Sample records for taylorsville triassic basin

  1. Constraints on the thermal history of Taylorsville Basin, Virginia, U.S.A., from fluid-inclusion and fission-track analyses: Implications for subsurface geomicrobiology experiments

    USGS Publications Warehouse

    Tseng, H.-Y.; Onstott, T.C.; Burruss, R.C.; Miller, D.S.

    1996-01-01

    Microbial populations have been found at the depth of 2621-2804 m in a borehole near the center of Triassic Taylorsville Basin, Virginia. To constrain possible scenarios for long-term survival in or introduction of these microbial populations to the deep subsurface, we attempted to refine models of thermal and burial history of the basin by analyzing aqueous and gaseous fluid inclusions in calcite/quartz veins or cements in cuttings from the same borehole. These results are complemented by fission-track data from the adjacent boreholes. Homogenization temperatures of secondary aqueous fluid inclusions range from 120?? to 210??C between 2027- and 3069-m depth, with highest temperatures in the deepest samples. The salinities of these aqueous inclusions range from 0 to ??? 4.3 eq wt% NaCl. Four samples from the depth between 2413 and 2931 m contain both two-phase aqueous and one-phase methane-rich inclusions in healed microcracks. The relative CH4 and CO2 contents of these gaseous inclusions was estimated by microthermometry and laser Raman spectroscopy. If both types of inclusions in sample 2931 m were trapped simultaneously, the density of the methane-rich inclusions calculated from the Peng - Robinson equation of state implies an entrapment pressure of 360 ?? 20 bar at the homogenization temperature (162.5 ?? 12.5??C) of the aqueous inclusions. This pressure falls between the hydrostatic and lithostatic pressures at the present depth 2931 m of burial. If we assume that the pressure regime was hydrostatic at the time of trapping, then the inclusions were trapped at 3.6 km in a thermal gradient of ??? 40??C/km. The high temperatures recorded by the secondary aqueous inclusions are consistent with the pervasive resetting of zircon and apatite fission-track dates. In order to fit the fission-track length distributions of the apatite data, however, a cooling rate of 1-2??C/Ma following the thermal maximum is required. To match the integrated dates, the thermal maximum

  2. Tethys- and Atlas-related deformations in the Triassic Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J.S.; Moore, S.R.; Quarles, A.I.

    1995-08-01

    Petroleum provinces of Algeria can be divided into Paleozoic and Mesozoic domains. Paleozoic basins are located on the Gondwanaland paleo-continent where the last significant tectonic episode is ascribed to the Late Paleozoic Hercynian Orogeny. Mesozoic basins are located on the south margin of the Neo-Tethyan seaway. These basins were subject to varying degrees of contractional deformation during the Cenozoic Atlas Orogeny. The Triassic Basin of Algeria is a Tethyan feature located above portions of the Paleozoic Oued M`ya and Ghadames Basins. Paleozoic strata are deeply truncated at the Hercynian Unconformity on a broad arch between the older basins. This ismore » interpreted to reflect rift margin rebound during Carboniferous time. Continental Lower Triassic sediments were deposited in a series of northeast trending basins which opened as the Neo-Tethys basin propagated from east to west between Africa and Europe. Middle Triassic marine transgression from the east resulted in evaporate deposition persisting through the Early Jurassic. Passive margin subsidence associated with carbonate marine deposition continued through the Early Cretaceous. Several zones of coeval wrench deformation cross the Atlas and adjoining regions. In the Triassic Basin, inversion occurred before the end of the Early Cretaceous. This episode created discrete uplifts, where major hydrocarbon accumulations have been discovered, along northeast trending lineaments. During the Eocene, the main phase of the Atlas Orogeny produced low amplitude folding of Jurassic and Cretaceous sediments. The folds detach within the Triassic-Jurassic evaporate interval. Many of these folds have been tested without success, as the deeper reservoirs do not show structural closure.« less

  3. Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland)

    NASA Astrophysics Data System (ADS)

    Guarnieri, Pierpaolo; Brethes, Anaïs.; Rasmussen, Thorkild M.

    2017-04-01

    The Triassic rift basin along the east Greenland margin described in this paper is represented by NE-SW trending basins and highs segmented by NW-SE trending transfer zones. Coarse-grained sediments along the eastern side of Jameson Land are shown to be hosted in half-graben structures belonging to the Carlsberg Fjord Basin that is bounded by NW dipping normal faults mapped and described after fieldwork in the Klitdal area in Liverpool Land. New aeromagnetic and electromagnetic data together with new drill cores allow the reinterpretation of available seismic lines showing the continuation of the Triassic rift basin toward the SW where it is buried under the Upper Triassic postrift sediments and the Jurassic successions of the Jameson Land Basin. The N-S trending Liverpool Land, interpreted as the boundary block of the Triassic basin, is shown to represent a structural high inherited from the Late Carboniferous tectonics and faulted during the Triassic rifting. The Carlsberg Fjord Basin and the Klitdal Fault System described in this paper should be seen as analogues to the Helgeland Basin in the Norwegian offshore that is bounded by the Ylvingen Fault Zone and to the Papa and West of Shetlands Basins that are bounded by the Spine Fault. The Triassic rift zone and transfer faults on both conjugate margins show a straightforward correlation with the trends of the initial spreading line and fracture zones of the northeast Atlantic indicating a possible inheritance of the Triassic rifting.

  4. Provenance of upper Triassic sandstone, southwest Iberia (Alentejo and Algarve basins): tracing variability in the sources

    NASA Astrophysics Data System (ADS)

    Pereira, M. F.; Ribeiro, C.; Gama, C.; Drost, K.; Chichorro, M.; Vilallonga, F.; Hofmann, M.; Linnemann, U.

    2017-01-01

    Laser ablation ICP-MS U-Pb analyses have been conducted on detrital zircon of Upper Triassic sandstone from the Alentejo and Algarve basins in southwest Iberia. The predominance of Neoproterozoic, Devonian, Paleoproterozoic and Carboniferous detrital zircon ages confirms previous studies that indicate the locus of the sediment source of the late Triassic Alentejo Basin in the pre-Mesozoic basement of the South Portuguese and Ossa-Morena zones. Suitable sources for the Upper Triassic Algarve sandstone are the Upper Devonian-Lower Carboniferous of the South Portuguese Zone (Phyllite-Quartzite and Tercenas formations) and the Meguma Terrane (present-day in Nova Scotia). Spatial variations of the sediment sources of both Upper Triassic basins suggest a more complex history of drainage than previously documented involving other source rocks located outside present-day Iberia. The two Triassic basins were isolated from each other with the detrital transport being controlled by two independent drainage systems. This study is important for the reconstruction of the late Triassic paleogeography in a place where, later, the opening of the Central Atlantic Ocean took place separating Europe from North America.

  5. Early Triassic development of a foreland basin in the Canadian high Arctic: Implications for a Pangean Rim of Fire

    NASA Astrophysics Data System (ADS)

    Hadlari, Thomas; Dewing, Keith; Matthews, William A.; Alonso-Torres, Daniel; Midwinter, Derrick

    2018-06-01

    Following the amalgamation of Laurasia and Gondwana to form Pangea, some Triassic tectonic models show an encircling arc system called the "Pangean Rim of Fire". Here we show that the stratigraphy and Early Triassic detrital zircon provenance of the Sverdrup Basin in the Canadian Arctic is most consistent with deposition in a retro-arc foreland basin. Late Permian and Early Triassic volcanism was accompanied by relatively high rates of subsidence leading to a starved basin with volcanic input from a magmatic arc to the northwest. The mostly starved basin persisted through the Middle and Late Triassic with nearly continuous input of volcanic ash recorded as bentonites on the northwestern edge of the basin. In the latest Triassic it is interpreted that decreasing subsidence and a significant influx of sand-grade sediment when the arc was exhumed led to filling of the basin at the end of an orogenic cycle. Combined with other hints of Early Triassic arc activity along the western margin of Laurentia we propose that the Pangean Rim of Fire configuration spanned the entire Triassic. This proposed configuration represents the ring of external subduction zones that some models suggest are necessary for the breakup of supercontinents such as Pangea.

  6. Paleofluid-flow circulation within a Triassic rift basin: Evidence from oil inclusions and thermal histories

    USGS Publications Warehouse

    Tseng, H.-Y.; Burruss, R.C.; Onstott, T.C.; Omar, G.

    1999-01-01

    The migration of subsurface fluid flow within continental rift basins has been increasingly recognized to significantly affect the thermal history of sediments and petroleum formation. To gain insight into these paleofluid flow effects, the thermal history of the Taylorsville basin in Virginia was reconstructed from fluid-inclusion studies, apatite fission-track data, and vitrinite reflectance data. Models of thermal history indicate that the basin was buried to the thermal maximum at 200 Ma; a cooling event followed during which the eastern side of the basin cooled earlier and faster than the western side, suggesting that there was a differential uplift and topographically driven fluid flow. This hypothesis is supported by analyses of secondary oil and aqueous inclusions trapped in calcite and quartz veins during the uplift stage. Gas chromatograms of inclusion oils exhibit variable but extensive depletion of light molecular-weight hydrocarbons. The relative abundance of n-alkanes, petrographic observations, and the geological data indicate that the alteration process on these inclusion oils was probably neither phase separation nor biodegradation, but water washing. Water:oil ratios necessary to produce the observed alteration are much greater than 10000:1. These exceedingly high ratios are consistent with the migration of inclusion oils along with fluid flow during the early stages of basin evolution. The results provide significant evidence about the role of a subsurface flow system in modifying the temperature structure of the basin and the composition of petroleum generated within the basin.

  7. Sedimentary record of subsidence pulse at the Triassic/Jurassic boundary interval in the Slovenian Basin (eastern Southern Alps)

    NASA Astrophysics Data System (ADS)

    Rožič, Boštjan; Jurkovšek, Tea Kolar; Rožič, Petra Žvab; Gale, Luka

    2017-08-01

    In the Alpine Realm the Early Jurassic is characterized by the disintegration and partial drowning of vast platform areas. In the eastern part of the Southern Alps (present-day NW Slovenia), the Julian Carbonate Platform and the adjacent, E-W extending Slovenian Basin underwent partial disintegration, drowning and deepening from the Pliensbachian on, whereas only nominal environmental changes developed on the large Dinaric (Friuli, Adriatic) Carbonate Platform to the south (structurally part of the Dinarides). These events, however, were preceded by an earlier - and as yet undocumented extensional event - that took place near the Triassic/Jurassic boundary. This paper provides evidence of an accelerated subsidence from four selected areas within the Slovenian Basin, which show a trend of eastwardly-decreasing deformation. In the westernmost (Mrzli vrh) section - the Upper Triassic platform-margin - massive dolomite is overlain by the earliest Jurassic toe-of-slope carbonate resediments and further, by basin-plain micritic limestone. Further east (Perbla and Liščak sections) the Triassic-Jurassic transition interval is marked by an increase in resedimented carbonates. We relate this to the increasing inclination and segmentation of the slope and adjacent basin floor. The easternmost (Mt. Porezen) area shows a rather monotonous, latest Triassic-Early Jurassic basinal sedimentation. However, changes in the thickness of the Hettangian-Pliensbachian Krikov Formation point to a tilting of tectonic blocks within the basin area. Lateral facies changes at the base of the formation indicate that the tilting occurred at and/or shortly after the Triassic/Jurassic boundary

  8. New carbon-isotope evidence from the Polish Basin for a major carbon-cycle perturbation at the Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Pointer, Robyn; Hesselbo, Stephen; Littler, Kate; Pieńkowski, Grzegorz; Hodbod, Marta

    2016-04-01

    Carbon-isotope analysis of fossil plant material from a Polish core provides new evidence of a perturbation to the atmospheric carbon-cycle at the Triassic-Jurassic boundary (~201 Ma). The Triassic-Jurassic boundary was a time of extreme climate change which also coincided with the end-Triassic mass extinction. The new data will allow us to identify climatic changes in the Polish Basin across the Triassic-Jurassic boundary and evaluate these changes on a broader scale by comparison to data from other sites located around the world. The Niekłan borehole core, located in the southern Polish Basin, provides a ~200 metre-long terrestrial record spanning the Rhaetian and Hettangian, including the Triassic-Jurassic boundary (~208-199 Ma). The Niekłan core consists of interbedded fluvial and lacustrine sediments containing preserved plant material and thus provides an excellent opportunity to study both terrestrial palaeoenvironmental changes in the Polish Basin and perturbations in the carbon-cycle more broadly. Carbon-isotope analysis of macrofossil plant material and microscopic woody phytoclasts from the Niekłan core reveals a negative carbon-isotope excursion (CIE) of ~-3‰ at the end of the Rhaetian, before a gradual return to more positive values thereafter. The negative CIE suggests an injection of isotopically-light carbon into the atmosphere occurred just before the Triassic-Jurassic boundary. Likely sources of this carbon include volcanogenic gases, methane released from gas hydrates, or a combination of the two. The negative CIE seen in plant material at Niekłan is also recorded in a variety of geological materials from contemporaneous sites world-wide. These time-equivalent, but geographically separated, records indicate that the negative CIE recorded in the Niekłan plant material is the result of a regional or global carbon-cycle perturbation and is not merely a local signal. Future work will focus on using a range of palaeoenvironmental proxies in

  9. Permian-triassic paleogeography and stratigraphy of the west Netherlands basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speksnijder, A.

    1993-09-01

    During the Permian, the present West Netherlands basin (WNB) was situated at the southernmost margin of the southern Permian basin (SPB). The thickness of Rotilegende sandstones therefore is very much reduced in the WNB. The relatively thin deposits of the Fringe Zechstein in the WNB, however, also contrast strongly in sedimentary facies with thick evaporite/carbonate alternations in the main SPB to the north, although the classic cyclicity of Zechstein deposition still can be recognized. The Fringe Zechstein sediments are mainly siliciclastic and interfinger with both carbonates and anhydrites toward the evaporite basin. End members are thin clay layers that constitutemore » potential seals to underlying Rotliegende reservoirs and relatively thick sandstones (over 100 m net sand) in the western part of the WNB. Nevertheless, favorable reservoir/seal configurations in the Fringe Zechstein seem to be sparse because only minor hydrocarbon occurrences have been proven in the area to date. The situation is dramatically different for the Triassic in the WNB. The [open quotes]Bunter[close quotes] gas play comprises thick Fringe Buntsandstein sandstones (up to 250 m), vertically sealed by carbonates and anhydritic clays of the Muschelkalk and Keuper formations. The Bunter sandstones are largely of the same age as the classic Volpriehausen, Detfurth, and Hardegsen alluvial sand/shale alternations recognized elsewhere, but the upper onlapping transgressive sands and silts correlate with evaporitic clays of the Roet basin to the north. A total volume of 65 x 10[sup 9]m[sup 3] of gas has so far been found in the Triassic Bunter sandstones of the WNB.« less

  10. How was the Triassic Songpan-Ganzi basin filled? A provenance study

    USGS Publications Warehouse

    Enkelmann, E.; Weislogel, A.; Ratschbacher, L.; Eide, E.; Renno, A.; Wooden, J.

    2007-01-01

    The Triassic Songpan-Ganzi complex comprises >200,000 km2 of 5-15 km thick turbiditic sediments. Although surrounded by several magmatic and orogenic belts, the Triassic high- and ultrahigh-pressure Qinling-Tongbai-Hong'an-Dabie (QTHD) orogen, located several hundred kilometers to the east, was proposed as its major source. Middle to Late Triassic samples from the northern and southern Songpan-Ganzi complex, studied using detrital white mica 40Ar/39Ar ages, Si-in-white mica content, and detrital zircon U/Pb ages, suggest that the northern Songpan-Ganzi deposystem obtained detritus from the north: the north China block, east Kunlun, northern Qaidam, Qilian, and western Qinling; the southern Songpan-Ganzi deposystem was supplied from the northeasterly located Paleozoic QTHD area throughout the Ladinian and received detritus from the Triassic Hong'an-Dabie orogen during the Carnian, indicative of exhumation of the orogen at that time. The QTHD orogen fed the Norian samples in the southeastern southern Songpan-Ganzi deposystem, signifying long drainage channels along the western margin of the south China block. An additional supply from the Emeishan magmatic province and/or the Yidun arc is suggested by the paucity of white mica in the southern Songpan-Ganzi deposystem. Mica ages of Rhaetian sediments from the northwestern Sichuan basin best correlate with those of the Triassic QTHD orogen. Our Si-in-white mica data demonstrate that the high- and ultrahigh-pressure rocks of the Hong'an-Dabie Shan were not exposed in the Middle to Late Triassic. Copyright 2007 by the American Geophysical Union.

  11. Palaeoenvironments and palaeotectonics of the arid to hyperarid intracontinental latest Permian- late Triassic Solway basin (U.K.)

    NASA Astrophysics Data System (ADS)

    Brookfield, Michael E.

    2008-10-01

    The late Permian to late Triassic sediments of the Solway Basin consist of an originally flat-lying, laterally persistent and consistent succession of mature, dominantly fine-grained red clastics laid down in part of a very large intracontinental basin. The complete absence of body or trace fossils or palaeosols indicates a very arid (hyperarid) depositional environment for most of the sediments. At the base of the succession, thin regolith breccias and sandstones rest unconformably on basement and early Permian rift clastics. Overlying gypsiferous red silty mudstones, very fine sandstones and thick gypsum were deposited in either a playa lake or in a hypersaline estuary, and their margins. These pass upwards into thick-bedded, multi-storied, fine- to very fine-grained red quartzo-felspathic and sublithic arenites in which even medium sand is rare despite channels with clay pebbles up to 30 cm in diameter. Above, thick trough cross-bedded and parallel laminated fine-grained aeolian sandstones (deposited in extensive barchanoid dune complexes) pass up into very thick, multicoloured mudstones, and gypsum deposited in marginal marine or lacustrine sabkha environments. The latter pass up into marine Lower Jurassic shales and limestones. Thirteen non-marine clastic lithofacies are arranged into five main lithofacies associations whose facies architecture is reconstructed where possible by analysis of large exposures. The five associations can be compared with the desert pavement, arid ephemeral stream, sabkha, saline lake and aeolian sand dune environments of the arid to hyperarid areas of existing intracontinental basins such as Lake Eyre and Lake Chad. The accommodation space in such basins is controlled by gradual tectonic subsidence moderated by large fluctuations in shallow lake extent (caused by climatic change and local variation) and this promotes a large-scale layer-cake stratigraphy as exemplified in the Solway basin. Here, the dominant fine-grained mature

  12. Pollen and spores date origin of rift basins from Texas to nova scotia as early late triassic.

    PubMed

    Traverse, A

    1987-06-12

    Palynological studies of the nonmarine Newark Supergroup of eastern North America and of rift basins in the northern Gulf of Mexico facilitate correlation with well-dated marine sections of Europe. New information emphasizes the chronological link between the Newark basins and a Gulf of Mexico basin and their common history in the rifting of North America from Pangea. Shales from the subsurface South Georgia Basin are shown to be of late Karnian age (early Late Triassic). The known time of earliest sedimentation in the Culpeper Basin is extended from Norian (late Late Triassic) to mid-Karnian, and the date of earliest sedimentation in the Richmond and Deep River basins is moved to at least earliest Karnian, perhaps Ladinian. The subsurface Eagle Mills Formation in Texas and Arkansas has been dated palynologically as mid- to late Karnian. The oldest parts of the Newark Supergroup, and the Eagle Mills Formation, mostly began deposition in precursor rift basins that formed in Ladinian to early Karnian time. In the southern Newark basins, sedimentation apparently ceased in late Karnian but continued in the northern basins well into the Jurassic, until genesis of the Atlantic ended basin sedimentation.

  13. Wildfire Activity Across the Triassic-Jurassic Boundary in the Polish Basin: Evidence from New Fossil Charcoal & Carbon-isotope Data

    NASA Astrophysics Data System (ADS)

    Pointer, R.; Belcher, C.; Hesselbo, S. P.; Hodbod, M.; Pieńkowski, G.

    2017-12-01

    New fossil charcoal abundance and carbon-isotope data from two sedimentary cores provide new evidence of extreme environmental conditions in the Polish Basin during the Latest Triassic to Earliest Jurassic. Sedimentary cores from the Polish Basin provide an excellent record of terrestrial environmental conditions across the Triassic-Jurassic Boundary, a time of climatic extremes. Previous work has shown that the marine realm was affected by a large perturbation to the carbon cycle across the Triassic-Jurassic Boundary (manifested by large negative and positive carbon-isotope excursions) and limited records of charcoal abundance and organic geochemistry have indicated important changes in fire regime in the coeval ecosystems. Here we present two new carbon-isotope records generated from fossil plant matter across the Triassic-Jurassic boundary, and present new charcoal records. The charcoal abundance data confirm that there was variation in wildfire activity during the Late Triassic-Early Jurassic in the Polish Basin. Peaks in the number of fossil charcoal fragments present occur in both sedimentary cores, and increases in fossil charcoal abundance are linked to wildfires, signalling a short-lived rise in wildfire activity. Fossil charcoal abundance does not appear to be fully controlled by total organic matter content, depositional environment or bioturbation. We argue that increased wildfire activity is likely caused by an increase in ignition of plant material as a result of an elevated number of lightning strikes. Global warming (caused by a massive input of carbon into the atmosphere, as indicated by carbon-isotope data) can increase storm activity, leading to increased numbers of lightning strikes. Previous Triassic-Jurassic Boundary wildfire studies have found fossil charcoal abundance peaks at other northern hemisphere sites (Denmark & Greenland), and concluded that they represent increases in wildfire activity in the earliest Jurassic. Our new charcoal and

  14. Depositional evolution of permo-triassic karoo basins in Tanzania with reference to their economic potential

    NASA Astrophysics Data System (ADS)

    Kreuser, T.; Wopfner, H.; Kaaya, C. Z.; Markwort, S.; Semkiwa, P. M.; Aslandis, P.

    The Karoo basins of Tanzania contain in excess of 3000 m of sediments which were preserved in several NNE-NE striking half grabens or other structural basin conditions. They are all intracratonic basins, most of which filled with terrestrial sediments. In some basins situated nearer the coastal region short marine incursions occurred in the Late Permian. The Ruhuhu Rasin in SW Tanzania provides a typical depositional sequence of a Karoo basin in eastern Africa. Sedimentation commenced with glacigene deposits. These are of Late Carboniferous to Early Permian age and may be equated with other glacial successions in Africa and elsewhere in Gondwana. The glacigene beds are overlain by fluvial-deltaic coal-bearing deposits succeeded by arkoses and continental red beds. A transitionary formation of carbonaceous shales with impure coals gradually develops into thick lacustrine series which are topped by Late Permian bone bearing beds. The Triassic is characterized by a very thick fluvio-deltaic succession of siliciclastics resting with regional unconformity on the Permian. This Early Triassic sequence exhibits well-developed repetitive depositional cycles. Current azimuth measurements indicate fluctuating flow regimes in the Early Permian but relative stable source areas to the west of the basin later on. The depositional evolution of the Ruhuhu Basin is controlled by both tectonic and climatic factors. During basin evolution important energy resources were deposited such as considerable reserves of coal and source rocks of moderate potential for hydrocarbon generation. Uranium enrichment is observed in the Triassic arenaceous series where diagenetic alterations and subsequent cementation processes led to the formation of laumontite. Post Karoo dykes and plugs had only local effect on thermal evolution of potential source rocks. Enrichments of elements, i.e., Nb, Zr, Rb, Cr, and V present additional exploration targets. A comparison with the Karoo basins of the coastal

  15. Partitioned transpression in the Triassic Aghdarband basin: evidence for a Cimmerian deformation in NE IRAN:

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Zanchetta, Stefano; Balini, Marco; Ghassemi, Mohammad Reza

    2014-05-01

    The Lower-Middle Triassic Aghdarband Basin, NE Iran, consists of a strongly deformed arc-related marine succession deposited along the southern margin of Eurasia (Turan domain) in a highly mobile tectonic context. The marine deposits are unconformably covered by Upper Triassic continental beds, marking the Cimmerian collision of Iran with Eurasia. The Aghdarband Basin is a key-area for the study of the Cimmerian events, as the Triassic units were severely folded and thrust short time after the collision and were unconformably covered by the gently deformed Middle Jurassic succession which seals the Cimmerian structures. The Triassic deposits form a north-verging thrust stack interacting with an important left-lateral strike-slip shear zone exposed in the northernmost part of the basin. Transpressional structures as strike-slip faults and vertical folds are here associated with high angle reverse faults forming intricate positive flower structures. Systematic asymmetry of major and parasitic folds, as well as their geometrical features indicate that they generated in a left-lateral transpressional regime roughly coeval to thrust imbrication to the south, as a consequence of a marked strain partitioning. Aim of this presentation is to describe in detail the deformational structures of the Aghdarband region, based on structural mapping and detailed original mesoscopic field analyses, resuming from the excellent work performed in the '70s by Ruttner (1991). Our work is focused on the pre mid-Jurassic structures which can be related to the final stages of the Cimmerian deformation resulting from the oblique collision of the Iranian microplate with the southern margin of Eurasia, the so-called Turan domain. We will finally discuss the kinematic significance of the Late Triassic oblique convergence zone of Aghdarband in the frame of strain partitioning in transpressional deformation. Structural weakness favouring strain partitioning can be related to inversion of syn

  16. The inverted Triassic rift of the Marrakech High Atlas: A reappraisal of basin geometries and faulting histories

    NASA Astrophysics Data System (ADS)

    Domènech, Mireia; Teixell, Antonio; Babault, Julien; Arboleya, Maria-Luisa

    2015-11-01

    The High Atlas of Morocco is an aborted rift developed during the Triassic-Jurassic and moderately inverted during the Cenozoic. The Marrakech High Atlas, with large exposures of basement and Triassic early syn-rift deposits, is ideal to investigate the geometries of the deepest parts of a rift, constituting a good analogue for pre-salt domains. It allows unraveling geometries and kinematics of the extensional and compressional structures and the influence that they exert over one another. A detailed structural study of the main Triassic basins and basin-margin faults of the Marrakech High Atlas shows that only a few rift faults were reactivated during the Cenozoic compressional stage in contrast to previous interpretations, and emphasizes that fault reactivation cannot be taken for granted in inverted rift systems. Preserved extensional features demonstrate a dominant dip-slip opening kinematics with strike-slip playing a minor role, at variance to models proposing a major strike-slip component along the main basin-bounding faults, including faults belonging to the Tizi n'Test fault zone. A new Middle Triassic paleogeographic reconstruction shows that the Marrakech High Atlas was a narrow and segmented orthogonal rift (sub-perpendicular to the main regional extension direction which was ~ NW-SE), in contrast to the central and eastern segments of the Atlas rift which developed obliquely. This difference in orientation is attributed to the indented Ouzellarh Precambrian salient, part of the West African Craton, which deflected the general rift trend in the area evidencing the major role of inherited lithospheric anisotropies in rift direction and evolution. As for the Cenozoic inversion, total orogenic shortening is moderate (~ 16%) and appears accommodated by basement-involved large-scale folding, and by newly formed shortcut and by-pass thrusting, with rare left-lateral strike-slip indicators. Triassic faults commonly acted as buttresses.

  17. Permian and Triassic microfloral assemblages from the Blue Nile Basin, central Ethiopia

    NASA Astrophysics Data System (ADS)

    Dawit, Enkurie L.

    2014-11-01

    Palynological investigation was carried out on surface samples from up to 400 m thick continental siliciclastic sediments, here referred to as “Fincha Sandstone”, in the Blue Nile Basin, central Ethiopia. One hundred sixty species were identified from 15 productive samples collected along a continuous road-cut exposure. Six informal palynological assemblage zones have been identified. These assemblage zones, in ascending order, are: “Central Ethiopian Permian Assemblage Zone - CEPAZ I”, earliest Permian (Asselian-Sakmarian); “CEPAZ II”, late Early Permian (Artinskian-Kungurian); CEPAZ III - Late Permian (Kazanian-Tatarian); “CETAZ IV”, Lower Triassic (Olenekian Induan); “CETAZ V”, Middle Triassic (Anisian Ladinian); “CETAZ VI”, Late Triassic (Carnian Norian). Tentative age ranges proposed herein are compared with faunally calibrated palynological zones in Gondwana. The overall composition and vertical distribution of miospores throughout the studied section reveals a wide variation both qualitatively and quantitatively. The high frequency of monosaccate pollen in CEPAZ I may reflect a Glossopterid-dominated upland flora in the earliest Permian. The succeeding zone is dominated by straite/taeniate disaccate pollen and polyplicates, suggesting a notable increase in diversity of glossopterids. The decline in the diversity of taeniate disaccate pollen and the concomitant rise in abundance of non-taeniate disaccates in CEPAZ III may suggest the decline in Glossopteris diversity, though no additional evidence is available to equate this change with End-Permian extinction. More diverse and dominant non-taeniate, disaccate, seed fern pollen assignable to FalcisporitesAlisporites in CETAZ IV may represent an earliest Triassic recovery flora. The introduction of new disaccate forms with thick, rigid sacci, such as Staurosaccites and Cuneatisporites, in CETAZ V and VI may indicate the emergence of new gymnospermous plants that might have favourably

  18. Tectono-sedimentary evolution of the Permian-Triassic extension event in the Zagros basin (Iran): results from analogue modelling

    NASA Astrophysics Data System (ADS)

    Madani-kivi, M.; Zulauf, G.

    2015-12-01

    Since the 1970s, the largest oil and gas reservoirs have been discovered in the Permian-Early Triassic formationsin Saudi Arabia. Thus, this time period is important for the discovery of new oil reserves in Iran. The Arabian passivecontinental margin has undergone lithospheric extension during the Permian-Triassic, which led to the formation of theNeo-Tethys. The aim of this paper is to describe the development of the continental rift basin in the Zagros region basedon the tectono-sedimentological evolution. We have studied well-log data to specify the distribution of synrift depositsin the Zagros and have related this information to the modelling. Environmental changes indicated by various sedimentarysequences, from a siliciclastic basin to a carbonate platform setting, are described. The Cambrian Hormuz salt, whichoverlies the metamorphosed Precambrian basement, becomes effective as a basal detachment layer influencing the styleof overburden deformation during the Permian-Triassic extension event. We have investigated the formation of variousstructures linked to the presence or absence of the Hormuz layer by analogue modelling and relating these structures to theLate Palaeozoic sedimentation. Based on results of the analogue modelling, we argue that the basal detachment layer (Hormuzseries) has contributed to the various structural styles of the extensional basin development in the Fars domain and theLorestan domain.

  19. Wildfires in the Triassic of Gondwana Paraná Basin

    NASA Astrophysics Data System (ADS)

    Cardoso, Daiane dos Santos; Mizusaki, Ana Maria Pimentel; Guerra-Sommer, Margot; Menegat, Rualdo; Barili, Rosalia; Jasper, André; Uhl, Dieter

    2018-03-01

    This first report of wildfires from an association of facies containing a Dicroidium flora is made from the Upper Triassic (Carnian age) in the southern part of the Paraná Basin (Santa Maria Supersequence, Rio Grande do Sul state). The geographical extension of the Dicroidium plant assemblage is augmented in Brazilian Gondwana. Field work followed by organic petrography (inertinite reflectance), scanning electron microscopy (SEM) and field emission gun scanning electron microscopy (FEG-SEM), revealed charcoal presence in a section located in Pinheiro Machado town. Macroscopic charcoal is represented by three-dimensional wood specimens assigned to gymnosperms, with coniferous affinities and by flattened, thin, elongated remains corresponding to rachises of Dicroidium. Average reflectance values between 2.80 and 6.61 %Ro measured in the macroscopic charcoals evidence high temperature burning processes, involving fires both in the crown and in the crown-surface interface. The occurrence of charcoal in distinct and subsequent facies of the studied section indicates wildfires, which affected hinterland, meso-xerophyllous coniferous assemblages and marginal hygro-mesophyllous Dicroidium-like assemblages. The integration of results from the charcoal analyses is consistent with an atmospheric oxygen content higher than 18.5% and fuel enough to generate wildfires during the Triassic of Gondwana.

  20. Distribution and Origin of Iridium in Upper Triassic-Lower Jurassic Continental Strata of the Fundy, Deerfield and Hartford Basins, Newark Supergroup

    NASA Astrophysics Data System (ADS)

    Tanner, L. H.; Kyte, F. T.

    2015-12-01

    To date, elevated Ir levels in continental sediments proximal to the Triassic-Jurassic boundary (TJB) have been reported only from Upper Triassic strata of the Newark and Fundy basins, below the basal extrusive units of the Central Atlantic Magmatic Province. We report here the first occurrence of elevated Ir above the oldest volcanic units, as well as additional horizons of Ir enrichment from other basins of the Newark Supergroup. In the Fundy Basin (Nova Scotia, Canada), lacustrine sediments of the Scots Bay Member of the McCoy Brook Formation that directly overlie the North Mountain Basalt contain Ir up to 413 pg/g in fish-bearing strata very close to the palynological TJB. Higher in the formation the strata lack significant Ir enrichment. Similarly, sedimentary strata from between flows of North Mount Basalt show no Ir appreciable enrichment. The Deerfield Basin (Massachusetts) extension of the Hartford Basin contains only one CAMP extrusive unit, the Lower Jurassic Deerfield Basalt. Very modest Ir enrichment, up to 90 pg/g, occurs in the Fall River Beds of the Sugarloaf Formation, several meters below the basalt, and up to 70 pg/g in the Turners Falls Formation less than 2 meters above the basalt. The uppermost New Haven Formation (Upper Triassic) at the Silver Ridge locality (Guilford, CT) in the Hartford Basin contains abundant plant debris, but no evidence of elevated Ir. At the Clathopteris locality to the north (Holyoke, MA), potentially correlative strata that are fine grained and rich in plant remains have Ir enriched to 542 pg/g, an order of magnitude higher than in the coarser-grained strata in direct stratigraphic contact. The high-Ir beds also have elevated REEs relative to other Hartford Basin samples, although there is no evidence of HREE enrichment. We consider the basalts of the Central Atlantic Magmatic Province, widely accepted as the driver of Late Triassic extinctions, as the origin of the elevated Ir levels in the Newark Supergroup.

  1. A history of early geologic research in the Deep River Triassic Basin, North Carolina

    USGS Publications Warehouse

    Clark, T.W.

    1998-01-01

    The Deep River Triassic basin has one of the longest recorded histories of geologic research in North Carolina. A quick perusal of nineteenth century geologic literature in North Carolina reveals the Deep River basin has received a tremendous amount of attention, second only, perhaps, to the gold deposits of the Carolina slate belt. While these early researchers' primary interests were coal deposits, many other important discoveries, observations, and hypotheses resulted from their investigations. This article highlights many of the important advances made by these early geo-explorers by trying to include information from every major geologic investigation made in the Deep River basin from 1820 to 1955. This article also provides as thorough a consolidated history as is possible to preserve the exploration history of the Deep River basin for future investigators.

  2. Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina

    USGS Publications Warehouse

    Reid, Jeffrey C.; Milici, Robert C.

