent type of market, a market where the least well-off sell part of their body to the most well off. Though rigorously defended overall, his arguments concerning exploitation are thin. I examine a number of prominent bioethicists' account of exploitation: most importantly, Ruth Sample's exploitation as degradation. I do so in the context of Taylor's argument, with the aim of buttressing Taylor's position that a regulated kidney market is morally allowable. I argue that Sample fails to provide normative grounds consistent with her claim that exploitation is wrong. I then reformulate her account for consistency and plausibility. Still, this seemingly more plausible view does not show that Taylor's regulated kidney market is prohibitively exploitative of impoverished persons. I tack into place one more piece of support for Taylor's conclusion. (wc. 148).

  17. Jupiter's great red spot revisited. [validity of Taylor column theory

    NASA Technical Reports Server (NTRS)

    Hide, R.

    1972-01-01

    On the original Taylor column theory of Jupiter's Great Red Spot, the fixed latitude of the Spot is taken to imply that the Taylor column in Jupiter's atmosphere is associated with a disturbance such as a topographic feature of the surface Q underlying the atmosphere. The alternative suggestion that the Taylor column is produced by a solid raft floating at depth in the atmosphere is somewhat easier to reconcile with the approximately 10s difference between the respective rotation periods P sub S and P sub R of the Red Spot and of the radio sources, but it does not account so readily for the fixed latitude of the Spot unless it can be shown that the raft is in stable equilibrium under the north-south components of the dynamical forces, including wind effects, acting upon it. A slight wavering of the upper end of the Taylor column relative to the lower end could account at least in part for the most rapid variations in P sub S, but the slow large-amplitude variations in P sub S must reflect changes in the longitudinal motion of either the surface Q or of the raft. By generalizing the Proudman-Taylor theorem to the case of a non-homogeneous fluid it is shown that the Taylor column theory does not imply very special and therefore unlikely horizontal and vertical temperature variations in Jupiter's atmosphere, thus refuting a widely-held belief to the contrary.

  18. G.I. Taylor and the Trinity test

    NASA Astrophysics Data System (ADS)

    Deakin, Michael A. B.

    2011-12-01

    The story is often told of the calculation by G.I. Taylor of the yield of the first ever atomic bomb exploded in New Mexico in 1945. It has indeed become a staple of the classroom whenever dimensional analysis is taught. However, while it is true that Taylor succeeded in calculating this figure at a time when it was still classified, most versions of the story are quite inaccurate historically. The reality is more complex than the usual accounts have it. This article sets out to disentangle fact from fiction.

  19. The numerical solution of ordinary differential equations by the Taylor series method

    NASA Technical Reports Server (NTRS)

    Silver, A. H.; Sullivan, E.

    1973-01-01

    A programming implementation of the Taylor series method is presented for solving ordinary differential equations. The compiler is written in PL/1, and the target language is FORTRAN IV. The reduction of a differential system to rational form is described along with the procedures required for automatic numerical integration. The Taylor method is compared with two other methods for a number of differential equations. Algorithms using the Taylor method to find the zeroes of a given differential equation and to evaluate partial derivatives are presented. An annotated listing of the PL/1 program which performs the reduction and code generation is given. Listings of the FORTRAN routines used by the Taylor series method are included along with a compilation of all the recurrence formulas used to generate the Taylor coefficients for non-rational functions.

  20. Impact of Inner Surface Perturbations on the Stability of Cylindrical Liner Implosion

    NASA Astrophysics Data System (ADS)

    Weis, Matthew; Peterson, Kyle; Hess, Mark; Lau, Y. Y.; Zhang, Peng; Gilgenbach, Ronald

    2015-11-01

    This paper studies the effects of initial perturbations on the inner liner surface (ILS) of an imploding cylindrical liner. In MagLIF, nonuniform preheat of the fuel could provide an additional source of spatial nonuniformity on the ILS. A blast wave generated by the laser preheat might trigger the Richtmyer-Meshkov instability (RM) on the ILS which then serves as another seed to the Rayleigh-Taylor instability (RT) during the stagnation (deceleration) phase of the implosion. Another scenario is that the shock initiated from the outer liner surface, during current rise, propagates inward and is reflected at the ILS. This reflected shock would carry the initial ILS perturbations which then serve as an additional seed for the magneto-RT (MRT) during the acceleration phase of the implosion. These potentially dangerous interactions are analyzed using the 2D HYDRA code. The effects of axial magnetic fields, of the initial surface roughness spectrum, and of gas fill or water fill (to examine deceleration phase RT) are studied. M. R. Weis was supported by the Sandia National Laboratories. This work was also supported by DoE Grant DE-SC0012328.

  1. Distribution of glacial deposits, soils, and permafrost in Taylor Valley, Antarctica

    USGS Publications Warehouse

    Bockheim, James G.; Prentice, M.L.; McLeod, M.

    2008-01-01

    We provide a map of lower and central Taylor Valley, Antarctica, that shows deposits from Taylor Glacier, local alpine glaciers, and grounded ice in the Ross Embayment. From our electronic database, which includes 153 sites from the coast 50 km upvalley to Pearse Valley, we show the distribution of permafrost type and soil subgroups according to Soil Taxonomy. Soils in eastern Taylor Valley are of late Pleistocene age, cryoturbated due to the presence of ground ice or ice-cemented permafrost within 70 cm of the surface, and classified as Glacic and Typic Haploturbels. In central Taylor Valley, soils are dominantly Typic Anhyorthels of mid-Pleistocene age that have dry-frozen permafrost within the upper 70 cm. Salt-enriched soils (Salic Anhyorthels and Petrosalic Anhyorthels) are of limited extent in Taylor Valley and occur primarily on drifts of early Pleistocene and Pliocene age. Soils are less developed in Taylor Valley than in nearby Wright Valley, because of lesser salt input from atmospheric deposition and salt weathering. Ice-cemented permafrost is ubiquitous on Ross Sea, pre-Ross Sea, and Bonney drifts that occur within 28 km of the McMurdo coast. In contrast, dry-frozen permafrost is prevalent on older (???115 ky) surfaces to the west. ?? 2008 Regents of the University of Colorado.

  2. Microbial Energetics Beneath the Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Mikucki, J. A.; Turchyn, A. V.; Farquhar, J.; Priscu, J. C.; Schrag, D. P.; Pearson, A.

    2007-12-01

    Subglacial microbiology is controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem. These factors can all affect metabolic function by influencing electron acceptor and donor availability in the subglacial setting leaving biogeochemical signatures that can be used to determine ecosystem processes. Blood Falls, an iron-rich, episodic subglacial outflow from the Taylor Glacier in the McMurdo Dry Valleys Antarctica provides an example of how microbial community structure and function can provide insight into subglacial hydrology. This subglacial outflow contains cryoconcentrated, Pliocene-age seawater salts that pooled in the upper Taylor Valley and was subsequently covered by the advance of the Taylor Glacier. Biogeochemical measurements, culture-based techniques, and genomic analysis were used to characterize microbes and chemistry associated with the subglacial outflow. The isotopic composition of important geochemical substrates (i.e., δ34Ssulfate, Δ33Ssulfate, δ18Osulfate, δ18Owater, Δ14SDIC) were also measured to provide more detail on subglacial microbial energetics. Typically, subglacial systems, when driven to anoxia by the hydrolysis of organic matter, will follow a continuum of redox chemistries utilizing electron acceptors with decreasing reduction potential (e.g., Fe (III), sulfate, CO2). Our data provide no evidence for sulfate reduction below the Taylor Glacier despite high dissolved organic carbon (450 μM C) and measurable metabolic activity. We contend that, in the case of the Taylor Glacier, the in situ bioenergetic reduction potential has been 'short-circuited' at Fe(III)-reduction and excludes sulfate reduction and methanogenesis. Given the length of time that this marine system has been isolated from phototrophic production (~2 Mya) the ability to degrade and consume increasingly recalcitrant organic carbon is likely an important component to the observed redox chemistry. Our work indicates that glacier hydrology

  3. On Using Taylor's Hypothesis for Three-Dimensional Mixing Layers

    NASA Technical Reports Server (NTRS)

    LeBoeuf, Richard L.; Mehta, Rabindra D.

    1995-01-01

    In the present study, errors in using Taylor's hypothesis to transform measurements obtained in a temporal (or phase) frame onto a spatial one were evaluated. For the first time, phase-averaged ('real') spanwise and streamwise vorticity data measured on a three-dimensional grid were compared directly to those obtained using Taylor's hypothesis. The results show that even the qualitative features of the spanwise and streamwise vorticity distributions given by the two techniques can be very different. This is particularly true in the region of the spanwise roller pairing. The phase-averaged spanwise and streamwise peak vorticity levels given by Taylor's hypothesis are typically lower (by up to 40%) compared to the real measurements.

  4. Magnetohydrodynamical Effects on Nuclear Deflagration Fronts in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Hristov, Boyan; Collins, David C.; Hoeflich, Peter; Weatherford, Charles A.; Diamond, Tiara R.

    2018-05-01

    This article presents a study of the effects of magnetic fields on non-distributed nuclear burning fronts as a possible solution to a fundamental problem for the thermonuclear explosion of a Chandrasekhar mass ({M}Ch}) white dwarf (WD), the currently favored scenario for the majority of Type Ia SNe. All existing 3D hydrodynamical simulations predict strong global mixing of the burning products due to Rayleigh–Taylor (RT) instabilities, which contradicts observations. As a first step toward studying the flame physics, we present a set of computational magnet-hydrodynamic models in rectangular flux tubes, resembling a small inner region of a WD. We consider initial magnetic fields up to {10}12 {{G}} of various orientations. We find an increasing suppression of RT instabilities starting at about {10}9 {{G}}. The front speed tends to decrease with increasing magnitude up to about {10}11 {{G}}. For even higher fields new small-scale, finger-like structures develop, which increase the burning speed by a factor of 3 to 4 above the field-free RT-dominated regime. We suggest that the new instability may provide sufficiently accelerated energy production during the distributed burning regime to go over the Chapman–Jougey limit and trigger a detonation. Finally, we discuss the possible origins of high magnetic fields during the final stage of the progenitor evolution or the explosion.

  5. Development of the electrothermal instability from resistive inclusions

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Awe, T. J.; Bauer, B. S.; Yates, K. C.; Yelton, W. G.; Hutchinson, T. M.; Fuelling, S.; McKenzie, B. B.; Peterson, K. J.

    2016-10-01

    The magneto Rayleigh-Taylor (MRT) instability limits the performance of all magnetically imploded systems. In the case of compressing metal liners, as in the magnetized liner inertial fusion concept, a dominant seed for MRT is believed to be the electrothermal instability (ETI). Here, linear theory predicts the most unstable mode manifests as horizontal (i.e. perpendicular to current flow) bands of heated and expanded metal. However, how do such bands, known as striations, actually develop from a smooth metal surface? Recent experiments on ETI evolution, performed at the University of Nevada, Reno, provide a possible answer: pre-shot characterization of aluminum rods show numerous resistive inclusions, several microns in diameter and distributed throughout the rod. In this work, we use 3D MHD simulation and analytic theory to explore how current redistribution around these isolated inclusions, combined with ETI, can lead to rapid formation of the global striation structures. Later in time, striations expand and form density perturbations much larger than the initial inclusion size. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04-94AL85000.

  6. 78 FR 12307 - Taylor, G. Tom; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-5705-001] Taylor, G. Tom; Notice of Filing Take notice that on February 14, 2013, G. Tom Taylor filed an application to hold interlocking positions pursuant to section 305(b) of the Federal Power Act, 16 U.S.C. 825d(b), Part 45 of the...

  7. On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks

    NASA Astrophysics Data System (ADS)

    Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.

    2016-06-01

    We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.

  8. Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.

    2009-09-01

    Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MégaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ =35, 50, and 70 μm) and two-mode perturbations (wavelength λ =35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.

  9. Baker & Taylor's George Coe

    ERIC Educational Resources Information Center

    Fialkoff, Francine

    2009-01-01

    In his 30 years as a library wholesaler, first as VP and general manager of Brodart Books, Library, and School Automation divisions and since 2000 as president of the Library & Education division of Baker & Taylor (B&T), George Coe has been instrumental in a whole host of innovations. They go way beyond the selection, processing, and delivery of…

  10. Sedimentation from flocculated suspensions in the presence of settling-driven gravitational interface instabilities

    NASA Astrophysics Data System (ADS)

    Rouhnia, Mohamad; Strom, Kyle

    2015-09-01

    We experimentally examine sedimentation from a freshwater suspension of clay flocs overlying saltwater in the presence of gravitational instabilities. The study seeks to determine: (1) if flocculation hampers or alters interface instability formation; (2) how the removal rates of sediment from the buoyant layer compare to those predicted by individual floc settling; and (3) whether or not it is possible to develop a model for effective settling velocity. The experiments were conducted in a tank at isothermal conditions. All experiments were initially stably stratified but later developed instabilities near the interface that grew into downward convecting plumes of fluid and sediment. Throughout, we measured sediment concentration in the upper and lower layers, floc size, and plume descent rates. The data showed that flocculation modifies the mixture settling velocity, and therefore shifts the mode of interface instability from double-diffusive (what one would expect from unflocculated clay) to settling-driven leaking and Rayleigh-Taylor instability formation. Removal rates of sediment from the upper layer in the presence of these instabilities were on the same order of magnitude as those predicted by individual floc settling. However, removal rates were found to better correlate with the speed of the interface plumes. A simple force-balance model was found to be capable of reasonably describing plume velocity based on concentration in the buoyant layer. This relation, coupled with a critical Grashof number and geometry relations, allowed us to develop a model for the effective settling velocity of the mixture based solely on integral values of the upper layer.

  11. A Hydrodynamic Instability Is Used to Create Aesthetically Appealing Patterns in Painting

    PubMed Central

    Zetina, Sandra; Godínez, Francisco A.; Zenit, Roberto

    2015-01-01

    Painters often acquire a deep empirical knowledge of the way in which paints and inks behave. Through experimentation and practice, they can control the way in which fluids move and deform to create textures and images. David Alfaro Siqueiros, a recognized Mexican muralist, invented an accidental painting technique to create new and unexpected textures. By pouring layers of paint of different colors on a horizontal surface, the paints infiltrate into each other creating patterns of aesthetic value. In this investigation, we reproduce the technique in a controlled manner. We found that for the correct color combination, the dual viscous layer becomes Rayleigh-Taylor unstable: the density mismatch of the two color paints drives the formation of a spotted pattern. Experiments and a linear instability analysis were conducted to understand the properties of the process. We also argue that this flow configuration can be used to study the linear properties of this instability. PMID:25942586

  12. Evaluating gyro-viscosity in the Kelvin-Helmholtz instability by kinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeda, Takayuki, E-mail: taka.umeda@nagoya-u.jp; Yamauchi, Natsuki; Wada, Yasutaka

    2016-05-15

    In the present paper, the finite-Larmor-radius (gyro-viscous) term [K. V. Roberts and J. B. Taylor, Phys. Rev. Lett. 8, 197–198 (1962)] is evaluated by using a full kinetic Vlasov simulation result of the Kelvin-Helmholtz instability (KHI). The velocity field and the pressure tensor are calculated from the high-resolution data of the velocity distribution functions obtained by the Vlasov simulation, which are used to approximate the Finite-Larmor-Radius (FLR) term according to Roberts and Taylor [Phys. Rev. Lett. 8, 197–198 (1962)]. The direct comparison between the pressure tensor and the FLR term shows an agreement. It is also shown that the anisotropicmore » pressure gradient enhanced the linear growth of the KHI when the inner product between the vorticity of the primary velocity shear layer and the magnetic field is negative, which is consistent with the previous FLR-magnetohydrodynamic simulation result. This result suggests that it is not sufficient for reproducing the kinetic simulation result by fluid simulations to include the FLR term (or the pressure tensor) only in the equation of motion for fluid.« less

  13. Development of the striation and filament form of the electrothermal instability

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Awe, T. J.; Yelton, W. G.; McKenzie, B. B.; Peterson, K. J.; Bauer, B. S.; Hutchinson, T. M.; Fuelling, S.; Yates, K. C.; Shipley, G.

    2017-10-01

    Magnetically imploded liners have broad application to ICF, dynamic material property studies, and flux compression. An important consideration in liner performance is the electrothermal instability (ETI), an Ohmic heating instability that manifests in 2 ways: assuming vertical current flow, ETI forms hot, horizontal bands (striations) in metals, and vertical filaments in plasmas. Striations are especially relevant in that they can develop into density perturbations, which then couple to the dangerous magneto Rayleigh-Taylor (MRT) instability during liner acceleration. Recent visible emission images of Ohmically heated rods show evidence of both the striation and filament form of ETI, suggesting several questions: (1) can simulation qualitatively reproduce the data? (2) If so, what seeds the striation ETI, and how does it transition to filaments? (3) Does the striation develop into a strong density perturbation, important for MRT? In this work, we use analytic theory and 3D MHD simulation to study how isolated resistive inclusions, embedded in a perfectly smooth rod and communicating through current redistribution, can be used to address the above questions. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. DOE NNSA under contract DE-NA0003525.

  14. Neo-Taylorism in Educational Administration?

    ERIC Educational Resources Information Center

    Gronn, Peter C.

    1982-01-01

    Reviews eight recent observational studies of school administrators and criticizes the studies' use of "time and motion" assumptions drawn from Frederick Winslow Taylor's ideas. Outlines an alternate approach based on "thick" description of administrators' work, including their talk, as exemplified in James Boswell's biography…

  15. Simultaneous use of camera and probe diagnostics to unambiguously identify and study the dynamics of multiple underlying instabilities during the route to plasma turbulence.

    PubMed

    Thakur, S C; Brandt, C; Light, A; Cui, L; Gosselin, J J; Tynan, G R

    2014-11-01

    We use multiple-tip Langmuir probes and fast imaging to unambiguously identify and study the dynamics of underlying instabilities during the controlled route to fully-developed plasma turbulence in a linear magnetized helicon plasma device. Langmuir probes measure radial profiles of electron temperature, plasma density and potential; from which we compute linear growth rates of instabilities, cross-phase between density and potential fluctuations, Reynold's stress, particle flux, vorticity, time-delay estimated velocity, etc. Fast imaging complements the 1D probe measurements by providing temporally and spatially resolved 2D details of plasma structures associated with the instabilities. We find that three radially separated plasma instabilities exist simultaneously. Density gradient driven resistive drift waves propagating in the electron diamagnetic drift direction separate the plasma into an edge region dominated by strong, velocity shear driven Kelvin-Helmholtz instabilities and a central core region which shows coherent Rayleigh-Taylor modes propagating in the ion diamagnetic drift direction. The simultaneous, complementary use of both probes and camera was crucial to identify the instabilities and understand the details of the very rich plasma dynamics.

