Sample records for taylor series expansions

  1. On power series expansions of the S-resolvent operator and the Taylor formula

    NASA Astrophysics Data System (ADS)

    Colombo, Fabrizio; Gantner, Jonathan

    2016-12-01

    The S-functional calculus is based on the theory of slice hyperholomorphic functions and it defines functions of n-tuples of not necessarily commuting operators or of quaternionic operators. This calculus relays on the notion of S-spectrum and of S-resolvent operator. Since most of the properties that hold for the Riesz-Dunford functional calculus extend to the S-functional calculus, it can be considered its non commutative version. In this paper we show that the Taylor formula of the Riesz-Dunford functional calculus can be generalized to the S-functional calculus. The proof is not a trivial extension of the classical case because there are several obstructions due to the non commutativity of the setting in which we work that have to be overcome. To prove the Taylor formula we need to introduce a new series expansion of the S-resolvent operators associated to the sum of two n-tuples of operators. This result is a crucial step in the proof of our main results, but it is also of independent interest because it gives a new series expansion for the S-resolvent operators. This paper is addressed to researchers working in operator theory and in hypercomplex analysis.

  2. Beyond linear fields: the Lie–Taylor expansion

    PubMed Central

    2017-01-01

    The work extends the linear fields’ solution of compressible nonlinear magnetohydrodynamics (MHD) to the case where the magnetic field depends on superlinear powers of position vector, usually, but not always, expressed in Cartesian components. Implications of the resulting Lie–Taylor series expansion for physical applicability of the Dolzhansky–Kirchhoff (D–K) equations are found to be positive. It is demonstrated how resistivity may be included in the D–K model. Arguments are put forward that the D–K equations may be regarded as illustrating properties of nonlinear MHD in the same sense that the Lorenz equations inform about the onset of convective turbulence. It is suggested that the Lie–Taylor series approach may lead to valuable insights into other fluid models. PMID:28265187

  3. Solving ODE Initial Value Problems With Implicit Taylor Series Methods

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2000-01-01

    In this paper we introduce a new class of numerical methods for integrating ODE initial value problems. Specifically, we propose an extension of the Taylor series method which significantly improves its accuracy and stability while also increasing its range of applicability. To advance the solution from t (sub n) to t (sub n+1), we expand a series about the intermediate point t (sub n+mu):=t (sub n) + mu h, where h is the stepsize and mu is an arbitrary parameter called an expansion coefficient. We show that, in general, a Taylor series of degree k has exactly k expansion coefficients which raise its order of accuracy. The accuracy is raised by one order if k is odd, and by two orders if k is even. In addition, if k is three or greater, local extrapolation can be used to raise the accuracy two additional orders. We also examine stability for the problem y'= lambda y, Re (lambda) less than 0, and identify several A-stable schemes. Numerical results are presented for both fixed and variable stepsizes. It is shown that implicit Taylor series methods provide an effective integration tool for most problems, including stiff systems and ODE's with a singular point.

  4. Structural reanalysis via a mixed method. [using Taylor series for accuracy improvement

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1975-01-01

    A study is made of the approximate structural reanalysis technique based on the use of Taylor series expansion of response variables in terms of design variables in conjunction with the mixed method. In addition, comparisons are made with two reanalysis techniques based on the displacement method. These techniques are the Taylor series expansion and the modified reduced basis. It is shown that the use of the reciprocals of the sizing variables as design variables (which is the natural choice in the mixed method) can result in a substantial improvement in the accuracy of the reanalysis technique. Numerical results are presented for a space truss structure.

  5. Series Expansion of Functions with He's Homotopy Perturbation Method

    ERIC Educational Resources Information Center

    Khattri, Sanjay Kumar

    2012-01-01

    Finding a series expansion, such as Taylor series, of functions is an important mathematical concept with many applications. Homotopy perturbation method (HPM) is a new, easy to use and effective tool for solving a variety of mathematical problems. In this study, we present how to apply HPM to obtain a series expansion of functions. Consequently,…

  6. On Taylor-Series Approximations of Residual Stress

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1999-01-01

    Although subgrid-scale models of similarity type are insufficiently dissipative for practical applications to large-eddy simulation, in recently published a priori analyses, they perform remarkably well in the sense of correlating highly against exact residual stresses. Here, Taylor-series expansions of residual stress are exploited to explain the observed behavior and "success" of similarity models. Until very recently, little attention has been given to issues related to the convergence of such expansions. Here, we re-express the convergence criterion of Vasilyev [J. Comput. Phys., 146 (1998)] in terms of the transfer function and the wavenumber cutoff of the grid filter.

  7. Approximate Expressions for the Period of a Simple Pendulum Using a Taylor Series Expansion

    ERIC Educational Resources Information Center

    Belendez, Augusto; Arribas, Enrique; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi

    2011-01-01

    An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the…

  8. The solution of the point kinetics equations via converged accelerated Taylor series (CATS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapol, B.; Picca, P.; Previti, A.

    This paper deals with finding accurate solutions of the point kinetics equations including non-linear feedback, in a fast, efficient and straightforward way. A truncated Taylor series is coupled to continuous analytical continuation to provide the recurrence relations to solve the ordinary differential equations of point kinetics. Non-linear (Wynn-epsilon) and linear (Romberg) convergence accelerations are employed to provide highly accurate results for the evaluation of Taylor series expansions and extrapolated values of neutron and precursor densities at desired edits. The proposed Converged Accelerated Taylor Series, or CATS, algorithm automatically performs successive mesh refinements until the desired accuracy is obtained, making usemore » of the intermediate results for converged initial values at each interval. Numerical performance is evaluated using case studies available from the literature. Nearly perfect agreement is found with the literature results generally considered most accurate. Benchmark quality results are reported for several cases of interest including step, ramp, zigzag and sinusoidal prescribed insertions and insertions with adiabatic Doppler feedback. A larger than usual (9) number of digits is included to encourage honest benchmarking. The benchmark is then applied to the enhanced piecewise constant algorithm (EPCA) currently being developed by the second author. (authors)« less

  9. High Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2008-01-01

    Taylor series integration is implemented in a spacecraft trajectory analysis code-the Spacecraft N-body Analysis Program (SNAP) - and compared with the code s existing eighth-order Runge-Kutta Fehlberg time integration scheme. Nine trajectory problems, including near Earth, lunar, Mars and Europa missions, are analyzed. Head-to-head comparison at five different error tolerances shows that, on average, Taylor series is faster than Runge-Kutta Fehlberg by a factor of 15.8. Results further show that Taylor series has superior convergence properties. Taylor series integration proves that it can provide rapid, highly accurate solutions to spacecraft trajectory problems.

  10. Using Taylor Expansions to Prepare Students for Calculus

    ERIC Educational Resources Information Center

    Lutzer, Carl V.

    2011-01-01

    We propose an alternative to the standard introduction to the derivative. Instead of using limits of difference quotients, students develop Taylor expansions of polynomials. This alternative allows students to develop many of the central ideas about the derivative at an intuitive level, using only skills and concepts from precalculus, and…

  11. Rapid Calculation of Spacecraft Trajectories Using Efficient Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2011-01-01

    A variable-order, variable-step Taylor series integration algorithm was implemented in NASA Glenn's SNAP (Spacecraft N-body Analysis Program) code. SNAP is a high-fidelity trajectory propagation program that can propagate the trajectory of a spacecraft about virtually any body in the solar system. The Taylor series algorithm's very high order accuracy and excellent stability properties lead to large reductions in computer time relative to the code's existing 8th order Runge-Kutta scheme. Head-to-head comparison on near-Earth, lunar, Mars, and Europa missions showed that Taylor series integration is 15.8 times faster than Runge- Kutta on average, and is more accurate. These speedups were obtained for calculations involving central body, other body, thrust, and drag forces. Similar speedups have been obtained for calculations that include J2 spherical harmonic for central body gravitation. The algorithm includes a step size selection method that directly calculates the step size and never requires a repeat step. High-order Taylor series integration algorithms have been shown to provide major reductions in computer time over conventional integration methods in numerous scientific applications. The objective here was to directly implement Taylor series integration in an existing trajectory analysis code and demonstrate that large reductions in computer time (order of magnitude) could be achieved while simultaneously maintaining high accuracy. This software greatly accelerates the calculation of spacecraft trajectories. At each time level, the spacecraft position, velocity, and mass are expanded in a high-order Taylor series whose coefficients are obtained through efficient differentiation arithmetic. This makes it possible to take very large time steps at minimal cost, resulting in large savings in computer time. The Taylor series algorithm is implemented primarily through three subroutines: (1) a driver routine that automatically introduces auxiliary variables and

  12. Three Important Taylor Series for Introductory Physics

    DTIC Science & Technology

    2009-09-01

    series by the sum of its first few terms is useful throughout an introductory physics course . Example applications [1, 2] include estimating square...Lat. Am. J. Phys. Educ. Vol. 3, No. 3, Sept. 2009 535 http://www.journal.lapen.org.mx Three Important Taylor Series for Introductory Physics...one dimension, which instructively ties the mathematical development to physics concepts already presented in introductory courses . Keywords

  13. The numerical solution of ordinary differential equations by the Taylor series method

    NASA Technical Reports Server (NTRS)

    Silver, A. H.; Sullivan, E.

    1973-01-01

    A programming implementation of the Taylor series method is presented for solving ordinary differential equations. The compiler is written in PL/1, and the target language is FORTRAN IV. The reduction of a differential system to rational form is described along with the procedures required for automatic numerical integration. The Taylor method is compared with two other methods for a number of differential equations. Algorithms using the Taylor method to find the zeroes of a given differential equation and to evaluate partial derivatives are presented. An annotated listing of the PL/1 program which performs the reduction and code generation is given. Listings of the FORTRAN routines used by the Taylor series method are included along with a compilation of all the recurrence formulas used to generate the Taylor coefficients for non-rational functions.

  14. Application of Taylor's series to trajectory propagation

    NASA Technical Reports Server (NTRS)

    Stanford, R. H.; Berryman, K. W.; Breckheimer, P. J.

    1986-01-01

    This paper describes the propagation of trajectories by the application of the preprocessor ATOMCC which uses Taylor's series to solve initial value problems in ordinary differential equations. Comparison of the results obtained with those from other methods are presented. The current studies indicate that the ATOMCC preprocessor is an easy, yet fast and accurate method for generating trajectories.

  15. Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2011-01-01

    Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.

  16. New trends in Taylor series based applications

    NASA Astrophysics Data System (ADS)

    Kocina, Filip; Šátek, Václav; Veigend, Petr; Nečasová, Gabriela; Valenta, Václav; Kunovský, Jiří

    2016-06-01

    The paper deals with the solution of large system of linear ODEs when minimal comunication among parallel processors is required. The Modern Taylor Series Method (MTSM) is used. The MTSM allows using a higher order during the computation that means a larger integration step size while keeping desired accuracy. As an example of complex systems we can take the Telegraph Equation Model. Symbolic and numeric solutions are compared when harmonic input signal is used.

  17. Grid refinement in Cartesian coordinates for groundwater flow models using the divergence theorem and Taylor's series.

    PubMed

    Mansour, M M; Spink, A E F

    2013-01-01

    Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes. © 2012, British Geological Survey © NERC 2012. Ground Water © 2012, National GroundWater Association.

  18. An optimal implicit staggered-grid finite-difference scheme based on the modified Taylor-series expansion with minimax approximation method for elastic modeling

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2017-03-01

    Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.

  19. Ultra-wideband pose detection system for boom-type roadheader based on Caffery transform and Taylor series expansion

    NASA Astrophysics Data System (ADS)

    Fu, Shichen; Li, Yiming; Zhang, Minjun; Zong, Kai; Cheng, Long; Wu, Miao

    2018-01-01

    To realize unmanned pose detection of a coalmine boom-type roadheader, an ultra-wideband (UWB) pose detection system (UPDS) for a roadheader is designed, which consists of four UWB positioning base stations and three roadheader positioning nodes. The positioning base stations are used in turn to locate the positioning nodes of the roadheader fuselage. Using 12 sets of distance measurement information, a time-of-arrival (TOA) positioning model is established to calculate the 3D coordinates of three positioning nodes of the roadheader fuselage, and the three attitude angles (heading, pitch, and roll angles) of the roadheader fuselage are solved. A range accuracy experiment of a UWB P440 module was carried out in a narrow and closed tunnel, and the experiment data show that the mean error and standard deviation of the module can reach below 2 cm. Based on the TOA positioning model of the UPDS, we propose a fusion-positioning algorithm based on a Caffery transform and Taylor series expansion (CTFPA). We derived the complete calculation process, designed a flowchart, and carried out a simulation of CTFPA in MATLAB, comparing 1000 simulated positioning nodes of CTFPA and the Caffery positioning algorithm (CPA) for a 95 m long tunnel. The positioning error field of the tunnel was established, and the influence of the spatial variation on the positioning accuracy of CPA and CTFPA was analysed. The simulation results show that, compared with CPA, the positioning accuracy of CTFPA is clearly improved, and the accuracy of each axis can reach more than 5 mm. The accuracy of the X-axis is higher than that of the Y- and Z-axes. In section X-Y of the tunnel, the root mean square error (RMSE) contours of CTFPA are clear and orderly, and with an increase in the measuring distance, RMSE increases linearly. In section X-Z, the RMSE contours are concentric circles, and the variation ratio is nonlinear.

  20. Partial-fraction expansion and inverse Laplace transform of a rational function with real coefficients

    NASA Technical Reports Server (NTRS)

    Chang, F.-C.; Mott, H.

    1974-01-01

    This paper presents a technique for the partial-fraction expansion of functions which are ratios of polynomials with real coefficients. The expansion coefficients are determined by writing the polynomials as Taylor's series and obtaining the Laurent series expansion of the function. The general formula for the inverse Laplace transform is also derived.

  1. High-Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2010-01-01

    It has been known for some time that Taylor series (TS) integration is among the most efficient and accurate numerical methods in solving differential equations. However, the full benefit of the method has yet to be realized in calculating spacecraft trajectories, for two main reasons. First, most applications of Taylor series to trajectory propagation have focused on relatively simple problems of orbital motion or on specific problems and have not provided general applicability. Second, applications that have been more general have required use of a preprocessor, which inevitably imposes constraints on computational efficiency. The latter approach includes the work of Berryman et al., who solved the planetary n-body problem with relativistic effects. Their work specifically noted the computational inefficiencies arising from use of a preprocessor and pointed out the potential benefit of manually coding derivative routines. In this Engineering Note, we report on a systematic effort to directly implement Taylor series integration in an operational trajectory propagation code: the Spacecraft N-Body Analysis Program (SNAP). The present Taylor series implementation is unique in that it applies to spacecraft virtually anywhere in the solar system and can be used interchangeably with another integration method. SNAP is a high-fidelity trajectory propagator that includes force models for central body gravitation with N X N harmonics, other body gravitation with N X N harmonics, solar radiation pressure, atmospheric drag (for Earth orbits), and spacecraft thrusting (including shadowing). The governing equations are solved using an eighth-order Runge-Kutta Fehlberg (RKF) single-step method with variable step size control. In the present effort, TS is implemented by way of highly integrated subroutines that can be used interchangeably with RKF. This makes it possible to turn TS on or off during various phases of a mission. Current TS force models include central body

  2. Taylor expansion of luminosity distance in Szekeres cosmological models: effects of local structures evolution on cosmographic parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villani, Mattia, E-mail: villani@fi.infn.it

    2014-06-01

    We consider the Goode-Wainwright representation of the Szekeres cosmological models and calculate the Taylor expansion of the luminosity distance in order to study the effects of the inhomogeneities on cosmographic parameters. Without making a particular choice for the arbitrary functions defining the metric, we Taylor expand up to the second order in redshift for Family I and up to the third order for Family II Szekeres metrics under the hypotesis, based on observation, that local structure formation is over. In a conservative fashion, we also allow for the existence of a non null cosmological constant.

  3. A Power Series Expansion and Its Applications

    ERIC Educational Resources Information Center

    Chen, Hongwei

    2006-01-01

    Using the power series solution of a differential equation and the computation of a parametric integral, two elementary proofs are given for the power series expansion of (arcsin x)[squared], as well as some applications of this expansion.

  4. Combined study of the solar neighbourhood kinematics - Spherical harmonics and Taylor expansions

    NASA Astrophysics Data System (ADS)

    Hernandez-Pajares, M.; Nunez, J.

    1990-08-01

    This paper relates two methods of analyzing the kinematic parameters of the local macroscopic motions of the Galaxy: (1) the Ogorodnikov-Milne model (OM) that consists in the three-dimensional Taylor expansion of the mean velocity field, and (2) the two-dimensional spherical harmonic development of the velocity components (SH). The theoretical relations between the SH coefficients and the second-order OM ones for the radial velocity v(r), and the galactic heliocentric components of the velocity U, V, W are presented. Only the hypothesis of separability of the stellar density function of the sample into angular and radial parts is needed. They are applied to 4732 A-M stars included in the Figueras (1986) sample.

  5. The ATOMFT integrator - Using Taylor series to solve ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Berryman, Kenneth W.; Stanford, Richard H.; Breckheimer, Peter J.

    1988-01-01

    This paper discusses the application of ATOMFT, an integration package based on Taylor series solution with a sophisticated user interface. ATOMFT has the capabilities to allow the implementation of user defined functions and the solution of stiff and algebraic equations. Detailed examples, including the solutions to several astrodynamics problems, are presented. Comparisons with its predecessor ATOMCC and other modern integrators indicate that ATOMFT is a fast, accurate, and easy method to use to solve many differential equation problems.

  6. Series expansion of the modified Einstein Procedure

    Treesearch

    Seema Chandrakant Shah-Fairbank

    2009-01-01

    This study examines calculating total sediment discharge based on the Modified Einstein Procedure (MEP). A new procedure based on the Series Expansion of the Modified Einstein Procedure (SEMEP) has been developed. This procedure contains four main modifications to MEP. First, SEMEP solves the Einstein integrals quickly and accurately based on a series expansion. Next,...

  7. Differences between Experts' and Students' Conceptual Images of the Mathematical Structure of Taylor Series Convergence

    ERIC Educational Resources Information Center

    Martin, Jason

    2013-01-01

    Taylor series convergence is a complicated mathematical structure which incorporates multiple concepts. Therefore, it can be very difficult for students to initially comprehend. How might students make sense of this structure? How might experts make sense of this structure? To answer these questions, an exploratory study was conducted using…

  8. Modified Taylor series method for solving nonlinear differential equations with mixed boundary conditions defined on finite intervals.

    PubMed

    Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus

    2014-01-01

    In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.

  9. Off-diagonal series expansion for quantum partition functions

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2018-05-01

    We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.

  10. Simplified Phase Diversity algorithm based on a first-order Taylor expansion.

    PubMed

    Zhang, Dong; Zhang, Xiaobin; Xu, Shuyan; Liu, Nannan; Zhao, Luoxin

    2016-10-01

    We present a simplified solution to phase diversity when the observed object is a point source. It utilizes an iterative linearization of the point spread function (PSF) at two or more diverse planes by first-order Taylor expansion to reconstruct the initial wavefront. To enhance the influence of the PSF in the defocal plane which is usually very dim compared to that in the focal plane, we build a new model with the Tikhonov regularization function. The new model cannot only increase the computational speed, but also reduce the influence of the noise. By using the PSFs obtained from Zemax, we reconstruct the wavefront of the Hubble Space Telescope (HST) at the edge of the field of view (FOV) when the telescope is in either the nominal state or the misaligned state. We also set up an experiment, which consists of an imaging system and a deformable mirror, to validate the correctness of the presented model. The result shows that the new model can improve the computational speed with high wavefront detection accuracy.

  11. Fourier series expansion for nonlinear Hamiltonian oscillators.

    PubMed

    Méndez, Vicenç; Sans, Cristina; Campos, Daniel; Llopis, Isaac

    2010-06-01

    The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.

  12. String-theoretic deformation of the Parke-Taylor factor

    NASA Astrophysics Data System (ADS)

    Mizera, Sebastian; Zhang, Guojun

    2017-09-01

    Scattering amplitudes in a range of quantum field theories can be computed using the Cachazo-He-Yuan (CHY) formalism. In theories with color ordering, the key ingredient is the so-called Parke-Taylor factor. In this paper we give a fully SL (2 ,C )-covariant definition and study the properties of a new integrand called the "string Parke-Taylor" factor. It has an α' expansion whose leading coefficient is the field-theoretic Parke-Taylor factor. Its main application is that it leads to a CHY formulation of open string tree-level amplitudes. In fact, the definition of the string Parke-Taylor factor was motivated by trying to extend the compact formula for the first α' correction found by He and Zhang, while the main ingredient in its definition is a determinant of a matrix introduced in the context of string theory by Stieberger and Taylor.

  13. Arithmetical functions and irrationality of Lambert series

    NASA Astrophysics Data System (ADS)

    Duverney, Daniel

    2011-09-01

    We use a method of Erdös in order to prove the linear independence over Q of the numbers 1, ∑ n = 1+∞1/qn2-1, ∑ n = 1+∞n/qn2-1 for every q∈Z, with |q|≥2. The main idea consists in considering the two above series as Lambert series. This allows to expand them as power series of 1/q. The Taylor coefficients of these expansions are arithmetical functions, whose properties allow to apply an elementary irrationality criterion, which yields the result.

  14. Taylor dispersion in wind-driven current

    NASA Astrophysics Data System (ADS)

    Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.

    2017-12-01

    Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.

  15. Increasing accuracy in the interval analysis by the improved format of interval extension based on the first order Taylor series

    NASA Astrophysics Data System (ADS)

    Li, Yi; Xu, Yan Long

    2018-05-01

    When the dependence of the function on uncertain variables is non-monotonic in interval, the interval of function obtained by the classic interval extension based on the first order Taylor series will exhibit significant errors. In order to reduce theses errors, the improved format of the interval extension with the first order Taylor series is developed here considering the monotonicity of function. Two typical mathematic examples are given to illustrate this methodology. The vibration of a beam with lumped masses is studied to demonstrate the usefulness of this method in the practical application, and the necessary input data of which are only the function value at the central point of interval, sensitivity and deviation of function. The results of above examples show that the interval of function from the method developed by this paper is more accurate than the ones obtained by the classic method.

  16. Using the MCNP Taylor series perturbation feature (efficiently) for shielding problems

    NASA Astrophysics Data System (ADS)

    Favorite, Jeffrey

    2017-09-01

    The Taylor series or differential operator perturbation method, implemented in MCNP and invoked using the PERT card, can be used for efficient parameter studies in shielding problems. This paper shows how only two PERT cards are needed to generate an entire parameter study, including statistical uncertainty estimates (an additional three PERT cards can be used to give exact statistical uncertainties). One realistic example problem involves a detailed helium-3 neutron detector model and its efficiency as a function of the density of its high-density polyethylene moderator. The MCNP differential operator perturbation capability is extremely accurate for this problem. A second problem involves the density of the polyethylene reflector of the BeRP ball and is an example of first-order sensitivity analysis using the PERT capability. A third problem is an analytic verification of the PERT capability.

  17. Trees, B-series and G-symplectic methods

    NASA Astrophysics Data System (ADS)

    Butcher, J. C.

    2017-07-01

    The order conditions for Runge-Kutta methods are intimately connected with the graphs known as rooted trees. The conditions can be expressed in terms of Taylor expansions written as weighted sums of elementary differentials, that is as B-series. Polish notation provides a unifying structure for representing many of the quantities appearing in this theory. Applications include the analysis of general linear methods with special reference to G-symplectic methods. A new order 6 method has recently been constructed.

  18. Expansion tube test time predictions

    NASA Technical Reports Server (NTRS)

    Gourlay, Christopher M.

    1988-01-01

    The interaction of an interface between two gases and strong expansion is investigated and the effect on flow in an expansion tube is examined. Two mechanisms for the unsteady Pitot-pressure fluctuations found in the test section of an expansion tube are proposed. The first mechanism depends on the Rayleigh-Taylor instability of the driver-test gas interface in the presence of a strong expansion. The second mechanism depends on the reflection of the strong expansion from the interface. Predictions compare favorably with experimental results. The theory is expected to be independent of the absolute values of the initial expansion tube filling pressures.

  19. TWO-LEVEL TIME MARCHING SCHEME USING SPLINES FOR SOLVING THE ADVECTION EQUATION. (R826371C004)

    EPA Science Inventory

    A new numerical algorithm using quintic splines is developed and analyzed: quintic spline Taylor-series expansion (QSTSE). QSTSE is an Eulerian flux-based scheme that uses quintic splines to compute space derivatives and Taylor series expansion to march in time. The new scheme...

  20. A convergent series expansion for hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Harabetian, E.

    1985-01-01

    The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.

  1. Measuring effects of refractive surgery on corneas using Taylor series polynomials

    NASA Astrophysics Data System (ADS)

    Corbin, Jacob A.; Klein, Stanley A.; van de Pol, Corina

    1999-06-01

    Corneal topographers have made it possible to accurately map corneal shape. We applied this technology to model the post- refractive surgery cornea using Taylor series polynomials. Topography data was taken from 58 patient eyes with photorefractive keratectomy (PRK) or astigmatic photorefractive keratectomy (PARK). We looked at the changes the cornea underwent surgically, as well as the healing process. We compared the post-ablation cornea to the pre-ablation cornea and to the intended correction using novel topography maps. From the refractive map, we quantified the spherical aberration as areas of defocus on the cornea. From the pre-op exam to the first post-op exam, we measured 0.19+/-0.10 mm radius decrease in PRK and a 0.13+/-0.08 mm radius decrease in PARK in the areas where rays come to within two diopeters of defocus. As this change occurs within the optical zone, this corresponds to an increase in spherical aberration for both the PRK and the PARK patient. As the patient healed, we found additional decrease in radius of the zones of best vision in PRK patients, whereas we found no significant decrease in PARK patients. This corresponds to increased spherical aberration in the PRK patient.

  2. Taylor Curtis | NREL

    Science.gov Websites

    , The Environmental Law Institute, Washington, D.C. (2014) Featured Publication Curtis, Taylor L., Aaron . Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-70098. Levine, Aaron. Taylor L. Curtis . Golden, CO: National Renewable Energy Laboratory: NREL/TP-6A20-70121. Kevin B. Jones, Curtis, Taylor L

  3. A Taylor Expansion-Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing; Zhang, Guannan; Ye, Ming; Wu, Jianfeng; Wu, Jichun

    2017-12-01

    Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we develop a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.

  4. Lattice QCD at finite temperature and density from Taylor expansion

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Patrick

    2017-01-01

    In the first part, I present an overview of recent Lattice QCD simulations at finite temperature and density. In particular, we discuss fluctuations of conserved charges: baryon number, electric charge and strangeness. These can be obtained from Taylor expanding the QCD pressure as a function of corresponding chemical potentials. Our simulations were performed using quark masses corresponding to physical pion mass of about 140 MeV and allow a direct comparison to experimental data from ultra-relativistic heavy ion beams at hadron colliders such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. In the second part, we discuss computational challenges for current and future exascale Lattice simulations with a focus on new silicon developments from Intel and NVIDIA.

  5. Teaching Graphical Simulations of Fourier Series Expansion of Some Periodic Waves Using Spreadsheets

    ERIC Educational Resources Information Center

    Singh, Iqbal; Kaur, Bikramjeet

    2018-01-01

    The present article demonstrates a way of programming using an Excel spreadsheet to teach Fourier series expansion in school/colleges without the knowledge of any typical programming language. By using this, a student learns to approximate partial sum of the n terms of Fourier series for some periodic signals such as square wave, saw tooth wave,…

  6. Applicability of Taylor's hypothesis in thermally driven turbulence

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Verma, Mahendra K.

    2018-04-01

    In this paper, we show that, in the presence of large-scale circulation (LSC), Taylor's hypothesis can be invoked to deduce the energy spectrum in thermal convection using real-space probes, a popular experimental tool. We perform numerical simulation of turbulent convection in a cube and observe that the velocity field follows Kolmogorov's spectrum (k-5/3). We also record the velocity time series using real-space probes near the lateral walls. The corresponding frequency spectrum exhibits Kolmogorov's spectrum (f-5/3), thus validating Taylor's hypothesis with the steady LSC playing the role of a mean velocity field. The aforementioned findings based on real-space probes provide valuable inputs for experimental measurements used for studying the spectrum of convective turbulence.

  7. Image distortion analysis using polynomial series expansion.

    PubMed

    Baggenstoss, Paul M

    2004-11-01

    In this paper, we derive a technique for analysis of local distortions which affect data in real-world applications. In the paper, we focus on image data, specifically handwritten characters. Given a reference image and a distorted copy of it, the method is able to efficiently determine the rotations, translations, scaling, and any other distortions that have been applied. Because the method is robust, it is also able to estimate distortions for two unrelated images, thus determining the distortions that would be required to cause the two images to resemble each other. The approach is based on a polynomial series expansion using matrix powers of linear transformation matrices. The technique has applications in pattern recognition in the presence of distortions.

  8. A Taylor Expansion-Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling

    DOE PAGES

    Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing; ...

    2017-12-27

    Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we developmore » a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.« less

  9. A Taylor Expansion-Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing

    Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we developmore » a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.« less

  10. Teaching graphical simulations of Fourier series expansion of some periodic waves using spreadsheets

    NASA Astrophysics Data System (ADS)

    Singh, Iqbal; Kaur, Bikramjeet

    2018-05-01

    The present article demonstrates a way of programming using an Excel spreadsheet to teach Fourier series expansion in school/colleges without the knowledge of any typical programming language. By using this, a student learns to approximate partial sum of the n terms of Fourier series for some periodic signals such as square wave, saw tooth wave, half wave rectifier and full wave rectifier signals.

  11. A Taylor weak-statement algorithm for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Kim, J. W.

    1987-01-01

    Finite element analysis, applied to computational fluid dynamics (CFD) problem classes, presents a formal procedure for establishing the ingredients of a discrete approximation numerical solution algorithm. A classical Galerkin weak-statement formulation, formed on a Taylor series extension of the conservation law system, is developed herein that embeds a set of parameters eligible for constraint according to specification of suitable norms. The derived family of Taylor weak statements is shown to contain, as special cases, over one dozen independently derived CFD algorithms published over the past several decades for the high speed flow problem class. A theoretical analysis is completed that facilitates direct qualitative comparisons. Numerical results for definitive linear and nonlinear test problems permit direct quantitative performance comparisons.

  12. Suppressing Taylor vortices in a Taylor-Couette flow system with free surface

    NASA Astrophysics Data System (ADS)

    Bouabdallah, A.; Oualli, H.; Mekadem, M.; Gad-El-Hak, M.

    2016-11-01

    Taylor-Couette flows have been extensively investigated due to their many industrial applications, such as catalytic reactors, electrochemistry, photochemistry, biochemistry, and polymerization. Mass transfer applications include extraction, tangential filtration, crystallization, and dialysis. A 3D study is carried out to simulate a Taylor-Couette flow with a rotating and pulsating inner cylinder. We utilize FLUENT to simulate the incompressible flow with a free surface. The study reveals that flow structuring is initiated with the development of an Ekman vortex at low Taylor number, Ta = 0 . 01 . For all encountered flow regimes, the Taylor vortices are systematically inhibited by the pulsatile motion of the inner cylinder. A spectral analysis shows that this pulsatile motion causes a rapid decay of the free surface oscillations, from a periodic wavy movement to a chaotic one, then to a fully turbulent motion. This degenerative free surface behavior is interpreted as the underlying mechanism responsible for the inhibition of the Taylor vortices.

  13. Mixed-state fidelity susceptibility through iterated commutator series expansion

    NASA Astrophysics Data System (ADS)

    Tonchev, N. S.

    2014-11-01

    We present a perturbative approach to the problem of computation of mixed-state fidelity susceptibility (MFS) for thermal states. The mathematical techniques used provide an analytical expression for the MFS as a formal expansion in terms of the thermodynamic mean values of successively higher commutators of the Hamiltonian with the operator involved through the control parameter. That expression is naturally divided into two parts: the usual isothermal susceptibility and a constituent in the form of an infinite series of thermodynamic mean values which encodes the noncommutativity in the problem. If the symmetry properties of the Hamiltonian are given in terms of the generators of some (finite-dimensional) algebra, the obtained expansion may be evaluated in a closed form. This issue is tested on several popular models, for which it is shown that the calculations are much simpler if they are based on the properties from the representation theory of the Heisenberg or SU(1, 1) Lie algebra.

  14. Student Understanding of Taylor Series Expansions in Statistical Mechanics

    ERIC Educational Resources Information Center

    Smith, Trevor I.; Thompson, John R.; Mountcastle, Donald B.

    2013-01-01

    One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann…

  15. PREFACE: The 15th International Couette-Taylor Worskhop

    NASA Astrophysics Data System (ADS)

    Mutabazi, Innocent; Crumeyrolle, Olivier

    2008-07-01

    The 15th International Couette-Taylor Worskhop (ICTW15) was held in Le Havre, France from 9-12 July 2007. This regular international conference started in 1979 in Leeds, UK when the research interest in simple models of fluid flows was revitalized by systematic investigation of Rayleigh-Bénard convection and the Couette-Taylor flow. These two flow systems are good prototypes for the study of the transition to chaos and turbulence in closed flows. The workshop themes have been expanded from the original Couette-Taylor flow to include other centrifugal instabilities (Dean, Görtler, Taylor-Dean), spherical Couette flows, thermal convection instabilities, MHD, nonlinear dynamics and chaos, transition to turbulence, development of numerical and experimental techniques. The impressive longevity of the ICTW is due to the close interaction and fertile exchanges between international research groups from different disciplines: Physics and Astrophysics, Applied Mathematics, Mechanical Engineering, Chemical Engineering. The present workshop was attended by 100 participants, the program included over 83 contributions with 4 plenary lectures, 68 oral communications and 17 posters. The topics include, besides the classical Couette-Taylor flows, the centrifugal flows with longitudinal vortices, the shear flows, the thermal convection in curved geometries, the spherical Couette-Taylor flow, the geophysical flows, the magneto-hydrodynamic effects including the dynamo effect, the complex flows (viscoelasticity, immiscible fluids, bubbles and migration). Selected papers have been processed through the peer review system and are published in this issue of the Journal of Physics: Conference Series. The Workshop has been sponsored by Le Havre University, the Region Council of Haute-Normandie, Le Havre City Council, CNRS (ST2I, GdR-DYCOEC), and the European Space Agency through GEOFLOW program. The French Ministry of Defense (DGA), the Ministry of Foreign Affairs, the Ministry of

  16. 1 / n Expansion for the Number of Matchings on Regular Graphs and Monomer-Dimer Entropy

    NASA Astrophysics Data System (ADS)

    Pernici, Mario

    2017-08-01

    Using a 1 / n expansion, that is an expansion in descending powers of n, for the number of matchings in regular graphs with 2 n vertices, we study the monomer-dimer entropy for two classes of graphs. We study the difference between the extensive monomer-dimer entropy of a random r-regular graph G (bipartite or not) with 2 n vertices and the average extensive entropy of r-regular graphs with 2 n vertices, in the limit n → ∞. We find a series expansion for it in the numbers of cycles; with probability 1 it converges for dimer density p < 1 and, for G bipartite, it diverges as |ln(1-p)| for p → 1. In the case of regular lattices, we similarly expand the difference between the specific monomer-dimer entropy on a lattice and the one on the Bethe lattice; we write down its Taylor expansion in powers of p through the order 10, expressed in terms of the number of totally reducible walks which are not tree-like. We prove through order 6 that its expansion coefficients in powers of p are non-negative.

  17. Instability of Taylor-Sedov blast waves propagating through a uniform gas

    NASA Astrophysics Data System (ADS)

    Grun, J.; Stamper, J.; Manka, C.; Resnick, J.; Burris, R.; Crawford, J.; Ripin, B. H.

    1991-05-01

    An instability in Taylor-Sedov blast waves was measured as the waves propagated through a uniform gas with a low adiabatic index. The first measurements of the instability are given and compared to theoretical predictions. The classical Taylor-Sedov blast waves resulted from the expansion of ablation plasma into an ambient gas from laser-irradiated foils, and photographs were taken using the dark-field imaging method. Visible emission from the blasts were recorded with a four-frame microchannel-plate intensifier camera. Blast waves formed in nitrogen gas are shown to be stable and smooth, whereas the waves propagating through xenon gas are found to be unstable and wrinkled. A power law is fitted to the experimental data, and the adiabatic indices are theorized to cause the different responses in the two gases. The results generally agree with theoretical predictions in spite of some minor discrepancies, and an explanation of the instability mechanism is developed. When the adiabatic index is sufficiently low, the Taylor-Sedov blast waves in a uniform gas will be unstable, and the perturbed amplitudes will grow as a power of time.

  18. Rayleigh-Taylor instability-fascinating gateway to the study of fluid dynamics

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert F.

    1999-09-01

    A series of low-cost simple, "kitchen-physics" experiments demonstrates Rayleigh-Taylor Instability (RTI), the growth of ripples at an interface between fluids when the higher-density fluid is on top. We also describe the importance of RTI in ocean dynamics and commercial products.

  19. Stochastic series expansion simulation of the t -V model

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liu, Ye-Hua; Troyer, Matthias

    2016-04-01

    We present an algorithm for the efficient simulation of the half-filled spinless t -V model on bipartite lattices, which combines the stochastic series expansion method with determinantal quantum Monte Carlo techniques widely used in fermionic simulations. The algorithm scales linearly in the inverse temperature, cubically with the system size, and is free from the time-discretization error. We use it to map out the finite-temperature phase diagram of the spinless t -V model on the honeycomb lattice and observe a suppression of the critical temperature of the charge-density-wave phase in the vicinity of a fermionic quantum critical point.

  20. Taylor-Made Libraries

    ERIC Educational Resources Information Center

    Lonergan, David

    2011-01-01

    Frederick Winslow Taylor (1856-1915) was an efficiency expert whose concerns were less about avoiding worker fatigue and more about increasing profit margins by any means necessary. Taylor was devoted to finding the One Best Way to carry out a task and then training workers to do that task unvaryingly; attempts by employees to improve their own…

  1. Transformation between surface spherical harmonic expansion of arbitrary high degree and order and double Fourier series on sphere

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2018-02-01

    In order to accelerate the spherical harmonic synthesis and/or analysis of arbitrary function on the unit sphere, we developed a pair of procedures to transform between a truncated spherical harmonic expansion and the corresponding two-dimensional Fourier series. First, we obtained an analytic expression of the sine/cosine series coefficient of the 4 π fully normalized associated Legendre function in terms of the rectangle values of the Wigner d function. Then, we elaborated the existing method to transform the coefficients of the surface spherical harmonic expansion to those of the double Fourier series so as to be capable with arbitrary high degree and order. Next, we created a new method to transform inversely a given double Fourier series to the corresponding surface spherical harmonic expansion. The key of the new method is a couple of new recurrence formulas to compute the inverse transformation coefficients: a decreasing-order, fixed-degree, and fixed-wavenumber three-term formula for general terms, and an increasing-degree-and-order and fixed-wavenumber two-term formula for diagonal terms. Meanwhile, the two seed values are analytically prepared. Both of the forward and inverse transformation procedures are confirmed to be sufficiently accurate and applicable to an extremely high degree/order/wavenumber as 2^{30} {≈ } 10^9. The developed procedures will be useful not only in the synthesis and analysis of the spherical harmonic expansion of arbitrary high degree and order, but also in the evaluation of the derivatives and integrals of the spherical harmonic expansion.

  2. Singularities in water waves and Rayleigh-Taylor instability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1991-01-01

    Singularities in inviscid two-dimensional finite-amplitude water waves and inviscid Rayleigh-Taylor instability are discussed. For the deep water gravity waves of permanent form, through a combination of analytical and numerical methods, results describing the precise form, number, and location of singularities in the unphysical domain as the wave height is increased are presented. It is shown how the information on the singularity in the unphysical region has the same form as for deep water waves. However, associated with such a singularity is a series of image singularities at increasing distances from the physical plane with possibly different behavior. Furthermore, for the Rayleigh-Taylor problem of motion of fluid over a vacuum and for the unsteady water wave problem, integro-differential equations valid in the unphysical region are derived, and how these equations can give information on the nature of singularities for arbitrary initial conditions is shown.

  3. Excellence of numerical differentiation method in calculating the coefficients of high temperature series expansion of the free energy and convergence problem of the expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S., E-mail: chixiayzsq@yahoo.com; Solana, J. R.

    2014-12-28

    In this paper, it is shown that the numerical differentiation method in performing the coupling parameter series expansion [S. Zhou, J. Chem. Phys. 125, 144518 (2006); AIP Adv. 1, 040703 (2011)] excels at calculating the coefficients a{sub i} of hard sphere high temperature series expansion (HS-HTSE) of the free energy. Both canonical ensemble and isothermal-isobaric ensemble Monte Carlo simulations for fluid interacting through a hard sphere attractive Yukawa (HSAY) potential with extremely short ranges and at very low temperatures are performed, and the resulting two sets of data of thermodynamic properties are in excellent agreement with each other, and wellmore » qualified to be used for assessing convergence of the HS-HTSE for the HSAY fluid. Results of valuation are that (i) by referring to the results of a hard sphere square well fluid [S. Zhou, J. Chem. Phys. 139, 124111 (2013)], it is found that existence of partial sum limit of the high temperature series expansion series and consistency between the limit value and the true solution depend on both the potential shapes and temperatures considered. (ii) For the extremely short range HSAY potential, the HS-HTSE coefficients a{sub i} falls rapidly with the order i, and the HS-HTSE converges from fourth order; however, it does not converge exactly to the true solution at reduced temperatures lower than 0.5, wherein difference between the partial sum limit of the HS-HTSE series and the simulation result tends to become more evident. Something worth mentioning is that before the convergence order is reached, the preceding truncation is always improved by the succeeding one, and the fourth- and higher-order truncations give the most dependable and qualitatively always correct thermodynamic results for the HSAY fluid even at low reduced temperatures to 0.25.« less

  4. Energy of the amplitude mode in the bicubic antiferromagnet: Series expansion results

    NASA Astrophysics Data System (ADS)

    Oitmaa, J.

    2018-05-01

    Series expansion methods are used to study the quantum critical behavior of the bicubic spin-1/2 antiferromagnet. Excitation energies are computed throughout the Brillouin zone, for both the Néel and dimer phases. We compute the energy of the amplitude/Higgs mode and show that it becomes degenerate with the magnon modes at the quantum critical point, as expected on general symmetry grounds.

  5. Ground state energies from converging and diverging power series expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, C.; Norris, S.; Pelphrey, R.

    2016-10-15

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent,more » consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.« less

  6. Magnetohydrodynamics Nanofluid Flow Containing Gyrotactic Microorganisms Propagating Over a Stretching Surface by Successive Taylor Series Linearization Method

    NASA Astrophysics Data System (ADS)

    Shahid, A.; Zhou, Z.; Bhatti, M. M.; Tripathi, D.

    2018-03-01

    Nanofluid dynamics with magnetohydrodynamics has tremendously contributed in industrial applications recently since presence of nanoparticle in base fluids enhances the specific chemical and physical properties. Owing to the relevance of nanofluid dynamics, we analyze the nanofluid flow in the presence of gyrotactic microorganism and magnetohydrodynamics through a stretching/shrinking plate. The impacts of chemical reaction and thermal radiation on flow characteristics are also studied. To simplify the governing equations of microorganisms, velocity, concentration and temperature, the similarity transformations are employed. The couple governing equations are numerically solved using Successive Taylor Series Linearization Method (STSLM). The velocity profile, motile microorganism density profile, concentration profile, temperature profile as well as Nusselt number, skin friction coefficient, Sherwood number and density number of motile microorganisms are discussed using tables and graphs against all the sundry parameters. A numerical comparison is also given for Nusselt number, Sherwood number, skin friction, and density number of motile microorganisms with previously published results to validate the present model. The results show that Nusselt number, Sherwood number and density number diminish with increasing the magnetic field effects.