    2008-01-01

    This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data

  3. Palaeogeographic evolution of the marine Middle Triassic marine Germanic Basin changements - With emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2009-01-01

    More than seventy-five vertebrate track-sites have been found in Central Europe in 243-246.5 m.y. old Triassic coastal intertidal to sabkha carbonates. In the western part of the very flat Triassic intracontinental Germanic Basin, the carbonate strata contain at least 22 laterally extensive track horizons (called megatracksites). In contrast, in the eastern part of the basin only six megatracksites extended to near the centre of the Basin during marine low stands. Marine ingression and the development of extensive coastal marine environments began during the Aegean (Anisian) stage. This incursion began in the region of the eastern Carpathian and Silesian gates and spread westward due to the development of a tectonically controlled intracratonic basin. The tectonic origin of this basin made it susceptible to tsunamis and submarine earthquakes, which constituted very dangerous hazards for coastal terrestrial and even marine reptiles. The shallow sea that spread across the Germanic Basin produced extensive tidal flats that at times formed extensive inter-peninsular bridges between the Rhenish and Bohemian Massifs. The presence of these inter-peninsular bridges explains the observed distribution and movement of reptiles along coastal Europe and the northern Tethys Seaway during the Middle Triassic epoch. Two small reptiles, probably Macrocnemus and Hescherleria, left millions of tracks and trackways known as Rhynchosauroides and Procolophonichnium in the Middle Triassic coastal intertidal zone. The great abundance of their tracks indicates that their trackmakers Macrocnemus and Hescherleria were permanent inhabitants of this environment. In sharp contrast, tracks of other large terrestrial reptiles are quite rare along the coastal margins of the Germanic Basin, for example the recently discovered archaeosaur tracks and trackways referable to Isochirotherium, which most probably were made by the carnivore Ticinosuchus. Smaller medium-sized predatory thecodont reptiles

  4. Paleogeographic regionalization of Triassic seas based on conodontophorids

    NASA Astrophysics Data System (ADS)

    Klets, T. V.

    2008-10-01

    Geographic differentiation of conodontophorids between northern and southern latitudes commenced in the Triassic since the early Induan. Cosmopolitan long-lived genera of predominantly smooth morphotypes without sculpturing were characteristic of high-latitude basins of the Panboreal Superrealm. Since the early Olenekian until the Carnian inclusive, this superrealm consisted of the Siberian Realm that extended over Northeast Asia and the Canada-Svalbard Realm that included the Svalbard Archipelago and northern regions of Canada. Throughout the Triassic period, conodontophorids characteristic of the Tethys-Panthalassa Superrealm spanning the Tethys and low-latitude zones of the Pacific were highly endemic, very diverse in taxonomic aspect, having well-developed sculpturing and tempos of morphological transformations. Distinctions between the Early-Middle Triassic conodontophorids from northern and southern zones were not as great as afterward, and their impoverished assemblages from southern Tethyan basins were close in some respects to the Boreal ones. Their habitat basins of that time can be grouped into the Mediterranean-Pacific and India-Pakistan realms. Hence, the extent of geographic differentiation of conodontophorids was not constant and gradually grew, as their taxonomic diversity was reducing in northern basins but relatively increasing in southern ones. The Panboreal e Tethys-Panthalassa superrealms of conodontophorids, which are most clearly recognizable, are close to first-rank paleobiochores (superrealms) established earlier for ammonoids and bivalve mollusks. Main factor that controlled geographic differentiation of Triassic conodontophorids was climatic zoning. Initially lower diversity of southern Tethyan assemblages points probably to relatively cooler water regime in the peri-Gondwanan part of the Tethys. The established patterns in geographic distribution of conodontophorids characterize most likely the real trend of their differentiation and

  5. The development of the Middle Triassic tectonical controlled Germanic Basin of Central Europe and the palaeoenvironmental related distribution of marine and terrestrial reptiles

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2010-05-01

    Nine Middle Triassic paleogeographical maps comprising the uppermost Upper Bunter, Lower to Middle Muschelkalk and Upper Muschelkalk to Lower Keuper time frame (Diedrich 2008b) show the marine ingression and regression cycle of the Middle Triassic Germanic Basin (Diedrich 2010c). For bathymetrical and palaeoenvironmental interpretations especially reptiles and their footprints are used. This Germanic Basin as analogon for the Arabian Gulf (Knaust 1997), north of the Tethys, was under marine and finally terrestrial influenced sediments in a time frame (after Kozur and Bachmann 2008) between 247.2 My (Myophoria Fm, Aegean, Lower Anisian) to 237.9 My (Grabfeld Fm, Longobardian, Lower Ladinian). In a duration of 9.3 My the Germanic Basin was filled up mainly with marine carbonates and at the end by siliciclastics influenced by the northern Tethys through the Silesian, Carpathian and later the Burgundian Gates which connected the Germanic Basin to the Northern Tethys. With the marine ingression from the East via the Silesian Gate (Poland) a ten to hundred kilometers extended intertidal flat to sabkha facies belt surrounded first only the central and then the Western Germanic Basin (Winterswijk, Netherlands). Those intertidal zones were used mainly by two different small reptiles as their primary habitat. Hereby they left Millions of the small tom medium sized footprints of the ichnogenera Rhynchosauroides and Procolophonichnium (Diedrich 2005, 2008a). Larger terrestrial and beach and sabkha adapted reptiles were Tanystrophaeus antiquus and unknown archosaurs, which are recorded only by their footprints. At the beginning of the ingression at the uppermost Bunter a shallow marine invertebrate fauna and coastal reptiles appeared in the Germanic Basin which must have originated mainly from the Northern Tethys. Especially all marine reptiles immigrated from the Tethys which is proven not only by assamblaged Tethyan cephalopod Ceratite species (cf. Diedrich 2008a). The

  6. Paleomagnetic evidence for a Tertiary not Triassic age for rocks in the lower part of the Grober-Fuqua #1 well, southeastern Albuquerque Basin, New Mexico

    USGS Publications Warehouse

    Hudson, M.R.; Grauch, V.J.S.

    2003-01-01

    A sedimentary sequence penetrated in the lower part of the Grober-Fuqua #1 well in the southeastern Albuquerque Basin has previously been interpreted as either Triassic or Eocene in age. Paleomagnetic study of three specimens from two core fragments yielded a 54.5?? mean inclination of remanent magnetization relative to bedding. This inclination is like that expected in Tertiary time and is distinct from an expected low-angle Triassic inclination. Although the data are very few, when considered in combination with stratigraphic relations and the presence of a gravity low in this southeastern part of the basin, the paleomagnetic evidence favors a Tertiary age for strata in the lower part of the Grober-Fuqua #1 well.

  7. Sedimentology of the Essaouira Basin (Meskala Field) in context of regional sediment distribution patterns during upper Triassic pluvial events

    NASA Astrophysics Data System (ADS)

    Mader, Nadine K.; Redfern, Jonathan; El Ouataoui, Majid

    2017-06-01

    Upper Triassic continental clastics (TAGI: Trias Argilo-Greseux Inferieur) in the Essaouira Basin are largely restricted to the subsurface, which has limited analysis of the depositional environments and led to speculation on potential provenance of the fluvial systems. Facies analysis of core from the Meskala Field onshore Essaouira Basin is compared with tentatively time-equivalent deposits exposed in extensive outcrops in the Argana Valley, to propose a process orientated model for local versus regional sediment distribution patterns in the continuously evolving Moroccan Atlantic rift during Carnian to Norian times. The study aims to unravel the climatic overprint and improve the understanding of paleo-climatic variations along the Moroccan Atlantic margin to previously recognised Upper Triassic pluvial events. In the Essaouira Basin, four facies associations representing a progressive evolution from proximal to distal facies belts in a continental rift were established. Early ephemeral braided river systems are succeeded by a wet aeolian sandflat environment with a strong arid climatic overprint (FA1). This is followed by the onset of perennial fluvial deposits with extensive floodplain fines (FA2), accompanied by a distinct shift in fluvial style, suggesting increase in discharge and related humidity, either locally or in the catchment area. The fluvial facies transitions to a shallow lacustrine or playa lake delta environment (FA3), which exhibits cyclical abandonment. The delta is progressively overlain by a terminal playa with extensive, mottled mudstones (FA4), interpreted to present a return from cyclical humid-arid conditions to prevailing aridity in the basin. In terms of regional distribution and sediment source provenance, paleocurrent data from Carnian to Norian deposits (T5 to T8 member) in the Argana Valley suggest paleoflow focused towards the S and SW, not directed towards the Meskala area in the NW as previously suggested. A major depo

  8. Geochemical and palynological records for the end-Triassic Mass-Extinction Event in the NE Paris Basin (Luxemburg)

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Natascha; van de Schootbrugge, Bas; Thein, Jean; Fiebig, Jens; Franz, Sven-Oliver; Hanzo, Micheline; Colbach, Robert; Faber, Alain

    2016-04-01

    The End-Triassic mass-extinction event is one of the "big five" mass extinctions in Earth's history. Large scale flood basalt volcanism associated with the break-up of Pangaea, which resulted in the opening of the central Atlantic Ocean, is considered as the leading cause. In addition, an asteroid impact in Rochechouart (France; 201 ± 2 Ma) may have had a local influence on ecosystems and sedimentary settings. The Luxembourg Embayment, in the NE Paris Basin, offers a rare chance to study both effects in a range of settings from deltaic to lagoonal. A multidisciplinary study (sedimentology, geochemistry, palynology) has been carried out on a number of outcrops and cores that span from the Norian to lower Hettangian. Combined geochemical and palynological records from the Boust core drilled in the NE Paris Basin, provide evidence for paleoenvironmental changes associated with the end-Triassic mass-extinction event. The Triassic-Jurassic stratigraphy of the Boust core is well constrained by palynomorphs showing the disappaerance of typical Triassic pollen taxa (e.g. Ricciisporites tuberculates) and the occurrence of the marker species Polypodiisporites polymicroforatus within the uppermost Rhaetian, prior to the Hettangian dominance of Classopollis pollen. The organic carbon stable isotope record (δ13Corg) spanning the Norian to Hettangian, shows a series of prominent negative excursions within the middle Rhaetian, followed by a trend towards more positive values (approx -24 per mille) within the uppermost Rhaetian Argiles de Levallois Member. The lowermost Hettangian is characterized by a major negative excursion, reaching - 30 per mille that occurs in organic-rich sediments. This so-called "main negative excursion" is well-known from other locations, for example from Mariental in Northern Germany and from St Audrie's Bay in England, and Stenlille in Denmark. Based on redox-sensitive trace element records (V, Cr, Ni, Co, Th, U) the lowermost Hettangian in most of

  9. Vertical groundwater flow in Permo-Triassic sediments underlying two cities in the Trent River Basin (UK)

    NASA Astrophysics Data System (ADS)

    Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.

    2003-12-01

    The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.

  10. Supradapedon revisited: geological explorations in the Triassic of southern Tanzania

    PubMed Central

    da Rosa, Átila A.S.; Montefeltro, Felipe C.

    2017-01-01

    The upper Triassic deposits of the Selous Basin in south Tanzania have not been prospected for fossil tetrapods since the middle of last century, when Gordon M. Stockley collected two rhynchosaur bone fragments from the so called “Tunduru beds”. Here we present the results of a field trip conducted in July 2015 to the vicinities of Tunduru and Msamara, Ruvuma Region, Tanzania, in search for similar remains. Even if unsuccessful in terms of fossil discoveries, the geological mapping conducted during the trip improved our knowledge of the deposition systems of the southern margin of the Selous Basin during the Triassic, allowing tentative correlations to its central part and to neighbouring basins. Moreover, we reviewed the fossil material previously collected by Gordon M. Stockley, confirming that the remains correspond to a valid species, Supradapedon stockleyi, which was incorporated into a comprehensive phylogeny of rhynchosaurs and found to represent an Hyperodapedontinae with a set of mostly plesiomorphic traits for the group. Data gathered form the revision and phylogenetic placement of Su. stockleyi helps understanding the acquisition of the typical dental traits of Late Triassic rhynchosaurs, corroborating the potential of hyperodapedontines as index fossils of the Carnian-earliest Norian. PMID:29152419

  11. Evolution of a Permo-Triassic sedimentary melange, Grindstone terrane, east-central Oregon

    USGS Publications Warehouse

    Blome, C.D.; Nestell, M.K.

    1991-01-01

    Perceives the Grindstone rocks to be a sedimentary melange composed of Paleozoic limestone slide and slump blocks that became detached from a carbonate shelf fringing a volcanic knoll or edifice in Late Permian to Middle Triassic time and were intermixed with Permian and Triassic slope to basinal clastic and volcaniclastic rocks in a forearc basin setting. Paleogeographic affinities of the Grindstone limestone faunas and volcaniclastic debris in the limestone and clastic rocks all indicate deposition in promixity to an island-arc system near the North American craton. -from Authors

  12. Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau: Constraints from detrital zircon U-Pb ages and fission-track ages of the Triassic sedimentary sequence

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Zhang, Yunpeng; Tong, Lili

    2018-01-01

    The Zoige depression is an important depocenter within the northeast Songpan-Ganzi flysch basin, which is bounded by the South China, North China and Qiangtang Blocks and forms the northeastern margin of the Tibetan Plateau. This paper discusses the sediment provenance and Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau, using the detrital zircon U-Pb ages and apatite fission-track data from the Middle to Late Triassic sedimentary rocks in the area. The U-Pb ages of the Middle to Late Triassic zircons range from 260-280 Ma, 429-480 Ma, 792-974 Ma and 1800-2500 Ma and represent distinct source region. Our new results demonstrate that the detritus deposited during the Middle Triassic (Ladinian, T2zg) primarily originated from the Eastern Kunlun and North Qinling Orogens, with lesser contributions from the North China Block. By the Late Triassic (early Carnian, T3z), the materials at the southern margin of the North China Block were generally transported westward to the basin along a river network that flowed through the Qinling region between the North China and South China Blocks: this interpretation is supported by the predominance of the bimodal distribution of 1.8 Ga and 2.5 Ga age peaks and a lack of significant Neoproterozoic zircon. Since the Late Triassic (middle Carnian, T3zh), considerable changes have occurred in the source terranes, such as the cessation of the Eastern Kunlun Orogen and North China Block sources and the rise of the northwestern margin of the Yangtze Block and South Qinling Orogen. These drastic changes are compatible with a model of a sustained westward collision between the South China and North China Blocks during the late Triassic and the clockwise rotation of the South China Block progressively closed the basin. Subsequently, orogeny-associated folds have formed in the basin since the Late Triassic (late Carnian), and the study area was generally subjected to uplifting and

  13. Triassic deposits of the Chukotka Arctic continental margin (sedimentary implications and detrital zircon data)

    NASA Astrophysics Data System (ADS)

    Tuchkova, Marianna; Sokolov, Sergey; Verzhbitsky, Vladimir

    2013-04-01

    Triassic clastic deposits of Chukotka are represented by rhythmic intercalation of sandstones, siltstones and mudstones. During the Triassic, sedimentation was represented by continental slope progradation. Detrital zircons from Triassic sedimentary rocks were collected for constrain its paleogeographic links to source terranes. Zircons populations from three Chukotka's samples are very similar, and youngest zircon ages show peaks at 236-255 Ma (Miller et al., 2006). Lower Triassic sandstones from the Chaun subterrane do not contain the young population 235-265 Ma that is characteristic of the Upper Triassic rocks from the Anyui subterrane and Wrangel Island. The young zircon population is missing also from the coeval Sadlerochit Group (Alaska) and Blind Fiord Formation of the Sverdrup basin (Miller et al., 2006; Omma et al., 2011). Our data of Triassic sandstones of Wrangel island demonstrate detrital zircons ages dominated by Middle Triassic (227-245 Ma), Carboniferous (309-332 Ma) and Paleoproterozoic (1808-2500 Ma) ages. The new data on Chukotka show that populations of detrital zircons from Chukotka, the Sverdrup basin, and Alaska, the Sadlerochit Mountains included, demonstrate greater similarity than it was previously thought. Consequently, it may be assumed that they originate from a single source situated in the north. The data on zircon age of gabbro-dolerite magmatism in eastern Chukotka (252 Ma. Ledneva et al., 2011) and K-Ar ages obtained for sills and small intrusive bodies (Geodynamics…, 2006) in Lower Triassic deposits allow the local provenance. The presence of products of synchronous magmatism and shallow-water facies in the Lower Triassic sequences confirm this assumption. At the same time, coeval zircons appear only in the Upper Triassic strata. It is conceivable that the young zircon population originates from intrusive, not volcanic rocks, which were subjected to erosion only in the Late Triassic. In our opinion, the assumption of the local

  14. The Lower Triassic Sorkh Shale Formation of the Tabas Block, east central Iran: Succesion of a failed-rift basin at the Paleotethys margin

    USGS Publications Warehouse

    Lasemi, Y.; Ghomashi, M.; Amin-Rasouli, H.; Kheradmand, A.

    2008-01-01

    The Lower Triassic Sorkh Shale Formation is a dominantly red colored marginal marine succession deposited in the north-south trending Tabas Basin of east central Iran. It is correlated with the unconformity-bounded lower limestone member of the Elika Formation of the Alborz Mountains of northern Iran. The Sorkh Shale is bounded by the pre-Triassic and post-Lower Triassic interregional unconformities and consists mainly of carbonates, sandstones, and evaporites with shale being a minor constituent. Detailed facies analysis of the Sorkh Shale Formation resulted in recognition of several genetically linked peritidal facies that are grouped into restricted subtidal, carbonate tidal flat, siliciclastic tidal flat, coastal plain and continental evaporite facies associations. These were deposited in a low energy, storm-dominated inner-ramp setting with a very gentle slope that fringed the Tabas Block of east central Iran and passed northward (present-day coordinates) into deeper water facies of the Paleotethys passive margin of northern Cimmerian Continent. Numerous carbonate storm beds containing well-rounded intraclasts, ooids and bioclasts of mixed fauna are present in the Sorkh Shale Formation of the northern Tabas Basin. The constituents of the storm beds are absent in the fair weather peritidal facies of the Sorkh Shale Formation, but are present throughout the lower limestone member of the Elika Formation. The Tabas Block, a part of the Cimmerian continent in east central Iran, is a rift basin that developed during Early Ordovician-Silurian Paleotethys rifting. Facies and sequence stratigraphic analyses of the Sorkh Shale Formation has revealed additional evidence supporting the Tabas Block as a failed rift basin related to the Paleotethys passive margin. Absence of constituents of the storm beds in the fair weather peritidal facies of the Sorkh Shale Formation, presence of the constituents of the storm beds in the fair weather facies of the Elika Formation (the

  15. New Early Jurassic Tetrapod Assemblages Constrain Triassic-Jurassic Tetrapod Extinction Event

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Shubin, N. H.; Anders, M. H.

    1987-08-01

    The discovery of the first definitively correlated earliest Jurassic (200 million years before present) tetrapod assemblage (Fundy basin, Newark Supergroup, Nova Scotia) allows reevaluation of the duration of the Triassic-Jurassic tetrapod extinction event. Present are tritheledont and mammal-like reptiles, prosauropod, theropod, and ornithischian dinosaurs, protosuchian and sphenosuchian crocodylomorphs, sphenodontids, and hybodont, semionotid, and palaeonisciform fishes. All of the families are known from Late Triassic and Jurassic strata from elsewhere; however, pollen and spore, radiometric, and geochemical correlation indicate an early Hettangian age for these assemblages. Because all ``typical Triassic'' forms are absent from these assemblages, most Triassic-Jurassic tetrapod extinctions occurred before this time and without the introduction of new families. As was previously suggested by studies of marine invertebrates, this pattern is consistent with a global extinction event at the Triassic-Jurassic boundary. The Manicouagan impact structure of Quebec provides dates broadly compatible with the Triassic-Jurassic boundary and, following the impact theory of mass extinctions, may be implicated in the cause.

  16. Long-term oceanic changes prior the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Clémence, Marie-Emilie; Mette, Wolfgang; Thibault, Nicolas; Korte, Christoph

    2014-05-01

    A number of potential causes and kill mechanisms have been proposed for the end-Triassic mass extinction such as palaeoclimatic and sea-level variations, massive volcanism and ocean acidification. Recent analysis of the stomatal index and density of fossil leaves and geochemical research on pedogenic carbonate nodules are suggestive of rising atmospheric CO2 concentration and fluctuating climate in the Rhaetian. It seems therefore probable that the end-Triassic event was preceded by large climatic fluctuations and environmental perturbations in the Rhaetian which might have partly affected the composition and diversity of the terrestrial and marine biota prior to the end-Triassic interval. The Northern Calcareous Alps (NCA) has long been favored for the study of the Rhaetian, since the GSSP of the Triassic/Jurassic (T/J) boundary and other important T/J sections are situated in this region. However, the most famous Rhaetian sections in the NCA are composed of carbonates from the Koessen Formation and were situated in a large isolated intraplatform Basin (the Eiberg Basin), bordered to the south-east by a well-developed coral reef in the NW of the Tethys border. Several Rhaetian sections composed of marls and shales of the Zlambach Formation were deposited at the same time on the other side of this reef, in the oceanic Halstatt Basin, which was in direct connection to the Tethys. Here, we present new results on sedimentology, stable isotope and trace element analysis of both intraplatform and oceanic basin deposits in the NCA. Intraplatform Rhaetian sections from the Koessen Formation bear a few minor intervals of shales with enrichments in organic matter, some of which are associated to carbon isotopic excursions. Oceanic sections from the Hallstatt Basin are characterized at the base by very cyclic marl-limestone alternations. Higher up in the section, sediments progressively turn into pure shale deposits and the top of the Formation is characterized by organic

  17. Sedimentology of the Upper Triassic-Lower Jurassic (?) Mosolotsane Formation (Karoo Supergroup), Kalahari Karoo Basin, Botswana

    NASA Astrophysics Data System (ADS)

    Bordy, Emese M.; Segwabe, Tebogo; Makuke, Bonno

    2010-08-01

    The Mosolotsane Formation (Lebung Group, Karoo Supergroup) in the Kalahari Karoo Basin of Botswana is a scantly exposed, terrestrial red bed succession which is lithologically correlated with the Late Triassic to Early Jurassic Molteno and Elliot Formations (Karoo Supergroup) in South Africa. New evidence derived from field observations and borehole data via sedimentary facies analysis allowed the assessment of the facies characteristics, distribution and thickness variation as well as palaeo-current directions and sediment composition, and resulted in the palaeo-environmental reconstruction of this poorly known unit. Our results show that the Mosolotsane Formation was deposited in a relatively low-sinuosity meandering river system that drained in a possibly semi-arid environment. Sandstone petrography revealed mainly quartz-rich arenites that were derived from a continental block provenance dominated by metamorphic and/or igneous rocks. Palaeo-flow measurements indicate reasonably strong, unidirectional current patterns with mean flow directions from southeast and east-southeast to northwest and west-northwest. Regional thickness and facies distributions as well as palaeo-drainage indicators suggest that the main depocenter of the Mosolotsane Formation was in the central part of the Kalahari Karoo Basin. Separated from this main depocenter by a west-northwest - east-southeast trending elevated area, an additional depocenter was situated in the north-northeast part of the basin and probably formed part of the Mid-Zambezi Karoo Basin. In addition, data also suggests that further northeast-southwest trending uplands probably existed in the northwest and east, the latter separating the main Kalahari Karoo depocenter from the Tuli Basin.

  18. Triassic structural and stratigraphic evolution of the Central German North Sea sector

    NASA Astrophysics Data System (ADS)

    Wolf, Marco; Jähne-Klingberg, Fabian

    2017-04-01

    The subsurface of the Central German North Sea sector is characterized by a complex sequence of tectonic events that span from the Permo-Carboniferous initiation of the Southern Permian Basin to the present day. The Triassic period is one of the most prominent stratigraphic intervals in this area due to alternating phases of relatively tectonic quiescence and intense tectonic activity with the development of grabens, salt-tectonics movements, various regional and local erosional events and strong local and regional changes in subsidence over time. The heterogeneous geological history led to complex structural and lithological patterns. The presented results are part of a comprehensive investigation of the Central German North Sea sector. It was carried out within the scope of the project TUNB (www.bgr.bund.de). The main goal was to enhance the understanding of the Triassic geological development in the area of interest due to detailed seismic interpretation of several hundred 2D seismic lines and as well 3D seismic data sets. A seismostratigraphic concept was used to interpret most formations of the Triassic resulting in a detailed subdivision of the Triassic unit. Depth and thickness maps for every stratigraphic unit and geological cross sections provided new insights regarding an overall basin evolution as well as the timing and mechanisms of rifting and salt-tectonics. New results concerning the evolution of the Keuper in the German North Sea and especially the Triassic evolution of the Horn Graben, as one of the major Triassic rift-structures in the North Sea, will be highlighted. We will show aspects of strong tectonic subsidence in the Horn Graben in the Lower Triassic. In parts of the study area, halotectonic movements started in the Upper Triassic, earlier than previously proposed. Besides mapping of regional seismic reflectors, distinct sedimentary features like fluvial channel systems of the Stuttgart formation (Middle Keuper) or subrosion-like structures

  19. The terminal Permian in European Russia: Vyaznikovian Horizon, Nedubrovo Member, and Permian-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Lozovsky, V. R.; Balabanov, Yu. P.; Karasev, E. V.; Novikov, I. V.; Ponomarenko, A. G.; Yaroshenko, O. P.

    2016-07-01

    The comprehensive analysis of the data obtained on terrestrial vertebrata, ostracods, entomologic fauna, megaflora, and microflora in deposits of the Vyaznikovian Horizon and Nedubrovo Member, as well as the paleomagnetic data measured in enclosing rocks, confirms heterogeneity of these deposits. Accordingly, it is necessary to distinguish these two stratons in the terminal Permian of the East European Platform. The combined sequence of Triassic-Permian boundary deposits in the Moscow Syneclise, which is considered to be the most complete sequence in the East European Platform, is as follows (from bottom upward): Vyatkian deposits; Vyaznikovian Horizon, including Sokovka and Zhukovo members; Nedubrovo Member (Upper Permian); Astashikha and Ryabi members of the Vokhmian Horizon (Lower Triassic). None of the sequences of Permian-Triassic boundary deposits known in the area of study characterizes this sequence in full volume. In the north, the Triassic deposits are underlain by the Nedubrovo Member; in the south (the Klyazma River basin), the sections are underlain by the Vyaznikovian Horizon. The Permian-Triassic boundary adopted in the General Stratigraphic Scale of Russia for continental deposits of the East European platform (the lower boundary of the Astashikha Member) is more ancient than the one adopted in the International Stratigraphic Chart. The same geological situation is observed in the German Basin and other localities where Triassic continental deposits are developed. The ways of solving this problem are discussed in this article.

  20. Sea level reconstructions and non-marine sedimentation at the Triassic-Jurassic boundary: southwestern margin of the Neotethys in the Salt Range, Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Wagreich, Michael

    2016-04-01

    The environmental changes during the Triassic-Jurassic boundary interval and the associated mass extinction event are still strongly debated. Sea-level reconstruction records during this interval reveal an end-Triassic global regression event. Erosion and karstification at the top of Triassic sediments, and Lower Jurassic fluvial channels with reworked Triassic clasts indicate widespread regression in the European basins. Laterite at the top of the Triassic, and quartzose conglomerates/sandstones at the base of the Jurassic indicate a fluvial/terrestrial onset in Iran and Afghanistan. Abrupt emergence, erosion and facies dislocation, from the Triassic dolomites (Kingriali Formation) to Lower Jurassic fluvial/continental quartzose conglomerates/pebbly sandstones (Datta Formation) occur in the Tethyan Salt Range of Pakistan. Sedimentological analyses indicate marine regression and emergence under tropical-subtropical conditions (Greenhouse conditions) and negates the possibility of glacial influence in this region. Field evidences indicate the presence of an undulatory surface at the base of the Jurassic and a high (Sargodha High) is present south of the Salt Range Thrust, the southern boundary of the basin. Furthermore, geophysical data (mostly seismic sections) in different parts of the basin display normal faults in the basement. These features are interpreted as horst and graben structures at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau. The Lower Jurassic Datta Formation appears to have been deposited in an overall graben fill settings. Similar normal faults and graben fill geometries are observed on seismic sections in Tanzania, Mozambique, Madagascar and other regions of the southeastern margin of the African Plate and are related to the Karoo rift system. To summarize, the basement normal faults and the graben fill features at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau can be correlated to similar features common in the Karoo

  1. Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins

    NASA Astrophysics Data System (ADS)

    Sato, Ana María; Llambías, Eduardo J.; Basei, Miguel A. S.; Castro, Carlos E.

    2015-11-01

    The intermediate to acid Choiyoi Magmatic Province is the most conspicuous feature along the Late Paleozic continental margin of southwestern Gondwana, and is generally regarded as the possible source for the widespread ash fall deposits interlayered with sedimentary sequences in the adjacent Gondwana basins. The Choiyoi magmatism is geologically constrained between the early Permian San Rafael orogenic phase and the Triassic extensional Huarpica phase in the region of Argentine Frontal Cordillera, Precordillera and San Rafael Block. In order to better assess the Choiyoi magmatism in Argentine Frontal Cordillera, we obtained 6 new LA-ICPMS U-Pb ages between 278.8 ± 3.4 Ma and 252.5 ± 1.9 Ma from plutonic rocks of the Colangüil Batholith and an associated volcanic rock. The global analysis of age data compiled from Chilean and Argentine Late Paleozoic to Triassic outcrops allows us to identify three stages of magmatism: (1) pre-Choiyoi orogenic magmatism, (2) Choiyoi magmatism (286-247 Ma), and (3) post-Choiyoi magmatism related to extensional tectonics. In the Choiyoi stage is there an eastward shift and expansion of the magmatism to the southeast, covering an extensive region that defines the Choiyoi magmatic province. On the basis of comparison with the ages from volcanogenic levels identified in the coeval Gondwana basins, we propose: (a) The pre-Choiyoi volcanism from the Paganzo basin (320-296 Ma) probably has a local source in addition to the Frontal Cordillera region. (b) The pre-Choiyoi and Choiyoi events identified in the Paraná basin (304-275 Ma) are likely to have their source in the Chilean Precordillera. (c) The early stage of the Choiyoi magmatism found in the Sauce Grande basin (284-281 Ma) may have come from the adjacent Las Matras to Chadileuvú blocks. (d) The pre-Choiyoi and Choiyoi events in the Karoo basins (302-253 Ma) include the longest Choiyoi interval, and as a whole bear the best resemblance to the age records along the Chilean and

  2. Regional stratigraphy and petroleum potential, Ghadames basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emme, J.J.; Sunderland, B.L.

    1991-03-01

    The Ghadames basin in east-central Algeria extends over 65,000 km{sup 2} (25,000 mi{sup 2}), of which 90% is covered by dunes of the eastern Erg. This intracratonic basin consists of up to 6000 m (20,000 ft) of dominantly clastic Paleozoic through Mesozoic strata. The Ghadames basin is part of a larger, composite basin complex (Ilizzi-Ghadames-Triassic basins) where Paleozoic strata have been truncated during a Hercynian erosional event and subsequently overlain by a northward-thickening wedge of Mesozoic sediments. Major reservoir rocks include Triassic sandstones that produce oil, gas, and condensate in the western Ghadames basin, Siluro-Devonian sandstones that produce mostly oilmore » in the shallower Ilizzi basin to the south, and Cambro-Ordovician orthoquartzites that produce oil at Hassi Messaoud to the northwest. Organic shales of the Silurian and Middle-Upper Devonian are considered primary source rocks. Paleozoic shales and Triassic evaporite/red bed sequences act as seals for hydrocarbon accumulations. The central Ghadames basin is underexplored, with less than one wildcat well/1700 km{sup 2} (one well/420,000 ac). Recent Devonian and Triassic oil discoveries below 3500 m (11,500 ft) indicate that deep oil potential exists. Exploration to date has concentrated on structural traps. Subcrop and facies trends indicate that potential for giant stratigraphic or combination traps exists for both Siluro-Devonian and Triassic intervals. Modern seismic acquisition and processing techniques in high dune areas can be used to successfully identify critical unconformity-bound sequences with significant stratigraphic trap potential. Advances in seismic and drilling technology combined with creative exploration should result in major petroleum discoveries in the Ghadames basin.« less

  3. The Triassic dicynodont Kombuisia (Synapsida, Anomodontia) from Antarctica, a refuge from the terrestrial Permian-Triassic mass extinction.

    PubMed

    Fröbisch, Jörg; Angielczyk, Kenneth D; Sidor, Christian A

    2010-02-01

    Fossils from the central Transantarctic Mountains in Antarctica are referred to a new species of the Triassic genus Kombuisia, one of four dicynodont lineages known to survive the end-Permian mass extinction. The specimens show a unique combination of characters only present in this genus, but the new species can be distinguished from the type species of the genus, Kombuisia frerensis, by the presence of a reduced but slit-like pineal foramen and the lack of contact between the postorbitals. Although incomplete, the Antarctic specimens are significant because Kombuisia was previously known only from the South African Karoo Basin and the new specimens extend the taxon's biogeographic range to a wider portion of southern Pangaea. In addition, the new finds extend the known stratigraphic range of Kombuisia from the Middle Triassic subzone B of the Cynognathus Assemblage Zone into rocks that are equivalent in age to the Lower Triassic Lystrosaurus Assemblage Zone, shortening the proposed ghost lineage of this taxon. Most importantly, the occurrence of Kombuisia and Lystrosaurus mccaigi in the Lower Triassic of Antarctica suggests that this area served as a refuge from some of the effects of the end-Permian extinction. The composition of the lower Fremouw Formation fauna implies a community structure similar to that of the ecologically anomalous Lystrosaurus Assemblage Zone of South Africa, providing additional evidence for widespread ecological disturbance in the extinction's aftermath.

  4. A Triassic aquatic protorosaur with an extremely long neck.

    PubMed

    Li, Chun; Rieppel, Olivier; LaBarbera, Michael C

    2004-09-24

    By Middle Triassic time, a number of reptile lineages had diversified in shallow epicontinental seas and intraplatform basins along the margins of parts of Pangea, including the giraffe-necked protorosaurid reptile Tanystropheus from the Western Tethys (Europe and the Middle East), which grew to approximately 5 to 6 m long. Here we report another long-necked fossil, Dinocephalosaurus, from southwestern China, recently collected in Middle Triassic marine deposits approximately 230 million years old. This taxon represents unambiguous evidence for a fully aquatic protorosaur. Its extremely elongated neck is explained as an adaptation for aquatic life, perhaps for an increase in feeding efficiency.

  5. Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Benton, Michael J.; Zhang, Qiyue; Hu, Shixue; Chen, Zhong-Qiang; Wen, Wen; Liu, Jun; Huang, Jinyuan; Zhou, Changyong; Xie, Tao; Tong, Jinnan; Choo, Brian

    2013-10-01

    The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared stratigraphic units, and their palaeoenvironments reconstructed. The Luoping and Panxian biotas, both from the Guanling Formation, are dated as Anisian (Pelsonian) on the basis of conodonts and radiometric dates, the former being slightly older than the latter. The Xingyi biota is from the Zhuganpo Formation, and is Ladinian or early Carnian, while the Guanling biota is from the overlying Xiaowa Formation, dated as Carnian. The first three biotas include extensive benthos and burrowing in the sediments, and they were located in restricted basins close to shore. Further, even though the Luoping and Panxian biotas are of similar age, their faunas differ significantly, reflecting perhaps palaeogeographically isolated basins. Between the time of the Xingyi and Guanling biotas, there was a major transgression, and the Guanling biota is entirely different in character from the other three, being dominated by pelagic forms such as large floating crinoids attached to logs, very large ichthyosaurs and thalattosaurs, and pseudoplanktonic bivalves, with no benthos and no burrowing. Phylogenetic study of the fishes and marine reptiles shows apparently explosive diversification among 20 actinopterygian lineages very early in the Early Triassic

  6. Basin evolution and structural reconstruction of northeastern Morocco and northwestern Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, S.