  16. Rapid Calculation of Spacecraft Trajectories Using Efficient Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2011-01-01

    A variable-order, variable-step Taylor series integration algorithm was implemented in NASA Glenn's SNAP (Spacecraft N-body Analysis Program) code. SNAP is a high-fidelity trajectory propagation program that can propagate the trajectory of a spacecraft about virtually any body in the solar system. The Taylor series algorithm's very high order accuracy and excellent stability properties lead to large reductions in computer time relative to the code's existing 8th order Runge-Kutta scheme. Head-to-head comparison on near-Earth, lunar, Mars, and Europa missions showed that Taylor series integration is 15.8 times faster than Runge- Kutta on average, and is more accurate. These speedups were obtained for calculations involving central body, other body, thrust, and drag forces. Similar speedups have been obtained for calculations that include J2 spherical harmonic for central body gravitation. The algorithm includes a step size selection method that directly calculates the step size and never requires a repeat step. High-order Taylor series integration algorithms have been shown to provide major reductions in computer time over conventional integration methods in numerous scientific applications. The objective here was to directly implement Taylor series integration in an existing trajectory analysis code and demonstrate that large reductions in computer time (order of magnitude) could be achieved while simultaneously maintaining high accuracy. This software greatly accelerates the calculation of spacecraft trajectories. At each time level, the spacecraft position, velocity, and mass are expanded in a high-order Taylor series whose coefficients are obtained through efficient differentiation arithmetic. This makes it possible to take very large time steps at minimal cost, resulting in large savings in computer time. The Taylor series algorithm is implemented primarily through three subroutines: (1) a driver routine that automatically introduces auxiliary variables and

  17. Taylor Impact Tests and Simulations on PBX 9501

    NASA Astrophysics Data System (ADS)

    Clements, Brad; Thompson, Darla G.; Luscher, D. J.; Deluca, Racci

    2011-06-01

    Taylor impact tests have been conducted previously on plastic bonded explosives (PBXs) to characterize the stress state of these materials as they impact smooth and flat steel anvil surfaces at speeds of ~100m/s (i.e. Christopher, et al, 11th Detonation Symposium). In 2003, C. Liu and R. Ellis (unpublished, Los Alamos National Laboratory) performed Taylor tests on PBX 9501 up to speeds of 115 m/s, capturing impact images. In the work presented here, we have extended these tests to velocities of 200 m/s using a composite-lined gun barrel and no specimen sabot. Specimen images are used to validate the thermo-mechanical constitutive model ViscoSCRAM. ViscoSCRAM has been parameterized for PBX 9501 in uniaxial stress configurations. Simulating Taylor impact experiments tests the model in situations undergoing extreme damage. In addition, experimental variations to specimen confinement and friction are introduced in an attempt to establish ignition thresholds in this velocity regime.

  18. Instability of long fingers in Hele--Shaw flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, C.W.; Homsy, G.M.

    1985-06-01

    Experiments on steady fingers and their stability in Hele--Shaw cells, are reported. It is shown that the shape of steady fingers scales with a modified capillary number, Ca', as suggested by McLean and Saffman (J. Fluid. Mech. 102, 455 (1981) and our previous analysis (J. Fluid Mech. 139, 291 (1984)). The behavior at large Ca' is investigated by using a wide Hele--Shaw cell. It is observed that such fingers are unstable for Ca'>100, in agreement with the prediction by Taylor and Saffman (second symposium on naval hydrodynamics, 1958, p. 277) of instability as Ca'..-->..infinity. The mechanism is identified as onemore » of tip-splitting, which occurs periodically in the weakly supercritical regime, and in a more complex fashion for large Ca'.« less

  19. Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecover, J. D.; Chittenden, J. P.

    A critical limitation of magnetically imploded systems such as magnetized liner inertial fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is the magneto-Rayleigh-Taylor (MRT) instability which primarily disrupts the outer surface of the liner. MagLIF-relevant experiments have showed large amplitude multi-mode MRT instability growth growing from surface roughness [McBride et al., Phys. Rev. Lett. 109, 135004 (2012)], which is only reproduced by 3D simulations using our MHD code Gorgon when an artificially azimuthally correlated initialisation is added. We have shown that the missing azimuthal correlation could be provided by a combination of the electro-thermal instability (ETI) and anmore » “electro-choric” instability (ECI); describing, respectively, the tendency of current to correlate azimuthally early in time due to temperature dependent Ohmic heating; and an amplification of the ETI driven by density dependent resistivity around vapourisation. We developed and implemented a material strength model in Gorgon to improve simulation of the solid phase of liner implosions which, when applied to simulations exhibiting the ETI and ECI, gave a significant increase in wavelength and amplitude. Full circumference simulations of the MRT instability provided a significant improvement on previous randomly initialised results and approached agreement with experiment.« less

  20. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  1. Nonlinear Saturation Amplitude in Classical Planar Richtmyer-Meshkov Instability

    NASA Astrophysics Data System (ADS)

    Liu, Wan-Hai; Wang, Xiang; Jiang, Hong-Bin; Ma, Wen-Fang

    2016-04-01

    The classical planar Richtmyer-Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh-Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI. Supported by the National Natural Science Foundation of China under Grant Nos. 11472278 and 11372330, the Scientific Research Foundation of Education Department of Sichuan Province under Grant No. 15ZA0296, the Scientific Research Foundation of Mianyang Normal University under Grant Nos. QD2014A009 and 2014A02, and the National High-Tech ICF Committee

  2. Nonlinear modeling of wave-topography interactions, shear instabilities and shear induced wave breaking using vortex method

    NASA Astrophysics Data System (ADS)

    Guha, Anirban

    2017-11-01

    Theoretical studies on linear shear instabilities as well as different kinds of wave interactions often use simple velocity and/or density profiles (e.g. constant, piecewise) for obtaining good qualitative and quantitative predictions of the initial disturbances. Moreover, such simple profiles provide a minimal model to obtain a mechanistic understanding of shear instabilities. Here we have extended this minimal paradigm into nonlinear domain using vortex method. Making use of unsteady Bernoulli's equation in presence of linear shear, and extending Birkhoff-Rott equation to multiple interfaces, we have numerically simulated the interaction between multiple fully nonlinear waves. This methodology is quite general, and has allowed us to simulate diverse problems that can be essentially reduced to the minimal system with interacting waves, e.g. spilling and plunging breakers, stratified shear instabilities (Holmboe, Taylor-Caulfield, stratified Rayleigh), jet flows, and even wave-topography interaction problem like Bragg resonance. We found that the minimal models capture key nonlinear features (e.g. wave breaking features like cusp formation and roll-ups) which are observed in experiments and/or extensive simulations with smooth, realistic profiles.

  3. Reconnaissance and deep-drill site selection on Taylor Dome, Antarctica

    NASA Technical Reports Server (NTRS)

    Grootes, Pieter M.; Waddington, Edwin D.

    1993-01-01

    Taylor Dome is a small ice dome near the head of Taylor Valley, Southern Victoria Land. The location of the dome, just west of the Transantarctic Mountains, is expected to make the composition of the accumulating snow sensitive to changes in the extent of the Ross Ice Shelf. Thus, it is linked to the discharge of the West Antarctic Ice Sheet but protected against direct influences of glacial-interglacial sea-level rise. The record of past climatic and environmental changes in the ice provides a valuable complement to the radiocarbon-dated proxy record of climate derived from perched deltas, strandlines, and moraines that have been obtained in the nearby Dry Valleys. We carried out a reconnaissance of the Taylor Dome area over the past two field seasons to determine the most favorable location to obtain a deep core to bedrock. A stake network has been established with an 80-km line roughly along the crest of Taylor Dome, and 40-km lines parallel to it and offset by 10 km. These lines have been surveyed 1990/91, and the positions of 9 grid points have been determined with geoceivers. A higher density stake network was placed and surveyed around the most likely drill area in the second year. Ground-based radar soundings in both years provided details on bedrock topography and internal layering of the ice in the drill area. An airborne radar survey in January 1992, completed the radar coverage of the Taylor Dome field area.

  4. Computational investigation of reshock strength in hydrodynamic instability growth at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bender, Jason; Raman, Kumar; Huntington, Channing; Nagel, Sabrina; Morgan, Brandon; Prisbrey, Shon; MacLaren, Stephan

    2017-10-01

    Experiments at the National Ignition Facility (NIF) are studying Richtmyer-Meshkov and Rayleigh-Taylor hydrodynamic instabilities in multiply-shocked plasmas. Targets feature two different-density fluids with a multimode initial perturbation at the interface, which is struck by two X-ray-driven shock waves. Here we discuss computational hydrodynamics simulations investigating the effect of second-shock (``reshock'') strength on instability growth, and how these simulations are informing target design for the ongoing experimental campaign. A Reynolds-Averaged Navier Stokes (RANS) model was used to predict motion of the spike and bubble fronts and the mixing-layer width. In addition to reshock strength, the reshock ablator thickness and the total length of the target were varied; all three parameters were found to be important for target design, particularly for ameliorating undesirable reflected shocks. The RANS data are compared to theoretical models that predict multimode instability growth proportional to the shock-induced change in interface velocity, and to currently-available data from the NIF experiments. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. LLNL-ABS-734611.

  5. Fluctuation scaling, Taylor's law, and crime.

    PubMed

    Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May

    2014-01-01

    Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  6. Bistability and chaos in the Taylor-Green dynamo.

    PubMed

    Yadav, Rakesh K; Verma, Mahendra K; Wahi, Pankaj

    2012-03-01

    Using direct numerical simulations, we study dynamo action under Taylor-Green forcing for a magnetic Prandtl number of 0.5. We observe bistability with weak- and strong-magnetic-field branches. Both the dynamo branches undergo subcritical dynamo transition. We also observe a host of dynamo states including constant, periodic, quasiperiodic, and chaotic magnetic fields. One of the chaotic states originates through a quasiperiodic route with phase locking, while the other chaotic attractor appears to follow the Newhouse-Ruelle-Takens route to chaos. We also observe intermittent transitions between quasiperiodic and chaotic states for a given Taylor-Green forcing.

  7. Atmospheric negative corona discharge using a Taylor cone as liquid electrode

    NASA Astrophysics Data System (ADS)

    Sekine, Ryuto; Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2012-10-01

    We examined characteristics of atmospheric negative corona discharge using liquid needle cathode. As a liquid needle cathode, we adopted Taylor cone with conical shape. A nozzle with inner diameter of 10 mm is filled with liquid, and a plate electrode is placed at 10 mm above the nozzle. By applying a dc voltage between electrodes, Taylor cone is formed. To change the liquid property, we added sodium dodecyl sulfate to reduce the surface tension, sodium sulfate to increase the conductivity, and polyvinyl alcohol to increase the viscosity, in distilled water. The liquid, with high surface tension such as pure water could not form a Taylor cone. When we reduced surface tension, a Taylor cone was formed and the stable corona discharge was observed at the tip of the cone. When we increased viscosity, a liquid filament protruded from the solution surface was formed and corona discharge was observed along the filament at position 0.7-1.0 mm above from the tip of the cone. Increasing the conductivity resulted in the higher light intensity of corona and the lower corona onset voltage. When we use the metal needle electrode, the corona discharge depends on the voltage and the gap length. Using Taylor cone, different types of discharges were observed by changing the property of the liquid.

  8. Beyond linear fields: the Lie–Taylor expansion

    PubMed Central

    2017-01-01

    The work extends the linear fields’ solution of compressible nonlinear magnetohydrodynamics (MHD) to the case where the magnetic field depends on superlinear powers of position vector, usually, but not always, expressed in Cartesian components. Implications of the resulting Lie–Taylor series expansion for physical applicability of the Dolzhansky–Kirchhoff (D–K) equations are found to be positive. It is demonstrated how resistivity may be included in the D–K model. Arguments are put forward that the D–K equations may be regarded as illustrating properties of nonlinear MHD in the same sense that the Lorenz equations inform about the onset of convective turbulence. It is suggested that the Lie–Taylor series approach may lead to valuable insights into other fluid models. PMID:28265187

  9. Planning for RtI

    ERIC Educational Resources Information Center

    Robins, Jennifer; Antrim, Patricia

    2013-01-01

    In 2004 the Individuals with Disabilities Education Act authorized funding for Response to Intervention (RtI) instruction in the United States. By 2011, 71 percent of school districts had adopted RtI (Institute of Education Sciences 2011). The goal of RtI is to provide personalized, just-in-time intervention in reading and math for students who…

  10. Hepatitis C Virus RNA Real-Time Quantitative RT-PCR Method Based on a New Primer Design Strategy.

    PubMed

    Chen, Lida; Li, Wenli; Zhang, Kuo; Zhang, Rui; Lu, Tian; Hao, Mingju; Jia, Tingting; Sun, Yu; Lin, Guigao; Wang, Lunan; Li, Jinming

    2016-01-01

    Viral nucleic acids are unstable when improperly collected, handled, and stored, resulting in decreased sensitivity of currently available commercial quantitative nucleic acid testing kits. Using known unstable hepatitis C virus RNA, we developed a quantitative RT-PCR method based on a new primer design strategy to reduce the impact of nucleic acid instability on nucleic acid testing. The performance of the method was evaluated for linearity, limit of detection, precision, specificity, and agreement with commercial hepatitis C virus assays. Its clinical application was compared to that of two commercial kits--Cobas AmpliPrep/Cobas TaqMan (CAP/CTM) and Kehua. The quantitative RT-PCR method delivered a good performance, with a linearity of R(2) = 0.99, a total limit of detection (genotypes 1 to 6) of 42.6 IU/mL (95% CI, 32.84 to 67.76 IU/mL), a CV of 1.06% to 3.34%, a specificity of 100%, and a high concordance with the CAP/CTM assay (R(2) = 0.97), with a means ± SD value of -0.06 ± 1.96 log IU/mL (range, -0.38 to 0.25 log IU/mL). The method was superior to commercial assays in detecting unstable hepatitis C virus RNA (P < 0.05). This quantitative RT-PCR method can effectively eliminate the influence of RNA instability on nucleic acid testing. The principle of primer design strategy may be applied to the detection of other RNA or DNA viruses. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  11. Nature and significance of Austin-Taylor unconformity on western margin of east Texas basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surles, M.A. Jr.

    1984-04-01

    The Taylor Marl unconformably overlies the Austin Chalk on the western margin of the East Texas basin. Along this contact, up to 275 ft (84 m) of upper Austin is missing in the Waco area and up to 450 ft (137 m) in Bell County. However, the Austin Chalk appears to have been more-or-less uniformly deposited throughout the study area. Apparently regional uplift caused a regression that terminated Austin deposition and was related to the erosion of the upper Chalk. While the unconformity is areally extensive, slightly angular, and accounts for a relatively long period of time, the mechanism ofmore » erosion that caused the unconformity is still uncertain. Erosion was terminated by the deposition of the lower Taylor Marl. Taylor A, the lowermost subdivision of the lower Taylor, was deposited in a near-shore environment that was highly variable. Of particular interest is the relationship of this unconformity to structure and probably to oil occurrence in the Austin Chalk in McLennan and Falls Counties. Major Austin fracturing, which apparently does not extend into the Taylor in Falls County, clearly indicates that structure in the Chalk, at least in part, antedates Taylor deposition. Oil occurrence in the Chalk is clearly related to fracturing and probably is localized by post-Austin-pre-Taylor fracture systems.« less

  12. Statistical characterization of planar two-dimensional Rayleigh-Taylor mixing layers

    NASA Astrophysics Data System (ADS)

    Sendersky, Dmitry

    2000-10-01

    The statistical evolution of a planar, randomly perturbed fluid interface subject to Rayleigh-Taylor instability is explored through numerical simulation in two space dimensions. The data set, generated by the front-tracking code FronTier, is highly resolved and covers a large ensemble of initial perturbations, allowing a more refined analysis of closure issues pertinent to the stochastic modeling of chaotic fluid mixing. We closely approach a two-fold convergence of the mean two-phase flow: convergence of the numerical solution under computational mesh refinement, and statistical convergence under increasing ensemble size. Quantities that appear in the two-phase averaged Euler equations are computed directly and analyzed for numerical and statistical convergence. Bulk averages show a high degree of convergence, while interfacial averages are convergent only in the outer portions of the mixing zone, where there is a coherent array of bubble and spike tips. Comparison with the familiar bubble/spike penetration law h = alphaAgt 2 is complicated by the lack of scale invariance, inability to carry the simulations to late time, the increasing Mach numbers of the bubble/spike tips, and sensitivity to the method of data analysis. Finally, we use the simulation data to analyze some constitutive properties of the mixing process.

  13. Phase behavior of colloidal dimers and hydrodynamic instabilities in binary mixtures

    NASA Astrophysics Data System (ADS)

    Milinkovic, K.

    2013-05-01

    We use computer simulations to study colloidal suspensions comprised of either bidisperse spherical particles or monodisperse dimer particles. The two main simulation techniques employed are a hybrid between molecular dynamics and stochastic rotation dynamics (MD-SRD), and a Monte Carlo (MC) algorithm. MD-SRD allows us to take Brownian motion and hydrodynamic interactions into account, while we use MC simulations to study equilibrium phase behavior. The first part of this thesis is dedicated to studying the Rayleigh-Taylor-like hydrodynamic instabilities which form in binary colloidal mixtures. Configurations with initially inhomogeneous distributions of colloidal species let to sediment in confinement will undergo the instability, and here we have studied the formation, evolution and the structural organization of the colloids within the instability as a function of the properties of the binary mixture. We found that the distribution of the colloids within the instability does not depend significantly on the composition of the mixtures, but does depend greatly on the relative magnitudes of the particle Peclet numbers. To follow the time evolution of the instability formation we calculated the spatial colloid velocity correlation functions, observing alternating regions in which the particle sedimentation velocities are correlated and anticorrelated. These observations are consistent with the network-like structures which are characteristic for Rayleigh-Taylor instabilities. We also calculated the growth rates of the unstable modes both from our simulation data and theoretically, finding good agreement between the obtained results. The second part of this thesis focuses on the phase behavior of monodisperse dimer systems. We first studied the phase behavior of hard snowman-shaped particles which consist of tangential hard spheres with different diameters. We used Monte Carlo simulations and free energy calculations to obtain the phase diagram as a function of the

  14. Using Growth and Arrest of Richtmyer-Meshkov Instabilities and Lagrangian Simulations to Study High-Rate Material Strength

    NASA Astrophysics Data System (ADS)

    Prime, Michael; Vaughan, Diane; Preston, Dean; Oro, David; Buttler, William

    2013-06-01

    Rayleigh-Taylor instabilities have been widely used to study the deviatoric (flow) strength of solids at high strain rates. More recently, experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/sec using Richtmyer-Meshkov (RM) instabilities. Buttler et al. [J. Fluid Mech., 2012] recently reported experimental results for RM instability growth but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and detailed interpretation from numerical simulations of the Buttler experiments on copper. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data in spite of the PTW model being calibrated on lower strain rate data. The numerical simulations are used to 1) examine various assumptions previously made in an analytical model, 2) to estimate the sensitivity of such experiments to material strength and 3) to explore the possibility of extracting meaningful strength information in the face of complicated spatial and temporal variations of stress, pressure, and temperature during the experiments.