  7. Taylor Elected to Royal Society of London

    Science.gov Websites

    SLAC, 28 May 1997 Taylor Elected to Royal Society of London Richard Taylor, physics professor at statements must be verified by facts. Taylor will travel to London in the near future for his induction, part Isaac Newton and Michael Faraday. Taylor, a Canadian citizen, received his Ph.D. at Stanford in 1962 and

  8. Heat transfer of phase-change materials in two-dimensional cylindrical coordinates

    NASA Technical Reports Server (NTRS)

    Labdon, M. B.; Guceri, S. I.

    1981-01-01

    Two-dimensional phase-change problem is numerically solved in cylindrical coordinates (r and z) by utilizing two Taylor series expansions for the temperature distributions in the neighborhood of the interface location. These two expansions form two polynomials in r and z directions. For the regions sufficiently away from the interface the temperature field equations are numerically solved in the usual way and the results are coupled with the polynomials. The main advantages of this efficient approach include ability to accept arbitrarily time dependent boundary conditions of all types and arbitrarily specified initial temperature distributions. A modified approach using a single Taylor series expansion in two variables is also suggested.

  9. Taylor instability in rhyolite lava flows

    NASA Technical Reports Server (NTRS)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  10. Magnetic Properties of Strongly Correlated Hubbard Model and Quantum Spin-One Ferromagnets with Arbitrary Crystal-Field Potential: Linked Cluster Series Expansion Approach

    NASA Astrophysics Data System (ADS)

    Pan, Kok-Kwei

    We have generalized the linked cluster expansion method to solve more many-body quantum systems, such as quantum spin systems with crystal-field potentials and the Hubbard model. The technique sums up all connected diagrams to a certain order of the perturbative Hamiltonian. The modified multiple-site Wick reduction theorem and the simple tau dependence of the standard basis operators have been used to facilitate the evaluation of the integration procedures in the perturbation expansion. Computational methods are developed to calculate all terms in the series expansion. As a first example, the perturbation series expansion of thermodynamic quantities of the single-band Hubbard model has been obtained using a linked cluster series expansion technique. We have made corrections to all previous results of several papers (up to fourth order). The behaviors of the three dimensional simple cubic and body-centered cubic systems have been discussed from the qualitative analysis of the perturbation series up to fourth order. We have also calculated the sixth-order perturbation series of this model. As a second example, we present the magnetic properties of spin-one Heisenberg model with arbitrary crystal-field potential using a linked cluster series expansion. The calculation of the thermodynamic properties using this method covers the whole range of temperature, in both magnetically ordered and disordered phases. The series for the susceptibility and magnetization have been obtained up to fourth order for this model. The method sums up all perturbation terms to certain order and estimates the result using a well -developed and highly successful extrapolation method (the standard ratio method). The dependence of critical temperature on the crystal-field potential and the magnetization as a function of temperature and crystal-field potential are shown. The critical behaviors at zero temperature are also shown. The range of the crystal-field potential for Ni(2+) compounds is

  11. Legends Lecture Series

    NASA Image and Video Library

    2011-10-13

    Stennis Space Center Director Patrick Scheuermann (right) welcomes former leaders to the fourth Legends Lecture Series presentation Oct. 13. Stennis launched the series in November 2010 as part of a yearlong 50th anniversary celebration. The recent session focused on past rocket engine test work. Visiting Stennis legends were: (l to r) Dave Geiger, Patrick Mooney, Boyce Mix, J. Stephens Dick, James Taylor and Marvin Carpenter.

  12. Measuring Taylor Slough boundary and internal flows, Everglades National Park, Florida

    USGS Publications Warehouse

    Tillis, G.M.

    2001-01-01

    Four intensive data-collection efforts, intended to represent the spectrum of precipitation events and associated flow conditions, were conducted during 1997 and 1998 in the Taylor Slough Basin, Everglades National Park. Flow velocities were measured by newly developed, portable Acoustic Doppler Velocity meters along three transects bisecting the Taylor Slough Basin from east to west, roughly perpendicular to the centerline axis of the slough as well as a fourth transect along the slough's axis. These meters provided the required levels of accuracy in flow-velocity measurements while enabling the rapid collection of multiple time series of flow data at remote sites. Concurrently, flow measurements were made along bordering road culverts and under L-31W and Taylor Slough bridges. Flows across the study area's boundaries provided net flow of water into the system and transect measurements provided flow data within the basin. Collected data are available through the World Wide Web (http://sofia.usgs.gov/projects/flow_velocity/). The high-water and low-water events corresponded with the highest and lowest flow velocities, respectively. The July 1998 data had lower than expected flow velocities and, in some cases, strong winds reversed flow direction.

  13. Rayleigh-Taylor mixing in supernova experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swisher, N. C.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com; Kuranz, C. C.

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properlymore » accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.« less

  14. Nonlinear oscillator with power-form elastic-term: Fourier series expansion of the exact solution

    NASA Astrophysics Data System (ADS)

    Beléndez, Augusto; Francés, Jorge; Beléndez, Tarsicio; Bleda, Sergio; Pascual, Carolina; Arribas, Enrique

    2015-05-01

    A family of conservative, truly nonlinear, oscillators with integer or non-integer order nonlinearity is considered. These oscillators have only one odd power-form elastic-term and exact expressions for their period and solution were found in terms of Gamma functions and a cosine-Ateb function, respectively. Only for a few values of the order of nonlinearity, is it possible to obtain the periodic solution in terms of more common functions. However, for this family of conservative truly nonlinear oscillators we show in this paper that it is possible to obtain the Fourier series expansion of the exact solution, even though this exact solution is unknown. The coefficients of the Fourier series expansion of the exact solution are obtained as an integral expression in which a regularized incomplete Beta function appears. These coefficients are a function of the order of nonlinearity only and are computed numerically. One application of this technique is to compare the amplitudes for the different harmonics of the solution obtained using approximate methods with the exact ones computed numerically as shown in this paper. As an example, the approximate amplitudes obtained via a modified Ritz method are compared with the exact ones computed numerically.

  15. Characterising experimental time series using local intrinsic dimension

    NASA Astrophysics Data System (ADS)

    Buzug, Thorsten M.; von Stamm, Jens; Pfister, Gerd

    1995-02-01

    Experimental strange attractors are analysed with the averaged local intrinsic dimension proposed by A. Passamante et al. [Phys. Rev. A 39 (1989) 3640] which is based on singular value decomposition of local trajectory matrices. The results are compared to the values of Kaplan-Yorke and the correlation dimension. The attractors, reconstructed with Takens' delay time coordinates from scalar velocity time series, are measured in the hydrodynamic Taylor-Couette system. A period doubling route towards chaos obtained from a very short Taylor-Couette cylinder yields a sequence of experimental time series where the local intrinsic dimension is applied.

  16. Shallow Sub-Permafrost Groundwater Systems In A Buried Fjord: Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.

    2014-12-01

    The McMurdo Dry Valleys (MDV), Antarctica, represent a unique geologic setting where permanent lakes, ephemeral streams, and subglacial waters influence surface hydrology in a cold polar desert. Past research suggested that the MDV are underlain by several hundreds of meters of permafrost. Here, we present data collected from an Airborne EM (AEM) resistivity sensor flown over the MDV during the 2011-12 austral summer. A focus of our survey was over the Taylor Glacier where saline, iron-rich subglacial fluid releases at the glacier snout at a feature known as Blood Falls, and over Taylor Valley, where a series of isolated lakes lie between Taylor Glacier and the Ross Sea. Our data show that in Taylor Valley there are extensive areas of low resistivity, interpreted as hypersaline brines, beneath a relatively thin layer of high resistivity material, interpreted as dry- or ice-cemented permafrost. These hypersaline brines remain liquid at temperatures well below 0°C due to their salinity. They appear to be contained within the sedimentary fill deposited in Taylor Valley when it was still a fjord. This brine system continues up valley and has a subglacial extension beneath Taylor Glacier, where it may provide the source that feeds Blood Falls. By categorizing the resistivity measurements according to surficial land cover, we are able to distinguish between ice, permafrost, lake water, and seawater based on characteristic resistivity distributions. Furthermore, this technique shows that areas of surface permafrost become increasingly conductive (brine-filled) with depth, whereas the large lakes exhibit taliks that extend through the entire thickness of the permafrost. The subsurface brines represent a large, unstudied and potentially connected hydrogeologic system, in which subsurface flows may help transfer water and nutrients between lakes in the MDV and into the Ross Sea. Such a system is a potential habitat for extremophile life, similar to that already detected in

  17. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  18. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  19. Herringbone streaks in Taylor-Couette turbulence.

    PubMed

    Dong, S

    2008-03-01

    We study near-wall streaks that form herringbonelike patterns in Taylor-Couette turbulence and in counter-rotating Taylor-Couette turbulence through three-dimensional direct numerical simulations. The orientation, axial distribution, onset, and tilting angle of these streaks are characterized.

  20. Charge-Induced Saffman-Taylor Instabilities in Toroidal Droplets

    NASA Astrophysics Data System (ADS)

    Fragkopoulos, A. A.; Aizenman, A.; Fernández-Nieves, A.

    2017-06-01

    We show that charged toroidal droplets can develop fingerlike structures as they expand due to Saffman-Taylor instabilities. While these are commonly observed in quasi-two-dimensional geometries when a fluid displaces another fluid of higher viscosity, we show that the toroidal confinement breaks the symmetry of the problem, effectively making it quasi-two-dimensional and enabling the instability to develop in this three-dimensional situation. We control the expansion speed of the torus with the imposed electric stress and show that fingers are observed provided the characteristic time scale associated with this instability is smaller than the characteristic time scale associated with Rayleigh-Plateau break-up. We confirm our interpretation of the results by showing that the number of fingers is consistent with expectations from linear stability analysis in radial Hele-Shaw cells.

  1. Virial series expansion and Monte Carlo studies of equation of state for hard spheres in narrow cylindrical pores

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2018-05-01

    In this paper, the virial series expansion and constant pressure Monte Carlo method are used to study the longitudinal pressure equation of state for hard spheres in narrow cylindrical pores. We invoke dimensional reduction and map the model into an effective one-dimensional fluid model with interacting internal degrees of freedom. The one-dimensional model is extensive. The Euler relation holds, and longitudinal pressure can be probed with the standard virial series expansion method. Virial coefficients B2 and B3 were obtained analytically, and numerical quadrature was used for B4. A range of narrow pore widths (2 Rp) , Rp<(√{3 }+2 ) /4 =0.9330 ... (in units of the hard sphere diameter) was used, corresponding to fluids in the important single-file formations. We have also computed the virial pressure series coefficients B2', B3', and B4' to compare a truncated virial pressure series equation of state with accurate constant pressure Monte Carlo data. We find very good agreement for a wide range of pressures for narrow pores. These results contribute toward increasing the rather limited understanding of virial coefficients and the equation of state of hard sphere fluids in narrow cylindrical pores.

  2. Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wanhai; LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190; Chen, Yulian

    Harmonic growth in classical Rayleigh-Taylor instability (RTI) on a spherical interface is analytically investigated using the method of the parameter expansion up to the third order. Our results show that the amplitudes of the first four harmonics will recover those in planar RTI as the interface radius tends to infinity compared against the initial perturbation wavelength. The initial radius dramatically influences the harmonic development. The appearance of the second-order feedback to the initial unperturbed interface (i.e., the zeroth harmonic) makes the interface move towards the spherical center. For these four harmonics, the smaller the initial radius is, the faster theymore » grow.« less

  3. Utilizing Lidar Data for Detection of Channel Migration: Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Barlow, M. C.; Telling, J. W.; Glennie, C.; Fountain, A.

    2017-12-01

    The McMurdo Dry Valleys is the largest ice-free expanse in Antarctica and one of the most studied regions on the continent. The valleys are a hyper-arid, cold-polar desert that receives little precipitation (<50 mm weq yr-1). The valley bottoms are covered in a sandy-gravel, dotted with ice-covered lakes and ponds, and alpine glaciers that descend from the surrounding mountains. Glacial melt feeds the lakes via ephemeral streams that flow 6 - 10 weeks each summer. Field observations indicate that the valley floors, particularly in Taylor Valley, contain numerous abandoned stream channels but, given the modest stream flows, channel migration is rarely observed. Only a few channels have been surveyed in the field due to the slow pace of manual methods. Here we present a method to assess channel migration over a broad region in order to study the pattern of channel migration as a function of climatic and/or geologic gradients in Taylor Valley. Raster images of high-resolution topography were created from two lidar (Light Detection and Ranging) datasets and were used to analyze channel migration in Taylor Valley. The first lidar dataset was collected in 2001 by NASA's Airborne Topographic Mapper (ATM) and the second was collected by the National Center for Airborne Laser Mapping (NCALM) in 2014 with an Optech Titan Sensor. The channels were extracted for each dataset using GeoNet, which is an open source tool used for the automatic extraction of channel networks. Channel migration was found to range from 0 to 50 cm per year depending upon the location. Channel complexity was determined based on the change in the number of channel branches and their length. We present the results for various regions in Taylor Valley with differing degrees of stream complexity. Further research is being done to determine factors that drive channel migration rates in this unique environment.

  4. Aeromagnetic Survey of Taylor Mountains Area in Southwest Alaska, A Website for the Distribution of Data

    USGS Publications Warehouse

    ,

    2006-01-01

    USGS Data Series Report for the release of aeromagnetic data collected in the Taylor Mountains Area of Southwest Alaska and associated contractor reports. Summary: An airborne high-resolution magnetic and coincidental horizontal magnetic gradiometer survey was completed over the Taylor Mountains area in southwest Alaska. The flying was undertaken by McPhar Geosurveys Ltd. on behalf of the United States Geological Survey (USGS). First tests and calibration flights were completed by April 7, 2004, and data acquisition was initiated on April 17, 2004. The final data acquisition and final test/calibrations flight was completed on May 31, 2004. Data acquired during the survey totaled 8,971.15 line-miles.

  5. 33 CFR 117.987 - Taylor Bayou.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union Pacific...

  6. 33 CFR 117.987 - Taylor Bayou.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union Pacific...

  7. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  8. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  9. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series

    NASA Astrophysics Data System (ADS)

    Wang, Kaihua; Chen, Hua; Jiang, Weiping; Li, Zhao; Ma, Yifang; Deng, Liansheng

    2018-04-01

    There are apparent seasonal variations in GPS height time series, and thermal expansion is considered to be one of the potential geophysical contributors. The displacements introduced by thermal expansion are usually derived without considering the annex height and underground part of the monument (e.g. located on roof or top of the buildings), which may bias the geophysical explanation of the seasonal oscillation. In this paper, the improved vertical displacements are derived by a refined thermal expansion model where the annex height and underground depth of the monument are taken into account, and then 560 IGS stations are adopted to validate the modeled thermal expansion (MTE) displacements. In order to evaluate the impact of thermal expansion on GPS heights, the MTE displacements of 80 IGS stations with less data discontinuities are selected to compare with their observed GPS vertical (OGV) displacements with the modeled surface loading (MSL) displacements removed in advance. Quantitative analysis results show the maximum annual and semiannual amplitudes of the MTE are 6.65 mm (NOVJ) and 0.51 mm (IISC), respectively, and the maximum peak-to-peak oscillation of the MTE displacements can be 19.4 mm. The average annual amplitude reductions are 0.75 mm and 1.05 mm respectively after removing the MTE and MSL displacements from the OGV, indicating the seasonal oscillation induced by thermal expansion is equivalent to >75% of the impact of surface loadings. However, there are rarely significant reductions for the semiannual amplitude. Given the result in this study that thermal expansion can explain 17.3% of the annual amplitude in GPS heights on average, it must be precisely modeled both in GPS precise data processing and GPS time series analysis, especially for those stations located in the middle and high latitudes with larger annual temperature oscillation, or stations with higher monument.

  10. A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier Transforms, and Fourier Series. Integral Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 324 and 325.

    ERIC Educational Resources Information Center

    Grimm, C. A.

    This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…

  11. Electronic and magnetic structures of Fe3O4 ferrimagnetic investigated by first principle, mean field and series expansions calculations

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Hlil, E. K.; Hamedoun, M.; Benyoussef, A.; Mounkachi, O.; El Moussaoui, H.

    2015-03-01

    Self-consistent ab initio calculations, based on density functional theory (DFT) approach and using a full potential linear augmented plane wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Fe3O4. Polarized spin and spin-orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Fe plans. Magnetic moment considered to lie along (010) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The exchange interactions between the magnetic atoms Fe-Fe in Fe3O4 are given using the mean field theory. The high temperature series expansions (HTSEs) of the magnetic susceptibility of with the magnetic moments, mFe in Fe3O4 is given up to seventh order series in (1/kBT). The Néel temperature TN is obtained by HTSEs of the magnetic susceptibility series combined with the Padé approximant method. The critical exponent γ associated with the magnetic susceptibility is deduced as well.

  12. Monitoring rubber plantation expansion using Landsat data time series and a Shapelet-based approach

    NASA Astrophysics Data System (ADS)

    Ye, Su; Rogan, John; Sangermano, Florencia

    2018-02-01

    The expansion of tree plantations in tropical forests for commercial rubber cultivation threatens biodiversity which may affect ecosystem services, and hinders ecosystem productivity, causing net carbon emission. Numerous studies refer to the challenge of reliably distinguishing rubber plantations from natural forest, using satellite data, due to their similar spectral signatures, even when phenology is incorporated into an analysis. This study presents a novel approach for monitoring the establishment and expansion of rubber plantations in Seima Protection Forest (SPF), Cambodia (1995-2015), by detecting and analyzing the 'shapelet' structure in a Landsat-NDVI time series. This paper introduces a new classification procedure consisting of two steps: (1) an exhaustive-searching algorithm to detect shapelets that represent a period for relatively low NDVI values within an image time series; and (2) a t-test used to determine if NDVI values of detected shapelets are significantly different than their non-shapelet trend, thereby indicating the presence of rubber plantations. Using this approach, historical rubber plantation events were mapped over the twenty-year timespan. The shapelet algorithm produced two types of information: (1) year of rubber plantation establishment; and (2) pre-conversion land-cover type (i.e., agriculture, or natural forest). The overall accuracy of the rubber plantation map for the year of 2015 was 89%. The multi-temporal map products reveal that more than half of the rubber planting activity (57%) took place in 2010 and 2011, following the granting of numerous rubber concessions two years prior. Seventy-three percent of the rubber plantations were converted from natural forest and twenty-three percent were established on non-forest land-cover. The shapelet approach developed here can be used reliably to improve our understanding of the expansion of rubber production beyond Seima Protection Forest of Cambodia, and likely elsewhere in the

  13. Pain and Anxiety Levels of Patients Undergoing Tissue Expansion After Mastectomies: A Case Series Study.

    PubMed

    Le, Nicole K; García-Molina, Carla; Kumar, Ambuj; Griffin, Lisa; Dayicioglu, Deniz

    2017-01-01

    The tissue expansion process is done after mastectomies to increase the submuscular space in preparation for the placement of permanent breast implant. The process is often believed to be painful by patients who are often intimidated by the prospect of mechanically stretching out their skin and muscle. This study aims to quantify the pain experienced by patients and determine the different pain management techniques used. We used a case series approach, in which patients who were undergoing serial tissue expansion process were asked to rate their pain and anxiety on a scale from 1 to 10, using a questionnaire and the visual analog scale. Pain was rated during and after the expansion procedure, and patients were also surveyed to find the most commonly used and most effective pain management technique. Patients typically reported very little pain during and after the procedure, with an average of 0.4 to 2.5 pain experienced out of 10. The pain did not last, on average, longer than 1 day. Furthermore, the most widely used and most helpful pain medication was ibuprofen. During the tissue expansion procedure, the mean anxiety level was 0.64 (1.3). The findings show that tissue expansion process is a relatively low pain procedure and is not a contraindication for undergoing breast reconstruction. Ibuprofen, a mild treatment with few side effects, was efficacious in pain relief though most patients required no pain relief.

  14. Taylorism and the Logic of Learning Outcomes

    ERIC Educational Resources Information Center

    Stoller, Aaron

    2015-01-01

    This essay examines the shared philosophical foundations of Fredrick W. Taylor's scientific management principles and the contemporary learning outcomes movement (LOM). It analyses the shared philosophical ground between the focal point of Taylor's system--"the task"--and the conceptualization and deployment of "learning…

  15. The Life and Legacy of G. I. Taylor

    NASA Astrophysics Data System (ADS)

    Batchelor, G. K.

    1996-07-01

    G.I. Taylor, one of the most distinguished physical scientists of this century, used his deep insight and originality to increase our understanding of phenomena such as the turbulent flow of fluids. His interest in the science of fluid flow was not confined to theory; he was one of the early pioneers of aeronautics, and designed a new type of anchor that was inspired by his passion for sailing. Taylor spent most of his working life in the Cavendish Laboratory in Cambridge, where he investigated the mechanics of fluid and solid materials; his discoveries and ideas have had application throughout mechanical, civil, and chemical engineering, meteorology, oceanography and materials science. He was also a noted research leader, and his group in Cambridge became one of the most productive centers for the study of fluid mechanics. How was Taylor able to be innovative in so many different ways? This interesting and unusual biography helps answer that question. Professor Batchelor, himself a student and close collaborator of Taylor, is ideally placed to describe Taylor's life, achievements and background. He does so without introducing any mathematical details, making this book enjoyable reading for a wide range of people--and especially those whose own interests have brought them into contact with the legacy of Taylor.

  16. An analytical study of physical models with inherited temporal and spatial memory

    NASA Astrophysics Data System (ADS)

    Jaradat, Imad; Alquran, Marwan; Al-Khaled, Kamel

    2018-04-01

    Du et al. (Sci. Reb. 3, 3431 (2013)) demonstrated that the fractional derivative order can be physically interpreted as a memory index by fitting the test data of memory phenomena. The aim of this work is to study analytically the joint effect of the memory index on time and space coordinates simultaneously. For this purpose, we introduce a novel bivariate fractional power series expansion that is accompanied by twofold fractional derivatives ordering α, β\\in(0,1]. Further, some convergence criteria concerning our expansion are presented and an analog of the well-known bivariate Taylor's formula in the sense of mixed fractional derivatives is obtained. Finally, in order to show the functionality and efficiency of this expansion, we employ the corresponding Taylor's series method to obtain closed-form solutions of various physical models with inherited time and space memory.

  17. Mapping Impervious Surface Expansion using Medium-resolution Satellite Image Time Series: A Case Study in the Yangtze River Delta, China

    NASA Technical Reports Server (NTRS)

    Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe

    2012-01-01

    Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived

  18. Modeling urban expansion in Yangon, Myanmar using Landsat time-series and stereo GeoEye Images

    NASA Astrophysics Data System (ADS)

    Sritarapipat, Tanakorn; Takeuchi, Wataru

    2016-06-01

    This research proposed a methodology to model the urban expansion based dynamic statistical model using Landsat and GeoEye Images. Landsat Time-Series from 1978 to 2010 have been applied to extract land covers from the past to the present. Stereo GeoEye Images have been employed to obtain the height of the building. The class translation was obtained by observing land cover from the past to the present. The height of the building can be used to detect the center of the urban area (mainly commercial area). It was assumed that the class translation and the distance of multi-centers of the urban area also the distance of the roads affect the urban growth. The urban expansion model based on the dynamic statistical model was defined to refer to three factors; (1) the class translation, (2) the distance of the multicenters of the urban areas, and (3) the distance from the roads. Estimation and prediction of urban expansion by using our model were formulated and expressed in this research. The experimental area was set up in Yangon, Myanmar. Since it is the major of country's economic with more than five million population and the urban areas have rapidly increased. The experimental results indicated that our model of urban expansion estimated urban growth in both estimation and prediction steps in efficiency.

  19. 76 FR 3570 - Proposed Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...-1189; Airspace Docket No. 10-AWP-19] Proposed Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal... proposes to modify Class E airspace at Taylor Airport, Taylor, AZ. Controlled airspace is necessary to accommodate aircraft using the CAMBO One Departure Area Navigation (RNAV) out of Taylor Airport. The FAA is...

  20. Experiments of the highly non-linear Rayleigh-Taylor instability regime and dependence on Atwood Number

    NASA Astrophysics Data System (ADS)

    Elgin, L.; Handy, T.; Malamud, G.; Huntington, C. M.; Trantham, M. R.; Klein, S. R.; Kuranz, C. C.; Drake, R. P.; Shvarts, D.

    2017-10-01

    Potential flow models predict that a Rayleigh-Taylor unstable system will reach a terminal velocity (and constant Froude number) at low Atwood numbers. Numerical simulations predict a re-acceleration phase of Rayleigh-Taylor Instability (RTI) and higher Froude number at late times. To observe this effect, we are conducting a series of experiments at OMEGA 60 to measure single-mode RTI growth at low and high Atwood numbers and late times. X-ray radiographs spanning 40 + ns capture the evolution of these systems. Experimental design challenges and initial results are discussed here. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  1. Functional DNA: Teaching Infinite Series through Genetic Analogy

    ERIC Educational Resources Information Center

    Kowalski, R. Travis

    2011-01-01

    This article presents an extended analogy that connects infinite sequences and series to the science of genetics, by identifying power series as "DNA for a function." This analogy allows standard topics such as convergence tests or Taylor approximations to be recast in a "forensic" light as mathematical analogs of genetic concepts such as DNA…

  2. The New Taylorism: Hacking at the Philosophy of the University's End

    ERIC Educational Resources Information Center

    Goodman, Robin Truth

    2012-01-01

    This article looks at the critical writings of Mark C. Taylor. It suggests that Mark C. Taylor is rewriting a global imaginary devoid of the kind of citizenship that Henry Giroux claims as the basis for public education. Instead, Taylor wants to see the university take shape as profit-generating. According to Taylor, in lieu of learning to take…

  3. 20. TURNTABLE WITH CABLE CAR BAY & TAYLOR: View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. TURNTABLE WITH CABLE CAR - BAY & TAYLOR: View to northwest of the Bay and Taylor turntable. The gripman and conductor are turning the car around. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  4. Introduction to the Special Series.

    ERIC Educational Resources Information Center

    Peterson, Lizette

    1986-01-01

    Presents a special series of seven articles dealing with biopsychosocial oncology, the role of psychology in cancer treatment. Includes an introduction by Lizette Peterson and articles by Thomas Burish and Michael Carey, Susan Jay et al., Shelley Taylor et al., David Cella and Susan Tross, Gerald Koocher, and Leonard Derogatis. (KS)

  5. Taylor dispersion of colloidal particles in narrow channels

    NASA Astrophysics Data System (ADS)

    Sané, Jimaan; Padding, Johan T.; Louis, Ard A.

    2015-09-01

    We use a mesoscopic particle-based simulation technique to study the classic convection-diffusion problem of Taylor dispersion for colloidal discs in confined flow. When the disc diameter becomes non-negligible compared to the diameter of the pipe, there are important corrections to the original Taylor picture. For example, the colloids can flow more rapidly than the underlying fluid, and their Taylor dispersion coefficient is decreased. For narrow pipes, there are also further hydrodynamic wall effects. The long-time tails in the velocity autocorrelation functions are altered by the Poiseuille flow.

  6. 76 FR 18378 - Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ...-1189; Airspace Docket No. 10-AWP-19] Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will amend Class E airspace at Taylor Airport, Taylor, AZ, to accommodate aircraft using the CAMBO One Departure, and the Area Navigation (RNAV...

  7. Comparative analysis of Goodwin's business cycle models

    NASA Astrophysics Data System (ADS)

    Antonova, A. O.; Reznik, S.; Todorov, M. D.

    2016-10-01

    We compare the behavior of solutions of Goodwin's business cycle equation in the form of neutral delay differential equation with fixed delay (NDDE model) and in the form of the differential equations of 3rd, 4th and 5th orders (ODE model's). Such ODE model's (Taylor series expansion of NDDE in powers of θ) are proposed in N. Dharmaraj and K. Vela Velupillai [6] for investigation of the short periodic sawthooth oscillations in NDDE. We show that the ODE's of 3rd, 4th and 5th order may approximate the asymptotic behavior of only main Goodwin's mode, but not the sawthooth modes. If the order of the Taylor series expansion exceeds 5, then the approximate ODE becomes unstable independently of time lag θ.

  8. G.I. Taylor and the Trinity Test

    ERIC Educational Resources Information Center

    Deakin, Michael A. B.

    2011-01-01

    The story is often told of the calculation by G.I. Taylor of the yield of the first ever atomic bomb exploded in New Mexico in 1945. It has indeed become a staple of the classroom whenever dimensional analysis is taught. However, while it is true that Taylor succeeded in calculating this figure at a time when it was still classified, most versions…

  9. A general formula for Rayleigh-Schroedinger perturbation energy utilizing a power series expansion of the quantum mechanical Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, J.M.

    1997-02-01

    Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonianmore » in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.« less

  10. Cathedral house & crocker fence, Taylor Street east and north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cathedral house & crocker fence, Taylor Street east and north elevations, perspective view from the northeast - Grace Cathedral, George William Gibbs Memorial Hall, 1051 Taylor Street, San Francisco, San Francisco County, CA

  11. Women in American History: A Series. Book Two, Women in the Ages of Expansion and Reform 1820-1860.

    ERIC Educational Resources Information Center

    Sanders, Beverly

    The document, one in a series of four on women in American history, discusses women in the ages of expansion and reform (1820-1860). Designed to supplement U.S. history textbooks, the book is presented in six chapters. Chapter I describes the "true woman," an ideal cultivated by women writers, educators, and magazine editors. The four virtues were…

  12. 15. TURNTABLE RECONSTRUCTION BAY & TAYLOR: Photocopy of January ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. TURNTABLE RECONSTRUCTION - BAY & TAYLOR: Photocopy of January 1941 photograph taken during reconstruction of the Bay and Taylor turntable. View to the south. The 'spider' that carries the actual turntable is in place in the pit. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  13. Linear stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1992-01-01

    A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.

  14. 2–stage stochastic Runge–Kutta for stochastic delay differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Norhayati; Jusoh Awang, Rahimah; Bahar, Arifah

    2015-05-15

    This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.

  15. Fisheries Aspects of Seamounts and Taylor Columns

    DTIC Science & Technology

    1986-09-01

    the armorhead population. Due to a probable combination of overfishing and poor recruitment, the large fishery of the early 1970’s began a rapid...ACCESSION NO T I TLE (include Security Classification) FISHERIES ASPECTS OF SEAMOUNTS AND TAYLOR COLUMNS 2 PERSONAL AUTHOR(S) Brainard, Russell E. 13a...retention Seamount oceanography Taylor column Fisheries Nutrient enrichment 𔄃 3ASTRACT (Continue on reverse of necessary and identify by block number

  16. Bright and durable field emission source derived from refractory taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tipmore » end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.« less

  17. Series expansions of rotating two and three dimensional sound fields.

    PubMed

    Poletti, M A

    2010-12-01

    The cylindrical and spherical harmonic expansions of oscillating sound fields rotating at a constant rate are derived. These expansions are a generalized form of the stationary sound field expansions. The derivations are based on the representation of interior and exterior sound fields using the simple source approach and determination of the simple source solutions with uniform rotation. Numerical simulations of rotating sound fields are presented to verify the theory.

  18. Centrifugally Driven Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Scase, Matthew; Hill, Richard

    2017-11-01

    The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.

  19. Analytical estimation of annual runoff distribution in ungauged seasonally dry basins based on a first order Taylor expansion of the Fu's equation

    NASA Astrophysics Data System (ADS)

    Caracciolo, D.; Deidda, R.; Viola, F.

    2017-11-01

    The assessment of the mean annual runoff and its interannual variability in a basin is the first and fundamental task for several activities related to water resources management and water quality analysis. The scarcity of observed runoff data is a common problem worldwide so that the runoff estimation in ungauged basins is still an open question. In this context, the main aim of this work is to propose and test a simple tool able to estimate the probability distribution of the annual surface runoff in ungauged river basins in arid and semi-arid areas using a simplified Fu's parameterization of the Budyko's curve at regional scale. Starting from a method recently developed to derive the distribution of annual runoff, under the assumption of negligible inter-annual change in basin water storage, we here generalize the application to any catchment where the parameter of the Fu's curve is known. Specifically, we provide a closed-form expression of the annual runoff distribution as a function of the mean and standard deviation of annual rainfall and potential evapotranspiration, and the Fu's parameter. The proposed method is based on a first order Taylor expansion of the Fu's equation and allows calculating the probability density function of annual runoff in seasonally dry arid and semi-arid geographic context around the world by taking advantage of simple easy-to-find climatic data and the many studies with estimates of the Fu's parameter worldwide. The computational simplicity of the proposed tool makes it a valuable supporting tool in the field of water resources assessment for practitioners, regional agencies and authorities.

  20. Animating Nested Taylor Polynomials to Approximate a Function

    ERIC Educational Resources Information Center

    Mazzone, Eric F.; Piper, Bruce R.

    2010-01-01

    The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…

  1. 75 FR 7405 - Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and Jetstream Model... available in the AD docket shortly after receipt. FOR FURTHER INFORMATION CONTACT: Taylor Martin, Aerospace... AD docket. Relevant Service Information BAE Systems has issued British Aerospace Jetstream Series...

  2. Proof without Words: (1 + 1/n)[superscript n] less than e less than (1 + 1/n)[superscript n+1

    ERIC Educational Resources Information Center

    Khattri, Sanjay Kumar

    2008-01-01

    We present a pictorial proof of the inequation (1 + 1/n)[superscript n] less than e less than (1 + 1/n)[superscript n+1]. The inequation is also confirmed through the Taylor expansion and alternating series theorem.

  3. Techniques for optimizing nanotips derived from frozen taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the lasermore » to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.« less

  4. Dynamic stabilization of classical Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Piriz, S. A.; Tahir, N. A.

    2011-09-15

    Dynamic stabilization of classical Rayleigh-Taylor instability is studied by modeling the interface vibration with the simplest possible wave form, namely, a sequence of Dirac deltas. As expected, stabilization results to be impossible. However, in contradiction to previously reported results obtained with a sinusoidal driving, it is found that in general the perturbation amplitude is larger than in the classical case. Therefore, no beneficial effect can be obtained from the vertical vibration of a Rayleigh-Taylor unstable interface between two ideal fluids.

  5. Fluid-structure interaction in Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Kempf, Martin Horst Willi

    1998-10-01

    The linear stability of a viscous fluid between two concentric, rotating cylinders is considered. The inner cylinder is a rigid boundary and the outer cylinder has an elastic layer exposed to the fluid. The subject is motivated by flow between two adjoining rollers in a printing press. The governing equations of the fluid layer are the incompressible Navier-Stokes equations, and the governing equations of the elastic layer are Navier's equations. A narrow gap, neutral stability, and axisymmetric disturbances are assumed. The solution involves a novel technique for treating two layer stability problems, where an exact solution in the elastic layer is used to isolate the problem in the fluid layer. The results show that the presence of the elastic layer has only a slight effect on the critical Taylor numbers for the elastic parameters of modern printing presses. However, there are parameter values where the critical Taylor number is dramatically different than the classical Taylor-Couette problem.

  6. DSM-5 and ADHD - an interview with Eric Taylor.

    PubMed

    Taylor, Eric

    2013-09-12

    In this podcast we talk to Prof Eric Taylor about the changes to the diagnosis of Attention Deficit Hyperactivity Disorder (ADHD) in DSM-5 and how these changes will affect clinical practice. The podcast for this interview is available at: http://www.biomedcentral.com/sites/2999/download/Taylor.mp3.

  7. Conformal expansions and renormalons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients.more » As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.« less

  8. A litmus test for exploitation: James Stacey Taylor's stakes and kidneys.

    PubMed

    Kuntz, J R

    2009-12-01

    James Stacy Taylor advances a thorough argument for the legalization of markets in current (live) human kidneys. The market is seemly the most abhorrent type of market, a market where the least well-off sell part of their body to the most well off. Though rigorously defended overall, his arguments concerning exploitation are thin. I examine a number of prominent bioethicists' account of exploitation: most importantly, Ruth Sample's exploitation as degradation. I do so in the context of Taylor's argument, with the aim of buttressing Taylor's position that a regulated kidney market is morally allowable. I argue that Sample fails to provide normative grounds consistent with her claim that exploitation is wrong. I then reformulate her account for consistency and plausibility. Still, this seemingly more plausible view does not show that Taylor's regulated kidney market is prohibitively exploitative of impoverished persons. I tack into place one more piece of support for Taylor's conclusion. (wc. 148).

  9. Jupiter's great red spot revisited. [validity of Taylor column theory

    NASA Technical Reports Server (NTRS)

    Hide, R.

    1972-01-01

    On the original Taylor column theory of Jupiter's Great Red Spot, the fixed latitude of the Spot is taken to imply that the Taylor column in Jupiter's atmosphere is associated with a disturbance such as a topographic feature of the surface Q underlying the atmosphere. The alternative suggestion that the Taylor column is produced by a solid raft floating at depth in the atmosphere is somewhat easier to reconcile with the approximately 10s difference between the respective rotation periods P sub S and P sub R of the Red Spot and of the radio sources, but it does not account so readily for the fixed latitude of the Spot unless it can be shown that the raft is in stable equilibrium under the north-south components of the dynamical forces, including wind effects, acting upon it. A slight wavering of the upper end of the Taylor column relative to the lower end could account at least in part for the most rapid variations in P sub S, but the slow large-amplitude variations in P sub S must reflect changes in the longitudinal motion of either the surface Q or of the raft. By generalizing the Proudman-Taylor theorem to the case of a non-homogeneous fluid it is shown that the Taylor column theory does not imply very special and therefore unlikely horizontal and vertical temperature variations in Jupiter's atmosphere, thus refuting a widely-held belief to the contrary.

  10. Stochastic Simulation and Forecast of Hydrologic Time Series Based on Probabilistic Chaos Expansion

    NASA Astrophysics Data System (ADS)

    Li, Z.; Ghaith, M.

    2017-12-01

    Hydrological processes are characterized by many complex features, such as nonlinearity, dynamics and uncertainty. How to quantify and address such complexities and uncertainties has been a challenging task for water engineers and managers for decades. To support robust uncertainty analysis, an innovative approach for the stochastic simulation and forecast of hydrologic time series is developed is this study. Probabilistic Chaos Expansions (PCEs) are established through probabilistic collocation to tackle uncertainties associated with the parameters of traditional hydrological models. The uncertainties are quantified in model outputs as Hermite polynomials with regard to standard normal random variables. Sequentially, multivariate analysis techniques are used to analyze the complex nonlinear relationships between meteorological inputs (e.g., temperature, precipitation, evapotranspiration, etc.) and the coefficients of the Hermite polynomials. With the established relationships between model inputs and PCE coefficients, forecasts of hydrologic time series can be generated and the uncertainties in the future time series can be further tackled. The proposed approach is demonstrated using a case study in China and is compared to a traditional stochastic simulation technique, the Markov-Chain Monte-Carlo (MCMC) method. Results show that the proposed approach can serve as a reliable proxy to complicated hydrological models. It can provide probabilistic forecasting in a more computationally efficient manner, compared to the traditional MCMC method. This work provides technical support for addressing uncertainties associated with hydrological modeling and for enhancing the reliability of hydrological modeling results. Applications of the developed approach can be extended to many other complicated geophysical and environmental modeling systems to support the associated uncertainty quantification and risk analysis.

  11. G.I. Taylor and the Trinity test

    NASA Astrophysics Data System (ADS)

    Deakin, Michael A. B.

    2011-12-01

    The story is often told of the calculation by G.I. Taylor of the yield of the first ever atomic bomb exploded in New Mexico in 1945. It has indeed become a staple of the classroom whenever dimensional analysis is taught. However, while it is true that Taylor succeeded in calculating this figure at a time when it was still classified, most versions of the story are quite inaccurate historically. The reality is more complex than the usual accounts have it. This article sets out to disentangle fact from fiction.

  12. Distribution of glacial deposits, soils, and permafrost in Taylor Valley, Antarctica

    USGS Publications Warehouse

    Bockheim, James G.; Prentice, M.L.; McLeod, M.

    2008-01-01

    We provide a map of lower and central Taylor Valley, Antarctica, that shows deposits from Taylor Glacier, local alpine glaciers, and grounded ice in the Ross Embayment. From our electronic database, which includes 153 sites from the coast 50 km upvalley to Pearse Valley, we show the distribution of permafrost type and soil subgroups according to Soil Taxonomy. Soils in eastern Taylor Valley are of late Pleistocene age, cryoturbated due to the presence of ground ice or ice-cemented permafrost within 70 cm of the surface, and classified as Glacic and Typic Haploturbels. In central Taylor Valley, soils are dominantly Typic Anhyorthels of mid-Pleistocene age that have dry-frozen permafrost within the upper 70 cm. Salt-enriched soils (Salic Anhyorthels and Petrosalic Anhyorthels) are of limited extent in Taylor Valley and occur primarily on drifts of early Pleistocene and Pliocene age. Soils are less developed in Taylor Valley than in nearby Wright Valley, because of lesser salt input from atmospheric deposition and salt weathering. Ice-cemented permafrost is ubiquitous on Ross Sea, pre-Ross Sea, and Bonney drifts that occur within 28 km of the McMurdo coast. In contrast, dry-frozen permafrost is prevalent on older (???115 ky) surfaces to the west. ?? 2008 Regents of the University of Colorado.

  13. Enrollment Expansion in Postwar Japan. International Publication Series No. 1.

    ERIC Educational Resources Information Center

    Kaneko, Motohisa

    After World War II, enrollment in the Japanese educational system underwent an unprecedented expansion, largely on account of postwar economic growth. Although such expansion was common throughout the world, Japan's experience was unique because of the magnitude of changes in the enrollment rates and the degree to which these changes directly…

  14. Magnetically Induced Rotating Rayleigh-Taylor Instability.

    PubMed

    Scase, Matthew M; Baldwin, Kyle A; Hill, Richard J A

    2017-03-03

    Classical techniques for investigating the Rayleigh-Taylor instability include using compressed gasses 1 , rocketry 2 or linear electric motors 3 to reverse the effective direction of gravity, and accelerate the lighter fluid toward the denser fluid. Other authors e.g. 4 , 5 , 6 have separated a gravitationally unstable stratification with a barrier that is removed to initiate the flow. However, the parabolic initial interface in the case of a rotating stratification imposes significant technical difficulties experimentally. We wish to be able to spin-up the stratification into solid-body rotation and only then initiate the flow in order to investigate the effects of rotation upon the Rayleigh-Taylor instability. The approach we have adopted here is to use the magnetic field of a superconducting magnet to manipulate the effective weight of the two liquids to initiate the flow. We create a gravitationally stable two-layer stratification using standard flotation techniques. The upper layer is less dense than the lower layer and so the system is Rayleigh-Taylor stable. This stratification is then spun-up until both layers are in solid-body rotation and a parabolic interface is observed. These experiments use fluids with low magnetic susceptibility, |χ| ~ 10 -6 - 10 -5 , compared to a ferrofluids. The dominant effect of the magnetic field applies a body-force to each layer changing the effective weight. The upper layer is weakly paramagnetic while the lower layer is weakly diamagnetic. When the magnetic field is applied, the lower layer is repelled from the magnet while the upper layer is attracted towards the magnet. A Rayleigh-Taylor instability is achieved with application of a high gradient magnetic field. We further observed that increasing the dynamic viscosity of the fluid in each layer, increases the length-scale of the instability.

  15. Microbial Energetics Beneath the Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Mikucki, J. A.; Turchyn, A. V.; Farquhar, J.; Priscu, J. C.; Schrag, D. P.; Pearson, A.