    1995-08-01

    The high plateau region of Morocco and northwestern Algeria contains a Permo-Triassic rift basin with over 8,000 meters of Paleozoic, Mesozoic and Tertiary sediments. The area exhibits many similarities to the prolific Triassic basins of neighboring Algeria. Previous impediments to exploration in the high plateau area focused on the inability to seismically image sub-salt, pre-Jurassic block faulted structures and the perceived lack of adequate source rocks. This study combined seismic and basin modelling techniques to decipher the pre-salt structures, interpret basin evolution, and access source rock potential. Large structural and stratigraphic features can now be discerned where Permo-Triassic block faultedmore » structures are overlain by thick Triassic-Jurassic mobile evaporate seals and sourced by underlying Paleozoic shales. Contrary to the last published reports, over 20 years ago, oil and gas generation appears to have been continuous in the Carboniferous since 350 ma. Migration directly from the Carboniferous shales to Triassic conglomerates is envisaged with adequate seals provided by the overlying Triassic-Jurassic evaporate sequence. An earlier rapid pulse of oil and gas generation between 300-340 ma from the Silurian source rocks was probably too early to have resulted in hydrocarbon accumulation in the primary Triassic targets but if reservoir is present in the Carboniferous section, then those strata may have been sourced by the Silurian shales.« less

  7. The Triassic-Jurassic boundary in eastern North America

    NASA Technical Reports Server (NTRS)

    Olsen, P. E.; Comet, B.

    1988-01-01

    Rift basins of the Atlantic passive margin in eastern North America are filled with thousands of meters of continental rocks termed the Newark Supergroup which provide an unprecedented opportunity to examine the fine scale structure of the Triassic-Jurassic mass extinction in continental environments. Time control, vital to the understanding of the mechanisms behind mass extinctions, is provided by lake-level cycles apparently controlled by orbitally induced climate change allowing resolution at the less than 21,000 year level. Correlation with other provinces is provided by a developing high resolution magnetostratigraphy and palynologically-based biostratigraphy. A large number of at least local vertebrate and palynomorph extinctions are concentrated around the boundary with survivors constituting the earliest Jurassic assemblages, apparently without the introduction of new taxa. The palynofloral transition is marked by the dramatic elimination of a relatively high diversity Triassic pollen assemblage with the survivors making up a Jurassic assemblage of very low diversity overwhelmingly dominated by Corollina. Based principally on palynological correlations, the hypothesis that these continental taxonomic transitions were synchronous with the massive Triassic-Jurassic marine extinctions is strongly corroborated. An extremely rapid, perhaps catastrophic, taxonomic turnover at the Triassic-Jurassic boundary, synchronous in continental and marine realms is hypothesized and discussed.

  8. Age and provenance of Triassic to Cenozoic sediments of West and Central Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. Tim; Galin, Thomson; Hall, Robert

    2015-04-01

    Sarawak is located on the northern edge of Sundaland in NW Borneo. West and Central Sarawak include parts of the Kuching and Sibu Zones. These contain remnants of several sedimentary basins with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic (Sadong Formation and its deep marine equivalent Kuching Formation). They were sourced by a Triassic (Carnian to Norian) volcanic arc and reworked Paleoproterozoic detritus derived from Cathaysialand. The Upper Jurassic to Cretaceous Pedawan Formation is interpreted as forearc basin fill with distinctive zircon populations indicating subduction beneath present-day West Sarawak which initiated in the Late Jurassic. Subsequent subduction until the early Late Cretaceous formed the Schwaner Mountains magmatic arc. After collision of SW Borneo and other microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension followed and were responsible for basin development on land in West Sarawak from the latest Cretaceous onwards, probably in a pull-apart setting. The first episode is associated with sediments of the Kayan Group, deposited in the Latest Cretaceous (Maastrichtian) to Eocene, and the second episode with Upper Eocene sediments of the Ketungau Basin. Zircon ages indicate volcanic activity throughout the Early Cenozoic in NW Borneo, and inherited zircon ages indicate reworking of Triassic and Cretaceous rocks. A large deep marine basin, the Rajang Basin, was north of the Lupar Line Fault in Central Sarawak (Sibu Zone) from the Late Cretaceous to the Late Eocene. Zircons from sediments of the Rajang Basin indicate they have similar ages and provenance to contemporaneous terrestrial sediments of the Kayan

  9. A Re-Examination of the Bedout High, Offshore Canning Basin, Western Australia - Possible Impact Site for the Permian-Triassic Mass Extinction Event?

    NASA Astrophysics Data System (ADS)

    Becker, L.; Nicholson, C.; Poreda, R. J.

    2002-12-01

    The Bedout High, located offshore Canning basin in Western Australia, is an unusual structure and its origin remains problematic. K-Ar dating of volcanic samples encountered at total depth in the Lagrange-1 exploration well indicated an age of about 253+/-5 Ma consistent with the Permian-Triassic boundary event. Gorter (PESA News, pp. 33-34, 1996) speculates that the Bedout High is the uplifted core (30 km) of a circular feature, some 220 km across, formed by the impact of a large bolide (cometary or asteroidal) with the Earth near the end-Permian. Accepting a possible impact origin for the Bedout structure, with the indicated dimensions, would have had profound effects on global climate as well as significant changes in lithotratigraphic, biostratigraphic and chemostratigraphic indicators as seen in several Permian-Triassic boundary locations worldwide. In this work, we re-examine some of the structural data previously presented by Gorter (1996) using some additional seismic lines. We have also evaluated several impact tracers including iridium, shocked quartz, productivity collapse, helium-3, chromium-53 and fullerenes with trapped noble gases from some Permian-Triassic boundary sites in the Tethys and Circum-Pacific regions. Our findings suggest that the Bedout structure is a good candidate for an oceanic impact at the end Permian, triggering the most severe mass extinction in the history of life on Earth.

  10. The evolution of a Late Cretaceous-Cenozoic intraplate basin (Duaringa Basin), eastern Australia: evidence for the negative inversion of a pre-existing fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Babaahmadi, Abbas; Sliwa, Renate; Esterle, Joan; Rosenbaum, Gideon

    2017-12-01

    The Duaringa Basin in eastern Australia is a Late Cretaceous?-early Cenozoic sedimentary basin that developed simultaneously with the opening of the Tasman and Coral Seas. The basin occurs on the top of an earlier (Permian-Triassic) fold-thrust belt, but the negative inversion of this fold-thrust belt, and its contribution to the development of the Duaringa Basin, are not well understood. Here, we present geophysical datasets, including recently surveyed 2D seismic reflection lines, aeromagnetic and Bouguer gravity data. These data provide new insights into the structural style in the Duaringa Basin, showing that the NNW-striking, NE-dipping, deep-seated Duaringa Fault is the main boundary fault that controlled sedimentation in the Duaringa Basin. The major activity of the Duaringa Fault is observed in the southern part of the basin, where it has undergone the highest amount of displacement, resulting in the deepest and oldest depocentre. The results reveal that the Duaringa Basin developed in response to the partial negative inversion of the pre-existing Permian-Triassic fold-thrust belt, which has similar orientation to the extensional faults. The Duaringa Fault is the negative inverted part of a single Triassic thrust, known as the Banana Thrust. Furthermore, small syn-depositional normal faults at the base of the basin likely developed due to the reactivation of pre-existing foliations, accommodation faults, and joints associated with Permian-Triassic folds. In contrast to equivalent offshore basins, the Duaringa Basin lacks a complex structural style and thick syn-rift sediments, possibly because of the weakening of extensional stresses away from the developing Tasman Sea.

  11. An archosauromorph dominated ichnoassemblage in fluvial settings from the late Early Triassic of the Catalan Pyrenees (NE Iberian Peninsula).

    PubMed

    Mujal, Eudald; Fortuny, Josep; Bolet, Arnau; Oms, Oriol; López, José Ángel

    2017-01-01

    The vertebrate recovery after the end-Permian mass extinction can be approached through the ichnological record, which is much more abundant than body fossils. The late Olenekian (Early Triassic) tetrapod ichnoassemblage of the Catalan Pyrenean Basin is the most complete and diverse of this age from Western Tethys. This extensional basin, composed of several depocenters, was formed in the latest phases of the Variscan orogeny (Pangea breakup) and was infilled by braided and meandering fluvial systems of the red-beds Buntsandstein facies. Abundant and diverse tetrapod ichnites are recorded in these facies, including Prorotodactylus mesaxonichnus isp. nov. (tracks possibly produced by euparkeriids), cf. Rotodactylus, at least two large chirotheriid morphotypes (archosauriform trackmakers), Rhynchosauroides cf. schochardti, two other undetermined Rhynchosauroides forms, an undetermined Morphotype A (archosauromorph trackmakers) and two types of Characichnos isp. (swimming traces, here associated to archosauromorph trackmakers). The Pyrenean ichnoassemblage suggests a relatively homogeneous ichnofaunal composition through the late Early Triassic of Central Pangea, characterized by the presence of Prorotodactylus and Rotodactylus. Small archosauromorph tracks dominate and present a wide distribution through the different fluviatile facies of the Triassic Pyrenean Basin, with large archosaurian footprints being present in a lesser degree. Archosauromorphs radiated and diversified through the Triassic vertebrate recovery, which ultimately lead to the archosaur and dinosaur dominance of the Mesozoic.

  12. Corrected Late Triassic latitudes for continents adjacent to the North Atlantic.

    PubMed

    Kent, Dennis V; Tauxe, Lisa

    2005-01-14

    We use a method based on a statistical geomagnetic field model to recognize and correct for inclination error in sedimentary rocks from early Mesozoic rift basins in North America, Greenland, and Europe. The congruence of the corrected sedimentary results and independent data from igneous rocks on a regional scale indicates that a geocentric axial dipole field operated in the Late Triassic. The corrected paleolatitudes indicate a faster poleward drift of approximately 0.6 degrees per million years for this part of Pangea and suggest that the equatorial humid belt in the Late Triassic was about as wide as it is today.

  13. Upper triassic continental margin strata of the central alaska range: Implications for paleogeographic reconstruction

    USGS Publications Warehouse

    Till, A.B.; Harris, A.G.; Wardlaw, B.R.; Mullen, M.

    2007-01-01

    Reexamination of existing conodont collections from the central Alaska Range indicates that Upper Triassic marine slope and basin rocks range in age from at least as old as the late Carnian to the early middle Norian. The conodont assemblages typical of these rocks are generally cosmopolitan and do not define a distinct paleogeographic faunal realm. One collection, however, containsEpigondolella multidentata sensu Orchard 1991c, which appears to be restricted to western North American autochthonous rocks. Although paleogeographic relations cannot be determined with specificity, the present distribution of biofaces within the Upper Triassic sequence could not have been the result of simple accordion-style collapse of the Late Triassic margin.

  14. A high resolution magnetostratigraphic profile across the Permian-Triassic boundary in the Southern Sydney Basin, eastern Australia

    NASA Astrophysics Data System (ADS)

    Belica, M. E.; Tohver, E.; Nicoll, R.; Denyszyn, S. W.; Pisarevsky, S.; George, A. D.

    2016-12-01

    The Permian-Triassic boundary (PTB) is associated with the largest mass extinction in Phanerozoic geologic history. Despite several decades of intense study, there is ongoing debate regarding the exact timing of extinction and the global correlation of marine and terrestrial P-T sections. The terrestrial record is hampered by a lack of index fossils; however, magnetostratigraphy offers an opportunity for correlation because it relies on the global synchronicity of magnetic reversals. A magnetostratigraphic profile across the Permian-Triassic boundary has been obtained from a stratigraphically continuous terrestrial section in the Southern Sydney Basin of eastern Australia. The 60 m section is located within the Narrabeen Group, which consists of fluvial to lacustrine sandstones and mudstones. Paleomagnetic samples were collected at one meter intervals to determine a detailed reversal record. Samples were stepwise thermally demagnetized to isolate a primary remanence, and magnetic susceptibility was measured in the field at 30 cm intervals with values ranging from -0.047-2.50 (10-3 SI units). Three normal and three reverse magnetozones were detected after removal of a low temperature overprint, and the results show good agreement with the Global Magnetic Polarity Timescale as well as marine Permian-Triassic sections where the PTB is well constrained. Furthermore, a reverse polarity subchron has been identified within the normal magnetozone spanning the PTB similar to results published from the Netherlands and China. The magnetic stratigraphy suggests that the Narrabeen Group was deposited during the late Changhsingian to early Induan, and provides a revised placement of the PTB in the lower Wombarra Claystone. Integration of the magnetostratigraphy with existing isotopic datasets suggests that the terrestrial extinction in eastern Australia occurred 7.5 m below the PTB in the Changhsingian Coalcliff Sandstone. A tuff within a coal seam underlying the Coalcliff

  15. Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin, Tibet: Implications for paleoenvironment, provenance, and tectonic setting

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwei; Wang, Jian; Fu, Xiugen; Zhan, Wangzhong; Armstrong-Altrin, John S.; Yu, Fei; Feng, Xinglei; Song, Chunyan; Zeng, Shengqiang

    2018-07-01

    The Qiangtang Basin is the largest Mesozoic marine basin in the Tibetan Plateau. The Upper Triassic black mudstones are among the most significant hydrocarbon source rocks in this basin. Here, we present geochemical data for the Upper Triassic black mudstones to determine their paleoenvironment conditions, provenance, and tectonic setting. To achieve these, 30 black mudstones formed in various sedimentary environments were collected from the Zangxiahe, Zana, and Bagong formations. The results show that the total REE concentrations of mudstones from these formations range from 169 to 214 ppm, 204 to 220 ppm, and 141 to 194 ppm, respectively. All samples have chondrite-normalized REE patterns with enrichment of LREE, depletion of HREE and negative Eu and Ce anomalies. Specifically, mudstones from the Bagong Formation exhibit higher negative Eu anomalies and lower REE contents than those from the Zangxiahe and Zana formations. Mudstones from the Zangxiahe and Zana formations with low Sr/Ba and Sr/Cu ratios indicate the humid climate, whereas the high Sr/Ba and Sr/Cu ratios of rocks from the Bagong Formation suggest the arid climate. The low U/Th, (Cu + Mo)/Zn, V/Cr and Ni/Co ratios of rocks from the Zangxiahe, Zana, and Bagong formations are indicators of oxidized conditions. The bivariate diagrams (TiO2 vs. Al2O3, TiO2 vs. Zr, La/Th vs. Hf, and Co/Th vs. La/Sc) reveal that mudstones from the Zangxiahe and Zana formations were potentially derived from intermediate igneous rocks, whereas mudstones from the Bagong Formation were probably sourced from felsic igneous rocks. Their source rocks are mostly deposited in the collisional setting. REE of mudstones from the Zangxiahe, Zana, and Bagong formations were possibly originated from terrigenous detritus, with minor non-terrigenous contributions into the Zana samples. The REE contents of these mudstones are controlled mainly by terrigenous detrital minerals, rather than by the paleoclimate, paleoredox conditions, or

  16. An archosauromorph dominated ichnoassemblage in fluvial settings from the late Early Triassic of the Catalan Pyrenees (NE Iberian Peninsula)

    PubMed Central

    Fortuny, Josep; Bolet, Arnau; Oms, Oriol; López, José Ángel

    2017-01-01

    The vertebrate recovery after the end-Permian mass extinction can be approached through the ichnological record, which is much more abundant than body fossils. The late Olenekian (Early Triassic) tetrapod ichnoassemblage of the Catalan Pyrenean Basin is the most complete and diverse of this age from Western Tethys. This extensional basin, composed of several depocenters, was formed in the latest phases of the Variscan orogeny (Pangea breakup) and was infilled by braided and meandering fluvial systems of the red-beds Buntsandstein facies. Abundant and diverse tetrapod ichnites are recorded in these facies, including Prorotodactylus mesaxonichnus isp. nov. (tracks possibly produced by euparkeriids), cf. Rotodactylus, at least two large chirotheriid morphotypes (archosauriform trackmakers), Rhynchosauroides cf. schochardti, two other undetermined Rhynchosauroides forms, an undetermined Morphotype A (archosauromorph trackmakers) and two types of Characichnos isp. (swimming traces, here associated to archosauromorph trackmakers). The Pyrenean ichnoassemblage suggests a relatively homogeneous ichnofaunal composition through the late Early Triassic of Central Pangea, characterized by the presence of Prorotodactylus and Rotodactylus. Small archosauromorph tracks dominate and present a wide distribution through the different fluviatile facies of the Triassic Pyrenean Basin, with large archosaurian footprints being present in a lesser degree. Archosauromorphs radiated and diversified through the Triassic vertebrate recovery, which ultimately lead to the archosaur and dinosaur dominance of the Mesozoic. PMID:28423005

  17. Provenance analysis and tectonic setting of the Triassic clastic deposits in Western Chukotka, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Tuchkova, M. I.; Sokolov, S.; Kravchenko-Berezhnoy, I. R.

    2009-09-01

    The study area is part of the Anyui subterrane of the Chukotka microplate, a key element in the evolution of the Amerasia Basin, located in Western Chukotka, Northeast Russia. The subterrane contains variably deformed, folded and cleaved rhythmic Triassic terrigenous deposits which represent the youngest stage of widespread marine deposition which form three different complexes: Lower-Middle Triassic, Upper Triassic (Carnian) and Upper Triassic (Norian). All of the complexes are represented by rhythmic interbeds of sandstone, siltstone and mudstone. Macrofaunas are not numerous, and in some cases deposits are dated by analogy to, or by their relationship with, other units dated with macrofaunas. The deposits are composed of pelagic sediments, low-density flows, high-density flows, and shelf facies associations suggesting that sedimentation was controlled by deltaic progradation on a continental shelf and subsequent submarine fan sedimentation at the base of the continental slope. Petrographic study of the mineral composition indicates that the sandstones are lithic arenites. Although the Triassic sandstones appear similar in outcrop and by classification, the constituent rock fragments are of diverse lithologies, and change in composition from lower grade metamorphic rocks in the Lower-Middle Triassic to higher grade metamorphic rocks in the Upper Triassic. This change suggests that the Triassic deposits represent an unroofing sequence as the source of the clastic material came from more deeply buried rocks with time.

  18. Implications of diapir-derived detritus and gypsic paleosols in Lower Triassic strata near the Castle Valley salt wall, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Lawton, Timothy F.; Buck, Brenda J.

    2006-10-01

    Gypsum-bearing growth strata and sedimentary facies of the Moenkopi Formation on the crest and NE flank of the Castle Valley salt wall in the Paradox Basin record salt rise, evaporite exposure, and salt-withdrawal subsidence during the Early Triassic. Detrital gypsum and dolomite clasts derived from the middle Pennsylvanian Paradox Formation were deposited in strata within a few kilometers of the salt wall and indicate that salt rise rates roughly balanced sediment accumulation, resulting in long-term exposure of mobile evaporite. Deposition took place primarily in flood-basin or inland sabkha settings that alternated between shallow subaqueous and subaerial conditions in a hyperarid climate. Matrix-supported and clast-supported conglomerates with gypsum fragments represent debris-flow deposits and reworked debris-flow deposits, respectively, interbedded with flood-basin sandstone and siltstone during development of diapiric topography. Mudstone-rich flood-basin deposits with numerous stage I to III gypsic paleosols capped by eolian gypsum sand sheets accumulated during waning salt-withdrawal subsidence. Association of detrital gypsum, eolian gypsum, and gypsic paleosols suggests that the salt wall provided a common source for gypsum in the surrounding strata. This study documents a previously unrecognized salt weld with associated growth strata containing diapir-derived detritus and gypsic palesols that can be used to interpret halokinesis.

  19. Geochronology, Geochemistry and Tectonics of Subduction-Related Late Triassic Rift Basins in Northern Chile (24º-26ºS).

    NASA Astrophysics Data System (ADS)

    Espinoza, M. E.; Oliveros, V.; Celis, C.

    2016-12-01

    As plate-tectonic processes ultimately control the location, initiation, and evolution of sedimentary basins, the study of these is crucial to understand the geodynamic framework of a specific period. In northern Chile, Late Triassic depocenters crop out along the Coastal Cordillera and Precordillera. These basins have been typically associated to a continental rifting unrelated to subduction prior to the Andean orogeny. In this work, we characterize these basins and present field and analytical data suggesting the development of these basins during an active subduction system. U-Pb geochronology show the opening of these basins probably during the Anisian-Carnian (>233 Ma) with the deposition of highly mature sediments in fluvial systems, followed by the initiation of the volcanism and associated fluvial-alluvial redeposition. Furthermore, a continental (fluvial and lacustrine) deposition and its transition to shallow marine facies are recorded during the Norian to Raethian (212-200 Ma), contemporaneous with the development of acidic volcanic centers. The sedimentary provenance evidence a main detrital supply of Early Permian age ( 297-283 Ma) corresponding to volcanic and plutonic basement rocks and a minor supply close to 478 Ma related to the exhumed Famatinian arc to the east. Geochemical results from volcanic products present in the basins show a typical subduction signal (calc-alkaline trend, low HFS/LILE ratio and Nb-Ta negative anomalies), while petrography indicate a wide compositional variation more than a bimodal distribution. These basins present half-graben geometries with the recognition of structural highs separating local depocenters. Kinematic analyses carried in synrift extensional faults show a bimodal distribution of the maximum strain axes from a NE-SW to a subordinate NW-SE direction of elongation. This bimodality could be related to the co-existence of two competing strain directions associated to the breakup of Pangea and the presence of a

  20. Severest crisis overlooked—Worst disruption of terrestrial environments postdates the Permian–Triassic mass extinction

    PubMed Central

    Hochuli, Peter A.; Sanson-Barrera, Anna; Schneebeli-Hermann, Elke; Bucher, Hugo

    2016-01-01

    Generally Early Triassic floras are believed to be depauperate, suffering from protracted recovery following the Permian–Triassic extinction event. Here we present palynological data of an expanded East Greenland section documenting recovered floras in the basal Triassic (Griesbachian) and a subsequent fundamental floral turnover, postdating the Permian–Triassic boundary extinction by about 500 kyrs. This event is marked by a swap in dominating floral elements, changing from gymnosperm pollen-dominated associations in the Griesbachian to lycopsid spore-dominated assemblages in the Dienerian. This turnover coincides with an extreme δ13Corg negative shift revealing a severe environmental crisis, probably induced by volcanic outbursts of the Siberian Traps, accompanied by a climatic turnover, changing from cool and dry in the Griesbachian to hot and humid in the Dienerian. Estimates of sedimentation rates suggest that this environmental alteration took place within some 1000 years. Similar, coeval changes documented on the North Indian Margin (Pakistan) and the Bowen Basin (Australia) indicate the global extent of this crisis. Our results evidence the first profound disruption of the recovery of terrestrial environments about 500kyrs after the Permian–Triassic extinction event. It was followed by another crisis, about 1myrs later thus, the Early Triassic can be characterised as a time of successive environmental crises. PMID:27340926

  1. Basin geodynamics and sequence stratigraphy of Upper Triassic to Lower Jurassic deposits of Southern Tunisia

    NASA Astrophysics Data System (ADS)

    Carpentier, Cédric; Hadouth, Suhail; Bouaziz, Samir; Lathuilière, Bernard; Rubino, Jean-Loup

    2016-05-01

    Aims of this paper are to propose a geodynamic and sequential framework for the late Triassic and early Jurassic of and south Tunisia and to evidence the impact of local tectonics on the stratigraphic architecture. Facies of the Upper Triassic to Lower Jurassic of Southern Tunisia have been interpreted in terms of depositional environments. A sequential framework and correlation schemes are proposed for outcrops and subsurface transects. Nineteen middle frequency sequences inserted in three and a half low frequency transgression/regression cycles were evidenced. Despite some datation uncertainties and the unknown durations of Lower Jurassic cycles, middle frequency sequences appear to be controlled by eustasy. In contrast the tectonics acted as an important control on low frequency cycles. The Carnian flooding was certainly favored by the last stages of a rifting episode which started during the Permian. The regression accompanied by the formation of stacked angular unconformities and the deposition of lowstand deposits during the late Carnian and Norian occured during the uplift and tilting of the northern basin margins. The transpressional activity of the Jeffara fault system generated the uplift of the Tebaga of Medenine high from the late Carnian and led to the Rhaetian regional angular Sidi Stout Unconformity. Facies analysis and well-log correlations permitted to evidence that Rhaetian to Lower Jurassic Messaoudi dolomites correspond to brecciated dolomites present on the Sidi Stout unconformity in the North Dahar area. The Early-cimmerian compressional event is a possible origin for the global uplift of the northern African margin and Western Europe during the late Carnian and the Norian. During the Rhaetian and the early Jurassic a new episode of normal faulting occured during the third low frequency flooding. This tectonosedimentary evolution ranges within the general geodynamic framework of the north Gondwana margin controlled by the opening of both

  2. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China.

    PubMed

    Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi

    2015-01-01

    A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a "small plain, big front" character.

  3. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China

    PubMed Central

    Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi

    2015-01-01

    A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a “small plain, big front” character. PMID

  4. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; Forster, Margaret A.; BouDagher-Fadel, Marcelle K.

    2017-01-01

    Metamorphic rocks in West Sarawak are poorly exposed and studied. They were previously assumed to be pre-Carboniferous basement but had never been dated. New 40Ar/39Ar ages from white mica in quartz-mica schists reveal metamorphism between c. 216 to 220 Ma. The metamorphic rocks are associated with Triassic acid and basic igneous rocks, which indicate widespread magmatism. New U-Pb dating of zircons from the Jagoi Granodiorite indicates Triassic magmatism at c. 208 Ma and c. 240 Ma. U-Pb dating of zircons from volcaniclastic sediments of the Sadong and Kuching Formations confirms contemporaneous volcanism. The magmatic activity is interpreted to represent a Triassic subduction margin in westernmost West Sarawak with sediments deposited in a forearc basin derived from the magmatic arc at the Sundaland-Pacific margin. West Sarawak and NW Kalimantan are underlain by continental crust that was already part of Sundaland or accreted to Sundaland in the Triassic. One metabasite sample, also previously assumed to be pre-Carboniferous basement, yielded Early Cretaceous 40Ar/39Ar ages. They are interpreted to indicate resumption of subduction which led to deposition of volcaniclastic sediments and widespread magmatism. U-Pb ages from detrital zircons in the Cretaceous Pedawan Formation are similar to those from the Schwaner granites of NW Kalimantan, and the Pedawan Formation is interpreted as part of a Cretaceous forearc basin containing material eroded from a magmatic arc that extended from Vietnam to west Borneo. The youngest U-Pb ages from zircons in a tuff layer from the uppermost part of the Pedawan Formation indicate that volcanic activity continued until c. 86 to 88 Ma when subduction terminated.

  5. Geology and hydrocarbon potential of the Oued Mya Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benamrane, O.; Messaoudi, M.; Messelles, H.

    1992-01-01

    The hydrocarbon System Ourd Mya is located in the Sahara Basin. It is one of the producing basin in Algeria. The stratigraphic section consists of Paleozoic and Mesosoic, it is about 5000m thick. In the eastern part, the basin is limited by the Hassi-Messaoud high zone which is a giant oil field producing from the Cambrian sands. The western part is limited by Hassi R'mel which is one of the biggest gas field in the world, it is producing from the triassic sands. The Mesozoic section is laying on the lower Devonian and in the eastern part, on the Cambrian.more » The main source rock is the Silurian shale with an average thickness of 50m and a total organic matter of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also a source rock, but in a second order. Clastic reservoirs are in the Triassic sequence which is mainly fluvial deposits with complex alluvial channels, it is the main target in the basin. Clastic reservoirs within the lower Devonian section have a good hydrocarbon potential in the east of the basin through a southwest-northeast orientation. The late Triassic-Early Jurassic evaporites overlie the Triassic clastic interval and extend over the entire Oued Mya Basin. This is considered as a super-seal evaporate package, which consists predominantly of anhydrite and halite. For Paleozoic targets, a large number of potential seals exist within the stratigraphic column. The authors infer that a large amount of the oil volume generated by the Silurian source rock from the beginning of Cretaceous until now, still not discovered could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands and Cambro-Ordovician reservoirs.« less

  6. Revision of the biostratigraphy of the Chatham Group (Upper Triassic), Deep River basin, North Carolina, USA

    USGS Publications Warehouse

    Litwin, R.J.; Ash, S.R.

    1993-01-01

    Paleontological evidence from the Upper Triassic Chatham Group in the three subbasins of the Deep River basin (North Carolina, USA) supports a significant revision of the ages assigned to most of this non-marine continental sedimentary sequence. This study confirms an early(?) or mid-Carnian age in the Sanford subbasin for the base of the Pekin Formation, the lowest unit of the Chatham Group. However, diagnostic late Carnian palynomorphs have been recovered from coals in the lower part of the Cumnock Formation in the Sanford subbasin, and from a sample of the Cumnock Formation equivalent in the Wadesboro subbasin. Plant megafossils and fossil verebrates from rocks in the Sanford subbasin also support a late Carnian age for the Cumnock Formation and its equivalents. The overlying Sanford Formation, which has not yet been dated paleontologically, probably includes beds of Norian age, as over 1000 m of strata may be present between the Cumnock Formation coals (dated here as late Carnian) and the top of the Sanford Formation. This chronostratigraphic interval appears similar to, but slightly longer than, that preserved in the Dan River-Danville and Davie County basins 100 km to the northwest. Our evidence, therefore, indicates that the Chatham Group was deposited over a much longer time interval [early(?) to mid-Carnian through early Norian] than previously was believed. ?? 1993.

  7. Stratigraphic distribution, taphonomy and paleoenvironments of Spinicaudata in the Triassic and Jurassic of the Paraná Basin

    NASA Astrophysics Data System (ADS)

    Jenisch, Alan Gregory; Lehn, Ilana; Gallego, Oscar Florencio; Monferran, Mateo Daniel; Horodyski, Rodrigo Scalise; Faccini, Ubiratan Ferrucio

    2017-12-01

    Due to the chitino-phosphatic nature of Spinicaudata conchostracan exoskeletons, their carapaces exhibit a low preservational potential compared to other bivalve groups. However, the recent studies point towards the increased tolerance of the carapace against the physical processes. Due to this peculiar characteristic, conchostracan carapace have been utilized as precise temporal markers in estimating stratigraphic and taphonomic parameters. The same characteristic also makes the spinicaudatans useful in evaluating the depositional processes and environments. The present work aims at providing a paleoenvironmental and stratigraphic analysis of conchostracans (Spinicaudata) from the Triassic-Jurassic of the Paraná Basin (Santa Maria and Caturrita formations) in terms of the sedimentary facies analysis, depositional system characterization, and analysis of the taphonomic signatures of the fossiliferous horizons within these formations. The results from the taphonomic study delineates the presence of 4 distinct fossil assemblages based on the causative mechanism and fundamental characteristics of the fossil concentrations: two taphonomic assemblages in the laminated mudstone beds deposited from the decanting fine-grained sediments in floodplains; the sandstone beds with plane parallel laminations and dune- and ripple-cross-stratifications deposited from the flooding-related overflow in the floodplains; and the association of laminated mudstone and massive sandstone beds deposited as the river mouth bars. The results show that the taphonomic signatures, e.g., closed valves, may indicate the various patterns of autochthony and allochthony. In the fine-grained floodplain assemblages, the high degree of preservation can be attributed to autochthony in the conchostracans, whereas the preservational condition of floodplain sandstone sheet and mouth bar assemblages point toward parautochthony and even allochthony. Therefore, the preservational quality of conchostracan

  8. Development of a high resolution chemostratigraphy for the Late Triassic-Early Jurassic Newark Basin

    NASA Astrophysics Data System (ADS)

    Kinney, S.; Olsen, P. E.; Chang, C.

    2017-12-01

    The 6.7 km of continuous core recovered from the paleo-tropical Triassic-Jurassic Newark rift basin during the Newark Basin Coring Project (NBCP) has provided a wealth of data since the conclusion of drilling 25 years ago. These cores comprise the longest ( 30 Myr) continuously-cored record of orbitally-paced environmental change and have informed our understanding in several different areas including tropical climate change, history of CO­2, mass extinctions, the geological time scale, and solar system dynamics. Despite the utility of NBCP cores for these endeavors, a critical missing dataset is a comprehensive characterization of their geochemical variations relevant to paleoenvironmental and paleoclimatic interests, largely a consequence of the cost of analyses at an appropriate resolution using conventional techniques. With the advent of new technology permitting the rapid acquisition of reliable geochemical data, such limitations may no longer be an obstacle for constructing a high-resolution chemostratigraphic record for the NBCP. We present the results of a proof-of-concept study using both ICP-MS-calibrated scanning ITRAX XRF and handheld Laser Induced Breakdown Spectroscopy (LIBS) using the SciAps Z-300. We will show elemental abundances at resolutions as high as 500 mm obtained using these methods from correlative sections of the Titusville and Nursery cores (Lockatong Fm.). These sections are sufficiently long to capture orbital variations and include the range of lithologies present throughout the entire section. Our preliminary results are consistent with previous, semi-quantitative means (e.g., depth ranks) of assessing Milankovitch-scale orbital variations and are also consistent with core and hole geophysical data, demonstrating that these methods can acquire meaningful geochemical data from the entire NBCP. With continued work, we aim to provide an objective characterization of orbitally-paced lake level cyclicity using geochemical proxy

  9. Paleomagnetism of baked sedimentary rocks in the Newark and Culpeper basins: Evidence for the J1 cusp and significant Late Triassic apparent polar wander from the Mesozoic basins of North America

    NASA Astrophysics Data System (ADS)

    Kodama, Kenneth P.; Cioppa, Maria T.; Sherwood, Elizabeth; Warnock, Andrew C.

    1994-08-01

    and sills. In this comparison the in situ Culpeper poles agreed with the prefolding Newark poles significantly better than the prefolding Culpeper poles. This result indicates that Culpeper intrusives erupted into already tilted sedimentary rocks. The paleomagnetic pole determined from the combined Culpeper baked sediments, dikes, and sills (in situ coordinates) and the Newark basin baked sediments (tilt-corrected coordinates) lies at 60°N, 69°E and is of 201 Ma age. This latest Triassic/earliest Jurassic pole, when combined with the Newark basin Carnian results (Witte and Kent, 1989) and Norian results (Witte et al., 1991) corrected for a counterclockwise block rotation (Kodama et al., 1994), provides a record of significant polar wander from eastern North America's Mesozoic basins for the Late Triassic. This is consistent with observations made for a similar time period from rocks on the Colorado Plateau (Bazard and Butler, 1991). Comparison of the Newark/Culpeper pole to similar age poles from the Kayenta (Bazard and Butler, 1991) and Moenave Formations (Ekstrand and Butler, 1989) only requires small amounts (5°) of Colorado Plateau rotation. The pole also provides the first well-dated evidence of the Jl cusp in North American apparent polar wander from rocks not located on the Colorado Plateau, thus giving strong support for the usefulness of paleomagnetic Euler pole analysis of apparent polar wander.