  15. PEOPLE IN PHYSICS: Interview with Charles Taylor

    NASA Astrophysics Data System (ADS)

    Pople, Conducted by Stephen

    1996-07-01

    Charles Taylor started his university teaching career at UMIST in 1948. In 1965 he became Professor and Head of the Department of Physics at University College, Cardiff. He was a Vice-President of the Institute of Physics from 1970 to 1975, and Professor of Experimental Physics at the Royal Institution from 1977 until 1989. Over the years, Professor Taylor has delighted audiences of all ages with his demonstration lectures, including the Royal Institution Christmas Lectures televised in 1971 and 1989. In 1986 he became the first recipient of the Royal Society's Michael Faraday Award for contributions to the public understanding of science. His many books include Exploring Music, The Art and Science of the Lecture Demonstration, and also the Oxford Children's Book of Science, co-written with interviewer Stephen Pople.

  16. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  17. Reconnaissance study of the Taylor Mountains pluton, southwestern Alaska

    USGS Publications Warehouse

    Hudson, Travis L.; Miller, Marti L.; Klimasauskas, Edward P.; Layer, Paul W.

    2010-01-01

    The Taylor Mountains pluton is a Late Cretaceous to early Tertiary (median age 65 + or ? 2 Ma) epizonal, composite biotite granite stock located about 235 km (145 mi) northeast of Dillingham in southwestern Alaska. This 30 km2 (12 mi2) pluton has sharp and discordant contacts with hornfels that developed in Upper Cretaceous clastic sedimentary rocks of the Kuskokwim Group. The three intrusive phases in the Taylor Mountains pluton, in order of emplacement, are (1) porphyritic granite containing large K-feldspar phenocrysts in a coarse-grained groundmass, (2) porphyritic granite containing large K-feldspar and smaller, but still coarse, plagioclase, quartz, and biotite phenocrysts in a fine-grained groundmass, and (3) fine-grained, leucocratic, equigranular granite. The porphyritic granites have different emplacement histories, but similar compositions; averages are 69.43 percent SiO2, 1.62 percent CaO, 5.23 percent FeO+MgO, 3.11 percent Na2O, and 4.50 percent K2O. The fine-grained, equigranular granite is distinctly felsic compared to porphyritic granite; it averages 75.3 percent SiO2, 0.49 percent CaO, 1.52 percent FeO+MgO, 3.31 percent Na2O, and 4.87 percent K2O. Many trace elements including Ni, Cr, Sc, V, Ba, Sr, Zr, Y, Nb, La, Ce, Th, and Nd are strongly depleted in fine-grained equigranular granite. Trace elements are not highly enriched in any of the granites. Known hydrothermal alteration is limited to one tourmaline-quartz replacement zone in porphyritic granite. Mineral deposits in the Taylor Mountains area are primarily placer gold (plus wolframite, cassiterite, and cinnabar); sources for these likely include scattered veins in hornfels peripheral to the Taylor Mountain pluton. The granite magmas that formed the Taylor Mountains pluton are thought to represent melted continental crust that possibly formed in response to high heat flow in the waning stage of Late Cretaceous subduction beneath interior Alaska.

  18. A cosmological Slavnov-Taylor identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Hael; Holman, R.; Vardanyan, Tereza, E-mail: hcollins@andrew.cmu.edu, E-mail: rh4a@andrew.cmu.edu, E-mail: tvardany@andrew.cmu.edu

    We develop a method for treating the consistency relations of inflation that includes the full time-evolution of the state. This approach relies only on the symmetries of the inflationary setting, in particular a residual conformal symmetry in the spatial part of the metric, along with general properties which hold for any quantum field theory. As a result, the consistency relations that emerge, which are essentially the Slavnov-Taylor identities associated with this residual conformal symmetry, apply very generally: they are true of the full Green's functions, hold largely independently of the particular inflationary model, and can be used for arbitrary states.more » We illustrate these techniques by showing the form assumed by the standard consistency relation between the two and three-point functions for the primordial scalar fluctuations when they are in a Bunch-Davies state. But because we have included the full evolution of the state, this approach works for a general initial state as well and does not need to have assumed that inflation began in the Bunch-Davies state. We explain how the Slavnov-Taylor identity is modified for these more general states.« less

  19. Experiments to assess preheat in blast-wave-drive instability experiments

    NASA Astrophysics Data System (ADS)

    Krauland, Christine; Drake, Paul; Kuranz, Carolyn; Grosskopf, Michael; Boehly, Tom

    2009-11-01

    The use of multi-kilojoule, ns lasers to launch shock waves has become a standard method for initiating hydrodynamic experiments in Laboratory Astrophysics. However, the intense laser ablation that creates moving plasma also leads to the production of unwanted energetic x-rays and suprathermal electrons, both of which can be sources of material preheating. In principle, this preheat can alter the conditions of the experimental setup prior to the occurrence of the intended dynamics. At the University of Michigan, ongoing Rayleigh-Taylor instability experiments are defined by precise initial conditions, and potential deformation due to preheat could greatly affect their accuracy. An experiment devised and executed in an attempt to assess the preheat in this specific case will be presented, along with the quantitative analysis of the data obtained and comparison with 2D simulations.

  20. Asymptotic behavior of modulated Taylor-Couette flows with a crystalline inner cylinder

    NASA Technical Reports Server (NTRS)

    Braun, R. J.; Mcfadden, G. B.; Murray, B. T.; Coriell, S. R.; Glicksman, M. E.; Selleck, M. E.

    1993-01-01

    The linear stability of a modulated Taylor-Couette system when the inner cylindrical boundary consists of a crystalline solid-liquid interface is considered. Both experimentally and in numerical calculations it is found that the two-phase system is significantly less stable than the analogous rigid-walled system for materials with moderately large Prandtl numbers. A numerical treatment based on Floquet theory is described, which gives results that are in good agreement with preliminary experimental findings. In addition, this instability is further examined by carrying out a formal asymptotic expansion of the solution in the limit of large Prandtl number. In this limit the Floquet analysis is considerably simplified, and the linear stability of the modulated system can be determined to leading order through a conventional stability analysis, without recourse to Floquet theory. The resulting simplified problem is then studied for both the narrow gap geometry and for the case of a finite gap. It is surprising that the determination of the linear stability of the two-phase system is considerably simpler than that of the rigid-walled system, despite the complications introduced by the presence of the crystal-melt interface.

  1. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    PubMed

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. 43 CFR 2091.7-2 - Segregative effect and opening: Taylor Grazing Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Segregative effect and opening: Taylor Grazing Act. 2091.7-2 Section 2091.7-2 Public Lands: Interior Regulations Relating to Public Lands... LAWS AND RULES Segregation and Opening of Lands § 2091.7-2 Segregative effect and opening: Taylor...

  3. Flow instabilities due to the interfacial formation of surfactant-fatty acid material in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Niroobakhsh, Zahra; Litman, Matthew; Belmonte, Andrew

    2017-11-01

    We present an experimental study of pattern formation during the penetration of an aqueous surfactant solution into a liquid fatty acid in a Hele-Shaw cell. When a solution of the cationic surfactant cetylpyridinium chloride is injected into oleic acid, a wide variety of fingering patterns are observed as a function of surfactant concentration and flow rate, which are strikingly different than the classic Saffman-Taylor (ST) instability. We observe evidence of interfacial material forming between the two liquids, causing these instabilities. Moreover, the number of fingers decreases with increasing flow rate Q , while the average finger width increases with Q , both trends opposite to the ST case. Bulk rheology on related mixtures indicates a gel-like state. Comparison of experiments using other oils indicates the importance of pH and the carboxylic head group in the formation of the surfactant-fatty acid material.

  4. Two-Phase Dynamics Simulations of the Growth and Instability of Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.; Jellinek, M.; Labrosse, S.

    2008-12-01

    When the center of Earth's core began to freeze from a homogeneous liquid 1-2 billion years ago, its constitution was very likely that of a mushy region. As this incipient inner core grew by further crystallization of the outer core, an increase in gravity force allowed for the solid grains to compress against one another, undergo viscous compaction, and begin to expel remnant fluid out of the inner core by percolation. Meanwhile, inside the inner core the residual fluid and solid remained in equilibrium, and any perturbations that resulted in upwelling of the deformable mush would also be accompanied by decompression melting. Upwelling and melting regions might then increase in liquid fraction, become less dense, and hence buoyant in a way that would propel them upward at a faster rate, setting up a runaway instability and partial Rayleigh-Taylor-like overturn of Earth's inner core. Structures inherited from this event possibly include the distinct innermost inner core posited by seismologists to exist at Earth's centermost 300-600 km. We use a new two-phase dynamics code to model this scenario in axi-symmetric geometry in order to understand whether and when such an instability occurred, what size the core will have been at the onset of instability, and the degree and style of deformation that would have accompanied this episode. We have found that the growth of instability competes with the rate of background melt percolation, such that the instability would only have occurred after the inner core reaches a critical size and expelled a certain amount of liquid from its interior. A linear stability analysis confirms that there is a critical Rayleigh number for the onset of instability at a given radius. The combined constraints show that the inner core is guaranteed to have undergone this kind of instability, at a time and strength governed solely by physical properties such as grain size, density differences between liquid and solid, and viscosities of the

  5. Compression of an Accelerated Taylor State in SSX

    NASA Astrophysics Data System (ADS)

    Shrock, J. E.; Suen-Lewis, E. M.; Barbano, L. J.; Kaur, M.; Schaffner, D. A.; Brown, M. R.

    2017-10-01

    In the Swarthmore Spheromak Experiment (SSX), compact toroidal plasmas are launched from a plasma gun and evolve into minimum energy twisted Taylor states. The plumes initially have a velocity 40 km/s, density 0.4 ×1016 cm-3 , and proton temperature 20 eV . After formation, the plumes are accelerated by pulsed pinch coils with rise times τ1 / 4 = (π / 2) √{ LC } less than 1 μ s and currents Ipeak =V0 / Z =V0 /√{ L / C } on the order of 104 A. The accelerated Taylor States are abruptly stagnated in a copper flux conserver, and over the course of t < 10 μ s, adiabatic compression is observed. The magnetothermodynamics of this compression do not appear to be dictated by the MHD equation of state d / dt (P /nγ) = 0 . Rather, the compression appears to evolve according to the Chew-Goldberger-Low (CGL) double adiabatic model. CGL theory presents two equations of state, one corresponding with particle motion perpendicular to magnetic field in a plasma, the other to particle motion parallel to the field. We observe Taylor state compression most in agreement with the parallel equation of state: d / dt (P∥B2 /n3) = 0 . DOE ARPA-E ALPHA Program.

  6. Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front

    DOE PAGES

    Casner, A.; Masse, L.; Delorme, B.; ...

    2014-12-01

    Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experimentsmore » performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. Lastly, the foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil.« less

  7. Nonlinear stability of Taylor's vortex array

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Tobak, M.

    1987-01-01

    It is proved that the two-dimensional Taylor vortex array, which is an exact unsteady solution of the Navier-Stokes equation, is globally and asymptotically stable in the mean with respect to three-dimensional periodic disturbances. A time-dependent bound on the decay rate of the kinetic energy of disturbances is obtained.

  8. Review of Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    The physics of inertial confinement fusion is reviewed. The trend to short-wavelength lasers is argued, and the distinction between direct and indirect (soft X-ray) drive is made. Key present issues include the non-linear growth of Rayleigh-Taylor (R-T) instabilities, the seeding of this instability by the initial laser imprint, the relevance of self-generated magnetic fields, and the importance of parametric instabilities (stimulated Brillouin and Raman scattering) in gas-filled hohlraums. Experiments are reviewed which explore the R-T instability in both planar and converging geometry. The employment of various optical smoothing techniques is contrasted with the overcoating of the capsule by gold coated plastic foams to reduce considerably the imprint problem. The role of spontaneously generated magnetic fields in non-symmetric plasmas is discussed. Recent hohlraum compression results are presented together with gas bag targets which replicate the long-scale-length low density plasmas expected in NIF gas filled hohlraums. The onset of first Brillouin and then Raman scattering is observed. The fast ignitor scheme is a proposal to use an intense short pulse laser to drill a hole through the coronal plasma and then, with laser excited fast electrons, create a propagating thermonuclear spark in a dense, relatively cold laser-compressed target. Some preliminary results of laser hole drilling and 2-D and 3-D PIC simulations of this and the > 10^8 Gauss self-generated magnetic fields are presented. The proposed National Ignition Facility (NIF) is described.

  9. Numerical Simulation of Doped Targets for ICF

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Gardner, John H.; Bodner, Stephen E.; Colombant, Denis; Klapisch, Marcel; Bar-Shalom, Avraham

    1997-11-01

    The ablative Rayleigh-Taylor (RT) instability can be reduced by preheating the ablator, thereby reducing the peak density and increasing the mass ablation velocity. The ablator can be preheated with radiation from higher Z dopants.(Gardner, J.H., Bodner, S.E., Dahlburg, J.P., Phys. Fluids 3), 1070 (1991) Dopants also reduce the density gradient at the ablator, which provides a second mechanism to reduce the RT growth rate. We have recently developed a more sophisticated and detailed radiation package that uses opacities generated by an STA code, with non-LTE radiation transport based on the Busquet method. This radiation package has been incorporated into NRL's FAST2D radiation hydrodynamics code, which has been used to evaluate and optimize the use of various dopants that can provide interesting levels of preheat for an ICF target.

  10. 43 CFR 4170.2-1 - Penal provisions under the Taylor Grazing Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Penal provisions under the Taylor Grazing Act. 4170.2-1 Section 4170.2-1 Public Lands: Interior Regulations Relating to Public Lands (Continued...-EXCLUSIVE OF ALASKA Penalties § 4170.2-1 Penal provisions under the Taylor Grazing Act. Under section 2 of...

  11. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    PubMed

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  12. Pair-instability Supernova Simulations: Progenitor Evolution, Explosion, and Light Curves

    NASA Astrophysics Data System (ADS)

    Gilmer, Matthew S.; Kozyreva, Alexandra; Hirschi, Raphael; Fröhlich, Carla; Yusof, Norhasliza

    2017-09-01

    In recent years, the viability of the pair-instability supernova (PISN) scenario for explaining superluminous supernovae has all but disappeared except for a few slowly-evolving examples. However, PISNe are not predicted to be superluminous throughout the bulk of their mass range. In fact, it is more likely that the first PISN we see (if we have not seen one already) will not be superluminous. Here, we present hydrodynamic simulations of PISNe for four stellar models with unique envelope properties spanning the PISN mass range. In addition, we compute synthetic light curves (LCs) for comparison with current and future observations. We also investigate, in the context of our most massive model, the prospect of mixing in the supernova ejecta, alleviating discrepancies between current PISN models and the remaining superluminous candidate events. To this end, we present the first published 3D hydrodynamic simulations of PISNe. After achieving convergence between 1D, 2D, and 3D simulations, we examine mixing in the supernova ejecta and its affect on the bolometric LC. We observe slight deviations from spherical symmetry, which increase with the number of dimensions. We find no significant effects on the bolometric LC; however, we conclude that mixing between the silicon and oxygen rich layers caused by the Rayleigh-Taylor instability may affect spectra.

  13. Applicability of Taylor's hypothesis in thermally driven turbulence

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Verma, Mahendra K.

    2018-04-01

    In this paper, we show that, in the presence of large-scale circulation (LSC), Taylor's hypothesis can be invoked to deduce the energy spectrum in thermal convection using real-space probes, a popular experimental tool. We perform numerical simulation of turbulent convection in a cube and observe that the velocity field follows Kolmogorov's spectrum (k-5/3). We also record the velocity time series using real-space probes near the lateral walls. The corresponding frequency spectrum exhibits Kolmogorov's spectrum (f-5/3), thus validating Taylor's hypothesis with the steady LSC playing the role of a mean velocity field. The aforementioned findings based on real-space probes provide valuable inputs for experimental measurements used for studying the spectrum of convective turbulence.

  14. Frictional Torque Reduction in Taylor-Couette Flows with Riblet-Textured Rotors

    NASA Astrophysics Data System (ADS)

    Raayai, Shabnam; McKinley, Gareth

    2017-11-01

    Inspired by the riblets on the denticles of fast swimming shark species, periodic surface microtextures of different shapes have been studied under laminar and turbulent flow conditions to understand their drag reduction mechanism and to offer guides for designing optimized low-friction bio-inspired surfaces. Various reports over the past four decades have suggested that riblet surfaces can reduce the frictional drag force in high Reynolds number laminar and turbulent flow regimes. Here, we investigate the effect of streamwise riblets on torque reduction in steady flow between concentric cylinders, known as Taylor-Couette Flow. Using 3D printed riblet-textured rotors and a custom-built Taylor-Couette cell which can be mounted on a rheometer we measure the torque on the inner rotor as a function of three different dimensionless parameters; the Reynolds number of the flow, the sharpness of the riblets, and the size of the riblets with respect to the scale of the Taylor-Couette cell. Our experimental results in the laminar viscous flow regime show a reduction in torque up to 10% over a wide range of Reynolds numbers, that is a non-monotonic function of the aspect ratio and independent of Re. However, after transition to the Taylor vortex regime, the modification in torque becomes a function of the Reynolds number, while remaining a non-monotonic function of the aspect ratio. Using finite volume modelling of the geometry we discuss the changes in the Taylor-Couette flow in presence of the riblets compared to the case of smooth rotors and the resulting torque reduction as a function of the parameter space defined above.

  15. Ethics, organ donation and tax: a reply to Quigley and Taylor.

    PubMed

    Lippert-Rasmussen, Kasper; Petersen, Thomas Søbirk

    2012-08-01

    A national opt-out system of post-mortem donation of scarce organs is preferable to an opt-in system. Unfortunately, the former system is not always feasible, and so in a recent JME article we canvassed the possibility of offering people a tax break for opting-in as a way of increasing the number of organs available for donation under an opt-in regime. Muireann Quigley and James Stacey Taylor criticize our proposal. Roughly, Quigley argues that our proposal is costly and, hence, is unlikely to be implemented, while Taylor contests our response to a Titmuss-style objection to our scheme. In response to Quigley, we note that our proposal's main attraction lies in gains not reflected in the figures presented by Quigley and that the mere fact that it is costly does not imply that it is unfeasible. In response to Taylor, we offer some textual evidence in support of our interpretation of Taylor and responds to his favoured interpretation of the Titmuss-style objection that many people seem to want to donate to charities even if they can deduct their donations from their income tax. Finally, we show why our views do not commit us to endorsing a free organ-market.

  16. Process development of starch hydrolysis using mixing characteristics of Taylor vortices.

    PubMed

    Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto

    2017-04-01

    In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.

  17. Tree ecophysiology research at Taylor Woods

    Treesearch

    Thomas E. Kolb; Nate G. McDowell

    2008-01-01

    We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...