    2007-12-01

    Subglacial microbiology is controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem. These factors can all affect metabolic function by influencing electron acceptor and donor availability in the subglacial setting leaving biogeochemical signatures that can be used to determine ecosystem processes. Blood Falls, an iron-rich, episodic subglacial outflow from the Taylor Glacier in the McMurdo Dry Valleys Antarctica provides an example of how microbial community structure and function can provide insight into subglacial hydrology. This subglacial outflow contains cryoconcentrated, Pliocene-age seawater salts that pooled in the upper Taylor Valley and was subsequently covered by the advance of the Taylor Glacier. Biogeochemical measurements, culture-based techniques, and genomic analysis were used to characterize microbes and chemistry associated with the subglacial outflow. The isotopic composition of important geochemical substrates (i.e., δ34Ssulfate, Δ33Ssulfate, δ18Osulfate, δ18Owater, Δ14SDIC) were also measured to provide more detail on subglacial microbial energetics. Typically, subglacial systems, when driven to anoxia by the hydrolysis of organic matter, will follow a continuum of redox chemistries utilizing electron acceptors with decreasing reduction potential (e.g., Fe (III), sulfate, CO2). Our data provide no evidence for sulfate reduction below the Taylor Glacier despite high dissolved organic carbon (450 μM C) and measurable metabolic activity. We contend that, in the case of the Taylor Glacier, the in situ bioenergetic reduction potential has been 'short-circuited' at Fe(III)-reduction and excludes sulfate reduction and methanogenesis. Given the length of time that this marine system has been isolated from phototrophic production (~2 Mya) the ability to degrade and consume increasingly recalcitrant organic carbon is likely an important component to the observed redox chemistry. Our work indicates that glacier hydrology

  16. On Using Taylor's Hypothesis for Three-Dimensional Mixing Layers

    NASA Technical Reports Server (NTRS)

    LeBoeuf, Richard L.; Mehta, Rabindra D.

    1995-01-01

    In the present study, errors in using Taylor's hypothesis to transform measurements obtained in a temporal (or phase) frame onto a spatial one were evaluated. For the first time, phase-averaged ('real') spanwise and streamwise vorticity data measured on a three-dimensional grid were compared directly to those obtained using Taylor's hypothesis. The results show that even the qualitative features of the spanwise and streamwise vorticity distributions given by the two techniques can be very different. This is particularly true in the region of the spanwise roller pairing. The phase-averaged spanwise and streamwise peak vorticity levels given by Taylor's hypothesis are typically lower (by up to 40%) compared to the real measurements.

  17. The investigation of trapped thickness shear modes in a contoured AT-cut quartz plate using the power series expansion technique

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jin, Feng

    2018-01-01

    The dynamic model about the anti-plane vibration of a contoured quartz plate with thickness changing continuously is established by ignoring the effect of small elastic constant c 56. The governing equation is solved using the power series expansion technique, and the trapped thickness shear modes caused by bulge thickness are revealed. Theoretically, the proposed method is more general, which can be capable of handling various thickness profiles defined mathematically. After the convergence of the series is demonstrated and the correctness is numerically validated with the aid of finite element method results, systematic parametric studies are subsequently carried out to quantify the effects of the geometry parameter upon the trapped modes, including resonant frequency and mode shape. After that, the band structures of thickness shear waves propagation in a periodically contoured quartz plate, as well as the power transmission spectra, are obtained based on the power series expansion technique. It is revealed that broad stop bands below cut-off frequency exist owing to the trapped modes excited by the geometry inhomogeneity, which has little relationship with the structural periodicity, and its physical mechanism is different from the Bragg scattering effect. The outcome is widely applicable, and can be utilized to provide theoretical and practical guidance for the design and manufacturing of quartz resonators and wave filters.

  18. On Complicated Expansions of Solutions to ODES

    NASA Astrophysics Data System (ADS)

    Bruno, A. D.

    2018-03-01

    Polynomial ordinary differential equations are studied by asymptotic methods. The truncated equation associated with a vertex or a nonhorizontal edge of their polygon of the initial equation is assumed to have a solution containing the logarithm of the independent variable. It is shown that, under very weak constraints, this nonpower asymptotic form of solutions to the original equation can be extended to an asymptotic expansion of these solutions. This is an expansion in powers of the independent variable with coefficients being Laurent series in decreasing powers of the logarithm. Such expansions are sometimes called psi-series. Algorithms for such computations are described. Six examples are given. Four of them are concern with Painlevé equations. An unexpected property of these expansions is revealed.

  19. 78 FR 12307 - Taylor, G. Tom; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-5705-001] Taylor, G. Tom; Notice of Filing Take notice that on February 14, 2013, G. Tom Taylor filed an application to hold interlocking positions pursuant to section 305(b) of the Federal Power Act, 16 U.S.C. 825d(b), Part 45 of the...

  20. Expansion of the gravitational potential with computerized Poisson series

    NASA Technical Reports Server (NTRS)

    Broucke, R.

    1976-01-01

    The paper describes a recursive formulation for the expansion of the gravitational potential valid for both the tesseral and zonal harmonics. The expansion is primarily in rectangular coordinates, but the classical orbit elements or equinoctial orbit elements can be easily substituted. The equations of motion for the zonal harmonics in both classical and equinoctial orbital elements are described in a form which will result in closed-form expressions for the first-order perturbations. In order to achieve this result, the true longitude or true anomaly have to be used as independent variables.

  1. Baker & Taylor's George Coe

    ERIC Educational Resources Information Center

    Fialkoff, Francine

    2009-01-01

    In his 30 years as a library wholesaler, first as VP and general manager of Brodart Books, Library, and School Automation divisions and since 2000 as president of the Library & Education division of Baker & Taylor (B&T), George Coe has been instrumental in a whole host of innovations. They go way beyond the selection, processing, and delivery of…

  2. Neo-Taylorism in Educational Administration?

    ERIC Educational Resources Information Center

    Gronn, Peter C.

    1982-01-01

    Reviews eight recent observational studies of school administrators and criticizes the studies' use of "time and motion" assumptions drawn from Frederick Winslow Taylor's ideas. Outlines an alternate approach based on "thick" description of administrators' work, including their talk, as exemplified in James Boswell's biography…

  3. Approximate techniques of structural reanalysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1974-01-01

    A study is made of two approximate techniques for structural reanalysis. These include Taylor series expansions for response variables in terms of design variables and the reduced-basis method. In addition, modifications to these techniques are proposed to overcome some of their major drawbacks. The modifications include a rational approach to the selection of the reduced-basis vectors and the use of Taylor series approximation in an iterative process. For the reduced basis a normalized set of vectors is chosen which consists of the original analyzed design and the first-order sensitivity analysis vectors. The use of the Taylor series approximation as a first (initial) estimate in an iterative process, can lead to significant improvements in accuracy, even with one iteration cycle. Therefore, the range of applicability of the reanalysis technique can be extended. Numerical examples are presented which demonstrate the gain in accuracy obtained by using the proposed modification techniques, for a wide range of variations in the design variables.

  4. Taylor Impact Tests and Simulations on PBX 9501

    NASA Astrophysics Data System (ADS)

    Clements, Brad; Thompson, Darla G.; Luscher, D. J.; Deluca, Racci

    2011-06-01

    Taylor impact tests have been conducted previously on plastic bonded explosives (PBXs) to characterize the stress state of these materials as they impact smooth and flat steel anvil surfaces at speeds of ~100m/s (i.e. Christopher, et al, 11th Detonation Symposium). In 2003, C. Liu and R. Ellis (unpublished, Los Alamos National Laboratory) performed Taylor tests on PBX 9501 up to speeds of 115 m/s, capturing impact images. In the work presented here, we have extended these tests to velocities of 200 m/s using a composite-lined gun barrel and no specimen sabot. Specimen images are used to validate the thermo-mechanical constitutive model ViscoSCRAM. ViscoSCRAM has been parameterized for PBX 9501 in uniaxial stress configurations. Simulating Taylor impact experiments tests the model in situations undergoing extreme damage. In addition, experimental variations to specimen confinement and friction are introduced in an attempt to establish ignition thresholds in this velocity regime.

  5. Interactive application of quadratic expansion of chi-square statistic to nonlinear curve fitting

    NASA Technical Reports Server (NTRS)

    Badavi, F. F.; Everhart, Joel L.

    1987-01-01

    This report contains a detailed theoretical description of an all-purpose, interactive curve-fitting routine that is based on P. R. Bevington's description of the quadratic expansion of the Chi-Square statistic. The method is implemented in the associated interactive, graphics-based computer program. Taylor's expansion of Chi-Square is first introduced, and justifications for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations is derived, then solved by matrix algebra. A brief description of the code is presented along with a limited number of changes that are required to customize the program of a particular task. To evaluate the performance of the method and the goodness of nonlinear curve fitting, two typical engineering problems are examined and the graphical and tabular output of each is discussed. A complete listing of the entire package is included as an appendix.

  6. Inversion of residual stress profiles from ultrasonic Rayleigh wave dispersion data

    NASA Astrophysics Data System (ADS)

    Mora, P.; Spies, M.

    2018-05-01

    We investigate theoretically and with synthetic data the performance of several inversion methods to infer a residual stress state from ultrasonic surface wave dispersion data. We show that this particular problem may reveal in relevant materials undesired behaviors for some methods that could be reliably applied to infer other properties. We focus on two methods, one based on a Taylor-expansion, and another one based on a piecewise linear expansion regularized by a singular value decomposition. We explain the instabilities of the Taylor-based method by highlighting singularities in the series of coefficients. At the same time, we show that the other method can successfully provide performances which only weakly depend on the material.

  7. GPU-accelerated algorithms for many-particle continuous-time quantum walks

    NASA Astrophysics Data System (ADS)

    Piccinini, Enrico; Benedetti, Claudia; Siloi, Ilaria; Paris, Matteo G. A.; Bordone, Paolo

    2017-06-01

    Many-particle continuous-time quantum walks (CTQWs) represent a resource for several tasks in quantum technology, including quantum search algorithms and universal quantum computation. In order to design and implement CTQWs in a realistic scenario, one needs effective simulation tools for Hamiltonians that take into account static noise and fluctuations in the lattice, i.e. Hamiltonians containing stochastic terms. To this aim, we suggest a parallel algorithm based on the Taylor series expansion of the evolution operator, and compare its performances with those of algorithms based on the exact diagonalization of the Hamiltonian or a 4th order Runge-Kutta integration. We prove that both Taylor-series expansion and Runge-Kutta algorithms are reliable and have a low computational cost, the Taylor-series expansion showing the additional advantage of a memory allocation not depending on the precision of calculation. Both algorithms are also highly parallelizable within the SIMT paradigm, and are thus suitable for GPGPU computing. In turn, we have benchmarked 4 NVIDIA GPUs and 3 quad-core Intel CPUs for a 2-particle system over lattices of increasing dimension, showing that the speedup provided by GPU computing, with respect to the OPENMP parallelization, lies in the range between 8x and (more than) 20x, depending on the frequency of post-processing. GPU-accelerated codes thus allow one to overcome concerns about the execution time, and make it possible simulations with many interacting particles on large lattices, with the only limit of the memory available on the device.

  8. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  9. The asymmetry of U.S. monetary policy: Evidence from a threshold Taylor rule with time-varying threshold values

    NASA Astrophysics Data System (ADS)

    Zhu, Yanli; Chen, Haiqiang

    2017-05-01

    In this paper, we revisit the issue whether U.S. monetary policy is asymmetric by estimating a forward-looking threshold Taylor rule with quarterly data from 1955 to 2015. In order to capture the potential heterogeneity for regime shift mechanism under different economic conditions, we modify the threshold model by assuming the threshold value as a latent variable following an autoregressive (AR) dynamic process. We use the unemployment rate as the threshold variable and separate the sample into two periods: expansion periods and recession periods. Our findings support that the U.S. monetary policy operations are asymmetric in these two regimes. More precisely, the monetary authority tends to implement an active Taylor rule with a weaker response to the inflation gap (the deviation of inflation from its target) and a stronger response to the output gap (the deviation of output from its potential level) in recession periods. The threshold value, interpreted as the targeted unemployment rate of monetary authorities, exhibits significant time-varying properties, confirming the conjecture that policy makers may adjust their reference point for the unemployment rate accordingly to reflect their attitude on the health of general economy.

  10. Rayleigh--Taylor spike evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schappert, G. T.; Batha, S. H.; Klare, K. A.

    2001-09-01

    Laser-based experiments have shown that Rayleigh--Taylor (RT) growth in thin, perturbed copper foils leads to a phase dominated by narrow spikes between thin bubbles. These experiments were well modeled and diagnosed until this '' spike'' phase, but not into this spike phase. Experiments were designed, modeled, and performed on the OMEGA laser [T. R. Boehly, D. L. Brown, R. S. Craxton , Opt. Commun. 133, 495 (1997)] to study the late-time spike phase. To simulate the conditions and evolution of late time RT, a copper target was fabricated consisting of a series of thin ridges (spikes in cross section) 150more » {mu}m apart on a thin flat copper backing. The target was placed on the side of a scale-1.2 hohlraum with the ridges pointing into the hohlraum, which was heated to 190 eV. Side-on radiography imaged the evolution of the ridges and flat copper backing into the typical RT bubble and spike structure including the '' mushroom-like feet'' on the tips of the spikes. RAGE computer models [R. M. Baltrusaitis, M. L. Gittings, R. P. Weaver, R. F. Benjamin, and J. M. Budzinski, Phys. Fluids 8, 2471 (1996)] show the formation of the '' mushrooms,'' as well as how the backing material converges to lengthen the spike. The computer predictions of evolving spike and bubble lengths match measurements fairly well for the thicker backing targets but not for the thinner backings.« less

  11. Quantum field theory in the presence of a medium: Green's function expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheirandish, Fardin; Salimi, Shahriar

    2011-12-15

    Starting from a Lagrangian and using functional-integration techniques, series expansions of Green's function of a real scalar field and electromagnetic field, in the presence of a medium, are obtained. The parameter of expansion in these series is the susceptibility function of the medium. Relativistic and nonrelativistic Langevin-type equations are derived. Series expansions for Lifshitz energy in finite temperature and for an arbitrary matter distribution are derived. Covariant formulations for both scalar and electromagnetic fields are introduced. Two illustrative examples are given.

  12. Reconnaissance and deep-drill site selection on Taylor Dome, Antarctica

    NASA Technical Reports Server (NTRS)

    Grootes, Pieter M.; Waddington, Edwin D.

    1993-01-01

    Taylor Dome is a small ice dome near the head of Taylor Valley, Southern Victoria Land. The location of the dome, just west of the Transantarctic Mountains, is expected to make the composition of the accumulating snow sensitive to changes in the extent of the Ross Ice Shelf. Thus, it is linked to the discharge of the West Antarctic Ice Sheet but protected against direct influences of glacial-interglacial sea-level rise. The record of past climatic and environmental changes in the ice provides a valuable complement to the radiocarbon-dated proxy record of climate derived from perched deltas, strandlines, and moraines that have been obtained in the nearby Dry Valleys. We carried out a reconnaissance of the Taylor Dome area over the past two field seasons to determine the most favorable location to obtain a deep core to bedrock. A stake network has been established with an 80-km line roughly along the crest of Taylor Dome, and 40-km lines parallel to it and offset by 10 km. These lines have been surveyed 1990/91, and the positions of 9 grid points have been determined with geoceivers. A higher density stake network was placed and surveyed around the most likely drill area in the second year. Ground-based radar soundings in both years provided details on bedrock topography and internal layering of the ice in the drill area. An airborne radar survey in January 1992, completed the radar coverage of the Taylor Dome field area.

  13. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2015-10-01

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  14. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn; Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in themore » present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.« less

  15. Fluctuation scaling, Taylor's law, and crime.

    PubMed

    Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May

    2014-01-01

    Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  16. Bistability and chaos in the Taylor-Green dynamo.

    PubMed

    Yadav, Rakesh K; Verma, Mahendra K; Wahi, Pankaj

    2012-03-01

    Using direct numerical simulations, we study dynamo action under Taylor-Green forcing for a magnetic Prandtl number of 0.5. We observe bistability with weak- and strong-magnetic-field branches. Both the dynamo branches undergo subcritical dynamo transition. We also observe a host of dynamo states including constant, periodic, quasiperiodic, and chaotic magnetic fields. One of the chaotic states originates through a quasiperiodic route with phase locking, while the other chaotic attractor appears to follow the Newhouse-Ruelle-Takens route to chaos. We also observe intermittent transitions between quasiperiodic and chaotic states for a given Taylor-Green forcing.

  17. Parameterization using Fourier series expansion of the diffuse reflectance of human skin to vary the concentration of the melanocytes

    NASA Astrophysics Data System (ADS)

    Narea, J. Freddy; Muñoz, Aarón A.; Castro, Jorge; Muñoz, Rafael A.; Villalba, Caroleny E.; Martinez, María. F.; Bravo, Kelly D.

    2013-11-01

    Human skin has been studied in numerous investigations, given the interest in knowing information about physiology, morphology and chemical composition. These parameters can be determined using non invasively optical techniques in vivo, such as the diffuse reflectance spectroscopy. The human skin color is determined by many factors, but primarily by the amount and distribution of the pigment melanin. The melanin is produced by the melanocytes in the basal layer of the epidermis. This research characterize the spectral response of the human skin using the coefficients of Fourier series expansion. Simulating the radiative transfer equation for the Monte Carlo method to vary the concentration of the melanocytes (fme) in a simplified model of human skin. It fits relating the Fourier series coefficient a0 with fme. Therefore it is possible to recover the skin biophysical parameter.

  18. Atmospheric negative corona discharge using a Taylor cone as liquid electrode

    NASA Astrophysics Data System (ADS)

    Sekine, Ryuto; Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2012-10-01

    We examined characteristics of atmospheric negative corona discharge using liquid needle cathode. As a liquid needle cathode, we adopted Taylor cone with conical shape. A nozzle with inner diameter of 10 mm is filled with liquid, and a plate electrode is placed at 10 mm above the nozzle. By applying a dc voltage between electrodes, Taylor cone is formed. To change the liquid property, we added sodium dodecyl sulfate to reduce the surface tension, sodium sulfate to increase the conductivity, and polyvinyl alcohol to increase the viscosity, in distilled water. The liquid, with high surface tension such as pure water could not form a Taylor cone. When we reduced surface tension, a Taylor cone was formed and the stable corona discharge was observed at the tip of the cone. When we increased viscosity, a liquid filament protruded from the solution surface was formed and corona discharge was observed along the filament at position 0.7-1.0 mm above from the tip of the cone. Increasing the conductivity resulted in the higher light intensity of corona and the lower corona onset voltage. When we use the metal needle electrode, the corona discharge depends on the voltage and the gap length. Using Taylor cone, different types of discharges were observed by changing the property of the liquid.

  19. Nature and significance of Austin-Taylor unconformity on western margin of east Texas basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surles, M.A. Jr.

    1984-04-01

    The Taylor Marl unconformably overlies the Austin Chalk on the western margin of the East Texas basin. Along this contact, up to 275 ft (84 m) of upper Austin is missing in the Waco area and up to 450 ft (137 m) in Bell County. However, the Austin Chalk appears to have been more-or-less uniformly deposited throughout the study area. Apparently regional uplift caused a regression that terminated Austin deposition and was related to the erosion of the upper Chalk. While the unconformity is areally extensive, slightly angular, and accounts for a relatively long period of time, the mechanism ofmore » erosion that caused the unconformity is still uncertain. Erosion was terminated by the deposition of the lower Taylor Marl. Taylor A, the lowermost subdivision of the lower Taylor, was deposited in a near-shore environment that was highly variable. Of particular interest is the relationship of this unconformity to structure and probably to oil occurrence in the Austin Chalk in McLennan and Falls Counties. Major Austin fracturing, which apparently does not extend into the Taylor in Falls County, clearly indicates that structure in the Chalk, at least in part, antedates Taylor deposition. Oil occurrence in the Chalk is clearly related to fracturing and probably is localized by post-Austin-pre-Taylor fracture systems.« less

  20. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M. W.; Heath, G.; Sandor, D.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehiclesmore » in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.« less

  1. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application.

    PubMed

    Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio

    2012-10-01

    The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.

  2. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2009-12-15

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  3. Nonperturbative Series Expansion of Green's Functions: The Anatomy of Resonant Inelastic X-Ray Scattering in the Doped Hubbard Model

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Haverkort, Maurits W.

    2017-12-01

    We present a nonperturbative, divergence-free series expansion of Green's functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The RIXS operator is expanded into polynomials of spin, density, and current operators weighted by fundamental x-ray spectral functions. These operators couple to different polarization channels resulting in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS contributions from different degrees of freedom. We show in particular that, with parameters pertaining to cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping range in the cross-polarization channel.

  4. PEOPLE IN PHYSICS: Interview with Charles Taylor

    NASA Astrophysics Data System (ADS)

    Pople, Conducted by Stephen

    1996-07-01

    Charles Taylor started his university teaching career at UMIST in 1948. In 1965 he became Professor and Head of the Department of Physics at University College, Cardiff. He was a Vice-President of the Institute of Physics from 1970 to 1975, and Professor of Experimental Physics at the Royal Institution from 1977 until 1989. Over the years, Professor Taylor has delighted audiences of all ages with his demonstration lectures, including the Royal Institution Christmas Lectures televised in 1971 and 1989. In 1986 he became the first recipient of the Royal Society's Michael Faraday Award for contributions to the public understanding of science. His many books include Exploring Music, The Art and Science of the Lecture Demonstration, and also the Oxford Children's Book of Science, co-written with interviewer Stephen Pople.

  5. Reconnaissance study of the Taylor Mountains pluton, southwestern Alaska

    USGS Publications Warehouse

    Hudson, Travis L.; Miller, Marti L.; Klimasauskas, Edward P.; Layer, Paul W.

    2010-01-01

    The Taylor Mountains pluton is a Late Cretaceous to early Tertiary (median age 65 + or ? 2 Ma) epizonal, composite biotite granite stock located about 235 km (145 mi) northeast of Dillingham in southwestern Alaska. This 30 km2 (12 mi2) pluton has sharp and discordant contacts with hornfels that developed in Upper Cretaceous clastic sedimentary rocks of the Kuskokwim Group. The three intrusive phases in the Taylor Mountains pluton, in order of emplacement, are (1) porphyritic granite containing large K-feldspar phenocrysts in a coarse-grained groundmass, (2) porphyritic granite containing large K-feldspar and smaller, but still coarse, plagioclase, quartz, and biotite phenocrysts in a fine-grained groundmass, and (3) fine-grained, leucocratic, equigranular granite. The porphyritic granites have different emplacement histories, but similar compositions; averages are 69.43 percent SiO2, 1.62 percent CaO, 5.23 percent FeO+MgO, 3.11 percent Na2O, and 4.50 percent K2O. The fine-grained, equigranular granite is distinctly felsic compared to porphyritic granite; it averages 75.3 percent SiO2, 0.49 percent CaO, 1.52 percent FeO+MgO, 3.31 percent Na2O, and 4.87 percent K2O. Many trace elements including Ni, Cr, Sc, V, Ba, Sr, Zr, Y, Nb, La, Ce, Th, and Nd are strongly depleted in fine-grained equigranular granite. Trace elements are not highly enriched in any of the granites. Known hydrothermal alteration is limited to one tourmaline-quartz replacement zone in porphyritic granite. Mineral deposits in the Taylor Mountains area are primarily placer gold (plus wolframite, cassiterite, and cinnabar); sources for these likely include scattered veins in hornfels peripheral to the Taylor Mountain pluton. The granite magmas that formed the Taylor Mountains pluton are thought to represent melted continental crust that possibly formed in response to high heat flow in the waning stage of Late Cretaceous subduction beneath interior Alaska.

  6. A cosmological Slavnov-Taylor identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Hael; Holman, R.; Vardanyan, Tereza, E-mail: hcollins@andrew.cmu.edu, E-mail: rh4a@andrew.cmu.edu, E-mail: tvardany@andrew.cmu.edu

    We develop a method for treating the consistency relations of inflation that includes the full time-evolution of the state. This approach relies only on the symmetries of the inflationary setting, in particular a residual conformal symmetry in the spatial part of the metric, along with general properties which hold for any quantum field theory. As a result, the consistency relations that emerge, which are essentially the Slavnov-Taylor identities associated with this residual conformal symmetry, apply very generally: they are true of the full Green's functions, hold largely independently of the particular inflationary model, and can be used for arbitrary states.more » We illustrate these techniques by showing the form assumed by the standard consistency relation between the two and three-point functions for the primordial scalar fluctuations when they are in a Bunch-Davies state. But because we have included the full evolution of the state, this approach works for a general initial state as well and does not need to have assumed that inflation began in the Bunch-Davies state. We explain how the Slavnov-Taylor identity is modified for these more general states.« less

  7. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    PubMed

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. 43 CFR 2091.7-2 - Segregative effect and opening: Taylor Grazing Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Segregative effect and opening: Taylor Grazing Act. 2091.7-2 Section 2091.7-2 Public Lands: Interior Regulations Relating to Public Lands... LAWS AND RULES Segregation and Opening of Lands § 2091.7-2 Segregative effect and opening: Taylor...

  9. Compression of an Accelerated Taylor State in SSX

    NASA Astrophysics Data System (ADS)

    Shrock, J. E.; Suen-Lewis, E. M.; Barbano, L. J.; Kaur, M.; Schaffner, D. A.; Brown, M. R.

    2017-10-01

    In the Swarthmore Spheromak Experiment (SSX), compact toroidal plasmas are launched from a plasma gun and evolve into minimum energy twisted Taylor states. The plumes initially have a velocity 40 km/s, density 0.4 ×1016 cm-3 , and proton temperature 20 eV . After formation, the plumes are accelerated by pulsed pinch coils with rise times τ1 / 4 = (π / 2) √{ LC } less than 1 μ s and currents Ipeak =V0 / Z =V0 /√{ L / C } on the order of 104 A. The accelerated Taylor States are abruptly stagnated in a copper flux conserver, and over the course of t < 10 μ s, adiabatic compression is observed. The magnetothermodynamics of this compression do not appear to be dictated by the MHD equation of state d / dt (P /nγ) = 0 . Rather, the compression appears to evolve according to the Chew-Goldberger-Low (CGL) double adiabatic model. CGL theory presents two equations of state, one corresponding with particle motion perpendicular to magnetic field in a plasma, the other to particle motion parallel to the field. We observe Taylor state compression most in agreement with the parallel equation of state: d / dt (P∥B2 /n3) = 0 . DOE ARPA-E ALPHA Program.

  10. Nonlinear stability of Taylor's vortex array

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Tobak, M.

    1987-01-01

    It is proved that the two-dimensional Taylor vortex array, which is an exact unsteady solution of the Navier-Stokes equation, is globally and asymptotically stable in the mean with respect to three-dimensional periodic disturbances. A time-dependent bound on the decay rate of the kinetic energy of disturbances is obtained.

  11. The analytic structure of non-global logarithms: Convergence of the dressed gluon expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff Austin

    Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon ex-pansion was introduced that enables an expansion of the NGL series in terms of a “dressed gluon” building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large-N c master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluonmore » expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of α slog. We explain this finite radius of convergence using the dressed gluon expansion, showing how the dynamics of the buffer region, a region of phase space near the boundary of the jet that was identified in early studies of NGLs, leads to large contributions to the fixed order expansion. We also use the dressed gluon expansion to discuss the convergence of the next-to-leading NGL series, and the role of collinear logarithms that appear at this order. Finally, we show how an understanding of the analytic behavior obtained from the dressed gluon expansion allows us to improve the fixed order NGL series using conformal transformations to extend the domain of analyticity. Furthermore, this allows us to calculate the NGL distribution for all values of α slog from the coefficients of the fixed order expansion.« less

  12. The analytic structure of non-global logarithms: Convergence of the dressed gluon expansion

    DOE PAGES

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff Austin

    2016-11-15

    Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon ex-pansion was introduced that enables an expansion of the NGL series in terms of a “dressed gluon” building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large-N c master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluonmore » expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of α slog. We explain this finite radius of convergence using the dressed gluon expansion, showing how the dynamics of the buffer region, a region of phase space near the boundary of the jet that was identified in early studies of NGLs, leads to large contributions to the fixed order expansion. We also use the dressed gluon expansion to discuss the convergence of the next-to-leading NGL series, and the role of collinear logarithms that appear at this order. Finally, we show how an understanding of the analytic behavior obtained from the dressed gluon expansion allows us to improve the fixed order NGL series using conformal transformations to extend the domain of analyticity. Furthermore, this allows us to calculate the NGL distribution for all values of α slog from the coefficients of the fixed order expansion.« less

  13. 43 CFR 4170.2-1 - Penal provisions under the Taylor Grazing Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Penal provisions under the Taylor Grazing Act. 4170.2-1 Section 4170.2-1 Public Lands: Interior Regulations Relating to Public Lands (Continued...-EXCLUSIVE OF ALASKA Penalties § 4170.2-1 Penal provisions under the Taylor Grazing Act. Under section 2 of...

  14. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    PubMed

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  15. The infrared camera application for calculating the impact of the feed screw thermal expansion on machining accuracy

    NASA Astrophysics Data System (ADS)

    Matras, A.

    2017-08-01

    The paper discusses the impact of the feed screw heating on the machining accuracy. The test stand was built based on HASS Mini Mill 2 CNC milling machine and a Flir SC620 infrared camera. Measurements of workpiece were performed on Talysurf Intra 50 Taylor Hobson profilometer. The research proved that the intensive work of the milling machine lasted 60 minutes, causing thermal expansion of the feed screw what influence on the dimension error of the workpiece.

  16. Fast algorithms for evaluating the stress field of dislocation lines in anisotropic elastic media

    NASA Astrophysics Data System (ADS)

    Chen, C.; Aubry, S.; Oppelstrup, T.; Arsenlis, A.; Darve, E.

    2018-06-01

    In dislocation dynamics (DD) simulations, the most computationally intensive step is the evaluation of the elastic interaction forces among dislocation ensembles. Because the pair-wise interaction between dislocations is long-range, this force calculation step can be significantly accelerated by the fast multipole method (FMM). We implemented and compared four different methods in isotropic and anisotropic elastic media: one based on the Taylor series expansion (Taylor FMM), one based on the spherical harmonics expansion (Spherical FMM), one kernel-independent method based on the Chebyshev interpolation (Chebyshev FMM), and a new kernel-independent method that we call the Lagrange FMM. The Taylor FMM is an existing method, used in ParaDiS, one of the most popular DD simulation softwares. The Spherical FMM employs a more compact multipole representation than the Taylor FMM does and is thus more efficient. However, both the Taylor FMM and the Spherical FMM are difficult to derive in anisotropic elastic media because the interaction force is complex and has no closed analytical formula. The Chebyshev FMM requires only being able to evaluate the interaction between dislocations and thus can be applied easily in anisotropic elastic media. But it has a relatively large memory footprint, which limits its usage. The Lagrange FMM was designed to be a memory-efficient black-box method. Various numerical experiments are presented to demonstrate the convergence and the scalability of the four methods.

  17. Frictional Torque Reduction in Taylor-Couette Flows with Riblet-Textured Rotors

    NASA Astrophysics Data System (ADS)

    Raayai, Shabnam; McKinley, Gareth

    2017-11-01

    Inspired by the riblets on the denticles of fast swimming shark species, periodic surface microtextures of different shapes have been studied under laminar and turbulent flow conditions to understand their drag reduction mechanism and to offer guides for designing optimized low-friction bio-inspired surfaces. Various reports over the past four decades have suggested that riblet surfaces can reduce the frictional drag force in high Reynolds number laminar and turbulent flow regimes. Here, we investigate the effect of streamwise riblets on torque reduction in steady flow between concentric cylinders, known as Taylor-Couette Flow. Using 3D printed riblet-textured rotors and a custom-built Taylor-Couette cell which can be mounted on a rheometer we measure the torque on the inner rotor as a function of three different dimensionless parameters; the Reynolds number of the flow, the sharpness of the riblets, and the size of the riblets with respect to the scale of the Taylor-Couette cell. Our experimental results in the laminar viscous flow regime show a reduction in torque up to 10% over a wide range of Reynolds numbers, that is a non-monotonic function of the aspect ratio and independent of Re. However, after transition to the Taylor vortex regime, the modification in torque becomes a function of the Reynolds number, while remaining a non-monotonic function of the aspect ratio. Using finite volume modelling of the geometry we discuss the changes in the Taylor-Couette flow in presence of the riblets compared to the case of smooth rotors and the resulting torque reduction as a function of the parameter space defined above.

  18. Ethics, organ donation and tax: a reply to Quigley and Taylor.

    PubMed

    Lippert-Rasmussen, Kasper; Petersen, Thomas Søbirk

    2012-08-01

    A national opt-out system of post-mortem donation of scarce organs is preferable to an opt-in system. Unfortunately, the former system is not always feasible, and so in a recent JME article we canvassed the possibility of offering people a tax break for opting-in as a way of increasing the number of organs available for donation under an opt-in regime. Muireann Quigley and James Stacey Taylor criticize our proposal. Roughly, Quigley argues that our proposal is costly and, hence, is unlikely to be implemented, while Taylor contests our response to a Titmuss-style objection to our scheme. In response to Quigley, we note that our proposal's main attraction lies in gains not reflected in the figures presented by Quigley and that the mere fact that it is costly does not imply that it is unfeasible. In response to Taylor, we offer some textual evidence in support of our interpretation of Taylor and responds to his favoured interpretation of the Titmuss-style objection that many people seem to want to donate to charities even if they can deduct their donations from their income tax. Finally, we show why our views do not commit us to endorsing a free organ-market.

  19. Constraints on the Computation of Rigid Motion Parameters from Retinal Displacements.

    DTIC Science & Technology

    1985-10-01

    field (two temporall . proximal frames) is, in general, ambiguous. two frames can recover structure "hen the moing surface satisfies the conditions of...8217(i.b) Furthermore the following identity holds Z(X + SX, . + 6 Y) = z(x + ax . + 6)’) (iii) Using the Taylor series expansion of the above Z(X + 8X Y

  20. Process development of starch hydrolysis using mixing characteristics of Taylor vortices.

    PubMed

    Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto

    2017-04-01

    In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.

  1. Tree ecophysiology research at Taylor Woods

    Treesearch

    Thomas E. Kolb; Nate G. McDowell

    2008-01-01

    We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...

  2. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  3. Strontium isotopic signatures of the streams and lakes of Taylor Valley, Southern Victoria Land, Antarctica: Chemical weathering in a polar climate

    USGS Publications Warehouse

    Lyons, W.B.; Nezat, C.A.; Benson, L.V.; Bullen, T.D.; Graham, E.Y.; Kidd, J.; Welch, K.A.

    2002-01-01

    We have collected and analyzed a series of water samples from three closed-basin lakes (Lakes Bonney, Fryxell, and Hoare) in Taylor Valley, Antarctica, and the streams that flow into them. In all three lakes, the hypolimnetic waters have different 87Sr/86Sr ratios than the surface waters, with the deep water of Lakes Fryxell and Hoare being less radiogenic than the surface waters. The opposite occurs in Lake Bonney. The Lake Fryxell isotopic ratios are lower than modern-day ocean water and most of the whole-rock ratios of the surrounding geologic materials. A conceivable source of Sr to the system could be either the Cenozoic volcanic rocks that make up a small portion of the till deposited in the valley during the Last Glacial Maximum or from marble derived from the local basement rocks. The more radiogenic ratios from Lake Bonney originate from ancient salt deposits that flow into the lake from Taylor Glacier and the weathering of minerals with more radiogenic Sr isotopic ratios within the tills. The Sr isotopic data from the streams and lakes of Taylor Valley strongly support the notion documented by previous investigators that chemical weathering has been, and is currently, a major process in determining the overall aquatic chemistry of these lakes in this polar desert environment.

  4. Advection and Taylor-Aris dispersion in rivulet flow

    NASA Astrophysics Data System (ADS)

    Al Mukahal, F. H. H.; Duffy, B. R.; Wilson, S. K.

    2017-11-01

    Motivated by the need for a better understanding of the transport of solutes in microfluidic flows with free surfaces, the advection and dispersion of a passive solute in steady unidirectional flow of a thin uniform rivulet on an inclined planar substrate driven by gravity and/or a uniform longitudinal surface shear stress are analysed. Firstly, we describe the short-time advection of both an initially semi-infinite and an initially finite slug of solute of uniform concentration. Secondly, we describe the long-time Taylor-Aris dispersion of an initially finite slug of solute. In particular, we obtain the general expression for the effective diffusivity for Taylor-Aris dispersion in such a rivulet, and discuss in detail its different interpretations in the special case of a rivulet on a vertical substrate.

  5. Nonideal Rayleigh–Taylor mixing

    PubMed Central

    Lim, Hyunkyung; Iwerks, Justin; Glimm, James; Sharp, David H.

    2010-01-01

    Rayleigh–Taylor mixing is a classical hydrodynamic instability that occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh–Taylor (RT) mixing are regularizations (physical and numerical), which produce deviations from a pure Euler equation, scale invariant formulation, and nonideal (i.e., experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We interpret mathematical theories of existence and nonuniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations; in other words, indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as nonunique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, in the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and Prandtl numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength initial conditions and long wavelength perturbations are observed to play a role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing in different proportions in these two different contexts. PMID:20615983

  6. 75 FR 22517 - Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and Jetstream Model... INFORMATION CONTACT: Taylor Martin, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301... [Amended] 0 2. The FAA amends Sec. 39.13 by adding the following new AD: 2010-09-02 British Aerospace...

  7. Taylor instability in the shock layer on a Jovian atmosphere entry probe.

    NASA Technical Reports Server (NTRS)

    Compton, D. L.

    1972-01-01

    Investigation of the Taylor instability relative to the dynamical instability whose presence in the shock layer on a spacecraft entering the Jovian atmosphere is to be expected because of the difference in velocity across the shear layer. Presented calculations show that the Taylor instability at the interface between shock-heated freestream gas and ablation products is inconsequential in comparison to the shear layer instability.

  8. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Betti, R.; Sanz, J.

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  9. A numerical simulation of finite-length Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    The processes leading to laminar-turbulent transition in finite-channel-length Taylor-Couette flow are investigated analytically, solving the unsteady incompressible Navier-Stokes equations by spectral-collocation methods. A time-split algorithm, implementable in both axisymmetric and fully three-dimensional time-accurate versions, and an algorithm based on the staggered-mesh discretization of Bernardi and Maday (1986) are described in detail, and results obtained by applying the axisymmetric version of the first algorithm and a steady-state version of the second are presented graphically and compared with published experimental data. The feasibility of full three-dimensional simulations of the progression through chaotic states to turbulence under the constraints of Taylor-Couette flow is demonstrated.

  10. Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szklarski, Jacek; Ruediger, Guenther

    2007-12-15

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic (MHD) Taylor-Couette flow at the finite aspect ratio H/D=10. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed with Hartmann number Ha{approx_equal}10, and the rotation rates correspond to Reynolds numbers of order 10{sup 2}-10{sup 3}. We show that the end plates introduce, besides the well-known Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by any walls. In particular, there exists the Hartmannmore » current, which penetrates the fluid, turns in the radial direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such flows and show that the currents induced by the plates can give rise to instability for the considered parameters. When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical magnetic boundaries so that they do not significantly alter the rotational profile.« less

  11. Numerical investigation on the effects of acceleration reversal times in Rayleigh-Taylor Instability with multiple reversals

    NASA Astrophysics Data System (ADS)

    Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.

    2017-11-01

    An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  12. Electric Grid Expansion Planning with High Levels of Variable Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W.; You, Shutang; Shankar, Mallikarjun

    2016-02-01

    Renewables are taking a large proportion of generation capacity in U.S. power grids. As their randomness has increasing influence on power system operation, it is necessary to consider their impact on system expansion planning. To this end, this project studies the generation and transmission expansion co-optimization problem of the US Eastern Interconnection (EI) power grid with a high wind power penetration rate. In this project, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. This study analyzed a time series creation method to capture the diversity of load and wind powermore » across balancing regions in the EI system. The obtained time series can be easily introduced into the MIP co-optimization problem and then solved robustly through available MIP solvers. Simulation results show that the proposed time series generation method and the expansion co-optimization model and can improve the expansion result significantly after considering the diversity of wind and load across EI regions. The improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare. This study shows that modelling load and wind variations and diversities across balancing regions will produce significantly different expansion result compared with former studies. For example, if wind is modeled in more details (by increasing the number of wind output levels) so that more wind blocks are considered in expansion planning, transmission expansion will be larger and the expansion timing will be earlier. Regarding generation expansion, more wind scenarios will slightly reduce wind generation expansion in the EI system and increase the expansion of other generation such as gas. Also, adopting detailed wind scenarios will reveal that it may be uneconomic to expand transmission networks for transmitting a large amount of wind power through a long

  13. McMurdo LTER: streamflow measurements in Taylor Valley

    USGS Publications Warehouse

    McKnight, D.; House, H.; Von Guerard, P.

    1994-01-01

    Has established a stream gaging network for the three major lake basins in Taylor Valley. These data are critical for determining nutrient budgets for the lake ecosystems and for understanding physical factors controlling microbial mats in the streams.

  14. Moment expansion for ionospheric range error

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A.; Reich, R.; Parker, H.; Berbert, J.

    1972-01-01

    On a plane earth, the ionospheric or tropospheric range error depends only on the total refractivity content or zeroth moment of the refracting layer and the elevation angle. On a spherical earth, however, the dependence is more complex; so for more accurate results it has been necessary to resort to complex ray-tracing calculations. A simple, high-accuracy alternative to the ray-tracing calculation is presented. By appropriate expansion of the angular dependence in the ray-tracing integral in a power series in height, an expression is obtained for the range error in terms of a simple function of elevation angle, E, at the expansion height and of the mth moment of the refractivity, N, distribution about the expansion height. The rapidity of convergence is heavily dependent on the choice of expansion height. For expansion heights in the neighborhood of the centroid of the layer (300-490 km), the expansion to N = 2 (three terms) gives results accurate to about 0.4% at E = 10 deg. As an analytic tool, the expansion affords some insight on the influence of layer shape on range errors in special problems.

  15. Irregular wall roughness in turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Berghout, Pieter; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef; Stevens, Richard

    2017-11-01

    Many wall bounded flows in nature, engineering and transport are affected by surface roughness. Often, this has adverse effects, e.g. drag increase leading to higher energy costs. A major difficulty is the infinite number of roughness geometries, which makes it impossible to systematically investigate all possibilities. Here we present Direct Numerical Simulations (DNS) of turbulent Taylor-Couette flow. We focus on the transitionally rough regime, in which both viscous and pressure forces contribute to the total wall stress. We investigate the effect of the mean roughness height and the effective slope on the roughness function, ΔU+ . Also, we present simulations of varying Ta (Re) numbers for a constant mean roughness height (kmean+). Alongside, we show the behavior of the large scale structures (e.g. plume ejection, Taylor rolls) and flow structures in the vicinity of the wall.

  16. Lightcurve Analysis and Rotation Period Determination for Asteroids 1491 Balduinus and 2603 Taylor

    NASA Astrophysics Data System (ADS)

    Odden, Caroline E.; Cohen, Adam J.; Davis, Spencer; Eldracher, Emelie A.; Fitzgerald, Zachary T.; Jiang, Derek C.; Kozol, Eliana L.; Laurencin, Victoria L.; Meyer-Idzik, Benjamin D.; Pennington, Oliver; Philip, Reuben C.; Sanchez, Emily J.; Warren, Natalie J.; Klinglesmith, Daniel A.; Briggs, John W.

    2018-07-01

    Photometric observations of asteroids 1491 Balduinus and 2603 Taylor were made from 2017 December to 2018 February. 1491 Balduinus was found to have a rotational period 15.315 ± 0.003 h with amplitude 0.40 mag; 2603 Taylor was found to have rotational period 3.905 ± 0.001 h with amplitude 0.27 mag.

  17. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  18. Frank Bursley Taylor - Forgotten Pioneer of Continental Drift.

    ERIC Educational Resources Information Center

    Black, George W., Jr.