  10. Paleomagnetic and magnetostratigraphic investigations of the whitehorse group/quartermaster (Dewey Lake) formation (upper permian-lowermost triassic) in the Palo Duro basin, northwest Texas, USA

    NASA Astrophysics Data System (ADS)

    Collins, Dylan R.

    In northwest Texas, upper Permian to lowermost Triassic hematite-cemented detrital sedimentary rocks, which include a small number of regionally extensive ash beds, were deposited during the time interval of the greatest mass extinction event sequences in Earth history. The magnetic polarity stratigraphy, as well as key rock magnetic properties, of the upper Whitehorse Group (WH) and Quartermaster formations (QM) at selected sections in the Palo Duro Basin, have been determined using thermal, and chemical demagnetization approaches and anisotropy of magnetic susceptibility, acquisition of isothermal remanent magnetization (IRM) and backfield demagnetization, and thermal demagnetization of three component IRM methods. Demagnetization results show that the WH/QM contains a primary/near-primary characteristic remanent magnetization at each level sampled and thus the magnetic polarity stratigraphy for each section can be compared with existing polarity time scales across the Permian-Triassic boundary. Estimated site mean directions yield a paleomagnetic pole for the latest Permian for North America of 57.8°N, 130.6°E from 38 sampled sites.

  11. Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis.

    PubMed

    Heimdal, Thea H; Svensen, Henrik H; Ramezani, Jahandar; Iyer, Karthik; Pereira, Egberto; Rodrigues, René; Jones, Morgan T; Callegaro, Sara

    2018-01-09

    The end-Triassic is characterized by one of the largest mass extinctions in the Phanerozoic, coinciding with major carbon cycle perturbations and global warming. It has been suggested that the environmental crisis is linked to widespread sill intrusions during magmatism associated with the Central Atlantic Magmatic Province (CAMP). Sub-volcanic sills are abundant in two of the largest onshore sedimentary basins in Brazil, the Amazonas and Solimões basins, where they comprise up to 20% of the stratigraphy. These basins contain extensive deposits of carbonate and evaporite, in addition to organic-rich shales and major hydrocarbon reservoirs. Here we show that large scale volatile generation followed sill emplacement in these lithologies. Thermal modeling demonstrates that contact metamorphism in the two basins could have generated 88,000 Gt CO 2 . In order to constrain the timing of gas generation, zircon from two sills has been dated by the U-Pb CA-ID-TIMS method, resulting in 206 Pb/ 238 U dates of 201.477 ± 0.062 Ma and 201.470 ± 0.089 Ma. Our findings demonstrate synchronicity between the intrusive phase and the end-Triassic mass extinction, and provide a quantified degassing scenario for one of the most dramatic time periods in the history of Earth.

  12. Early Triassic environmental dynamics and microbial development during the Smithian-Spathian transition (Lower Weber Canyon, Utah, USA)

    NASA Astrophysics Data System (ADS)

    Grosjean, Anne-Sabine; Vennin, Emmanuelle; Olivier, Nicolas; Caravaca, Gwénaël; Thomazo, Christophe; Fara, Emmanuel; Escarguel, Gilles; Bylund, Kevin G.; Jenks, James F.; Stephen, Daniel A.; Brayard, Arnaud

    2018-01-01

    The Early Triassic biotic recovery following the end-Permian mass extinction is well documented in the Smithian-Spathian Thaynes Group of the western USA basin. This sedimentary succession is commonly interpreted as recording harsh conditions of various shallow marine environments where microbial structures flourished. However, recent studies questioned the relevance of the classical view of long-lasting deleterious post-crisis conditions and suggested a rapid diversification of some marine ecosystems during the Early Triassic. Using field and microfacies analyses, we investigate a well-preserved Early Triassic marine sedimentary succession in Lower Weber Canyon (Utah, USA). The identification of microbial structures and their depositional settings provide insights on factors controlling their morphologies and distribution. The Lower Weber Canyon sediments record the vertical evolution of depositional environments from a middle Smithian microbial and dolosiliciclastic peritidal system to a late Smithian-early Spathian bioclastic, muddy mid ramp. The microbial deposits are interpreted as Microbially Induced Sedimentary Structures (MISS) that developed either (1) in a subtidal mid ramp where microbial wrinkles and chips are associated with megaripples characterizing hydrodynamic conditions of lower flow regime, or (2) in protected areas of inter- to subtidal inner ramp where they formed laminae and domal structures. Integrated with other published data, our investigations highlight that the distribution of these microbial structures was influenced by the combined effects of bathymetry, hydrodynamic conditions, lithology of the substrat physico-chemical characteristics of the depositional environment and by the regional relative sea-level fluctuations. Thus, we suggest that local environmental factors and basin dynamics primarily controlled the modalities of microbial development and preservation during the Early Triassic in the western USA basin.

  13. First 'Rauisuchian' archosaur (Pseudosuchia, Loricata) for the Middle Triassic Santacruzodon assemblage zone (Santa Maria Supersequence), Rio Grande do Sul State, Brazil.

    PubMed

    Lacerda, Marcel B; Schultz, Cesar L; Bertoni-Machado, Cristina

    2015-01-01

    The 'Rauisuchia' are a group of Triassic pseudosuchian archosaurs that displayed a near worldwide distribution. In Brazil, their fossils are found only in the Santa Maria Formation (Paraná Basin) of the Rio Grande do Sul State, specifically in the Middle Triassic Dinodontosaurus assemblage zone (AZ) and the Late Triassic Hyperodapedon AZ (Rauisuchus tiradentes). Between these two cenozones is the Santacruzodon AZ (Middle Triassic), whose record was, until now, restricted to non-mammalian cynodonts and the proterochampsian Chanaresuchus bonapartei. Here we present the first occurrence of a rauisuchian archosaur for this cenozone, from the Schoenstatt outcrop, located near the city of Santa Cruz do Sul and propose a new species, based on biostratigraphical evidence and a comparative osteological analysis.

  14. Evidence for prosauropod dinosaur gastroliths in the Bull Run Formation (Upper Triassic, Norian) of Virginia

    USGS Publications Warehouse

    Weems, Robert E.; Culp, Michelle J.; Wings, Oliver

    2007-01-01

    Definitive criteria for distinguishing gastroliths from sedimentary clasts are lacking for many depositional settings, and many reported occurrences of gastroliths either cannot be verified or have been refuted. We discuss four occurrences of gastrolith-like stones (category 6 exoliths) not found within skeletal remains from the Upper Triassic Bull Run Formation of northern Virginia, USA. Despite their lack of obvious skeletal association, the most parsimonious explanation for several characteristics of these stones is their prolonged residence in the gastric mills of large animals. These characteristics include 1) typical gastrolith microscopic surface texture, 2) evidence of pervasive surface wear on many of these stones that has secondarily removed variable amounts of thick weathering rinds typically found on these stones, and 3) a width/length-ratio modal peak for these stones that is more strongly developed than in any population of fluvial or fanglomerate stones of any age found in this region. When taken together, these properties of the stones can be explained most parsimoniously by animal ingestion and gastric-mill abrasion. The size of these stones indicates the animals that swallowed them were large, and the best candidate is a prosauropod dinosaur, possibly an ancestor of the Early Jurassic gastrolith-producing prosauropod Massospondylus or Ammosaurus.Skeletal evidence for Upper Triassic prosauropods is lacking in the Newark Supergroup basins; footprints (Agrestipus hottoni and Eubrontes isp.) from the Bull Run Formation in the Culpeper basin previously ascribed to prosauropods are now known to be underprints (Brachychirotherium parvum) of an aetosaur and underprints (Kayentapus minor) of a ceratosaur. The absence of prosauropod skeletal remains or footprints in all but the uppermost (upper Rhaetian) Triassic rocks of the Newark Supergroup is puzzling because prosauropod remains are abundant elsewhere in the world in Upper Triassic (Carnian

  15. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Ye, Jie; Ying, Hanlong; Liu, Jiajun; Zheng, Minghua; Gu, Xuexiang

    2002-06-01

    The Youjiang basin is a Devonian-Triassic rift basin on the southern margin of the Yangtze Craton in South China. Strong syndepositional faulting defined the basin-and-range style paleo-topography that further developed into isolated carbonate platforms surrounded by siliciclastic filled depressions. Finally, thick Triassic siliciclastic deposits covered the platforms completely. In the Youjiang basin, numerous sediment-hosted, micro-disseminated gold (SMG) deposits occur mainly in Permian-Triassic chert and siliciclastic rocks. SMG ores are often auriferous sedimentary rocks with relatively low sulfide contents and moderate to weak alteration. Similar to Carlin-type gold ores in North America, SMG ores in the Youjiang basin are characterized by low-temperature mineral assemblages of pyrite, arsenopyrite, realgar, stibnite, cinnabar, marcasite, chalcedony and carbonate. Most of the SMG deposits are remarkably distributed around the carbonate platforms. Accordingly, there are platform-proximal and platform-distal SMG deposits. Platform-proximal SMG deposits often occur in the facies transition zone between the underlying platform carbonate rocks and the overlying siliciclastic rocks with an unconformity (often a paleo-karst surface) in between. In the ores and hostrocks there are abundant synsedimentary-syndiagenetic fabrics such as lamination, convolute bedding, slump texture, soft-sediment deformation etc. indicating submarine hydrothermal deposition and syndepositional faulting. Numerous fluid-escape and liquefaction fabrics imply strong fluid migration during sediment basin evolution. Such large-scale geological and fabric evidence implies that SMG ores were formed during basin evolution, probably in connection with basinal fluids. It is well known that basinal fluids (especially sediment-sourced fluids) will migrate generally (1) upwards, (2) towards basin margins or basin topographic highs, (3) and from thicker towards thinner deposits during basin evolution

  16. First 'Rauisuchian' archosaur (Pseudosuchia, Loricata) for the Middle Triassic Santacruzodon Assemblage Zone (Santa Maria Supersequence), Rio Grande do Sul State, Brazil

    PubMed Central

    Lacerda, Marcel B.; Schultz, Cesar L.; Bertoni-Machado, Cristina

    2015-01-01

    The ‘Rauisuchia’ are a group of Triassic pseudosuchian archosaurs that displayed a near worldwide distribution. In Brazil, their fossils are found only in the Santa Maria Formation (Paraná Basin) of the Rio Grande do Sul State, specifically in the Middle Triassic Dinodontosaurus assemblage zone (AZ) and the Late Triassic Hyperodapedon AZ (Rauisuchus tiradentes). Between these two cenozones is the Santacruzodon AZ (Middle Triassic), whose record was, until now, restricted to non-mammalian cynodonts and the proterochampsian Chanaresuchus bonapartei. Here we present the first occurrence of a rauisuchian archosaur for this cenozone, from the Schoenstatt outcrop, located near the city of Santa Cruz do Sul and propose a new species, based on biostratigraphical evidence and a comparative osteological analysis. PMID:25714091

  17. Triassic arc-derived detritus in the Triassic Karakaya accretionary complex was not derived from either the S Eurasian margin (Istanbul terrane) or the N Gondwana margin (Taurides)

    NASA Astrophysics Data System (ADS)

    Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair H. F.; Gerdes, Axel; Zulauf, Gernold

    2014-05-01

    We present new U-Pb zircon source age data for Upper Triassic sandstones of the Istanbul Terrane (S Eurasian margin) and also for Triassic sandstones of the Taurides (N Gondwana margin). The main aim is to detect and quantify the contribution of Triassic magmatism as detritus to either of these crustal blocks. This follows the recent discovery of a Triassic magmatic arc source for the Triassic sandstones of the Palaeotethyan Karakaya subduction-accretion complex (Ustaömer et al. 2013; this meeting). Carboniferous (Variscan) zircon grains also form a significant detrital population, plus several more minor populations. Six sandstone samples were studied, two from the İstanbul Terrane (Bakırlıkıran Formation of the Kocaeli Triassic Basin) and four from the Tauride Autochthon (latest Triassic Üzümdere Formation and Mid-Triassic Kasımlar Formations; Beyşehir region). Detrital zircon grains were dated by the laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) U-Pb method at Goethe University, Frankfurt. Our results do not reveal Triassic detritus in the Üzümdere Formation. The U-Pb age of the analysed zircon grains ranges from 267 Ma to 3.2 Ga. A small fraction of Palaeozoic zircons are Permian (267 to 296 Ma), whereas the remainder are Early Palaeozoic. Ordovician grains (4%) form two age clusters, one at ca. 450 Ma and the other at ca. 474 Ma. Cambrian-aged grains dominate the zircon population, while the second largest population is Ediacaran (576 to 642 Ma). Smaller populations occur at 909-997 Ma, 827-839 Ma, 1.8-2.0 Ga and 2.4-2.6 Ga. The sandstones of the Kasımlar Formation have similar zircon age cluster to those of the somewhat younger Üzümdere Formation, ranging from 239 Ma to 2.9 Ga. A few grains gave Anisian ages. Cambrian zircon grains are less pronounced than in the Kasımlar Formation compared to the Üzümdere Formation. The detrital zircon record of Tauride sandstones, therefore, not indicates significant contribution

  18. Eustatic control on epicontinental basins: The example of the Stuttgart Formation in the Central European Basin (Middle Keuper, Late Triassic)

    NASA Astrophysics Data System (ADS)

    Franz, M.; Nowak, K.; Berner, U.; Heunisch, C.; Bandel, K.; Röhling, H.-G.; Wolfgramm, M.

    2014-11-01

    The deposition of the Stuttgart Formation ('Schilfsandstein'), commonly considered as a type-example of the Carnian Pluvial Event, was controlled by high frequent 4th order sequences that resulted in pre-, intra- and post-Schilfsandstein transgressions from Tethyan waters into the epicontinental Central European Basin (CEB). The pre-Schilfsandstein transgression flooded the CEB trough gates to the Southeast and resulted in a wide-spread inland sea that was characterised by increased biological productivity, predominantly oxic conditions and enabled the immigration of euryhaline marine fauna with plankton, ostracodes, fishes, bivalves and the gastropods Omphaloptychia suebica n. sp. and Settsassia stuttgartica n. sp. The rather short-term intra- and post-Schilfsandstein transgressions flooded the CEB from the Southwest and Southeast and established a shallow brackish inland sea that stretched up to North Germany. Both, the 4th and 3rd order sequences derived from the succession in the CEB correlate well with those derived from successions of Tethyan shelfs. Therefore pronounced circum-Tethyan eustatic cycles are evidenced and may have had considerable impact on prominent middle Carnian events: Reingraben turnover, Carnian Pluvial Event, Carnian Crisis and Mid Carnian Wet Intermezzo. The broad circum-Tethyan evidence of 106-year scale cycles suggests glacioeustatic sea-level changes even in the Triassic Greenhouse period.

  19. CO2 and Amplification of Orbitally Forced Changes in the Hydrological Cycle across the end-Triassic extinction

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Schaller, M. F.; Palmer, M.; Milton, J. A.; Olsen, P. E.

    2016-12-01

    Models of increasing atmospheric pCO2 predict an intensification of the hydrological cycle coupled with warming, with an implied amplification of the effects of orbitally forced precipitation fluctuations. Supporting evidence exists for the Pleistocene, however such evidence has not yet been developed from ancient Mesozoic warm intervals that serve as partial analogues for greenhouse worlds. This study presents lithological, soil carbonate, and compound-specific hydrogen isotopic data (δD) from plant wax n-alkanes data from Late Triassic and Early Jurassic (pCO2values >1,000 ppm) marine and non-marine records from eastern North America and England with a particular emphasis on the end-Triassic mass extinction. In eastern North American Pangean rift basins, variance in lake level expression of the climatic precession cycle from lithology and compound-specific δD appears temporally linked to CO2 based on the soil carbonate proxy from the same strata. Cyclicity variance is high during times of high CO2 ( 4000 ppm) during most of the Late Triassic, drops precipitously as CO2 declines below 2,500 ppm during most of the Rhaetian, and dramatically increases when massive atmospheric CO2 increases ( 5,000 - 6,000 ppm) associated with the Central Atlantic Magmatic Province (and end-Triassic extinction) drove insolation-paced increases in precipitation. Cyclicity variance drops again as CO2 declines (<2,000 ppm) during the Jurassic. Preliminary data suggest significant variability in leaf wax δD corresponding to other environmental changes across the extinction interval. In addition, 87Sr/86Sr in marine strata (Tackett et al., 2014) tracks CO2 with a dramatic decrease from 0.70795 to 0.70765 suggesting a mechanistic link through weathering. Analyses of continuous paralic to marine samples, now underway, from the end-Triassic extinction and Triassic-Jurassic boundary interval at St. Audrie's Bay (Bristol Channel Basin) will test the generality of this pattern, in an area

  20. Trophic network models explain instability of Early Triassic terrestrial communities

    PubMed Central

    Roopnarine, Peter D; Angielczyk, Kenneth D; Wang, Steve C; Hertog, Rachel

    2007-01-01

    Studies of the end-Permian mass extinction have emphasized potential abiotic causes and their direct biotic effects. Less attention has been devoted to secondary extinctions resulting from ecological crises and the effect of community structure on such extinctions. Here we use a trophic network model that combines topological and dynamic approaches to simulate disruptions of primary productivity in palaeocommunities. We apply the model to Permian and Triassic communities of the Karoo Basin, South Africa, and show that while Permian communities bear no evidence of being especially susceptible to extinction, Early Triassic communities appear to have been inherently less stable. Much of the instability results from the faster post-extinction diversification of amphibian guilds relative to amniotes. The resulting communities differed fundamentally in structure from their Permian predecessors. Additionally, our results imply that changing community structures over time may explain long-term trends like declining rates of Phanerozoic background extinction PMID:17609191

  1. Allogenic controls on the fluvial architecture and fossil preservation of the Upper Triassic Ischigualasto Formation, NW Argentina

    NASA Astrophysics Data System (ADS)

    Colombi, Carina E.; Limarino, Carlos O.; Alcober, Oscar A.

    2017-12-01

    The Upper Triassic Ischigualasto Formation in NW Argentina was deposited in a fluvial system during the synrift filling of the extensional Ischigualasto-Villa Unión Basin. The expansive exposures of the fluvial architecture and paleosols provide a framework to reconstruct the paleoenvironmental evolution of this basin during the Upper Triassic using continental sequence stratigraphy. The Ischigualasto Formation deposition can be divided into seven sequential sedimentary stages: the 1) Bypass stage; 2) Confined low-accommodation stage; 3) Confined high accommodation stage; 4) Unstable-accommodation stage; 5) Unconfined high-accommodation stage; 6) Unconfined low-accommodation stage; and finally, 7) Unconfined high-accommodation stage. The sedimentary evolution of the Ischigualasto Formation was driven by different allogenic controls such as rises and falls in lake levels, local tectonism, subsidence, volcanism, and climate, which also produced modifications of the equilibrium profile of the fluvial systems. All of these factors result in different accommodations in central and flank areas of the basin, which led to different architectural configurations of channels and floodplains. Allogenic processes affected not only the sequence stratigraphy of the basin but also the vertebrate and plant taphocenosis. Therefore, the sequence stratigraphy can be used not only as a predictive tool related to fossil occurrence but also to understand the taphonomic history of the basin at each temporal interval.

  2. Late Triassic paleolatitude of the Qiangtang block: Implications for the closure of the Paleo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Song, Peiping; Ding, Lin; Li, Zhenyu; Lippert, Peter C.; Yang, Tianshui; Zhao, Xixi; Fu, Jiajun; Yue, Yahui

    2015-08-01

    To better constrain the Late Triassic paleolatitude of the Qiangtang block and the closure of the Paleo-Tethys Ocean, a combined paleomagnetic and zircon U/Pb geochronological study has been conducted on the Upper Triassic Jiapila Formation volcanic rocks on the northern edge of the Qiangtang block of Central Tibet (34.1°N, 92.4°E). These rocks are dated to 204-213 Ma. Progressive thermal or alternating field demagnetization successfully isolated stable characteristic remanent magnetizations (ChRM) that pass both the fold and reversal tests, consistent with a primary magnetization. These are the first volcanic-based paleomagnetic results from pre-Cretaceous rocks of the Qiangtang block that appear to average secular variation well enough to yield a reliable paleolatitude estimate. Based on our new paleomagnetic data from Upper Triassic lavas, we conclude that the Late Triassic pole of the Qiangtang block was located at 64.0°N, 174.7°E, with A95 = 6.6 ° (N = 29). We compile published paleomagnetic data from the Qiangtang block to calculate a Late Triassic latitude for the Qiangtang block at 31.7 ± 3.0°N. The central Paleo-Tethys Ocean basin was located between the North China (NCB) and Tarim blocks to the north and the Qiangtang block to the south during Late Paleozoic-Early Mesozoic. A comparison of published Early Triassic paleopole from the Qiangtang block with the coeval paleopoles from the NCB and Tarim indicates that the Paleo-Tethys Ocean could not have closed during the Early Triassic and that its width was approximately ∼32-38° latitude (∼3500-4200 km). However, the comparison of our new combined Late Triassic paleomagnetic result with the Late Triassic poles of the NCB and Tarim, as well as numerous geological observations, indicates that the closure of the Paleo-Tethys Ocean at the longitude of the Qiangtang block most likely occurred during the Late Triassic.

  3. Assessment of undiscovered oil and gas resources of the East Coast Mesozoic basins of the Piedmont, Blue Ridge Thrust Belt, Atlantic Coastal Plain, and New England Provinces, 2011

    USGS Publications Warehouse

    Milici, Robert C.; Coleman, James L.; Rowan, Elisabeth L.; Cook, Troy A.; Charpentier, Ronald R.; Kirschbaum, Mark A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2012-01-01

    During the early opening of the Atlantic Ocean in the Mesozoic Era, numerous extensional basins formed along the eastern margin of the North American continent from Florida northward to New England and parts of adjacent Canada. The basins extend generally from the offshore Atlantic continental margin westward beneath the Atlantic Coastal Plain to the Appalachian Mountains. Using a geology-based assessment method, the U.S. Geological Survey estimated a mean undiscovered natural gas resource of 3,860 billion cubic feet and a mean undiscovered natural gas liquids resource of 135 million barrels in continuous accumulations within five of the East Coast Mesozoic basins: the Deep River, Dan River-Danville, and Richmond basins, which are within the Piedmont Province of North Carolina and Virginia; the Taylorsville basin, which is almost entirely within the Atlantic Coastal Plain Province of Virginia and Maryland; and the southern part of the Newark basin (herein referred to as the South Newark basin), which is within the Blue Ridge Thrust Belt Province of New Jersey. The provinces, which contain these extensional basins, extend across parts of Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, Pennsylvania, New Jersey, New York, Connecticut, and Massachusetts.

  4. Discovery of silicified lacustrine micro-fossils and stromatolites: Triassic-Jurassic Fundy Group, Nova Scotia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, B.

    A unique assemblage of silicified invertebrate and algal fresh-water lake fossils has been discovered in the Scots Bay Formation at the top of the Triassic-Jurassic Fundy Group of the Fundy Basin in Nova Scotia. This is important because the basins of the eastern North American Triassic-Jurassic rift system have not yielded many invertebrate and algal fossils. These new finds will contribute significantly to evolutionary, paleoecological and biostratigraphic studies of fresh-water Mesozoic deposits. Silicified fossils have been extracted from chert-bearing, mixed carbonate and siliciclastic lithologies. They include ostracodes, gastropods, rare bivalves, charaphytes (algae), stromatolites, and chert nodules cored with well-preserved woodymore » tissues of tree trunks. Possible algal filaments occur in the silicified stromatolites. This association of charaphytes, ostracodes, microscopic gastropods and stromatolites is found in carbonate lakes today. The Scots Bay Formation is probably a near-shore carbonate facies of the more widespread silicilastic lacustrine McCoy Brook Formation. The gastropods and ostracodes, studied by SEM, indicate a Jurassic age for the Scots bay Formation, confirming speculations based on other data.« less

  5. The role of inherited structures in the evolution of the Meknassy Basin, Central Tunisia, based on geological-geophysical transects

    NASA Astrophysics Data System (ADS)

    Haji, Taoufik; Zouaghi, Taher; Boukadi, Noureddine

    2014-08-01

    This paper uses seismic data, well data, and surface geologic data to present a detailed description of the Meknassy Basin in the Atlas fold and thrust belt of central Tunisia. These data reveal that the Meknassy Basin is bounded by major faults, along which Triassic evaporites have been intruded. The anticlines and synclines of the basin are delimited by two N-S main faults (the North-South Axis and the Sidi Ali Ben Oun fault) and are subdivided by associated N120° and N45° trending fault-related anticlines. The Meknassy Basin is characterized by brittle structures associated with a deep asymmetric geometry that is organized into depressions and uplifts. Halokinesis of Triassic evaporites began during the Jurassic and continued during the Cretaceous period. During extensional deformation, salt movement controlled the sediment accumulation and the location of pre-compressional structures. During compressional deformation, the remobilization of evaporites accentuated the folded uplifts. A zone of decollement is located within the Triassic evaporites. The coeval strike-slip motion along the bounding master faults suggests that the Meknassy Basin was initiated as a pull-apart basin with intrusion of Triassic evaporites. The lozenge structure of the basin was caused by synchronous movements of the Sidi Ali Ben Oun fault and the North-South Axis (sinistral wrench faults) with movement of NW-SE first-order dextral strike-slip faults. Sediment distribution and structural features indicate that a major tectonic inversion has occurred at least since Late Cretaceous and Cenozoic. The transpressional movements are marked by reverse faults and folds associated with unconformities and with remobilization of Triassic evaporites. The formation of different structural features and the evolution of the Meknassy Basin and its neighboring uplifts have been controlled by conjugate dextral and sinistral strike-slip movements and thrust displacement.

  6. Nitrogen isotope record of a perturbed paleoecosystem in the aftermath of the end-Triassic crisis, Doniford section, SW England

    NASA Astrophysics Data System (ADS)

    Paris, Guillaume; Beaumont, ValéRie; Bartolini, Annachiara; CléMence, Marie-Emilie; Gardin, Silvia; Page, Kevin

    2010-08-01

    The Triassic-Jurassic transition (TJ) is characterized by successive perturbations of the carbon cycle during a time of biotic disruption as recorded by the carbon isotopic composition of organic matter (δ13Corg). The nitrogen isotopic composition of sedimentary organic matter (δ15Norg) constitutes a key parameter to explore the functioning of the ecosystem during carbon cycle perturbations and biological crises, because it provide information on seawater redox conditions and/or nutrient cycling. Here we report the first continuous δ15Norg record across the TJ transition at the Doniford Bay section (Bristol Channel Basin, UK), combined with δ13Corg, kerogen typology and carbon (δ13Cmin) and oxygen (δ18Omin) isotopic composition of bulk carbonates. The end Triassic is characterized by a major negative excursion both in δ13Corg and δ13Cmin, very low TOC (Total Organic Carbon, wt%) and high δ15Norg values, associated with a sea level lowstand. A second δ13Corg negative excursion occurs during the lower Hettangian. This interval is characterized by phases of carbonate production increase alternated with phases of exceptional accumulations of type I organic matter (up to 12%) associated with lower δ15Norg and δ13Corg. This alternation likely reflects a succession of nutrient input increase to the basin leading to enhanced productivity and eutrophication, which promoted a primary production driven by organic-walled prokaryotic organisms. The following OM export increase generates anaerobic conditions within the basin. These events occur between periods of relatively good seawater column ventilation and nutrient recycling boosting the carbonate producer recovery. Ecosystems remain perturbed in the Bristol Channel Basin during the aftermath of the end-Triassic crisis.

  7. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks

    USGS Publications Warehouse

    Weislogel, A.L.; Graham, S.A.; Chang, E.Z.; Wooden, J.L.; Gehrels, G.E.; Yang, H.

    2006-01-01

    Using detrital zircon geochronology, turbidite deposystems fed from distinct sediment sources can be distinguished within the Songpan-Ganzi complex, a collapsed Middle to Late Triassic turbidite basin of central China. A southern Songpan-Ganzi deposystem initially was sourced solely by erosion of the Qinling-Dabie orogen during early Late Triassic time, then by Qinling-Dabie orogen, North China block, and South China block sources during middle to late Late Triassic time. A northern Songpan-Ganzi system was sourced by erosion of the Qinling-Dabie orogen and the North China block throughout its deposition. These separate deposystems were later tectonically amalgamated to form one complex and then uplifted as the eastern Tibet Plateau. ?? 2006 Geological Society of America.

  8. An evaporite-based high-resolution sulfur isotope record of Late Permian and Triassic seawater sulfate

    NASA Astrophysics Data System (ADS)

    Bernasconi, Stefano M.; Meier, Irene; Wohlwend, Stephan; Brack, Peter; Hochuli, Peter A.; Bläsi, Hansruedi; Wortmann, Ulrich G.; Ramseyer, Karl

    2017-05-01

    Variations in the sulfur isotope composition of dissolved marine sulfate through time reflect changes in the global sulfur cycle and are intimately related to changes in the carbon and oxygen cycles. A large shift in the sulfur isotope composition of sulfate at the Permian/Triassic boundary has been recognized for long time and a number of studies were carried out to understand the causes and significance of this shift. However, data for the Middle and Late Triassic are very sparse and the stratigraphic evolution of the sulfur isotope composition of seawater is poorly constrained due to the small number of samples analyzed and/or due to the limited stratigraphic intervals studied. Moreover, in the last few years the Triassic timescale has significantly changed due to a wealth of new radiometric and stratigraphic data. In this study we show that for the Late Permian and the Triassic it is possible to obtain a precise reconstruction of the evolution of the sulfur cycle, for parts of it at sub-million year resolution, by analyzing exclusively gypsum and anhydrite deposits. We base our reconstruction on new data from the Middle and Late Triassic evaporites of Northern Switzerland and literature data from evaporites from Germany, Austria, Italy and the Middle East. We propose a revised correlation between the well-dated marine Tethyan sections in northern Italy and the evaporites from Northern Switzerland and from the Germanic Basin calibrated to the newest radiometric absolute age scale. This new correlation allows for a precise dating of the evaporites and constructing a composite sulfur isotope evolution of seawater sulfate from the latest Permian (Lopingian Epoch) to the Norian. We show that a rapid positive shift of approximately 24‰ at the Permian-Triassic boundary can be used to constrain seawater sulfate concentrations in the range of 2-6 mM, thus higher than previous estimates but with less rapid changes. Finally, we discuss two possible evolution scenarios

  9. The South China - Indochina collision: a perspective from sedimentary basins analysis

    NASA Astrophysics Data System (ADS)

    Rossignol, Camille; Bourquin, Sylvie; Hallot, Erwan; Poujol, Marc; Roger, Françoise; Dabard, Marie-Pierre; Martini, Rossana; Villeneuve, Michel; Cornée, Jean-Jacques; Peyrotty, Giovan

    2017-04-01

    Sedimentary basins, through the sedimentary successions and the nature of the deposits, reflect the geology of the area from which the sediments were derived and thus provide valuable record of hinterland tectonism. As the collision between the South China and the Indochina blocks (i.e., the Indosinian orogeny) is still the object of a number of controversies regarding, for instance, its timing and the polarity of the subduction, the sedimentary basins associated with this mountain belt are likely to provide clues to reconstruct its geodynamic evolution. However, both the Sam Nua Basin (located to the south of the inner zones of the Indosinian orogeny and the Song Ma ophiolites) and the Song Da Basin (located to the north of the inner zones), northern Vietnam, are still lacking important information regarding the depositional environments and the ages of the main formations that they contain. Using sedimentological and dating analyses (foraminifers biostratigraphy and U-Pb dating on detrital zircon), we provide a new stratigraphic framework for these basins and propose a geodynamic evolution of the present-day northern Vietnam. During the Early Triassic, the Sam Nua Basin was mainly supplied by volcaniclastic sediments originating from an active volcanic activity. Geochemical investigations, combined with sedimentological and structural analyses, support an arc-related setting for this magmatism. This magmatic arc resulted from the subduction of a south dipping oceanic slab that once separated the South China from the Indochina blocks. During the Middle to the Late Triassic, the Sam Nua Basin underwent erosion that lead to the formation of a major unconformity, termed the Indosinian unconformity. This unconformity is interpreted to result from the erosion of the Indosinian mountain belt, built after the continental collision between the South China and the Indochina blocks. Later, during the Late Triassic, the Sam Nua Basin experienced the deposition of very coarse

  10. Permo Triassic unconformity-related Au-Pd mineralisation, South Devon, UK: new insights and the European perspective

    NASA Astrophysics Data System (ADS)

    Shepherd, Tom J.; Bouch, Jon E.; Gunn, Andrew G.; McKervey, John A.; Naden, Jonathan; Scrivener, Richard C.; Styles, Michael T.; Large, Duncan E.

    2005-07-01

    An integrated mineralogical-geochemical study of unconformity-related Au-Pd occurrences within and around the Permo Triassic basins of southwest England, UK, has confirmed the importance of low temperature (86±13°C), hydrothermal carbonate veins as hosts for the mineralisation. Fluid inclusion data for the carbonate gangue, supported by stable isotope (13C and 18O) and radiogenic (87Sr/86Sr) data, have identified three principal fluids: (1) a reducing calcic brine [>25 wt% salinity, <0.5 NaCl/(NaCl+CaCl2)] originating in the sub-unconformity basement and an expression of advanced mineral fluid interaction; (2) an oxidising sodic brine [~16 wt% salinity, >0.9 NaCl/(NaCl+CaCl2)] originating in the post-unconformity red beds under evaporitic conditions, and (3) an oxygenated, low salinity groundwater (<3 wt% salinity). The sodic brine is reasoned to be the parent metalliferous fluid and to have acquired its enrichment in Au and Pd by the leaching of immature sediments and intra-rift volcanic rocks within the local Permo Triassic basins. Metal precipitation is linked to the destabilisation of Au and Pd chloride complexes by either mixing with calcic brines, dilution by groundwaters or interaction with reduced lithologies. This explains the diversity of mineralised settings below and above the unconformity and their affinity with red bed brines. The paucity of sulphide minerals, the development of selenides (as ore minerals and as mineral inclusion in gold grains), the presence of rhodochrosite and manganoan calcites (up to 2.5 wt% Mn in calcite) and the co-precipitation of hematite and manganese oxides are consistent with the overall high oxidation state of the ore fluids. A genetic model is proposed linking Permo Triassic red beds, the mixing of oxidising and reducing brines, and the development of unconformity-related precious metal mineralisation. Comparison with other European Permo Triassic basins reveals striking similarities in geological setting, mineralogy

  11. Disentangling Diagenesis From the Rock Record: An Example From the Permo-Triassic Wordie Creek Formation, East Greenland

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Turchyn, A. V.; Wignall, P. B.; Newton, R. J.; Vane, C. H.

    2018-01-01

    The measurement of isotope ratios in sedimentary rocks deposited over geological time can provide key insights to past environmental change over important intervals in the past. However, it is important to be aware that secondary alteration can overprint the original isotopic records. We demonstrate this principle using high-resolution carbon, sulfur, and oxygen isotope measurements in organic carbon, pyrite, and carbonate minerals (δ13Corg, δ34Spyr, δ34SCAS, δ13Ccarb, and δ18Ocarb) and kerogen analyses (HI and OI) from the Wordie Creek Formation, East Greenland. These sediments were initially deposited across the Permo-Triassic transition, but as we will show, the carbonate record has been altered by interaction with meteoric water significantly after initial deposition. Comparison of the better preserved organic carbon and pyrite records with a proximal Permo-Triassic sequence reveals significant pyrite-sulfur isotope variability across the Permo-Triassic transition. This regional heterogeneity argues against basin-wide euxinia and instead suggests localized changes in sulfur fractionation in response to variations in organic carbon flux. This hypothesis can be used to explain seemingly inconsistent regional trends in other sulfur isotopes across the Permo-Triassic transition.