  18. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Qiao, Bin; Shen, X. F.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-10-01

    Among various laser-driven acceleration schemes, radiation pressure acceleration (RPA) is regarded as one of the most promising schemes to obtain high-quality ion beams. Although RPA is very attractive in principle, it is difficult to be achieved experimentally. One of the most important reasons is the dramatic growth of the multi-dimensional Rayleigh-Taylor-like (RT) instabilities. In this talk, we report a novel method to achieve stable RPA of ions from laser-irradiated ultrathin foils, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as electron loss induced by the RT and other instabilities are significantly offset and suppressed so that stable acceleration of ions are maintained. Supported by the NSAF, Grant No. U1630246; the NNSF China Grants No. 11575298; and the National Key Program of S&T Research and Development, Grant No. 2016YFA0401100.

  19. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Kar, S.; Zhou, C. T.; Borghesi, M.; He, X. T.

    2016-10-01

    Generation of monoenergetic heavy ion beams aroused more scientific interest in recent years. Radiation pressure acceleration (RPA) is an ideal mechanism for obtaining high-quality heavy ion beams, in principle. However, to achieve the same energy per nucleon (velocity) as protons, heavy ions undergo much more serious Rayleigh-Taylor-like (RT) instability and afterwards much worse Coulomb explosion due to loss of co-moving electrons. This leads to premature acceleration termination of heavy ions and very low energy attained in experiment. The utilization of a high-Z coating in front of the target may suppress the RT instability and Coulomb explosion by continuously replenishing the accelerating heavy ion foil with co-moving electrons due to its successive ionization under laser fields with Gaussian temporal and spatial profiles. Thus stable RPA can be realized. Two-dimensional and three-dimensional particles-in-cell simulations with dynamic ionization show that a monoenergetic Al13+ beam with peak energy 4.0GeV and particle number 1010 (charge > 20nC) can be obtained at intensity 1022 W/cm2. Supported by the NSF, Nos. 11575298 and 1000-Talents Program of China.

  20. 2D Relativistic MHD simulations of the Kruskal-Schwarzschild instability in a relativistic striped wind

    NASA Astrophysics Data System (ADS)

    Gill, Ramandeep; Granot, Jonathan; Lyubarsky, Yuri

    2018-03-01

    We study the linear and non-linear development of the Kruskal-Schwarzchild instability in a relativisitically expanding striped wind. This instability is the generalization of Rayleigh-Taylor instability in the presence of a magnetic field. It has been suggested to produce a self-sustained acceleration mechanism in strongly magnetized outflows found in active galactic nuclei, gamma-ray bursts, and micro-quasars. The instability leads to magnetic reconnection, but in contrast with steady-state Sweet-Parker reconnection, the dissipation rate is not limited by the current layer's small aspect ratio. We performed two-dimensional (2D) relativistic magnetohydrodynamic (RMHD) simulations featuring two cold and highly magnetized (1 ≤ σ ≤ 103) plasma layers with an anti-parallel magnetic field separated by a thin layer of relativistically hot plasma with a local effective gravity induced by the outflow's acceleration. Our simulations show how the heavier relativistically hot plasma in the reconnecting layer drips out and allows oppositely oriented magnetic field lines to reconnect. The instability's growth rate in the linear regime matches the predictions of linear stability analysis. We find turbulence rather than an ordered bulk flow near the reconnection region, with turbulent velocities up to ˜0.1c, largely independent of model parameters. However, the magnetic energy dissipation rate is found to be much slower, corresponding to an effective ordered bulk velocity inflow into the reconnection region vin = βinc of 10-3 ≲ βin ≲ 5 × 10-3. This occurs due to the slow evacuation of hot plasma from the current layer, largely because of the Kelvin-Helmholtz instability experienced by the dripping plasma. 3D RMHD simulations are needed to further investigate the non-linear regime.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, E. P.; Rosner, R., E-mail: eph2001@columbia.edu

    In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model.more » Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.« less

  2. Preliminary investigation on the use of low current pulsed power Z-pinch plasma devices for the study of early stage plasma instabilities

    NASA Astrophysics Data System (ADS)

    Kaselouris, E.; Dimitriou, V.; Fitilis, I.; Skoulakis, A.; Koundourakis, G.; Clark, E. L.; Chatzakis, J.; Bakarezos, Μ; Nikolos, I. K.; Papadogiannis, N. A.; Tatarakis, M.

    2018-01-01

    This article addresses key features for the implementation of low current pulsed power plasma devices for the study of matter dynamics from the solid to the plasma phase. The renewed interest in such low current plasma devices lies in the need to investigate methods for the mitigation of prompt seeding mechanisms for the generation of plasma instabilities. The low current when driven into thick wires (skin effect mode) allows for the simultaneous existence of all phases of matter from solid to plasma. Such studies are important for the concept of inertial confinement fusion where the mitigation of the instability seeding mechanisms arising from the very early moments within the target’s heating is of crucial importance. Similarly, in the magnetized liner inertial fusion concept it is an open question as to how much surface non-uniformity correlates with the magneto-Rayleigh-Taylor instability, which develops during the implosion. This study presents experimental and simulation results, which demonstrate that the use of low current pulsed power devices in conjunction with appropriate diagnostics can be important for studying seeding mechanisms for the imminent generation of plasma instabilities in future research.

  3. Advection and Taylor-Aris dispersion in rivulet flow

    NASA Astrophysics Data System (ADS)

    Al Mukahal, F. H. H.; Duffy, B. R.; Wilson, S. K.

    2017-11-01

    Motivated by the need for a better understanding of the transport of solutes in microfluidic flows with free surfaces, the advection and dispersion of a passive solute in steady unidirectional flow of a thin uniform rivulet on an inclined planar substrate driven by gravity and/or a uniform longitudinal surface shear stress are analysed. Firstly, we describe the short-time advection of both an initially semi-infinite and an initially finite slug of solute of uniform concentration. Secondly, we describe the long-time Taylor-Aris dispersion of an initially finite slug of solute. In particular, we obtain the general expression for the effective diffusivity for Taylor-Aris dispersion in such a rivulet, and discuss in detail its different interpretations in the special case of a rivulet on a vertical substrate.

  4. Shallow Sub-Permafrost Groundwater Systems In A Buried Fjord: Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.

    2014-12-01

    The McMurdo Dry Valleys (MDV), Antarctica, represent a unique geologic setting where permanent lakes, ephemeral streams, and subglacial waters influence surface hydrology in a cold polar desert. Past research suggested that the MDV are underlain by several hundreds of meters of permafrost. Here, we present data collected from an Airborne EM (AEM) resistivity sensor flown over the MDV during the 2011-12 austral summer. A focus of our survey was over the Taylor Glacier where saline, iron-rich subglacial fluid releases at the glacier snout at a feature known as Blood Falls, and over Taylor Valley, where a series of isolated lakes lie between Taylor Glacier and the Ross Sea. Our data show that in Taylor Valley there are extensive areas of low resistivity, interpreted as hypersaline brines, beneath a relatively thin layer of high resistivity material, interpreted as dry- or ice-cemented permafrost. These hypersaline brines remain liquid at temperatures well below 0°C due to their salinity. They appear to be contained within the sedimentary fill deposited in Taylor Valley when it was still a fjord. This brine system continues up valley and has a subglacial extension beneath Taylor Glacier, where it may provide the source that feeds Blood Falls. By categorizing the resistivity measurements according to surficial land cover, we are able to distinguish between ice, permafrost, lake water, and seawater based on characteristic resistivity distributions. Furthermore, this technique shows that areas of surface permafrost become increasingly conductive (brine-filled) with depth, whereas the large lakes exhibit taliks that extend through the entire thickness of the permafrost. The subsurface brines represent a large, unstudied and potentially connected hydrogeologic system, in which subsurface flows may help transfer water and nutrients between lakes in the MDV and into the Ross Sea. Such a system is a potential habitat for extremophile life, similar to that already detected in

  5. A numerical simulation of finite-length Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    The processes leading to laminar-turbulent transition in finite-channel-length Taylor-Couette flow are investigated analytically, solving the unsteady incompressible Navier-Stokes equations by spectral-collocation methods. A time-split algorithm, implementable in both axisymmetric and fully three-dimensional time-accurate versions, and an algorithm based on the staggered-mesh discretization of Bernardi and Maday (1986) are described in detail, and results obtained by applying the axisymmetric version of the first algorithm and a steady-state version of the second are presented graphically and compared with published experimental data. The feasibility of full three-dimensional simulations of the progression through chaotic states to turbulence under the constraints of Taylor-Couette flow is demonstrated.

  6. A Taylor weak-statement algorithm for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Kim, J. W.

    1987-01-01

    Finite element analysis, applied to computational fluid dynamics (CFD) problem classes, presents a formal procedure for establishing the ingredients of a discrete approximation numerical solution algorithm. A classical Galerkin weak-statement formulation, formed on a Taylor series extension of the conservation law system, is developed herein that embeds a set of parameters eligible for constraint according to specification of suitable norms. The derived family of Taylor weak statements is shown to contain, as special cases, over one dozen independently derived CFD algorithms published over the past several decades for the high speed flow problem class. A theoretical analysis is completed that facilitates direct qualitative comparisons. Numerical results for definitive linear and nonlinear test problems permit direct quantitative performance comparisons.

  7. Applications of Analytical Self-Similar Solutions of Reynolds-Averaged Models for Instability-Induced Turbulent Mixing

    NASA Astrophysics Data System (ADS)

    Hartland, Tucker; Schilling, Oleg

    2017-11-01

    Analytical self-similar solutions to several families of single- and two-scale, eddy viscosity and Reynolds stress turbulence models are presented for Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instability-induced turbulent mixing. The use of algebraic relationships between model coefficients and physical observables (e.g., experimental growth rates) following from the self-similar solutions to calibrate a member of a given family of turbulence models is shown. It is demonstrated numerically that the algebraic relations accurately predict the value and variation of physical outputs of a Reynolds-averaged simulation in flow regimes that are consistent with the simplifying assumptions used to derive the solutions. The use of experimental and numerical simulation data on Reynolds stress anisotropy ratios to calibrate a Reynolds stress model is briefly illustrated. The implications of the analytical solutions for future Reynolds-averaged modeling of hydrodynamic instability-induced mixing are briefly discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Observation of the Stratorotational Instability in Flow between Rotating Concentric Cylinders

    NASA Astrophysics Data System (ADS)

    Ibanez, Ruy; Swinney, Harry L.; Rodenborn, Bruce

    2015-03-01

    We study the stratorotational instability in a Taylor-Couette system with a radius ratio η =ro /ri = 0 . 877 . The system is vertically stratified with a constant buoyancy frequency, N =√{ - (g /ρo) (∂ρ / ∂z) } . We determine when the flow becomes unstable as the ratio of the outer to inner cylinder rotation rates, μ =Ωo /Ωi , is decreased from unity (solid body rotation), for Reynolds numbers Re =Ωiri (ro -ri) / ν ranging from 450 to 4000 and N / 2 π = 0 . 3 to 1 . 0 Hz. The axial and azimuthal frequencies, obtained from spatiotemporal spectral analysis of digital movies, yield the observed modes at different Re and μ for fixed N. We find for sufficiently large buoyancy frequency, N / 2 π > 0 . 5 Hz, the stratorotational instability occurs even above the μ = η stability limit obtained from theory developed in the Boussinesq (small N) approximation [cf. the review by D A Shalybkov, Physics Uspekhi 52, 915 (2009)]. The frequencies we obtain for the azimuthal modes are close to multiples of the average frequency of rotation of the cylinders, while the axial wavelengths are found to vary linearly with Froude number, Fr =Ωi / N . Supported by The Sid W. Richardson Foundation.

  9. McMurdo LTER: streamflow measurements in Taylor Valley

    USGS Publications Warehouse

    McKnight, D.; House, H.; Von Guerard, P.

    1994-01-01

    Has established a stream gaging network for the three major lake basins in Taylor Valley. These data are critical for determining nutrient budgets for the lake ecosystems and for understanding physical factors controlling microbial mats in the streams.

  10. The origin and structure of streak-like instabilities in laminar boundary layer flames

    NASA Astrophysics Data System (ADS)

    Gollner, Michael; Miller, Colin; Tang, Wei; Finney, Mark

    2017-11-01

    Streamwise streaks are consistently observed in wildland fires, at the base of pool fires, and in other heated flows within a boundary layer. This study examines both the origin of these structures and their role in influencing some of the macroscopic properties of the flow. Streaks were reproduced and characterized via experiments on stationary heated strips and liquid and gas-fueled burners in laminar boundary layer flows, providing a framework to develop theory based on both observed and measured physical phenomena. The incoming boundary layer was established as the controlling mechanism in forming streaks, which are generated by pre-existing coherent structures, while the amplification of streaks was determined to be compatible with quadratic growth of Rayleigh-Taylor Instabilities, providing credence to the idea that the downstream growth of streaks is strongly tied to buoyancy. These local instabilities were also found to affect macroscopic properties of the flow, including heat transfer to the surface, indicating that a two-dimensional assumption may fail to adequately describe heat and mass transfer during flame spread and other reacting boundary layer flows. This work was supported by NSF (CBET-1554026) and the USDA-FS (13-CS-11221637-124).

  11. Irregular wall roughness in turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Berghout, Pieter; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef; Stevens, Richard

    2017-11-01

    Many wall bounded flows in nature, engineering and transport are affected by surface roughness. Often, this has adverse effects, e.g. drag increase leading to higher energy costs. A major difficulty is the infinite number of roughness geometries, which makes it impossible to systematically investigate all possibilities. Here we present Direct Numerical Simulations (DNS) of turbulent Taylor-Couette flow. We focus on the transitionally rough regime, in which both viscous and pressure forces contribute to the total wall stress. We investigate the effect of the mean roughness height and the effective slope on the roughness function, ΔU+ . Also, we present simulations of varying Ta (Re) numbers for a constant mean roughness height (kmean+). Alongside, we show the behavior of the large scale structures (e.g. plume ejection, Taylor rolls) and flow structures in the vicinity of the wall.

  12. Lightcurve Analysis and Rotation Period Determination for Asteroids 1491 Balduinus and 2603 Taylor

    NASA Astrophysics Data System (ADS)

    Odden, Caroline E.; Cohen, Adam J.; Davis, Spencer; Eldracher, Emelie A.; Fitzgerald, Zachary T.; Jiang, Derek C.; Kozol, Eliana L.; Laurencin, Victoria L.; Meyer-Idzik, Benjamin D.; Pennington, Oliver; Philip, Reuben C.; Sanchez, Emily J.; Warren, Natalie J.; Klinglesmith, Daniel A.; Briggs, John W.

    2018-07-01

    Photometric observations of asteroids 1491 Balduinus and 2603 Taylor were made from 2017 December to 2018 February. 1491 Balduinus was found to have a rotational period 15.315 ± 0.003 h with amplitude 0.40 mag; 2603 Taylor was found to have rotational period 3.905 ± 0.001 h with amplitude 0.27 mag.

  13. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  14. Frank Bursley Taylor - Forgotten Pioneer of Continental Drift.

    ERIC Educational Resources Information Center

    Black, George W., Jr.

    1979-01-01

    Frank B. Taylor was an American geologist who specialized in the glacial geology of the Great Lakes. This article discusses his work on the Continental Drift theory, which preceeded the work of Alfred Wegener by a year and a half. (MA)

  15. CURTIS TAYLOR, PRESIDENT OF LINC RESEARCH CORP.

    NASA Image and Video Library

    2016-04-27

    CURTIS O. TAYLOR, PRESIDENT OF LINC RESEARCH CORP, (L), AND JEFF LINDNER, CHIEF ENGINEER, POSE WITH HARDWARE FOR THEIR PATENTED TECHNOLOGY, FLUID STRUCTURE COUPLING, WHICH USES SIMPLE PHYSICS TO DAMPEN POTENTIALLY HARMFUL SHAKING IN STRUCTURES. INSTALLATION OF THE FLUID STRUCTURE COUPLING TECHNOLOGY IN A BUILDING WILL TAKE PLACE IN SUMMER OF 2016.

  16. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    NASA Astrophysics Data System (ADS)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  17. Pair-instability Supernova Simulations: Progenitor Evolution, Explosion, and Light Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmer, Matthew S.; Fröhlich, Carla; Kozyreva, Alexandra

    2017-09-10

    In recent years, the viability of the pair-instability supernova (PISN) scenario for explaining superluminous supernovae has all but disappeared except for a few slowly-evolving examples. However, PISNe are not predicted to be superluminous throughout the bulk of their mass range. In fact, it is more likely that the first PISN we see (if we have not seen one already) will not be superluminous. Here, we present hydrodynamic simulations of PISNe for four stellar models with unique envelope properties spanning the PISN mass range. In addition, we compute synthetic light curves (LCs) for comparison with current and future observations. We alsomore » investigate, in the context of our most massive model, the prospect of mixing in the supernova ejecta, alleviating discrepancies between current PISN models and the remaining superluminous candidate events. To this end, we present the first published 3D hydrodynamic simulations of PISNe. After achieving convergence between 1D, 2D, and 3D simulations, we examine mixing in the supernova ejecta and its affect on the bolometric LC. We observe slight deviations from spherical symmetry, which increase with the number of dimensions. We find no significant effects on the bolometric LC; however, we conclude that mixing between the silicon and oxygen rich layers caused by the Rayleigh–Taylor instability may affect spectra.« less

  18. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  19. The Destructive Birth of Massive Stars and Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  20. Boundary effects and the onset of Taylor vortices

    NASA Astrophysics Data System (ADS)

    Rucklidge, A. M.; Champneys, A. R.

    2004-05-01

    It is well established that the onset of spatially periodic vortex states in the Taylor-Couette flow between rotating cylinders occurs at the value of Reynolds number predicted by local bifurcation theory. However, the symmetry breaking induced by the top and bottom plates means that the true situation should be a disconnected pitchfork. Indeed, experiments have shown that the fold on the disconnected branch can occur at more than double the Reynolds number of onset. This leads to an apparent contradiction: why should Taylor vortices set in so sharply at the Reynolds number predicted by the symmetric theory, given such large symmetry-breaking effects caused by the boundary conditions? This paper offers a generic explanation. The details are worked out using a Swift-Hohenberg pattern formation model that shares the same qualitative features as the Taylor-Couette flow. Onset occurs via a wall mode whose exponential tail penetrates further into the bulk of the domain as the driving parameter increases. In a large domain of length L, we show that the wall mode creates significant amplitude in the centre at parameter values that are O( L-2) away from the value of onset in the problem with ideal boundary conditions. We explain this as being due to a Hamiltonian Hopf bifurcation in space, which occurs at the same parameter value as the pitchfork bifurcation of the temporal dynamics. The disconnected anomalous branch remains O(1) away from the onset parameter since it does not arise as a bifurcation from the wall mode.