    1979-01-01

    Frank B. Taylor was an American geologist who specialized in the glacial geology of the Great Lakes. This article discusses his work on the Continental Drift theory, which preceeded the work of Alfred Wegener by a year and a half. (MA)

  19. First derivatives of flow quantities behind two-dimensional, nonuniform supersonic flow over a convex corner. Ph.D. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1985-01-01

    A method of determining spatial derivatives of flow quantities behind an expansion fan as a function of the curvature of the streamline behind the fan is developed. Taylor series expansions of flow quantities within the fan are used and boundary conditions satisfied to the first and second order so that the curvature of the characteristics in the fan may be determined. A system of linear equations for the spatial derivatives is then developed. An application of the method to shock coalescence including asymmetric effects is described.

  20. CURTIS TAYLOR, PRESIDENT OF LINC RESEARCH CORP.

    NASA Image and Video Library

    2016-04-27

    CURTIS O. TAYLOR, PRESIDENT OF LINC RESEARCH CORP, (L), AND JEFF LINDNER, CHIEF ENGINEER, POSE WITH HARDWARE FOR THEIR PATENTED TECHNOLOGY, FLUID STRUCTURE COUPLING, WHICH USES SIMPLE PHYSICS TO DAMPEN POTENTIALLY HARMFUL SHAKING IN STRUCTURES. INSTALLATION OF THE FLUID STRUCTURE COUPLING TECHNOLOGY IN A BUILDING WILL TAKE PLACE IN SUMMER OF 2016.

  1. The effect of crossflow on Taylor vortices: A model problem

    NASA Technical Reports Server (NTRS)

    Otto, S. R.; Bassom, Andrew P.

    1993-01-01

    A number of practically relevant problems involving the impulsive motion or the rapid rotation of bodies immersed in fluid are susceptible to vortex-like instability modes. Depending upon the configuration of any particular problem the stability properties of any high-wavenumber vortices can take on one of two distinct forms. One of these is akin to the structure of Gortler vortices in boundary layer flows while the other is similar to the situation for classical Taylor vortices. Both the Gortler and Taylor problems have been extensively studied when crossflow effects are excluded from the underlying base flows. Recently, studies were made concerning the influence of crossflow on Gortler modes and a linearized stability analysis is used to examine crossflow properties for the Taylor mode. This work allows us to identify the most unstable vortex as the crossflow component increases and it is shown how, like the Gortler case, only a very small crossflow component is required in order to completely stabilize the flow. Our investigation forms the basis for an extension to the nonlinear problem and is of potential applicability to a range of pertinent flows.

  2. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  3. Scalar and tensor spherical harmonics expansion of the velocity correlation in homogeneous anisotropic turbulence

    DOE PAGES

    Rubinstein, Robert; Kurien, Susan; Cambon, Claude

    2015-06-22

    The representation theory of the rotation group is applied to construct a series expansion of the correlation tensor in homogeneous anisotropic turbulence. The resolution of angular dependence is the main analytical difficulty posed by anisotropic turbulence; representation theory parametrises this dependence by a tensor analogue of the standard spherical harmonics expansion of a scalar. As a result, the series expansion is formulated in terms of explicitly constructed tensor bases with scalar coefficients determined by angular moments of the correlation tensor.

  4. Rayleigh-Taylor mixing with time-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-10-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  5. Probability density and exceedance rate functions of locally Gaussian turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1989-01-01

    A locally Gaussian model of turbulence velocities is postulated which consists of the superposition of a slowly varying strictly Gaussian component representing slow temporal changes in the mean wind speed and a more rapidly varying locally Gaussian turbulence component possessing a temporally fluctuating local variance. Series expansions of the probability density and exceedance rate functions of the turbulence velocity model, based on Taylor's series, are derived. Comparisons of the resulting two-term approximations with measured probability density and exceedance rate functions of atmospheric turbulence velocity records show encouraging agreement, thereby confirming the consistency of the measured records with the locally Gaussian model. Explicit formulas are derived for computing all required expansion coefficients from measured turbulence records.

  6. Computing the Lyapunov spectrum of a dynamical system from an observed time series

    NASA Technical Reports Server (NTRS)

    Brown, Reggie; Bryant, Paul; Abarbanel, Henry D. I.

    1991-01-01

    The paper examines the problem of accurately determining, from an observed time series, the Liapunov exponents for the dynamical system generating the data. It is shown that, even with very large data sets, it is clearly advantageous to utilize local neighborhood-to-neighborhood mappings with higher-order Taylor series rather than just local linear maps. This procedure is demonstrated on the Henon and Ikeda maps of the plane itself, the Lorenz system of three ordinary differential equations, and the Mackey-Glass delay differential equation.

  7. Asymptotic behavior of modulated Taylor-Couette flows with a crystalline inner cylinder

    NASA Technical Reports Server (NTRS)

    Braun, R. J.; Mcfadden, G. B.; Murray, B. T.; Coriell, S. R.; Glicksman, M. E.; Selleck, M. E.

    1993-01-01

    The linear stability of a modulated Taylor-Couette system when the inner cylindrical boundary consists of a crystalline solid-liquid interface is considered. Both experimentally and in numerical calculations it is found that the two-phase system is significantly less stable than the analogous rigid-walled system for materials with moderately large Prandtl numbers. A numerical treatment based on Floquet theory is described, which gives results that are in good agreement with preliminary experimental findings. In addition, this instability is further examined by carrying out a formal asymptotic expansion of the solution in the limit of large Prandtl number. In this limit the Floquet analysis is considerably simplified, and the linear stability of the modulated system can be determined to leading order through a conventional stability analysis, without recourse to Floquet theory. The resulting simplified problem is then studied for both the narrow gap geometry and for the case of a finite gap. It is surprising that the determination of the linear stability of the two-phase system is considerably simpler than that of the rigid-walled system, despite the complications introduced by the presence of the crystal-melt interface.

  8. Boundary effects and the onset of Taylor vortices

    NASA Astrophysics Data System (ADS)

    Rucklidge, A. M.; Champneys, A. R.

    2004-05-01

    It is well established that the onset of spatially periodic vortex states in the Taylor-Couette flow between rotating cylinders occurs at the value of Reynolds number predicted by local bifurcation theory. However, the symmetry breaking induced by the top and bottom plates means that the true situation should be a disconnected pitchfork. Indeed, experiments have shown that the fold on the disconnected branch can occur at more than double the Reynolds number of onset. This leads to an apparent contradiction: why should Taylor vortices set in so sharply at the Reynolds number predicted by the symmetric theory, given such large symmetry-breaking effects caused by the boundary conditions? This paper offers a generic explanation. The details are worked out using a Swift-Hohenberg pattern formation model that shares the same qualitative features as the Taylor-Couette flow. Onset occurs via a wall mode whose exponential tail penetrates further into the bulk of the domain as the driving parameter increases. In a large domain of length L, we show that the wall mode creates significant amplitude in the centre at parameter values that are O( L-2) away from the value of onset in the problem with ideal boundary conditions. We explain this as being due to a Hamiltonian Hopf bifurcation in space, which occurs at the same parameter value as the pitchfork bifurcation of the temporal dynamics. The disconnected anomalous branch remains O(1) away from the onset parameter since it does not arise as a bifurcation from the wall mode.

  9. THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, K. G.; Howes, G. G.; TenBarge, J. M.

    2014-08-01

    Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfvénic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a shift of the entire spectrum to higher frequencies, or in the dispersive regime, in which the dissipation range spectrum flattens at high frequencies.more » It is found that Alfvénic turbulence will not significantly violate the Taylor hypothesis, but whistler turbulence will. The flattening of the frequency spectrum is therefore a key observational signature for fast/whistler turbulence.« less

  10. Taylor Proposes Five-Year Child-Care Program.

    ERIC Educational Resources Information Center

    Taylor, Glen

    Senator Glen Taylor of Minnesota proposed a five-year child-care program for the purposes of encouraging employer-sponsored child care and increasing by 53,000 the number of children in low-income families who were covered. This report lists central features of the program, which include: (1) tax incentives which employers can use when they build…

  11. Reliability, validity and description of timed performance of the Jebsen-Taylor Test in patients with muscular dystrophies.

    PubMed

    Artilheiro, Mariana Cunha; Fávero, Francis Meire; Caromano, Fátima Aparecida; Oliveira, Acary de Souza Bulle; Carvas, Nelson; Voos, Mariana Callil; Sá, Cristina Dos Santos Cardoso de

    2017-12-08

    The Jebsen-Taylor Test evaluates upper limb function by measuring timed performance on everyday activities. The test is used to assess and monitor the progression of patients with Parkinson disease, cerebral palsy, stroke and brain injury. To analyze the reliability, internal consistency and validity of the Jebsen-Taylor Test in people with Muscular Dystrophy and to describe and classify upper limb timed performance of people with Muscular Dystrophy. Fifty patients with Muscular Dystrophy were assessed. Non-dominant and dominant upper limb performances on the Jebsen-Taylor Test were filmed. Two raters evaluated timed performance for inter-rater reliability analysis. Test-retest reliability was investigated by using intraclass correlation coefficients. Internal consistency was assessed using the Cronbach alpha. Construct validity was conducted by comparing the Jebsen-Taylor Test with the Performance of Upper Limb. The internal consistency of Jebsen-Taylor Test was good (Cronbach's α=0.98). A very high inter-rater reliability (0.903-0.999), except for writing with an Intraclass correlation coefficient of 0.772-1.000. Strong correlations between the Jebsen-Taylor Test and the Performance of Upper Limb Module were found (rho=-0.712). The Jebsen-Taylor Test is a reliable and valid measure of timed performance for people with Muscular Dystrophy. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Tweedie convergence: a mathematical basis for Taylor's power law, 1/f noise, and multifractality.

    PubMed

    Kendal, Wayne S; Jørgensen, Bent

    2011-12-01

    Plants and animals of a given species tend to cluster within their habitats in accordance with a power function between their mean density and the variance. This relationship, Taylor's power law, has been variously explained by ecologists in terms of animal behavior, interspecies interactions, demographic effects, etc., all without consensus. Taylor's law also manifests within a wide range of other biological and physical processes, sometimes being referred to as fluctuation scaling and attributed to effects of the second law of thermodynamics. 1/f noise refers to power spectra that have an approximately inverse dependence on frequency. Like Taylor's law these spectra manifest from a wide range of biological and physical processes, without general agreement as to cause. One contemporary paradigm for 1/f noise has been based on the physics of self-organized criticality. We show here that Taylor's law (when derived from sequential data using the method of expanding bins) implies 1/f noise, and that both phenomena can be explained by a central limit-like effect that establishes the class of Tweedie exponential dispersion models as foci for this convergence. These Tweedie models are probabilistic models characterized by closure under additive and reproductive convolution as well as under scale transformation, and consequently manifest a variance to mean power function. We provide examples of Taylor's law, 1/f noise, and multifractality within the eigenvalue deviations of the Gaussian unitary and orthogonal ensembles, and show that these deviations conform to the Tweedie compound Poisson distribution. The Tweedie convergence theorem provides a unified mathematical explanation for the origin of Taylor's law and 1/f noise applicable to a wide range of biological, physical, and mathematical processes, as well as to multifractality.

  13. Spectral likelihood expansions for Bayesian inference

    NASA Astrophysics Data System (ADS)

    Nagel, Joseph B.; Sudret, Bruno

    2016-03-01

    A spectral approach to Bayesian inference is presented. It pursues the emulation of the posterior probability density. The starting point is a series expansion of the likelihood function in terms of orthogonal polynomials. From this spectral likelihood expansion all statistical quantities of interest can be calculated semi-analytically. The posterior is formally represented as the product of a reference density and a linear combination of polynomial basis functions. Both the model evidence and the posterior moments are related to the expansion coefficients. This formulation avoids Markov chain Monte Carlo simulation and allows one to make use of linear least squares instead. The pros and cons of spectral Bayesian inference are discussed and demonstrated on the basis of simple applications from classical statistics and inverse modeling.

  14. Stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1991-01-01

    Compressible stability equations are solved using the spectral collocation method in an attempt to study the effects of temperature difference and compressibility on the stability of Taylor-Couette flow. It is found that the Chebyshev collocation spectral method yields highly accurate results using fewer grid points for solving stability problems. Comparisons are made between the result obtained by assuming small Mach number with a uniform temperature distribution and that based on fully incompressible analysis.

  15. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  16. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  17. Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Vastano, John A.; Moser, Robert D.

    1991-01-01

    The physical mechanism driving the weakly chaotic Taylor-Couette flow is investigated using the short-time Liapunov exponent analysis. In this procedure, the transition from quasi-periodicity to chaos is studied using direct numerical 3D simulations of axially periodic Taylor-Couette flow, and a partial Liapunov exponent spectrum for the flow is computed by simultaneously advancing the full solution and a set of perturbations. It is shown that the short-time Liapunov exponent analysis yields more information on the exponents and dimension than that obtained from the common Liapunov exponent calculations. Results show that the chaotic state studied here is caused by a Kelvin-Helmholtz-type instability of the outflow boundary jet of Taylor vortices.

  18. Lattice QCD results on soft and hard probes of strongly interacting matter

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Olaf

    2017-11-01

    We present recent results from lattice QCD relevant for the study of strongly interacting matter as it is produced in heavy ion collision experiments. The equation of state at non-vanishing density from a Taylor expansion up to 6th order will be discussed for a strangeness neutral system and using the expansion coefficients of the series limits on the critical point are estimated. Chemical freeze-out temperatures from the STAR and ALICE Collaborations will be compared to lines of constant physics calculated from the Taylor expansion of QCD bulk thermodynamic quantities. We show that qualitative features of the √{sNN} dependence of skewness and kurtosis ratios of net proton-number fluctuations measured by the STAR Collaboration can be understood from QCD results for cumulants of conserved baryon-number fluctuations. As an example for recent progress towards the determination of spectral and transport properties of the QGP from lattice QCD, we will present constraints on the thermal photon rate determined from a spectral reconstruction of continuum extrapolated lattice correlation functions in combination with input from most recent perturbative calculations.

  19. Taylorism, Tylerism, and Performance Indicators: Defending the Indefensible?

    ERIC Educational Resources Information Center

    Helsby, Gill; Saunders, Murray

    1993-01-01

    Explores the antecedents to the growing interest in the use of educational performance indicators. Discusses this issue in relation to the work of economist F. W. Taylor and evaluator Ralph Tyler. Describes a five-year project that demonstrates the promise of teacher-developed performance indicators. (CFR)

  20. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    NASA Astrophysics Data System (ADS)

    Boden, Stephan; dos Santos Rolo, Tomy; Baumbach, Tilo; Hampel, Uwe

    2014-07-01

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-µm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations.

  1. Correlation of electronic structure and magnetic moment in Ga1-xMnxN : First-principles, mean field and high temperature series expansions calculations

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Hlil, E. K.

    2016-08-01

    Self-consistent ab initio calculations based on density-functional theory and using both full potential linearized augmented plane wave and Korring-Kohn-Rostoker-coherent potential approximation methods, are performed to investigate both electronic and magnetic properties of the Ga1-xMnxN system. Magnetic moments considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters such as the magnetic phase diagram and the critical exponent. The increasing of the dilution x in this system has allowed to verify a series of HTSEs predictions on the possibility of ferromagnetism in dilute magnetic insulators and to demonstrate that the interaction changes from antiferromagnetic to ferromagnetic passing through the spins glace phase.

  2. The Thermal Expansion Of Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  3. Rapid iterative reanalysis for automated design

    NASA Technical Reports Server (NTRS)

    Bhatia, K. G.

    1973-01-01

    A method for iterative reanalysis in automated structural design is presented for a finite-element analysis using the direct stiffness approach. A basic feature of the method is that the generalized stiffness and inertia matrices are expressed as functions of structural design parameters, and these generalized matrices are expanded in Taylor series about the initial design. Only the linear terms are retained in the expansions. The method is approximate because it uses static condensation, modal reduction, and the linear Taylor series expansions. The exact linear representation of the expansions of the generalized matrices is also described and a basis for the present method is established. Results of applications of the present method to the recalculation of the natural frequencies of two simple platelike structural models are presented and compared with results obtained by using a commonly applied analysis procedure used as a reference. In general, the results are in good agreement. A comparison of the computer times required for the use of the present method and the reference method indicated that the present method required substantially less time for reanalysis. Although the results presented are for relatively small-order problems, the present method will become more efficient relative to the reference method as the problem size increases. An extension of the present method to static reanalysis is described, ana a basis for unifying the static and dynamic reanalysis procedures is presented.

  4. Student learning of upper-level thermal and statistical physics: The derivation and use of the Boltzmann factor

    NASA Astrophysics Data System (ADS)

    Thompson, John

    2015-04-01

    As the Physical Review Focused Collection demonstrates, recent frontiers in physics education research include systematic investigations at the upper division. As part of a collaborative project, we have examined student understanding of several topics in upper-division thermal and statistical physics. A fruitful context for research is the Boltzmann factor in statistical mechanics: the standard derivation involves several physically justified mathematical steps as well as the invocation of a Taylor series expansion. We have investigated student understanding of the physical significance of the Boltzmann factor as well as its utility in various circumstances, and identified various lines of student reasoning related to the use of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students do not use the Boltzmann factor when answering questions related to probability in applicable physical situations, even after lecture instruction. We designed an inquiry-based tutorial activity to guide students through a derivation of the Boltzmann factor and to encourage deep connections between the physical quantities involved and the mathematics. Observations of students working through the tutorial suggest that many students at this level can recognize and interpret Taylor series expansions, but they often lack fluency in creating and using Taylor series appropriately, despite previous exposure in both calculus and physics courses. Our findings also suggest that tutorial participation not only increases the prevalence of relevant invocation of the Boltzmann factor, but also helps students gain an appreciation of the physical implications and meaning of the mathematical formalism behind the formula. Supported in part by NSF Grants DUE-0817282, DUE-0837214, and DUE-1323426.

  5. Coupling-parameter expansion in thermodynamic perturbation theory.

    PubMed

    Ramana, A Sai Venkata; Menon, S V G

    2013-02-01

    An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method also gives the radial distribution function and the direct correlation function of the perturbed system. The theory is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of perturbation series and the overall performance of the theory is good, improvements are needed for potentials with shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.

  6. Rayleigh-Taylor mixing with space-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-11-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  7. Off-diagonal expansion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Albash, Tameem; Wagenbreth, Gene; Hen, Itay

    2017-12-01

    We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.

  8. Off-diagonal expansion quantum Monte Carlo.

    PubMed

    Albash, Tameem; Wagenbreth, Gene; Hen, Itay

    2017-12-01

    We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.

  9. Magnetic properties of spinels GeNi2-xCoxO4 systems: Green's function and high-temperature series expansions

    NASA Astrophysics Data System (ADS)

    El Grini, A.; Salmi, S.; Masrour, R.; Hamedoun, M.; Bouslykhane, K.; Marzouk, A.; Hourmatallah, A.; Benzakour, N.

    2018-06-01

    The Green's function theory and high-temperature series expansions technical have been developed for magnetic systems GeNi2-xCoxO4. We have applied the Green's function theory to evaluate thermal magnetization and magnetic susceptibility for different values of magnetic field and dilution x, considering all components of the magnetization when an external magnetic field is applied in (x,z)-plane. The second theory combined with the Padé approximants method for a randomly diluted Heisenberg magnet is used to deduce the magnetic phase diagram of GeNi2 - xCoxO4 systems. The critical exponents ? and ? associated with the magnetic susceptibility ? and the correlation length ξ, respectively, have been deduced. The theoretical results are compared with those given by magnetic measurements.

  10. A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method

    DTIC Science & Technology

    2013-06-01

    Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method David L. Bilyeu ∗1,2...Similarly, the fluxes, f x,y,z i , and their derivatives inside a SE are also discretized by the Taylor series expansion: ∂ Cfx ,y,zi ∂xI∂yJ∂zK∂tL = A

  11. Positive Health Psychology: An Interview with Shelley Taylor.

    ERIC Educational Resources Information Center

    Rich, Grant Jewell

    2000-01-01

    Presents an interview with Shelley Taylor, a professor of Psychology at the University of California in Los Angles (California). Addresses topics such as how she became interested in psychology, the importance of health psychology in the curriculum, the ideal training for students in health psychology, and her work with "positive illusions." (CMK)

  12. Characterizing Strength of Chaotic Dynamics and Numerical Simulation Relevant to Modified Taylor-Couette Flow with Hourglass Geometry

    NASA Astrophysics Data System (ADS)

    Hou, Yu; Kowalski, Adam; Schroder, Kjell; Halmstad, Andrew; Olsen, Thomas; Wiener, Richard

    2006-05-01

    We characterize the strength of chaos in two different regimes of Modified Taylor-Couette flow with Hourglass Geometry: the formation of Taylor Vortices with laminar flow and with turbulent flow. We measure the strength of chaos by calculating the correlation dimension and the Kaplan-Yorke dimension based upon the Lyapunov Exponents of each system. We determine the reliability of our calculations by considering data from a chaotic electronic circuit. In order to predict the behavior of the Modified Taylor-Couette flow system, we employ simulations based upon an idealized Reaction-Diffusion model with a third order non-linearity in the reaction rate. Variation of reaction rate with length corresponds to variation of the effective Reynolds Number along the Taylor-Couette apparatus. We present preliminary results and compare to experimental data.

  13. 2. Historic American Buildings Survey Everitt K. Taylor, Photographer September ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey Everitt K. Taylor, Photographer September 15, 1936 EXTERIOR - EAST ELEVATION FROM OLD PRINT IN POSSESSION OF OWNER - Governor's House, 149 Kearny Avenue, Perth Amboy, Middlesex County, NJ

  14. Pediatric and adolescent applications of the Taylor Spatial Frame.

    PubMed

    Paloski, Michael; Taylor, Benjamin C; Iobst, Christopher; Pugh, Kevin J

    2012-06-01

    Limb deformity can occur in the pediatric and adolescent populations from multiple etiologies: congenital, traumatic, posttraumatic sequelae, oncologic, and infection. Correcting these deformities is important for many reasons. Ilizarov popularized external fixation to accomplish this task. Taylor expanded on this by designing an external fixator in 1994 with 6 telescoping struts that can be sequentially manipulated to achieve multiaxial correction of deformity without the need for hinges or operative frame alterations. This frame can be used to correct deformities in children and has shown good anatomic correction with minimal morbidity. The nature of the construct and length of treatment affects psychosocial factors that the surgeon and family must be aware of prior to treatment. An understanding of applications of the Taylor Spatial Frame gives orthopedic surgeons an extra tool to correct simple and complex deformities in pediatric and adolescent patients. Copyright 2012, SLACK Incorporated.

  15. Taylor bubbles in liquid filled annuli: Some new observations

    NASA Astrophysics Data System (ADS)

    Agarwal, V.; Jana, A. K.; Das, G.; Das, P. K.

    2007-10-01

    Taylor bubbles rising through a vertical concentric annulus do not wrap around the inner tube completely. The two edges of the bubble are separated by a liquid bridge which increases with an increase of the inner radius. However, the change in the shape of the Taylor bubbles in annuli with extremely small inner diameter has not yet been reported. In the present investigation, several experiments have been performed in circular and noncircular annuli to understand the influence of the inner and outer wall on the bubble shape. The bubble has been observed to assume a completely different shape in both circular and square annuli with a very thin inner rod. Nevertheless, the rise velocity for such situations agree with the prediction of the model proposed by Das et al. [Chem. Eng. Sci. 53, 977 (1998)] when the outer pipe is circular but fails for a square outer pipe.

  16. Magnetic helicity balance at Taylor relaxed states sustained by AC helicity injection

    NASA Astrophysics Data System (ADS)

    Hirota, Makoto; Morrison, Philip J.; Horton, Wendell; Hattori, Yuji

    2017-10-01

    Magnitudes of Taylor relaxed states that are sustained by AC magnetic helicity injection (also known as oscillating field current drive, OFCD) are investigated numerically in a cylindrical geometry. Compared with the amplitude of the oscillating magnetic field at the skin layer (which is normalized to 1), the strength of the axial guide field Bz 0 is shown to be an important parameter. The relaxation process seems to be active only when Bz 0 < 1 . Moreover, in the case of weak guide field Bz 0 < 0.2 , a helically-symmetric relaxed state is self-generated instead of the axisymmetric reversed-field pinch. As a theoretical model, the helicity balance is considered in a similar way to R. G. O'Neill et al., where the helicity injection rate is directly equated with the dissipation rate at the Taylor states. Then, the bifurcation to the helical Taylor state is predicted theoretically and the estimated magnitudes of the relaxed states reasonably agree with numerical results as far as Bz 0 < 1 . This work was supported by JSPS KAKENHI Grant Number 16K05627.

  17. Taylor-Made Education: The Influence of the Efficiency Movement on the Testing of Reading Skills.

    ERIC Educational Resources Information Center

    Allen, JoBeth

    Much of what has developed in the testing of reading harkens back to the days of the "Cult of Efficiency" movement in education that can be largely attributed to Frederick Winslow Taylor. Taylor spent most of his productive years studying time and motion in an attempt to streamline industrial production so that people could work as…

  18. Asymmetric bursting of Taylor bubble in inclined tubes

    NASA Astrophysics Data System (ADS)

    Rana, Basanta Kumar; Das, Arup Kumar; Das, Prasanta Kumar

    2016-08-01

    In the present study, experiments have been reported to explain the phenomenon of approach and collapse of an asymmetric Taylor bubble at free surface inside an inclined tube. Four different tube inclinations with horizontal (30°, 45°, 60° and 75°) and two different fluids (water and silicon oil) are considered for the experiment. Using high speed imaging, we have investigated the approach, puncture, and subsequent liquid drainage for re-establishment of the free surface. The present study covers all the aspects in the collapse of an asymmetric Taylor bubble through the generation of two films, i.e., a cap film which lies on top of the bubble and an asymmetric annular film along the tube wall. Retraction of the cap film is studied in detail and its velocity has been predicted successfully for different inclinations and fluids. Film drainage formulation considering azimuthal variation is proposed which also describes the experimental observations well. In addition, extrapolation of drainage velocity pattern beyond the experimental observation limit provides insight into the total collapse time of bubbles at different inclinations and fluids.

  19. Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    van der Straeten, Erik; Beck, Christian

    2009-09-01

    We report a general technique to study a given experimental time series with superstatistics. Crucial for the applicability of the superstatistics concept is the existence of a parameter β that fluctuates on a large time scale as compared to the other time scales of the complex system under consideration. The proposed method extracts the main superstatistical parameters out of a given data set and examines the validity of the superstatistical model assumptions. We test the method thoroughly with surrogate data sets. Then the applicability of the superstatistical approach is illustrated using real experimental data. We study two examples, velocity time series measured in turbulent Taylor-Couette flows and time series of log returns of the closing prices of some stock market indices.

  20. 1. Historic American Buildings Survey Everitt K. Taylor, Photographer September ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Everitt K. Taylor, Photographer September 15, 1936 EXTERIOR - GENERAL VIEW EAST ELEVATION FROM OLD PRINT IN POSSESSION OF OWNER - Governor's House, 149 Kearny Avenue, Perth Amboy, Middlesex County, NJ

  1. Tree ecophysiology research at Taylor Woods (P-53)

    Treesearch

    Thomas E. Kolb; Nate G. McDowell

    2008-01-01

    We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...

  2. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    NASA Astrophysics Data System (ADS)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  3. Viscous Rayleigh-Taylor instability in spherical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikaelian, Karnig O.

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.

  4. Viscous Rayleigh-Taylor instability in spherical geometry

    DOE PAGES

    Mikaelian, Karnig O.

    2016-02-08

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.

  5. Transmutation of a trans-series: the Gross-Witten-Wadia phase transition

    NASA Astrophysics Data System (ADS)

    Ahmed, Anees; Dunne, Gerald V.

    2017-11-01

    We study the change in the resurgent asymptotic properties of a trans-series in two parameters, a coupling g 2 and a gauge index N, as a system passes through a large N phase transition, using the universal example of the Gross-Witten-Wadia third-order phase transition in the unitary matrix model. This transition is well-studied in the immediate vicinity of the transition point, where it is characterized by a double-scaling limit Painlevé II equation, and also away from the transition point using the pre-string difference equation. Here we present a complementary analysis of the transition at all coupling and all finite N, in terms of a differential equation, using the explicit Tracy-Widom mapping of the Gross-Witten-Wadia partition function to a solution of a Painlevé III equation. This mapping provides a simple method to generate trans-series expansions in all parameter regimes, and to study their transmutation as the parameters are varied. For example, at any finite N the weak coupling expansion is divergent, with a non-perturbative trans-series completion; on the other hand, the strong coupling expansion is convergent, and yet there is still a non-perturbative trans-series completion. We show how the different instanton terms `condense' at the transition point to match with the double-scaling limit trans-series. We also define a uniform large N strong-coupling expansion (a non-linear analogue of uniform WKB), which is much more precise than the conventional large N expansion through the transition region, and apply it to the evaluation of Wilson loops.

  6. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft ormore » to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.« less

  7. An Empirical Evaluation of Five Circular Error Probable Estimation Techniques and a Method for Improving Them

    DTIC Science & Technology

    1993-03-10

    template which runs a Romberg algorithm in the background to numerically integrate the BVN [12:257]. Appendix A als- lists the results from two other...for computing these values: a Taylor series expansion, the Romberg algorithm , and the CBN technique. Appendix A lists CEPpop. values for eleven...determining factor in this selection process. Of the 175 populations ex- amined in the experiment, the MathCAD version of the Romberg algorithm failed

  8. Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice.

    PubMed

    Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr

    2016-10-10

    In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic-to-paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models.

  9. Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice

    PubMed Central

    Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr

    2016-01-01

    In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic–to–paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models. PMID:27721435

  10. Energy-switching potential energy surface for ground-state C3

    NASA Astrophysics Data System (ADS)

    Rocha, C. M. R.; Varandas, A. J. C.

    2018-05-01

    The multiple energy switching scheme [J. Chem. Phys. 119 (2003) 2596] has been used to improve the double many-body expansion (DMBE II) potential energy surface of C3 near its linear global minima by morphing it with an accurate Taylor-series expansion [J. Chem. Phys. 144 (2016) 044307]. The final ES form attains the accuracy of the local form in reproducing the rovibrational spectrum of C3 while keeping unaltered all key attributes of the original DMBE II, namely conical intersection seams and dissociative channels. The ES form is therefore commended for adiabatic spectroscopic and reaction dynamics studies.

  11. The Spirit and Action of Citizenship: Alex Taylor Community School.

    ERIC Educational Resources Information Center

    Haggerson, Nelson L.; And Others

    1987-01-01

    Describes a study of the prosocial atmosphere and citizenship spirit found at Alex Taylor Community School in Edmonton, Canada. Includes a brief background of the project and a description of several motivating citizenship activities within the school. (BSR)

  12. Traveling waves in a magnetized Taylor-Couette flow.

    PubMed

    Liu, Wei; Goodman, Jeremy; Ji, Hantao

    2007-07-01

    We investigate numerically a traveling wave pattern observed in experimental magnetized Taylor-Couette flow at low magnetic Reynolds number. By accurately modeling viscous and magnetic boundaries in all directions, we reproduce the experimentally measured wave patterns and their amplitudes. Contrary to previous claims, the waves are shown to be transiently amplified disturbances launched by viscous boundary layers, rather than globally unstable magnetorotational modes.

  13. New expansion rate measurements of the Crab nebula in radio and optical

    NASA Astrophysics Data System (ADS)

    Bietenholz, M. F.; Nugent, R. L.

    2015-12-01

    We present new radio measurements of the expansion rate of the Crab nebula's synchrotron nebula over a ˜30-yr period. We find a convergence date for the radio synchrotron nebula of CE 1255 ± 27. We also re-evaluated the expansion rate of the optical-line-emitting filaments, and we show that the traditional estimates of their convergence date are slightly biased. Using an unbiased Bayesian analysis, we find a convergence date for the filaments of CE 1091 ± 34 (˜40 yr earlier than previous estimates). Our results show that both the synchrotron nebula and the optical-line-emitting filaments have been accelerated since the explosion in CE 1054, but that the synchrotron nebula has been relatively strongly accelerated, while the optical filaments have been only slightly accelerated. The finding that the synchrotron emission expands more rapidly than the filaments supports the picture that the latter are the result of the Rayleigh-Taylor instability at the interface between the pulsar-wind nebula and the surrounding freely expanding supernova ejecta, and rules out models where the pulsar-wind bubble is interacting directly with the pre-supernova wind of the Crab's progenitor.

  14. Summation of power series in particle physics

    NASA Astrophysics Data System (ADS)

    Fischer, Jan

    1999-04-01

    The large-order behaviour of power series used in quantum theory (perturbation series and the operator-product expansion) is discussed and relevant summation methods are reviewed. It is emphasised that, in most physically interesting situations, the mere knowledge of the expansion coefficients is not sufficient for a unique determination of the function expanded, and the necessity of some additional, extra-perturbative, input is pointed out. Several possible nonperturbative inputs are suggested. Applications to various problems of quantum chromodynamics are considered. This lecture was presented on the special Memorial Day dedicated to Professor Ryszard R˛czka at this Workshop. The last section is devoted to my personal recollections of this remarkable personality.

  15. The 1/ N Expansion of Tensor Models Beyond Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Gurau, Razvan

    2014-09-01

    We analyze in full mathematical rigor the most general quartically perturbed invariant probability measure for a random tensor. Using a version of the Loop Vertex Expansion (which we call the mixed expansion) we show that the cumulants write as explicit series in 1/ N plus bounded rest terms. The mixed expansion recasts the problem of determining the subleading corrections in 1/ N into a simple combinatorial problem of counting trees decorated by a finite number of loop edges. As an aside, we use the mixed expansion to show that the (divergent) perturbative expansion of the tensor models is Borel summable and to prove that the cumulants respect an uniform scaling bound. In particular the quartically perturbed measures fall, in the N→ ∞ limit, in the universality class of Gaussian tensor models.

  16. A hybrid Rayleigh-Taylor-current-driven coupled instability in a magnetohydrodynamically collimated cylindrical plasma with lateral gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Xiang, E-mail: xzhai@caltech.edu; Bellan, Paul M., E-mail: pbellan@caltech.edu

    We present an MHD theory of Rayleigh-Taylor instability on the surface of a magnetically confined cylindrical plasma flux rope in a lateral external gravity field. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability that cannot be described by either of the two instabilities alone. The lateral gravity breaks the axisymmetry of the system and couples all azimuthal modes together. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring atmore » a two-dimensional planar interface. The theory successfully explains the lateral Rayleigh-Taylor instability observed in the Caltech plasma jet experiment [Moser and Bellan, Nature 482, 379 (2012)]. Potential applications of the theory include magnetic controlled fusion, solar emerging flux, solar prominences, coronal mass ejections, and other space and astrophysical plasma processes.« less

  17. Transition to turbulence in Taylor-Couette ferrofluidic flow

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control. PMID:26065572

  18. Conformal Dimensions via Large Charge Expansion

    NASA Astrophysics Data System (ADS)

    Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico

    2018-02-01

    We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O (2 ) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U (1 ) charge can be obtained via a series expansion in the inverse charge 1 /Q . We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.

  19. The Convergence Problems of Eigenfunction Expansions of Elliptic Differential Operators

    NASA Astrophysics Data System (ADS)

    Ahmedov, Anvarjon

    2018-03-01

    In the present research we investigate the problems concerning the almost everywhere convergence of multiple Fourier series summed over the elliptic levels in the classes of Liouville. The sufficient conditions for the almost everywhere convergence problems, which are most difficult problems in Harmonic analysis, are obtained. The methods of approximation by multiple Fourier series summed over elliptic curves are applied to obtain suitable estimations for the maximal operator of the spectral decompositions. Obtaining of such estimations involves very complicated calculations which depends on the functional structure of the classes of functions. The main idea on the proving the almost everywhere convergence of the eigenfunction expansions in the interpolation spaces is estimation of the maximal operator of the partial sums in the boundary classes and application of the interpolation Theorem of the family of linear operators. In the present work the maximal operator of the elliptic partial sums are estimated in the interpolation classes of Liouville and the almost everywhere convergence of the multiple Fourier series by elliptic summation methods are established. The considering multiple Fourier series as an eigenfunction expansions of the differential operators helps to translate the functional properties (for example smoothness) of the Liouville classes into Fourier coefficients of the functions which being expanded into such expansions. The sufficient conditions for convergence of the multiple Fourier series of functions from Liouville classes are obtained in terms of the smoothness and dimensions. Such results are highly effective in solving the boundary problems with periodic boundary conditions occurring in the spectral theory of differential operators. The investigations of multiple Fourier series in modern methods of harmonic analysis incorporates the wide use of methods from functional analysis, mathematical physics, modern operator theory and spectral

  20. Accurate expansion of cylindrical paraxial waves for its straightforward implementation in electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-01-01

    The evaluation of vector wave fields can be accurately performed by means of diffraction integrals, differential equations and also series expansions. In this paper, a Bessel series expansion which basis relies on the exact solution of the Helmholtz equation in cylindrical coordinates is theoretically developed for the straightforward yet accurate description of low-numerical-aperture focal waves. The validity of this approach is confirmed by explicit application to Gaussian beams and apertured focused fields in the paraxial regime. Finally we discuss how our procedure can be favorably implemented in scattering problems.

  1. Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027

    2005-10-01

    The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes

  2. Rayleigh-Taylor instability in an equal mass plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    The Rayleigh-Taylor (RT) instability in an inhomogeneous pair-ion plasma has been analyzed. Considering two fluid model for two species of ions (positive and negative), we obtain the possibility of the existence of RT instability. The growth rate of the RT instability as usual depends on gravity and density gradient scale length. The results are discussed in context of pair-ion plasma experiments.

  3. Chagas disease vector control and Taylor's law

    PubMed Central

    Rodríguez-Planes, Lucía I.; Gaspe, María S.; Cecere, María C.; Cardinal, Marta V.

    2017-01-01

    Background Large spatial and temporal fluctuations in the population density of living organisms have profound consequences for biodiversity conservation, food production, pest control and disease control, especially vector-borne disease control. Chagas disease vector control based on insecticide spraying could benefit from improved concepts and methods to deal with spatial variations in vector population density. Methodology/Principal findings We show that Taylor's law (TL) of fluctuation scaling describes accurately the mean and variance over space of relative abundance, by habitat, of four insect vectors of Chagas disease (Triatoma infestans, Triatoma guasayana, Triatoma garciabesi and Triatoma sordida) in 33,908 searches of people's dwellings and associated habitats in 79 field surveys in four districts in the Argentine Chaco region, before and after insecticide spraying. As TL predicts, the logarithm of the sample variance of bug relative abundance closely approximates a linear function of the logarithm of the sample mean of abundance in different habitats. Slopes of TL indicate spatial aggregation or variation in habitat suitability. Predictions of new mathematical models of the effect of vector control measures on TL agree overall with field data before and after community-wide spraying of insecticide. Conclusions/Significance A spatial Taylor's law identifies key habitats with high average infestation and spatially highly variable infestation, providing a new instrument for the control and elimination of the vectors of a major human disease. PMID:29190728

  4. 78 FR 61505 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Taylor's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ...We, the U.S. Fish and Wildlife Service, designate critical habitat for the Taylor's checkerspot butterfly (Euphydryas editha taylori) and streaked horned lark (Eremophila alpestris strigata) under the Endangered Species Act of 1973, as amended (Act). In total, approximately 1,941 acres (786 hectares) in Island, Clallam, and Thurston Counties in Washington, and in Benton County in Oregon, fall within the boundaries of the critical habitat designation for Taylor's checkerspot butterfly. Approximately 4,629 acres (1,873 hectares) in Grays Harbor, Pacific, and Wahkiakum Counties in Washington, and in Clatsop, Columbia, Marion, Polk, and Benton Counties in Oregon, fall within the boundaries of the critical habitat designation for streaked horned lark. The effect of this regulation is to designate critical habitat for the Taylor's checkerspot butterfly and streaked horned lark under the Act for the conservation of the species.

  5. Inward propagating chemical waves in Taylor vortices.

    PubMed

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  6. New Radio and Optical Expansion Rate Measurements of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Bietenholz, M. F.; Nugent, R. L.

    2016-06-01

    We present new JVLA radio observations of the Crab nebula, which we use, along with older observations taken over a ~30 yr period, to determined the expansion rate of the synchrotron nebula. We find a convergence date for the radio synchrotron nebula of AD 1255 +/- 27. We also re-evaluated the expansion rate of the optical line emitting filaments, and we show that the traditional estimates of their convergence date are slightly biased. We find an un-biased convergence date of AD 1091 +/- 34, ~40 yr earlier than previous estimates. Our results show that both the synchrotron nebula and the optical line-emitting filaments have been accelerated since the explosion in AD 1054, but former more strongly than the latter. This finding supports the picture that the filaments are the result of the Rayleigh-Taylor instability at the interface between the pulsar-wind nebula and the surrounding freely-expanding supernova ejecta, and rules out models where the pulsar wind bubble is interacting directly with the pre-supernova wind of the Crab's progenitor. Our new observations were taken ~2 months after the gamma-ray flare of 2012 July, and also allow us to put a sensitive limit on any radio emission associated with the flare of <0.0002 times the radio luminosity that of the nebula.

  7. Self-awareness deficits following loss of inner speech: Dr. Jill Bolte Taylor's case study.

    PubMed

    Morin, Alain

    2009-06-01

    In her 2006 book "My Stroke of Insight" Dr. Jill Bolte Taylor relates her experience of suffering from a left hemispheric stroke caused by a congenital arteriovenous malformation which led to a loss of inner speech. Her phenomenological account strongly suggests that this impairment produced a global self-awareness deficit as well as more specific dysfunctions related to corporeal awareness, sense of individuality, retrieval of autobiographical memories, and self-conscious emotions. These are examined in details and corroborated by numerous excerpts from Taylor's book.

  8. Comparison of different phase retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Kaufmann, Rolf; Plamondon, Mathieu; Hofmann, Jürgen; Neels, Antonia

    2017-09-01

    X-ray phase contrast imaging is attracting more and more interest. Since the phase cannot be measured directly an indirect method using e.g. a grating interferometer has to be applied. This contribution compares three different approaches to calculate the phase from Talbot-Lau interferometer measurements using a phase-stepping approach. Besides the usually applied Fourier coefficient method also a linear fitting technique and Taylor series expansion method are applied and compared.

  9. The application of MINIQUASI to thermal program boundary and initial value problems

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The feasibility of applying the solution techniques of Miniquasi to the set of equations which govern a thermoregulatory model is investigated. For solving nonlinear equations and/or boundary conditions, a Taylor Series expansion is required for linearization of both equations and boundary conditions. The solutions are iterative and in each iteration, a problem like the linear case is solved. It is shown that Miniquasi cannot be applied to the thermoregulatory model as originally planned.

  10. Rational trigonometric approximations using Fourier series partial sums

    NASA Technical Reports Server (NTRS)

    Geer, James F.

    1993-01-01

    A class of approximations (S(sub N,M)) to a periodic function f which uses the ideas of Pade, or rational function, approximations based on the Fourier series representation of f, rather than on the Taylor series representation of f, is introduced and studied. Each approximation S(sub N,M) is the quotient of a trigonometric polynomial of degree N and a trigonometric polynomial of degree M. The coefficients in these polynomials are determined by requiring that an appropriate number of the Fourier coefficients of S(sub N,M) agree with those of f. Explicit expressions are derived for these coefficients in terms of the Fourier coefficients of f. It is proven that these 'Fourier-Pade' approximations converge point-wise to (f(x(exp +))+f(x(exp -)))/2 more rapidly (in some cases by a factor of 1/k(exp 2M)) than the Fourier series partial sums on which they are based. The approximations are illustrated by several examples and an application to the solution of an initial, boundary value problem for the simple heat equation is presented.

  11. Some observations of a sheared Rayleigh-Taylor/Benard instability

    NASA Technical Reports Server (NTRS)

    Humphrey, J. A. C.; Marcus, D. L.