  12. Archosauriform remains from the Late Triassic of San Luis province, Argentina, Quebrada del Barro Formation, Marayes-El Carrizal Basin

    NASA Astrophysics Data System (ADS)

    Gianechini, Federico A.; Codorniú, Laura; Arcucci, Andrea B.; Castillo Elías, Gabriela; Rivarola, David

    2016-03-01

    Here we present archosauriform remains from 'Abra de los Colorados', a fossiliferous locality at Sierra de Guayaguas, NW San Luis Province. Two fossiliferous levels were identified in outcrops of the Quebrada del Barro Formation (Norian), which represent the southernmost outcrops of the Marayes-El Carrizal Basin. These levels are composed by massive muddy lithofacies, interpreted as floodplain deposits. The specimens consist of one incomplete maxilla (MIC-V718), one caudal vertebra (MIC-V719), one metatarsal (MIC-V720) and one indeterminate appendicular bone (MIC-V721). The materials can be assigned to Archosauriformes but the fragmentary nature and lack of unambiguous synapomorphies preclude a more precise taxomic assignment. The maxilla is remarkably large and robust and represents the posterior process. It preserved one partially erupted tooth with ziphodont morphology. This bone shows some anatomical traits and size match with 'rauisuchians' and theropods. MIC-V719 corresponds to a proximal caudal vertebra. It has a high centrum, a ventral longitudinal furrow, expanded articular processes for the chevrons, a posteriorly displaced diapophysis located below the level of the prezygapophyses, and short prezygapophyses. This vertebra would be from an indeterminate archosauriform. MIC-V720 presents a cylindrical diaphysis, with a well-developed distal trochlea, which present resemblances with metatarsals of theropods, pseudosuchians, and silesaurids, although the size matches better with theropods. MIC-V721 has a slender diaphysis and a convex triangular articular surface, and corresponds to an indeterminate archosauriform. Despite being fragmentary, these materials indicate the presence of a diverse archosauriforms association from Late Triassic beds of San Luis. Thus, they add to the faunal assemblage recently reported from this basin at San Juan Province, which is much rich and diverse than the coeval paleofauna well known from Los Colorados Formation in the

  13. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Hu, Shi-Xue; Rieppel, Olivier; Jiang, Da-Yong; Benton, Michael J.; Kelley, Neil P.; Aitchison, Jonathan C.; Zhou, Chang-Yong; Wen, Wen; Huang, Jin-Yuan; Xie, Tao; Lv, Tao

    2014-11-01

    The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic.

  14. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery.

    PubMed

    Liu, Jun; Hu, Shi-Xue; Rieppel, Olivier; Jiang, Da-Yong; Benton, Michael J; Kelley, Neil P; Aitchison, Jonathan C; Zhou, Chang-Yong; Wen, Wen; Huang, Jin-Yuan; Xie, Tao; Lv, Tao

    2014-11-27

    The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic.

  15. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery

    PubMed Central

    Liu, Jun; Hu, Shi-xue; Rieppel, Olivier; Jiang, Da-yong; Benton, Michael J.; Kelley, Neil P.; Aitchison, Jonathan C.; Zhou, Chang-yong; Wen, Wen; Huang, Jin-yuan; Xie, Tao; Lv, Tao

    2014-01-01

    The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic. PMID:25429609

  16. Early Mesozoic rift basin architecture and sediment routing system in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Perez, N.; Teixell, A.; Gomez, D.

    2016-12-01

    Late Permian to Triassic extensional systems associated with Pangea breakup governed the structural framework and rift basin architecture that was inherited by Cenozoic High Atlas Mountains in Morocco. U-Pb detrital zircon geochronologic and mapping results from Permo-Triassic deposits now incorporated into the High Atlas Mountains provide new constraints on the geometry and interconnectivity among synextensional depocenters. U-Pb detrital zircon data provide provenance constraints of Permo-Triassic deposits, highlighting temporal changes in sediment sources and revealing the spatial pattern of sediment routing along the rift. We also characterize the U-Pb detrital zircon geochronologic signature of distinctive interfingering fluvial, tidal, and aeolian facies that are preferentially preserved near the controlling normal faults. These results highlight complex local sediment mixing patterns potentially linked to the interplay between fault motion, eustatic, and erosion/transport processes. We compare our U-Pb geochronologic results with existing studies of Gondwanan and Laurentian cratonic blocks to investigate continent scale sediment routing pathways, and with analogous early Mesozoic extensional systems situated in South America (Mitu basin, Peru) and North America (Newark Basin) to assess sediment mixing patterns in rift basins.

  17. Magnetostratigraphic correlations of Permian-Triassic marine-to-terrestrial sections from China

    USGS Publications Warehouse

    Glen, J.M.G.; Nomade, S.; Lyons, J.J.; Metcalfe, I.; Mundil, R.; Renne, P.R.

    2009-01-01

    We have studied three Permian–Triassic (PT) localities from China as part of a combined magnetostratigraphic, 40Ar/39Ar and U–Pb radioisotopic, and biostratigraphic study aimed at resolving the temporal relations between terrestrial and marine records across the Permo-Triassic boundary, as well as the rate of the biotic recovery in the Early Triassic. The studied sections from Shangsi (Sichuan Province), Langdai (Guihzou Province), and the Junggar basin (Xinjiang Province), span marine, paralic, and terrestrial PT environments, respectively. Each of these sections was logged in detail in order to place geochronologic, paleomagnetic, geochemical, conodont and palynologic samples within a common stratigraphic context. Here we present rock-magnetic, paleomagnetic and magnetostratigraphic results from the three localities.At Shangsi, northern Sichuan Province, we sampled three sections spanning Permo-Triassic marine carbonates. Magnetostratigraphic results from the three sections indicate that the composite section contains at least eight polarity chrons and that the PT boundary occurs within a normal polarity chron a short distance above the mass extinction level and a reversed-to-normal (R-N) polarity reversal. Furthermore, the onset of the Illawarra mixed interval lies below the sampled section indicating that the uppermost Permian Changhsingian and at least part of the Wuchiapingian stages postdate the end of the Kiaman Permo-Carboniferous Reversed Superchron.At Langdai, Guizhou Province, we studied magnetostratigraphy of PT paralic mudstone and carbonate sediments in two sections. The composite section spans an R-N polarity sequence. Section-mean directions pass a fold test at the 95% confidence level, and the section-mean poles are close to the mean PT pole for the South China block. Based on biostratigraphic constraints, the R-N transition recorded at Langdai is consistent with that at Shangsi and demonstrates that the PT boundary occurred within a normal

  18. U-Pb detrital zircon dates and provenance data from the Beaufort Group (Karoo Supergroup) reflect sedimentary recycling and air-fall tuff deposition in the Permo-Triassic Karoo foreland basin

    NASA Astrophysics Data System (ADS)

    Viglietti, Pia A.; Frei, Dirk; Rubidge, Bruce S.; Smith, Roger M. H.

    2018-07-01

    Detrital zircon U-Pb age dating was used for provenance determination and maximum age of deposition for the Upper Permian (upper Teekloof and Balfour formations) and Lower Triassic (Katberg Formation) lithostratigraphic subdivisions of the Beaufort Group of South Africa's Karoo Basin. Ten samples were analysed using laser ablation - single collector - magnetic sectorfield - inductively coupled plasma - mass spectrometry (LA-SF-ICP-MS). The results reveal a dominant Late Carboniferous-Late Permian population (250 ± 5 Ma - 339 ± 5 Ma), a secondary Cambrian-Neoproterozoic (489 ± 5 Ma to 878 ± 24 Ma) population, a minor Mesoproterozoic (908 ± 24 Ma to 1308 ± 23) population, and minor occurrences of Devonian, Ordovician, Proterozoic and Archean zircon grains. Multiple lines of evidence (e.g. roundness and fragmentary nature of zircons, palaeo-current directions, and previous work), suggest the older zircon populations are related to sedimentary recycling in the Gondwanide Orogeny. The youngest and dominant population contain elongate euhedral grains interpreted to be directly derived from their protolith. Since zircons form in felsic igneous rocks, and no igneous rocks of Late Permian age occur in the Karoo Basin, these findings suggest significant input of volcanic material by ash falls. These results support sedimentological and palaeontological data for a Lopingian (Late Permian) age for the upper Beaufort Group, but contradict previous workers who retrieved Early Triassic dates from zircons in ashes for the Beaufort and Ecca Groups. Pb-loss not revealed by resolvable discordance on the concordia diagram, and metamictization of natural zircons are not factored into the conclusions of earlier workers.

  19. The beginning of the Buntsandstein cycle (Early-Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Galán-Abellán, Belén; López-Gómez, José; Barrenechea, José F.; Marzo, Mariano; De la Horra, Raúl; Arche, Alfredo

    2013-10-01

    The Early-Middle Triassic siliciclastic deposits of the Catalan Ranges, NE Spain, are dominated by aeolian sediments indicating a predominance of arid climate during this time span, in sharp contrast with the coeval fluvial sediments found in the Castilian Branch of the Iberian Ranges, 300 km to the SW. The NE-SW-oriented Catalan Basin evolved during the Middle-Late Permian as the result of widespread extension in the Iberian plate. This rift basin was bounded by the Pyrenees, Ebro and Montalbán-Oropesa highs. The Permian-Early Triassic-age sediments of the Catalan Basin were deposited in three isolated subbasins (Montseny, Garraf, Prades), separated by intrabasinal highs, but linked by transversal NW-SE oriented faults. The three subbasins show evidence of diachronic evolution with different subsidence rates and differences in their sedimentary records. The Buntsandstein sedimentary cycle started in the late Early Triassic (Smithian-Spathian) in the central and southern domains (Garraf and Prades), with conglomerates of alluvial fan origin followed by fluvial and aeolian sandstones. Source area of the fluvial sediments was nearby Paleozoic highs to the north and west, in contrast with the far-away source areas of the fluvial sediments in the Iberian Ranges, to the SW. These fluvial systems were interacting with migrating aeolian dune fields located towards the S, which developed in the shadow areas behind the barriers formed by the Paleozoic highs. These highs were separating the subbasins under arid and semi-arid climate conditions. The dominating winds came from the east where the westernmost coast of the Tethys Sea was located, and periods of water run-off and fields of aeolian dunes development alternated. Some of the fluvial systems were probably evaporating as they were mixed into the interdune areas, never reaching the sea. From the end of the Smithian to the Spathian, the Catalan Basin and neighbour peri-Tethys basins of the present-day southern France

  20. RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blount, G.; Millings, M.

    2011-08-01

    A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literaturemore » reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest

  1. Evidence of volcanic induced environmental stress during the end-Triassic event

    NASA Astrophysics Data System (ADS)

    Lindström, Sofie; Sanei, Hamed; van de Schootbrugge, Bas; Krarup Pedersen, Gunver; Dybkjær, Karen; van der Weijst, Carolien; Hovedskov Hansen, Katrine

    2015-04-01

    The end-Triassic biotic crisis is generally explained by massive input of CO2 and/or methane to the atmosphere linked to the formation of the Central Atlantic Magmatic Province. Such massive volcanism can be compared to industrial pollution releasing large amounts of the greenhouse gases CO2 and SO2 to the atmosphere. Indeed, the fossil record provides evidence of major perturbations in the δ13C-record of both calcareous and organic material. In the marine realm loss of calcifying organisms provides evidence of ocean acidification due to the increased pCO2, while in the terrestrial realm physiological responses in fossil plants indicate intense global warming across the Triassic-Jurassic boundary. Changing climatic conditions is further indicated by charcoal records from Greenland, Denmark, Sweden and Poland showing increased wildfire activity. Increased reworking of palynological material and marked changes in fluvial style in terrestrial successions seem to indicate an increased hydrological cycle. Here we examine and compare two proxies, Mercury and palynology, that may both, each in their own way, indicate volcanic induced environmental stress. Mercury (Hg) is one of the most toxic elements on the planet, with volcanic emissions being the largest natural input to the Hg-cycle. The temporal distribution of Hg in relation to organic matter can provide evidence of atmospheric Hg loading on the marine ecosystem. In the terrestrial realm, pollen and spores are known to be sensitive bioindicators of atmospheric pollution and environmental stress. Quantitive abundances of aberrant, and thus probably non-viable, pollen and spores are often used to assess environmental impact on polluted sites today. We present, compare and discuss Hg and aberrant spore/pollen records from the stratigraphically well-constrained Triassic-Jurassic boundary succession at Stenlille in the Danish Basin, and the possible impact of these data on the interpretation of events during end-Triassic

  2. Utilizing borehole electrical images to interpret lithofacies of fan-delta: A case study of Lower Triassic Baikouquan Formation in Mahu Depression, Junggar Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Rui; Zhang, Changmin; Tang, Yong; Qu, Jianhua; Guo, Xudong; Sun, Yuqiu; Zhu, Rui; Zhou, Yuanquan (Nancy)

    2017-11-01

    Large-scale conglomerate fan-delta aprons were typical deposits on the slope of Mahu Depression during the Early Triassic. Without outcrops, it is difficult to study the lithofacies only by examining the limited cores from the main oil-bearing interval of the Baikouquan Formation. Borehole electrical imaging log provides abundant high-resolution geologic information that is obtainable only from real rocks previously. Referring to the lithology and sedimentary structure of cores, a case study of fan-deltas in the Lower Triassic Baikouquan Formation of the Mahu Depression presents a methodology for interpreting the complicated lithofacies utilizing borehole electrical images. Eleven types of lithologies and five types of sedimentary structures are summarized in borehole electrical images. The sediments are fining upward from gravel to silt and clay in the Baikouquan Formation. Fine-pebbles and granules are the main deposits in T1b1 and T1b2, but sandstones, siltstones and mudstones are more developed in T1b3. The main sedimentary textures are massive beddings, cross beddings and scour-and-fill structures. Parallel and horizontal beddings are more developed in T1b3 relatively. On integrated analysis of the lithology and sedimentary structure, eight lithofacies from electrical images, referred to as image lithofacies, is established for the fan-deltas. Granules to coarse-pebbles within massive beddings, granules to coarse-pebbles within cross and parallel beddings, siltstones within horizontal and massive beddings are the most developed lithofacies respectively in T1b1, T1b2 and T1b3. It indicates a gradual rise of the lake level of Mahu depression during the Early Triassic, with the fan-delta aprons retrograding towards to the margin of the basin. Therefore, the borehole electrical imaging log compensate for the limitation of cores of the Baikouquan Formation, providing an effective new approach to interpret the lithofacies of fan-delta.

  3. Petroleum geology and resources of the North Ustyurt Basin, Kazakhstan and Uzbekistan

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The triangular-shaped North Ustyurt basin is located between the Caspian Sea and the Aral Lake in Kazakhstan and Uzbekistan and extends offshore both on the west and east. Along all its sides, the basin is bounded by the late Paleozoic and Triassic foldbelts that are partially overlain by Jurassic and younger rocks. The basin formed on a cratonic microcontinental block that was accreted northward to the Russian craton in Visean or Early Permian time. Continental collision and deformation along the southern and eastern basin margins occurred in Early Permian time. In Late Triassic time, the basin was subjected to strong compression that resulted in intrabasinal thrusting and faulting. Jurassic-Tertiary, mostly clastic rocks several hundred meters to 5 km thick overlie an older sequence of Devonian?Middle Carboniferous carbonates, Upper Precambrian massifs and deformed Caledonian foldbelts. The Carboniferous?Lower Permian clastics, carbonates, and volca-basement is at depths from 5.5 km on the highest uplifts to 11 nics, and Upper Permian?Triassic continental clastic rocks, pri-km in the deepest depressions. marily red beds. Paleogeographic conditions of sedimentation, Three total petroleum systems are identified in the basin. the distribution of rock types, and the thicknesses of pre-Triassic Combined volumes of discovered hydrocarbons in these sysstratigraphic units are poorly known because the rocks have been tems are nearly 2.4 billion barrels of oil and 2.4 trillion cubic penetrated by only a few wells in the western and eastern basin feet of gas. Almost all of the oil reserves are in the Buzachi Arch areas. The basement probably is heterogeneous; it includes and Surrounding Areas Composite Total Petroleum System in 2 Petroleum Geology, Resources?North Ustyurt Basin, Kazakhstan and Uzbekistan the western part of the basin. Oil pools are in shallow Jurassic and Neocomian sandstone reservoirs, in structural traps. Source rocks are absent in the total petroleum

  4. New high precision U-Pb calibration of the late Early-Triassic (Smithian-Spathian Boundary, South China)

    NASA Astrophysics Data System (ADS)

    Widmann, Philipp; Leu, Marc; Goudemand, Nicolas; Schaltegger, Urs; Bucher, Hugo

    2017-04-01

    Following the Permian-Triassic mass extinction (PTME), the Early Triassic is characterized by large short-lived perturbations of the global carbon cycle associated with radiation and extinction pulses of the biota. More stable conditions resumed in the Middle Triassic (Anisian). The exact ages and duration of these short-lived but intense radiation-extinction events as well as carbon cycle perturbations are poorly constrained and a robust intercalibration of U-Pb dates, biochronozones and carbon isotope fluctuations is still lacking. An accurate and precise time frame is essential in order to quantify the dynamics of the underlying mechanistic processes and to assess the validity of the various explanatory scenarios. The most drastic Early Triassic extinction occurred at the Smithian-Spathian boundary (SSB) and is associated with a globally recognized sharp positive excursion of the marine d13C signal. Based on the most recently published ages for the Permian-Triassic boundary (251.938 ± 0.029 Ma, Baresel et al., 2016) and for the Early-Middle Triassic boundary (247.05 ± 0.16 Ma, Ovtcharova et al., 2015), we know the Early Triassic lasted 4.9 myr. However, neither the position of the SSB nor the durations of the major biotic and abiotic events around the SSB are constrained by radiometric dates. Here, we will present new high precision, chemical abrasion, isotope dilution, thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb ages from single zircon crystals, sampled from closely spaced volcanic ash layers that bracket the SSB in the Nanpanjiang Basin (Guizhou province, South China). These ash layers are found in a mixed carbonate-siliciclastic, conodont-rich sedimentary succession (Luolou Formation) that is well calibrated biochronologically. We obtained best estimates of the ages of the SSB and associated events by applying Bayesian age modelling. References: Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., and Schaltegger, U., 2016. Precise age

  5. A new third-order sequence stratigraphic framework applied to the Triassic of the Paraná Basin, Rio Grande do Sul, Brazil, based on structural, stratigraphic and paleontological data

    NASA Astrophysics Data System (ADS)

    Horn, B. L. D.; Melo, T. M.; Schultz, C. L.; Philipp, R. P.; Kloss, H. P.; Goldberg, K.

    2014-11-01

    The Santacruzodon assemblage zone was originally defined as a vertebrate fossil assemblage composed basically of non-mammalian cynodonts found in Santa Cruz do Sul and Venâncio Aires municipalities in Southern Brazil. This assemblage zone was positioned at the top of the Sequence I, in the Triassic Santa Maria Supersequence, Paraná Basin. However, the Santacruzodon assemblage zone does not occur across the entire area of the Santa Maria Supersequence. Based on new paleontological, structural and sedimentological data, we propose the existence of a new third-order sequence (Santa Cruz Sequence) between Sequences I and II in the Santa Maria Supersequence. Satellite image analysis was used to identify regional, NW- and NE-oriented lineaments that limit the occurrence zone. Outcrop data allowed the identification of a regional, angular unconformity that bounds the new sequence. The faunal content allowed the correlation of the new Santa Cruz Sequence with Madagascar's Isalo II fauna, corresponding to the Ladinian (Middle Triassic). New names were suggested for the sequences in the Santa Maria Supersequence, since the Santa Cruz Sequence was deposited between the former Sequences I and II. This unit was deposited or preserved exclusively on the hanging wall of normal faults, being absent from the adjacent structural blocks.

  6. Magnetic mineralogy investigation of reference Permian-Triassic sequence at Kuznetsk Basin, Russia

    NASA Astrophysics Data System (ADS)

    Kuzina, Diliara; Silant'ev, Vladimir; Nurgaliev, Danis; Gilmetdinov, Ilmir; Aupov, Radmir

    2017-04-01

    In this work we performed investigations of 77 samples from Babyi Kamen' section in left bank of the Tom' River, Kemerovo region, Russia (54°23.079'N, 087°32.105'E). This section is suggested as a reference for the Kuznetsk Basin and entire Angarsk region. It was studied since the 1930's and widely described in the literature. Succession is presented by sandstone, siltstone, and claystone which contain vast amount of tuffaceous material. The age of the samples is Permian/Triassic. Measurements of magnetic susceptibility, hysteresis parameters and induced magnetization versus temperature were carried out for determination magnetic mineralogy. Differential thermomagnetic analysis was carried out for tracing magnetic minerals according their Curie temperature. Measurements were made in special equipment 'Curie Express Balance' that was created in the Paleomagnetic Laboratory of the Institute of Geology, Kazan Federal University. This process included the measurement of the sample induced magnetization as a function of temperature. The rate of heating was 100°C/min. The measurements were made in a constant magnetic field - 400 mT. We have got thermomagnetic curves of the first and second heating up to 800°C. The weight of the sample is approximately 0.1 gram. Hysteresis properties were determined using a J-coercivity spectrometer, also built in the Paleomagnetic Laboratory of Kazan University, and providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set was obtained in a single run from zero field up to 1.5 T and back to -1.5 T [1]. Magnetic susceptibility was measured in Multi-function Kappabridge MFKA1-FA (AGICO) on frequency 976 Hz. Acknowledgements: The work was carried out according to the Russian Government's Program of Competitive Growth of Kazan Federal University and supported by the grants of State Program in the field of scientific

  7. Extreme Mesozoic crustal thinning in the Eastern Iberia margin: The example of the Columbrets Basin (Valencia Trough)

    NASA Astrophysics Data System (ADS)

    Mohn, G.; Etheve, N.; Frizon de Lamotte, D.; Roca, E.; Tugend, J.; Gómez-Romeu, J.

    2017-12-01

    Eastern Iberia preserves a complex succession of Mesozoic rifts partly or completely inverted during the Late Cretaceous and Cenozoic in relation with Africa-Eurasia convergence. Notably, the Valencia Trough, classically viewed as part of the Cenozoic West Mediterranean basins, preserves in its southwestern part a thick Mesozoic succession (locally »10km thick) over a highly thinned continental basement (locally only »3,5km thick). This sub-basin referred to as the Columbrets Basin, represents a Late Jurassic-Early Cretaceous hyper-extended rift basin weakly overprinted by subsequent events. Its initial configuration is well preserved allowing us to unravel its 3D architecture and tectono-stratigraphic evolution in the frame of the Mesozoic evolution of eastern Iberia. The Columbrets Basin benefits from an extensive dataset combining high resolution reflection seismic profiles, drill holes, refraction seismic data and Expanding Spread Profiles. Its Mesozoic architecture is controlled by interactions between extensional deformation and halokinesis involving the Upper Triassic salt. The thick uppermost Triassic to Cretaceous succession describes a general synclinal shape, progressively stretched and dismembered towards the basin borders. The SE-border of the basin is characterized by a large extensional detachment fault acting at crustal scale and interacting locally with the Upper Triassic décollement. This extensional structure accommodates the exhumation of the continental basement and part of the crustal thinning. Eventually our results highlight the complex interaction between extreme crustal thinning and occurrence of a pre-rift salt level for the deformation style and tectono-stratigraphic evolution of hyper-extended rift basins.

  8. Mesozoic evolution of the Amu Darya basin

    NASA Astrophysics Data System (ADS)

    Brunet, Marie-Françoise; Ershov, Andrey; Korotaev, Maxim; Mordvintsev, Dmitriy; Barrier, Eric; Sidorova, Irina

    2014-05-01

    This study, granted by the Darius Programme, aims at proposing a model of tectono-stratigraphic evolution of the Amu Darya basin since the Late Palaeozoic and to understand the relationship with the nearby basins. The Amu Darya basin, as its close eastern neighbour, the Afghan-Tajik basin, lies on the Turan platform, after the closure of the Turkestan Ocean during the Late Paleozoic. These two basins, spread on mainly lowlands of Turkmenistan, southwest Uzbekistan, Tajikistan, and northern Afghanistan, are separated from one another by the South-Western Gissar meganticline, where series of the northern Amu Darya margin are outcropping. The evolution is closely controlled by several periods of crustal thinning (post-collision rifting and back-arc extension), with some marine incursions, coming in between accretions of continental blocks and collisions that succeeded from the Late Triassic-Early Jurassic (Eo-Cimmerian orogeny) to the Cenozoic times. These orogenies controlled the deposition of thick clastics sequences, and the collision of the Indian Plate with Eurasia strongly deformed the sedimentary cover of the Afghan-Tajik basin. The more than 7 km thick Meso-Cenozoic sedimentary succession of the Amu Darya basin, lies on a complex system of rifts and blocks. Their orientation and age (late Permian, Triassic?) are not well known because of deep burial. The north-eastern margin, with the Bukhara (upper margin) and Chardzhou steps, is NW oriented, parallel to the Paleozoic Turkestan suture. The orientation bends to W-E, in the part of the Gissar situated to the North of the Afghan-Tajik basin. This EW trending orientation prevails also in the south(-eastern) margin of the basin (series of North Afghanistan highs) and in the Murgab depression, the south-eastern deepest portion of the Amu Darya basin. It is in this area and in the eastern part of the Amu Darya basin that the Jurassic as well as the lower Cretaceous sediments are the thickest. The south-western part

  9. Analyse sismo-stratigraphique du bassin d'Abda (Maroc occidental), exemple de structures inverses pendant le rifting atlantiqueSeismo-stratigraphic analysis of the Abda Basin (West Morocco): a case of reverse structures during the Atlantic rifting

    NASA Astrophysics Data System (ADS)

    Echarfaoui, Hassan; Hafid, Mohamed; Salem, Abdallah Aı̈t; Abderrahmane, Aı̈t Fora

    The review of the seismic reflection and well data from the coastal Abda Basin (western Morocco) shows that its Triassic and Jurassic sequences were deposited in a submeridean sag basin, whose eastern margin is characterised by progressive truncations and pinching out of these sequences against a prominent Palaeozoic high. The uplift of this latter is interpreted as a response to an Upper Triassic-Middle Jurassic local compressional event that controlled Triassic-Jurassic sedimentation within the Abda Basin. The present day 'West Meseta Flexure' is a surface expression of this uplift. To cite this article: H. Echarfaoui et al., C. R. Geoscience 334 (2002) 371-377.

  10. Mesozoic non-marine petroleum source rocks determined by palynomorphs in the Tarim Basin, Xinjiang, northwestern China

    USGS Publications Warehouse

    Jiang, D.-X.; Wang, Y.-D.; Robbins, E.I.; Wei, J.; Tian, N.

    2008-01-01

    The Tarim Basin in Northwest China hosts petroleum reservoirs of Cambrian, Ordovician, Carboniferous, Triassic, Jurassic, Cretaceous and Tertiary ages. The sedimentary thickness in the basin reaches about 15 km and with an area of 560000 km2, the basin is expected to contain giant oil and gas fields. It is therefore important to determine the ages and depositional environments of the petroleum source rocks. For prospective evaluation and exploration of petroleum, palynological investigations were carried out on 38 crude oil samples collected from 22 petroleum reservoirs in the Tarim Basin and on additionally 56 potential source rock samples from the same basin. In total, 173 species of spores and pollen referred to 80 genera, and 27 species of algae and fungi referred to 16 genera were identified from the non-marine Mesozoic sources. By correlating the palynormorph assemblages in the crude oil samples with those in the potential source rocks, the Triassic and Jurassic petroleum source rocks were identified. Furthermore, the palynofloras in the petroleum provide evidence for interpretation of the depositional environments of the petroleum source rocks. The affinity of the miospores indicates that the petroleum source rocks were formed in swamps in brackish to lacustrine depositional environments under warm and humid climatic conditions. The palynomorphs in the crude oils provide further information about passage and route of petroleum migration, which is significant for interpreting petroleum migration mechanisms. Additionally, the thermal alternation index (TAI) based on miospores indicates that the Triassic and Jurassic deposits in the Tarim Basin are mature petroleum source rocks. ?? Cambridge University Press 2008.

  11. The lower Triassic microbiolites in Chaohu region, East China and their contribution to the early Triassic recovery

    NASA Astrophysics Data System (ADS)

    Jia, Zhihai; Zhang, Liwei; Hong, Tianqiu

    2010-05-01

    The lower Triassic is well preserved in Chaohu Region, Anhui Province, East China. It can be divided into Yinkeng Formation (80 meters thick, was formed during the Indian and early Smitian), Helongshan Formation (21 meters thick, was formed during the end Smithian) and Nanlinghu Formation (more than 157 meters thick, was formed during the Spathian) from bottom to top. It is mainly composed of carbonatites such as micrite limestones and nodular limestones, as well as shales and calcareous marls. The lower Triassic in this area has been well researched for more than a decade, and many fossils such as ammonites, bivalves, fishes, ichthyosaurus, conodonts, and ichnofossils have been found, but the microbiolites have been neglected. Microbiolites were mainly outcropped in the Helongshan Formaiton and the lower Nanlinghu Formation. In the lower Helongshan Formaiton, tens microbial mat layers and thin bedded calcareous marl layers formed cyclothems which have been named as nodular limstones. The thin-section observation of the microbial mats indicate that many films and thin-shell bivalve fragments deposited almost horizontally. In the upper Helongshan Formaiton, six microstromatolite bioherm layers were outcropped in the thin bedded calcareous marl layers. The diameter of the stromatolite column is about 2 millimeters, the bioherms are lenticular and no more than 3 centimeters thick in the central, their diameters change from 5 centimeters to 30 centimeters, calcareous marls were deposited around the bioherms, and many ammonoids, bivalves and burrows were found in such layers. The microfacies differentiation of the stromatolites such as the basement, reef core and the capping beds can be recognised clearly in thin sections. Several microstromatolite layers were outcropped in the micritic limestones with a stable thickness of 15 millimeters in the lower Nanlinghu Formation and the stromatolite column look like the ones in the Helongshan Formation. Few microbiolites have

  12. Redescription of Bellerophon asiaticus Wirth (Early Triassic: Gastropoda) from China, and a survey of Triassic Bellerophontacea.

    USGS Publications Warehouse

    Yochelson, E.Y.; Yin, Hongfu

    1985-01-01

    The bilaterally symmetrical gastropod Bellerophon asiaticus Wirth is redescribed from specimens collected in Guizhou Province, PRC. The species is reassigned to Retispira, a common late Paleozoic taxon. Retispira is another example of a Paleozoic gastropod genus that crossed the era boundary. Associated pelecypods that date these Guizhou occurrences as Early Triassic are well known species in PRC and are illustrated. Both Bellerophon and Euphemites probably occur in the Early Triassic, though the quality of illustrations leaves some uncertainty; the existence of Stachella in the Triassic is more problematic. There was no dramatic reduction of the Bellerophontacea from their abundance and diversity in the Permian. It may be a general phenomenon that most late Paleozoic family-level and many generic-level taxa of gastropods were unaffected by the late Permian 'crisis'. from Authors

  13. Structural changes of marine communities over the Permian-Triassic transition: Ecologically assessing the end-Permian mass extinction and its aftermath

    NASA Astrophysics Data System (ADS)

    Chen, Zhong-Qiang; Tong, Jinnan; Liao, Zhuo-Ting; Chen, Jing

    2010-08-01

    The Permian/Triassic (P/Tr) transition is ecologically assessed based on examining 23 shelly communities from five shallow platform, ramp and shelf basin facies Permian-Triassic boundary (PTB) sections in South China. The shelly communities have undergone two major collapses coinciding with the two episodes of the end-Permian mass extinction. The first P/Tr extinction event devastated shelly communities in all types of settings to some extent. The basin communities have been more severely impacted than both platform and ramp communities. The survival faunas have rebounded more rapidly in shallow niches than in relatively deep habitats. The second P/Tr crisis destroyed the survival communities in shallow setting and had little impact on the basin communities in terms of community structures. The early Griesbachian communities are overall low-diversity and high-dominance. The governorship switch from brachiopods to bivalves in marine communities has been facilitated by two pulses of the end-Permian mass extinction and the whole takeover process took about 200 ka across the P/Tr boundary. Bivalve ecologic takeover initially occurred immediately after the first P/Tr extinction in shallow water habitats and was eventually completed in all niches after the second P/Tr event. Some post-extinction communities have the irregular rarefaction curves due to the unusual community structures rather than sampling intensities.

  14. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms

    NASA Astrophysics Data System (ADS)

    Baresel, Bjoern; Bucher, Hugo; Bagherpour, Borhan; Brosse, Morgane; Guodun, Kuang; Schaltegger, Urs

    2017-04-01

    High-precision U-Pb dating of single-zircon crystals by chemical abrasion-isotope dilution-thermal ionization mass spectrometry (CA-ID-TIMS) is applied to volcanic beds that are intercalated in sedimentary sequences across the Permian-Triassic boundary (PTB). By assuming that the zircon crystallization age closely approximate that of the volcanic eruption and subsequent deposition, U-Pb zircon geochronology is the preferred approach for dating abiotic and biotic events, such as the formational PTB and the Permian-Triassic boundary mass extinction (PTBME). We will present new U-Pb zircon dates for a series of volcanic ash beds in shallow-marine Permian-Triassic sections in the Nanpanjiang Basin, South China. These high-resolution U-Pb dates indicate a duration of 90 ± 38 kyr for the Permian sedimentary hiatus and a duration of 13 ± 57 kyr for the overlying Triassic microbial limestone in the shallow water settings of the Nanpanjiang pull apart Basin. The age and duration of the hiatus coincides with the formational PTB and the extinction interval in the Meishan Global Stratotype Section and Point, thus strongly supporting a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate during the Griesbachian as indicated by terrestrial plants. Our model of the PTBME hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase likely released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced this transient cool

  15. Effets thermique et hydrothermal de la coulée de basalte triasico-liasique sur les argiles du bassin d'Argana (Maroc)Thermal and hydrothermal effects of Triassic Liassic basalt flow deposition on clays (Agana Basin, Morocco)

    NASA Astrophysics Data System (ADS)

    Daoudi, Lahcen; Pot de Vin, Jean-Luc

    Thermal and hydrothermal effects of Triassic-Liassic basalt flow deposition on sedimentary series of the Argana Basin are responsible for major modifications in detrital clays, until 20 m in depth. It expressed by transformation of detrital smectite to corrensite and moreover to chlorite, and by increasing illite crystallinity. On the 2 m of sediments located immediately under the flow, magnesium-rich hydrothermal fluids have caused precipitation of new mineral phases. To cite this article: L. Daoudi, J.-L. Pot de Vin, C. R. Geoscience 334 (2002) 463-468.

  16. A New Species of Garjainia Ochev, 1958 (Diapsida: Archosauriformes: Erythrosuchidae) from the Early Triassic of South Africa

    PubMed Central

    Gower, David J.; Hancox, P. John; Botha-Brink, Jennifer; Sennikov, Andrey G.; Butler, Richard J.