  1. Indirect drive ignition at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.

    This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s -1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seededmore » by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less

  2. Indirect drive ignition at the National Ignition Facility

    DOE PAGES

    Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.; ...

    2016-10-27

    This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s -1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seededmore » by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less

  3. Experimental growth of inertial forced Richtmyer-Meshkov instabilities for different Atwood numbers

    NASA Astrophysics Data System (ADS)

    Redondo, J. M.; Castilla, R.

    2009-04-01

    Richtmyer-Meshkov instability occurs when a shock wave impinges on an interface separating two fluids having different densities [1,2]. The instability causes perturbations on the interface to grow, bubbles and spikes, producing vortical structures which potentially result in a turbulent mixing layer. In addition to shock tube experiments, the incompressible Richtmyer-Meshkov instability has also been studied by impulsively accelerating containers of incompressible fluids. Castilla and Redondo (1994) [3] first exploited this technique by dropping tanks containing a liquid and air or two liquids onto a cushioned surface. This technique was improved upon by Niederhaus and Jacobs (2003)[4] by mounting the tank onto a rail system and then allowing it to bounce off of a fixed spring. A range of both miscible and inmiscible liquids were used, giving a wide range of Atwood numbers using the combinations of air, water, alcohol, oil and mercury. Experimental results show the different pattern selection of both the bubbles and spikes for the different Atwood numbers. Visual analysis of the marked interfaces allows to distinguish the regions of strong mixing and compare self-similarity growth of the mixing region. [1] Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics 4, 101-104. [2] Brouillette, M. & Sturtevant, B. 1994 Experiments on the Richtmyer-Meshkov instability: single-scale perturbations on a continuous interface. Journal of Fluid Mechanics 263, 271-292. [3] Castilla, R. & Redondo, J. M. 1994 Mixing Front Growth in RT and RM Instabilities. Proceedings of the Fourth International Workshop on the Physics of Compressible Turbulent Mixing, Cambridge, United Kingdom, edited by P. F. Linden, D. L. Youngs, and S. B. Dalziel, 11-31. [4] Niederhaus, C. E. & Jacobs, J. W. 2003 Experimental study of the Richtmyer-Meshkov instability of incompressible fluids. Journal of Fluid Mechanics 485, 243-277.

  4. THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, K. G.; Howes, G. G.; TenBarge, J. M.

    2014-08-01

    Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfvénic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a shift of the entire spectrum to higher frequencies, or in the dispersive regime, in which the dissipation range spectrum flattens at high frequencies.more » It is found that Alfvénic turbulence will not significantly violate the Taylor hypothesis, but whistler turbulence will. The flattening of the frequency spectrum is therefore a key observational signature for fast/whistler turbulence.« less

  5. Application of Taylor's series to trajectory propagation

    NASA Technical Reports Server (NTRS)

    Stanford, R. H.; Berryman, K. W.; Breckheimer, P. J.

    1986-01-01

    This paper describes the propagation of trajectories by the application of the preprocessor ATOMCC which uses Taylor's series to solve initial value problems in ordinary differential equations. Comparison of the results obtained with those from other methods are presented. The current studies indicate that the ATOMCC preprocessor is an easy, yet fast and accurate method for generating trajectories.

  6. Taylor Proposes Five-Year Child-Care Program.

    ERIC Educational Resources Information Center

    Taylor, Glen

    Senator Glen Taylor of Minnesota proposed a five-year child-care program for the purposes of encouraging employer-sponsored child care and increasing by 53,000 the number of children in low-income families who were covered. This report lists central features of the program, which include: (1) tax incentives which employers can use when they build…

  7. Reliability, validity and description of timed performance of the Jebsen-Taylor Test in patients with muscular dystrophies.

    PubMed

    Artilheiro, Mariana Cunha; Fávero, Francis Meire; Caromano, Fátima Aparecida; Oliveira, Acary de Souza Bulle; Carvas, Nelson; Voos, Mariana Callil; Sá, Cristina Dos Santos Cardoso de

    2017-12-08

    The Jebsen-Taylor Test evaluates upper limb function by measuring timed performance on everyday activities. The test is used to assess and monitor the progression of patients with Parkinson disease, cerebral palsy, stroke and brain injury. To analyze the reliability, internal consistency and validity of the Jebsen-Taylor Test in people with Muscular Dystrophy and to describe and classify upper limb timed performance of people with Muscular Dystrophy. Fifty patients with Muscular Dystrophy were assessed. Non-dominant and dominant upper limb performances on the Jebsen-Taylor Test were filmed. Two raters evaluated timed performance for inter-rater reliability analysis. Test-retest reliability was investigated by using intraclass correlation coefficients. Internal consistency was assessed using the Cronbach alpha. Construct validity was conducted by comparing the Jebsen-Taylor Test with the Performance of Upper Limb. The internal consistency of Jebsen-Taylor Test was good (Cronbach's α=0.98). A very high inter-rater reliability (0.903-0.999), except for writing with an Intraclass correlation coefficient of 0.772-1.000. Strong correlations between the Jebsen-Taylor Test and the Performance of Upper Limb Module were found (rho=-0.712). The Jebsen-Taylor Test is a reliable and valid measure of timed performance for people with Muscular Dystrophy. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  8. MZC Gel Inhibits SHIV-RT and HSV-2 in Macaque Vaginal Mucosa and SHIV-RT in Rectal Mucosa.

    PubMed

    Calenda, Giulia; Villegas, Guillermo; Barnable, Patrick; Litterst, Claudia; Levendosky, Keith; Gettie, Agegnehu; Cooney, Michael L; Blanchard, James; Fernández-Romero, José A; Zydowsky, Thomas M; Teleshova, Natalia

    2017-03-01

    The Population Council's microbicide gel MZC (also known as PC-1005) containing MIV-150 and zinc acetate dihydrate (ZA) in carrageenan (CG) has shown promise as a broad-spectrum microbicide against HIV, herpes simplex virus (HSV), and human papillomavirus. Previous data show antiviral activity against these viruses in cell-based assays, prevention of vaginal and rectal simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) infection, and reduction of vaginal HSV shedding in rhesus macaques and also excellent antiviral activity against HSV and human papillomavirus in murine models. Recently, we demonstrated that MZC is safe and effective against SHIV-RT in macaque vaginal explants. Here we established models of ex vivo SHIV-RT/HSV-2 coinfection of vaginal mucosa and SHIV-RT infection of rectal mucosa in macaques (challenge of rectal mucosa with HSV-2 did not result in reproducible tissue infection), evaluated antiviral activity of MZC, and compared quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay readouts for monitoring SHIV-RT infection. MZC (at nontoxic dilutions) significantly inhibited SHIV-RT in vaginal and rectal mucosas and HSV-2 in vaginal mucosa when present during viral challenge. Analysis of SHIV-RT infection and MZC activity by 1-step simian immunodeficiency virus gag quantitative RT-PCR and p27 enzyme-linked immunosorbent assay demonstrated similar virus growth dynamics and MZC activity by both methods and higher sensitivity of quantitative RT-PCR. Our data provide more evidence that MZC is a promising dual compartment multipurpose prevention technology candidate.

  9. Tweedie convergence: a mathematical basis for Taylor's power law, 1/f noise, and multifractality.

    PubMed

    Kendal, Wayne S; Jørgensen, Bent

    2011-12-01

    Plants and animals of a given species tend to cluster within their habitats in accordance with a power function between their mean density and the variance. This relationship, Taylor's power law, has been variously explained by ecologists in terms of animal behavior, interspecies interactions, demographic effects, etc., all without consensus. Taylor's law also manifests within a wide range of other biological and physical processes, sometimes being referred to as fluctuation scaling and attributed to effects of the second law of thermodynamics. 1/f noise refers to power spectra that have an approximately inverse dependence on frequency. Like Taylor's law these spectra manifest from a wide range of biological and physical processes, without general agreement as to cause. One contemporary paradigm for 1/f noise has been based on the physics of self-organized criticality. We show here that Taylor's law (when derived from sequential data using the method of expanding bins) implies 1/f noise, and that both phenomena can be explained by a central limit-like effect that establishes the class of Tweedie exponential dispersion models as foci for this convergence. These Tweedie models are probabilistic models characterized by closure under additive and reproductive convolution as well as under scale transformation, and consequently manifest a variance to mean power function. We provide examples of Taylor's law, 1/f noise, and multifractality within the eigenvalue deviations of the Gaussian unitary and orthogonal ensembles, and show that these deviations conform to the Tweedie compound Poisson distribution. The Tweedie convergence theorem provides a unified mathematical explanation for the origin of Taylor's law and 1/f noise applicable to a wide range of biological, physical, and mathematical processes, as well as to multifractality.

  10. Implementing RtI with Gifted Students

    ERIC Educational Resources Information Center

    Coleman, Mary Ruth, Ed.; Johnsen, Susan K., Ed.

    2012-01-01

    "Implementing RtI With Gifted Students" shares how RtI can fit within the framework of gifted education programming models. This edited book will serve as a reference guide for those interested in learning more about RtI and how it might be effectively implemented to meet the needs of all gifted students. Chapters contributed by top gifted…

  11. INTRODUCTION: Award of the 2004 Hannes Alfvén Prize of the European Physical Society to J W Connor, R J Hastie and J B Taylor

    NASA Astrophysics Data System (ADS)

    Lister, Jo, Dr

    2004-12-01

    Jack Connor, Jim Hastie and Bryan Taylor The Hannes Alfvén Prize of the European Physical Society for Outstanding Contributions to Plasma Physics (2004) has been awarded to Jack Connor, Jim Hastie and Bryan Taylor `for their seminal contributions to a wide range of issues of fundamental importance to the success of magnetic confinement fusion, including: the development of gyro-kinetic theory; the prediction of the bootstrap current; dimensionless scaling laws; pressure-limiting instabilities, and micro-stability and transport theory'. Jack Connor, Jim Hastie and Bryan Taylor form one of the most successful teams of theoretical physicists in the history of magnetic confinement fusion. They have made important contributions individually, but their greatest discoveries have mostly been accomplished jointly, either in pairs or as a team involving all three. Their early work, in the 1960s, included the development of the gyro-kinetic theory for fine-scale plasma instabilities, which today forms the basis of the most advanced turbulence simulation codes in tokamak and stellarator research. The theoretical prediction of the bootstrap current, made in 1970-71 was not confirmed experimentally for over a decade but is now regarded as crucial to the success of the tokamak as a steady-state fusion power source. Their work on collisional transport also included the prediction of impurity ion accumulation, which is observed in internal transport barriers and is a key concern for long-pulse tokamak operation. The relativistic threshold for runaway electrons, identified in 1975, forms the basis of the most recent tokamak disruption mitigation schemes. In the late 1970s, the team developed the theory for ballooning instabilities, which provided an important ingredient in the `Troyon-Sykes' β-limit—an expression that is still used as a guide to the performance of tokamaks and in the design of ITER. Ballooning mode theory has also contributed to the understanding of

  12. Stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1991-01-01

    Compressible stability equations are solved using the spectral collocation method in an attempt to study the effects of temperature difference and compressibility on the stability of Taylor-Couette flow. It is found that the Chebyshev collocation spectral method yields highly accurate results using fewer grid points for solving stability problems. Comparisons are made between the result obtained by assuming small Mach number with a uniform temperature distribution and that based on fully incompressible analysis.

  13. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  14. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  15. Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Hopkins, Philip F.

    2018-04-01

    We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.

  16. Taylorism, Tylerism, and Performance Indicators: Defending the Indefensible?

    ERIC Educational Resources Information Center

    Helsby, Gill; Saunders, Murray

    1993-01-01

    Explores the antecedents to the growing interest in the use of educational performance indicators. Discusses this issue in relation to the work of economist F. W. Taylor and evaluator Ralph Tyler. Describes a five-year project that demonstrates the promise of teacher-developed performance indicators. (CFR)

  17. Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2011-01-01

    Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.

  18. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    NASA Astrophysics Data System (ADS)

    Boden, Stephan; dos Santos Rolo, Tomy; Baumbach, Tilo; Hampel, Uwe

    2014-07-01

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-µm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations.

  19. Solving ODE Initial Value Problems With Implicit Taylor Series Methods

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2000-01-01

    In this paper we introduce a new class of numerical methods for integrating ODE initial value problems. Specifically, we propose an extension of the Taylor series method which significantly improves its accuracy and stability while also increasing its range of applicability. To advance the solution from t (sub n) to t (sub n+1), we expand a series about the intermediate point t (sub n+mu):=t (sub n) + mu h, where h is the stepsize and mu is an arbitrary parameter called an expansion coefficient. We show that, in general, a Taylor series of degree k has exactly k expansion coefficients which raise its order of accuracy. The accuracy is raised by one order if k is odd, and by two orders if k is even. In addition, if k is three or greater, local extrapolation can be used to raise the accuracy two additional orders. We also examine stability for the problem y'= lambda y, Re (lambda) less than 0, and identify several A-stable schemes. Numerical results are presented for both fixed and variable stepsizes. It is shown that implicit Taylor series methods provide an effective integration tool for most problems, including stiff systems and ODE's with a singular point.

  20. Long pulse gas-filled halfraums on OMEGA for high growth-factor ablative Rayleigh-Taylor experiments

    NASA Astrophysics Data System (ADS)

    Casner, Alexis; Huser, G.; Villette, B.; Vandenboomgaerde, M.; Galmiche, D.; Liberatore, S.; Philippe, F.; Masse, L.

    2007-11-01

    Mitigation of Rayleigh-Taylor instabilities growth is crucial to enhance the performance of LMJ and NIF ignition targets. We recently develop on OMEGA a long-pulse platform in order to experimentally prove two mechanisms invoked for RTI stabilization, i.e the graded-doped ablator [1] and the new laminated ablator concept [2]. We used gas-filled halfraums (1 atm neopentane) and stack up to 20 drive beams along 3 cones to create a 7 ns long radiation drive. The new E-IDI-300 phase plates were associated with 1D SSD and halfraum energetics was validated along P5/P8 axis for backscattering measurements along 2 cones. We will also present the first face-on radiographies for modulated CH(Ge) samples and compare them with FCI2 hydrocodes simulations. Foil thickness optimization based on these simulations allows us to anticipate growth factors up to 500 in optical depth and the experimental emulator designs for [1,2] will be presented. [1] S.W. Haan et al., Phys. Plasmas 12, 056316 (2005). [2] L. Masse., Phys. Rev. Lett. 98, 245001 (2007). DPP07 invited talk.

  1. Using Taylor Expansions to Prepare Students for Calculus

    ERIC Educational Resources Information Center

    Lutzer, Carl V.

    2011-01-01

    We propose an alternative to the standard introduction to the derivative. Instead of using limits of difference quotients, students develop Taylor expansions of polynomials. This alternative allows students to develop many of the central ideas about the derivative at an intuitive level, using only skills and concepts from precalculus, and…

  2. PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR

    EPA Science Inventory

    ABSTRACT

    Palatal Dysmorphogenesis : Quantitative RT-PCR

    Gary A. Held and Barbara D. Abbott

    Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...

  3. Measuring Taylor Slough boundary and internal flows, Everglades National Park, Florida

    USGS Publications Warehouse

    Tillis, G.M.

    2001-01-01

    Four intensive data-collection efforts, intended to represent the spectrum of precipitation events and associated flow conditions, were conducted during 1997 and 1998 in the Taylor Slough Basin, Everglades National Park. Flow velocities were measured by newly developed, portable Acoustic Doppler Velocity meters along three transects bisecting the Taylor Slough Basin from east to west, roughly perpendicular to the centerline axis of the slough as well as a fourth transect along the slough's axis. These meters provided the required levels of accuracy in flow-velocity measurements while enabling the rapid collection of multiple time series of flow data at remote sites. Concurrently, flow measurements were made along bordering road culverts and under L-31W and Taylor Slough bridges. Flows across the study area's boundaries provided net flow of water into the system and transect measurements provided flow data within the basin. Collected data are available through the World Wide Web (http://sofia.usgs.gov/projects/flow_velocity/). The high-water and low-water events corresponded with the highest and lowest flow velocities, respectively. The July 1998 data had lower than expected flow velocities and, in some cases, strong winds reversed flow direction.

  4. Three Important Taylor Series for Introductory Physics

    DTIC Science & Technology

    2009-09-01

    series by the sum of its first few terms is useful throughout an introductory physics course . Example applications [1, 2] include estimating square...Lat. Am. J. Phys. Educ. Vol. 3, No. 3, Sept. 2009 535 http://www.journal.lapen.org.mx Three Important Taylor Series for Introductory Physics...one dimension, which instructively ties the mathematical development to physics concepts already presented in introductory courses . Keywords

  5. Positive Health Psychology: An Interview with Shelley Taylor.

    ERIC Educational Resources Information Center

    Rich, Grant Jewell

    2000-01-01

    Presents an interview with Shelley Taylor, a professor of Psychology at the University of California in Los Angles (California). Addresses topics such as how she became interested in psychology, the importance of health psychology in the curriculum, the ideal training for students in health psychology, and her work with "positive illusions." (CMK)

  6. Characterizing Strength of Chaotic Dynamics and Numerical Simulation Relevant to Modified Taylor-Couette Flow with Hourglass Geometry

    NASA Astrophysics Data System (ADS)

    Hou, Yu; Kowalski, Adam; Schroder, Kjell; Halmstad, Andrew; Olsen, Thomas; Wiener, Richard

    2006-05-01

    We characterize the strength of chaos in two different regimes of Modified Taylor-Couette flow with Hourglass Geometry: the formation of Taylor Vortices with laminar flow and with turbulent flow. We measure the strength of chaos by calculating the correlation dimension and the Kaplan-Yorke dimension based upon the Lyapunov Exponents of each system. We determine the reliability of our calculations by considering data from a chaotic electronic circuit. In order to predict the behavior of the Modified Taylor-Couette flow system, we employ simulations based upon an idealized Reaction-Diffusion model with a third order non-linearity in the reaction rate. Variation of reaction rate with length corresponds to variation of the effective Reynolds Number along the Taylor-Couette apparatus. We present preliminary results and compare to experimental data.

  7. 2. Historic American Buildings Survey Everitt K. Taylor, Photographer September ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey Everitt K. Taylor, Photographer September 15, 1936 EXTERIOR - EAST ELEVATION FROM OLD PRINT IN POSSESSION OF OWNER - Governor's House, 149 Kearny Avenue, Perth Amboy, Middlesex County, NJ

  8. Hard X-Ray Burst Detected From Caltech Plasma Jet Experiment Magnetic Reconnection Event

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan S.; Bellan, Paul M.