    1987-01-01

    An account is provided of preliminary flow visualization observations made in an unstably stratified flow with shear superimposed. The structures observed appear to be the superposition of a Rayleigh-Taylor/Benard instability and a Kelvin-Helmholtz instability. Aside from its intrinsic fundamental value, the study of these structures is of special interest to theoreticians developing nonlinear stability calculation methodologies.

  12. Co-optimizing Generation and Transmission Expansion with Wind Power in Large-Scale Power Grids Implementation in the US Eastern Interconnection

    DOE PAGES

    You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; ...

    2016-01-12

    This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation methodmore » can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.« less

  13. 3 CFR - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 3 The President 1 2012-01-01 2012-01-01 false Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor Presidential Documents Other Presidential Documents Notice of July 20, 2011 Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor On July 22, 2004, by...

  14. 3 CFR - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor Presidential Documents Other Presidential Documents Notice of July 16, 2009 Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor On July 22, 2004, by...

  15. 3 CFR - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 3 The President 1 2014-01-01 2014-01-01 false Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor Presidential Documents Other Presidential Documents Notice of July 17, 2013 Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor On July 22, 2004, by...

  16. Conformal Dimensions via Large Charge Expansion.

    PubMed

    Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico

    2018-02-09

    We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O(2) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U(1) charge can be obtained via a series expansion in the inverse charge 1/Q. We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.

  17. Bright and durable field-emission source derived from frozen refractory-metal Taylor cones

    DOE PAGES

    Hirsch, Gregory

    2017-02-22

    A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less

  18. Bright and durable field-emission source derived from frozen refractory-metal Taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less

  19. Experimental investigation of head resistance reduction in bubbly Couette-Taylor flow

    NASA Astrophysics Data System (ADS)

    Maryami, R.; Javadpoor, M.; Farahat, S.

    2016-12-01

    Small bubble experiments are carried out in a circulating vertical Couette-Taylor flow system to investigate the effect of air bubbles on head resistance. In the system with inner rotating cylinder and circulating flow, flow is combined with circumferential and axial flow. Moreover, the variation range of rotational Reynolds number is 7 × 103 ≤ {Re}_{ω } ≤ 70 × 103 and small bubbles are dispersed into fully turbulent flow which consists of Taylor vortices. The modification of head resistance is examined by measuring the pressure difference between two certain holes along the cylinders axis. The results show that head resistance is decreased in the presence of small bubbles and a head resistance reduction greater than 60 % is achieved in low {Re}_{ω } s and in all {Re}_{ax} s changing from 299.15 to 396.27. The effect of air bubbles on vortices could be possible reason for head resistance reduction. Since Taylor vortices are stable in this regime, bubbles decrease the momentum transfer by elongating vortices along the axis of cylinders and decreasing their numbers. The positive effect of air bubbles on head resistance reduction is diminished when {Re}_{ω } is increased. Moreover, in certain ranges of {Re}_{ω }, small bubbles enhance head resistance when {Re}_{ax} is increased. It is predicted that negative effect of small bubbles on head resistance reduction is due to flow turbulence enhancement when {Re}_{ω } and {Re}_{ax} are increased.

  20. Taylor Farms Retail Inc., Salinas, CA; Consent Agreement and Final Order

    EPA Pesticide Factsheets

    Consent Agreement and Final Order (Proposed CA/FO), between the U.S. Environmental Protection Agency, Region IX (EPA or Complainant), and Taylor Farms Retail Inc. (Respondent), 150 Main Street Salinas, CA 93901. Docket Number CWA-09-2018-0010

  1. Evidence for mate guarding behavior in the Taylor's checkerspot butterfly

    Treesearch

    Victoria J. Bennett; Winston P. Smith; Matthew G. Betts

    2011-01-01

    Discerning the intricacies of mating systems in butterflies can be difficult, particularly when multiple mating strategies are employed and are cryptic and not exclusive. We observed the behavior and habitat use of 113 male Taylor's checkerspot butterflies (Euphydryas editha taylori). We confirmed that two distinct mating strategies were...

  2. Principles of Thermal Expansion in Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and

  3. The symbolic computation of series solutions to ordinary differential equations using trees (extended abstract)

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1991-01-01

    Algorithms previously developed by the author give formulas which can be used for the efficient symbolic computation of series expansions to solutions of nonlinear systems of ordinary differential equations. As a by product of this analysis, formulas are derived which relate to trees to the coefficients of the series expansions, similar to the work of Leroux and Viennot, and Lamnabhi, Leroux and Viennot.

  4. New analysis of magnetic tornadoes

    NASA Astrophysics Data System (ADS)

    Arter, Wayne

    2017-04-01

    The recent work[1] showed how the equations of ideal, compressible magnetohydrodynamics (MHD) may be elegantly formulated in terms of Lie derivatives, building on the work of Helmholtz, Walen and Arnold. The ``linear" fields approach reduces ideal MHD to a low order set of non-linear ordinary differential equations capable of further simplification, so has the potential to enrich understanding of this difficult subject, which has application both to laboratory and geophysical/astrophysical plasmas. The just published work [2] extends the linear fields' solution of compressible nonlinear MHD to the case where the magnetic field depends on superlinear powers of position vector, usually but not always, expressed in Cartesian components. Implications of the resulting Lie-Taylor series expansion for physical applicability of the Dolzhansky-Kirchhoff (D-K) ``linear field" equations are found to be positive. It is demonstrated how resistivity may be included in the D-K model. Arguments are put forward that the D-K equations may be regarded as illustrating properties of nonlinear MHD in the same sense that the Lorenz equations inform about the onset of convective turbulence. It is thereby suggested that the Lie-Taylor series approach may lead to valuable insights into MHD turbulence, especially fast timescale transients and the role of plasmoids. This work has been part-funded by the RCUK Energy Programme. 1. Arter, W. 2013 ``Potential vorticity formulation of compressible magnetohydrodynamics. Phys. Rev. Lett. 110, 015004." (doi:10.1103/PhysRevLett.110.015004) 2. Arter, W. 2017 ``Beyond linear fields: the Lie-Taylor expansion", Proc. R. Soc. A473, 20160525; http://dx.doi.org/10.1098/rspa.2016.0525

  5. Private Rogers L. Taylor: Prisoner of the Japanese

    DTIC Science & Technology

    2015-04-01

    cooking , its body closely resembled that of a human baby. Other soldiers recall their memories regarding the local fare on Bataan. Lajzer recounted...Horse meat stunk so bad it was revolting. The cooks would boil it and then fry it over an open fire so it could be eaten. … Believe me, mules...gathering wood and water for cooking but the worst was the burial detail, which Taylor begrudgingly performed. This is not a detail he spoke of

  6. Effects of Helicity on Lagrangian and Eulerian Time Correlations in Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1998-01-01

    Taylor series expansions of turbulent time correlation functions are applied to show that helicity influences Eulerian time correlations more strongly than Lagrangian time correlations: to second order in time, the helicity effect on Lagrangian time correlations vanishes, but the helicity effect on Eulerian time correlations is nonzero. Fourier analysis shows that the helicity effect on Eulerian time correlations is confined to the largest inertial range scales. Some implications for sound radiation by swirling flows are discussed.

  7. Advanced Computational Methods for Study of Electromagnetic Compatibility

    DTIC Science & Technology

    2011-03-31

    following result establishes the super-algebraic convergence of Gper ,Lk to Gperk : Theorem 2.1 (Bruno, Shipman, Turc, Venakides) If k is not a Wood...Gperk (x,x ′)− Gper ,Lk (x,x ′)| ≤ CL 1 2 −p. Figure 7 demonstrates the excellent accuracies arising from use of Theorem 2.1. Separable variables...representations of non-adjacent interactions. In order to further accelerate the evaluation of Gper ,Lk , we derive Taylor series expansions of quantities Gk

  8. Computation of solar perturbations with Poisson series

    NASA Technical Reports Server (NTRS)

    Broucke, R.

    1974-01-01

    Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained.

  9. A numerical simulation of finite-length Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1988-01-01

    Results from numerical simulations of finite-length Taylor-Couette flow are presented. Included are time-accurate and steady-state studies of the change in the nature of the symmetric two-cell/asymmetric one-cell bifurcation with varying aspect ratio and of the Reynolds number/aspect ratio locus of the two-cell/four-cell bifurcation. Preliminary results from wavy-vortex simulations at low aspect ratios are also presented.

  10. Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Andrews, Malcolm J.

    2011-04-01

    We extended the Goncharov model [V. N. Goncharov, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.88.134502 88, 134502 (2002)] for nonlinear Rayleigh-Taylor instability of perfect fluids to the case of Rivlin-Ericksen viscoelastic fluids [R. S. Rivlin and J. L. Ericksen, Rat. Mech. Anal. 4, 323 (1955)], with surface tension. For Rayleigh-Taylor instability, viscosity, surface tension, and viscoelasticity decrease the exponential growth rate predicted by linear stability analysis. In particular, we find that viscosity and surface tension decrease the terminal bubble velocity, whereas viscoelasticity is found to have no effect. All three properties increase the saturation height of the bubble. In Richmyer-Meshkov instability, the decay of the asymptotic velocity depends on the balance between viscosity and surface tension, and viscoelasticity tends to slow the asymptotic velocity decay.

  11. James Taylor (1859-1946): favourite disciple of Hughlings Jackson and William Gowers.

    PubMed

    Eadie, M J

    2013-01-01

    In neurological circles today the name James Taylor (1859-1946) is probably remembered mainly for his role in editing the Selected Writings of John Hughlings Jackson, the most readily available source of Jackson's contributions to neurological knowledge. Taylors' own neurological achievements are largely or entirely forgotten, but in his day he was an influential figure whose career linked the great figures of the golden era of late nineteenth century British neurology to the neurology of the first half of the twentieth century. Not only was he a junior professional colleague and close friend of both John Hughlings Jackson and William Gowers, he also produced a substantial corpus of neurological writings in his own right, including a textbook of child neurology and the first English language account of subacute combined degeneration of the spinal cord.

  12. An Improved Power Quality Based Sheppard-Taylor Converter Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2015-12-01

    This paper deals with the design and analysis of a power factor correction based Sheppard-Taylor converter fed brushless dc motor (BLDCM) drive. The speed of the BLDCM is controlled by adjusting the dc link voltage of the voltage source inverter (VSI) feeding BLDCM. Moreover, a low frequency switching of the VSI is used for electronically commutating the BLDCM for reduced switching losses. The Sheppard-Taylor converter is designed to operate in continuous conduction mode to achieve an improved power quality at the ac mains for a wide range of speed control and supply voltage variation. The BLDCM drive is designed and its performance is simulated in a MATLAB/Simulink environment to achieve the power quality indices within the limits of the international power quality standard IEC-61000-3-2.

  13. The Rayleigh-Taylor instability in a self-gravitating two-layer viscous sphere

    NASA Astrophysics Data System (ADS)

    Mondal, Puskar; Korenaga, Jun

    2018-03-01

    The dispersion relation of the Rayleigh-Taylor instability in the spherical geometry is of profound importance in the context of the Earth's core formation. Here we present a complete derivation of this dispersion relation for a self-gravitating two-layer viscous sphere. Such relation is, however, obtained through the solution of a complex transcendental equation, and it is difficult to gain physical insights directly from the transcendental equation itself. We thus also derive an empirical formula to compute the growth rate, by combining the Monte Carlo sampling of the relevant model parameter space with linear regression. Our analysis indicates that the growth rate of Rayleigh-Taylor instability is most sensitive to the viscosity of inner layer in a physical setting that is most relevant to the core formation.

  14. Influence of homogeneous magnetic fields on the flow of a ferrofluid in the Taylor-Couette system.

    PubMed

    Altmeyer, S; Hoffmann, Ch; Leschhorn, A; Lücke, M

    2010-07-01

    We investigate numerically the influence of a homogeneous magnetic field on a ferrofluid in the gap between two concentric, independently rotating cylinders. The full Navier-Stokes equations are solved with a combination of a finite difference method and a Galerkin method. Structure, dynamics, symmetry properties, bifurcation, and stability behavior of different vortex structures are investigated for axial and transversal magnetic fields, as well as combinations of them. We show that a transversal magnetic field modulates the Taylor vortex flow and the spiral vortex flow. Thus, a transversal magnetic field induces wavy structures: wavy Taylor vortex flow (wTVF) and wavy spiral vortex flow. In contrast to the classic wTVF, which is a secondarily bifurcating structure, these magnetically generated wavy Taylor vortices are pinned by the magnetic field, i.e., they are stationary and they appear via a primary forward bifurcation out of the basic state of circular Couette flow.

  15. Inertial migration of particles in Taylor-Couette flows

    NASA Astrophysics Data System (ADS)

    Majji, Madhu V.; Morris, Jeffrey F.

    2018-03-01

    An experimental study of inertial migration of neutrally buoyant particles in the circular Couette flow (CCF), Taylor vortex flow (TVF) and wavy vortex flow (WVF) is reported. This work considers a concentric cylinder Taylor-Couette device with a stationary outer cylinder and rotating inner cylinder. The device has a radius ratio of η = ri/ro = 0.877, where ri and ro are the inner and outer radii of the flow annulus. The ratio of the annular width between the cylinders (δ = ro - ri) and the particle diameter (dp) is α = δ/dp = 20. For η = 0.877, the flow of a Newtonian fluid undergoes transitions from CCF to TVF and TVF to WVF at Reynolds numbers Re = 120 and 151, respectively, and for the dilute suspensions studied here, these critical Reynolds numbers are almost unchanged. In CCF, particles were observed to migrate, due to the competition between the shear gradient of the flow and the wall interactions, to an equilibrium location near the middle of the annulus with an offset toward the inner cylinder. In TVF, the vortex motion causes the particles to be exposed to the shear gradient and wall interactions in a different manner, resulting in a circular equilibrium region in each vortex. The radius of this circular region grows with increase in Re. In WVF, the azimuthal waviness results in fairly well-distributed particles across the annulus.

  16. Fourier-Legendre expansion of the one-electron density matrix of ground-state two-electron atoms.

    PubMed

    Ragot, Sébastien; Ruiz, María Belén

    2008-09-28

    The density matrix rho(r,r(')) of a spherically symmetric system can be expanded as a Fourier-Legendre series of Legendre polynomials P(l)(cos theta=rr(')rr(')). Application is here made to harmonically trapped electron pairs (i.e., Moshinsky's and Hooke's atoms), for which exact wavefunctions are known, and to the helium atom, using a near-exact wavefunction. In the present approach, generic closed form expressions are derived for the series coefficients of rho(r,r(')). The series expansions are shown to converge rapidly in each case, with respect to both the electron number and the kinetic energy. In practice, a two-term expansion accounts for most of the correlation effects, so that the correlated density matrices of the atoms at issue are essentially a linear functions of P(l)(cos theta)=cos theta. For example, in the case of Hooke's atom, a two-term expansion takes in 99.9% of the electrons and 99.6% of the kinetic energy. The correlated density matrices obtained are finally compared to their determinantal counterparts, using a simplified representation of the density matrix rho(r,r(')), suggested by the Legendre expansion. Interestingly, two-particle correlation is shown to impact the angular delocalization of each electron, in the one-particle space spanned by the r and r(') variables.

  17. Bifurcating fronts for the Taylor-Couette problem in infinite cylinders

    NASA Astrophysics Data System (ADS)

    Hărăguş-Courcelle, M.; Schneider, G.

    We show the existence of bifurcating fronts for the weakly unstable Taylor-Couette problem in an infinite cylinder. These fronts connect a stationary bifurcating pattern, here the Taylor vortices, with the trivial ground state, here the Couette flow. In order to show the existence result we improve a method which was already used in establishing the existence of bifurcating fronts for the Swift-Hohenberg equation by Collet and Eckmann, 1986, and by Eckmann and Wayne, 1991. The existence proof is based on spatial dynamics and center manifold theory. One of the difficulties in applying center manifold theory comes from an infinite number of eigenvalues on the imaginary axis for vanishing bifurcation parameter. But nevertheless, a finite dimensional reduction is possible, since the eigenvalues leave the imaginary axis with different velocities, if the bifurcation parameter is increased. In contrast to previous work we have to use normalform methods and a non-standard cut-off function to obtain a center manifold which is large enough to contain the bifurcating fronts.

  18. Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Brown, E. N.; Millett, J. C. F.; Gray, G. T.

    2008-04-01

    The high strain-rate response of polymers is a subject that has gathered interest over recent years due to their increasing engineering importance, particularly in load bearing applications subject to extremes of pressure and strain rate. The current work presents two specific sets of experiments interrogating the effect of dynamic, high-pressure loading in the regime of the phase II to phase III pressure-induced crystalline phase transition in polytetrafluoroethylene (PTFE). These are gas-gun driven plate- and Taylor impact. Together these experiments highlight several effects associated with the dynamic, pressure-induced phase transitions in PTFE. An elevated release wave speed shows evidence of a pressure-induced phase change at a stress commensurate with that observed statically. It is shown that convergence between analytic derivations of release wave speed and the data requires the phase II to III transition to occur. Taylor impact is an integrated test that highlights continuum behavior that has origin in mesoscale response. There is a rapid transition from ductile to brittle behavior observed that occurs at a pressure consistent with this phase transition.

  19. Taylor impact of glass bars

    NASA Astrophysics Data System (ADS)

    Murray, Natalie; Bourne, Neil; Field, John

    1997-07-01

    Brar and Bless pioneeered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass. We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test. In this configuration two rods impact one upon the other in a symmetrical version of the Taylor test geometry in which the impact is perfectly rigid in the centre of mass frame. Previous work in the laboratory has characterised the three glass types (float, borosilicate and a high density lead glass). These experiments will identify the 1D stress failure mechanisms from high-speed photography and the stress and particle velocity histories will be interpreted in the light of these results. The differences in response of the three glasses will be highlighted.

  20. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.

    2017-03-01

    Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.

  1. Taylor's Theorem: The Elusive "c" Is Not So Elusive

    ERIC Educational Resources Information Center

    Kreminski, Richard

    2010-01-01

    For a suitably nice, real-valued function "f" defined on an open interval containing [a,b], f(b) can be expressed as p[subscript n](b) (the nth Taylor polynomial of f centered at a) plus an error term of the (Lagrange) form f[superscript (n+1)](c)(b-a)[superscript (n+1)]/(n+1)! for some c in (a,b). This article is for those who think that not…

  2. Dynamic equations for an isotropic spherical shell using the power series method and surface differential operators

    NASA Astrophysics Data System (ADS)

    Okhovat, Reza; Boström, Anders

    2017-04-01

    Dynamic equations for an isotropic spherical shell are derived by using a series expansion technique. The displacement field is split into a scalar (radial) part and a vector (tangential) part. Surface differential operators are introduced to decrease the length of all equations. The starting point is a power series expansion of the displacement components in the thickness coordinate relative to the mid-surface of the shell. By using the expansions of the displacement components, the three-dimensional elastodynamic equations yield a set of recursion relations among the expansion functions that can be used to eliminate all but the four of lowest order and to express higher order expansion functions in terms of those of lowest orders. Applying the boundary conditions on the surfaces of the spherical shell and eliminating all but the four lowest order expansion functions give the shell equations as a power series in the shell thickness. After lengthy manipulations, the final four shell equations are obtained in a relatively compact form which are given to second order in shell thickness explicitly. The eigenfrequencies are compared to exact three-dimensional theory with excellent agreement and to membrane theory.

  3. A nonlinear optimal control approach for chaotic finance dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A new nonlinear optimal control approach is proposed for stabilization of the dynamics of a chaotic finance model. The dynamic model of the financial system, which expresses interaction between the interest rate, the investment demand, the price exponent and the profit margin, undergoes approximate linearization round local operating points. These local equilibria are defined at each iteration of the control algorithm and consist of the present value of the systems state vector and the last value of the control inputs vector that was exerted on it. The approximate linearization makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. The truncation of higher order terms in the Taylor series expansion is considered to be a modelling error that is compensated by the robustness of the control loop. As the control algorithm runs, the temporary equilibrium is shifted towards the reference trajectory and finally converges to it. The control method needs to compute an H-infinity feedback control law at each iteration, and requires the repetitive solution of an algebraic Riccati equation. Through Lyapunov stability analysis it is shown that an H-infinity tracking performance criterion holds for the control loop. This implies elevated robustness against model approximations and external perturbations. Moreover, under moderate conditions the global asymptotic stability of the control loop is proven.

  4. Stabilization of business cycles of finance agents using nonlinear optimal control

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Sarno, D.

    2017-11-01

    Stabilization of the business cycles of interconnected finance agents is performed with the use of a new nonlinear optimal control method. First, the dynamics of the interacting finance agents and of the associated business cycles is described by a modeled of coupled nonlinear oscillators. Next, this dynamic model undergoes approximate linearization round a temporary operating point which is defined by the present value of the system's state vector and the last value of the control inputs vector that was exerted on it. The linearization procedure is based on Taylor series expansion of the dynamic model and on the computation of Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms in the Taylor series expansion is considered as a disturbance which is compensated by the robustness of the control loop. Next, for the linearized model of the interacting finance agents, an H-infinity feedback controller is designed. The computation of the feedback control gain requires the solution of an algebraic Riccati equation at each iteration of the control algorithm. Through Lyapunov stability analysis it is proven that the control scheme satisfies an H-infinity tracking performance criterion, which signifies elevated robustness against modelling uncertainty and external perturbations. Moreover, under moderate conditions the global asymptotic stability features of the control loop are proven.

  5. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut

    USGS Publications Warehouse

    Flint, A.L.; Childs, S.W.

    1991-01-01

    The Priestley-Taylor equation, a simplification of the Penman equation, was used to allow calculations of evapotranspiration under conditions where soil water supply limits evapotranspiration. The Priestley-Taylor coefficient, ??, was calculated to incorporate an exponential decrease in evapotranspiration as soil water content decreases. The method is appropriate for use when detailed meteorological measurements are not available. The data required to determine the parameter for the ?? coefficient are net radiation, soil heat flux, average air temperature, and soil water content. These values can be obtained from measurements or models. The dataset used in this report pertains to a partially vegetated clearcut forest site in southwest Oregon with soil depths ranging from 0.48 to 0.70 m and weathered bedrock below that. Evapotranspiration was estimated using the Bowen ratio method, and the calculated Priestley-Taylor coefficient was fitted to these estimates by nonlinear regression. The calculated Priestley-Taylor coefficient (?????) was found to be approximately 0.9 when the soil was near field capacity (0.225 cm3 cm-3). It was not until soil water content was less than 0.14 cm3 cm-3 that soil water supply limited evapotranspiration. The soil reached a final residual water content near 0.05 cm3 cm-3 at the end of the growing season. ?? 1991.

  6. An integral equation-based numerical solver for Taylor states in toroidal geometries

    NASA Astrophysics Data System (ADS)

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  7. Medicaid Matters: Children's Health and Medicaid Eligibility Expansions

    ERIC Educational Resources Information Center

    Lykens, Kristine A.; Jargowsky, Paul A.

    2002-01-01

    In the late 1980s, a series of federal laws were enacted which expanded Medicaid eligibility to more of the nation's children. States had a great amount of discretion in how fast and how far these expansions were implemented. As a result, there was great variation among the states in defining who was eligible for the program. This variation…

  8. The Inhibition of the Rayleigh-Taylor Instability by Rotation.

    PubMed

    Baldwin, Kyle A; Scase, Matthew M; Hill, Richard J A

    2015-07-01

    It is well-established that the Coriolis force that acts on fluid in a rotating system can act to stabilise otherwise unstable flows. Chandrasekhar considered theoretically the effect of the Coriolis force on the Rayleigh-Taylor instability, which occurs at the interface between a dense fluid lying on top of a lighter fluid under gravity, concluding that rotation alone could not stabilise this system indefinitely. Recent numerical work suggests that rotation may, nevertheless, slow the growth of the instability. Experimental verification of these results using standard techniques is problematic, owing to the practical difficulty in establishing the initial conditions. Here, we present a new experimental technique for studying the Rayleigh-Taylor instability under rotation that side-steps the problems encountered with standard techniques by using a strong magnetic field to destabilize an otherwise stable system. We find that rotation about an axis normal to the interface acts to retard the growth rate of the instability and stabilise long wavelength modes; the scale of the observed structures decreases with increasing rotation rate, asymptoting to a minimum wavelength controlled by viscosity. We present a critical rotation rate, dependent on Atwood number and the aspect ratio of the system, for stabilising the most unstable mode.

  9. The Inhibition of the Rayleigh-Taylor Instability by Rotation

    PubMed Central

    Baldwin, Kyle A.; Scase, Matthew M.; Hill, Richard J. A.

    2015-01-01

    It is well-established that the Coriolis force that acts on fluid in a rotating system can act to stabilise otherwise unstable flows. Chandrasekhar considered theoretically the effect of the Coriolis force on the Rayleigh-Taylor instability, which occurs at the interface between a dense fluid lying on top of a lighter fluid under gravity, concluding that rotation alone could not stabilise this system indefinitely. Recent numerical work suggests that rotation may, nevertheless, slow the growth of the instability. Experimental verification of these results using standard techniques is problematic, owing to the practical difficulty in establishing the initial conditions. Here, we present a new experimental technique for studying the Rayleigh-Taylor instability under rotation that side-steps the problems encountered with standard techniques by using a strong magnetic field to destabilize an otherwise stable system. We find that rotation about an axis normal to the interface acts to retard the growth rate of the instability and stabilise long wavelength modes; the scale of the observed structures decreases with increasing rotation rate, asymptoting to a minimum wavelength controlled by viscosity. We present a critical rotation rate, dependent on Atwood number and the aspect ratio of the system, for stabilising the most unstable mode. PMID:26130005

  10. Self-similarity in high Atwood number Rayleigh-Taylor experiments

    NASA Astrophysics Data System (ADS)

    Mikhaeil, Mark; Suchandra, Prasoon; Pathikonda, Gokul; Ranjan, Devesh

    2017-11-01

    Self-similarity is a critical concept in turbulent and mixing flows. In the Rayleigh-Taylor instability, theory and simulations have shown that the flow exhibits properties of self-similarity as the mixing Reynolds number exceeds 20000 and the flow enters the turbulent regime. Here, we present results from the first large Atwood number (0.7) Rayleigh-Taylor experimental campaign for mixing Reynolds number beyond 20000 in an effort to characterize the self-similar nature of the instability. Experiments are performed in a statistically steady gas tunnel facility, allowing for the evaluation of turbulence statistics. A visualization diagnostic is used to study the evolution of the mixing width as the instability grows. This allows for computation of the instability growth rate. For the first time in such a facility, stereoscopic particle image velocimetry is used to resolve three-component velocity information in a plane. Velocity means, fluctuations, and correlations are considered as well as their appropriate scaling. Probability density functions of velocity fields, energy spectra, and higher-order statistics are also presented. The energy budget of the flow is described, including the ratio of the kinetic energy to the released potential energy. This work was supported by the DOE-NNSA SSAA Grant DE-NA0002922.

  11. Subscales to the Taylor Manifest Anxiety Scale in Three Chronically Ill Populations.

    ERIC Educational Resources Information Center

    Moore, Peter N.; And Others

    1984-01-01

    Examines factors of anxiety in the Taylor Manifest Anxiety Scale in 150 asthma, tuberculosis, and chronic pain patients. Key cluster analysis revealed five clusters: restlessness, embarrassment, sensitivity, physiological anxiety, and self-confidence. Embarrassment is fairly dependent on the other factors. (JAC)

  12. Anti-solvent crystallization of L-threonine in Taylor crystallizers and MSMPR crystallizer: Effect of fluid dynamic motions on crystal size, shape, and recovery

    NASA Astrophysics Data System (ADS)

    Lee, Sooyun; Lee, Choul-Ho; Kim, Woo-Sik

    2017-07-01

    The influence of the fluid dynamic motions of a periodic Taylor vortex and random turbulent eddy on the anti-solvent crystallization of L-threonine was investigated. The Taylor vortex flow and random turbulent eddy flow were generated by the inner cylinder rotation in a Couette-Taylor (CT) crystallizer and the impeller agitation in a mixed-suspension mixed product removal (MSMPR) crystallizer, respectively. Furthermore, the circumferentially sinusoidal fluctuation of a Taylor vortex was induced in an elliptical Couette-Taylor (ECT) crystallizer . The periodic Taylor vortex flows in the CT and ECT crystallizers resulted in a smaller crystal size and higher crystal recovery ratio of L-threonine than the random turbulent flow in the MSMPR crystallizer due to induction of a higher supersaturation, resulting in a higher nucleation in the CT and ECT crystallizers than in the MSMPR crystallizer. Thus, the crystal size was reduced and the crystal recovery ratio enhanced when increasing the rotation/agitation speed and feed flow rate in the CT, ECT, and MSMPR crystallizers. When increasing the temperature, the crystal size and crystal recovery ratio were both increased due an enhanced mass transfer for crystal growth. The crystal morphology changes according to the fluid dynamic motion with various crystallization conditions were well correlated in terms of the supersaturation.

  13. Estimating the Impact of Urban Expansion on Land Subsidence Using Time Series of DMSP Night-Time Light Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Jiao, S.; Yu, J.; Wang, Y.; Zhu, L.; Zhou, Q.

    2018-04-01

    In recent decades, urbanization has resulted a massive increase in the amount of infrastructure especially large buildings in large cities worldwide. There has been a noticeable expansion of entire cities both horizontally and vertically. One of the common consequences of urban expansion is the increase of ground loads, which may trigger land subsidence and can be a potential threat of public safety. Monitoring trends of urban expansion and land subsidence using remote sensing technology is needed to ensure safety along with urban planning and development. The Defense Meteorological Satellite Program Operational Line scan System (DMSP/OLS) Night-Time Light (NTL) images have been used to study urbanization at a regional scale, proving the capability of recognizing urban expansion patterns. In the current study, a normalized illuminated urban area dome volume (IUADV) based on inter-calibrated DMSP/OLS NTL images is shown as a practical approach for estimating urban expansion of Beijing at a single period in time and over subsequent years. To estimate the impact of urban expansion on land subsidence, IUADV was correlated with land subsidence rates obtained using the Stanford Method for Persistent Scatterers (StaMPS) approach within the Persistent Scatterers InSAR (PSInSAR) methodology. Moderate correlations are observed between the urban expansion based on the DMSP/OLS NTL images and land subsidence. The correlation coefficients between the urban expansion of each year and land subsidence tends to gradually decrease over time (Coefficient of determination R = 0.80 - 0.64 from year 2005 to year 2010), while the urban expansion of two sequential years exhibit an opposite trend (R = 0.29 - 0.57 from year 2005 to year 2010) except for the two sequential years between 2007 and 2008 (R = 0.14).

  14. Chapter 1: Executive Summary - 2003 Assessment of Undiscovered Oil and Gas Resources in the Upper Cretaceous Navarro and Taylor Groups, Western Gulf Province, Gulf Coast Region, Texas

    USGS Publications Warehouse

    ,

    2006-01-01

    The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Upper Cretaceous Navarro and Taylor Groups in the Western Gulf Province of the Gulf Coast region (fig. 1) as part of a national oil and gas assessment effort (USGS Navarro and Taylor Groups Assessment Team, 2004). The assessment of the petroleum potential of the Navarro and Taylor Groups was based on the general geologic elements used to define a total petroleum system (TPS), including hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined five assessment units (AU) in the Navarro and Taylor Groups as parts of a single TPS, the Smackover-Austin-Eagle Ford Composite TPS: Travis Volcanic Mounds Oil AU, Uvalde Volcanic Mounds Gas and Oil AU, Navarro-Taylor Updip Oil and Gas AU, Navarro-Taylor Downdip Gas and Oil AU, and Navarro-Taylor Slope-Basin Gas AU (table 1).

  15. Volume integrals associated with the inhomogeneous Helmholtz equation. Part 1: Ellipsoidal region

    NASA Technical Reports Server (NTRS)

    Fu, L. S.; Mura, T.

    1983-01-01

    Problems of wave phenomena in fields of acoustics, electromagnetics and elasticity are often reduced to an integration of the inhomogeneous Helmholtz equation. Results are presented for volume integrals associated with the Helmholtz operator, nabla(2) to alpha(2), for the case of an ellipsoidal region. By using appropriate Taylor series expansions and multinomial theorem, these volume integrals are obtained in series form for regions r 4' and r r', where r and r' are distances from the origin to the point of observation and source, respectively. Derivatives of these integrals are easily evaluated. When the wave number approaches zero, the results reduce directly to the potentials of variable densities.

  16. A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles

    NASA Technical Reports Server (NTRS)

    Scammell, Alexander David

    2016-01-01

    Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field

  17. Non-planar one-loop Parke-Taylor factors in the CHY approach for quadratic propagators

    NASA Astrophysics Data System (ADS)

    Ahmadiniaz, Naser; Gomez, Humberto; Lopez-Arcos, Cristhiam

    2018-05-01

    In this work we have studied the Kleiss-Kuijf relations for the recently introduced Parke-Taylor factors at one-loop in the CHY approach, that reproduce quadratic Feynman propagators. By doing this, we were able to identify the non-planar one-loop Parke-Taylor factors. In order to check that, in fact, these new factors can describe non-planar amplitudes, we applied them to the bi-adjoint Φ3 theory. As a byproduct, we found a new type of graphs that we called the non-planar CHY-graphs. These graphs encode all the information for the subleading order at one-loop, and there is not an equivalent of these in the Feynman formalism.

  18. Applications of Taylor-Galerkin finite element method to compressible internal flow problems

    NASA Technical Reports Server (NTRS)

    Sohn, Jeong L.; Kim, Yongmo; Chung, T. J.

    1989-01-01

    A two-step Taylor-Galerkin finite element method with Lapidus' artificial viscosity scheme is applied to several test cases for internal compressible inviscid flow problems. Investigations for the effect of supersonic/subsonic inlet and outlet boundary conditions on computational results are particularly emphasized.

  19. Thermodynamics properties of lanthanide series near melting point-A pseudopotential approach

    NASA Astrophysics Data System (ADS)

    Suthar, P. H.; Gajjar, P. N.

    2018-04-01

    The present paper deals with computational study of thermodynamics properties for fifteen elements of lanthanide series. The Helmholtz free energy (F), Internal energy (E) and Entropy (S)have been computed using variational method based on the Gibbs-Bogoliubov (GB) along with Percus-Yevick hard sphere reference system and Gajjar's model potential. The local field correction function proposed by Taylor is applied to introduce the exchange and correlation effects in the study of thermodynamics of these metals. The present results in comparison with available theoretical and experimental are found to be in good agreement and confirm the ability of the model potential.

  20. Exact semiclassical expansions for one-dimensional quantum oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delabaere, E.; Dillinger, H.; Pham, F.

    1997-12-01

    A set of rules is given for dealing with WKB expansions in the one-dimensional analytic case, whereby such expansions are not considered as approximations but as exact encodings of wave functions, thus allowing for analytic continuation with respect to whichever parameters the potential function depends on, with an exact control of small exponential effects. These rules, which include also the case when there are double turning points, are illustrated on various examples, and applied to the study of bound state or resonance spectra. In the case of simple oscillators, it is thus shown that the Rayleigh{endash}Schr{umlt o}dinger series is Borelmore » resummable, yielding the exact energy levels. In the case of the symmetrical anharmonic oscillator, one gets a simple and rigorous justification of the Zinn-Justin quantization condition, and of its solution in terms of {open_quotes}multi-instanton expansions.{close_quotes} {copyright} {ital 1997 American Institute of Physics.}« less

  1. The causal perturbation expansion revisited: Rescaling the interacting Dirac sea

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Grotz, Andreas

    2010-07-01

    The causal perturbation expansion defines the Dirac sea in the presence of a time-dependent external field. It yields an operator whose image generalizes the vacuum solutions of negative energy and thus gives a canonical splitting of the solution space into two subspaces. After giving a self-contained introduction to the ideas and techniques, we show that this operator is, in general, not idempotent. We modify the standard construction by a rescaling procedure giving a projector on the generalized negative-energy subspace. The resulting rescaled causal perturbation expansion uniquely defines the fermionic projector in terms of a series of distributional solutions of the Dirac equation. The technical core of the paper is to work out the combinatorics of the expansion in detail. It is also shown that the fermionic projector with interaction can be obtained from the free projector by a unitary transformation. We finally analyze the consequences of the rescaling procedure on the light-cone expansion.

  2. Changing Course: Thurgood Marshall College Fund President Johnny Taylor Seeks New Partnerships and Avenues of Support for Public HBCUs

    ERIC Educational Resources Information Center

    Stuart, Reginald

    2011-01-01

    When veteran educator Dr. N. Joyce Payne handed the reins of the organization she founded, the Thurgood Marshall College Fund, to entertainment lawyer and board member Johnny Taylor, Taylor began pursuing a remake of the prestigious group that has turned it on its head in just a matter of months. Today, with just more than a year of leading the…

  3. Bus electrode having same thermal expansion coefficient as crystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Kato, T.; Morita, H.; Nakano, H.; Washida, H.; Onoe, A.; Inomata, K.; Mori, F.; Sugai, S.

    1982-01-01

    It is well known that the bus electrode plays a main role in series resistance of solar cells. Bus electrodes composed of bare leads, were investigated for which thermal expansion coefficients are less than those of the cell and which are coated with highly conducting metals. These leads exhibited the lower expansion coefficient than expected by empirical law, and the origins of these phenomena were explained. Work hardening effect on the expansion coefficient was then measured. Solar cell fabrication with these leads and rigid solders rationalized assembly processing. Cell characteristics proved to be excellent compared with conventional ones. Finally, lead costs were compared for various materials.

  4. Transport in Rayleigh-stable experimental Taylor-Couette flow and granular electrification in a shaking experiment

    NASA Astrophysics Data System (ADS)

    Nordsiek, Freja

    This dissertation consists of two projects: Rayleigh-stable Taylor-Couette flow and granular electrification. Taylor-Couette flow is the fluid flow in the gap between two cylinders rotating at different rates. Azimuthal velocity profiles, dye visualization, and inner cylinder torques were measured on two geometrically similar Taylor-Couettes with axial boundaries attached to the outer cylinder, the Maryland and Twente T3C experiments. This was done in the Rayleigh stable regime, where the specific angular momentum increases radially, which is relevant to astrophysical and geophysical flows and in particular, stellar and planetary accretion disks. The flow substantially deviates from laminar Taylor-Couette flow beginning at moderate Reynolds number. Angular momentum is primarily transported to the axial boundaries instead of the outer cylinder due to Ekman pumping when the inner cylinder is rotating faster than the outer cylinder. A phase diagram was constructed from the transitions identified from torque measurements taken over four decades of the Reynolds number. Flow angular velocities larger and smaller than both cylinders were found. Together, these results indicate that experimental Taylor-Couette with axial boundaries attached to the outer cylinder is an imperfect model for accretion disk flows. Thunderstorms, thunder-snow, volcanic ash clouds, and dust storms all display lightning, which results from electrification of droplets and particles in the atmosphere. While lightning is fairly well understood (plasma discharge), the mechanisms that result in million-volt differences across the storm are not. A novel granular electrification experiment was upgraded and used to study some of these mechanisms in the lab. The relative importance of collective interactions between particles versus particle properties (material, size, etc.) on collisional electrification was investigated. While particle properties have an order of magnitude effect on the strength of

  5. Temporal Taylor's scaling of facial electromyography and electrodermal activity in the course of emotional stimulation

    NASA Astrophysics Data System (ADS)

    Chołoniewski, Jan; Chmiel, Anna; Sienkiewicz, Julian; Hołyst, Janusz A.; Küster, Dennis; Kappas, Arvid

    2016-09-01

    High frequency psychophysiological data create a challenge for quantitative modeling based on Big Data tools since they reflect the complexity of processes taking place in human body and its responses to external events. Here we present studies of fluctuations in facial electromyography (fEMG) and electrodermal activity (EDA) massive time series and changes of such signals in the course of emotional stimulation. Zygomaticus major (ZYG, "smiling" muscle) activity, corrugator supercilii (COR, "frowning"bmuscle) activity, and phasic skin conductance (PHSC, sweating) levels of 65 participants were recorded during experiments that involved exposure to emotional stimuli (i.e., IAPS images, reading and writing messages on an artificial online discussion board). Temporal Taylor's fluctuations scaling were found when signals for various participants and during various types of emotional events were compared. Values of scaling exponents were close to 1, suggesting an external origin of system dynamics and/or strong interactions between system's basic elements (e.g., muscle fibres). Our statistical analysis shows that the scaling exponents enable identification of high valence and arousal levels in ZYG and COR signals.

  6. Large Eddy Simulations of the Tilted Rig Experiment: A Two-dimensional Rayleigh-Taylor Instability Case

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Denissen, Nicholas A.; Reisner, Jon M.; Andrews, Malcolm J.

    2012-11-01

    The tilted rig experiment is a derivative of the rocket rig experiment designed to investigate turbulent mixing induced by the Rayleigh-Taylor (RT) instability. A tank containing two fluids of different densities is accelerated downwards between two parallel guiding rods by rocket motors. The acceleration is such that the pressure and density gradients face opposite directions at the fluids interface, creating a Rayleigh-Taylor unstable configuration. The rig is tilted such that the tank is initially at an angle and the acceleration is not perpendicular to the fluids interface when the rockets fire. This results in a two dimensional Rayleigh-Taylor instability case where the fluids experience RT mixing and a bulk overturning motion. The tilted rig is therefore a valuable experiment to help calibrating two-dimensional mixing models. Large Eddy Simulations of the tilted rig experiments will be compared to available experimental results. A study of the behavior of turbulence variables relevant to turbulence modeling will be presented. LA-UR 12-23829. This work was performed for the U.S. Department of Energy by Los Alamos National Laboratory under Contract No.DEAC52- 06NA2-5396.

  7. Forty years later at Taylor Woods: Merging the old and new

    Treesearch

    John D. Bailey

    2008-01-01

    The Taylor Woods "Levels-of-Growing-Stock" study was established in 1962 to create a replicated ponderosa pine density experiment for the Southwest, making a valuable addition to research in the Fort Valley Experimental Forest. Basal area treatments ranged from 5-20 m2/ha (19-80 ft2/ac) when installed, designed as...

  8. On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully developed flows

    NASA Technical Reports Server (NTRS)

    Bennett, James; Hall, Philip

    1988-01-01

    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmien-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poiseuille flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

  9. On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully-developed flows

    NASA Technical Reports Server (NTRS)

    Bennett, James; Hall, Philip

    1986-01-01

    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmein-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poisseulle flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

  10. Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform.

    PubMed

    Tripathy, Rajesh K; Zamora-Mendez, Alejandro; de la O Serna, José A; Paternina, Mario R Arrieta; Arrieta, Juan G; Naik, Ganesh R

    2018-01-01

    Accurate detection and classification of life-threatening ventricular arrhythmia episodes such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation therapy. This paper introduces a novel method for detection and classification of life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude feature and a novel phase feature namely the phase difference (PD) are evaluated from the mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art features demonstrate the advantages of the proposition.

  11. Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform

    PubMed Central

    Tripathy, Rajesh K.; Zamora-Mendez, Alejandro; de la O Serna, José A.; Paternina, Mario R. Arrieta; Arrieta, Juan G.; Naik, Ganesh R.

    2018-01-01

    Accurate detection and classification of life-threatening ventricular arrhythmia episodes such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation therapy. This paper introduces a novel method for detection and classification of life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude feature and a novel phase feature namely the phase difference (PD) are evaluated from the mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art features demonstrate the advantages of the proposition.