    2014-01-01

    A new species of the erythrosuchid archosauriform reptile Garjainia Ochev, 1958 is described on the basis of disarticulated but abundant and well-preserved cranial and postcranial material from the late Early Triassic (late Olenekian) Subzone A of the Cynognathus Assemblage Zone of the Burgersdorp Formation (Beaufort Group) of the Karoo Basin of South Africa. The new species, G. madiba, differs from its unique congener, G. prima from the late Olenekian of European Russia, most notably in having large bony bosses on the lateral surfaces of the jugals and postorbitals. The new species also has more teeth and a proportionately longer postacetabular process of the ilium than G. prima. Analysis of G. madiba bone histology reveals thick compact cortices comprised of highly vascularized, rapidly forming fibro-lamellar bone tissue, similar to Erythrosuchus africanus from Subzone B of the Cynognathus Assemblage Zone. The most notable differences between the two taxa are the predominance of a radiating vascular network and presence of annuli in the limb bones of G. madiba. These features indicate rapid growth rates, consistent with data for many other Triassic archosauriforms, but also a high degree of developmental plasticity as growth remained flexible. The diagnoses of Garjainia and of Erythrosuchidae are addressed and revised. Garjainia madiba is the geologically oldest erythrosuchid known from the Southern Hemisphere, and demonstrates that erythrosuchids achieved a cosmopolitan biogeographical distribution by the end of the Early Triassic, within five million years of the end-Permian mass extinction event. It provides new insights into the diversity of the Subzone A vertebrate assemblage, which partially fills a major gap between classic ‘faunal’ assemblages from the older Lystrosaurus Assemblage Zone (earliest Triassic) and the younger Subzone B of the Cynognathus Assemblage Zone (early Middle Triassic). PMID:25386937

  17. Brittle Deformation in the Ordos Basin in response to the Mesozoic destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Jiang, L.

    2012-12-01

    Craton is continental block that has been tectonically stable since at least Proterozoic. Some cratons, however, become unstable for some geodynamic reasons. The North China Craton (NCC) is an example. Structure geological, geochemical, and geophysical works have revealed that the NCC was destructed in Cretaceous and that lithosphere thickness beneath the eastern NCC were thinned by 120 km. The present study will focus on deformation of the western NCC, and to understand the effect of the Mesozoic destruction of the North China Craton (NCC). Structural partitioning of the Ordos Basin, which is located in the western NCC, from the eastern NCC occurred during the Mesozoic. Unlike the eastern NCC where many Cretaceous metamorphic core complexes developed, sedimentary cover of the NCC remains nearly horizontal and deformation is manifested by joint. We visited 216 sites of outcrops and got 1928 joints measurements, among which 270 from Jurassic sandstones, 1378 from the Upper Triassic sandstones, 124 from the Middle and Lower Triassic sandstones, and 156 from Paleozoic sandstones. In the interior of the Ordos Basin, joints developed quite well in the Triassic strata, while joints in the Jurassic stata developed weakly and no joint in the Cretaceous strata. The Mesozoic stratigraphic thickness are: 1000 meters for the Lower Triassic, the Middle Triassic sandstone with thickness of 800 meters, 3000 meters for the Upper Triassic, 4000 meters for the Jurassic, and 1100 meters for the Lower Cretaceous. The vertical difference in joint development might be related to the burying depth of the strata: the higher the strata, the smaller the lithostatic stress, and then the weaker the joint. Joints in all stratigraphic levels showed a similar strain direction with the sigma 1 (the maximum pressure stress) vertical and the sigma 3 (the minimum pressure stress) horizontal and running N-S. The unconformity below the Cretaceous further indicates that joints in Jurassic and Triassic

  18. Upper Triassic limestones from the northern part of Japan: new insights on the Panthalassa Ocean and Hokkaido Island

    NASA Astrophysics Data System (ADS)

    Peyrotty, Giovan; Peybernes, Camille; Ueda, Hayato; Martini, Rossana

    2017-04-01

    In comparison with the well-known Tethyan domain, Upper Triassic limestones from the Panthalassa Ocean are still poorly known. However, these carbonates represent a unique opportunity to have a more accurate view of the Panthalassa Ocean during the Triassic. Their study will allow comparison and correlation of biotic assemblages, biostratigraphy, diagenesis, and depositional settings of different Triassic localities from Tethyan and Panthalassic domains. Moreover, investigation of these carbonates will provide data for taxonomic revisions and helps to better constrain palaeobiogeographic models. One of the best targets for the study of these carbonates is Hokkaido Island (north of Japan). Indeed, this island is a part of the South-North continuity of Jurassic to Paleogene accretionary complexes, going from the Philippines to Sakhalin Island (Far East Russia). Jurassic and Cretaceous accretionary complexes of Japan and Philippines contain Triassic mid-oceanic seamount carbonates from the western Panthalassa Ocean (Onoue & Sano, 2007; Kiessling & Flügel, 2000). They have been accreted either as isolated limestone slabs or as clasts and boulders, and are associated with mudstones, cherts, breccias and basaltic rocks. Two major tectonic units forming Hokkaido Island and containing Triassic limestones have been accurately explored and extensively sampled: the Oshima Belt (west Hokkaido) a Jurassic accretionary complex, and the Cretaceous Sorachi-Yezo Belt (central Hokkaido). The Sorachi-Yezo Belt is composed of Cretaceous accretionary complexes in the east and of Cretaceous clastic basin sediments deposited on a Jurassic basement in the west (Ueda, 2016), both containing Triassic limestones. The origin of this belt is still matter of debate especially because of its western part which is not in continuity with any other accretionary complex known in the other islands of Japan and also due to the lack of data in this region. One of the main goals of this study is to

  19. The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics

    NASA Astrophysics Data System (ADS)

    Martín-Martín, Manuel; Estévez, Antonio; Martín-Rojas, Ivan; Guerrera, Francesco; Alcalá, Francisco J.; Serrano, Francisco; Tramontana, Mario

    2018-03-01

    The Agost Basin is characterized by a Miocene-Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E-W to N-S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results

  20. Early Triassic fluctuations of the global carbon cycle: New evidence from paired carbon isotopes in the western USA basin

    NASA Astrophysics Data System (ADS)

    Caravaca, Gwénaël; Thomazo, Christophe; Vennin, Emmanuelle; Olivier, Nicolas; Cocquerez, Théophile; Escarguel, Gilles; Fara, Emmanuel; Jenks, James F.; Bylund, Kevin G.; Stephen, Daniel A.; Brayard, Arnaud

    2017-07-01

    In the aftermath of the catastrophic end-Permian mass extinction, the Early Triassic records recurrent perturbations in the carbon isotope signal, most notably during the Smithian and through the Smithian/Spathian Boundary (SSB; 1.5 myr after the Permian/Triassic boundary), which show some of the largest excursions of the Phanerozoic. The late Smithian also corresponds to major biotic turnovers and environmental changes, such as temperature fluctuations, that deeply impacted the recovery after the end-Permian mass extinction. Here we document the paired carbon isotope signal along with an analysis of the trace and major elements at the long-known Hot Springs section (southeastern Idaho, USA). This section records Early Triassic sediments from the Griesbachian-Dienerian up to the lower Spathian. We show that the organic and carbonate δ13C variations mirror the signals identified at a global scale. Particularly, the middle Smithian-SSB event represented by a negative-positive isotopic couplet is well identified and is not of diagenetic origin. We also document a positive excursion potentially corresponding to the Dienerian/Smithian Boundary. Observed Smithian-Spathian excursions are recorded similarly in both the organic and carbonate reservoirs, but the organic matter signal systematically shows unexpectedly dampened variations compared to its carbonate counterpart. Additionally, we show that variations in the net isotopic effect (i.e., Δ13C) probably resulted from a complex set of forcing parameters including either a mixing between terrestrial and marine organic matter depending on the evolution of the depositional setting, or variations in the biological fractionation. We establish that the Δ13C signal cannot be directly related to CO2-driven temperature variations at Hot Springs. Even though the carbon isotope signal mirrors the Early Triassic variations known at the global scale, the Hot Springs signal probably also reflects local influences on the carbon

  1. Tectonics, basin analysis and organic geochemical attributes of Permian through Mesozoic deposits and their derivative oils of the Turpan-Hami basin, northwestern China

    NASA Astrophysics Data System (ADS)

    Greene, Todd Jeremy

    The Turpan-Hami basin is a major physiographic and geologic feature of northwest China, yet considerable uncertainty exists as to the timing of its inception, its late Paleozoic and Mesozoic tectonic history, and the relationship of its petroleum systems to those of the nearby Junggar basin. Mesozoic sedimentary fades, regional unconformities, sediment dispersal patterns, and sediment compositions within the Turpan-Hami and southern Junggar basins suggest that these basins were initially separated between Early Triassic and Early Jurassic time. Prior to separation, Upper Permian profundal lacustrine and fan-delta fades and Triassic coarse-grained braided-fluvial/alluvial fades were deposited across a contiguous Junggar-Turpan-Hami basin. Permian through Triassic fades were derived mainly from the Tian Shan to the south as indicated by northward-directed paleocurrent directions and geochemical provenance of granitoid cobbles. Lower through Middle Jurassic strata begin to reflect ponded coal-forming, lake-plain environments within the Turpan-Hami basin. A sharp change in sedimentary-lithic-rich Lower Jurassic sandstone followed by a return to lithic volcanic-rich Middle Jurassic sandstone points to the initial uplift and unroofing of the largely andesitic Bogda Shan range, which first shed its sedimentary cover as it emerged to become the partition between the Turpan-Hami and southern Junggar basins. In Turpan-Hami, source rock age is one of three major statistically significant discriminators of effective source rocks in the basin. A newly developed biomarker parameter appears to track conifer evolution and can distinguish Permian rocks and their correlative oils from Jurassic coals and mudrocks, and their derivative oils. Source fades is a second key control on petroleum occurrence and character. By erecting rock-to-oil correlation models, the biomarker parameters separate oil families into end-member groups: Group 1 oils---Lower/Middle Jurassic peatland

  2. The Nordkapp Basin, Norway: Development of salt and sediment interplays for hydrocarbon exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerche, I.; Toerudbakken, B.O.

    1996-12-31

    Investigation of a particular salt diapir in the Nordkapp Basin, Barents Sea has revealed the following sequence of events: (1) salt started to rise when approximately 1.5 {+-} 0.3 km of sedimentary cover was present (Carboniferous/Permian time); (2) salt reached the sediment surface when about 3.5 {+-} 0.7 km of sediment had been deposited (Triassic time); (3) the mushroom cap on the salt stock top developed over a period of about 75--100 Ma (i.e. during the time when about another km of sediment had been deposited) (Triassic through Base Cretaceous time); (4) the mushroom cap started to dip down significantlymore » ({approximately}1 km) into the sediments around Cretaceous to Tertiary erosion time; (5) oil generation started in the deep sediments of the Carboniferous around the time that salt reached the surface (Triassic time) and continues to the present day at sedimentary depths between about 4 to 7 km (currently Triassic and deeper sediments); (6)gas generation started around mushroom cap development time and continues to the present day at sedimentary depths greater than about 6--7 km (Permian/Carboniferous); (7) the salt stock is currently 3--4 km wide, considerably less than the mushroom cap which is 9 km wide and 1 km thick. The relative timing of mushroom cap development, bed upturning, and hydrocarbon generation makes the salt diapir an attractive exploration target, with suggested reservoir trapping under the downturned mushroom cap on the deep basin side of the salt. In addition, rough estimates of rim syncline fill suggest the basin had an original salt thickness of 2.4--3.3 km, depending upon the amount of salt removed at the Tertiary erosion event.« less

  3. Filling the Triassic Geochronologic Gap: A Continuous Cored Record of Continental Environmental Change in Western North America

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Kent, D. V.; Geissman, J. W.; Mundil, R.; Gehrels, G. E.; Irmis, R. B.; Whiteside, J. H.; Schaller, M. F.

    2013-12-01

    The Triassic Period (252.2-201.6 Ma) is bracketed by two mass extinctions, witnessed the evolution of the major groups of modern tetrapods, saw giant bolide impacts, and was typified by generally high atmospheric CO2 and a lack of ice at the poles. Testing hypotheses relevant to these major features of the Triassic, as well as problems related to the Earth system in general, requires temporally well-defined records of environmental and biotic change, especially in terrestrial environments, which until recently were lacking. The NSF and ICDP funded ~500 m long core at Petrified Forest National Park, scheduled to be drilled in Fall, 2013, is part of an interdisciplinary, multi-institutional, Colorado Plateau Coring Project, and is a major step towards providing a network of such records. The core will recover virtually the entire pre-Owl-Rock-Member Late Triassic age Chinle and underlying Early-Middle Triassic age Moenkopi formations. A core is required despite excellent outcrop and a long and distinguished history of study because of ambiguities in local correlation, a lack of constraints on the temporal duration and resolution of biotic events, and an inability to make clear global correlations. Specifically, by integrating a densely sampled paleomagnetic record with high-resolution radioisotopic ages in unquestioned superposition, the new core will allow us to test at least five sets of hypotheses: (1) were marine and continental biotic turnover events in the Late Triassic coupled? (2) was there high faunal provinciality during the existence of the supercontinent of Pangea?; (3) is the time scale of the Newark basin astronomically calibrated GPTS for the Triassic accurate, particularly for the Norian age part that is relevant for mapping the chaotic evolution of the Solar System, as well as global correlations?; (4) is the supposed Carnian-Norian boundary in the Chinle actually a late middle Norian extinction coinciding with the 215.5 Ma Manicouagan impact?; (5

  4. Tectonothermal evolution of the Triassic flysch in the Bayan Har Orogen, Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Wang, Hejing; Rahn, Meinert; Zhou, Jian

    2018-01-01

    The Bayan Har Orogen comprises a major part of the "Qingzang-Dianxi fold region" in western China. It preserves important information of the tectono-thermal evolution covering the time span from the closure of the Paleo-Tethys Ocean up to the formation of the Himalayas. Low temperature metamorphic indicators, such as mineral assemblages, illite "crystallinity" (IC), chlorite "crystallinity" (CC), illite polytype, b-cell dimension of K-white micas, geothermometry of selected minerals were analyzed. The values of Kübler index (KI) of the Triassic flysch in the Bayan Har Orogen range from 0.23-1.63°Δ2θ while Árkai index (ÁI) in a range of 0.21-0.60°Δ2θ. Iso-thermal zones mapped with KI describe a pair of anchizones and an anchiregion within the Bayan Har Orogen: the "Giant Yushu Anchizone" in the southwest (extending > 750 km long and 100 km wide), the "Zaling-Eling-Lakes Anchizone" in the center (about 150 km long and 40 km wide) and the "Xing-Tong-Zhe Anchiregion" in the northeast (covering an area of roughly 60,000 km2). They are separated by diagenetic zones. Peak metamorphic conditions are estimated around 280-330 °C and a low to intermediate (N. New Hampshire) pressure type. A slight change with increasing then decreasing pressure was observed from SW to NE. The relationship between anchimetamorphic pattern of Triassic flysch and large-scale folds and faults indicates syn- to post structural metamorphism. Compression at the end of the Triassic, induced by the interaction of the Tarim, North China and Indian blocks caused the closure of the Paleo-Tethys Ocean and led to the folding of the Triassic flysch within the Paleo-Tethys Ocean basin. Anchimetamorphism may have been caused by crustal thickening of > 10 km due to an accretionary wedge setting and a temperature increase in those rocks due to burial. Such a regional metamorphic pattern would provide important information for reconstruction of palaeotectonic-palaeogeograph and the evolutionary history

  5. Characterization of the Triassic Newark Basin of New York and New Jersey for geologic storage of carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Daniel J.

    The Newark Basin is a Triassic-aged rift basin underlying densely populated, industrialized sections of New York, New Jersey and Pennsylvania. The Basin is an elongate half-graben encompassing an area of more than 7,510 square-kilometers (2,900 square-miles), and could represent a key storage component for commercial scale management of carbon dioxide emissions via geologic sequestration. The project team first acquired published reports, surface and subsurface maps, and seismic data, which formed the basis for a three-dimensional model framework for the northern end of the Basin incorporating stratigraphic, hydrologic, and water quality data. Field investigations included drilling, coring, and logging of two stratigraphic test borings in Clarkstown, NY (Exit 14 Tandem Lot Well No. 1), drilled to a depth of 2,099 meters (6,885 feet); and Palisades, NY (Lamont-Doherty Earth Observatory Test Well No. 4) drilled to a depth of 549 meters (1,802 feet). Two two-dimensional seismic reflection data lines arrayed perpendicularly were acquired by Schlumberger/WesternGeco to help characterize the structure and stratigraphy and as part of pre-drilling field screening activities for the deep stratigraphic borehole. A total of 47 meters (155 feet) of continuous whole core was recovered from the Tandem Lot boring from depths of 1,393 meters (4,570 feet) to 1,486 meters (4,877 feet). Twenty-five horizontal rotary cores were collected in mudstones and sandstones in the surface casing hole and fifty-two cores were taken in various lithologies in the deep borehole. Rotary core plugs were analyzed by Weatherford Laboratories for routine and advanced testing. Rotary core plug trim end thin sections were evaluated by the New York State Museum for mineralogical analysis and porosity estimation. Using core samples, Lawrence Berkley National Laboratory designed and completed laboratory experiments and numerical modeling analyses to characterize the dissolution and reaction of carbon

  6. Geology and hydrocarbon potential of the Hamada and Murzuq basins in western Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirmani, K.U.; Elhaj, F.

    1988-08-01

    The Hamada and Murzuq intracratonic basins of western Libya form a continuation of the Saharan basin which stretches from Algeria eastward into Tunisia and Libya. The tectonics and sedimentology of this region have been greatly influenced by the Caledonian and Hercynian orogenies. Northwest- and northeast-trending faults are characteristic of the broad, shallow basins. The Cambrian-Ordovician sediments are fluvial to shallow marine. The Silurian constitutes a complete sedimentary cycle, ranging from deep marine shales to shallow marine and deltaic sediments. The Devonian occupies a unique position between two major orogenies. The Mesozoic strata are relatively thin. The Triassic consists of well-developedmore » continental sands, whereas the Jurassic and Cretaceous sediments are mainly lagoonal dolomites, evaporites, and shales. Silurian shales are the primary source rock in the area. The quality of the source rock appears to be better in the deeper part of the basin than on its periphery. The Paleozoic has the best hydrocarbon potential. Hydrocarbons have also been encountered in the Triassic and Carboniferous. In the Hamada basin, the best-known field is the El Hamra, with reserves estimated at 155 million bbl from the Devonian. Significant accumulations of oil have been found in the Silurian. Tlacsin and Tigi are two fields with Silurian production. In the Murzuq basin the Cambrian-Ordovician has the best production capability. However, substantial reserves need to be established before developing any field in this basin. Large areas still remain unexplored in western Libya.« less

  7. Triassic salt sheets of Mezzouna, Central Tunisia: New comments on Late Cretaceous halokinesis and geodynamic evolution of the northern African margin

    NASA Astrophysics Data System (ADS)

    Dhahri, Ferid; Boukadi, Noureddine

    2017-05-01

    Two discrete Triassic salt sheets have been discovered within the Coniacian-Santonian series near the salt wall of Mezzouna, central Tunisia. The structure and the lithology of these sheets suggest two halokinetic episodes giving respectively 1) Triassic evaporitic rocks flows over a sloped basin floor resulting in probable salt glacier, and 2) redeposition of erosional debris from the nearby salt wall of Mezzouna, transported and then deposited next to the wall. This finding is used to precise the halokinetic events and the geodynamic evolution of the northern African margin near the Pelagian block between southeastern Tunisia and Tripolitania during Late Cretaceous. A discussion of the halokinesis-related structures is also attempted with emphasize of their genetic mechanisms and temporal development as inferred from geological mapping and new field data.

  8. Origin and tectonic evolution of upper Triassic Turbidites in the Indo-Burman ranges, West Myanmar

    NASA Astrophysics Data System (ADS)

    Yao, Wei; Ding, Lin; Cai, Fulong; Wang, Houqi; Xu, Qiang; Zaw, Than

    2017-11-01

    The Pane Chaung Formation is exposed in the Indo-Burman Ranges, and has been involved in collision between the Indian Plate and West Burma Block. However, controversies exist over the provenance and paleogeographic reconstruction of the Pane Chaung Formation. This study presents new petrographical and detrital zircon Usbnd Pb ages and Hf isotopic data from the Pane Chaung Formation in Rakhine Yoma and Chin Hills, west Myanmar. The depositional age of the Pane Chaung Formation is Late Triassic, indicated by the Carnian-Norian Halobia fossils and maximum depositional ages between 233.0 ± 2.5 Ma and 206.2 ± 1.8 Ma. Upper Triassic sandstones contain 290-200 Ma detrital zircons, εHf(t) values of - 6 to 11 and TDMC of 1.6 to 0.6 Ga, interpreted to be derived from West Papua region. The most abundant zircon age population of 750-450 Ma is derived from Pan-African orogenic belts in Australia. Zircons of 1250-900 Ma age were derived from the Grenvillian orogen in Australia. Archean zircons are interpreted to be derived from the Yilgarn and Pilbara cratons in Western Australia. Detrital zircon ages of the Pane Chaung Formation are distinct from similar aged strata in Indochina and Sibumasu, but comparable to NW Australia (Carnarvon Basin) and Greater India (Langjiexue Formation). It is suggested that the Pane Chaung Formation was deposited in a Late Triassic submarine fan along the northern margin of Australia.

  9. A Major Unconformity Between Permian and Triassic Strata at Cape Kekurnoi, Alaska Peninsula: Old and New Observations on Stratigraphy and Hydrocarbon Potential

    USGS Publications Warehouse

    Blodgett, Robert B.; Sralla, Bryan

    2008-01-01

    A major angular unconformity separates carbonates and shales of the Upper Triassic Kamishak Formation from an underlying unnamed sequence of Permian agglomerate, volcaniclastic rocks (sandstone), and limestone near Puale Bay on the Alaska Peninsula. For the first time, we photographically document the angular unconformity in outcrop, as clearly exposed in a seacliff ~1.3 mi (2.1 km) west of Cape Kekurnoi in the Karluk C?4 and C?5 1:63,360-scale quadrangles. This unconformity is also documented by examination of core chips, ditch cuttings, and (or) open-hole electrical logs in two deep oil-and-gas-exploration wells (Humble Oil & Refining Co.?s Bear Creek No. 1 and Standard Oil Co. of California?s Grammer No. 1) drilled along the Alaska Peninsula southwest of Puale Bay. A third well (Richfield Oil Corp.?s Wide Bay Unit No. 1), south of and structurally on trend with the other two wells, probed deeply into the Paleozoic basement, but Triassic strata are absent, owing to either a major unconformity or a large fault. Here we briefly review current and newly acquired data on Permian and Triassic rocks of the Puale Bay-Becharof Lake-Wide Bay area on the basis of an examination of surface and subsurface materials. The resulting reinterpretation of the Permian and Triassic stratigraphy has important economic ramifications for oil and gas exploration on the Alaska Peninsula and in the Cook Inlet basin. We also present a history of petroleum exploration targeting Upper Triassic reservoirs in the region.

  10. Late Triassic closure of the Paleo-Tethys Ocean in Central Tibet implied by paleomagnetism of Middle Triassic lavas from the Qiantang block

    NASA Astrophysics Data System (ADS)

    Song, P.; Lin, D.; Lippert, P. C.; Li, Z.

    2017-12-01

    The closure of the Paleo-Tethys Ocean is a major event not only in the tectonic history of the Tibetan Plateau that pre-conditioned the plateau for subsequent orogenic events, but also in the paleogeographic evolution of eastern Pangea. Final closure of this equatorial ocean, however, remains disputed, with ages ranging from the Late Permian to the Middle Cretaceous; this huge discrepancy is largely the result of the lack of high-quality paleomagnetic data and ambiguous stratigraphic data from Mesozoic rocks from Central Tibet. A recent Late Triassic paleopole derived from lavas of the Qiangtang block suggests that the Paleo-Tethys Ocean must have closed between Middle and Late Triassic (Song et al., EPSL 2015). We test this prediction with a paleomagnetic study of Middle Triassic lavas from the Qiangtang block. These lavas were previously dated to Middle Triassic (ca. 242-240 Ma) using zircon U-Pb geochonology. Rock magnetic experiments demonstrate that hematite and magnetite are the main carriers of remanence. Progressive thermal and alternating field demagnetization successfully isolated stable characteristic remanent magnetizations. Although these directions pass fold tests, suggesting a primary magnetization, we are conducting additional rock magnetic and petrographic studies to verify the primary nature of this magnetization. If these directions are primary, then they establish the first lava-based paleomagnetic pole of Middle Triassic age from the Qiangtang block. This pole was located at 63.4°N, 198.8°E, A95=4.1° (N=27) and yields a paleolatitude of 22.7±4.1°N at the reference point (33.5°N, 92.0°E). A comparison of our new Middle Triassic pole from the Qiangtang block with coeval paleopoles from the North China (NCB) and Tarim blocks indicates that the Paleo-Tethys Ocean was approximately 5-10° of latitude ( 550-1100 km) wide during the Middle Triassic. Within the context of our previous work that demonstrated the Qiangtang, NCB, and Tarim blocks

  11. Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada Basin, and the geometry and timing of rifting in the Amerasia Basin, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Clark, D.L.; Phillips, R.L.; Srivastava, S.P.; Blome, C.D.; Gray, L.-B.; Haga, H.; Mamet, B.L.; McIntyre, D.J.; McNeil, D.H.; Mickey, M.B.; Mullen, M.W.; Murchey, B.I.; Ross, C.A.; Stevens, C.H.; Silberling, Norman J.; Wall, J.H.; Willard, D.A.

    1998-01-01

    Cores from Northwind Ridge, a high-standing continental fragment in the Chukchi borderland of the oceanic Amerasia basin, Arctic Ocean, contain representatives of every Phanerozoic system except the Silurian and Devonian systems. Cambrian and Ordovician shallow-water marine carbonates in Northwind Ridge are similar to basement rocks beneath the Sverdrup basin of the Canadian Arctic Archipelago. Upper Mississippian(?) to Permian shelf carbonate and spicularite and Triassic turbidite and shelf lutite resemble coeval strata in the Sverdrup basin and the western Arctic Alaska basin (Hanna trough). These resemblances indicate that Triassic and older strata in southern Northwind Ridge were attached to both Arctic Canada and Arctic Alaska prior to the rifting that created the Amerasia basin. Late Jurassic marine lutite in Northwind Ridge was structurally isolated from coeval strata in the Sverdrup and Arctic Alaska basins by rift shoulder and grabens, and is interpreted to be a riftogenic deposit. This lutite may be the oldest deposit in the Canada basin. A cape of late Cenomanian or Turonian rhyodacite air-fall ash that lacks terrigenous material shows that Northwind Ridge was structurally isolated from the adjacent continental margins by earliest Late Cretaceous time. Closing Amerasia basin by conjoining seafloor magnetic anomalies beneath the Canada basin or by uniting the pre-Jurassic strata of Northwind Ridge with kindred sections in the Sverdrup basin and Hanna trough yield simular tectonic reconstructions. Together with the orientation and age of rift-marine structures, these data suggest that: 1) prior to opening of the Amerasia basin, both northern Alaska and continental ridges of the Chukchi borderland were part of North America, 2) the extension that created the Amerasia basin formed rift-margin graben beginning in Early Jurassic time and new oceanic crust probably beginning in Late Jurassic or early Neocomian time. Reconstruction of the Amerasia basin on the

  12. Preliminary Magnetostratigraphy of the Carnian to Early Norian (Late Triassic) Lower Chinle Group, Central and North-Central New Mexico

    NASA Astrophysics Data System (ADS)

    Zeigler, K. E.; Geissman, J. W.

    2006-12-01

    The Chama Basin of north-central New Mexico and the Zuni Mountains of central New Mexico contain several excellent outcrop exposures of the Upper Triassic Chinle Group. The Shinarump, Salitral and Poleo formations, which comprise the lower half of the Chinle Group, encompass the Carnian to early Norian stages of the Late Triassic, based on vertebrate biostratigraphy. Each of these units was sampled with a ~3m sampling interval at three localities in the Chama Basin and one locality in the Zuni Mountains. Sites spanning the gradational Shinarump/Salitral Formation contact yielded an in situ grand mean of D = 352.9°, I = 49.3°, α95 = 20.1°, k = 38.7. Sites in the El Cerrito Bed of the medial Salitral Formation yielded an in situ grand mean of D = 177.4°, I = 10.7°, α95 = 15.6°, k = 63.5. The Youngsville Member of the Salitral Formation and the Poleo Formation are exclusively of reverse polarity, with an in situ grand mean of D = 188.3°, I = 16.8°, α95 = 19.4°, k = 23.4 and D = 182.7°, I = -0.3°, α95 = 5.3°, k = 36.5 respectively. In general, the lower Chinle Group tends to be dominantly reversed polarity. The Shinarump Formation is noted for intense color mottling and the local occurrence of copper and uranium mineralization. The lower member of the Salitral Formation, the Piedra Lumbre Member, is often very mottled, with colors ranging from whites and yellows through reds, purples and blues that reflect intense pedogenic alteration of the sediments. The Youngsville Member is nearly uniformly brick red in color. However, several specimens from different sites in the Shinarump and both members of the Salitral Formation yielded incoherent magnetizations, suggesting that pedogenic alteration may have erased any original Late Triassic magnetization.

  13. Mesozoic basin development beneath the southeastern US coastal plain: evidence from new COCORP profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, J.H.; Nelson, K.D.; Arnow, J.A.

    1985-01-01

    New COCORP profiling on the Georgia coastal plain indicates that the Triassic/Early Jurassic South Georgia basin is a composite feature, which includes several large half-grabens separated by intervening regions where the Triassic/Early Jurassic section is much thinner. Two half-grabens imaged on the profiles have apparent widths of 125 and 40 km, and at their deepest points contain about 5 km of basin fill. Both basins are bounded on their south flanks by major normal faults that dip moderately steeply toward the north, and are disrupted internally by subsidiary normal faults within the basin fill sequences. The orientation of the mainmore » basin-bounding faults suggests that they might have reactivated Paleozoic south-vergent structures formed on the south side of the Alleghenian suture. Evolution of the South Georgia basin appears to follow a model of initial, rapid rifting followed by flexural subsidence. The major episode of normal faulting, and hence extension, within the South Georgia basin occurred prior to extrusion of an areally extensive sequence of Early Jurassic basalt flows. This sequence is traceable across most of the width of the South Georgia basin in western Georgia, and may extend as far east as offshore South Carolina. Jurassic strata above the basalt horizon are notably less faulted and accumulated within a broadly subsiding basin that thins both to the north and south. The occurrence of the basalt relatively late in the rift sequence supports the hypothesis that the southeastern US may have been a major area of incipient spreading after Pangea had begun to separate.« less

  14. Sodium storage in deep paleoweathering profiles beneath the Paleozoic-Triassic unconformity

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Parcerisa, D.; Ricordel-Prognon, C.; Schmitt, J.-M.

    2009-04-01

    A major sodium accumulation has been recognized for long and by numerous authors in the Permo-Triassic salt deposits (Hay et al., 2006). Beside these basinal deposits, important masses of sodium were stored on the continents within deep palaeoweathering profiles in form of albite. Indeed, wide surfaces and huge volumes of granito-gneissic basements of the Hercynian massifs are albitized from North-Africa up to Scandinavia. These albitized rocks have usually been considered as related to tardi-magmatic metasomatic processes (Cathelineau 1986; Petersson and Eliasson 1997). Geometrical arrangement and dating of these alterations point out that these albitizations, or at least a part of them, developed under low temperature subsurface conditions in relation with the Triassic palaeosurface (Ricordel et al., 2007; Parcerisa et al., 2009). Petrology The albitized igneous rocks show a strong alteration with pseudomorphic replacement of the primary plagioclases into albite, replacement of primary biotite by chlorite and minor precipitation of neogenic minerals like albite, chlorite, apatite, haematite, calcite and titanite. Albitized rocks are characterized by their pink coloration due to the presence of minute haematite inclusions in the albite. The development and distribution of the albitization and related alterations above the unaltered basement occurs in three steps that define a vertical profile, up to 100-150 m depth. 1) In the lower part of the profile, albitization occurs within pink-colored patches in the unaltered rock, giving a pink-spotted aspect to the rock. 2) In the middle part of the profile, rocks have an overall pink coloration due to the albitization of the primary Ca-bearing igneous plagioclases. Usually, this facies develops in a pervasive manner, affecting the whole rock, but it may also be restricted to joints, giving a sharp-pink coloration to the fracture wall. 3) Finally, the top of the profile is defined by the same mineral paragenesis as in the

  15. Tectonic evolution of the Songpan Garzê and adjacent areas (NE Tibet) from Triassic to Present : a synthesis.

    NASA Astrophysics Data System (ADS)

    Roger, F.; Jolivet, M.; Malavieille, J.

    2009-04-01

    The 12th May 2008 Wenchuan earthquake in the Longmen Shan occurred on a large thrust fault largely inherited from an Indosinian structure itself probably controlled by an older structural heritage of the South China block continental margin. Within the whole northeast Tibet region, such a structural inheritance has had a major impact on the Tertiary deformation. It appears of primary importance to assess the pre-Tertiary tectonic evolution of the main blocks involved to understand the actual deformation in the eastern edge of Tibet. Over the past decades, the Proterozoic to Cenozoic tectonic, metamorphic and geochronologic history of the Longmen Shan and Songpan Garzê area have been largely studied. We present a synthesis of the tectonic evolution of the Songpan Garzê fold and thrust belt from Triassic to present. The Songpan-Garzê belt was formed during closure of a wide oceanic basin filled with a thick (5 to 15 km) sequence of Triassic flyschoid sediments [10]. Closure of the basin due to Triassic subduction involved strong shortening, intense folding and faulting of the Triassic series. A large-scale décollement, that presently outcrops along the eastern boundary of the belt (Danba area), allowed the growth of a wide and thick accretionary wedge [9]. It develops in the Paleozoic and Triassic series and separates the accretionary prism from an autochthonous crystalline basement [5, 12, 6] which shares many similarities with the basement of the Yangtze Craton (0.7-0.9 Ga). To the north and northwest, below the thickened Triassic series of the belt, the composition (oceanic or continental) of the basement remains unknown. During the Indosinian orogeny the emplacement of orogenic granites (220 - 150 Ma) was associated to crustal thickening [12, 13, 17, 15]. The isotopic composition of granitoids shows that their magma source were predominantly derived from melting of the proterozoic basement with varying degrees of sedimentary material and negligible mantle

  16. Triassic-Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China).

    PubMed

    Sha, Jingeng; Olsen, Paul E; Pan, Yanhong; Xu, Daoyi; Wang, Yaqiang; Zhang, Xiaolin; Yao, Xiaogang; Vajda, Vivi

    2015-03-24

    Empirical constraints on orbital gravitational solutions for the Solar System can be derived from the Earth's geological record of past climates. Lithologically based paleoclimate data from the thick, coal-bearing, fluvial-lacustrine sequences of the Junggar Basin of Northwestern China (paleolatitude ∼60°) show that climate variability of the warm and glacier-free high latitudes of the latest Triassic-Early Jurassic (∼198-202 Ma) Pangea was strongly paced by obliquity-dominated (∼40 ky) orbital cyclicity, based on an age model using the 405-ky cycle of eccentricity. In contrast, coeval low-latitude continental climate was much more strongly paced by climatic precession, with virtually no hint of obliquity. Although this previously unknown obliquity dominance at high latitude is not necessarily unexpected in a high CO2 world, these data deviate substantially from published orbital solutions in period and amplitude for eccentricity cycles greater than 405 ky, consistent with chaotic diffusion of the Solar System. In contrast, there are indications that the Earth-Mars orbital resonance was in today's 2-to-1 ratio of eccentricity to inclination. These empirical data underscore the need for temporally comprehensive, highly reliable data, as well as new gravitational solutions fitting those data.