    2016-10-01

    In the Caltech plasma jet experiment a 100 kA MHD driven jet becomes kink unstable leading to a Rayleigh-Taylor instability that quickly causes a magnetic reconnection event. Movies show that the Rayleigh-Taylor instability is simultaneous with voltage spikes across the electrodes that provide the current that drives the jet. Hard x-rays between 4 keV and 9 keV have now been observed using an x-ray scintillator detector mounted just outside of a kapton window on the vacuum chamber. Preliminary results indicate that the timing of the x-ray burst coincides with a voltage spike on the electrodes occurring in association with the Rayleigh-Taylor event. The x-ray signal accompanies the voltage spike and Rayleigh-Taylor event in approximately 50% of the shots. A possible explanation for why the x-ray signal is sometimes missing is that the magnetic reconnection event may be localized to a specific region of the plasma outside the line of sight of the scintillator. The x-ray signal has also been seen accompanying the voltage spike when no Rayleigh-Taylor is observed. This may be due to the interframe timing on the camera being longer than the very short duration of the Rayleigh-Taylor instability.

  9. Pediatric and adolescent applications of the Taylor Spatial Frame.

    PubMed

    Paloski, Michael; Taylor, Benjamin C; Iobst, Christopher; Pugh, Kevin J

    2012-06-01

    Limb deformity can occur in the pediatric and adolescent populations from multiple etiologies: congenital, traumatic, posttraumatic sequelae, oncologic, and infection. Correcting these deformities is important for many reasons. Ilizarov popularized external fixation to accomplish this task. Taylor expanded on this by designing an external fixator in 1994 with 6 telescoping struts that can be sequentially manipulated to achieve multiaxial correction of deformity without the need for hinges or operative frame alterations. This frame can be used to correct deformities in children and has shown good anatomic correction with minimal morbidity. The nature of the construct and length of treatment affects psychosocial factors that the surgeon and family must be aware of prior to treatment. An understanding of applications of the Taylor Spatial Frame gives orthopedic surgeons an extra tool to correct simple and complex deformities in pediatric and adolescent patients. Copyright 2012, SLACK Incorporated.

  10. Taylor bubbles in liquid filled annuli: Some new observations

    NASA Astrophysics Data System (ADS)

    Agarwal, V.; Jana, A. K.; Das, G.; Das, P. K.

    2007-10-01

    Taylor bubbles rising through a vertical concentric annulus do not wrap around the inner tube completely. The two edges of the bubble are separated by a liquid bridge which increases with an increase of the inner radius. However, the change in the shape of the Taylor bubbles in annuli with extremely small inner diameter has not yet been reported. In the present investigation, several experiments have been performed in circular and noncircular annuli to understand the influence of the inner and outer wall on the bubble shape. The bubble has been observed to assume a completely different shape in both circular and square annuli with a very thin inner rod. Nevertheless, the rise velocity for such situations agree with the prediction of the model proposed by Das et al. [Chem. Eng. Sci. 53, 977 (1998)] when the outer pipe is circular but fails for a square outer pipe.

  11. Magnetic helicity balance at Taylor relaxed states sustained by AC helicity injection

    NASA Astrophysics Data System (ADS)

    Hirota, Makoto; Morrison, Philip J.; Horton, Wendell; Hattori, Yuji

    2017-10-01

    Magnitudes of Taylor relaxed states that are sustained by AC magnetic helicity injection (also known as oscillating field current drive, OFCD) are investigated numerically in a cylindrical geometry. Compared with the amplitude of the oscillating magnetic field at the skin layer (which is normalized to 1), the strength of the axial guide field Bz 0 is shown to be an important parameter. The relaxation process seems to be active only when Bz 0 < 1 . Moreover, in the case of weak guide field Bz 0 < 0.2 , a helically-symmetric relaxed state is self-generated instead of the axisymmetric reversed-field pinch. As a theoretical model, the helicity balance is considered in a similar way to R. G. O'Neill et al., where the helicity injection rate is directly equated with the dissipation rate at the Taylor states. Then, the bifurcation to the helical Taylor state is predicted theoretically and the estimated magnitudes of the relaxed states reasonably agree with numerical results as far as Bz 0 < 1 . This work was supported by JSPS KAKENHI Grant Number 16K05627.

  12. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  13. Taylor-Made Education: The Influence of the Efficiency Movement on the Testing of Reading Skills.

    ERIC Educational Resources Information Center

    Allen, JoBeth

    Much of what has developed in the testing of reading harkens back to the days of the "Cult of Efficiency" movement in education that can be largely attributed to Frederick Winslow Taylor. Taylor spent most of his productive years studying time and motion in an attempt to streamline industrial production so that people could work as…

  14. Asymmetric bursting of Taylor bubble in inclined tubes

    NASA Astrophysics Data System (ADS)

    Rana, Basanta Kumar; Das, Arup Kumar; Das, Prasanta Kumar

    2016-08-01

    In the present study, experiments have been reported to explain the phenomenon of approach and collapse of an asymmetric Taylor bubble at free surface inside an inclined tube. Four different tube inclinations with horizontal (30°, 45°, 60° and 75°) and two different fluids (water and silicon oil) are considered for the experiment. Using high speed imaging, we have investigated the approach, puncture, and subsequent liquid drainage for re-establishment of the free surface. The present study covers all the aspects in the collapse of an asymmetric Taylor bubble through the generation of two films, i.e., a cap film which lies on top of the bubble and an asymmetric annular film along the tube wall. Retraction of the cap film is studied in detail and its velocity has been predicted successfully for different inclinations and fluids. Film drainage formulation considering azimuthal variation is proposed which also describes the experimental observations well. In addition, extrapolation of drainage velocity pattern beyond the experimental observation limit provides insight into the total collapse time of bubbles at different inclinations and fluids.

  15. 1. Historic American Buildings Survey Everitt K. Taylor, Photographer September ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Everitt K. Taylor, Photographer September 15, 1936 EXTERIOR - GENERAL VIEW EAST ELEVATION FROM OLD PRINT IN POSSESSION OF OWNER - Governor's House, 149 Kearny Avenue, Perth Amboy, Middlesex County, NJ

  16. Insights into the Mechanism of Severe Mitral Regurgitation: RT-3D TEE Guided Management with Pathological Correlation.

    PubMed

    Anand, Senthil; Hamoud, Naktal; Thompson, Jess; Janardhanan, Rajesh

    2015-01-01

    Mitral valve perforation is an uncommon but important complication of infective endocarditis. We report a case of a 65-year-old man who was diagnosed to have infective endocarditis of his mitral valve. Through the course of his admission he had a rapid development of hemodynamic instability and pulmonary edema secondary to acutely worsening mitral regurgitation. While the TEE demonstrated an increase in the size of his bacterial vegetation, Real Time 3D TEE was ultimately the imaging modality through which the valve perforation was identified. Through this case report we discuss the advantages that RT-3D TEE has over traditional 2D TEE in the management of valve perforation.

  17. Fabrication of Multscale Fractal-Like Structures by Controlling Fluid Interface Instability

    PubMed Central

    Islam, Tanveer ul; Gandhi, Prasanna S.

    2016-01-01

    Nature, in quest for the best designs has shaped its vital systems into fractal geometries. Effectual way of spontaneous fabrication of scalable, ordered fractal-like structures by controlling Saffman-Taylor instability in a lifted Hele-Shaw cell is deployed here. In lifted Hele-Shaw cell uncontrolled penetration of low-viscosity fluid into its high-viscosity counterpart is known to develop irregular, non-repeatable, normally short-lived, branched patterns. We propose and characterize experimentally anisotropies in a form of spatially distributed pits on the cell plates to control initiation and further penetration of non-splitting fingers. The proposed control over shielding mechanism yields recipes for fabrication of families of ordered fractal-like patterns of multiple generations. As an example, we demonstrate and characterize fabrication of a Cayley tree fractal-like pattern. The patterns, in addition, are retained permanently by employing UV/thermally curable fluids. The proposed technique thus establishes solid foundation for bio-mimicking natural structures spanning multiple-scales for scientific and engineering use. PMID:27849003

  18. Fabrication of Multscale Fractal-Like Structures by Controlling Fluid Interface Instability

    NASA Astrophysics Data System (ADS)

    Islam, Tanveer Ul; Gandhi, Prasanna S.

    2016-11-01

    Nature, in quest for the best designs has shaped its vital systems into fractal geometries. Effectual way of spontaneous fabrication of scalable, ordered fractal-like structures by controlling Saffman-Taylor instability in a lifted Hele-Shaw cell is deployed here. In lifted Hele-Shaw cell uncontrolled penetration of low-viscosity fluid into its high-viscosity counterpart is known to develop irregular, non-repeatable, normally short-lived, branched patterns. We propose and characterize experimentally anisotropies in a form of spatially distributed pits on the cell plates to control initiation and further penetration of non-splitting fingers. The proposed control over shielding mechanism yields recipes for fabrication of families of ordered fractal-like patterns of multiple generations. As an example, we demonstrate and characterize fabrication of a Cayley tree fractal-like pattern. The patterns, in addition, are retained permanently by employing UV/thermally curable fluids. The proposed technique thus establishes solid foundation for bio-mimicking natural structures spanning multiple-scales for scientific and engineering use.

  19. Tree ecophysiology research at Taylor Woods (P-53)

    Treesearch

    Thomas E. Kolb; Nate G. McDowell

    2008-01-01

    We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...

  20. Investigation of MHD Instabilities in Jets and Bubbles Using a Compact Coaxial Plasma Gun in a Background Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Fisher, D. M.; Wallace, B.; Gilmore, M.; Hsu, S. C.

    2016-10-01

    A compact coaxial plasma gun is employed for experimental investigation of launching plasma into a lower density background magnetized plasma. Experiments are being conducted in the linear device HelCat at UNM. Four distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. For regime I plasma jet formation, a global helical magnetic configuration is determined by a B-dot probe array data. Also the m =1 kink instability is observed and verified. Furthermore, when the jet is propagating into background magnetic field, a longer length and lifetime jet is formed. Axial shear flow caused by the background magnetic tension force contributes to the increased stability of the jet body. In regime II, a spheromak-like plasma bubble formation is identified when the gun plasma is injected into vacuum. In contrast, when the bubble propagates into a background magnetic field, the closed magnetic field configuration does not hold anymore and a lateral side, Reilgh-Taylor instability develops. Detailed experimental data and analysis will be presented for these cases.

  1. New trends in Taylor series based applications

    NASA Astrophysics Data System (ADS)

    Kocina, Filip; Šátek, Václav; Veigend, Petr; Nečasová, Gabriela; Valenta, Václav; Kunovský, Jiří

    2016-06-01

    The paper deals with the solution of large system of linear ODEs when minimal comunication among parallel processors is required. The Modern Taylor Series Method (MTSM) is used. The MTSM allows using a higher order during the computation that means a larger integration step size while keeping desired accuracy. As an example of complex systems we can take the Telegraph Equation Model. Symbolic and numeric solutions are compared when harmonic input signal is used.

  2. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft ormore » to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.« less

  3. The Spirit and Action of Citizenship: Alex Taylor Community School.

    ERIC Educational Resources Information Center

    Haggerson, Nelson L.; And Others

    1987-01-01

    Describes a study of the prosocial atmosphere and citizenship spirit found at Alex Taylor Community School in Edmonton, Canada. Includes a brief background of the project and a description of several motivating citizenship activities within the school. (BSR)

  4. Traveling waves in a magnetized Taylor-Couette flow.

    PubMed

    Liu, Wei; Goodman, Jeremy; Ji, Hantao

    2007-07-01

    We investigate numerically a traveling wave pattern observed in experimental magnetized Taylor-Couette flow at low magnetic Reynolds number. By accurately modeling viscous and magnetic boundaries in all directions, we reproduce the experimentally measured wave patterns and their amplitudes. Contrary to previous claims, the waves are shown to be transiently amplified disturbances launched by viscous boundary layers, rather than globally unstable magnetorotational modes.

  5. Structural reanalysis via a mixed method. [using Taylor series for accuracy improvement

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1975-01-01

    A study is made of the approximate structural reanalysis technique based on the use of Taylor series expansion of response variables in terms of design variables in conjunction with the mixed method. In addition, comparisons are made with two reanalysis techniques based on the displacement method. These techniques are the Taylor series expansion and the modified reduced basis. It is shown that the use of the reciprocals of the sizing variables as design variables (which is the natural choice in the mixed method) can result in a substantial improvement in the accuracy of the reanalysis technique. Numerical results are presented for a space truss structure.

  6. Transition to turbulence in Taylor-Couette ferrofluidic flow

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control. PMID:26065572

  7. The nature of the Vela X-ray ``jet". The Rayleigh-Taylor instability and the origin of filamentary structures in the Vela supernova remnant

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii

    1999-12-01

    The nature of the Vela X-ray ``jet", recently discovered by Markwardt & Ögelman (1995), is examined. It is suggested that the ``jet" arises along the interface of domelike deformations of the Rayleigh-Taylor unstable shell of the Vela supernova remnant; thereby the ``jet" is interpreted as a part of the general shell of the remnant. The origin of deformations as well as the general structure of the remnant are discussed in the framework of a model based on a cavity explosion of a supernova star. It is suggested that the shell deformations viewed at various angles appear as filamentary structures visible throughout the Vela supernova remnant at radio, optical, and X-ray wavelengths. A possible origin of the nebula of hard X-ray emission detected by Willmore et al. (1992) around the Vela pulsar is proposed.

  8. Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027

    2005-10-01

    The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes

  9. Chagas disease vector control and Taylor's law

    PubMed Central

    Rodríguez-Planes, Lucía I.; Gaspe, María S.; Cecere, María C.; Cardinal, Marta V.

    2017-01-01

    Background Large spatial and temporal fluctuations in the population density of living organisms have profound consequences for biodiversity conservation, food production, pest control and disease control, especially vector-borne disease control. Chagas disease vector control based on insecticide spraying could benefit from improved concepts and methods to deal with spatial variations in vector population density. Methodology/Principal findings We show that Taylor's law (TL) of fluctuation scaling describes accurately the mean and variance over space of relative abundance, by habitat, of four insect vectors of Chagas disease (Triatoma infestans, Triatoma guasayana, Triatoma garciabesi and Triatoma sordida) in 33,908 searches of people's dwellings and associated habitats in 79 field surveys in four districts in the Argentine Chaco region, before and after insecticide spraying. As TL predicts, the logarithm of the sample variance of bug relative abundance closely approximates a linear function of the logarithm of the sample mean of abundance in different habitats. Slopes of TL indicate spatial aggregation or variation in habitat suitability. Predictions of new mathematical models of the effect of vector control measures on TL agree overall with field data before and after community-wide spraying of insecticide. Conclusions/Significance A spatial Taylor's law identifies key habitats with high average infestation and spatially highly variable infestation, providing a new instrument for the control and elimination of the vectors of a major human disease. PMID:29190728

  10. Numerical simulation for a vortex street near the poleward boundary of the nighttime auroral oval

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.

    2012-02-01

    The formation of a vortex street is numerically studied as an aftermath of a transient (≈1 min) depression of the energy density of injected particles. It is basically assumed that the kinetic energies of auroral particles are substantially provided by nonadiabatic acceleration in the tail current sheet. One of the causes of such energy density depression is an outward (away from the Earth) movement of the neutral line because in such situation, a particle passes the acceleration zone for a shorter time interval while it is inwardly transported in the current sheet. The numerical simulation shows that a long chain of many (≥5) vortices can be formed in the nighttime high-latitude auroral oval as a result of the hybrid Kelvin-Helmholtz/Rayleigh-Taylor (KH/RT) instability. The main characteristics of long vortex chains in the simulation such as the short lifetime (≲2 min) and the correlation between wavelength, λ, and arc system width, A, compare well with those of the periodic auroral distortions observed primarily in the high-latitude auroral oval. Specifically, either λ-A relationship from simulation or observation shows a positive correlation between λ and A but with considerable dispersion in λ. Since auroral vortices arising from the hybrid KH/RT instability are not accompanied by significant rotational motions, the magnetic shear instability caused by undulations in the field-aligned current (FAC) sheet could turn the vortices into spirals which wind or unwind in response to increase or decrease of FACs, respectively.

  11. 78 FR 61505 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Taylor's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ...We, the U.S. Fish and Wildlife Service, designate critical habitat for the Taylor's checkerspot butterfly (Euphydryas editha taylori) and streaked horned lark (Eremophila alpestris strigata) under the Endangered Species Act of 1973, as amended (Act). In total, approximately 1,941 acres (786 hectares) in Island, Clallam, and Thurston Counties in Washington, and in Benton County in Oregon, fall within the boundaries of the critical habitat designation for Taylor's checkerspot butterfly. Approximately 4,629 acres (1,873 hectares) in Grays Harbor, Pacific, and Wahkiakum Counties in Washington, and in Clatsop, Columbia, Marion, Polk, and Benton Counties in Oregon, fall within the boundaries of the critical habitat designation for streaked horned lark. The effect of this regulation is to designate critical habitat for the Taylor's checkerspot butterfly and streaked horned lark under the Act for the conservation of the species.

  12. Utilizing Lidar Data for Detection of Channel Migration: Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Barlow, M. C.; Telling, J. W.; Glennie, C.; Fountain, A.

    2017-12-01

    The McMurdo Dry Valleys is the largest ice-free expanse in Antarctica and one of the most studied regions on the continent. The valleys are a hyper-arid, cold-polar desert that receives little precipitation (<50 mm weq yr-1). The valley bottoms are covered in a sandy-gravel, dotted with ice-covered lakes and ponds, and alpine glaciers that descend from the surrounding mountains. Glacial melt feeds the lakes via ephemeral streams that flow 6 - 10 weeks each summer. Field observations indicate that the valley floors, particularly in Taylor Valley, contain numerous abandoned stream channels but, given the modest stream flows, channel migration is rarely observed. Only a few channels have been surveyed in the field due to the slow pace of manual methods. Here we present a method to assess channel migration over a broad region in order to study the pattern of channel migration as a function of climatic and/or geologic gradients in Taylor Valley. Raster images of high-resolution topography were created from two lidar (Light Detection and Ranging) datasets and were used to analyze channel migration in Taylor Valley. The first lidar dataset was collected in 2001 by NASA's Airborne Topographic Mapper (ATM) and the second was collected by the National Center for Airborne Laser Mapping (NCALM) in 2014 with an Optech Titan Sensor. The channels were extracted for each dataset using GeoNet, which is an open source tool used for the automatic extraction of channel networks. Channel migration was found to range from 0 to 50 cm per year depending upon the location. Channel complexity was determined based on the change in the number of channel branches and their length. We present the results for various regions in Taylor Valley with differing degrees of stream complexity. Further research is being done to determine factors that drive channel migration rates in this unique environment.

  13. Analysis of turbulent transport and mixing in transitional Rayleigh–Taylor unstable flow using direct numerical simulation data

    DOE PAGES

    Schilling, Oleg; Mueschke, Nicholas J.