  12. Torque scaling in small-gap Taylor-Couette flow with smooth or grooved wall

    NASA Astrophysics Data System (ADS)

    Zhu, Bihai; Ji, Zengqi; Lou, Zhengkun; Qian, Pengcheng

    2018-03-01

    The torque in the Taylor-Couette flow for radius ratios η ≥0.97 , with smooth or grooved wall static outer cylinders, is studied experimentally, with the Reynolds number of the inner cylinder reaching up to Rei=2 ×105 , corresponding to the Taylor number up to Ta =5 ×1010 . The grooves are perpendicular to the mean flow, and similar to the structure of a submersible motor stator. It is found that the dimensionless torque G , at a given Rei and η , is significantly greater for grooved cases than smooth cases. We compare our experimental torques for the smooth cases to the fit proposed by Wendt [F. Wendt, Ing.-Arch. 4, 577 (1993), 10.1007/BF02084936] and the fit proposed by Bilgen and Boulos [E. Bilgen and R. Boulos, J Fluids Eng. 95, 122 (1973), 10.1115/1.3446944], which shows both fits are outside their range for small gaps. Furthermore, an additional dimensionless torque (angular velocity flux) N uω in the smooth cases exhibits an effective scaling of N uω˜T a0.39 in the ultimate regime, which occurs at a lower Taylor number, Ta ≈3.5 ×107 , than the well-explored η =0.714 case (at Ta ≈3 ×108 ). The same effective scaling exponent, 0.39, is also evident in the grooved cases, but for η =0.97 and 0.985, there is a peak before this exponent appears.

  13. Generalizing Integrals Involving X [superscript X] and Series Involving N [superscript N

    ERIC Educational Resources Information Center

    Osler, Thomas J.; Tsay, Jeffrey

    2005-01-01

    In this paper, the authors evaluate the series and integrals presented by P. Glaister. The authors show that this function has the Maclauren series expansion. The authors derive the series from the integral in two ways. The first derivation uses the technique employed by Glaister. The second derivation uses a change in variable in the integral.

  14. Effective potential of the three-dimensional Ising model: The pseudo-ɛ expansion study

    NASA Astrophysics Data System (ADS)

    Sokolov, A. I.; Kudlis, A.; Nikitina, M. A.

    2017-08-01

    The ratios R2k of renormalized coupling constants g2k that enter the effective potential and small-field equation of state acquire the universal values at criticality. They are calculated for the three-dimensional scalar λϕ4 field theory (3D Ising model) within the pseudo-ɛ expansion approach. Pseudo-ɛ expansions for the critical values of g6, g8, g10, R6 =g6 / g42, R8 =g8 / g43 and R10 =g10 / g44 originating from the five-loop renormalization group (RG) series are derived. Pseudo-ɛ expansions for the sextic coupling have rapidly diminishing coefficients, so addressing Padé approximants yields proper numerical results. Use of Padé-Borel-Leroy and conformal mapping resummation techniques further improves the accuracy leading to the values R6* = 1.6488 and R6* = 1.6490 which are in a brilliant agreement with the result of advanced lattice calculations. For the octic coupling the numerical structure of the pseudo-ɛ expansions is less favorable. Nevertheless, the conform-Borel resummation gives R8* = 0.868, the number being close to the lattice estimate R8* = 0.871 and compatible with the result of 3D RG analysis R8* = 0.857. Pseudo-ɛ expansions for R10* and g10* are also found to have much smaller coefficients than those of the original RG series. They remain, however, fast growing and big enough to prevent obtaining fair numerical estimates.

  15. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  16. Brillouin-Wigner theory for high-frequency expansion in periodically driven systems: Application to Floquet topological insulators

    NASA Astrophysics Data System (ADS)

    Mikami, Takahiro; Kitamura, Sota; Yasuda, Kenji; Tsuji, Naoto; Oka, Takashi; Aoki, Hideo

    2016-04-01

    We construct a systematic high-frequency expansion for periodically driven quantum systems based on the Brillouin-Wigner (BW) perturbation theory, which generates an effective Hamiltonian on the projected zero-photon subspace in the Floquet theory, reproducing the quasienergies and eigenstates of the original Floquet Hamiltonian up to desired order in 1 /ω , with ω being the frequency of the drive. The advantage of the BW method is that it is not only efficient in deriving higher-order terms, but even enables us to write down the whole infinite series expansion, as compared to the van Vleck degenerate perturbation theory. The expansion is also free from a spurious dependence on the driving phase, which has been an obstacle in the Floquet-Magnus expansion. We apply the BW expansion to various models of noninteracting electrons driven by circularly polarized light. As the amplitude of the light is increased, the system undergoes a series of Floquet topological-to-topological phase transitions, whose phase boundary in the high-frequency regime is well explained by the BW expansion. As the frequency is lowered, the high-frequency expansion breaks down at some point due to band touching with nonzero-photon sectors, where we find numerically even more intricate and richer Floquet topological phases spring out. We have then analyzed, with the Floquet dynamical mean-field theory, the effects of electron-electron interaction and energy dissipation. We have specifically revealed that phase transitions from Floquet-topological to Mott insulators emerge, where the phase boundaries can again be captured with the high-frequency expansion.

  17. A reference-modified density functional theory: An application to solvation free-energy calculations for a Lennard-Jones solution.

    PubMed

    Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Koga, Kenichiro

    2016-06-14

    In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids.

  18. Monograph on the use of the multivariate Gram Charlier series Type A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatayodom, T.; Heydt, G.

    1978-01-01

    The Gram-Charlier series in an infinite series expansion for a probability density function (pdf) in which terms of the series are Hermite polynomials. There are several Gram-Charlier series - the best known is Type A. The Gram-Charlier series, Type A (GCA) exists for both univariate and multivariate random variables. This monograph introduces the multivariate GCA and illustrates its use through several examples. A brief bibliography and discussion of Hermite polynomials is also included. 9 figures, 2 tables.

  19. Supercomputer implementation of finite element algorithms for high speed compressible flows

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Ramakrishnan, R.

    1986-01-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.

  20. Approximation methods for combined thermal/structural design

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Shore, C. P.

    1979-01-01

    Two approximation concepts for combined thermal/structural design are evaluated. The first concept is an approximate thermal analysis based on the first derivatives of structural temperatures with respect to design variables. Two commonly used first-order Taylor series expansions are examined. The direct and reciprocal expansions are special members of a general family of approximations, and for some conditions other members of that family of approximations are more accurate. Several examples are used to compare the accuracy of the different expansions. The second approximation concept is the use of critical time points for combined thermal and stress analyses of structures with transient loading conditions. Significant time savings are realized by identifying critical time points and performing the stress analysis for those points only. The design of an insulated panel which is exposed to transient heating conditions is discussed.

  1. Rayleigh-Taylor-instability evolution in colliding-plasma-jet experiments with magnetic and viscous stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Colin Stuart

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictionsmore » for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.« less

  2. Factors affecting energy deposition and expansion in single wire low current experiments

    NASA Astrophysics Data System (ADS)

    Duselis, Peter U.; Vaughan, Jeffrey A.; Kusse, Bruce R.

    2004-08-01

    Single wire experiments were performed on a low current pulse generator at Cornell University. A 220 nF capacitor charged to 15-25 kV was used to drive single wire experiments. The capacitor and wire holder were connected in series through an external variable inductor to control the current rise rate. This external series inductance was adjustable from 0.2 to 2 μH. When coupled with the range of charging voltages this results in current rise rates from 5 to 50 A/ns. The current heated the wire through liquid and vapor phases until plasma formed around the wire. Energy deposition and expansion rates were measured as functions of the current rise rate. These results indicated better energy deposition and higher expansion rates with faster current rise rates. Effects of the wire-electrode connection method and wire polarity were also studied.

  3. A Very Stable High Throughput Taylor Cone-jet in Electrohydrodynamics

    PubMed Central

    Morad, M. R.; Rajabi, A.; Razavi, M.; Sereshkeh, S. R. Pejman

    2016-01-01

    A stable capillary liquid jet formed by an electric field is an important physical phenomenon for formation of controllable small droplets, power generation and chemical reactions, printing and patterning, and chemical-biological investigations. In electrohydrodynamics, the well-known Taylor cone-jet has a stability margin within a certain range of the liquid flow rate (Q) and the applied voltage (V). Here, we introduce a simple mechanism to greatly extend the Taylor cone-jet stability margin and produce a very high throughput. For an ethanol cone-jet emitting from a simple nozzle, the stability margin is obtained within 1 kV for low flow rates, decaying with flow rate up to 2 ml/h. By installing a hemispherical cap above the nozzle, we demonstrate that the stability margin could increase to 5 kV for low flow rates, decaying to zero for a maximum flow rate of 65 ml/h. The governing borders of stability margins are discussed and obtained for three other liquids: methanol, 1-propanol and 1-butanol. For a gravity-directed nozzle, the produced cone-jet is more stable against perturbations and the axis of the spray remains in the same direction through the whole stability margin, unlike the cone-jet of conventional simple nozzles. PMID:27917956

  4. Surfactants and the Rayleigh-Taylor instability of Couette type flows

    NASA Astrophysics Data System (ADS)

    Frenkel, A. L.; Halpern, D.; Schweiger, A. S.

    2011-11-01

    We study the Rayleigh-Taylor instability of slow Couette- type flows in the presence of insoluble surfactants. It is known that with zero gravity, the surfactant makes the flow unstable to longwave disturbances in certain regions of the parameter space; while in other parametric regions, it reinforces the flow stability (Frenkel and Halpern 2002). Here, we show that in the latter parametric sectors, and when the (gravity) Bond number Bo is below a certain threshold value, the Rayleigh-Taylor instability is completely stabilized for a finite interval of Ma, the (surfactant) Marangoni number: MaL Ma2, and also for MaL

  5. Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor and the Development

    Science.gov Websites

    on the Web. Documents: Experimental Search for a Heavy Electron, DOE Technical Report, September 1967 1967 (Taylor, R. E.) Deep Inelastic Electron Scattering: Experimental, DOE Technical Report, October page may take you to non-federal websites. Their policies may differ from this site. Website Policies

  6. Truncation effect on Taylor-Aris dispersion in lattice Boltzmann schemes: Accuracy towards stability

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Roux, Laetitia

    2015-10-01

    The Taylor dispersion in parabolic velocity field provides a well-known benchmark for advection-diffusion (ADE) schemes and serves as a first step towards accurate modeling of the high-order non-Gaussian effects in heterogeneous flow. While applying the Lattice Boltzmann ADE two-relaxation-times (TRT) scheme for a transport with given Péclet number (Pe) one should select six free-tunable parameters, namely, (i) molecular-diffusion-scale, equilibrium parameter; (ii) three families of equilibrium weights, assigned to the terms of mass, velocity and numerical-diffusion-correction, and (iii) two relaxation rates. We analytically and numerically investigate the respective roles of all these degrees of freedom in the accuracy and stability in the evolution of a Gaussian plume. For this purpose, the third- and fourth-order transient multi-dimensional analysis of the recurrence equations of the TRT ADE scheme is extended for a spatially-variable velocity field. The key point is in the coupling of the truncation and Taylor dispersion analysis which allows us to identify the second-order numerical correction δkT to Taylor dispersivity coefficient kT. The procedure is exemplified for a straight Poiseuille flow where δkT is given in a closed analytical form in equilibrium and relaxation parameter spaces. The predicted longitudinal dispersivity is in excellent agreement with the numerical experiments over a wide parameter range. In relatively small Pe-range, the relative dispersion error increases with Péclet number. This deficiency reduces in the intermediate and high Pe-range where it becomes Pe-independent and velocity-amplitude independent. Eliminating δkT by a proper parameter choice and employing specular reflection for zero flux condition on solid boundaries, the d2Q9 TRT ADE scheme may reproduce the Taylor-Aris result quasi-exactly, from very coarse to fine grids, and from very small to arbitrarily high Péclet numbers. Since free-tunable product of two

  7. Tephra layers in the Siple Dome and Taylor Dome ice cores, Antarctica: Sources and correlations

    NASA Astrophysics Data System (ADS)

    Dunbar, Nelia W.; Zielinski, Gregory A.; Voisins, Daniel T.

    2003-08-01

    Volcanic ash, or tephra layers, are found in the Taylor Dome, Siple Dome A, and Siple Dome B ice cores. Significant shard concentrations are found at a number of depths in all three cores. Electron and ion microprobe analyses indicate that the geochemical composition of most layers is basaltic, basanitic, or trachytic, and the geochemical signatures of the layers suggest derivation from the Pleiades volcanic center, Mt. Melbourne volcano, or small mafic centers, probably in the Royal Society Range area. Presence of tephra layers suggests an episode of previously unrecognized Antarctic volcanic activity between 1776 and 1805 A.D., from at least two volcanic centers. A strong geochemical correlation (D = 3.49 and 3.97 with a value of 4 considered identical) is observed between tephra layers at depth of 79.2 m in the Taylor Dome ice core, and layers between 97.2 and 97.7 m depth in the Siple B core. This correlation, and the highly accurate depth-age scale of the Siple B core suggest that the age of this horizon in the Taylor Dome ice core presented by [1998a, 2000] should be revised downward, to the younger age of 675 ± 25 years before 1995. This revised chronology is consistent with vertical strain measurements presented by [2003].

  8. On the modular structure of the genus-one Type II superstring low energy expansion

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Green, Michael B.; Vanhove, Pierre

    2015-08-01

    The analytic contribution to the low energy expansion of Type II string amplitudes at genus-one is a power series in space-time derivatives with coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet torus. These modular functions are associated with world-sheet vacuum Feynman diagrams and given by multiple sums over the discrete momenta on the torus. In this paper we exhibit exact differential and algebraic relations for a certain infinite class of such modular functions by showing that they satisfy Laplace eigenvalue equations with inhomogeneous terms that are polynomial in non-holomorphic Eisenstein series. Furthermore, we argue that the set of modular functions that contribute to the coefficients of interactions up to order are linear sums of functions in this class and quadratic polynomials in Eisenstein series and odd Riemann zeta values. Integration over the complex structure results in coefficients of the low energy expansion that are rational numbers multiplying monomials in odd Riemann zeta values.

  9. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, W.; Heath, Garvin; Sandor, Debra

    2013-04-01

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect tomore » four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.« less

  10. Analyzing Traditional Medical Practitioners' Information-Seeking Behaviour Using Taylor's Information-Use Environment Model

    ERIC Educational Resources Information Center

    Olatokun, Wole Michael; Ajagbe, Enitan

    2010-01-01

    This survey-based study examined the information-seeking behaviour of traditional medical practitioners using Taylor's information use model. Respondents comprised all 160 traditional medical practitioners that treat sickle cell anaemia. Data were collected using an interviewer-administered, structured questionnaire. Frequency and percentage…

  11. Elimination of Gravity Influence on Flame Propagation Via Enhancement of the Saffman-Taylor Instability

    NASA Technical Reports Server (NTRS)

    Aldredge, R. C.

    2003-01-01

    In this analytical work the influence of the Saffman-Taylor instability on flame propagation is formulated for computational investigation. Specifically, it is of interest to examine the influence of this instability as a potential means of eliminating the effect of gravitational acceleration on the development of thermoacoustic instability. Earlier experimental investigations of thermoacoustic instability employed tubes of large circular or annular cross-section, such that neither heat loss nor viscosity at the burner walls was of significant importance in influencing flame behavior. However, it has been demonstrated recently that flames propagating between closely spaced walls, may be subject to long-wavelength wrinkling associated with the Saffman-Taylor instability, known to be relevant when a less-viscous fluid pushes a more-viscous fluid through a porous medium or between two closely spaced walls.

  12. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem

    NASA Astrophysics Data System (ADS)

    Ramaprabhu, P.; Dimonte, Guy; Young, Yuan-Nan; Calder, A. C.; Fryxell, B.

    2006-12-01

    We report on the behavior of a single-wavelength Rayleigh-Taylor flow at late times. The calculations were performed in a long square duct (λ×λ×8λ) , using four different numerical simulations. In contradiction with potential flow theories that predict a constant terminal velocity, the single-wavelength Rayleigh-Taylor problem exhibits late-time acceleration. The onset of acceleration occurs as the bubble penetration depth exceeds the diameter of bubbles, and is observed for low and moderate density differences. Based on our simulations, we provide a phenomenological description of the observed acceleration, and ascribe this behavior to the formation of Kelvin-Helmholtz vortices on the bubble-spike interface that diminish the friction drag, while the associated induced flow propels the bubbles forward. For large density ratios, the formation of secondary instabilities is suppressed, and the bubbles remain terminal consistent with potential flow models.

  13. Pattern selection and tip perturbations in the Saffman-Taylor problem

    NASA Technical Reports Server (NTRS)

    Hong, D. C.; Langer, J. S.

    1987-01-01

    An analytic approach to the Saffman-Taylor problem of predicting the width of a viscous finger in a Hele-Shaw cell is presented. The first purpose is to provide a systematic description of the way in which the singular perturbation introduced by capillary forces leads to a solvability mechanism for pattern selection. It is then shown how recent experimental observations by Couder et al. (1986) may be interpreted in terms suggested by this mechanism.

  14. Quantifying urban growth patterns in Hanoi using landscape expansion modes and time series spatial metrics.

    PubMed

    Nong, Duong H; Lepczyk, Christopher A; Miura, Tomoaki; Fox, Jefferson M

    2018-01-01

    Urbanization has been driven by various social, economic, and political factors around the world for centuries. Because urbanization continues unabated in many places, it is crucial to understand patterns of urbanization and their potential ecological and environmental impacts. Given this need, the objectives of our study were to quantify urban growth rates, growth modes, and resultant changes in the landscape pattern of urbanization in Hanoi, Vietnam from 1993 to 2010 and to evaluate the extent to which the process of urban growth in Hanoi conformed to the diffusion-coalescence theory. We analyzed the spatiotemporal patterns and dynamics of the built-up land in Hanoi using landscape expansion modes, spatial metrics, and a gradient approach. Urbanization was most pronounced in the periods of 2001-2006 and 2006-2010 at a distance of 10 to 35 km around the urban center. Over the 17 year period urban expansion in Hanoi was dominated by infilling and edge expansion growth modes. Our findings support the diffusion-coalescence theory of urbanization. The shift of the urban growth areas over time and the dynamic nature of the spatial metrics revealed important information about our understanding of the urban growth process and cycle. Furthermore, our findings can be used to evaluate urban planning policies and aid in urbanization issues in rapidly urbanizing countries.

  15. Quantifying urban growth patterns in Hanoi using landscape expansion modes and time series spatial metrics

    PubMed Central

    Lepczyk, Christopher A.; Miura, Tomoaki; Fox, Jefferson M.

    2018-01-01

    Urbanization has been driven by various social, economic, and political factors around the world for centuries. Because urbanization continues unabated in many places, it is crucial to understand patterns of urbanization and their potential ecological and environmental impacts. Given this need, the objectives of our study were to quantify urban growth rates, growth modes, and resultant changes in the landscape pattern of urbanization in Hanoi, Vietnam from 1993 to 2010 and to evaluate the extent to which the process of urban growth in Hanoi conformed to the diffusion-coalescence theory. We analyzed the spatiotemporal patterns and dynamics of the built-up land in Hanoi using landscape expansion modes, spatial metrics, and a gradient approach. Urbanization was most pronounced in the periods of 2001–2006 and 2006–2010 at a distance of 10 to 35 km around the urban center. Over the 17 year period urban expansion in Hanoi was dominated by infilling and edge expansion growth modes. Our findings support the diffusion-coalescence theory of urbanization. The shift of the urban growth areas over time and the dynamic nature of the spatial metrics revealed important information about our understanding of the urban growth process and cycle. Furthermore, our findings can be used to evaluate urban planning policies and aid in urbanization issues in rapidly urbanizing countries. PMID:29734346

  16. A double expansion method for the frequency response of finite-length beams with periodic parameters

    NASA Astrophysics Data System (ADS)

    Ying, Z. G.; Ni, Y. Q.

    2017-03-01

    A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response

  17. Asymptotic expansions for 2D symmetrical laminar wakes

    NASA Astrophysics Data System (ADS)

    Belan, Marco; Tordella, Daniela

    1999-11-01

    An extension of the well known asymptotic representation of the 2D laminar incompressible wake past a symmetrical body is presented. Using the thin free shear layer approximation we determined solutions in terms of infinite asymptotic expansions. These are power series of the streamwise space variable with fractional negative coefficients. The general n-th order term has been analytically established. Through analysis of the behaviour of the same expansions inserted into the Navier-Stokes equations, we verified the self-consistency of the approximation showing that at the third order the correction due to pressure variations identically vanishes while the contribution of the longitudinal diffusion is still two-three order of magnitude smaller than that of the transversal diffusion, depending on Re. When the procedure is applied to the Navier-Stokes equations, we showed that further mathematical difficulties do not arise. Where opportune one may thus easily shift to the complete model. Through a spatial multiscaling approach, a brief account on the stability properties of these expansions as representing the non parallel basic flow of 2D wakes will be given.

  18. The World of Barilla Taylor: Bringing History to Life through Primary Sources.

    ERIC Educational Resources Information Center

    Stearns, Liza

    1997-01-01

    Presents a lesson plan using material from a primary source-based curriculum kit titled "The World of Barilla Taylor." The kit uses personal letters, maps, hospital and work records, and other primary sources to document the life of a young woman working in the textile mills in 19th-century Massachusetts. (MJP)

  19. Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow

    NASA Astrophysics Data System (ADS)

    Cagney, Neil; Balabani, Stavroula

    2017-11-01

    Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.

  20. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    NASA Astrophysics Data System (ADS)

    Duffield, Wendell A.; Ruiz, Joaquin

    1992-04-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the

  1. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1992-01-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the

  2. Expansion analyses of strategic petroleum reserve in Bayou Choctaw : revised locations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehgartner, Brian L.; Park, Byoung Yoon

    2010-11-01

    This report summarizes a series of three-dimensional simulations for the Bayou Choctaw Strategic Petroleum Reserve. The U.S. Department of Energy plans to leach two new caverns and convert one of the existing caverns within the Bayou Choctaw salt dome to expand its petroleum reserve storage capacity. An existing finite element mesh from previous analyses is modified by changing the locations of two caverns. The structural integrity of the three expansion caverns and the interaction between all the caverns in the dome are investigated. The impacts of the expansion on underground creep closure, surface subsidence, infrastructure, and well integrity are quantified.more » Two scenarios were used for the duration and timing of workover conditions where wellhead pressures are temporarily reduced to atmospheric pressure. The three expansion caverns are predicted to be structurally stable against tensile failure for both scenarios. Dilatant failure is not expected within the vicinity of the expansion caverns. Damage to surface structures is not predicted and there is not a marked increase in surface strains due to the presence of the three expansion caverns. The wells into the caverns should not undergo yield. The results show that from a structural viewpoint, the locations of the two newly proposed expansion caverns are acceptable, and all three expansion caverns can be safely constructed and operated.« less

  3. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauer, J.P.; Verdon, C.P.; Meyerhofer, D.D.

    1997-04-01

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5{times}10{sup 14}W/cm{sup 2}. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4{percent}{endash}7{percent} over a 600-{mu}m-diam region defined by the 90{percent} intensity contour. The temporal growth of the modulation in optical depth was measured usingmore » through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-{mu}m and 60-{mu}m wavelength perturbations was found to be in good agreement with {ital ORCHID} simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-{mu}m-thick polystyrene foam buffer layer resulted in reduced growth of the 31-{mu}m perturbation and essentially unchanged growth for the 60-{mu}m case when compared to targets without foam. {copyright} {ital 1997 American Institute of Physics.}« less

  4. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauer, J. P.; Verdon, C. P.; Meyerhofer, D. D.

    1997-04-15

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600-{mu}m-diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measuredmore » using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-{mu}m and 60-{mu}m wavelength perturbations was found to be in good agreement with ORCHID simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-{mu}m-thick polystyrene foam buffer layer resulted in reduced growth of the 31-{mu}m perturbation and essentially unchanged growth for the 60-{mu}m case when compared to targets without foam.« less

  5. Viscous Rayleigh-Taylor instability in spherical geometry

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2016-02-01

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955), 10.1093/qjmam/8.1.1] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer a somewhat improved one. A third DR, based on transforming a planar DR into a spherical one, suffers no unphysical predictions and compares reasonably well with the exact work of Chandrasekhar and a more recent numerical analysis of the problem [Terrones and Carrara, Phys. Fluids 27, 054105 (2015), 10.1063/1.4921648].

  6. Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Leclercq, Colin; Nguyen, Florian; Kerswell, Rich R.

    2016-10-01

    The "Rayleigh line" μ =η2 , where μ =Ωo/Ωi and η =ri/ro are respectively the rotation and radius ratios between inner (subscript i ) and outer (subscript o ) cylinders, is regarded as marking the limit of centrifugal instability (CI) in unstratified inviscid Taylor-Couette flow, for both axisymmetric and nonaxisymmetric modes. Nonaxisymmetric stratorotational instability (SRI) is known to set in for anticyclonic rotation ratios beyond that line, i.e., η2<μ <1 for axially stably stratified Taylor-Couette flow, but the competition between CI and SRI in the range μ <η2 has not yet been addressed. In this paper, we establish continuous connections between the two instabilities at finite Reynolds number Re, as previously suggested by Le Bars and Le Gal [Phys. Rev. Lett. 99, 064502 (2007), 10.1103/PhysRevLett.99.064502], making them indistinguishable at onset. Both instabilities are also continuously connected to the radiative instability at finite Re. These results demonstrate the complex impact viscosity has on the linear stability properties of this flow. Several other qualitative differences with inviscid theory were found, among which are the instability of a nonaxisymmetric mode localized at the outer cylinder without stratification and the instability of a mode propagating against the inner cylinder rotation with stratification. The combination of viscosity and stratification can also lead to a "collision" between (axisymmetric) Taylor vortex branches, causing the axisymmetric oscillatory state already observed in past experiments. Perhaps more surprising is the instability of a centrifugal-like helical mode beyond the Rayleigh line, caused by the joint effects of stratification and viscosity. The threshold μ =η2 seems to remain, however, an impassable instability limit for axisymmetric modes, regardless of stratification, viscosity, and even disturbance amplitude.

  7. Simulating the Rayleigh-Taylor instability with the Ising model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, Justin R.; Elliott, James B.

    2011-08-26

    The Ising model, implemented with the Metropolis algorithm and Kawasaki dynamics, makes a system with its own physics, distinct from the real world. These physics are sophisticated enough to model behavior similar to the Rayleigh-Taylor instability and by better understanding these physics, we can learn how to modify the system to better re ect reality. For example, we could add a v x and a v y to each spin and modify the exchange rules to incorporate them, possibly using two body scattering laws to construct a more realistic system.

  8. Photographic copy of architectural drawings for Building 4315: Taylor & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural drawings for Building 4315: Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. Muroc ESA 210-50 and 210-44, Military Construction: Muroc Flight Test Base, Muroc, California, Utility Yard & Shops: Carpenter & Paint Shop, Utility Shop & Lavatory, Plan & Elevations, Sheet No. 4 of 8, May 1945. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Utility & Paint Shop, Second & E Streets, Boron, Kern County, CA

  9. Eisenstein series for infinite-dimensional U-duality groups

    NASA Astrophysics Data System (ADS)

    Fleig, Philipp; Kleinschmidt, Axel

    2012-06-01

    We consider Eisenstein series appearing as coefficients of curvature corrections in the low-energy expansion of type II string theory four-graviton scattering amplitudes. We define these Eisenstein series over all groups in the E n series of string duality groups, and in particular for the infinite-dimensional Kac-Moody groups E 9, E 10 and E 11. We show that, remarkably, the so-called constant term of Kac-Moody-Eisenstein series contains only a finite number of terms for particular choices of a parameter appearing in the definition of the series. This resonates with the idea that the constant term of the Eisenstein series encodes perturbative string corrections in BPS-protected sectors allowing only a finite number of corrections. We underpin our findings with an extensive discussion of physical degeneration limits in D < 3 space-time dimensions.

  10. Relationships between elastic anisotropy and thermal expansion in A 2Mo 3O 12 materials

    DOE PAGES

    Romao, Carl P.; Donegan, S. P.; Zwanziger, J. W.; ...

    2016-10-24

    Here, we report calculated elastic tensors, axial Grüneisen parameters, and thermal stress distributions in Al 2Mo 3O 12, ZrMgMo 3O 12, Sc 2Mo 3O 12, and Y 2Mo 3O 12, a series of isomorphic materials for which the coefficients of thermal expansion range from low-positive to negative. Thermal stress in polycrystalline materials arises from interactions between thermal expansion and mechanical properties, and both can be highly anisotropic. Thermal expansion anisotropy was found to be correlated with elastic anisotropy: axes with negative thermal expansion were less compliant. Calculations of axial Grüneisen parameters revealed that the thermal expansion anisotropy in these materialsmore » is in part due to the Poisson effect. Models of thermal stress due to thermal expansion anisotropy in polycrystals following cooling showed thermal stresses of sufficient magnitude to cause microcracking in all cases. The thermal expansion anisotropy was found to couple to elastic anisotropy, decreasing the bulk coefficient of thermal expansion and leading to lognormal extremes of the thermal stress distributions.« less

  11. Relationships between elastic anisotropy and thermal expansion in A 2Mo 3O 12 materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romao, Carl P.; Donegan, S. P.; Zwanziger, J. W.

    Here, we report calculated elastic tensors, axial Grüneisen parameters, and thermal stress distributions in Al 2Mo 3O 12, ZrMgMo 3O 12, Sc 2Mo 3O 12, and Y 2Mo 3O 12, a series of isomorphic materials for which the coefficients of thermal expansion range from low-positive to negative. Thermal stress in polycrystalline materials arises from interactions between thermal expansion and mechanical properties, and both can be highly anisotropic. Thermal expansion anisotropy was found to be correlated with elastic anisotropy: axes with negative thermal expansion were less compliant. Calculations of axial Grüneisen parameters revealed that the thermal expansion anisotropy in these materialsmore » is in part due to the Poisson effect. Models of thermal stress due to thermal expansion anisotropy in polycrystals following cooling showed thermal stresses of sufficient magnitude to cause microcracking in all cases. The thermal expansion anisotropy was found to couple to elastic anisotropy, decreasing the bulk coefficient of thermal expansion and leading to lognormal extremes of the thermal stress distributions.« less

  12. A method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1971-01-01

    A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

  13. SCF and CI calculations of the dipole moment function of ozone. [Self-Consistent Field and Configuration-Interaction

    NASA Technical Reports Server (NTRS)

    Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.

    1979-01-01

    The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.

  14. A State Event Detection Algorithm for Numerically Simulating Hybrid Systems with Model Singularities

    DTIC Science & Technology

    2007-01-01

    the case of non- constant step sizes. Therefore the event dynamics after the predictor and corrector phases are, respectively, gpk +1 = g( xk + hk+1{ m...the Extrapolation Polynomial Using a Taylor series expansion of the predicted event function eq.(6) gpk +1 = gk + hk+1 dgp dt ∣∣∣∣ (x,t)=(xk,tk) + h2k...1 2! d2gp dt2 ∣∣∣∣ (x,t)=(xk,tk) + . . . , (8) we can determine the value of gpk +1 as a function of the, yet undetermined, step size hk+1. Recalling

  15. Program for the solution of multipoint boundary value problems of quasilinear differential equations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.

  16. 216-B-3 expansion ponds closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steammore » condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.« less

  17. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamojjala, Krishna; Lacy, Jeffrey; Chu, Henry S.

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayenta’s various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimenmore » are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.« less

  18. Shock Corrugation by Rayleigh-Taylor Instability in Gamma-Ray Burst Afterglow Jets

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2014-08-01

    Afterglow jets are Rayleigh-Taylor unstable and therefore turbulent during the early part of their deceleration. There are also several processes which actively cool the jet. In this Letter, we demonstrate that if cooling significantly increases the compressibility of the flow, the turbulence collides with the forward shock, destabilizing and corrugating it. In this case, the forward shock is turbulent enough to produce the magnetic fields responsible for synchrotron emission via small-scale turbulent dynamo. We calculate light curves assuming the magnetic field is in energy equipartition with the turbulent kinetic energy and discover that dynamic magnetic fields are well approximated by a constant magnetic-to-thermal energy ratio of 1%, though there is a sizeable delay in the time of peak flux as the magnetic field turns on only after the turbulence has activated. The reverse shock is found to be significantly more magnetized than the forward shock, with a magnetic-to-thermal energy ratio of the order of 10%. This work motivates future Rayleigh-Taylor calculations using more physical cooling models.

  19. The Northwest Territories. Reference Series No. 35.

    ERIC Educational Resources Information Center

    Department of External Affairs, Ottawa (Ontario).

    This booklet, one of a series featuring the Canadian provinces, presents a brief overview of Northwest Territories and is suitable for teacher reference or student reading. Separate sections discuss geography, history and people, land claims, the economy, the government, and recreation and the arts. Specific topics include the expansive size and…

  20. Experimental Evidence for Magnetorotational Instability in a Taylor-Couette Flow under the Influence of a Helical Magnetic Field

    NASA Astrophysics Data System (ADS)

    Stefani, Frank; Gundrum, Thomas; Gerbeth, Gunter; Rüdiger, Günther; Schultz, Manfred; Szklarski, Jacek; Hollerbach, Rainer

    2006-11-01

    A recent Letter [R. Hollerbach and G. Rüdiger, Phys. Rev. Lett. 95, 124501 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.124501] has shown that the threshold for the onset of the magnetorotational instability in a Taylor-Couette flow is dramatically reduced if both axial and azimuthal magnetic fields are imposed. In agreement with this prediction, we present results of a Taylor-Couette experiment with the liquid metal alloy GaInSn, showing evidence for the existence of the magnetorotational instability at Reynolds numbers of order 1000 and Hartmann numbers of order 10.

  1. Interaction between ground water and surface water in Taylor Slough and vicinity, Everglades National Park, South Florida; study methods and appendixes

    USGS Publications Warehouse

    Harvey, Judson W.; Jackson, J.M.; Mooney, R.H.; Choi, Jungyill

    2000-01-01

    The data presented in this report are products of an investigation that quantified interactions between ground water and surface water in Taylor Slough in Everglades National Park. Determining the extent of hydrologic interactions between wetland surface water and ground water in Taylor Slough is important because the balance of freshwater flow in the lower part of the Slough is uncertain. Although freshwater flows through Taylor Slough are quite small in comparison to Shark Slough (the larger of the two major sloughs in Everglades National Park), flows through Taylor Slough are especially important to the ecology of estuarine mangrove embayments of northeastern Florida Bay. Also, wetland and ground- water interactions must be quantified if their role in affecting water quality is to be determined. In order to define basic hydrologic characteristics of the wetland, depth of wetland peat was mapped, and hydraulic conductivity and vertical hydraulic gradients in peat were determined. During specific time periods representing both wet and dry conditions in the area, the distribution of major ions, nutrients, and water stable isotopes throughout the slough were determined. The purpose of chemical measurements was to identify an environmental tracer could be used to quantify ground-water discharge.

  2. Ultraprecise thermal expansion measurements of seven low expansion materials

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Jacobs, S. F.

    1976-01-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  3. Ultraprecise thermal expansion measurements of seven low expansion materials.

    PubMed

    Berthold Iii, J W; Jacobs, S F

    1976-10-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 degrees C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  4. Gordan—Capelli series in superalgebras

    PubMed Central

    Brini, Andrea; Palareti, Aldopaolo; Teolis, Antonio G. B.

    1988-01-01

    We derive two Gordan—Capelli series for the supersymmetric algebra of the tensor product of two [unk]2-graded [unk]-vector spaces U and V, being [unk] a field of characteristic zero. These expansions yield complete decompositions of the supersymmetric algebra regarded as a pl(U)- and a pl(V)- module, where pl(U) and pl(V) are the general linear Lie superalgebras of U and V, respectively. PMID:16593911

  5. Replica Resummation of the Baker-Campbell-Hausdorff Series

    NASA Astrophysics Data System (ADS)

    Vajna, Szabolcs; Klobas, Katja; Prosen, Tomaž; Polkovnikov, Anatoli

    2018-05-01

    We developed a novel perturbative expansion based on the replica trick for the Floquet Hamiltonian governing the dynamics of periodically kicked systems where the kick strength is the small parameter. The expansion is formally equivalent to an infinite resummation of the Baker-Campbell-Hausdorff series in the undriven (nonperturbed) Hamiltonian, while considering terms up to a finite order in the kick strength. As an application of the replica expansion, we analyze an Ising spin 1 /2 chain periodically kicked with a magnetic field with a strength h , which has both longitudinal and transverse components. We demonstrate that even away from the regime of high frequency driving, if there is heating, its rate is nonperturbative in the kick strength, bounded from above by a stretched exponential: e-const h-1 /2 . This guarantees the existence of a very long prethermal regime, where the dynamics is governed by the Floquet Hamiltonian obtained from the replica expansion.

  6. Determination of the expansion of the potential of the earth's normal gravitational field

    NASA Astrophysics Data System (ADS)

    Kochiev, A. A.

    The potential of the generalized problem of 2N fixed centers is expanded in a polynomial and Legendre function series. Formulas are derived for the expansion coefficients, and the disturbing function of the problem is constructed in an explicit form.

  7. Volterra series truncation and kernel estimation of nonlinear systems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Billings, S. A.

    2017-02-01

    The Volterra series model is a direct generalisation of the linear convolution integral and is capable of displaying the intrinsic features of a nonlinear system in a simple and easy to apply way. Nonlinear system analysis using Volterra series is normally based on the analysis of its frequency-domain kernels and a truncated description. But the estimation of Volterra kernels and the truncation of Volterra series are coupled with each other. In this paper, a novel complex-valued orthogonal least squares algorithm is developed. The new algorithm provides a powerful tool to determine which terms should be included in the Volterra series expansion and to estimate the kernels and thus solves the two problems all together. The estimated results are compared with those determined using the analytical expressions of the kernels to validate the method. To further evaluate the effectiveness of the method, the physical parameters of the system are also extracted from the measured kernels. Simulation studies demonstrates that the new approach not only can truncate the Volterra series expansion and estimate the kernels of a weakly nonlinear system, but also can indicate the applicability of the Volterra series analysis in a severely nonlinear system case.

  8. A fixed mass method for the Kramers-Moyal expansion--application to time series with outliers.

    PubMed

    Petelczyc, M; Żebrowski, J J; Orłowska-Baranowska, E

    2015-03-01

    Extraction of stochastic and deterministic components from empirical data-necessary for the reconstruction of the dynamics of the system-is discussed. We determine both components using the Kramers-Moyal expansion. In our earlier papers, we obtained large fluctuations in the magnitude of both terms for rare or extreme valued events in the data. Calculations for such events are burdened by an unsatisfactory quality of the statistics. In general, the method is sensitive to the binning procedure applied for the construction of histograms. Instead of the commonly used constant width of bins, we use here a constant number of counts for each bin. This approach-the fixed mass method-allows to include in the calculation events, which do not yield satisfactory statistics in the fixed bin width method. The method developed is general. To demonstrate its properties, here, we present the modified Kramers-Moyal expansion method and discuss its properties by the application of the fixed mass method to four representative heart rate variability recordings with different numbers of ectopic beats. These beats may be rare events as well as outlying, i.e., very small or very large heart cycle lengths. The properties of ectopic beats are important not only for medical diagnostic purposes but the occurrence of ectopic beats is a general example of the kind of variability that occurs in a signal with outliers. To show that the method is general, we also present results for two examples of data from very different areas of science: daily temperatures at a large European city and recordings of traffics on a highway. Using the fixed mass method, to assess the dynamics leading to the outlying events we studied the occurrence of higher order terms of the Kramers-Moyal expansion in the recordings. We found that the higher order terms of the Kramers-Moyal expansion are negligible for heart rate variability. This finding opens the possibility of the application of the Langevin equation to the

  9. 2. Photographic copy of architectural elevations for Building 4505, Taylor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photographic copy of architectural elevations for Building 4505, Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. A(9-10), Military Construction: Materiel Command Flight Test Base, Muroc, California, Hangar and Auxiliary Buildings: Hangar Type P-A, Exterior Elevations, Sheet No. 18, March 1944. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA

  10. The fifth-order partial differential equation for the description of the α + β Fermi-Pasta-Ulam model

    NASA Astrophysics Data System (ADS)

    Kudryashov, Nikolay A.; Volkov, Alexandr K.

    2017-01-01

    We study a new nonlinear partial differential equation of the fifth order for the description of perturbations in the Fermi-Pasta-Ulam mass chain. This fifth-order equation is an expansion of the Gardner equation for the description of the Fermi-Pasta-Ulam model. We use the potential of interaction between neighbouring masses with both quadratic and cubic terms. The equation is derived using the continuous limit. Unlike the previous works, we take into account higher order terms in the Taylor series expansions. We investigate the equation using the Painlevé approach. We show that the equation does not pass the Painlevé test and can not be integrated by the inverse scattering transform. We use the logistic function method and the Laurent expansion method to find travelling wave solutions of the fifth-order equation. We use the pseudospectral method for the numerical simulation of wave processes, described by the equation.

  11. Characterization of demographic expansions from pairwise comparisons of linked microsatellite haplotypes.

    PubMed

    Navascués, Miguel; Hardy, Olivier J; Burgarella, Concetta

    2009-03-01

    This work extends the methods of demographic inference based on the distribution of pairwise genetic differences between individuals (mismatch distribution) to the case of linked microsatellite data. Population genetics theory describes the distribution of mutations among a sample of genes under different demographic scenarios. However, the actual number of mutations can rarely be deduced from DNA polymorphisms. The inclusion of mutation models in theoretical predictions can improve the performance of statistical methods. We have developed a maximum-pseudolikelihood estimator for the parameters that characterize a demographic expansion for a series of linked loci evolving under a stepwise mutation model. Those loci would correspond to DNA polymorphisms of linked microsatellites (such as those found on the Y chromosome or the chloroplast genome). The proposed method was evaluated with simulated data sets and with a data set of chloroplast microsatellites that showed signal for demographic expansion in a previous study. The results show that inclusion of a mutational model in the analysis improves the estimates of the age of expansion in the case of older expansions.

  12. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  13. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE PAGES

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.; ...

    2018-04-19

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  14. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Metzler, N.; Oh, J.

    2012-10-01

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. We observed a transition between two qualitatively distinct types of perturbation evolution: jet formation at low shock pressure and areal mass oscillations at high shock pressure, which correspond respectively to high and low values of effective adiabatic index. The experiments were done on the KrF Nike laser facility with laser wavelength 248 nm and a 4 ns pulse. We varied the number of beams overlapped on the plastic target to change the ablative pressure driving the shock wave through the target: 36 beams produce pressure of ˜8 Mbar, whereas a single beam irradiation reduces the pressure to ˜0.7 Mbar. With the help of side-on monochromatic x-ray imaging, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed at sub-megabar shock pressure. As the shock pressure exceeds 1 Mbar, instead of jet formation an oscillatory rippled expansion wave is observed, followed by the ``feedout'' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  15. Rayleigh-Taylor instability in accelerated elastic-solid slabs

    NASA Astrophysics Data System (ADS)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-12-01

    We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ1<ρ2 . It extends previous results for Atwood number AT=1 [B. J. Plohr and D. H. Sharp, Z. Angew. Math. Phys. 49, 786 (1998), 10.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .

  16. A New NPGS Special Collection: Norman L. Taylor University of Kentucky Clover Collection

    USDA-ARS?s Scientific Manuscript database

    Dr. Norman L. Taylor was a world renowned Professor and clover breeder in the Department of Plant and Soil Sciences at the University of Kentucky for 48 years. Following retirement in 2001, he continued working on clovers up until his death in 2010. Dr. Taylor’s entire career was devoted to enhancin...

  17. Critical and Griffiths-McCoy singularities in quantum Ising spin glasses on d-dimensional hypercubic lattices: A series expansion study.