  17. Paleomagnetic and AMS study of Permian and Triassic rocks from the Hronic Nappe and Paleogene rocks from the Central Carpathian Paleogene Basin, Western Carpathians

    NASA Astrophysics Data System (ADS)

    Márton, Emö; Madzin, Jozef; Bučová, Jana; Grabowski, Jacek; Plašienka, Dušan; Aubrecht, Roman

    2017-04-01

    The Hronic (Choč) units form the highest cover nappe system of the Central Western Carpathians which was emplaced over the Fatric (Krížna) nappe system during the Late Cretaceous. The Permian (red beds and lava flows) and Triassic (sediments) rocks, the main targets of our study, were affected only by diagenetic or very low-grade, burial-related recrystallization and were tilted and transported together. The pre-late Cretaceous sequence is overlapped by Paleogene mainly flysch sequences. Three laboratories (Bratislava, Budapest and Warsaw) were involved in standard paleomagnetic processing and AMS measurements of the samples, while Curie-points were determined in Budapest. The site/locality mean paleomagnetic directions obtained were significantly different from the local direction of the present Earth magnetic field, indicating the long term stability of the paleomagnetic signal. The magnetic fabrics varied from un-oriented to dominantly schistose with well-defined lineations. The latter were normally subhorizontal, although subvertical maxima also occurred among the Triassic sediments. Shallow inclinations, after tilt corrections, suggest near-equatorial position for most of the Permian and Lower Triassic, while around 20°N for the Middle-Upper Triassic localities. The paleomagnetic declinations are interpreted in terms of CW tectonic rotations, which are normally larger for the Permian than for the Triassic samples, although there are some differences within the same age groups. This may be attributed to differential movements during nappe emplacement or subsequent tectonic disturbances. For two localities from the Paleogene cover sequence of the Hronic units, close to the main sampling area (Low Tatra Mts) of the present study documented fairly large CCW rotations, thus obtained additional evidence for the general CCW rotation of the Central Western Carpathians during the Cenozoic. Thus, we conclude that the Cenozoic CCW rotation was pre-dated by large CW

  18. Paleomagnetism and Magnetostratigraphy of Upper Permian to Lower Triassic (?) Beaufort Group Strata at Bethulie, Karoo Basin, Free State Province, South Africa

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Gastaldo, R. A.; Neveling, J.; Makubalo, S.

    2017-12-01

    A multifaceted approach to understand the timing of interpreted environmental changes during the Late Permian to possibly Early Triassic (?) time in the Beaufort Group strata of the Karoo Basin includes work to establish robust magnetic polarity records for sections previously interpreted to encompass end-Permian extinction events. Demonstrating the preservation of an early-acquired remanence (RM) in Karoo strata is required for a robust magnetostratigraphy. Yet, this is challenging due to thermochemical effects related to the Early Jurassic (ca. 183 Ma) Karoo Large Igneous Province (LIP), and the NE to SW increase in burial diagenesis attending Cape Fold Belt tectonism. Documentation of a primary RM in these strata, which appears to be preserved in some areas, requires careful laboratory- and field-based assessment. We report data from 53 sites collected at the well-studied Bethulie section, Free State Province, in which several <2 m wide Karoo LIP dikes crop out. We obtained 7-10+ independent samples per individual horizon to assess ChRM uniformity. Strata well-removed from dikes yield both normal and reverse polarity ChRM. It is always the case that the first-removed RM is a NNW seeking, moderate to steep negative-inclination ChRM (normal polarity); NRM intensities are typically 1 to 5 mA/m. Sites BT15 and BT21, which are located in strata lying some 4 m below the often-cited "event bed" interval inferred to be the terrestrial expression of the Permian/Triassic boundary, is dominated by a well-defined reverse RM with a normal overprint RM unblocked below 400oC, implying elevated temperatures (i.e., 100 to 250oC+) for ca. 1 Ma (+/-). Contact tests are positive but complicated. Host strata collected in distances equal to or less than 1-2 dike widths from the intrusions have been thermally remagnetized and demonstrate high NRM intensities (> 50 mA/m). Collectively, we interpret these data to indicate that any ChRM, with the exception of those from host strata in

  19. Chronology of Fluctuating Sea Levels since the Triassic

    NASA Astrophysics Data System (ADS)

    Haq, Bilal U.; Hardenbol, Jan; Vail, Peter R.

    1987-03-01

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic frame-work. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

  20. Iterative Evolution in Triassic Gondolelloidea (Conodonta)

    NASA Astrophysics Data System (ADS)

    Murat Kilic, Ali; Plasencia, Pablo; Guex, Jean; Hirsch, Francis

    2017-04-01

    The phylogeny and distribution of Triassic gondolelloid conodont multi-elements reveals aspects of their natural history. In conodont phylogeny, taxonomy incorporates the morphologic riposte to temperature as well as to eustatic cycles, expressed in speciation, radiation and extinction as these are not fortuitous and evolution uses diverse strategies such as heterochrony (progenesis and neoteny) in response to stress generating events. Proteromorphosis (reappearance of ancestral morphs) and paedomorphosis (retention of juvenile traits) is a reaction to sublethal environmental stress. It is often followed by radiation of fully developed forms, in the recovery stage after extinction, timely matching transgressions. Evolutionary retrogradation (neoteny) during eustatic high stands often precedes extinction. This was the case of the Alaunian Mockina whereafter the ultimate Misikella brought no post-Rhaetian recovery. The Late Triassic, an extremely long time span of 37 Ma represents 70 % of the total length of the period. Evolutionary rebounds after quasi extinction of subfamily Neogondolellinae, by radiation, out of the single surviving genus Paragondolella: Julian Metapolygnathus and Mazzaella, and Tuvalian-Lacian Metapolygnathus-Carnepigondolella-Ancyrogondolella. The survival of the clade throughout Alaunian and Sevatian took place by successive retrogradations (proteromorphosis) of the Alaunian Mockina and Sevatian-Rhaetian Misikella, bringing no ultimate post-Rhaetian recovery. The cryptic gondolellid features, encoded in "neospathid" proteromorphs permitted the conodont survival throughout the entire Triassic, signaling Dienerian, Anisian, Ladinian, Carnian, and Norian crises, extreme and ultimately vain in the terminal Rhaetian. Key words: Triassic; Conodonts; Phylogeny; Evolution; Proteromorphosis.

  1. U-Pb Geochronology of non-marine Upper Triassic strata of the Colorado Plateau (western North America): implications for stratigraphic correlation and paleoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.; Mundil, R.; Irmis, R. B.; Keller, C. B.; Giesler, D.; Gehrels, G. E.

    2017-12-01

    with the Newark astrochronostratigraphic polarity time scale and the correlation with other key non-marine and marine Late Triassic sections globally (e.g., Ischigualasto-Villa Uníon Basin, Argentina; Tethyan region, Europe) improving our understanding of paleoenvironmental and evolutionary changes during the Triassic.

  2. Classification of gravity-flow deposits and their significance for unconventional petroleum exploration, with a case study from the Triassic Yanchang Formation (southern Ordos Basin, China)

    NASA Astrophysics Data System (ADS)

    Fan, Aiping; Yang, Renchao; (Tom) van Loon, A. J.; Yin, Wei; Han, Zuozhen; Zavala, Carlos

    2018-08-01

    The ongoing exploration for shale oil and gas has focused sedimentological research on the transport and deposition mechanisms of fine-grained sediments, and more specifically on fine-grained mass-flow deposits. It appears, however, that no easily applicable classification scheme for gravity-flow deposits exists, and that such classifications almost exclusively deal with sandy and coarser sediments. Since the lack of a good classification system for fine-grained gravity flow deposits hampers scientific communication and understanding, we propose a classification scheme on the basis of the mud content in combination with the presumed transport mechanism. This results in twelve types of gravity-flow deposits. In order to show the practical applicability of this classification system, we apply it to the Triassic lacustrine Yanchang Formation in the southern Ordos Basin (China), which contains numerous slumps, debris-flows deposits, turbidites and hyperpycnites. The slumps and debrites occur mostly close to a delta front, and the turbidites and hyperpycnites extend over large areas from the delta slopes into the basin plain. The case study shows that (1) mud cannot only be transported but also deposited under active hydrodynamic conditions; (2) fine-grained gravity-flow constitute a significant part of the lacustrine mudstones and shales; (3) muddy gravity flows are important for the transport and deposition of clastic particles, clay minerals and organic matter, and thus are important mechanisms involved in the generation of hydrocarbons, also largely determining the reservoir capability for unconventional petroleum.

  3. Preliminary Depositional and Provenance Records of Mesozoic Basin Evolution and Cenozoic Shortening in the High Andes, La Ramada Fold-Thrust Belt, Southern-Central Andes (32-33°S)

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; McKenzie, R.; Alvarado, P. M.

    2015-12-01

    The Argentinian Andes define key examples of retroarc shortening and basin evolution above a zone of active subduction. The La Ramada fold-thrust belt (RFTB) in the High Andes provides insights into the relative influence and temporal records of diverse convergent margin processes (e.g. flat-slab subduction, convergent wedge dynamics, structural inversion). The RFTB contains Mesozoic extensional basin strata deformed by later Andean shortening. New detrital zircon U-Pb analyses of Mesozoic rift sediments reveal: (1) a dominant Permo-Triassic age signature (220-280 Ma) associated with proximal sources of effective basement (Choiyoi Group) during Triassic synrift deposition; (2) upsection younging of maximum depositional ages from Late Triassic through Early Cretaceous (230 to 100 Ma) with the increasing influence of western Andean arc sources; and (3) a significant Late Cretaceous influx of Paleozoic (~350-550 Ma) and Proterozoic (~650-1300 Ma) populations during the earliest shift from back-arc post-extensional subsidence to upper-plate shortening. The Cenozoic detrital record of the Manantiales foreland basin (between the Frontal Cordillera and Precordillera) records RFTB deformation prior to flat-slab subduction. A Permo-Triassic Choiyoi age signature dominates the Miocene succession, consistent with sources in the proximal Espinacito range. Subordinate Mesozoic (~80-250 Ma) to Proterozoic (~850-1800 Ma) U-Pb populations record exhumation of the Andean magmatic arc and recycling of different structural levels in the RFTB during thrusting/inversion of Mesozoic rift basin strata and subjacent Paleozoic units. Whereas maximum depositional ages of sampled Manantiales units cluster at 18-20 Ma, the Estancia Uspallata basin (~50 km to the south) shows consistent upsection younging of Cenozoic populations attributed to proximal volcanic centers. Ongoing work will apply low-temperature thermochronology to pinpoint basin accumulation histories and thrust timing.

  4. Preliminary Earth System Modeling (cGENIE) of Paired Organic and Inorganic Carbon Isotope Records to Investigate Carbon Cycle Behavior During the Triassic-Jurassic Transition

    NASA Astrophysics Data System (ADS)

    Yager, J. A.; Stellmann, J. L.; West, A. J.; Corsetti, F. A.; Berelson, W.; Bottjer, D. J.; Rosas, S.

    2016-12-01

    The stable C isotope composition of marine carbonate and organic C yields information regarding major changes in global carbon cycling over geologic time. Excursions from baseline C isotope compositions during the Late Triassic and early Jurassic coincide with the end-Triassic mass extinction. Much remains to be understood about the global extent of these excursions, and about their causes. Here, we use observations from a record from Northern Peru (Levanto) to generate hypotheses concerning C cycle changes, focusing on comparison to other sections spanning the Triassic-Jurassic boundary. Our observations include a decoupling between organic and inorganic C isotopes in some records, broad similarities in the pattern of excursions between sections, and a potential offset between the major ocean basins (Tethys and Panthalassa) in both inorganic and organic C isotope records. We are currently adapting a spatially resolved Earth System Model (cGENIE) for this time period with the goal of using this model to explore possible mechanistic causes of these observations, aiming to tie the C isotope records to changes in global carbon cycle dynamics at the time.

  5. The vertebrates from the Lower Ladinian (Middle Triassic) bonebed of Lamerden (Germany) as palaeoenvironment indicators in the Germanic Basin

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2015-11-01

    A marine/limnic vertebrate fauna is described from the enodis/posseckeri Bonebed mixed in a bivalve shell-rich bioclastic carbonate rudstone at the eastern coastal margin of the Rhenish Massif mainland at Lamerden (Germany) within the western Germanic Basin (Central Europe). The condensation layer is of Fassanian (Ladinian, Middle Triassic) in age. The vertebrate biodiversity includes five different shark, and several actinopterygian fish species represented by teeth and scales. Abundant isolated bones from a small- and a large-sized pachypleurosaur Neusticosaurus species, which can be composed as incomplete skeletons, originate from dense populations of different individual age stages. Important facies indicator reptiles are from the thalattosaur Blezingeria ichthyospondyla which postcranial skeleton is reconstructed hypothetically using additional postcranial bones from similar aged various German localities. The vertebrate biodiversity of the enodis/posseckeri bonebed of Lamerden reflect a limnic/fluvial freshwater influenced fauna (amphibians/terrestrial and marine reptiles) with dominance of normal saline marine influences. Macroalgae meadow adapted placodont reptiles are absent in Lamerden, as well as open marine-adapted ichthyosaurs, supporting a lagoon with fresh water influence position at the Rhenish Massif mainland coast. In those contemporanous brackish lagoons, which seem to be isochronous to northern Tethys lagoons of the Kalschieferzone at the Monte San Giorgio (Switzerland/Italy), small pachypleurosaurs were abundant prey in both regions for reptile predators, especially large paraxial swimming alligator habitus-like Paranothosaurus, which even contain stomach contents of pachypleurosaurs.

  6. High precision time calibration of the Permian-Triassic boundary mass extinction event in a deep marine context

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs

    2015-04-01

    To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (1) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash layers interbedded with deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (2) accurate quantitative biochronology based on ammonoids, conodonts, radiolarians, and foraminifera and (3) tracers of marine bioproductivity (carbon isotopes) across the PTB. The unprecedented precision of the single grain chemical abrasion isotope-dilution thermal ionization mass spectrometry (CA-ID-TIMS) dating technique at sub-per mil level (radio-isotopic calibration of the PTB at the <100 ka level) now allows calibrating magmatic and biological timescales at resolution adequate for both groups of processes. Using these alignments allows (1) positioning the PTB in different depositional setting and (2) solving the age contradictions generated by the misleading use of the first occurrence (FO) of the conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Here, we present new single grain U-Pb zircon data of volcanic ash layers from two deep marine sections (Dongpan and Penglaitan) revealing stratigraphic consistent dates over several volcanic ash layers bracketing the PTB. These analyses define weighted mean 206Pb/238U ages of 251.956±0.033 Ma (Dongpan) and 252.062±0.043 Ma (Penglaitan) for the last Permian ash bed. By calibration with detailed litho- and biostratigraphy new U-Pb ages of 251.953±0.038 Ma (Dongpan) and 251.907±0.033 Ma (Penglaitan) are established for the onset of the Triassic.

  7. Geology and hydrocarbon potential of the Hartford-Deerfield Basin, Connecticut and Massachusetts

    USGS Publications Warehouse

    Coleman, James

    2016-01-01

    The Hartford-Deerfield basin, a Late Triassic to Early Jurassic rift basin located in central Connecticut and Massachusetts, is the northernmost basin of the onshore Mesozoic rift basins in the eastern United States. The presence of asphaltic petroleum in outcrops indicates that at least one active petroleum system has existed within the basin. However, to-date oil and gas wells have not been drilled in the basin to test any type of petroleum trap. There are good to excellent quality source rocks (up to 3.8% present day total organic carbon) within the Jurassic East Berlin and Portland formations. While these source rock intervals are fairly extensive and at peak oil to peak gas stages of maturity, individual source rock beds are relatively thin (typically less than 1 m) based solely on outcrop observations. Potential reservoir rocks within the Hartford-Deerfield basin are arkosic conglomerates, pebbly sandstones, and finer grained sandstones, shales, siltstones, and fractured igneous rocks of the Triassic New Haven and Jurassic East Berlin and Portland formations (and possibly other units). Sandstone porosity data from 75 samples range from less than 1% to 21%, with a mean of 5%. Permeability is equally low, except around joints, fractures, and faults. Seals are likely to be unfractured intra-formational shales and tight igneous bodies. Maturation, generation, and expulsion likely occurred during the late synrift period (Early Jurassic) accentuated by an increase in local geothermal gradient, igneous intrusions, and hydrothermal fluid circulation. Migration pathways were likely along syn- and postrift faults and fracture zones. Petroleum resources, if present, are probably unconventional (continuous) accumulations as conventionally accumulated petroleum is likely not present in significant volumes.

  8. Triassic tetrapods from antarctica: evidence for continental drift.

    PubMed

    Elliot, D H; Colbert, E H; Breed, W J; Jensen, J A; Powell, J S

    1970-09-18

    During the austral summer of 1969-1970 bones of Lower Triassic vertebrates were excavated from coarse quartzose sandstones forming stream channel deposits of the Fremouw Formation at Coalsack Bluff, in the Transantarctic Mountains of Antarctica. This is the first assemblage of fossil tetrapods of significant geologic age to be found on the Antarctic Continent. The fossils include labyrinthodont amphibians, presumed thecodont reptiles, and therapsid reptiles, including the definitive genus, Lystrosaurus. This genus is typical of the Lower Triassic of southern Africa, and is also found in India and China. Lystrosaurus and associated vertebrates found in Antarctica were land-living animals: therefore their presence on the South Polar Continent would seem to indicate the contiguity of Antarctica, Africa, and India in Early Triassic times.

  9. Muddy and dolomitic rip-up clasts in Triassic fluvial sandstones: Origin and impact on potential reservoir properties (Argana Basin, Morocco)

    NASA Astrophysics Data System (ADS)

    Henares, Saturnina; Arribas, Jose; Cultrone, Giuseppe; Viseras, Cesar

    2016-06-01

    The significance of rip-up clasts as sandstone framework grains is frequently neglected in the literature being considered as accessory components in bulk sandstone composition. However, this study highlights the great value of muddy and dolomitic rip-up clast occurrence as: (a) information source about low preservation potential from floodplain deposits and (b) key element controlling host sandstone diagenetic evolution and thus ultimate reservoir quality. High-resolution petrographic analysis on Triassic fluvial sandstones from Argana Basin (T6 and T7/T8 units) highlights the significance of different types of rip-up clasts as intrabasinal framework components of continental sediments from arid climates. On the basis of their composition and ductility, three main types are distinguished: (a) muddy rip-up clasts, (b) dolomitic muddy rip-up clasts and (c) dolomite crystalline rip-up clasts. Spatial distribution of different types is strongly facies-related according to grain size. Origin of rip-up clasts is related to erosion of coeval phreatic dolocretes, in different development stages, and associated muddy floodplain sediments. Cloudy cores with abundant inclusions and clear outer rims of dolomite crystals suggest a first replacive and a subsequent displacive growth, respectively. Dolomite crystals are almost stoichiometric. This composition is very similar to that of early sandstone dolomite cement, supporting phreatic dolocretes as dolomite origin in both situations. Sandstone diagenesis is dominated by mechanical compaction and dolomite cementation. A direct correlation exists between: (1) muddy rip-up clast abundance and early reduction of primary porosity by compaction with irreversible loss of intergranular volume (IGV); and (2) occurrence of dolomitic rip-up clasts and dolomite cement nucleation in host sandstone, occluding adjacent pores but preserving IGV. Both processes affect reservoir quality by generation of vertical and 3D fluid flow baffles and

  10. High-resolution stratigraphic analyses of Permian-Triassic core material recovered in central Spitsbergen

    NASA Astrophysics Data System (ADS)

    Sleveland, Arve; Planke, Sverre; Zuchuat, Valentin; Franeck, Franziska; Svensen, Henrik; Midtkandal, Ivar; Hammer, Øyvind; Twitchett, Richard; Deltadalen Study Group

    2017-04-01

    The Siberian Traps voluminous igneous activity is considered a likely trigger for the Permian-Triassic global extinction event. However, documented evidence of the Siberian Traps environmental effects decreases away from the centre of volcanic activity in north-central Russia. Previous research on the Permian-Triassic boundary (PTB) mostly relies on field observations, and resolution has thus depended on outcrop quality. This study reports on two 90 m cored sedimentary successions intersecting the PTB in Deltadalen, Svalbard, providing high-quality material to a comprehensive documentation of the stratigraphic interval. Sequence stratigraphic concepts are utilised to help constrain the Permian-Triassic basin development models in Svalbard and the high-Arctic region. The cored sections are calibrated with outcrop data from near the drill site. One core has been systematically described and scanned using 500-μm and 200-μm resolution XRF, hyperspectral imagery and microfocus CT (latter only on selected core sections). The base of both cores represents the upper 15 m of the Permian Kapp Starostin Formation, which is dominated by green glauconitic sandstones with spiculitic cherts, and exhibit various degrees of bioturbation. The Kapp Starostin Formation is in turn sharply overlain by 2 m of heavily reworked sand- and mudstones, extensively bioturbated, representing the base of the lower Triassic Vikinghøgda Formation. These bioturbated units are conformably overlain by 9 m of ash-bearing laminated black shale where signs of biological activity both on micro- and macro-scale are limited, and is thus interpreted to have recorded the Permian-Triassic extinction interval. Descriptive sedimentology and sequence stratigraphic concepts reveal the onset of relative sea level rise at the Vikinghøgda Formation base. The disappearance of bioturbation and extensive presence of pyrite in the overlying laminated black shale of the Vikinghøgda Formation suggest near anoxic

  11. Interpretation of massive sandstones in ephemeral fluvial settings: A case study from the Upper Candelária Sequence (Upper Triassic, Paraná Basin, Brazil)

    NASA Astrophysics Data System (ADS)

    Horn, Bruno Ludovico Dihl; Goldberg, Karin; Schultz, Cesar Leandro

    2018-01-01

    Ephemeral rivers display a wide range of upper- and lower-flow regime structures due to great flow-velocity changes during the floods. The development of flow structures in these setting is yet to be understood, especially in the formation of thick, massive sandstones. The Upper Triassic of Southern Gondwana was marked by a climate with great seasonal changes, yet there is no description of river systems with seasonal characteristics in Southern Gondwana. This work aims to characterize a ephemeral alluvial system of the Upper Triassic of the Paraná Basin. The characteristics of the deposits are discussed in terms of depositional processes through comparison with similar deposits from literature, flow characteristics and depositional signatures compared to flume experiments. The alluvial system is divided in four facies associations: (1) channels with wanning fill, characterized by low width/thickness ratio, tabular bodies, scour-and-fill structures with upper- and lower-flow regime bedforms; (2) channels with massive fill, characterized by low w/t ratio, sheet-like bodies, scour-and-fill structures with massive sandstones; (3) proximal sheetfloods, characterized by moderate w/t ratio, sheet-like bodies with upper- and lower-flow regime bedforms and (4) distal sheetfloods, characterized by high w/t ratio, sheet-like bodies with lower-flow regime bedforms. Evidence for the seasonal reactivation of the riverine system includes the scarcity of well-developed macroforms and presence of in-channel mudstones, thick intraformational conglomerates, and the occurrence of well- and poorly-preserved vertebrate bones in the same beds. The predominantly massive sandstones indicate deposition from a hyperconcentrated flow during abrupt changes in flow speed, caused by de-confinement or channel avulsion, whereas turbulent portions of the flow formed the upper- and lower-flow regime bedforms after the deposition of the massive layers. The upper portion of the Candelária Sequence

  12. A reappraisal of the Middle Triassic chirotheriid Chirotherium ibericus Navás, 1906 (Iberian Range NE Spain), with comments on the Triassic tetrapod track biochronology of the Iberian Peninsula

    PubMed Central

    Castanera, Diego; Gasca, José Manuel; Canudo, José Ignacio

    2015-01-01

    Triassic vertebrate tracks are known from the beginning of the 19th century and have a worldwide distribution. Several Triassic track ichnoassemblages and ichnotaxa have a restricted stratigraphic range and are useful in biochronology and biostratigraphy. The record of Triassic tracks in the Iberian Peninsula has gone almost unnoticed although more than 25 localities have been described since 1897. In one of these localities, the naturalist Longinos Navás described the ichnotaxon Chirotherium ibericus in 1906.The vertebrate tracks are in two sandy slabs from the Anisian (Middle Triassic) of the Moncayo massif (Zaragoza, Spain). In a recent revision, new, previously undescribed vertebrate tracks have been identified. The tracks considered to be C. ibericus as well as other tracks with the same morphology from both slabs have been classified as Chirotherium barthii. The rest of the tracks have been assigned to Chirotheriidae indet., Rhynchosauroides isp. and undetermined material. This new identification of C. barthii at the Navás site adds new data to the Iberian record of this ichnotaxon, which is characterized by the small size of the tracks when compared with the main occurrences of this ichnotaxon elsewhere. As at the Navás tracksite, the Anisian C. barthii-Rhynchosauroides ichnoassemblage has been found in other coeval localities in Iberia and worldwide. This ichnoassemblage belongs to the upper Olenekian-lower Anisian interval according to previous biochronological proposals. Analysis of the Triassic Iberian record of tetrapod tracks is uneven in terms of abundance over time. From the earliest Triassic to the latest Lower Triassic the record is very scarce, with Rhynchosauroides being the only known ichnotaxon. Rhynchosauroides covers a wide temporal range and gives poor information for biochronology. The record from the uppermost Lower Triassic to the Middle Triassic is abundant. The highest ichnodiversity has been reported for the Anisian with an

  13. Permian-Early Triassic tectonics and stratigraphy of the Karoo Supergroup in northwestern Mozambique

    NASA Astrophysics Data System (ADS)

    Bicca, Marcos Müller; Philipp, Ruy Paulo; Jelinek, Andrea Ritter; Ketzer, João Marcelo Medina; dos Santos Scherer, Claiton Marlon; Jamal, Daúd Liace; dos Reis, Adriano Domingos

    2017-06-01

    The Gondwana continent was the base of great basin inception, sedimentation and magmatism throughout the Cambrian to Middle Jurassic periods. The northwestern Mozambique igneous and metamorphic basement assemblages host the NW-trending Moatize Minjova Basin, which has great economic potential for coal and gas mining. This rift basin was activated by an S-SW stress field during the Early Permian period, as constrained by regional and field scale structural data. Tectonically induced subsidence in the basin, from the reactivation of NW-SE and NNE-SSW regional structures is well recorded by faults, folds and synsedimentary fractures within the Early Late Permian Moatize Formation. NW-SE, N-S and NE-SW field structures consist of post-Karoo reactivation patterns related to a NNE-SSW extension produced by the Pangea breakup and early inception stages of the Great East African Rift System. The Early Late Permian sequences of the Moatize-Minjova Basin are composed of fluvial meandering, coal-bearing beds of the Moatize Formation, which comprises mostly floodplain, crevasse splay and fluvial channel lithofacies associations, deposited in a cyclic pattern. This sequence was overlapped by a multiple-story, braided fluvial plain sequence of the Matinde Formation (Late Permian - Early Triassic). Lithofacies associations in the Matinde Formation and its internal relationships suggest deposition of poorly channelized braided alluvial plain in which downstream and probably lateral accretion macroforms alternate with gravity flow deposits. NW paleoflow measurements suggest that Permian fluvial headwaters were located somewhere southeast of the study area, possibly between the African and Antarctic Precambrian highlands.

  14. The significance of salt reconstruction for basin modeling results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansen, H.; Blomvik, V.; Bonnell, L.

    1996-12-31

    Salt structures can play a major role in the temperature history as well as in the formation of hydrocarbon traps. Salt movement through time is therefore an important process to incorporate into basin models. Based on this need, a new model for geologic reconstruction of salt geometries was incorporated into the BMT{trademark} basin modeling system. The reconstruction model is based on two basic mechanisms: (1) The ability to change lithology for a polygon (a sub-domain in the cross section) at a given time (litho-switching) and (2) the ability to inflate/deflate mass in polygons. Litho-switching is used where salt diapirs penetratemore » overlaying strata. Inflation/deflation is used to change the shape of a salt polygon. By inflating/deflating parts of polygons, it is possible to restore the salt layer step by step back to original form. The advantage of this approach is its applicability to geological problems that cannot be addressed by many basin modeling systems. To test the approach, we have reconstructed a cross-section from the Central Graben of the North Sea using two different geological models. One model assumes that synforms developed on the surface during Triassic deposition. These synforms were later preserved as sediment {open_quotes}pods{close_quotes}. The other geological model assumes that the salt movement was passively related to eastward basin subsidence, with salt upwelling between rafted Triassic blocks. The test indicate that the approach is versatile and can be used to evaluate the thermal consequences of a number of geologic models of salt movement.« less

  15. The significance of salt reconstruction for basin modeling results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansen, H.; Blomvik, V.; Bonnell, L.

    1996-01-01

    Salt structures can play a major role in the temperature history as well as in the formation of hydrocarbon traps. Salt movement through time is therefore an important process to incorporate into basin models. Based on this need, a new model for geologic reconstruction of salt geometries was incorporated into the BMT[trademark] basin modeling system. The reconstruction model is based on two basic mechanisms: (1) The ability to change lithology for a polygon (a sub-domain in the cross section) at a given time (litho-switching) and (2) the ability to inflate/deflate mass in polygons. Litho-switching is used where salt diapirs penetratemore » overlaying strata. Inflation/deflation is used to change the shape of a salt polygon. By inflating/deflating parts of polygons, it is possible to restore the salt layer step by step back to original form. The advantage of this approach is its applicability to geological problems that cannot be addressed by many basin modeling systems. To test the approach, we have reconstructed a cross-section from the Central Graben of the North Sea using two different geological models. One model assumes that synforms developed on the surface during Triassic deposition. These synforms were later preserved as sediment [open quotes]pods[close quotes]. The other geological model assumes that the salt movement was passively related to eastward basin subsidence, with salt upwelling between rafted Triassic blocks. The test indicate that the approach is versatile and can be used to evaluate the thermal consequences of a number of geologic models of salt movement.« less

  16. Biostratigraphic reappraisal of the Lower Triassic Sanga do Cabral Supersequence from South America, with a description of new material attributable to the parareptile genus Procolophon

    NASA Astrophysics Data System (ADS)

    Dias-da-Silva, Sérgio; Pinheiro, Felipe L.; Stock Da-Rosa, Átila Augusto; Martinelli, Agustín G.; Schultz, Cesar L.; Silva-Neves, Eduardo; Modesto, Sean P.

    2017-11-01

    The Sanga do Cabral Supersequence (SCS), comprises the Brazilian Sanga do Cabral Formation (SCF) and the Uruguayan Buena Vista Formation (BVF). So far, the SCS has yielded temnospondyls, parareptiles, archosauromorphs, putative synapsids, and a number of indeterminate specimens. In the absence of absolute dates for these rocks, a biostratigraphic approach is necessary to establish the ages of the SCF and the BVF. It is well established that the SCF is Early Triassic mainly due to the presence of the widespread Gondwanan reptile Procolophon trigoniceps. Conversely, the age of the BVF is subject of great controversy, being regarded alternatively as Permian, Permo-Triassic, and Early Triassic. The BVF has yielded the definite procolophonid Pintosaurus magnidentis. Procolophonoidea is one of the most diverse and conspicuous terrestrial tetrapod groups of the Lower Triassic Lystrosaurus Assemblage Zone in the Karoo Basin of South Africa, which preserves tetrapods from the aftermath of the end-Permian extinction event. Based on a previous interpretation that the fauna of the BVF is Permian, and in the reinterpretation of disarticulated vertebrae from SCF with 'swollen' neural arches as belonging to either seymouriamorphs or diadectomorphs, it was recently suggested that at least part of the SCF is Permian in age, which prompted this comprehensive reevaluation of both SCS's faunal content and geology. Moreoever, new, strikingly large procolophonid specimens (skull, vertebra, and a mandibular fragment) from the SCF are described and referred to the genus Procolophon. The large procolophonid vertebra described here contradicts the recent hypothesis that similar specimens from the SCF belong to seymouriamorphs or diadectomorphs, because its morphology is consistent with that found in Procolophon. There is not a single diagnostic specimen that supports the inference of Permian levels in the SCS. Accordingly, because all diagnostic and biostratigraphically informative fossils

  17. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms

    PubMed Central

    Baresel, Björn; Bucher, Hugo; Bagherpour, Borhan; Brosse, Morgane; Guodun, Kuang; Schaltegger, Urs

    2017-01-01

    New high-resolution U-Pb dates indicate a duration of 89 ± 38 kyr for the Permian hiatus and of 14 ± 57 kyr for the overlying Triassic microbial limestone in shallow water settings of the Nanpanjiang Basin, South China. The age and duration of the hiatus coincides with the Permian-Triassic boundary (PTB) and the extinction interval in the Meishan Global Stratotype Section and Point, and strongly supports a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate as indicated by terrestrial plants. Our model of the Permian-Triassic boundary mass extinction (PTBME) hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced a transient cool climate whose early phase saw the deposition of the microbial limestone. PMID:28262815

  18. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Bagherpour, Borhan; Brosse, Morgane; Guodun, Kuang; Schaltegger, Urs

    2017-03-01

    New high-resolution U-Pb dates indicate a duration of 89 ± 38 kyr for the Permian hiatus and of 14 ± 57 kyr for the overlying Triassic microbial limestone in shallow water settings of the Nanpanjiang Basin, South China. The age and duration of the hiatus coincides with the Permian-Triassic boundary (PTB) and the extinction interval in the Meishan Global Stratotype Section and Point, and strongly supports a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate as indicated by terrestrial plants. Our model of the Permian-Triassic boundary mass extinction (PTBME) hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced a transient cool climate whose early phase saw the deposition of the microbial limestone.

  19. A Middle Triassic pachypleurosaur (Diapsida: Eosauropterygia) from a restricted carbonate ramp in the Western Carpathians (Gutenstein Formation, Fatric Unit): paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Čerňanský, Andrej; Klein, Nicole; Soták, Ján; Olšavský, Mário; Šurka, Juraj; Herich, Pavel

    2018-02-01

    An eosauropterygian skeleton found in the Middle Triassic (upper Anisian) Gutenstein Formation of the Fatric Unit (Demänovská dolina Valley, Low Tatra Mountains, Slovakia) represents the earliest known occurrence of marine tetrapods in the Western Carpathians. The specimen represents a partly articulated portion of the postcranial skeleton (nine dorsal vertebrae, coracoid, ribs, gastral ribs, pelvic girdle, femur and one zeugopodial element). It is assigned to the Pachypleurosauria, more precisely to the Serpianosaurus-Neusticosaurus clade based on the following combination of features: (1) small body size; (2) morphology of vertebrae, ribs and femur; (3) tripartite gastral ribs; and (4) microanatomy of the femur as revealed by μCT. Members of this clade were described from the epicontinental Germanic Basin and the Alpine Triassic (now southern Germany, Switzerland, Italy), and possibly from Spain. This finding shows that pachypleurosaur reptiles attained a broader geographical distribution during the Middle Triassic, with their geographical range reaching to the Central Western Carpathians. Pachypleurosaurs are often found in sediments formed in shallow, hypersaline carbonate-platform environments. The specimen found here occurs in a succession with vermicular limestones in a shallow subtidal zone and stromatolitic limestones in a peritidal zone, indicating that pachypleurosaurs inhabited hypersaline, restricted carbonate ramps in the Western Carpathians.