    2010-10-18

    energy flux, which changes sign early in time (a countergradient effect). The production-to-dissipation ratios corresponding to the turbulent kinetic energy and heavy-fluid mass fraction variance are large and vary strongly at small evolution times, decrease with time, and nearly asymptote as the flow enters a self-similar regime. The late-time turbulent kinetic energy production-to-dissipation ratio is larger than observed in shear-driven turbulent flows. The order of magnitude estimates of the terms in the transport equations are shown to be consistent with the DNS at late-time, and also confirms both the dominant terms and their evolutionary behavior. Thus, these results are useful for identifying the dynamically important terms requiring closure, and assessing the accuracy of the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of turbulent transport and mixing in transitional Rayleigh-Taylor instability-generated flow.« less

  14. Inward propagating chemical waves in Taylor vortices.

    PubMed

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  15. Identification of novel and robust internal control genes from Volvariella volvacea that are suitable for RT-qPCR in filamentous fungi.

    PubMed

    Tao, Yongxin; van Peer, Arend Frans; Huang, Qianhui; Shao, Yanping; Zhang, Lei; Xie, Bin; Jiang, Yuji; Zhu, Jian; Xie, Baogui

    2016-07-12

    The selection of appropriate internal control genes (ICGs) is a crucial step in the normalization of real-time quantitative PCR (RT-qPCR) data. Housekeeping genes are habitually selected for this purpose, despite accumulating evidence on their instability. We screened for novel, robust ICGs in the mushroom forming fungus Volvariella volvacea. Nine commonly used and five newly selected ICGs were evaluated for expression stability using RT-qPCR data in eight different stages of the life cycle of V. volvacea. Three different algorithms consistently determined that three novel ICGs (SPRYp, Ras and Vps26) exhibited the highest expression stability in V. volvacea. Subsequent analysis of ICGs in twenty-four expression profiles from nine filamentous fungi revealed that Ras was the most stable ICG amongst the Basidiomycetous samples, followed by SPRYp, Vps26 and ACTB. Vps26 was expressed most stably within the analyzed data of Ascomycetes, followed by HH3 and β-TUB. No ICG was universally stable for all fungal species, or for all experimental conditions within a species. Ultimately, the choice of an ICG will depend on a specific set of experiments. This study provides novel, robust ICGs for Basidiomycetes and Ascomycetes. Together with the presented guiding principles, this enables the efficient selection of suitable ICGs for RT-qPCR.

  16. Self-awareness deficits following loss of inner speech: Dr. Jill Bolte Taylor's case study.

    PubMed

    Morin, Alain

    2009-06-01

    In her 2006 book "My Stroke of Insight" Dr. Jill Bolte Taylor relates her experience of suffering from a left hemispheric stroke caused by a congenital arteriovenous malformation which led to a loss of inner speech. Her phenomenological account strongly suggests that this impairment produced a global self-awareness deficit as well as more specific dysfunctions related to corporeal awareness, sense of individuality, retrieval of autobiographical memories, and self-conscious emotions. These are examined in details and corroborated by numerous excerpts from Taylor's book.

  17. Response to Intervention (RtI) in Secondary Schools: A Comparison of the RtI Service Delivery Model

    ERIC Educational Resources Information Center

    Epler-Brooks, Pam L.

    2011-01-01

    This qualitative, collective case study researched how the Response to Intervention (RtI) service delivery model was used within the secondary educational environment in two Ohio schools. Areas researched included the type of professional development used to introduce and sustain RtI, the amount of administrative support, the use of universal…

  18. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.

    2014-07-15

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112,more » 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.« less

  19. Numerical analysis of two-fluid tearing mode instability in a finite aspect ratio cylinder

    NASA Astrophysics Data System (ADS)

    Ito, Atsushi; Ramos, Jesús J.

    2018-01-01

    The two-fluid resistive tearing mode instability in a periodic plasma cylinder of finite aspect ratio is investigated numerically for parameters such that the cylindrical aspect ratio and two-fluid effects are of order unity, hence the real and imaginary parts of the mode eigenfunctions and growth rate are comparable. Considering a force-free equilibrium, numerical solutions of the complete eigenmode equations for general aspect ratios and ion skin depths are compared and found to be in very good agreement with the corresponding analytic solutions derived by means of the boundary layer theory [A. Ito and J. J. Ramos, Phys. Plasmas 24, 072102 (2017)]. Scaling laws for the growth rate and the real frequency of the mode are derived from the analytic dispersion relation by using Taylor expansions and Padé approximations. The cylindrical finite aspect ratio effect is inferred from the scaling law for the real frequency of the mode.

  20. 3 CFR - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 3 The President 1 2012-01-01 2012-01-01 false Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor Presidential Documents Other Presidential Documents Notice of July 20, 2011 Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor On July 22, 2004, by...

  1. 3 CFR - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor Presidential Documents Other Presidential Documents Notice of July 16, 2009 Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor On July 22, 2004, by...

  2. 3 CFR - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 3 The President 1 2014-01-01 2014-01-01 false Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor Presidential Documents Other Presidential Documents Notice of July 17, 2013 Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor On July 22, 2004, by...

  3. Bright and durable field-emission source derived from frozen refractory-metal Taylor cones

    DOE PAGES

    Hirsch, Gregory

    2017-02-22

    A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less

  4. Bright and durable field-emission source derived from frozen refractory-metal Taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less

  5. Experimental investigation of head resistance reduction in bubbly Couette-Taylor flow

    NASA Astrophysics Data System (ADS)

    Maryami, R.; Javadpoor, M.; Farahat, S.

    2016-12-01

    Small bubble experiments are carried out in a circulating vertical Couette-Taylor flow system to investigate the effect of air bubbles on head resistance. In the system with inner rotating cylinder and circulating flow, flow is combined with circumferential and axial flow. Moreover, the variation range of rotational Reynolds number is 7 × 103 ≤ {Re}_{ω } ≤ 70 × 103 and small bubbles are dispersed into fully turbulent flow which consists of Taylor vortices. The modification of head resistance is examined by measuring the pressure difference between two certain holes along the cylinders axis. The results show that head resistance is decreased in the presence of small bubbles and a head resistance reduction greater than 60 % is achieved in low {Re}_{ω } s and in all {Re}_{ax} s changing from 299.15 to 396.27. The effect of air bubbles on vortices could be possible reason for head resistance reduction. Since Taylor vortices are stable in this regime, bubbles decrease the momentum transfer by elongating vortices along the axis of cylinders and decreasing their numbers. The positive effect of air bubbles on head resistance reduction is diminished when {Re}_{ω } is increased. Moreover, in certain ranges of {Re}_{ω }, small bubbles enhance head resistance when {Re}_{ax} is increased. It is predicted that negative effect of small bubbles on head resistance reduction is due to flow turbulence enhancement when {Re}_{ω } and {Re}_{ax} are increased.

  6. Instability timescale for the inclination instability in the solar system

    NASA Astrophysics Data System (ADS)

    Zderic, Alexander; Madigan, Ann-Marie; Fleisig, Jacob

    2018-04-01

    The gravitational influence of small bodies is often neglected in the study of solar system dynamics. However, this is not always an appropriate assumption. For example, mutual secular torques between low mass particles on eccentric orbits can result in a self-gravity instability (`inclination instability'; Madigan & McCourt 2016). During the instability, inclinations increase exponentially, eccentricities decrease (detachment), and orbits cluster in argument of perihelion. In the solar system, the orbits of the most distant objects show all three of these characteristics (high inclination: Volk & Malhotra (2017), detachment: Delsanti & Jewitt (2006), and argument of perihelion clustering: Trujillo & Sheppard (2014)). The inclination instability is a natural explanation for these phenomena.Unfortunately, full N-body simulations of the solar system are unfeasible (N ≈ O(1012)), and the behavior of the instability depends on N, prohibiting the direct application of lower N simulations. Here we present the instability timescale's functional dependence on N, allowing us to extrapolate our simulation results to that appropriate for the solar system. We show that ~5 MEarth of small icy bodies in the Sedna region is sufficient for the inclination instability to occur in the outer solar system.

  7. Taylor Farms Retail Inc., Salinas, CA; Consent Agreement and Final Order

    EPA Pesticide Factsheets

    Consent Agreement and Final Order (Proposed CA/FO), between the U.S. Environmental Protection Agency, Region IX (EPA or Complainant), and Taylor Farms Retail Inc. (Respondent), 150 Main Street Salinas, CA 93901. Docket Number CWA-09-2018-0010

  8. Evidence for mate guarding behavior in the Taylor's checkerspot butterfly

    Treesearch

    Victoria J. Bennett; Winston P. Smith; Matthew G. Betts

    2011-01-01

    Discerning the intricacies of mating systems in butterflies can be difficult, particularly when multiple mating strategies are employed and are cryptic and not exclusive. We observed the behavior and habitat use of 113 male Taylor's checkerspot butterflies (Euphydryas editha taylori). We confirmed that two distinct mating strategies were...

  9. Influence of fluid temperature gradient on the flow within the shaft gap of a PLR pump

    NASA Astrophysics Data System (ADS)

    Qian, W.; Rosic, B.; Zhang, Q.; Khanal, B.

    2016-03-01

    In nuclear power plants the primary-loop recirculation (PLR) pump circulates the high temperature/high-pressure coolant in order to remove the thermal energy generated within the reactor. The pump is sealed using the cold purge flow in the shaft seal gap between the rotating shaft and stationary casing, where different forms of Taylor-Couette flow instabilities develop. Due to the temperature difference between the hot recirculating water and the cold purge water (of order of 200 °C), the flow instabilities in the gap cause temperature fluctuations, which can lead to shaft or casing thermal fatigue cracks. The present work numerically investigated the influence of temperature difference and rotating speed on the structure and dynamics of the Taylor-Couette flow instabilities. The CFD solver used in this study was extensively validated against the experimental data published in the open literature. Influence of temperature difference on the fluid dynamics of Taylor vortices was investigated in this study. With large temperature difference, the structure of the Taylor vortices is greatly stretched at the interface region between the annulus gap and the lower recirculating cavity. Higher temperature difference and rotating speed induce lower fluctuating frequency and smaller circumferential wave number of Taylor vortices. However, the azimuthal wave speed remains unchanged with all the cases tested. The predicted axial location of the maximum temperature fluctuation on the shaft is in a good agreement with the experimental data, identifying the region potentially affected by the thermal fatigue. The physical understandings of such flow instabilities presented in this paper would be useful for future PLR pump design optimization.

  10. A comparative study of digital RT-PCR and RT-qPCR for quantification of Hepatitis A virus and Norovirus in lettuce and water samples.

    PubMed

    Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Guillier, Laurent; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie

    2015-05-18

    Sensitive and quantitative detection of foodborne enteric viruses is classically achieved by quantitative RT-PCR (RT-qPCR). Recently, digital PCR (dPCR) was described as a novel approach to genome quantification without need for a standard curve. The performance of microfluidic digital RT-PCR (RT-dPCR) was compared to RT-qPCR for detecting the main viruses responsible for foodborne outbreaks (human Noroviruses (NoV) and Hepatitis A virus (HAV)) in spiked lettuce and bottled water. Two process controls (Mengovirus and Murine Norovirus) were used and external amplification controls (EAC) were added to examine inhibition of RT-qPCR and RT-dPCR. For detecting viral RNA and cDNA, the sensitivity of the RT-dPCR assays was either comparable to that of RT-qPCR (RNA of HAV, NoV GI, Mengovirus) or slightly (around 1 log10) decreased (NoV GII and MNV-1 RNA and of HAV, NoV GI, NoV GII cDNA). The number of genomic copies determined by dPCR was always from 0.4 to 1.7 log10 lower than the expected numbers of copies calculated by using the standard qPCR curve. Viral recoveries calculated by RT-dPCR were found to be significantly higher than by RT-qPCR for NoV GI, HAV and Mengovirus in water, and for NoV GII and HAV in lettuce samples. The RT-dPCR assay proved to be more tolerant to inhibitory substances present in lettuce samples. This absolute quantitation approach may be useful to standardize quantification of enteric viruses in bottled water and lettuce samples and may be extended to quantifying other human pathogens in food samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nonlinear Pattern Selection in Bi-Modal Interfacial Instabilities

    NASA Astrophysics Data System (ADS)

    Picardo, Jason; Narayanan, Ranga

    2016-11-01

    We study the evolution of two interacting unstable interfaces, with the aim of understanding the role of non-linearity in pattern selection. Specifically, we consider two superposed thin films on a heated surface, that are susceptible to thermocapillary and Rayleigh-Taylor instabilities. Due to the presence of two unstable interfaces, the dispersion curve (linear growth rate plotted as a function of the perturbation wavelength) exhibits two peaks. If these peaks have equal heights, then the two corresponding disturbance patterns will grow with the same linear growth rate. Therefore, any selection between the two must occur via nonlinear effects. The two-interface problem under consideration provides a variety of such bi-modal situations, in which the role of nonlinearity in pattern selection is unveiled. We use a combination of long wave asymptotics, numerical simulations and amplitude expansions to understand the subtle nonlinear interactions between the two peak modes. Our results offer a counter-example to Rayleigh's principle of pattern formation, that the fastest growing linear mode will dominate the final pattern. Far from being governed by any such general dogma, the final selected pattern varies considerably from case to case. The authors acknowledge funding from NSF (0968313) and the Fulbright-Nehru fellowship.

  12. Collective instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.Y. Ng

    2003-08-25

    The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.

  13. [Shoulder instability].

    PubMed

    Sailer, J; Imhof, H

    2004-06-01

    Shoulder instability is a common clinical feature leading to recurrent pain and limited range of motion within the glenohumeral joint. Instability can be due a single traumatic event, general joint laxity or repeated episodes of microtrauma. Differentiation between traumatic and atraumatic forms of shoulder instability requires careful history and a systemic clinical examination. Shoulder laxity has to be differentiated from true instability followed by the clinical assessment of direction and degree of glenohumeral translation. Conventional radiography and CT are used for the diagnosis of bony lesions. MR imaging and MR arthrography help in the detection of soft tissue affection, especially of the glenoid labrum and the capsuloligamentous complex. The most common lesion involving the labrum is the anterior labral tear, associated with capsuloperiostal stripping (Bankart lesion). A number of variants of the Bankart lesion have been described, such as ALPSA, SLAP or HAGL lesions. The purpose of this review is to highlight different forms of shoulder instability and its associated radiological findings with a focus on MR imaging.

  14. Private Rogers L. Taylor: Prisoner of the Japanese

    DTIC Science & Technology

    2015-04-01

    cooking , its body closely resembled that of a human baby. Other soldiers recall their memories regarding the local fare on Bataan. Lajzer recounted...Horse meat stunk so bad it was revolting. The cooks would boil it and then fry it over an open fire so it could be eaten. … Believe me, mules...gathering wood and water for cooking but the worst was the burial detail, which Taylor begrudgingly performed. This is not a detail he spoke of

  15. A numerical simulation of finite-length Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1988-01-01

    Results from numerical simulations of finite-length Taylor-Couette flow are presented. Included are time-accurate and steady-state studies of the change in the nature of the symmetric two-cell/asymmetric one-cell bifurcation with varying aspect ratio and of the Reynolds number/aspect ratio locus of the two-cell/four-cell bifurcation. Preliminary results from wavy-vortex simulations at low aspect ratios are also presented.

  16. James Taylor (1859-1946): favourite disciple of Hughlings Jackson and William Gowers.

    PubMed

    Eadie, M J

    2013-01-01

    In neurological circles today the name James Taylor (1859-1946) is probably remembered mainly for his role in editing the Selected Writings of John Hughlings Jackson, the most readily available source of Jackson's contributions to neurological knowledge. Taylors' own neurological achievements are largely or entirely forgotten, but in his day he was an influential figure whose career linked the great figures of the golden era of late nineteenth century British neurology to the neurology of the first half of the twentieth century. Not only was he a junior professional colleague and close friend of both John Hughlings Jackson and William Gowers, he also produced a substantial corpus of neurological writings in his own right, including a textbook of child neurology and the first English language account of subacute combined degeneration of the spinal cord.

  17. An Improved Power Quality Based Sheppard-Taylor Converter Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2015-12-01

    This paper deals with the design and analysis of a power factor correction based Sheppard-Taylor converter fed brushless dc motor (BLDCM) drive. The speed of the BLDCM is controlled by adjusting the dc link voltage of the voltage source inverter (VSI) feeding BLDCM. Moreover, a low frequency switching of the VSI is used for electronically commutating the BLDCM for reduced switching losses. The Sheppard-Taylor converter is designed to operate in continuous conduction mode to achieve an improved power quality at the ac mains for a wide range of speed control and supply voltage variation. The BLDCM drive is designed and its performance is simulated in a MATLAB/Simulink environment to achieve the power quality indices within the limits of the international power quality standard IEC-61000-3-2.

  18. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.

    The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less

  19. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing

    DOE PAGES

    Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.

    2018-01-10

    The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less

  20. Comparison of electron microscopy, ELISA, real time RT-PCR and insulated isothermal RT-PCR for the detection of Rotavirus group A (RVA) in feces of different animal species.

    PubMed

    Soltan, Mohamed A; Tsai, Yun-Long; Lee, Pei-Yu A; Tsai, Chuan-Fu; Chang, Hsiao-Fen G; Wang, Hwa-Tang T; Wilkes, Rebecca P

    2016-09-01

    There is no gold standard for detection of Rotavirus Group A (RVA), one of the main causes of diarrhea in neonatal animals. Sensitive and specific real-time RT-PCR (rtRT-PCR) assays are available for RVA but require submission of the clinical samples to diagnostic laboratories. Patient-side immunoassays for RVA protein detection have shown variable results, particularly with samples from unintended species. A sensitive and specific test for detection of RVA on the farm would facilitate rapid management decisions. The insulated isothermal RT-PCR (RT-iiPCR) assay works in a portable machine to allow sensitive and specific on-site testing. The aim of this investigation was to evaluate a commercially available RT-iiPCR assay for RVA detection in feces from different animal species. This assay was compared to an in-house rtRT-PCR assay and a commercially available rtRT-PCR kit, as well as an ELISA and EM for RVA detection. All three PCR assays targeted the well-conserved NSP5 gene. Clinical fecal samples from 108 diarrheic animals (mainly cattle and horses) were tested. The percentage of positive samples by ELISA, EM, in-house rtRT-PCR, commercial rtRT-PCR, and RT-iiPCR was 29.4%, 31%, 36.7%, 51.4%, 56.9%, respectively. The agreement between different assays was high (81.3-100%) in samples containing high viral loads. The sensitivity of the RT-iiPCR assay appeared to be higher than the commercially available rtRT-PCR assay, with a limit of detection (95% confidence index) of 3-4 copies of in vitro transcribed dsRNA. In conclusion, the user-friendly, field-deployable RT-iiPCR system holds substantial promise for on-site detection of RVA. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. The solution of the point kinetics equations via converged accelerated Taylor series (CATS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapol, B.; Picca, P.; Previti, A.