    PubMed

    Singh, R R P; Young, A P

    2017-08-01

    We study the ±J transverse-field Ising spin-glass model at zero temperature on d-dimensional hypercubic lattices and in the Sherrington-Kirkpatrick (SK) model, by series expansions around the strong-field limit. In the SK model and in high dimensions our calculated critical properties are in excellent agreement with the exact mean-field results, surprisingly even down to dimension d=6, which is below the upper critical dimension of d=8. In contrast, at lower dimensions we find a rich singular behavior consisting of critical and Griffiths-McCoy singularities. The divergence of the equal-time structure factor allows us to locate the critical coupling where the correlation length diverges, implying the onset of a thermodynamic phase transition. We find that the spin-glass susceptibility as well as various power moments of the local susceptibility become singular in the paramagnetic phase before the critical point. Griffiths-McCoy singularities are very strong in two dimensions but decrease rapidly as the dimension increases. We present evidence that high enough powers of the local susceptibility may become singular at the pure-system critical point.

  18. Critical and Griffiths-McCoy singularities in quantum Ising spin glasses on d -dimensional hypercubic lattices: A series expansion study

    NASA Astrophysics Data System (ADS)

    Singh, R. R. P.; Young, A. P.

    2017-08-01

    We study the ±J transverse-field Ising spin-glass model at zero temperature on d -dimensional hypercubic lattices and in the Sherrington-Kirkpatrick (SK) model, by series expansions around the strong-field limit. In the SK model and in high dimensions our calculated critical properties are in excellent agreement with the exact mean-field results, surprisingly even down to dimension d =6 , which is below the upper critical dimension of d =8 . In contrast, at lower dimensions we find a rich singular behavior consisting of critical and Griffiths-McCoy singularities. The divergence of the equal-time structure factor allows us to locate the critical coupling where the correlation length diverges, implying the onset of a thermodynamic phase transition. We find that the spin-glass susceptibility as well as various power moments of the local susceptibility become singular in the paramagnetic phase before the critical point. Griffiths-McCoy singularities are very strong in two dimensions but decrease rapidly as the dimension increases. We present evidence that high enough powers of the local susceptibility may become singular at the pure-system critical point.

  19. Magnus expansion method for two-level atom interacting with few-cycle pulse

    NASA Astrophysics Data System (ADS)

    Begzjav, T.; Ben-Benjamin, J. S.; Eleuch, H.; Nessler, R.; Rostovtsev, Y.; Shchedrin, G.

    2018-06-01

    Using the Magnus expansion to the fourth order, we obtain analytic expressions for the atomic state of a two-level system driven by a laser pulse of arbitrary shape with small pulse area. We also determine the limitation of our obtained formulas due to limited range of convergence of the Magnus series. We compare our method to the recently developed method of Rostovtsev et al. (PRA 2009, 79, 063833) for several detunings. Our analysis shows that our technique based on the Magnus expansion can be used as a complementary method to the one in PRA 2009.

  20. Two-body potential model based on cosine series expansion for ionic materials

    DOE PAGES

    Oda, Takuji; Weber, William J.; Tanigawa, Hisashi

    2015-09-23

    There is a method to construct a two-body potential model for ionic materials with a Fourier series basis and we examine it. For this method, the coefficients of cosine basis functions are uniquely determined by solving simultaneous linear equations to minimize the sum of weighted mean square errors in energy, force and stress, where first-principles calculation results are used as the reference data. As a validation test of the method, potential models for magnesium oxide are constructed. The mean square errors appropriately converge with respect to the truncation of the cosine series. This result mathematically indicates that the constructed potentialmore » model is sufficiently close to the one that is achieved with the non-truncated Fourier series and demonstrates that this potential virtually provides minimum error from the reference data within the two-body representation. The constructed potential models work appropriately in both molecular statics and dynamics simulations, especially if a two-step correction to revise errors expected in the reference data is performed, and the models clearly outperform two existing Buckingham potential models that were tested. Moreover, the good agreement over a broad range of energies and forces with first-principles calculations should enable the prediction of materials behavior away from equilibrium conditions, such as a system under irradiation.« less

  1. 1. Photographic copy of architectural plan for Building 4505, Taylor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photographic copy of architectural plan for Building 4505, Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. A(9-10), Military Construction: Materiel Command Flight Test Base, Muroc, California, Hangar and Auxiliary Buildings: Hangar Type P-A, Floor Plan & Roof Plan, Sheet No. 16, March 1944. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA

  2. Kato expansion in quantum canonical perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru

    2016-06-15

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  3. Simulations of Rayleigh Taylor Instabilities in the presence of a Strong Radiative shock

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Shvarts, Dov; Drake, R. P.

    2016-10-01

    Recent Supernova Rayleigh Taylor experiments on the National Ignition Facility (NIF) are relevant to the evolution of core-collapse supernovae in which red supergiant stars explode. Here we report simulations of these experiments using the CRASH code. The CRASH code, developed at the University of Michigan to design and analyze high-energy-density experiments, is an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction. We explore two cases, one in which the shock is strongly radiative, and another with negligible radiation. The experiments in all cases produced structures at embedded interfaces by the Rayleigh Taylor instability. The weaker shocked environment is cooler and the instability grows classically. The strongly radiative shock produces a warm environment near the instability, ablates the interface, and alters the growth. We compare the simulated results with the experimental data and attempt to explain the differences. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  4. The Gibbs Phenomenon for Series of Orthogonal Polynomials

    ERIC Educational Resources Information Center

    Fay, T. H.; Kloppers, P. Hendrik

    2006-01-01

    This note considers the four classes of orthogonal polynomials--Chebyshev, Hermite, Laguerre, Legendre--and investigates the Gibbs phenomenon at a jump discontinuity for the corresponding orthogonal polynomial series expansions. The perhaps unexpected thing is that the Gibbs constant that arises for each class of polynomials appears to be the same…

  5. High Expansion Foam for Protecting Large Volume Mission Critical Shipboard Spaces

    DTIC Science & Technology

    2009-01-01

    aqueous film - forming foam ( AFFF ) sprinklers designed only to combat Class B two-dimensional pool fires.1 The...Validation Tests, Series 1 – An Evaluation of Aqueous Film Foaming Foam ( AFFF ) Suppression Systems for Protection of LHA(R) Well Deck and Vehicle... firefighting system design. NRL further recognized that employing a traditional high expansion foam generator would impact shipboard

  6. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz

    1992-01-01

    For the numerical simulation of inhomogeneous turbulent flows, a method is developed for generating stochastic inflow boundary conditions with a prescribed power spectrum. Turbulence statistics from spatial simulations using this method with a low fluctuation Mach number are in excellent agreement with the experimental data, which validates the procedure. Turbulence statistics from spatial simulations are also compared to those from temporal simulations using Taylor's hypothesis. Statistics such as turbulence intensity, vorticity, and velocity derivative skewness compare favorably with the temporal simulation. However, the statistics of dilatation show a significant departure from those obtained in the temporal simulation. To directly check the applicability of Taylor's hypothesis, space-time correlations of fluctuations in velocity, vorticity, and dilatation are investigated. Convection velocities based on vorticity and velocity fluctuations are computed as functions of the spatial and temporal separations. The profile of the space-time correlation of dilatation fluctuations is explained via a wave propagation model.

  7. Numerical study of spherical Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Yang, R.-J.

    1989-01-01

    A new technique to simulate Taylor vortices in a spherical gap between a rotating inner sphere and a stationary outer one has been developed and tested. Paths leading to zero-, one-, and two-vortex flows are designed heuristically. Fictitious symmetric boundaries near the equator are imposed, and the choice of the location of the fictitious boundaries is determined by either one- or two-vortex flow being stimulated. The imposition of one or two fictitious boundaries during the initial calculation generates the state suitable for one-or two-vortex flow to exist. After removing the fictitious boundaries, the flow settles down into its own attractor. Using this method, the three steady flow modes can be simulated by using a half domain. The technique can converge to desired flows very fast, and its results show excellent agreement with experimental ones.

  8. Rayleigh-Taylor instability in soft elastic layers

    NASA Astrophysics Data System (ADS)

    Riccobelli, D.; Ciarletta, P.

    2017-04-01

    This work investigates the morphological stability of a soft body composed of two heavy elastic layers attached to a rigid surface and subjected only to the bulk gravity force. Using theoretical and computational tools, we characterize the selection of different patterns as well as their nonlinear evolution, unveiling the interplay between elastic and geometric effects for their formation. Unlike similar gravity-induced shape transitions in fluids, such as the Rayleigh-Taylor instability, we prove that the nonlinear elastic effects saturate the dynamic instability of the bifurcated solutions, displaying a rich morphological diagram where both digitations and stable wrinkling can emerge. The results of this work provide important guidelines for the design of novel soft systems with tunable shapes, with several applications in engineering sciences. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  9. On skin expansion.

    PubMed

    Pamplona, Djenane C; Velloso, Raquel Q; Radwanski, Henrique N

    2014-01-01

    This article discusses skin expansion without considering cellular growth of the skin. An in vivo analysis was carried out that involved expansion at three different sites on one patient, allowing for the observation of the relaxation process. Those measurements were used to characterize the human skin of the thorax during the surgical process of skin expansion. A comparison between the in vivo results and the numerical finite elements model of the expansion was used to identify the material elastic parameters of the skin of the thorax of that patient. Delfino's constitutive equation was chosen to model the in vivo results. The skin is considered to be an isotropic, homogeneous, hyperelastic, and incompressible membrane. When the skin is extended, such as with expanders, the collagen fibers are also extended and cause stiffening in the skin, which results in increasing resistance to expansion or further stretching. We observed this phenomenon as an increase in the parameters as subsequent expansions continued. The number and shape of the skin expanders used in expansions were also studied, both mathematically and experimentally. The choice of the site where the expansion should be performed is discussed to enlighten problems that can lead to frustrated skin expansions. These results are very encouraging and provide insight into our understanding of the behavior of stretched skin by expansion. To our knowledge, this study has provided results that considerably improve our understanding of the behavior of human skin under expansion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A framework based on 2-D Taylor expansion for quantifying the impacts of subpixel reflectance variance and covariance on cloud optical thickness and effective radius retrievals based on the bispectral method

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Werner, F.; Cho, H.-M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, K.

    2016-06-01

    The bispectral method retrieves cloud optical thickness (τ) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near-infrared (VIS/NIR) band and the other in a shortwave infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring subpixel variations of cloud reflectances can lead to a significant bias in the retrieved τ and re. In the literature, the retrievals of τ and re are often assumed to be independent and considered separately when investigating the impact of subpixel cloud reflectance variations on the bispectral method. As a result, the impact on τ is contributed only by the subpixel variation of VIS/NIR band reflectance and the impact on re only by the subpixel variation of SWIR band reflectance. In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of subpixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the τ and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how subpixel cloud reflectance variations impact the τ and re retrievals based on the bispectral method. In particular, our framework provides a mathematical explanation of how the subpixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from Moderate Resolution Imaging Spectroradiometer. The predicted results based on our framework agree very well with the numerical simulations. Our

  11. A Framework Based on 2-D Taylor Expansion for Quantifying the Impacts of Subpixel Reflectance Variance and Covariance on Cloud Optical Thickness and Effective Radius Retrievals Based on the Bispectral Method

    NASA Technical Reports Server (NTRS)

    Zhang, Z.; Werner, F.; Cho, H.-M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, K.

    2016-01-01

    The bispectral method retrieves cloud optical thickness (t) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near-infrared (VIS/NIR) band and the other in a shortwave infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring subpixel variations of cloud reflectances can lead to a significant bias in the retrieved t and re. In the literature, the retrievals of t and re are often assumed to be independent and considered separately when investigating the impact of subpixel cloud reflectance variations on the bispectral method. As a result, the impact on t is contributed only by the subpixel variation of VIS/NIR band reflectance and the impact on re only by the subpixel variation of SWIR band reflectance. In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of subpixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the t and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how subpixel cloud reflectance variations impact the t and re retrievals based on the bispectral method. In particular, our framework provides a mathematical explanation of how the subpixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from Moderate Resolution Imaging Spectroradiometer. The predicted results based on our framework agree very well with the numerical simulations. Our

  12. Arbitrary-order corrections for finite-time drift and diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Anteneodo, C.; Riera, R.

    2009-09-01

    We address a standard class of diffusion processes with linear drift and quadratic diffusion coefficients. These contributions to dynamic equations can be directly drawn from data time series. However, real data are constrained to finite sampling rates and therefore it is crucial to establish a suitable mathematical description of the required finite-time corrections. Based on Itô-Taylor expansions, we present the exact corrections to the finite-time drift and diffusion coefficients. These results allow to reconstruct the real hidden coefficients from the empirical estimates. We also derive higher-order finite-time expressions for the third and fourth conditional moments that furnish extra theoretical checks for this class of diffusion models. The analytical predictions are compared with the numerical outcomes of representative artificial time series.

  13. Theoretical study on the dispersion curves of Lamb waves in piezoelectric-semiconductor sandwich plates GaAs-FGPM-AlAs: Legendre polynomial series expansion

    NASA Astrophysics Data System (ADS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar

    2017-06-01

    In this paper, the propagation of the Lamb waves in the GaAs-FGPM-AlAs sandwich plate is studied. Based on the orthogonal function, Legendre polynomial series expansion is applied along the thickness direction to obtain the Lamb dispersion curves. The convergence and accuracy of this polynomial method are discussed. In addition, the influences of the volume fraction p and thickness hFGPM of the FGPM middle layer on the Lamb dispersion curves are developed. The numerical results also show differences between the characteristics of Lamb dispersion curves in the sandwich plate for various gradient coefficients of the FGPM middle layer. In fact, if the volume fraction p increases the phase velocity will increases and the number of modes will decreases at a given frequency range. All the developments performed in this paper were implemented in Matlab software. The corresponding results presented in this work may have important applications in several industry areas and developing novel acoustic devices such as sensors, electromechanical transducers, actuators and filters.

  14. Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems

    NASA Technical Reports Server (NTRS)

    Zylka, Christian; Vojta, Guenter

    1993-01-01

    The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.

  15. Viscoelastic Taylor-Couette instability as analog of the magnetorotational instability.

    PubMed

    Bai, Yang; Crumeyrolle, Olivier; Mutabazi, Innocent

    2015-09-01

    A linear stability analysis and an experimental study of a viscoelastic Taylor-Couette flow corotating in the Keplerian ratio allow us to elucidate the analogy between the viscoelastic instability and the magnetorotational instability (MRI). A generalized Rayleigh criterion allows us to determine the potentially unstable zone to pure-elasticity-driven perturbations. Experiments with a viscoelastic polymer solution yield four modes: one pure-elasticity mode and three elastorotational instability (ERI) modes that represent the MRI-analog modes. The destabilization by the polymer viscosity is evidenced for the ERI modes.

  16. Defect-mediated turbulence in ribbons of viscoelastic Taylor-Couette flow.

    PubMed

    Latrache, Noureddine; Abcha, Nizar; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-04-01

    Transition to defect-mediated turbulence in the ribbon patterns observed in a viscoelastic Taylor-Couette flow is investigated when the rotation rate of the inner cylinder is increased while the outer cylinder is fixed. In four polymer solutions with different values of the elasticity number, the defects appear just above the onset of the ribbon pattern and trigger the appearance of disordered oscillations when the rotation rate is increased. The flow structure around the defects is determined and the statistical properties of these defects are analyzed in the framework of the complex Ginzburg-Landau equation.

  17. Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondic, L.; Shelley, M.J.; Palffy-Muhoray, P.

    We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid in a radial Hele-Shaw cell. Using Darcy{close_quote}s law generalized for non-Newtonian fluids, we perform simulations of the full dynamical problem. The simulations show that shear thinning significantly influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable agreement with a general linear stability analysis. {copyright} {ital 1998} {ital The American Physical Society}

  18. Payload Specialist Taylor Wang performs repairs on Drop Dynamics Module

    NASA Image and Video Library

    1985-05-01

    51B-03-035 (29 April-6 May 1985) --- Payload specialist Taylor G. Wang performs a repair task on the Drop Dynamics Module (DDM) in the Science Module aboard the Earth-orbiting Space Shuttle Challenger. The photo was taken with a 35mm camera. Dr. Wang is principal investigator for the first time-to-fly experiment, developed by his team at NASA?s Jet Propulsion Laboratory (JPL), Pasadena, California. This photo was among the first to be released by NASA upon return to Earth by the Spacelab 3 crew.

  19. An experimental study of the Rayleigh-Taylor instability critical wave length

    NASA Astrophysics Data System (ADS)

    Kong, Xujing; Wang, Youchun; Zhang, Shufei; Xu, Hongkun

    1992-06-01

    A physical model has been constructed to represent the condensate film pattern on a horizontal downward-facing surface with fins, which is based on visual observation in experiment. The results of analysis using this model confirms the validity of the critical wave length formula obtained from Rayleigh-Taylor stability analysis. This formula may be used as a criterion to design horizontal downward-facing surfaces with fins that can best destabilize the condensate film, thus enhancing condensation heat transfer.

  20. DSMC Simulations of High Mach Number Taylor-Couette Flow

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev

    2017-11-01

    The main focus of this work is to characterise the Taylor-Couette flow of an ideal gas between two coaxial cylinders at Mach number Ma =(Uw /√{ kbTw / m }) in the range 0.01 Taylor-Couette flow using DSMC method, wall slip in the temperature and the velocities are found to be significant. Slip occurs because the temperature/velocity of the molecules incident on the wall could be very different from that of the wall, even though the temperature/velocity of the reflected molecules is equal to that of the wall. Due to the high surface speed of the inner cylinder, significant heating of the gas is taking place. The gas temperature increases until the heat transfer to the surface equals the work done in moving the surface. The highest temperature is obtained near the moving surface of the inner cylinder at a radius of about (1.26 r1).

  1. The Taylor Creek Rhyolite of New Mexico: a rapidly emplaced field of lava domes and flows

    USGS Publications Warehouse

    Duffield, W.A.; Dalrymple, G.B.

    1990-01-01

    The Tertiary Taylor Creek Rhyolite of southwest New Mexico comprises at least 20 lava domes and flows. Each of the lavas was erupted from its own vent, and the vents are distributed throughout a 20 km by 50 km area. The volume of the rhyolite and genetically associated pyroclastic deposits is at least 100 km3 (denserock equivalent). The rhyolite contains 15%-35% quartz, sanidine, plagioclase, ??biotite, ??hornblende phenocrysts. Quartz and sanidine account for about 98% of the phenocrysts and are present in roughly equal amounts. With rare exceptions, the groundmass consists of intergrowths of fine-grained silica and alkali feldspar. Whole-rock major-element composition varies little, and the rhyolite is metaluminous to weakly peraluminous; mean SiO2 content is about 77.5??0.3%. Similarly, major-element compositions of the two feldsparphenocryst species also are nearly constant. However, whole-rock concentrations of some trace-elements vary as much as several hundred percent. Initial radiometric age determinations, all K-Ar and fission track, suggest that the rhyolite lava field grew during a period of at least 2 m.y. Subsequent 40Ar/39Ar ages indicate that the period of growth was no more than 100 000 years. The time-space-composition relations thus suggest that the Taylor Creek Rhyolite was erupted from a single magma reservoir whose average width was at least 30 km, comparable in size to several penecontemporaneous nearby calderas. However, this rhyolite apparently is not related to a caldera structure. Possibly, the Taylor Creek Phyolite magma body never became sufficiently volatile rich to produce a large-volume pyroclastic eruption and associated caldera collapse, but instead leaked repeatedly to feed many relatively small domes and flows. The new 40Ar/39Ar ages do not resolve preexisting unknown relative-age relations among the domes and flows of the lava field. Nonetheless, the indicated geologically brief period during which Taylor Creek Rhyolite magma was

  2. Application of the generalized Euler series transformation for calculation of vibration-rotation energy levels of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Kruglova, T. V.

    2004-01-01

    The detailed spectroscope information about highly excited molecules and radicals such us as H+3, H2, HI, H2O, CH2 is needed for a number of applications in the field of laser physics, astrophysics and chemistry. Studies of highly excited molecular vibration-rotation states face several problems connected with slowly convergence or even divergences of perturbation expansions. The physical reason for a perturbation expansion divergence is the large amplitude motion and strong vibration-rotation coupling. In this case one needs to use the special method of series summation. There were a number of papers devoted to this problem: papers 1-10 in the reference list are only example of studies on this topic. The present report is aimed at the application of GET method (Generalized Euler Transformation) to the diatomic molecule. Energy levels of a diatomic molecule is usually represented as Dunham series on rotational J(J+1) and vibrational (V+1/2) quantum numbers (within the perturbation approach). However, perturbation theory is not applicable for highly excited vibration-rotation states because the perturbation expansion in this case becomes divergent. As a consequence one need to use special method for the series summation. The Generalized Euler Transformation (GET) is known to be efficient method for summing of slowly convergent series, it was already used for solving of several quantum problems Refs.13 and 14. In this report the results of Euler transformation of diatomic molecule Dunham series are presented. It is shown that Dunham power series can be represented of functional series that is equivalent to its partial summation. It is also shown that transformed series has the butter convergent properties, than the initial series.

  3. Technical requirements for Na¹⁸F PET bone imaging of patients being treated using a Taylor spatial frame.

    PubMed

    Hatherly, Robert; Brolin, Fredrik; Oldner, Åsa; Sundin, Anders; Lundblad, Henrik; Maguire, Gerald Q; Jonsson, Cathrine; Jacobsson, Hans; Noz, Marilyn E

    2014-03-01

    Diagnosis of new bone growth in patients with compound tibia fractures or deformities treated using a Taylor spatial frame is difficult with conventional radiography because the frame obstructs the images and creates artifacts. The use of Na(18)F PET studies may help to eliminate this difficulty. Patients were positioned on the pallet of a clinical PET/CT scanner and made as comfortable as possible with their legs immobilized. One bed position covering the site of the fracture, including the Taylor spatial frame, was chosen for the study. A topogram was performed, as well as diagnostic and attenuation correction CT. The patients were given 2 MBq of Na(18)F per kilogram of body weight. A 45-min list-mode acquisition was performed starting at the time of injection, followed by a 5-min static acquisition 60 min after injection. The patients were examined 6 wk after the Taylor spatial frame had been applied and again at 3 mo to assess new bone growth. A list-mode reconstruction sequence of 1 × 1,800 and 1 × 2,700 s, as well as the 5-min static scan, allowed visualization of regional bone turnover. With Na(18)F PET/CT, it was possible to confirm regional bone turnover as a means of visualizing bone remodeling without the interference of artifacts from the Taylor spatial frame. Furthermore, dynamic list-mode acquisition allowed different sequences to be performed, enabling, for example, visualization of tracer transport from blood to the fracture site.

  4. Thermophysical Properties of Matter - the TPRC Data Series. Volume 13. Thermal Expansion - Nonmetallic Solids

    DTIC Science & Technology

    1977-01-01

    topography of the state of knowledge on the thermal expansion of nonmetallic solids. We believe there is also much food for reflec- West Lafayette...34 Lithium Silicates ......... 713 209 Magnesium Metasilicate MgSiO. .. ......... 715 210 Magnesium Orthosilicate Mg2 SiO . . . . . . . . . . . . 718 211...Antiferromagnetism of Praseodymium," Phys. Rev. Letters, 12(20), 553-5, 1964. 66. Goode, J.M., "Phase Transition Temperature of Polonium ,"J. Chem. Phys., 26(5), 1269

  5. Tissue expansion: Concepts, techniques and unfavourable results

    PubMed Central

    Wagh, Milind S.; Dixit, Varun

    2013-01-01

    The phenomenon of tissue expansion is observed in nature all the time. The same properties of the human skin to stretch and expand and yield extra skin if placed under continuous stress over a prolonged period of time has been utilised for reconstructive purposes with the help of a silicon balloon inserted under the skin and progressively filled with saline. The technique of tissue expansion is now more than three decades old and has been a value addition to our armamentarium in reconstructive surgery in all parts of the body. However, it still requires careful patient selection, meticulous planning and faultless execution to successfully carry out the process, which usually lasts for more than 8-12 weeks and involves two sittings of surgery. Any compromise in this process can lead to unfavourable results and complications, some minor, which allow continuance of the process to attain the expected goal and others major, which force abandonment of the process without reaching the expected goal. This article seeks to highlight the intricacies of the concept of tissue expansion, the technique related to flawless execution of the process and likely complications with emphasis on their management. We also present our results from a personal series of 138 patients operated over a period of 18 years between 1994 and 2012. PMID:24501470

  6. Preferences for Expansion of Public Services in Eight Northwest Wisconsin Counties. Report No. 2 of a Series on Quality of Life and Development in Northwestern Wisconsin, January 1976.

    ERIC Educational Resources Information Center

    Lambert, Virginia

    As part of a study of the quality of life in northwestern Wisconsin, 1974 sample populations (N=150 residents per county) from each of 5 Wisconsin counties (Bayfield, Douglas, Price, Taylor, and Washburn) were presented with a list of public service programs and asked if they should be "expanded", "kept the same", or "cut…

  7. Convergence of moment expansions for expectation values with embedded random matrix ensembles and quantum chaos

    NASA Astrophysics Data System (ADS)

    Kota, V. K. B.

    2003-07-01

    Smoothed forms for expectation values < K> E of positive definite operators K follow from the K-density moments either directly or in many other ways each giving a series expansion (involving polynomials in E). In large spectroscopic spaces one has to partition the many particle spaces into subspaces. Partitioning leads to new expansions for expectation values. It is shown that all the expansions converge to compact forms depending on the nature of the operator K and the operation of embedded random matrix ensembles and quantum chaos in many particle spaces. Explicit results are given for occupancies < ni> E, spin-cutoff factors < JZ2> E and strength sums < O†O> E, where O is a one-body transition operator.

  8. The QCD Equation of state and critical end-point estimates at O (μB6)

    NASA Astrophysics Data System (ADS)

    Sharma, Sayantan; Bielefeld-BNL-CCNU Collaboration

    2017-11-01

    We present results for the QCD Equation of State at non-zero chemical potentials corresponding to the conserved charges in QCD using Taylor expansion upto sixth order in the baryon number, electric charge and strangeness chemical potentials. The latter two are constrained by the strangeness neutrality and a fixed electric charge to baryon number ratio. In our calculations, we use the Highly Improved Staggered Quarks (HISQ) discretization scheme at physical quark masses and at different values of the lattice spacings to control lattice cut-off effects. Furthermore we calculate the pressure along lines of constant energy density, which serve as proxies for the freeze-out conditions and discuss their dependence on μB, which is necessary for hydrodynamic modelling near freezeout. We also provide an estimate of the radius of convergence of the Taylor series from the 6th order coefficients which provides a new constraint on the location of the critical end-point in the T-μB plane of the QCD phase diagram.

  9. Padé Approximant and Minimax Rational Approximation in Standard Cosmology

    NASA Astrophysics Data System (ADS)

    Zaninetti, Lorenzo

    2016-02-01

    The luminosity distance in the standard cosmology as given by $\\Lambda$CDM and consequently the distance modulus for supernovae can be defined by the Pad\\'e approximant. A comparison with a known analytical solution shows that the Pad\\'e approximant for the luminosity distance has an error of $4\\%$ at redshift $= 10$. A similar procedure for the Taylor expansion of the luminosity distance gives an error of $4\\%$ at redshift $=0.7 $; this means that for the luminosity distance, the Pad\\'e approximation is superior to the Taylor series. The availability of an analytical expression for the distance modulus allows applying the Levenberg--Marquardt method to derive the fundamental parameters from the available compilations for supernovae. A new luminosity function for galaxies derived from the truncated gamma probability density function models the observed luminosity function for galaxies when the observed range in absolute magnitude is modeled by the Pad\\'e approximant. A comparison of $\\Lambda$CDM with other cosmologies is done adopting a statistical point of view.

  10. Convection Schemes for Use with Curvilinear Coordinate Systems - A Survey.

    DTIC Science & Technology

    1984-06-01

    k ’’j )-,"’, . - It. CONTROLLING OFFICE NAME AND ADDRESS IS. REPORT DATE DEPARTMENT OF THE AR1NY June 1984 US Army Corps of...1 034.0) V - - E(34.d) Now by Taylor series expansion on a uniform grid, f - f ( k ) (Ax) k +1k!O i k ! (5 where the superscript ( k ) indicates the k -tb...derivative. With the derivative operator defined as Df - fx. Eq. (35) can be written k f.- k k fEf ("x) Dk kj- (Ax) k J~O k ! k -O 7- ) which yields

  11. The Expansion of National Educational Systems: Tests of a Population Ecology Model

    ERIC Educational Resources Information Center

    Nielsen, Francois; Hannan, Michael T.

    1977-01-01

    This paper investigates the expansion of enrollments in national systems of education during the 1950-1970 period from the point of view of the population ecology of organizations. A simplified dynamic model of the growth of a population of educational organizations is estimated using various techniques for pooling time series of data. (Author/JM)

  12. Vibration waveform effects on dynamic stabilization of ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Lucchio, L. Di; Rodriguez Prieto, G.

    2011-08-15

    An analysis of dynamic stabilization of Rayleigh-Taylor instability in an ablation front is performed by considering a general square wave for modulating the vertical acceleration of the front. Such a kind of modulation allows for clarifying the role of thermal conduction in the mechanism of dynamic stabilization. In addition, the study of the effect of different modulations by varying the duration and amplitude of the square wave in each half-period provides insight on the optimum performance of dynamic stabilization.

  13. C9ORF72 repeat expansion in Australian and Spanish frontotemporal dementia patients.

    PubMed

    Dobson-Stone, Carol; Hallupp, Marianne; Loy, Clement T; Thompson, Elizabeth M; Haan, Eric; Sue, Carolyn M; Panegyres, Peter K; Razquin, Cristina; Seijo-Martínez, Manuel; Rene, Ramon; Gascon, Jordi; Campdelacreu, Jaume; Schmoll, Birgit; Volk, Alexander E; Brooks, William S; Schofield, Peter R; Pastor, Pau; Kwok, John B J

    2013-01-01

    A hexanucleotide repeat expansion in C9ORF72 has been established as a common cause of frontotemporal dementia (FTD). However, the minimum repeat number necessary for disease pathogenesis is not known. The aims of our study were to determine the frequency of the C9ORF72 repeat expansion in two FTD patient collections (one Australian and one Spanish, combined n = 190), to examine C9ORF72 expansion allele length in a subset of FTD patients, and to examine C9ORF72 allele length in 'non-expansion' patients (those with <30 repeats). The C9ORF72 repeat expansion was detected in 5-17% of patients (21-41% of familial FTD patients). For one family, the expansion was present in the proband but absent in the mother, who was diagnosed with dementia at age 68. No association was found between C9ORF72 non-expanded allele length and age of onset and in the Spanish sample mean allele length was shorter in cases than in controls. Southern blotting analysis revealed that one of the nine 'expansion-positive' patients examined, who had neuropathologically confirmed frontotemporal lobar degeneration with TDP-43 pathology, harboured an 'intermediate' allele with a mean size of only ∼65 repeats. Our study indicates that the C9ORF72 repeat expansion accounts for a significant proportion of Australian and Spanish FTD cases. However, C9ORF72 allele length does not influence the age at onset of 'non-expansion' FTD patients in the series examined. Expansion of the C9ORF72 allele to as little as ∼65 repeats may be sufficient to cause disease.

  14. Forty years later at Taylor Woods: Merging the old and new (P-53)

    Treesearch

    John D. Bailey

    2008-01-01

    The Taylor Woods "Levels-of-Growing-Stock" study was established in 1962 to create a replicated ponderosa pine density experiment for the Southwest, making a valuable addition to research in the Fort Valley Experimental Forest. Basal area treatments ranged from 5-20 m2/ha (19-80 ft2/ac) when installed, designed as growing stock levels 30/40, 60, 80, 100, 120...

  15. Identifying the driving forces of urban expansion and its environmental impact in Jakarta-Bandung mega urban region

    NASA Astrophysics Data System (ADS)

    Pravitasari, A. E.; Rustiadi, E.; Mulya, S. P.; Setiawan, Y.; Fuadina, L. N.; Murtadho, A.

    2018-05-01

    The socio-economic development in Jakarta-Bandung Mega Urban Region (JBMUR) caused the increasing of urban expansion and led to a variety of environmental damage such as uncontrolled land use conversion and raising anthropogenic disaster. The objectives of this study are: (1) to identify the driving forces of urban expansion that occurs on JBMUR and (2) to analyze the environmental quality decline on JBMUR by producing time series spatial distribution map and spatial autocorrelation of floods and landslide as the proxy of anthropogenic disaster. The driving forces of urban expansion in this study were identified by employing Geographically Weighted Regression (GWR) model using 6 (six) independent variables, namely: population density, percentage of agricultural land, distance to the center of capital city/municipality, percentage of household who works in agricultural sector, distance to the provincial road, and distance to the local road. The GWR results showed that local demographic, social and economic factors including distance to the road spatially affect urban expansion in JBMUR. The time series spatial distribution map of floods and landslide event showed the spatial cluster of anthropogenic disaster in some areas. Through Local Moran Index, we found that environmental damage in one location has a significant impact on the condition of its surrounding area.

  16. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn)

    DOE PAGES

    Hu, Lei; Chen, Jun; Xu, Jiale; ...

    2016-10-26

    The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF 6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (–6.69 to +18.23 × 10 –6/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF 6, which is one of the rarely documented hightemperature isotropic ZTE compounds. By utilizing temperature dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal···Fmore » atomic linkages in MZrF 6 plays a critical role in distinct thermal expansions. The flexible metal···F atomic linkages induce negative thermal expansion (NTE) for CaZrF 6, whereas the stiff ones bring positive thermal expansion (PTE) for 6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal···F atomic linkages by substitution with a series of cations on M sites of MZrF 6. In conclusion, the present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility.« less

  17. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lei; Chen, Jun; Xu, Jiale

    The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF 6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (–6.69 to +18.23 × 10 –6/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF 6, which is one of the rarely documented hightemperature isotropic ZTE compounds. By utilizing temperature dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal···Fmore » atomic linkages in MZrF 6 plays a critical role in distinct thermal expansions. The flexible metal···F atomic linkages induce negative thermal expansion (NTE) for CaZrF 6, whereas the stiff ones bring positive thermal expansion (PTE) for 6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal···F atomic linkages by substitution with a series of cations on M sites of MZrF 6. In conclusion, the present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility.« less

  18. Hominin expansion into Central Asia during the last interglacial

    NASA Astrophysics Data System (ADS)

    Asmerom, Yemane; Polyak, Victor J.; Wagner, Jennifer D. M.; Jonathan Patchett, P.

    2018-07-01

    Central Asia was a likely gateway for hominin expansion. Obi-Rakhmat Grotto, northeastern Uzbekistan, has a deposit that contains the remains of a hominin child (OR-1) and more than 60,000 Paleolithic artifacts, making it one of the most important archaeological sites in Central Asia. Regionally, genetic data suggest hominin presence and human-Neanderthal interbreeding as far back as 100 ka, although, to date, absolute ages of hominin remains that old have not been known in the region. We present new uranium-series dates that constrain the age of the Obi-Rakhmat deposit to 98 ka towards the top and 109 ka for the layer containing OR-1, pushing hominin expansion into Central Asia minimally to 109 ± 2 ka, to a time, based on the genetic clock, of Neanderthal-modern human interbreeding. Our chronology establishes a minimum age of 98 ka for the well-developed lithic industry in Central Asia. The period covering the deposition of the sediments containing the artifacts and specimen OR-1 coincides with a warm and one of the most humid intervals of Marine Isotope Stage (MIS) 5 and last glacial period in the region, providing support for climate-driven hominin expansion.

  19. 75 FR 71668 - Cibota National Forest, Mount Taylor Ranger District, NM, Roca Honda Mine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... develop and conduct underground uranium mining operations on their mining claims on and near Jesus Mesa in... open to mineral entry under the General Mining Law of 1872. Section 16 is State of New Mexico land... statement (EIS) to assess the development of a uranium mining operation on the Mount Taylor Ranger District...

  20. On the distribution of denominators in Sylvester expansions (II)

    NASA Astrophysics Data System (ADS)

    Wu, Jun

    2003-11-01

    For any x in (0,1], let the series sum_{n=1}(infty) 1/d_n(x) be the Sylvester expansion of x. In this paper, we consider the Hausdorff dimension of the set $B(alpha, beta)= bigg\\{x in (0,1]: limlimits _{n -> infty} frac{d_{n+1}(x)}{d(beta}_n(x)}=alphabigg\\) for any alpha geq 0 and beta geq 2$. As a corollary, we answer the question posed by Goldie and Smith in [6].

  1. Insurance Expansion and Hospital Emergency Department Access: Evidence From the Affordable Care Act.

    PubMed

    Garthwaite, Craig; Gross, Tal; Notowidigdo, Matthew; Graves, John A

    2017-02-07

    Little is known about whether insurance expansion affects the location and type of emergency department (ED) use. Understanding these changes can inform state-level decisions about the Medicaid expansion under the Patient Protection and Affordable Care Act (ACA). To investigate the effect of the 2014 ACA Medicaid expansion on the location, insurance status, and type of ED visits. Quasi-experimental observational study from 2012 to 2014. 126 investor-owned, hospital-based EDs. Uninsured and Medicaid-insured adults aged 18 to 64 years. ACA expansion of Medicaid in January 2014. Number of ED visits overall, type of visit (for example, nondiscretionary or nonemergency), and average travel time to the ED. Interrupted time-series analyses comparing changes from the end of 2013 to end of 2014 for patients from Medicaid expansion versus nonexpansion states were done. There were 1.06 million ED visits among patients from 17 Medicaid expansion states, and 7.87 million ED visits among patients from 19 nonexpansion states. The EDs treating patients from Medicaid expansion states saw an overall 47.1% decrease in uninsured visits (95% CI, -65.0% to -29.3%) and a 125.7% (CI, 89.2% to 162.6%) increase in Medicaid visits after 12 months of ACA expansion. Average travel time for nondiscretionary conditions requiring immediate medical care decreased by 0.9 minutes (-6.2% [CI, -8.9% to -3.5%]) among all Medicaid patients from expansion states. We found little evidence of similar changes among patients from nonexpansion states. Results reflect shifts in ED care at investor-owned facilities, which limits generalizability to other hospital types. Meaningful changes in insurance status and location and type of ED visits in the first year of ACA Medicaid expansion were found, suggesting that expansion provides patients with a greater choice of hospital facilities. Robert Wood Johnson Foundation.

  2. Three-dimensional Rayleigh-Taylor convection of miscible fluids in a porous medium

    NASA Astrophysics Data System (ADS)

    Suekane, Tetsuya; Nakanishi, Yuji; Wang, Lei

    2017-11-01

    Natural convection of miscible fluids in a porous medium is relevant for fields, such as geoscience and geoengineering, and for the geological storage of CO2. In this study, we use X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appears at the interface. As the wavelength and amplitude increase, descending fingers form on the interface and extend vertically downward; moreover, ascending and highly symmetric fingers form. The adjacent fingers are cylindrical in shape and coalesce to form large fingers. Fingers appearing on the interface tend to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. If the Péclet number exceeds 10, the transverse dispersion increases the finger diameter and enhances finger coalescence, strongly impacting the decay in finger number density. When mechanical dispersion is negligible, the finger-extension velocity, the mass-transfer rate, and the onset time scale with Rayleigh number. Mechanical dispersion not only reduces the onset time but also enhances mass transport, which indicates that mechanical dispersion influences the long-term dissolution process of CO2 injected into aquifers.

  3. Automatic Generation of Taylor Series in Pascal-SC: Basic Operations and Applications to Ordinary Differential Equations.

    DTIC Science & Technology

    1983-03-01

    facilities built into the language compiler itself can be used to generate _imanchAe-C-d, for the evaluatiomn la ’ fficients.) Examples of such languages...Dy mtt ss. I I I I I I I I I,ase.TC11) - 0 1 I =- M 3 (SM) By Mse rede a• I RA IQ BZ yrcrec Table 4.1. Resolution of Cases for e. Consider a series...von Gudenberg. Gesmte Arithmetik des PASCAL-SC Rechners: Benutzerhandbuch. Institute for Applied Mathematics, University of Karlsruhe, 1981. -33- 4

  4. Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects

    NASA Technical Reports Server (NTRS)

    Neumann, K.; DesMarais, D. J.

    1998-01-01

    We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low sigma CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work has shown that algal mats in these streams have delta C-13 values averaging -7.01%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C(13) signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C(13) geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars.

  5. Janet Taylor Spence (1923-2015).

    PubMed

    Deaux, Kay

    2016-01-01

    The long and remarkable life of Janet Taylor Spence, the sixth woman to serve as president of the American Psychological Association (APA), ended on March 16, 2015, after a short illness. Janet's 1978 book, Masculinity & Femininity, coauthored with Robert Helmreich, was a major contribution to our understanding of the complex relationships between personal attributes, self-esteem, and attitudes toward women, as well their links to both achievement motivation and parental characteristics. Janet's interest in achievement motivation was an extension of her gender work, as she attempted to learn more about the ways in which presumed differences in achievement motivation might be related to the key dimensions of instrumentality and expressiveness. Janet's election to the presidency of the APA was the culmination of a long and broad involvement in the organization. She served on the Board of Directors from 1976 to 1978, and again in 1983 to 1984 during her presidential term. Earlier she served on the Board of Scientific Affairs and edited Contemporary Psychology in the 1970s. Janet was a fellow in four divisions (3, 8, 12, and 35), and in 2004 she received the APA Gold Medal Award for Life Achievement in the Science of Psychology. (c) 2016 APA, all rights reserved).

  6. Serial Founder Effects During Range Expansion: A Spatial Analog of Genetic Drift

    PubMed Central

    Slatkin, Montgomery; Excoffier, Laurent

    2012-01-01

    Range expansions cause a series of founder events. We show that, in a one-dimensional habitat, these founder events are the spatial analog of genetic drift in a randomly mating population. The spatial series of allele frequencies created by successive founder events is equivalent to the time series of allele frequencies in a population of effective size ke, the effective number of founders. We derive an expression for ke in a discrete-population model that allows for local population growth and migration among established populations. If there is selection, the net effect is determined approximately by the product of the selection coefficients and the number of generations between successive founding events. We use the model of a single population to compute analytically several quantities for an allele present in the source population: (i) the probability that it survives the series of colonization events, (ii) the probability that it reaches a specified threshold frequency in the last population, and (iii) the mean and variance of the frequencies in each population. We show that the analytic theory provides a good approximation to simulation results. A consequence of our approximation is that the average heterozygosity of neutral alleles decreases by a factor of 1 – 1/(2ke) in each new population. Therefore, the population genetic consequences of surfing can be predicted approximately by the effective number of founders and the effective selection coefficients, even in the presence of migration among populations. We also show that our analytic results are applicable to a model of range expansion in a continuously distributed population. PMID:22367031

  7. Serial founder effects during range expansion: a spatial analog of genetic drift.

    PubMed

    Slatkin, Montgomery; Excoffier, Laurent

    2012-05-01

    Range expansions cause a series of founder events. We show that, in a one-dimensional habitat, these founder events are the spatial analog of genetic drift in a randomly mating population. The spatial series of allele frequencies created by successive founder events is equivalent to the time series of allele frequencies in a population of effective size ke, the effective number of founders. We derive an expression for ke in a discrete-population model that allows for local population growth and migration among established populations. If there is selection, the net effect is determined approximately by the product of the selection coefficients and the number of generations between successive founding events. We use the model of a single population to compute analytically several quantities for an allele present in the source population: (i) the probability that it survives the series of colonization events, (ii) the probability that it reaches a specified threshold frequency in the last population, and (iii) the mean and variance of the frequencies in each population. We show that the analytic theory provides a good approximation to simulation results. A consequence of our approximation is that the average heterozygosity of neutral alleles decreases by a factor of 1-1/(2ke) in each new population. Therefore, the population genetic consequences of surfing can be predicted approximately by the effective number of founders and the effective selection coefficients, even in the presence of migration among populations. We also show that our analytic results are applicable to a model of range expansion in a continuously distributed population.

  8. An h-p Taylor-Galerkin finite element method for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O.

    1991-01-01

    An extension of the familiar Taylor-Galerkin method to arbitrary h-p spatial approximations is proposed. Boundary conditions are analyzed, and a linear stability result for arbitrary meshes is given, showing the unconditional stability for the parameter of implicitness alpha not less than 0.5. The wedge and blunt body problems are solved with both linear, quadratic, and cubic elements and h-adaptivity, showing the feasibility of higher orders of approximation for problems with shocks.

  9. Identification of complex flows in Taylor-Couette counter-rotating cavities

    NASA Technical Reports Server (NTRS)

    Czarny, O.; Serre, E.; Bontoux, P.; Lueptow, R. M.

    2001-01-01

    The transition in confined rotating flows is a topical problem with many industrial and fundamental applications. The purpose of this study is to investigate the Taylor-Couette flow in a finite-length cavity with counter-rotating walls, for two aspect ratios L=5 or L=6. Two complex regimes of wavy vortex and spirals are emphasized for the first time via direct numerical simulation, by using a three-dimensional spectral method. The spatio-temporal behavior of the solutions is analyzed and compared to the few data actually available. c2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.

  10. Observed Melt Season Seismicity of Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Carmichael, J. D.; Pettit, E. C.; Creager, K. C.

    2006-12-01

    Sufficient evidence exists to suggest that interaction of crevasses and meltwater accelerates ice cliff disintegration of tidewater glaciers. It is not clear what role meltwater plays in calving characteristics from dry- based polar glaciers. We have obtained seismic data from a six-sensor seismic array deployed in October of 2004 near the terminus cliffs of Taylor Glacier, West Antarctica, to analyze near-cliff seismicity throughout a melt season. Discharge data from the adjacent Lawson stream suggests that dramatic increases in meltwater volume temporally correlate with changes in seismic character near ice cliffs. We calculated source-locations for ice-quake during hours of melting and re-freezing and found most large energy events to be located near the ice cliffs. The associated spectra and waveform characteristics are indicative of literature descriptions of crevassing events.

  11. A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Meakin, Paul

    2005-08-10

    A numerical model based on smoothed particle hydrodynamics (SPH) has been developed and used to simulate the classical two-dimensional Rayleigh–Taylor instability and three-dimensional miscible flow in fracture apertures with complex geometries. To model miscible flow fluid particles with variable, composition dependent, masses were used. By basing the SPH equations on the particle number density artificial surface tension effects were avoided. The simulation results for the growth of a single perturbation driven by the Rayleigh – Taylor instability compare well with numerical results obtained by Fournier et al., and the growth of a perturbation with time can be represented quite wellmore » by a second-degree polynomial, in accord with the linear stability analysis of Duff et al. The dispersion coefficient found from SPH simulation of flow and diffusion in an ideal fracture was in excellent agreement with the value predicted by the theory of Taylor and Aris. The simulations of miscible flow in fracture apertures can be used to determination dispersion coefficients for transport in fractured media - a parameter used in large-scale simulations of contaminant transport.« less

  12. Using a High-Resolution Ensemble Modeling Method to Inform Risk-Based Decision-Making at Taylor Park Dam, Colorado

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Mahoney, K. M.; Holman, K. D.

    2015-12-01

    The Bureau of Reclamation (Reclamation) is responsible for the safety of Taylor Park Dam, located in central Colorado at an elevation of 9300 feet. A key aspect of dam safety is anticipating extreme precipitation, runoff and the associated inflow of water to the reservoir within a probabilistic framework for risk analyses. The Cooperative Institute for Research in Environmental Sciences (CIRES) has partnered with Reclamation to improve understanding and estimation of precipitation in the western United States, including the Taylor Park watershed. A significant challenge is that Taylor Park Dam is located in a relatively data-sparse region, surrounded by mountains exceeding 12,000 feet. To better estimate heavy precipitation events in this basin, a high-resolution modeling approach is used. The Weather Research and Forecasting (WRF) model is employed to simulate events that have produced observed peaks in streamflow at the location of interest. Importantly, an ensemble of model simulations are run on each event so that uncertainty bounds (i.e., forecast error) may be provided such that the model outputs may be more effectively used in Reclamation's risk assessment framework. Model estimates of precipitation (and the uncertainty thereof) are then used in rainfall runoff models to determine the probability of inflows to the reservoir for use in Reclamation's dam safety risk analyses.

  13. Three-dimensional characterisation and simulation of deformation and damage during Taylor impact in PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, A.; McDonald, S.; Withers, P.; Bourne, N.; Millett, J.; Brown, E.; Rae, P.

    2013-06-01

    Aerospace, defence and automotive applications of polymers and polymer matrix composites have placed these materials under increasingly more extreme conditions. It is therefore important to understand the mechanical response of these multi-phase materials under high pressures and strain rates. Crucial to this is knowledge of the physical damage response in association with the phase transformations during the loading and the ability to predict this via multi-phase simulation taking the thermodynamical non-equilibrium and strain rate sensitivity into account. The current work presents Taylor impact experiments interrogating the effect of dynamic, high-pressure loading on polytetrafluoroethylene (PTFE). In particular, X-ray microtomography has been used to characterise the damage imparted to cylindrical samples due to impact at different velocities. Distinct regions of deformation are present and controlled by fracture within the polymer, with the extent of the deformed region and increasing propagation of the fractures from the impact face showing a clear trend with increase in impact velocity. The experimental observations are discussed with respect to parallel multi-phase model predictions by CTH hydrocode of the shock response from Taylor impact simulations.

  14. Three-dimensional characterisation and simulation of deformation and damage during Taylor impact in PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, A. D.; McDonald, S. A.; Withers, P. J.; Bourne, N. K.; Millett, J. C. F.; Brown, E. N.; Rae, P. J.

    2014-05-01

    The current work presents Taylor impact experiments interrogating the effect of dynamic, high-pressure loading on polytetrafluoroethylene (PTFE). In particular, X-ray microtomography has been used to characterise the damage imparted to cylindrical samples due to impact at different velocities. Distinct regions of deformation are present and controlled by fracture within the polymer, with the extent of the deformed region and increasing propagation of fractures from the impact face showing a clear trend with increasing impact velocity. A two-phase rate sensitive strength model is implemented in the CTH hydrocode and used for simulation of the problem. The high-pressure phase transition of PTFE into Phase III within the crystalline domains from the polymer at normal conditions is managed by suitable phase transition kinetics within the model. The experimental observations are discussed with respect to the multi-phase model hydrocode predictions of the shock response from Taylor impact simulations. The damage and its progress are shown to correlate well with the onset of the phase transition and its evolution following the impact velocity increase.

  15. Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2004-08-01

    A formula expressing explicitly the derivatives of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another explicit formula, which expresses the Bessel expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of its original Bessel coefficients, is also given. A formula for the Bessel coefficients of the moments of one single Bessel polynomial of certain degree is proved. A formula for the Bessel coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Bessel coefficients is also obtained. Application of these formulae for solving ordinary differential equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Bessel-Bessel polynomials is described. An explicit formula for these coefficients between Jacobi and Bessel polynomials is given, of which the ultraspherical polynomial and its consequences are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Bessel and Hermite-Bessel are also developed.

  16. On the variability of the Priestley-Taylor coefficient over water bodies

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Li, Dan; Tyler, Scott; Tanny, Josef; Cohen, Shabtai; Bou-Zeid, Elie; Parlange, Marc; Katul, Gabriel G.

    2016-01-01

    Deviations in the Priestley-Taylor (PT) coefficient αPT from its accepted 1.26 value are analyzed over large lakes, reservoirs, and wetlands where stomatal or soil controls are minimal or absent. The data sets feature wide variations in water body sizes and climatic conditions. Neither surface temperature nor sensible heat flux variations alone, which proved successful in characterizing αPT variations over some crops, explain measured deviations in αPT over water. It is shown that the relative transport efficiency of turbulent heat and water vapor is key to explaining variations in αPT over water surfaces, thereby offering a new perspective over the concept of minimal advection or entrainment introduced by PT. Methods that allow the determination of αPT based on low-frequency sampling (i.e., 0.1 Hz) are then developed and tested, which are usable with standard meteorological sensors that filter some but not all turbulent fluctuations. Using approximations to the Gram determinant inequality, the relative transport efficiency is derived as a function of the correlation coefficient between temperature and water vapor concentration fluctuations (RTq). The proposed approach reasonably explains the measured deviations from the conventional αPT = 1.26 value even when RTq is determined from air temperature and water vapor concentration time series that are Gaussian-filtered and subsampled to a cutoff frequency of 0.1 Hz. Because over water bodies, RTq deviations from unity are often associated with advection and/or entrainment, linkages between αPT and RTq offer both a diagnostic approach to assess their significance and a prognostic approach to correct the 1.26 value when using routine meteorological measurements of temperature and humidity.

  17. Light-cone expansion of the Dirac sea in the presence of chiral and scalar potentials

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2000-10-01

    We study the Dirac sea in the presence of external chiral and scalar/pseudoscalar potentials. In preparation, a method is developed for calculating the advanced and retarded Green's functions in an expansion around the light cone. For this, we first expand all Feynman diagrams and then explicitly sum up the perturbation series. The light-cone expansion expresses the Green's functions as an infinite sum of line integrals over the external potential and its partial derivatives. The Dirac sea is decomposed into a causal and a noncausal contribution. The causal contribution has a light-cone expansion which is closely related to the light-cone expansion of the Green's functions; it describes the singular behavior of the Dirac sea in terms of nested line integrals along the light cone. The noncausal contribution, on the other hand, is, to every order in perturbation theory, a smooth function in position space.

  18. Solving differential equations for Feynman integrals by expansions near singular points

    NASA Astrophysics Data System (ADS)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2018-03-01

    We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

  19. Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography

    NASA Astrophysics Data System (ADS)

    Qiang, Bo; Brigham, John C.; Aristizabal, Sara; Greenleaf, James F.; Zhang, Xiaoming; Urban, Matthew W.

    2015-02-01

    In this paper, we propose a method to model the shear wave propagation in transversely isotropic, viscoelastic and incompressible media. The targeted application is ultrasound-based shear wave elastography for viscoelasticity measurements in anisotropic tissues such as the kidney and skeletal muscles. The proposed model predicts that if the viscoelastic parameters both across and along fiber directions can be characterized as a Voigt material, then the spatial phase velocity at any angle is also governed by a Voigt material model. Further, with the aid of Taylor expansions, it is shown that the spatial group velocity at any angle is close to a Voigt type for weakly attenuative materials within a certain bandwidth. The model is implemented in a finite element code by a time domain explicit integration scheme and shear wave simulations are conducted. The results of the simulations are analyzed to extract the shear wave elasticity and viscosity for both the spatial phase and group velocities. The estimated values match well with theoretical predictions. The proposed theory is further verified by an ex vivo tissue experiment measured in a porcine skeletal muscle by an ultrasound shear wave elastography method. The applicability of the Taylor expansion to analyze the spatial velocities is also discussed. We demonstrate that the approximations from the Taylor expansions are subject to errors when the viscosities across or along the fiber directions are large or the maximum frequency considered is beyond the bandwidth defined by radii of convergence of the Taylor expansions.

  20. Did Pre-Affordable Care Act Medicaid Expansion Increase Access to Surgical Cancer Care?

    PubMed

    Al-Refaie, Waddah B; Zheng, Chaoyi; Jindal, Manila; Clements, Michele Lee; Toye, Patryce; Johnson, Lynt B; Xiao, David; Westmoreland, Timothy; DeLeire, Thomas; Shara, Nawar

    2017-04-01

    Although the Affordable Care Act (ACA) expanded Medicaid access, it is unknown whether this has led to greater access to complex surgical care. Evidence on the effect of Medicaid expansion on access to surgical cancer care, a proxy for complex care, is sparse. Using New York's 2001 statewide Medicaid expansion as a natural experiment, we investigated how expansion affected use of surgical cancer care among beneficiaries overall and among racial minorities. From the New York State Inpatient Database (1997 to 2006), we identified 67,685 nonelderly adults (18 to 64 years of age) who underwent cancer surgery. Estimated effects of 2001 Medicaid expansion on access were measured on payer mix, overall use of surgical cancer care, and percent use by racial/ethnic minorities. Measures were calculated quarterly, adjusted for covariates when appropriate, and then analyzed using interrupted time series. The proportion of cancer operations paid by Medicaid increased from 8.9% to 15.1% in the 5 years after the expansion. The percentage of uninsured patients dropped by 21.3% immediately after the expansion (p = 0.01). Although the expansion was associated with a 24-case/year increase in the net Medicaid case volume (p < 0.0001), the overall all-payer net case volume remained unchanged. In addition, the adjusted percentage of ethnic minorities among Medicaid recipients of cancer surgery was unaffected by the expansion. Pre-ACA Medicaid expansion did not increase the overall use or change the racial composition of beneficiaries of surgical cancer care. However, it successfully shifted the financial burden away from patient/hospital to Medicaid. These results might suggest similar effects in the post-ACA Medicaid expansion. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Conditional sampling technique to test the applicability of the Taylor hypothesis for the large-scale coherent structures

    NASA Technical Reports Server (NTRS)

    Hussain, A. K. M. F.

    1980-01-01

    Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.

  2. Analytical model of cracking due to rebar corrosion expansion in concrete considering the structure internal force

    NASA Astrophysics Data System (ADS)

    Lin, Xiangyue; Peng, Minli; Lei, Fengming; Tan, Jiangxian; Shi, Huacheng

    2017-12-01

    Based on the assumptions of uniform corrosion and linear elastic expansion, an analytical model of cracking due to rebar corrosion expansion in concrete was established, which is able to consider the structure internal force. And then, by means of the complex variable function theory and series expansion technology established by Muskhelishvili, the corresponding stress component functions of concrete around the reinforcement were obtained. Also, a comparative analysis was conducted between the numerical simulation model and present model in this paper. The results show that the calculation results of both methods were consistent with each other, and the numerical deviation was less than 10%, proving that the analytical model established in this paper is reliable.

  3. Otto LaPorte Lecture: Ultimate Rayleigh-Bénard and Taylor-Couette turbulence

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef

    2017-11-01

    Rayleigh-Bénard flow - the flow in a box heated from below and cooled from above - and Taylor-Couette flow - the flow between two coaxial co- or counter-rotating cylinders - are the two paradigmatic systems in physics of fluids and many new concepts have been tested with them. They are mathematically well defined, namely by the Navier-Stokes equations and the respective boundary conditions, and share many features. While the low Reynolds number regime (i.e., weakly driven systems) has been very well explored in the '80s and '90s of the last century, in the fully turbulent regime major research activity only developed in the last two decades. In this talk we will first briefly review this recent progress in our understanding of fully developed Rayleigh-Bénard (RB) and Taylor-Couette (TC) turbulence, from the experimental, theoretical, and numerical point of view. We will explain the parameter dependences of the global transport properties of the flow and the local flow organisation, including velocity profiles and boundary layers, which are closely connected to the global properties. Next, we will discuss transitions between different (turbulent) flow states. We will in particular focus on the so-called ultimate regime, in which the boundary layer has become turbulent, and which therefore has enhanced transport properties. In the mechanical driven TC flow this ultimate regime can also be achieved in our high-performance numerical simulations, showing excellent agreement with our experiments on the Twente Turbulent Taylor-Couette (T3 C) facility. In the last part of the talk we will discuss RB and TC turbulence with rough walls. There the results can be expressed in terms of the skin-friction factor, revealing analogy to turbulent flow in rough pipes. Finally, we will present our results on RB and TC flow with bubbles, focusing on bubbly drag reduction and its origin. This is joint work with many colleagues over the years, and I in particular would like to name

  4. Following Surgically Assisted Rapid Palatal Expansion, Do Tooth-Borne or Bone-Borne Appliances Provide More Skeletal Expansion and Dental Expansion?

    PubMed

    Hamedi-Sangsari, Adrien; Chinipardaz, Zahra; Carrasco, Lee

    2017-10-01

    The aim of this study was to compare outcome measurements of skeletal and dental expansion with bone-borne (BB) versus tooth-borne (TB) appliances after surgically assisted rapid palatal expansion (SARPE). This study was performed to provide quantitative measurements that will help the oral surgeon and orthodontist in selecting the appliance with, on average, the greatest amount of skeletal expansion and the least amount of dental expansion. A computerized database search was performed using PubMed, EBSCO, Cochrane, Scopus, Web of Science, and Google Scholar on publications in reputable oral surgery and orthodontic journals. A systematic review and meta-analysis was completed with the predictor variable of expansion appliance (TB vs BB) and outcome measurement of expansion (in millimeters). Of 487 articles retrieved from the 6 databases, 5 articles were included, 4 with cone-beam computed tomographic (CBCT) data and 1 with non-CBCT 3-dimensional cast data. There was a significant difference in skeletal expansion (standardized mean difference [SMD], 0.92; 95% confidence interval [CI], 0.54-1.30; P < .001) in favor of BB rather than TB appliances. However, there was no significant difference in dental expansion (SMD, 0.05; 95% CI, -0.24 to 0.34; P = .03). According to the literature, to achieve more effective skeletal expansion and minimize dental expansion after SARPE, a BB appliance should be favored. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  5. One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro

    2017-10-01

    In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.

  6. Photochemically Switching Diamidocarbene Spin States Leads to Reversible Büchner Ring Expansions.

    PubMed

    Perera, Tharushi A; Reinheimer, Eric W; Hudnall, Todd W

    2017-10-18

    The discovery of thermal and photochemical control by Woodward and Hoffmann revolutionized how we understand chemical reactivity. Similarly, we now describe the first example of a carbene that exhibits differing thermal and photochemical reactivity. When a singlet ground-state N,N'-diamidocarbene 1 was photolyzed at 380 nm, excitation to a triplet state was observed. The triplet-state electronic structure was characteristic of the expected biradical σ 1 p π 1 spin configuration according to a combination of spectroscopic and computational methods. Surprisingly, the triplet state of 1 was found to engage a series of arenes in thermally reversible Büchner ring expansion reactions, marking the first examples where both cyclopropanation and ring expansion of arenes were rendered reversible. Not only are these photochemical reactions different from the known thermal chemistry of 1, but the reversibility enabled us to perform the first examples of photochemically induced arene exchange/expansion reactions at a single carbon center.

  7. Photographic copy of architectural plan for Administration Building (T50): Taylor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural plan for Administration Building (T-50): Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. A(9-10), Military Construction: Materiel Command Flight Test Base, Muroc, California, Hangar and Auxiliary Buildings: Administration Building Type OB-H-T, Plans and - Details, Sheet No. 38 of 38, March 1944. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Administration Building T-50, D Street, Boron, Kern County, CA

  8. Photographic copy of architectural drawings for Building 4332 (T82): Taylor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural drawings for Building 4332 (T-82): Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. Muroc ESA 210-48 and 210-49, Military Construction: Muroc Flight Test Base, Muroc, California, Warehouses and Additional Housing for Officers: Warehouse "A" Plans & Elevations, Sheet No. 4 of 16, May 1945. Reproduced from the holdings of the National Archives; Pacific Southwest Region - Edwards Air Force Base, North Base, Warehouse A, North Base Road at E Street, Boron, Kern County, CA

  9. Viète's Formula and an Error Bound without Taylor's Theorem

    ERIC Educational Resources Information Center

    Boucher, Chris

    2018-01-01

    This note presents a derivation of Viète's classic product approximation of pi that relies on only the Pythagorean Theorem. We also give a simple error bound for the approximation that, while not optimal, still reveals the exponential convergence of the approximation and whose derivation does not require Taylor's Theorem.

  10. Trends in Elevated Triglyceride in Adults: United States, 2001-2012

    MedlinePlus

    ... All variance estimates accounted for the complex survey design using Taylor series linearization ( 10 ). Percentage estimates for the total adult ... al. National Health and Nutrition Examination Survey: Sample design, 2007–2010. ... KM. Taylor series methods. In: Introduction to variance estimation. 2nd ed. ...

  11. Universal Expansion.

    ERIC Educational Resources Information Center

    McArdle, Heather K.

    1997-01-01

    Describes a week-long activity for general to honors-level students that addresses Hubble's law and the universal expansion theory. Uses a discrepant event-type activity to lead up to the abstract principles of the universal expansion theory. (JRH)

  12. Nonlinear saturation amplitude of cylindrical Rayleigh—Taylor instability

    NASA Astrophysics Data System (ADS)

    Liu, Wan-Hai; Yu, Chang-Ping; Ye, Wen-Hua; Wang, Li-Feng

    2014-09-01

    The nonlinear saturation amplitude (NSA) of the fundamental mode in the classical Rayleigh—Taylor instability with a cylindrical geometry for an arbitrary Atwood number is analytically investigated by considering the nonlinear corrections up to the third order. The analytic results indicate that the effects of the initial radius of the interface (r0) and the Atwood number (A) play an important role in the NSA of the fundamental mode. The NSA of the fundamental mode first increases gently and then decreases quickly with increasing A. For a given A, the smaller the r0/λ (λ is the perturbation wavelength), the larger the NSA of the fundamental mode. When r0/λ is large enough (r0 ≫ λ), the NSA of the fundamental mode is reduced to the prediction in the previous literatures within the framework of the third-order perturbation theory.

  13. The Magnetic Rayleigh-Taylor Instability in Astrophysical Discs

    NASA Technical Reports Server (NTRS)

    Contopoulos, I.; Kazanas, D.; Papadopoulos, D. B.

    2016-01-01

    This is our first study of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disc around a central back hole. We derive the equations governing small-amplitude oscillations in general relativistic ideal magnetodydrodynamics and obtain a criterion for the onset of the instability. We suggest that static disc configurations where magnetic field is held by the disc material are unstable around a Schwarzschild black hole. On the other hand, we find that such configurations are stabilized by the space-time rotation around a Kerr black hole. We obtain a crude estimate of the maximum amount of poloidal magnetic flux that can be accumulated around the centre, and suggest that it is proportional to the black hole spin. Finally, we discuss the astrophysical implications of our result for the theoretical and observational estimations of the black hole jet power.

  14. A Framework Based on 2-D Taylor Expansion for Quantifying the Impacts of Sub-Pixel Reflectance Variance and Covariance on Cloud Optical Thickness and Effective Radius Retrievals Based on the Bi-Spectral Method

    NASA Technical Reports Server (NTRS)

    Zhang, Z.; Werner, F.; Cho, H. -M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry

    2016-01-01

    The bi-spectral method retrieves cloud optical thickness and cloud droplet effective radius simultaneously from a pair of cloud reflectance observations, one in a visible or near-infrared (VISNIR) band and the other in a shortwave infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved and re. In the literature, the retrievals of and re are often assumed to be independent and considered separately when investigating the impact of sub-pixel cloud reflectance variations on the bi-spectral method. As a result, the impact on is contributed only by the sub-pixel variation of VISNIR band reflectance and the impact on re only by the sub-pixel variation of SWIR band reflectance. In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VISNIR and SWIR cloud reflectances and their covariance on the and re retrievals. This framework takes into account the fact that the retrievals are determined by both VISNIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VISNIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from Moderate Resolution Imaging Spectroradiometer. The predicted results based on our framework agree very well with the numerical simulations. Our framework can be used

  15. The incept of ejection from a fresh Taylor cone and subsequent evolution

    NASA Astrophysics Data System (ADS)

    Lopez-Herrera, Jose M.; Ganan-Calvo, Alfonso

    2017-11-01

    Within a certain range of applied voltages, a pendant drop suddenly subject to an intense electric field develops a cusp from which a fast liquid ligament issues. The incept of this process has common roots with other related phenomena like the Worthington jets, the jet issued after surface bubble bursting or the impact of a drop on a liquid pool. This is experimentally and numerically demonstrated. However, given the electrohydrodynamic nature of the driver in the formation of a Taylor cone, a number of electrokinetic processes take place in the rapid tapering flow, whose characteristic times should be carefully compared to the ones of the flow. As a result, universal scaling laws for the size and charge of the top drop have been obtained. Subsequently, sustaining the applied electric field, the ejection continues and the issuing liquid ligament releases a train of droplets of varying size and charge. Under appropriate conditions and if the liquid suctioned by the electric field is replenished, the system reaches a (quasi)steady state asymptotically. The degree of compliance of the size and charge of those subsequent droplets with previously proposed scaling laws of steady Taylor cone-jets has been studied. Computational code Gerris and an extended electrokinetic module is used. This work was supported by the Ministerio de Economia y Competitividad, Plan Estatal 2013-2016 Retos, project DPI2016-78887-C3-1-R.

  16. 78 FR 61451 - Endangered and Threatened Wildlife and Plants; Determination of Endangered Status for the Taylor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ...). The Taylor's checkerspot butterfly was originally described by W.H. Edwards (1888) from specimens... and modified by encroaching trees, nonnative grasses, and the invasive, nonnative shrub Scot's broom... maintained as, grass and forb vegetation (for details, see 77 FR 61938; October 11, 2012). In British...

  17. The Gradual Expansion Muscle Flap

    DTIC Science & Technology

    2014-01-01

    acute shortening and angulation of the tibia and rotational muscle flap coverage and split thickness skin grafting of the soft tissue defect...is also amenable to split-thickness skin grafting after tissue incorporation.11 In addition to donor site morbidity, free tissue transfer is dependent...necessary soft tissue coverage. In the second stage, after the flap has adequately set and overlying skin graft has full adherence, a Taylor Spatial

  18. Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, D. A.; Smalyuk, V. A.; Kane, J. O.; Casner, A.; Liberatore, S.; Masse, L. P.

    2015-05-01

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μ m thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  19. Thermophysical Properties of Matter - the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys

    DTIC Science & Technology

    1975-01-01

    the thermal expansion of metallic elements, alloys, and intermetallic compounds. We believe there is also much food for reflection by the specialist...24 39 Plutonium Pu ........ ............... 260 40’ t Polonium Po ..... ............... 270 41* Potassium K ..... ............... 271 42...923 209 NIckel-Palladium NI-Pd..................926 210 * Nickel-Pitaum Ni-Pt.................90 211 Nickel-Silicon NI-SI.................932 212

  20. A k-ɛ model for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Gauthier, Serge; Bonnet, Michel

    1990-09-01

    A k-ɛ model for turbulent mixing induced by Rayleigh-Taylor instability is described. The classical linear closure relations are supplemented with algebraic relations in order to be valid under strong gradients. Calibrations were made against two shock-tube experiments (Andronov et al. [Sov. Phys. JETP 44, 424 (1976); Sov. Phys. Dokl. 27, 393 (1982)] and Houas et al. [Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes (Stanford U.P., Stanford, CA, 1986)]) using the same set of constants. The new interpretation of the experimental data of Brouillette and Sturtevant [Physica D 37, 248 (1989)], where the mixing length is discriminated from the wall jet, requires a different numerical value for the Rayleigh-Taylor source term coefficient. A detailed physical study is given in both cases. It turns out that the spectrum is narrower in the Brouillette and Sturtevant case than in the Andronov et al. case but the small length scales are of the same magnitude.

  1. Predicting Urban Medical Services Demand in China: An Improved Grey Markov Chain Model by Taylor Approximation.

    PubMed

    Duan, Jinli; Jiao, Feng; Zhang, Qishan; Lin, Zhibin

    2017-08-06

    The sharp increase of the aging population has raised the pressure on the current limited medical resources in China. To better allocate resources, a more accurate prediction on medical service demand is very urgently needed. This study aims to improve the prediction on medical services demand in China. To achieve this aim, the study combines Taylor Approximation into the Grey Markov Chain model, and develops a new model named Taylor-Markov Chain GM (1,1) (T-MCGM (1,1)). The new model has been tested by adopting the historical data, which includes the medical service on treatment of diabetes, heart disease, and cerebrovascular disease from 1997 to 2015 in China. The model provides a predication on medical service demand of these three types of disease up to 2022. The results reveal an enormous growth of urban medical service demand in the future. The findings provide practical implications for the Health Administrative Department to allocate medical resources, and help hospitals to manage investments on medical facilities.

  2. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smitherman, D.P.

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}mmore » aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.« less

  3. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  4. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE PAGES

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    2017-12-11

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  5. How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, C. C.; Park, H.-S.; Huntington, C. M.; Miles, A. R.; Remington, B. A.; Drake, R. P.; Tranthan, M. A.; Handy, T. A.; Shvarts, D.; Malamud, G.; Shimony, A.; Shvarts, D.; Kline, J.; Flippo, K. A.; Doss, F. W.; Plewa, T.

    2017-10-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. We present data and simulations from Rayleigh-Taylor instability experiments in high- and low- energy flux experiments performed at the National Ignition Facility. We also will discuss the apparent, larger role of heat conduction when we closely examined the comparison between the experimental results, and the SNR observations and models. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  6. Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow.

    PubMed

    Priede, Jānis; Gerbeth, Gunter

    2009-04-01

    We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field [helical magnetorotational instability (HMRI)] using the inductionless approximation defined by a zero magnetic Prandtl number (Pr_{m}=0) . The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small-amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the threshold of absolute instability is just slightly above the convective one although the critical wavelength of the former is noticeably shorter than that of the latter. Beyond the Rayleigh line the lower threshold of absolute instability rises significantly above the corresponding convective one while the upper one descends significantly below its convective counterpart. As a result, the extension of the absolute HMRI beyond the Rayleigh line is considerably shorter than that of the convective instability. The absolute HMRI is supposed to be self-sustained and, thus, experimentally observable without any external excitation in a system of sufficiently large axial extension.

  7. Torque Balances on the Taylor Cylinders in the Geomagnetic Data Assimilation

    NASA Astrophysics Data System (ADS)

    Kuang, W.; Tangborn, A.

    2004-05-01

    In this presentation we report on our continuing effort in geomagnetic data assimilation, aiming at understanding and predicting geomagnetic secular variation on decadal time scales. In particular, we focus on the effect of the torque balances on the cylindrical surfaces in the core co-axial with the Earth's rotation axis (the Taylor cylinders) on the time evolution of assimilated solutions. We use our MoSST core dynamics model and observed geomagnetic field at the Earth's surface derived via Comprehensive Field Model (CFM) for the geomagnetic data assimilation. In our earlier studies, a model solution is selected randomly from our numerical database. It is then assimilated with the observations such that the poloidal field possesses the same field tomography on the core-mantel boundary (CMB) continued downward from surface observations. This tomography change is assumed to be effective through out the outer core. While this approach allows rapid convergence between model solutions and the observations, it also generates sever numerical instabilities: the delicate balance between weak fluid inertia and the magnetic torques on the Taylor cylinders are completely altered. Consequently, the assimilated solution diverges quickly (in approximately 10% of the magnetic free-decay time in the core). To improve the assimilation, we propose a partial penetration of the assimilation from the CMB: The full-scale modification at the CMB decreases linearly and vanish at an interior radius ra. We shall examine from our assimilation tests possible relationships between the convergence rate of the model solutions to observations and the cut-off radius ra. A better assimilation shall serve our nudging tests in near future.

  8. Optimizing a Query by Transformation and Expansion.

    PubMed

    Glocker, Katrin; Knurr, Alexander; Dieter, Julia; Dominick, Friederike; Forche, Melanie; Koch, Christian; Pascoe Pérez, Analie; Roth, Benjamin; Ückert, Frank

    2017-01-01

    In the biomedical sector not only the amount of information produced and uploaded into the web is enormous, but also the number of sources where these data can be found. Clinicians and researchers spend huge amounts of time on trying to access this information and to filter the most important answers to a given question. As the formulation of these queries is crucial, automated query expansion is an effective tool to optimize a query and receive the best possible results. In this paper we introduce the concept of a workflow for an optimization of queries in the medical and biological sector by using a series of tools for expansion and transformation of the query. After the definition of attributes by the user, the query string is compared to previous queries in order to add semantic co-occurring terms to the query. Additionally, the query is enlarged by an inclusion of synonyms. The translation into database specific ontologies ensures the optimal query formulation for the chosen database(s). As this process can be performed in various databases at once, the results are ranked and normalized in order to achieve a comparable list of answers for a question.

  9. Power Laws, Scale Invariance and the Generalized Frobenius Series:

    NASA Astrophysics Data System (ADS)

    Visser, Matt; Yunes, Nicolas

    We present a self-contained formalism for calculating the background solution, the linearized solutions and a class of generalized Frobenius-like solutions to a system of scale-invariant differential equations. We first cast the scale-invariant model into its equidimensional and autonomous forms, find its fixed points, and then obtain power-law background solutions. After linearizing about these fixed points, we find a second linearized solution, which provides a distinct collection of power laws characterizing the deviations from the fixed point. We prove that generically there will be a region surrounding the fixed point in which the complete general solution can be represented as a generalized Frobenius-like power series with exponents that are integer multiples of the exponents arising in the linearized problem. While discussions of the linearized system are common, and one can often find a discussion of power-series with integer exponents, power series with irrational (indeed complex) exponents are much rarer in the extant literature. The Frobenius-like series we encounter can be viewed as a variant of the rarely-discussed Liapunov expansion theorem (not to be confused with the more commonly encountered Liapunov functions and Liapunov exponents). As specific examples we apply these ideas to Newtonian and relativistic isothermal stars and construct two separate power series with the overlapping radius of convergence. The second of these power series solutions represents an expansion around "spatial infinity," and in realistic models it is this second power series that gives information about the stellar core, and the damped oscillations in core mass and core radius as the central pressure goes to infinity. The power-series solutions we obtain extend classical results; as exemplified for instance by the work of Lane, Emden, and Chandrasekhar in the Newtonian case, and that of Harrison, Thorne, Wakano, and Wheeler in the relativistic case. We also indicate how to

  10. Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivity.

    PubMed

    He, Chunyang; Liu, Zhifeng; Xu, Min; Ma, Qun; Dou, Yinyin

    2017-01-15

    Cropland net primary productivity (CNPP) is a crucial indicator of grain productivity and food security. However, assessments of the impact of urban expansion on the CNPP in China have been inadequate owing to data limitations. In this paper, our objective was to assess the impact of urban expansion on the CNPP in China from 1992 to 2015 in a spatially explicit manner. We first obtained the CNPP before urban expansion between 1992 and 2015 in China using the Carnegie-Ames-Stanford Approach (CASA) model. We then assessed the impact of urban expansion on the CNPP from 1992 to 2015 at multiple scales (the whole country, agricultural zones, and urban expansion hotspots) by combining the CNPP before urban expansion with the urban land coverage time series extracted from multi-source remotely sensed data. We found that the total loss of the CNPP due to urban expansion from 1992 to 2015 was 13.77TgC, which accounts for 1.88% of the CNPP before urban expansion in China. This CNPP loss resulted in a 12.45-million-ton decrease in grain production in China, corresponding to a reduction in the mean annual grain self-sufficiency rate of 2%. Therefore, we concluded that rapid urban expansion from 1992 to 2015 caused stress to China's food security. We suggest that it is still vital for China to effectively protect cropland to improve the urbanization level to 60% by 2020. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Chapter 2: 2003 Geologic Assessment of Undiscovered Conventional Oil and Gas Resources in the Upper Cretaceous Navarro and Taylor Groups, Western Gulf Province, Texas

    USGS Publications Warehouse

    Condon, S.M.; Dyman, T.S.

    2006-01-01

    The Upper Cretaceous Navarro and Taylor Groups in the western part of the Western Gulf Province were assessed for undiscovered oil and gas resources in 2003. The area is part of the Smackover-Austin-Eagle Ford Composite Total Petroleum System. The rocks consist of, from youngest to oldest, the Escondido and Olmos Formations of the Navarro Group and the San Miguel Formation and the Anacacho Limestone of the Taylor Group (as well as the undivided Navarro Group and Taylor Group). Some units of the underlying Austin Group, including the 'Dale Limestone' (a term of local usage that describes a subsurface unit), were also part of the assessment in some areas. Within the total petroleum system, the primary source rocks comprise laminated carbonate mudstones and marine shales of the Upper Jurassic Smackover Formation, mixed carbonate and bioclastic deposits of the Upper Cretaceous Eagle Ford Group, and shelf carbonates of the Upper Cretaceous Austin Group. Possible secondary source rocks comprise the Upper Jurassic Bossier Shale and overlying shales within the Upper Jurassic to Lower Cretaceous Cotton Valley Group, Lower Cretaceous marine rocks, and the Upper Cretaceous Taylor Group. Oil and gas were generated in the total petroleum system at different times because of variations in depth of burial, geothermal gradient, lithology, and organic-matter composition. A burial-history reconstruction, based on data from one well in the eastern part of the study area (Jasper County, Tex.), indicated that (1) the Smackover generated oil from about 117 to 103 million years ago (Ma) and generated gas from about 52 to 41 Ma and (2) the Austin and Eagle Ford Groups generated oil from about 42 to 28 Ma and generated gas from about 14 Ma to the present. From the source rocks, oil and gas migrated upsection and updip along a pervasive system of faults and fractures as well as along bedding planes and within sandstone units. Types of traps include stratigraphic pinchouts, folds, faulted

  12. Serial Tissue Expansion at the Same Site in Pediatric Patients: Is the Subsequent Expansion Faster?

    PubMed Central

    Lee, Moon Ki; Park, Seong Oh; Choi, Tae Hyun

    2017-01-01

    Background Serial tissue expansion is performed to remove giant congenital melanocytic nevi. However, there have been no studies comparing the expansion rate between the subsequent and preceding expansions. In this study, we analyzed the rate of expansion in accordance with the number of surgeries, expander location, expander size, and sex. Methods A retrospective analysis was performed in pediatric patients who underwent tissue expansion for giant congenital melanocytic nevi. We tested four factors that may influence the expansion rate: The number of surgeries, expander location, expander size, and sex. The rate of expansion was calculated by dividing the ‘inflation amount’ by the ‘expander size’. Results The expansion rate, compared with the first-time group, was 1.25 times higher in the second-or-more group (P=0.04) and 1.84 times higher in the third-or-more group (P<0.01). The expansion rate was higher at the trunk than at other sites (P<0.01). There was a tendency of lower expansion rate for larger expanders (P=0.03). Sex did not affect the expansion rate. Conclusions There was a positive correlation between the number of surgeries and the expansion rate, a positive correlation between the expander location and the expansion rate, and a negative correlation between the expander size and the expansion rate. PMID:29076319

  13. Size invariance of the granular Rayleigh-Taylor instability.

    PubMed

    Vinningland, Jan Ludvig; Johnsen, Øistein; Flekkøy, Eirik G; Toussaint, Renaud; Måløy, Knut Jørgen

    2010-04-01

    The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.

  14. Tame majorant analyticity for the Birkhoff map of the defocusing nonlinear Schrödinger equation on the circle

    NASA Astrophysics Data System (ADS)

    Maspero, A.

    2018-05-01

    For the defocusing nonlinear Schrödinger equation on the circle, we construct a Birkhoff map Φ which is tame majorant analytic in a neighborhood of the origin. Roughly speaking, majorant analytic means that replacing the coefficients of the Taylor expansion of Φ by their absolute values gives rise to a series (the majorant map) which is uniformly and absolutely convergent, at least in a small neighborhood. Tame majorant analytic means that the majorant map of Φ fulfills tame estimates. The proof is based on a new tame version of the Kuksin–Perelman theorem (2010 Discrete Contin. Dyn. Syst. 1 1–24), which is an infinite dimensional Vey type theorem.

  15. Laser-Based Trespassing Prediction in Restrictive Environments: A Linear Approach

    PubMed Central

    Cheein, Fernando Auat; Scaglia, Gustavo

    2012-01-01

    Stationary range laser sensors for intruder monitoring, restricted space violation detections and workspace determination are extensively used in risky environments. In this work we present a linear based approach for predicting the presence of moving agents before they trespass a laser-based restricted space. Our approach is based on the Taylor's series expansion of the detected objects' movements. The latter makes our proposal suitable for embedded applications. In the experimental results (carried out in different scenarios) presented herein, our proposal shows 100% of effectiveness in predicting trespassing situations. Several implementation results and statistics analysis showing the performance of our proposal are included in this work.

  16. State-Bound Estimation for Nonlinear Systems Using Randomized Mu-Analysis

    DTIC Science & Technology

    2014-04-30

    p] = e−(1+p)2x(0) = e−2e−2px(0) Using the Taylor series expansion, the uncertain exponential function is given by φ[x(2), p] = e−2 ( 1− 2p+ 4p 2 2...the real part and the imaginary part of the argument, respectively. Notice that φk(xc, pc) + ∆φ k is equal to φk(x0, p) by the definition and it is...x0, p) is that the value of φ k(x0, p) can be positive and negative and the definition of κ∗ in (2.20) is given in terms of the absolute value of φk

  17. An approximation method for configuration optimization of trusses

    NASA Technical Reports Server (NTRS)

    Hansen, Scott R.; Vanderplaats, Garret N.

    1988-01-01

    Two- and three-dimensional elastic trusses are designed for minimum weight by varying the areas of the members and the location of the joints. Constraints on member stresses and Euler buckling are imposed and multiple static loading conditions are considered. The method presented here utilizes an approximate structural analysis based on first order Taylor series expansions of the member forces. A numerical optimizer minimizes the weight of the truss using information from the approximate structural analysis. Comparisons with results from other methods are made. It is shown that the method of forming an approximate structural analysis based on linearized member forces leads to a highly efficient method of truss configuration optimization.

  18. Anolis marsupialis Taylor 1956, a valid species from southern Pacific Costa Rica (Reptilia, Squamata, Dactyloidae).

    PubMed

    Köhler, Johannes J; Poe, Steven; Ryan, Mason J; Köhler, Gunther

    2015-02-02

    The examination of the holotype of Anolis marsupialis Taylor 1956 along with recently collected specimens reveals that A. marsupialis is a valid species. It differs from its closest congeners A. humilis Peters 1863 and A. quaggulus Cope 1885, in male dewlap coloration, scalation, body size, and hemipenial morphology. These findings are supported by preliminary molecular genetic analysis. 

  19. The Robert Taylor Boys and Girls Club of Chicago. Practitioner Perspectives: Bulletin from the Field.

    ERIC Educational Resources Information Center

    Coleman, Patrick J.; Lahey, Elizabeth; Orlando, Kristine

    The Robert Taylor Boys and Girls Club of Chicago is located in this country's largest public housing development, serving over 1,500 predominantly African American members. It offers a brightly-colored building in a dilapidated, deprived area. It provides a clean, warm, safe haven for children to play, build strong bodies, get help with homework,…

  20. Torque balance, Taylor's constraint and torsional oscillations in a numerical model of the geodynamo

    NASA Astrophysics Data System (ADS)

    Dumberry, Mathieu; Bloxham, Jeremy

    2003-11-01

    Theoretical considerations and observations suggest that, to a first approximation, the Earth's dynamo is in a quasi-Taylor state, where the axial Lorentz torque on cylindrical surfaces co-axial with the rotation axis vanishes, except for the part involved in torsional oscillations. The latter are rigid azimuthal accelerations of cylindrical surfaces which oscillate with typical periods of decades. We present a solution of a numerical model of the geodynamo in which rigid accelerations of cylinder surfaces are observed. The underlying dynamic state in the model is not a Taylor state because the Reynolds stresses and viscous torque remain large and provide an effective way to balance a large Lorentz torque. This is a consequence of the limited parameter regime which can be attained numerically. Nevertheless, departures in the torque equilibrium are primarily counterbalanced by rigid accelerations of cylindrical surfaces, which, in turn, excite rigid azimuthal oscillations of the surfaces. We show that the azimuthal motion is indeed quasi-rigid, though the torsional oscillations that are produced in the model probably differ from those in the Earth's core because of the large influence of the Reynolds stresses on their dynamics. We also show that the continual excitation of rigid cylindrical accelerations is produced by the advection of the non-axisymmetric structure of the fields by a mean differential rotation of the cylindrical surfaces which produces disconnections and reconnections and continual fluctuations in the Lorentz torque and Reynolds stresses. We propose that the torque balance in Earth's core may evolve in a similar chaotic fashion, except that the influence of the Reynolds stresses is probably weaker. If this is the case, the Lorentz torque on a cylindrical surface is continually fluctuating, even though its time-averaged value vanishes and satisfies Taylor's constraint. Rigid accelerations of cylindrical surfaces are continually excited by the