    This paper deals with finding accurate solutions of the point kinetics equations including non-linear feedback, in a fast, efficient and straightforward way. A truncated Taylor series is coupled to continuous analytical continuation to provide the recurrence relations to solve the ordinary differential equations of point kinetics. Non-linear (Wynn-epsilon) and linear (Romberg) convergence accelerations are employed to provide highly accurate results for the evaluation of Taylor series expansions and extrapolated values of neutron and precursor densities at desired edits. The proposed Converged Accelerated Taylor Series, or CATS, algorithm automatically performs successive mesh refinements until the desired accuracy is obtained, making usemore » of the intermediate results for converged initial values at each interval. Numerical performance is evaluated using case studies available from the literature. Nearly perfect agreement is found with the literature results generally considered most accurate. Benchmark quality results are reported for several cases of interest including step, ramp, zigzag and sinusoidal prescribed insertions and insertions with adiabatic Doppler feedback. A larger than usual (9) number of digits is included to encourage honest benchmarking. The benchmark is then applied to the enhanced piecewise constant algorithm (EPCA) currently being developed by the second author. (authors)« less

  2. Influence of homogeneous magnetic fields on the flow of a ferrofluid in the Taylor-Couette system.

    PubMed

    Altmeyer, S; Hoffmann, Ch; Leschhorn, A; Lücke, M

    2010-07-01

    We investigate numerically the influence of a homogeneous magnetic field on a ferrofluid in the gap between two concentric, independently rotating cylinders. The full Navier-Stokes equations are solved with a combination of a finite difference method and a Galerkin method. Structure, dynamics, symmetry properties, bifurcation, and stability behavior of different vortex structures are investigated for axial and transversal magnetic fields, as well as combinations of them. We show that a transversal magnetic field modulates the Taylor vortex flow and the spiral vortex flow. Thus, a transversal magnetic field induces wavy structures: wavy Taylor vortex flow (wTVF) and wavy spiral vortex flow. In contrast to the classic wTVF, which is a secondarily bifurcating structure, these magnetically generated wavy Taylor vortices are pinned by the magnetic field, i.e., they are stationary and they appear via a primary forward bifurcation out of the basic state of circular Couette flow.

  3. Posterior Shoulder Instability

    PubMed Central

    Antosh, Ivan J.; Tokish, John M.; Owens, Brett D.

    2016-01-01

    Context: Posterior shoulder instability has become more frequently recognized and treated as a unique subset of shoulder instability, especially in the military. Posterior shoulder pathology may be more difficult to accurately diagnose than its anterior counterpart, and commonly, patients present with complaints of pain rather than instability. “Posterior instability” may encompass both dislocation and subluxation, and the most common presentation is recurrent posterior subluxation. Arthroscopic and open treatment techniques have improved as understanding of posterior shoulder instability has evolved. Evidence Acquisition: Electronic databases including PubMed and MEDLINE were queried for articles relating to posterior shoulder instability. Study Design: Clinical review. Level of Evidence: Level 4. Results: In low-demand patients, nonoperative treatment of posterior shoulder instability should be considered a first line of treatment and is typically successful. Conservative treatment, however, is commonly unsuccessful in active patients, such as military members. Those patients with persistent shoulder pain, instability, or functional limitations after a trial of conservative treatment may be considered surgical candidates. Arthroscopic posterior shoulder stabilization has demonstrated excellent clinical outcomes, high patient satisfaction, and low complication rates. Advanced techniques may be required in select cases to address bone loss, glenoid dysplasia, or revision. Conclusion: Posterior instability represents about 10% of shoulder instability and has become increasingly recognized and treated in military members. Nonoperative treatment is commonly unsuccessful in active patients, and surgical stabilization can be considered in patients who do not respond. Isolated posterior labral repairs constitute up to 24% of operatively treated labral repairs in a military population. Arthroscopic posterior stabilization is typically considered as first-line surgical

  4. Laser-driven planar Rayleigh-Taylor instability experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glendinning, S.G.; Weber, S.V.; Bell, P.

    1992-08-24

    We have performed a series of experiments on the Nova Laser Facility to examine the hydrodynamic behavior of directly driven planar foils with initial perturbations of varying wavelength. The foils were accelerated with a single, frequency doubled, smoothed and temporally shaped laser beam at 0.8{times}10{sup 14} W/cm{sup 2}. The experiments are in good agreement with numerical simulations using the computer codes LASNEX and ORCHID which show growth rates reduced to about 70% of classical for this nonlinear regime.

  5. Inertial migration of particles in Taylor-Couette flows

    NASA Astrophysics Data System (ADS)

    Majji, Madhu V.; Morris, Jeffrey F.

    2018-03-01

    An experimental study of inertial migration of neutrally buoyant particles in the circular Couette flow (CCF), Taylor vortex flow (TVF) and wavy vortex flow (WVF) is reported. This work considers a concentric cylinder Taylor-Couette device with a stationary outer cylinder and rotating inner cylinder. The device has a radius ratio of η = ri/ro = 0.877, where ri and ro are the inner and outer radii of the flow annulus. The ratio of the annular width between the cylinders (δ = ro - ri) and the particle diameter (dp) is α = δ/dp = 20. For η = 0.877, the flow of a Newtonian fluid undergoes transitions from CCF to TVF and TVF to WVF at Reynolds numbers Re = 120 and 151, respectively, and for the dilute suspensions studied here, these critical Reynolds numbers are almost unchanged. In CCF, particles were observed to migrate, due to the competition between the shear gradient of the flow and the wall interactions, to an equilibrium location near the middle of the annulus with an offset toward the inner cylinder. In TVF, the vortex motion causes the particles to be exposed to the shear gradient and wall interactions in a different manner, resulting in a circular equilibrium region in each vortex. The radius of this circular region grows with increase in Re. In WVF, the azimuthal waviness results in fairly well-distributed particles across the annulus.

  6. Bifurcating fronts for the Taylor-Couette problem in infinite cylinders

    NASA Astrophysics Data System (ADS)

    Hărăguş-Courcelle, M.; Schneider, G.

    We show the existence of bifurcating fronts for the weakly unstable Taylor-Couette problem in an infinite cylinder. These fronts connect a stationary bifurcating pattern, here the Taylor vortices, with the trivial ground state, here the Couette flow. In order to show the existence result we improve a method which was already used in establishing the existence of bifurcating fronts for the Swift-Hohenberg equation by Collet and Eckmann, 1986, and by Eckmann and Wayne, 1991. The existence proof is based on spatial dynamics and center manifold theory. One of the difficulties in applying center manifold theory comes from an infinite number of eigenvalues on the imaginary axis for vanishing bifurcation parameter. But nevertheless, a finite dimensional reduction is possible, since the eigenvalues leave the imaginary axis with different velocities, if the bifurcation parameter is increased. In contrast to previous work we have to use normalform methods and a non-standard cut-off function to obtain a center manifold which is large enough to contain the bifurcating fronts.

  7. Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Brown, E. N.; Millett, J. C. F.; Gray, G. T.

    2008-04-01

    The high strain-rate response of polymers is a subject that has gathered interest over recent years due to their increasing engineering importance, particularly in load bearing applications subject to extremes of pressure and strain rate. The current work presents two specific sets of experiments interrogating the effect of dynamic, high-pressure loading in the regime of the phase II to phase III pressure-induced crystalline phase transition in polytetrafluoroethylene (PTFE). These are gas-gun driven plate- and Taylor impact. Together these experiments highlight several effects associated with the dynamic, pressure-induced phase transitions in PTFE. An elevated release wave speed shows evidence of a pressure-induced phase change at a stress commensurate with that observed statically. It is shown that convergence between analytic derivations of release wave speed and the data requires the phase II to III transition to occur. Taylor impact is an integrated test that highlights continuum behavior that has origin in mesoscale response. There is a rapid transition from ductile to brittle behavior observed that occurs at a pressure consistent with this phase transition.

  8. OBSERVATIONS OF THE CRAB NEBULA'S ASYMMETRICAL DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loll, A. M.; Desch, S. J.; Scowen, P. A.

    2013-03-10

    We present the first Hubble Space Telescope Wide Field Planetary Camera-2 imaging survey of the entire Crab Nebula, in the filters F502N ([O III] emission), F673N ([S II]), F631N ([O I]), and F547M (continuum). We use our mosaics to characterize the pulsar wind nebula (PWN) and its three-dimensional structure, the ionizational structure in the filaments forming at its periphery, the speed of the shock driven by the PWN into surrounding ejecta (by inferring the cooling rates behind the shock), and the morphology and ionizational structure of the Rayleigh-Taylor (R-T) fingers. We quantify a number of asymmetries between the northwest (NW)more » and southeast (SE) quadrants of the Crab Nebula. The lack of observed filaments in the NW, and our observations of the spatial extent of [O III] emission lead us to conclude that cooling rates are slower, and therefore the shock speeds are greater, in the NW quadrant of the nebula, compared with the SE. We conclude that R-T fingers are longer, more ionizationally stratified, and apparently more massive in the NW than in the SE, and the R-T instability appears more fully developed in the NW.« less

  9. Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2009-02-01

    We report numerical simulations and analytic modeling of shock tube experiments on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. We examine single interfaces of the type A /B where the incident shock is initiated in A and the transmitted shock proceeds into B. Examples are He/air and air/He. In addition, we study finite-thickness or double-interface A /B/A configurations such as air/SF6/air gas-curtain experiments. We first consider conventional shock tubes that have a "fixed" boundary: A solid endwall which reflects the transmitted shock and reshocks the interface(s). Then we focus on new experiments with a "free" boundary—a membrane disrupted mechanically or by the transmitted shock, sending back a rarefaction toward the interface(s). Complex acceleration histories are achieved, relevant for inertial confinement fusion implosions. We compare our simulation results with a generalized Layzer model for two fluids with time-dependent densities and derive a new freeze-out condition whereby accelerating and compressive forces cancel each other out. Except for the recently reported failures of the Layzer model, the generalized Layzer model and hydrocode simulations for reshocks and rarefactions agree well with each other and remain to be verified experimentally.

  10. Taylor impact of glass bars

    NASA Astrophysics Data System (ADS)

    Murray, Natalie; Bourne, Neil; Field, John

    1997-07-01

    Brar and Bless pioneeered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass. We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test. In this configuration two rods impact one upon the other in a symmetrical version of the Taylor test geometry in which the impact is perfectly rigid in the centre of mass frame. Previous work in the laboratory has characterised the three glass types (float, borosilicate and a high density lead glass). These experiments will identify the 1D stress failure mechanisms from high-speed photography and the stress and particle velocity histories will be interpreted in the light of these results. The differences in response of the three glasses will be highlighted.

  11. On Taylor-Series Approximations of Residual Stress

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1999-01-01

    Although subgrid-scale models of similarity type are insufficiently dissipative for practical applications to large-eddy simulation, in recently published a priori analyses, they perform remarkably well in the sense of correlating highly against exact residual stresses. Here, Taylor-series expansions of residual stress are exploited to explain the observed behavior and "success" of similarity models. Until very recently, little attention has been given to issues related to the convergence of such expansions. Here, we re-express the convergence criterion of Vasilyev [J. Comput. Phys., 146 (1998)] in terms of the transfer function and the wavenumber cutoff of the grid filter.

  12. A Comparative Analysis of Reynolds-Averaged Navier-Stokes Model Predictions for Rayleigh-Taylor Instability and Mixing with Constant and Complex Accelerations

    NASA Astrophysics Data System (ADS)

    Schilling, Oleg

    2016-11-01

    Two-, three- and four-equation, single-velocity, multicomponent Reynolds-averaged Navier-Stokes (RANS) models, based on the turbulent kinetic energy dissipation rate or lengthscale, are used to simulate At = 0 . 5 Rayleigh-Taylor turbulent mixing with constant and complex accelerations. The constant acceleration case is inspired by the Cabot and Cook (2006) DNS, and the complex acceleration cases are inspired by the unstable/stable and unstable/neutral cases simulated using DNS (Livescu, Wei & Petersen 2011) and the unstable/stable/unstable case simulated using ILES (Ramaprabhu, Karkhanis & Lawrie 2013). The four-equation models couple equations for the mass flux a and negative density-specific volume correlation b to the K- ɛ or K- L equations, while the three-equation models use a two-fluid algebraic closure for b. The lengthscale-based models are also applied with no buoyancy production in the L equation to explore the consequences of neglecting this term. Predicted mixing widths, turbulence statistics, fields, and turbulent transport equation budgets are compared among these models to identify similarities and differences in the turbulence production, dissipation and diffusion physics represented by the closures used in these models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Taylor's Theorem: The Elusive "c" Is Not So Elusive

    ERIC Educational Resources Information Center

    Kreminski, Richard

    2010-01-01

    For a suitably nice, real-valued function "f" defined on an open interval containing [a,b], f(b) can be expressed as p[subscript n](b) (the nth Taylor polynomial of f centered at a) plus an error term of the (Lagrange) form f[superscript (n+1)](c)(b-a)[superscript (n+1)]/(n+1)! for some c in (a,b). This article is for those who think that not…

  14. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut

    USGS Publications Warehouse

    Flint, A.L.; Childs, S.W.

    1991-01-01

    The Priestley-Taylor equation, a simplification of the Penman equation, was used to allow calculations of evapotranspiration under conditions where soil water supply limits evapotranspiration. The Priestley-Taylor coefficient, ??, was calculated to incorporate an exponential decrease in evapotranspiration as soil water content decreases. The method is appropriate for use when detailed meteorological measurements are not available. The data required to determine the parameter for the ?? coefficient are net radiation, soil heat flux, average air temperature, and soil water content. These values can be obtained from measurements or models. The dataset used in this report pertains to a partially vegetated clearcut forest site in southwest Oregon with soil depths ranging from 0.48 to 0.70 m and weathered bedrock below that. Evapotranspiration was estimated using the Bowen ratio method, and the calculated Priestley-Taylor coefficient was fitted to these estimates by nonlinear regression. The calculated Priestley-Taylor coefficient (?????) was found to be approximately 0.9 when the soil was near field capacity (0.225 cm3 cm-3). It was not until soil water content was less than 0.14 cm3 cm-3 that soil water supply limited evapotranspiration. The soil reached a final residual water content near 0.05 cm3 cm-3 at the end of the growing season. ?? 1991.

  15. An integral equation-based numerical solver for Taylor states in toroidal geometries

    NASA Astrophysics Data System (ADS)

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  16. NASA SPoRT GOES-R Proving Ground Activities

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Fuell, Kevin K.; Jedloec, Gary J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) program is a partner with the GOES-R Proving Ground (PG) helping prepare forecasters understand the unique products to come from the GOES-R instrument suite. SPoRT is working collaboratively with other members of the GOES-R PG team and Algorithm Working Group (AWG) scientists to develop and disseminate a suite of proxy products that address specific forecast problems for the WFOs, Regional and National Support Centers, and other NOAA users. These products draw on SPoRT s expertise with the transition and evaluation of products into operations from the MODIS instrument and the North Alabama Lightning Mapping Array (NALMA). The MODIS instrument serves as an excellent proxy for the Advanced Baseline Imager (ABI) that will be aboard GOES-R. SPoRT has transitioned and evaluated several multi-channel MODIS products. The true and false color products are being used in natural hazard detection by several SPoRT partners to provide better observation of land features, such as fires, smoke plumes, and snow cover. Additionally, many of SPoRT s partners are coastal offices and already benefit from the MODIS sea surface temperature composite. This, along with other surface feature observations will be developed into ABI proxy products for diagnostic use in the forecast process as well as assimilation into forecast models. In addition to the MODIS instrument, the NALMA has proven very valuable to WFOs with access to these total lightning data. These data provide situational awareness and enhanced warning decision making to improve lead times for severe thunderstorm and tornado warnings. One effort by SPoRT scientists includes a lightning threat product to create short-term model forecasts of lightning activity. Additionally, SPoRT is working with the AWG to create GLM proxy data from several of the ground based total lightning networks, such as the NALMA. The evaluation will focus on the vastly improved spatial

  17. Shoulder Instability

    MedlinePlus

    ... as bad as the pain of a sudden injury. Your shoulder might be sore when you move it. It ... Treatment How is shoulder instability treated? Treatment for shoulder instability depends on how bad your injury is and how important it is for you ...

  18. Subscales to the Taylor Manifest Anxiety Scale in Three Chronically Ill Populations.

    ERIC Educational Resources Information Center

    Moore, Peter N.; And Others

    1984-01-01

    Examines factors of anxiety in the Taylor Manifest Anxiety Scale in 150 asthma, tuberculosis, and chronic pain patients. Key cluster analysis revealed five clusters: restlessness, embarrassment, sensitivity, physiological anxiety, and self-confidence. Embarrassment is fairly dependent on the other factors. (JAC)

  19. Instability of rectangular jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Thies, Andrew T.

    1993-01-01

    The instability of rectangular jets is investigated using a vortex-sheet model. It is shown that such jets support four linearly independent families of instability waves. Within each family there are infinitely many modes. A way to classify these modes according to the characteristics of their mode shapes or eigenfunctions is proposed. It is demonstrated that the boundary element method can be used to calculate the dispersion relations and eigenfunctions of these instability wave modes. The method is robust and efficient. A parametric study of the instability wave characteristics has been carried out. A sample of the numerical results is reported here. It is found that the first and third modes of each instability wave family are corner modes. The pressure fluctuations associated with these instability waves are localized near the corners of the jet. The second mode, however, is a center mode with maximum fluctuations concentrated in the central portion of the jet flow. The center mode has the largest spatial growth rate. It is anticipated that as the instability waves propagate downstream the center mode would emerge as the dominant instability of the jet.

  20. High-Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2010-01-01

    It has been known for some time that Taylor series (TS) integration is among the most efficient and accurate numerical methods in solving differential equations. However, the full benefit of the method has yet to be realized in calculating spacecraft trajectories, for two main reasons. First, most applications of Taylor series to trajectory propagation have focused on relatively simple problems of orbital motion or on specific problems and have not provided general applicability. Second, applications that have been more general have required use of a preprocessor, which inevitably imposes constraints on computational efficiency. The latter approach includes the work of Berryman et al., who solved the planetary n-body problem with relativistic effects. Their work specifically noted the computational inefficiencies arising from use of a preprocessor and pointed out the potential benefit of manually coding derivative routines. In this Engineering Note, we report on a systematic effort to directly implement Taylor series integration in an operational trajectory propagation code: the Spacecraft N-Body Analysis Program (SNAP). The present Taylor series implementation is unique in that it applies to spacecraft virtually anywhere in the solar system and can be used interchangeably with another integration method. SNAP is a high-fidelity trajectory propagator that includes force models for central body gravitation with N X N harmonics, other body gravitation with N X N harmonics, solar radiation pressure, atmospheric drag (for Earth orbits), and spacecraft thrusting (including shadowing). The governing equations are solved using an eighth-order Runge-Kutta Fehlberg (RKF) single-step method with variable step size control. In the present effort, TS is implemented by way of highly integrated subroutines that can be used interchangeably with RKF. This makes it possible to turn TS on or off during various phases of a mission. Current TS force models include central body