  20. End-Triassic mass extinction started by intrusive CAMP activity.

    PubMed

    Davies, J H F L; Marzoli, A; Bertrand, H; Youbi, N; Ernesto, M; Schaltegger, U

    2017-05-31

    The end-Triassic extinction is one of the Phanerozoic's largest mass extinctions. This extinction is typically attributed to climate change associated with degassing of basalt flows from the central Atlantic magmatic province (CAMP). However, recent work suggests that the earliest known CAMP basalts occur above the extinction horizon and that climatic and biotic changes began before the earliest known CAMP eruptions. Here we present new high-precision U-Pb ages from CAMP mafic intrusive units, showing that magmatic activity was occurring ∼100 Kyr ago before the earliest known eruptions. We correlate the early magmatic activity with the onset of changes to the climatic and biotic records. We also report ages from sills in an organic rich sedimentary basin in Brazil that intrude synchronously with the extinction suggesting that degassing of these organics contributed to the climate change which drove the extinction. Our results indicate that the intrusive record from large igneous provinces may be more important for linking to mass extinctions than the eruptive record.

  1. End-Triassic mass extinction started by intrusive CAMP activity

    NASA Astrophysics Data System (ADS)

    Davies, J. H. F. L.; Marzoli, A.; Bertrand, H.; Youbi, N.; Ernesto, M.; Schaltegger, U.

    2017-05-01

    The end-Triassic extinction is one of the Phanerozoic's largest mass extinctions. This extinction is typically attributed to climate change associated with degassing of basalt flows from the central Atlantic magmatic province (CAMP). However, recent work suggests that the earliest known CAMP basalts occur above the extinction horizon and that climatic and biotic changes began before the earliest known CAMP eruptions. Here we present new high-precision U-Pb ages from CAMP mafic intrusive units, showing that magmatic activity was occurring ~100 Kyr ago before the earliest known eruptions. We correlate the early magmatic activity with the onset of changes to the climatic and biotic records. We also report ages from sills in an organic rich sedimentary basin in Brazil that intrude synchronously with the extinction suggesting that degassing of these organics contributed to the climate change which drove the extinction. Our results indicate that the intrusive record from large igneous provinces may be more important for linking to mass extinctions than the eruptive record.

  2. Geology and hydrocarbon potential of the Oued Mya basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benamrane, O.; Messaoudi, M.; Messelles, H.

    1993-09-01

    The Oued Mya hydrocarbon system is located in the Sahara basin. It is one of the best producing basins in Algeria, along with the Ghadames and Illizi basins. The stratigraphic section consists of Paleozoic and Mesozoic, and is about 5000 m thick. This intracratonic basin is limited to the north by the Toughourt saddle, and to the west and east it is flanked by regional arches, Allal-Tilghemt and Amguid-Hassi Messaoud, which culminate in the super giant Hassi Messaoud and Hassi R'mel hydrocarbon accumulations, respectively, producing oil from the Cambrian sands and gas from the Trissic sands. The primary source rockmore » in this basin is lower Silurian shale, with an average thickness of 50 m and a total organic carbon of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also source rocks, but in a second order. Clastic reservoirs are in the Trissic sequence, which is mainly fluvial deposits with complex alluvial channels, and the main target in the basin. Clastic reservoirs in the lower Devonian section have a good hydrocarbon potential east of the basin through a southwest-northwest orientation. The Late Trissic-Early Jurassic evaporites that overlie the Triassic clastic interval and extend over the entire Oued Mya basin, are considered to be a super-seal evaporite package, which consists predominantly of anhydrite and halite. For paleozoic targets, a large number of potential seals exist within the stratigraphic column. This super seal does not present oil dismigration possibilities. We can infer that a large amount of the oil generated by the Silurian source rock from the beginning of Cretaceous until now still is not discovered and significantly greater volumes could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands, and Cambrian-Ordovician reservoirs.« less

  3. 300 million years of basin evolution - the thermotectonic history of the Ukrainian Donbas Foldbelt

    NASA Astrophysics Data System (ADS)

    Spiegel, C.; Danisik, M.; Sachsenhofer, R.; Frisch, W.; Privalov, V.

    2009-04-01

    The Ukrainian-Russian Pripyat-Dniepr-Donets Basin is a large intracratonic rift structure formed during the Late Devonian. It is situated at the southern margin of the Precambrian East European Craton, adjacent to the Hercynian Tethyan belt in the Black Sea area and the Alpine Caucasus orogen. With a sediment thickness of more than 20 km, it is one of the deepest sedimentary basins on earth. The eastern part of the Pripyat-Dniepr-Donets Basin - called Donbas foldbelt - is strongly folded and inverted. Proposed models of basin evolution are often controversial and numerous issues are still a matter of speculation, particularly the erosion history and the timing of basin inversion. Basin inversion may have taken place during the Permian related to the Uralian orogeny, or in response to Alpine tectonics during the Late Cretaceous to Early Tertiary. We investigated the low-temperature thermal history of the Donbas Foldbelt and the adjacent Ukrainian shield by a combination of zircon fission track, apatite fission track and apatite (U-Th)/He thermochronology. Although apatite fission track ages of all sedimentary samples were reset shortly after deposition during the Carboniferous, we took advantage of the fact that samples contained kinetically variable apatites, which are sensitive to different temperatures. By using statistic-based component analysis incorporating physical properties of individual grains we identified several distinct age population, ranging from late Permian (~265 Ma) to the Late Cretaceous (70 Ma). We could thus constrain the thermal history of the Donbas Foldbelt and the adjacent basement during a ~300 Myr long time period. The Precambrian crystalline basement of the Ukrainian shield was affected by a Permo-Triassic thermal event associated with magmatic activity, which also strongly heated the sediments of the Donbas Foldbelt. The basement rocks cooled to near-surface conditions during the Early to Middle Triassic and since then was thermally

  4. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany

    NASA Astrophysics Data System (ADS)

    Li, Mingsong; Ogg, James; Zhang, Yang; Huang, Chunju; Hinnov, Linda; Chen, Zhong-Qiang; Zou, Zhuoyan

    2016-05-01

    The timing of the end-Permian mass extinction and subsequent prolonged recovery during the Early Triassic Epoch can be established from astronomically controlled climate cycles recorded in continuous marine sedimentary sections. Astronomical-cycle tuning of spectral gamma-ray logs from biostratigraphically-constrained cyclic stratigraphy through marine sections at Meishan, Chaohu, Daxiakou and Guandao in South China yields an integrated time scale for the Early Triassic, which is consistent with scaling of magnetostratigraphy from climatic cycles in continental deposits of the Germanic Basin. The main marine mass extinction interval at Meishan is constrained to less than 40% of a 100-kyr (kilo-year) cycle (i.e., <40 kyr) and the sharp negative excursion in δ13C is estimated to have lasted <6 kyr. The sharp positive shift in δ13C from - 2 ‰ to 4‰ across the Smithian-Spathian boundary at Chaohu was completed in 50 kyr. The earliest marine reptiles in the Mesozoic at Chaohu that are considered to represent a significant recovery of marine ecosystems did not appear until 4.7 myr (million years) after the end-Permian extinction. The durations of the Griesbachian, Dienerian, Smithian and Spathian substages, including the uncertainty in placement of widely used conodont biostratigraphic datums for their boundaries, are 1.4 ± 0.1, 0.6 ± 0.1, 1.7 ± 0.1 and 1.4 ± 0.1 myr, implying a total span for the Early Triassic of 5.1 ± 0.1 myr. Therefore, relative to an assigned 251.902 ± 0.024 Ma for the Permian-Triassic boundary from the Meishan GSSP, the ages for these substage boundaries are 250.5 ± 0.1 Ma for base Dienerian, 249.9 ± 0.1 Ma for base Smithian (base of Olenekian stage), 248.2 ± 0.1 Ma for base Spathian, and 246.8 ± 0.1 Ma for the base of the Anisian Stage. This astronomical-calibrated timescale provides rates for the recurrent carbon isotope excursions and for trends in sedimentation accumulation through the Early Triassic of studied sections in South

  5. Assessing the record and causes of Late Triassic extinctions

    USGS Publications Warehouse

    Tanner, L.H.; Lucas, S.G.; Chapman, M.G.

    2004-01-01

    Accelerated biotic turnover during the Late Triassic has led to the perception of an end-Triassic mass extinction event, now regarded as one of the "big five" extinctions. Close examination of the fossil record reveals that many groups thought to be affected severely by this event, such as ammonoids, bivalves and conodonts, instead were in decline throughout the Late Triassic, and that other groups were relatively unaffected or subject to only regional effects. Explanations for the biotic turnover have included both gradualistic and catastrophic mechanisms. Regression during the Rhaetian, with consequent habitat loss, is compatible with the disappearance of some marine faunal groups, but may be regional, not global in scale, and cannot explain apparent synchronous decline in the terrestrial realm. Gradual, widespread aridification of the Pangaean supercontinent could explain a decline in terrestrial diversity during the Late Triassic. Although evidence for an impact precisely at the boundary is lacking, the presence of impact structures with Late Triassic ages suggests the possibility of bolide impact-induced environmental degradation prior to the end-Triassic. Widespread eruptions of flood basalts of the Central Atlantic Magmatic Province (CAMP) were synchronous with or slightly postdate the system boundary; emissions of CO2 and SO2 during these eruptions were substantial, but the contradictory evidence for the environmental effects of outgassing of these lavas remains to be resolved. A substantial excursion in the marine carbon-isotope record of both carbonate and organic matter suggests a significant disturbance of the global carbon cycle at the system boundary. Release of methane hydrates from seafloor sediments is a possible cause for this isotope excursion, although the triggering mechanism and climatic effects of such a release remain uncertain. ?? 2003 Elsevier B.V. All rights reserved.

  6. Orogenic front propagation in the basement involved Malargüe fold and thrust belt, Neuquén Basin, (Argentina)

    NASA Astrophysics Data System (ADS)

    Branellec, Matthieu; Nivière, Bertrand; Callot, Jean-Paul; Ringenbach, Jean-Claude

    2015-04-01

    The Malargüe fold and thrust belt (MFTB) and the San Rafael Block (SRB) are located in the northern termination of the Neuquén basin in Argentina. This basin is a wide inverted intracratonic sag basin with polyphased evolution controlled at large scale by the dynamic of the Pacific subduction. By late Triassic times, narrow rift basins developed and evolved toward a sag basin from middle Jurassic to late Cretaceous. From that time on, compression at the trench resulted in various shortening pulses in the back-arc area. Here we aim to analyze the Andean system at 35°S by comparing the Miocene structuration in the MFTB and the current deformation along the oriental border or the San Rafael Block. The main structuration stage in the MFTB occurred by Miocene times (15 to 10 Ma) producing the principal uplift of the Andean Cordillera. As shown by new structural cross sections, Triassic-early Jurassic rift border faults localized the Miocene compressive tectonics. Deformation is compartmentalized and does not exhibit a classical propagation of homogeneous deformation sequence expected from the critical taper theory. Several intramontane basins in the hangingwall of the main thrusts progressively disconnected from the foreland. In addition, active tectonics has been described in the front of the MFTB attesting for the on-going compression in this area. 100 km farther to the east, The San Rafael Block, is separated from the MFTB by the Rio Grande basin. The SRB is mostly composed of Paleozoic terranes and Triassic rift-related rocks, overlain by late Miocene synorogenic deposits. The SRB is currently uplifted along its oriental border along several active faults. These faults have clear morphologic signatures in Quaternary alluvial terraces and folded Pleistocene lavas. As in the MFTB, the active deformation localization remains localized by structural inheritance. The Andean system is thus evolving as an atypical orogenic wedge partly by frontal accretion at the front

  7. High precision time calibration of the Permo-Triassic boundary mass extinction by U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Schaltegger, Urs

    2014-05-01

    U-Pb dating using Chemical Abrasion, Isotope Dilution Thermal Ionization Mass Spectrometry (CA-ID-TIMS) is the analytical method of choice for geochronologists, who are seeking highest temporal resolution and a high degree of accuracy for single grains of zircon. The use of double-isotope tracer solutions, cross-calibrated and assessed in different EARTHTIME labs, coinciding with the reassessment of the uranium decay constants and further improvements in ion counting technology led to unprecedented precision better than 0.1% for single grain, and 0.05% for population ages, respectively. These analytical innovations now allow calibrating magmatic and biological timescales at resolution adequate for both groups of processes. To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (i) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash beds interbedded with shallow to deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (ii) accurate quantitative biochronology based on ammonoids and conodonts and (iii) carbon isotope excursions across the PTB. Using these alignments allows (i) positioning the PTB in different depositional environments and (ii) solving age/stratigraphic contradictions generated by the index, water depth-controlled conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Besides the general improvement of the radio-isotopic calibration of the PTB at the ±100 ka level, this will also lead to a better understanding of cause and effect relations involved in this mass extinction.

  8. Conodonts of the western Paleozoic and Triassic belt, Klamath Mountains, California and Oregon

    USGS Publications Warehouse

    Irwin, William P.; Wardlaw, Bruce R.; Kaplan, T.A.

    1983-01-01

    Conodonts were extracted from 32 samples of limestone and 5 samples of chert obtained from the Western Paleozoic and Triassic belt of the Klamath Mountains province. Triassic conodonts were found in 17 samples, and late Paleozoic conodonts in 7 samples. Conodonts of the remaining 13 samples cannot be dated more closely than early or middle Paleozoic through Triassic. The late Paleozoic conodonts are restricted to the North Fork and Hayfork terranes. The Hayfork terrane also contains Early, Middle, and Late Triassic conodonts; mostly Neogondolella. Conodonts from samples of the Rattlesnake Creek terrane and the northern undivided part of the belt are all Late Triassic and are generally Epigondolella. The conodont data support the concept that many of the limestone bodies are olistoliths or tectonic blocks in melange. Color alteration of the conodonts indicates that the rocks of the Western Paleozoic and Triassic belt have been heated to temperatures between 300 degrees and 500 degrees C during regional tectonism.

  9. Anomalous Iridium Enrichment at the Triassic-Jurassic Boundary, Blomidon Formation, Fundy Basin, Canada

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2005-01-01

    We present new analyses that confirm Ir enrichment (up to 0.31 ng/g) in close proximity to the palynological Triassic-Jurassic boundary in strata near the top of the Blomidon Formation at Partridge Island, Nova Scotia. High Ir concentrations have been found in at least two samples within the uppermost 70 cm of the formation. Ratios of other PGEs and Au to Ir are generally higher by an order of magnitude than in ordinary chondrites. No impact-related materials have been identified at #is horizon in the Blomidon Formation, therefore we cannot confirm an extraterrestrial source for the anomalous Ir levels. We consider, however, the possibility that regional basaltic volcanism is a potential source for the Ir in these sediments. The elevated Ir concentrations are found in reduced, grey colored mudstones, so redox concentration is a possible explanation for the distribution of Ir in these strata.

  10. A multistratigraphic approach to pinpoint the Permian-Triassic boundary in continental deposits: The Zechstein-Lower Buntsandstein transition in Germany

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Wang, Xu; Kirscher, Uwe; Kraft, Johannes; Schneider, Jörg W.; Götz, Annette E.; Joachimski, Michael M.; Bachtadse, Valerian

    2017-05-01

    The Central European Basin is very suitable for high-resolution multistratigraphy of Late Permian to Early Triassic continental deposits. Here the well exposed continuous transition of the lithostratigraphic Zechstein and Buntsandstein Groups of Central Germany was studied for isotope-chemostratigraphy (δ13Corg, δ13Ccarb, δ18Ocarb), major and trace element geochemistry, magnetostratigraphy, palynology, and conchostracan biostratigraphy. The analysed material was obtained from both classical key sections (abandoned Nelben clay pit, Caaschwitz quarries, Thale railway cut, abandoned Heinebach clay pit) and a recent drill core section (Caaschwitz 6/2012) spanning the Permian-Triassic boundary. The Zechstein-Buntsandstein transition of Central Germany consists of a complex sedimentary facies comprising sabkha, playa lake, aeolian, and fluvial deposits of predominantly red-coloured siliciclastics and intercalations of lacustrine oolitic limestones. The new data on δ13Corg range from - 28.7 to - 21.7 ‰ showing multiple excursions. Most prominent negative shifts correlate with intercalations of oolites and grey-coloured clayey siltstones, while higher δ13Corg values correspond to an onset of palaeosol overprint. The δ13Ccarb values range from - 9.7 to - 1.3 ‰ with largest variations recorded in dolomitic nodules from the Zechstein Group. In contrast to sedimentary facies shifts across the Zechstein-Buntsandstein boundary, major element values used as a proxy (CIA, CIA*, CIA-K) for weathering conditions indicate climatic stability. Trace element data used for a geochemical characterization of the Late Permian to Early Triassic transition in Central Germany indicate a decrease in Rb contents at the Zechstein-Buntsandstein boundary. New palynological data obtained from the Caaschwitz quarry section reveal occurrences of Late Permian palynomorphs in the Lower Fulda Formation, while Early Triassic elements were recorded in the upper part of the Upper Fulda Formation

  11. Pre-Alpine (Variscan) Inheritance: A Key for the Location of the Future Valaisan Basin (Western Alps)

    NASA Astrophysics Data System (ADS)

    Ballèvre, M.; Manzotti, P.; Dal Piaz, G. V.

    2018-03-01

    The boundary between the Helvetic and the Penninic (=Briançonnais) Zones has long been recognized as a major fault ("Penninic Front") in the Western Alps. A narrow oceanic domain has been postulated at least along part of this boundary (the Valaisan Basin). However, the information provided by the pre-Triassic basement has not been fully exploited and will be discussed here in detail. The igneous and metamorphic history of the pre-Triassic basement shows significant differences between the External Massifs from the Helvetic Zone, with abundant Late Carboniferous granites, and the basement of the Briançonnais Zone, including the Internal Massifs (Dora-Maira, Gran Paradiso, and Monte Rosa), devoid of Carboniferous granites. A major coal-bearing basin, the "Zone Houillère," opened along this boundary. This limnic intramontane basin has never been properly investigated. The Zone Houillère is not comparable with the external, paralic, flexural, basins on both sides of the Variscan belt but shows similarities with the Saar-Saale Basin. Like the latter, we interpret the Zone Houillère as a transtensional basin opened along a major, crustal-scale, fault zone, namely, the East Variscan Shear Zone. The Permian magmatism and sedimentation displays contrasting distributions, being absent or very localized in the Helvetic Zone, and widespread in the Penninic Zone. The above data indicate that the structural inheritance from the Variscan belt plays a major role in defining the future location of the Valaisan Basin, that is, the boundary between the European paleomargin and the Briançonnais microcontinent.

  12. New holostean fishes (Actinopterygii: Neopterygii) from the Middle Triassic of the Monte San Giorgio (Canton Ticino, Switzerland)

    PubMed Central

    Bürgin, Toni; Furrer, Heinz; Stockar, Rudolf

    2016-01-01

    The new neopterygian genus Ticinolepis, including two new species T. longaeva and T. crassidens is described from Middle Triassic carbonate platform deposits of the Monte San Giorgio. The anatomy of this fish shows a mosaic of halecomorph and ginglymodian characters and, thus, the new taxon probably represents a basal holostean. During the latest Anisian to earliest Ladinian the two new species coexisted in the intraplatform basin represented by the uppermost Besano Formation, but only T. longaeva sp. nov. inhabited the more restricted basin represented by the Ladinian Meride Limestone (except for the Kalkschieferzone). The more widely distributed type species shows interesting patterns of intraspecific variation including ontogenetic changes and morphological variation over time. The second species presents anatomical features that strongly indicate a strictly durophagous diet. The different distribution of the species is interpreted as a result of habitat partitioning and different adaptability to palaeoenvironmental changes. PMID:27547543

  13. Astronomical tuning and magnetostratigraphy of the Upper Triassic Xujiahe Formation of South China and Newark Supergroup of North America: Implications for the Late Triassic time scale

    NASA Astrophysics Data System (ADS)

    Li, Mingsong; Zhang, Yang; Huang, Chunju; Ogg, James; Hinnov, Linda; Wang, Yongdong; Zou, Zhuoyan; Li, Liqin

    2017-10-01

    The time scale of the Late Triassic Epoch has a divergence of age models, especially for the durations of competing definitions for its Rhaetian Stage (uppermost Triassic). The astrochronology derived from relative depth of lacustrine-bearing clastic successions and astronomically tuned geomagnetic polarity time scale (APTS) of the Newark Supergroup of eastern North America provides a basis for the Late Triassic time scale. However, the Newark APTS has been challenged regarding its age scale and completeness; therefore an independent astronomical-tuned magnetic polarity zonation is required to verify the upper Newark APTS reference scale. We compiled a 6.5 million year (myr) APTS with magnetic stratigraphy from four sections of the lacustrine-fluvial, dinosaur-track-bearing Xujiahe Formation in the Sichuan Basin of South China that also has dating from detrital zircons and regional biostratigraphy. Variations in natural gamma-ray and magnetic susceptibility that reflect variable continental weathering in the source regions of the Xujiahe Formation are paced by Milankovitch cycles, especially the 100-kyr short eccentricity and 405-kyr long eccentricity. The cycle-tuned magnetostratigraphy of the Xujiahe Formation is compared directly via the magnetic-polarity zones to the depth ranks of the Newark Supergroup that are indicative of relative depths of lacustrine facies. The Sichuan APTS indicates that there is no significant hiatus between the sedimentary succession and the basalt flows at the top of the Newark Supergroup. The Sichuan APTS is compatible with the magnetostratigraphy from the candidate Global Boundary Stratotype Section and Point (GSSP) for the Norian-Rhaetian boundary interval at the Pignola-Abriola of South Italy, but does not extend downward to the proposed GSSP in Austria associated with the longer Rhaetian option. The earliest dinosaur tracks in China are from the middle of this Xujiahe Formation, therefore are implied to be middle Rhaetian in age

  14. Carbon and oxygen isotope variations of the Middle-Late Triassic Al Aziziyah Formation, northwest Libya

    NASA Astrophysics Data System (ADS)

    Moustafa, Mohamed S. H.; Pope, Michael C.; Grossman, Ethan L.; Mriheel, Ibrahim Y.

    2016-06-01

    This study presents the δ13C and δ18O records from whole rock samples of the Middle-Late Triassic (Ladinian-Carnian) Al Aziziyah Formation that were deposited on a gently sloping carbonate ramp within the Jifarah Basin of Northwest Libya. The Al Aziziyah Formation consists of gray limestone, dolomite, and dolomitic limestone interbedded with shale. The Ghryan Dome and Kaf Bates sections were sampled and analyzed for carbon and oxygen isotope chemostratigraphy to integrate high-resolution carbon isotope data with an outcrop-based stratigraphy, to provide better age control of the Al Aziziyah Formation. This study also discusses the relation between the facies architecture of the Al Aziziyah Formation and the carbon isotope values. Seven stages of relative sea level rise and fall within the Ghryan Dome were identified based on facies stacking patterns, field observations and carbon stable isotopes. The Al Aziziyah Formation δ13C chemostratigraphic curve can be partially correlated with the Triassic global δ13C curve. This correlation indicates that the Al Aziziyah Formation was deposited during the Ladinian and early Carnian. No straight-forward relationship is seen between δ13C and relative sea level probably because local influences complicated systematic environmental and diagenetic isotopic effects associated with sea level change.

  15. Tetrapod localities from the Triassic of the SE of European Russia

    NASA Astrophysics Data System (ADS)

    Tverdokhlebov, Valentin P.; Tverdokhlebova, Galina I.; Surkov, Mikhail V.; Benton, Michael J.

    2003-01-01

    Fossil tetrapods (amphibians and reptiles) have been discovered at 206 localities in the Lower and Middle Triassic of the southern Urals area of European Russia. The first sites were found in the 1940s, and subsequent surveys, from the 1960s to the present day, have revealed many more. Broad-scale stratigraphic schemes have been published, but full documentation of the rich tetrapod faunas has not been presented before. The area of richest deposits covers some 900,000 km 2 of territory between Samara on the River Volga in the NW, and Orenburg and Sakmara in the SW. Continental sedimentary deposits, consisting of mudstones, siltstones, sandstones, and conglomerates deposited by rivers flowing off the Ural Mountain chain, span much of the Lower and Middle Triassic (Induan, Olenekian, Anisian, Ladinian). The succession is divided into seven successive svitas, or assemblages: Kopanskaya (Induan), Staritskaya, Kzylsaiskaya, Gostevskaya, and Petropavlovskaya (all Olenekian), Donguz (Anisian), and Bukobay (Ladinian). This succession, comprising up to 3.5 km of fluvial and lacustrine sediments, documents major climatic changes. At the beginning of the Early Triassic, arid-zone facies were widely developed, aeolian, piedmont and proluvium. These were replaced by fluvial facies, with some features indicating aridity. At the end of the Middle Triassic, deltaic and lacustrine-marsh formations were dominant, indicating more humid conditions. The succession of Early to Mid Triassic tetrapod faunas documents the recovery of life after the end-Permian mass extinction. The earliest faunas consist only of small, aquatic tetrapods, in low-diversity, low-abundance assemblages. Climbing the succession through the Early Triassic, more terrestrially adapted tetrapods appear, and larger herbivorous and carnivorous reptiles come to dominate in the Mid Triassic as ecosystems were rebuilt.

  16. The end-Triassic mass extinction: A new correlation between extinction events and δ13C fluctuations from a Triassic-Jurassic peritidal succession in western Sicily

    NASA Astrophysics Data System (ADS)

    Todaro, Simona; Rigo, Manuel; Randazzo, Vincenzo; Di Stefano, Pietro

    2018-06-01

    A new δ13Ccarb curve was obtained from an expanded peritidal succession in western Sicily and was used to investigate the relationships between isotopic signatures and biological events on carbonate platforms across the Triassic-Jurassic boundary (TJB). The resulting curve shows two main negative carbon isotopic excursions (CIEs) that fit well with the "Initial" and "Main" CIEs that are recognized worldwide and linked to the End-Triassic Extinction (ETE). In the studied section, the first negative CIE marks the disappearance of the large megalodontids, which were replaced by small and thin-shelled specimens, while the "Main" CIE corresponds to the last occurrence (LO) of the megalodontids and, approximately 50 m upsection, to the total demise of the Rhaetian benthic foraminifer community. Upward, the carbon curve shows a positive trend (ca. +1‰) and a gradual recovery of the benthic communities after an approximately 10 m-thick barren interval populated only by the problematic alga Thaumatoporella parvovesiculifera. A comparison between the Mt. Sparagio δ13Ccarb curve and other coeval Ccarb and Corg curves from carbonate platform, ramp and deep basin successions indicates similar isotopic trends; however, the diverse magnitudes and responses of benthic communities confirm that the carbon cycle perturbations have been globally significant, and were influenced by external forces such as CAMP volcanism. The multiphase nature of the extinction pulses could have been caused by local environmental changes related to transgression/regression phenomena. Overall, this study adds new data and a new timing to the effect of the acidification process on carbon productivity and benthic communities in different environments across the TJB.

  17. High-resolution carbon isotope changes in the Permian-Triassic boundary interval, Chongqing, South China; implications for control and growth of earliest Triassic microbialites

    NASA Astrophysics Data System (ADS)

    Mu, Xinan; Kershaw, Steve; Li, Yue; Guo, Li; Qi, Yuping; Reynolds, Alan

    2009-11-01

    High-resolution δ 13C CARB analysis of the Permian-Triassic boundary (PTB) interval at the Laolongdong section, Beibei, near the city of Chongqing, south China, encompasses the latest Permian and earliest Triassic major facies changes in the South China Block (SCB). Microbialites form a distinctive unit in the lowermost 190 cm above the top of the Changhsing Formation (latest Permian) at Laolongdong, comparable to a range of earliest Triassic sites in low latitudes in the Tethyan area. The data show that declining values of δ 13C CARB, well-known globally, began at the base of the microbialite. High positive values (+3 to 4 ppt) of δ 13C CARB in the Late Permian are interpreted to indicate storage of 12C in the deep waters of a stratified ocean, that was released during ocean overturn in the earliest Triassic, contributing to the distinctive fall in isotope values; this interpretation has been stated by other authors and is followed here. The δ 13C CARB curve shows fluctuations within the microbialite unit, which are not reflected in the microbialite structure. Comparisons between microbialite branches and adjacent micritic sediment show little difference in δ 13C CARB, demonstrating that the microbialite grew in equilibrium with surrounding seawater. The Early Triassic microbialites are interpreted to be a response to upwelling of bicarbonate-rich poorly oxygenated water in low latitudes of Tethys Ocean, consistent with current ocean models for the PTB interval. However, the decline of δ 13C CARB may be due to a combination of processes, including productivity collapse resulting from mass extinction, return of deep water to ocean surface, oxidation of methane released from methane hydrate destabilisation, and atmospheric deterioration. Nevertheless, build-up of bicarbonate-rich anoxic deep waters may be expected as a result of the partial isolation of Tethys, due to continental geography; release of bicarbonate-rich deep water, by ocean upwelling, in the

  18. Siderite deposits in northern Italy: Early Permian to Early Triassic hydrothermalism in the Southern Alps

    NASA Astrophysics Data System (ADS)

    Martin, Silvana; Toffolo, Luca; Moroni, Marilena; Montorfano, Carlo; Secco, Luciano; Agnini, Claudia; Nimis, Paolo; Tumiati, Simone

    2017-07-01

    We present a minero-petrographic, geochemical and geochronological study of siderite orebodies from different localities of the Southern Alps (northern Italy). Siderite occurs as veins cutting the Variscan basement and the overlying Lower Permian volcano-sedimentary cover (Collio Fm.), and as both veins and conformable stratabound orebodies in the Upper Permian (Verrucano Lombardo and Bellerophon Fms.) and Lower Triassic (Servino and Werfen Fms.) sedimentary sequences of the Lombardian and the Venetian Alps. All types of deposits show similar major- and rare-earth (REE)-element patterns, suggesting a common iron-mineralizing event. The compositions of coexisting siderite, Fe-rich dolomite and calcite suggest formation from hydrothermal fluids at relatively high temperature conditions (≥ 250 °C). Geochemical modelling, supported by REE analyses and by literature and new δ13C and δ18O isotopic data, suggests that fluids responsible for the formation of siderite in the Variscan basement and in the overlying Lower Permian cover were derived from dominant fresh water, which leached Fe and C from volcanic rocks (mainly rhyolites/rhyodacites) and organic carbon-bearing continental sediments. On the basis of U-Th-Pb microchemical dating of uraninite associated with siderite in the Val Vedello and Novazza deposits (Lombardian Alps), the onset of hydrothermalism is constrained to 275 ± 13 Ma (Early-Mid Permian), i.e., it was virtually contemporaneous to the plutonism and the volcanic-sedimentary cycle reported in the same area (Orobic Basin). The youngest iron-mineralizing event is represented by siderite veins and conformable orebodies hosted in Lower Triassic shallow-marine carbonatic successions. In this case, the siderite-forming fluids contained a seawater component, interacted with the underlying Permian successions and eventually replaced the marine carbonates at temperatures of ≥ 250 °C. The absence of siderite in younger rocks suggests an Early Triassic

  19. Temperature and Oxygenation of the Shallow Tethys During the End-Triassic Extinction Event.

    NASA Astrophysics Data System (ADS)

    Petryshyn, V.; Lalonde, S.; Greene, S. E.; Sansjofre, P.; Ibarra, Y.; Corsetti, F. A.; Bottjer, D. J.; Tripati, A.

    2016-12-01

    The end-Triassic mass extinction is one of the most severe biotic crises in Earth's history. It has been hypothesized that the extinction was triggered by the rapid emplacement of the Central Atlantic Magmatic Province (CAMP), a large igneous province related to the initial rifting Pangaea 200 million years ago. A massive amount of CO2 and other volatiles were released into the atmosphere due to CAMP volcanism, causing global climate changes and mass extinction. In the uppermost Triassic strata of the Lilstock Formation, southwest United Kingdom, the extinction horizon is well-preserved and marked by a notable deposit of stromatolitic carbonate known as the Cotham Marble (CM). The CM was deposited in the shallow Tethys sea between the paleocontinents of Laurasia and Gondwana, though the specific paleoenvironment (e.g. open ocean vs. restricted basin/lagoon) is debated. The CM alternates between two facies: a fine continuous laminated (L) facies, and dendritic (D) structures that are passively infilled. Clumped isotope paleothermometry of the microbialites reveals a distinct difference between L and D microfacies, with L portions forming at 30.1 ±4.5°C, and D portions forming at 15.2 ±2.1°C, which may suggest restriction during the growth of L facies. High-precision trace element data from weak leaching of carbonate reveal rare earth element (REE) spectra broadly similar to modern seawater, with positive La anomalies, supra-chondritic Y/Ho ratios, and mild light-to-heavy REE enrichment. Y/Ho ratios are similar between the two microfacies, suggesting that changes in basinal restriction may not have actually been an important factor. Unlike modern oxic seawater, the CM displays true positive Ce anomalies that are pronounced in L microfacies and weak-to-absent in D microfacies. The REE data point to variable ambient redox conditions characterized by water column anoxia during growth of D facies and perhaps even stratification during the growth of the L facies.

  20. The metallogeny of Late Triassic rifting of the Alexander terrane in southeastern Alaska and northwestern British Columbia

    USGS Publications Warehouse

    Taylor, C.D.; Premo, W.R.; Meier, A.L.; Taggart, J.E.

    2008-01-01

    A belt of unusual volcanogenic massive sulfide (VMS) occurrences is located along the eastern margin of the Alexander terrane throughout southeastern Alaska and northwestern British Columbia and exhibits a range of characteristics consistent with a variety of syngenetic to epigenetic deposit types. Deposits within this belt include Greens Creek and Windy Craggy, the economically most significant VMS deposit in Alaska and the largest in North America, respectively. The occurrences are hosted by a discontinuously exposed, 800-km-long belt of rocks that consist of a 200- to 800-m-thick sequence of conglomerate, limestone, marine elastic sedimentary rocks, and tuff intercalated with and overlain by a distinctive unit of mafic pyroclastic rocks and pillowed flows. Faunal data bracket the age of the host rocks between Anisian (Middle Triassic) and late Norian (late Late Triassic). This metallogenic belt is herein referred to as the Alexander Triassic metallogenic belt. The VMS occurrences show systematic differences in degree of structural control, chemistry, and stratigraphic setting along the Alexander Triassic metallogenic belt that suggest important spatial or temporal changes in the tectonic environment of formation. At the southern end of the belt, felsic volcanic rocks overlain by shallow-water limestones characterize the lower part of the sequence. In the southern and middle portion of the belt, a distinctive pebble conglomerate marks the base of the section and is indicative of high-energy deposition in a near slope or basin margin setting. At the northern end of the belt the conglomerates, limestones, and felsic volcanic rocks are absent and the belt is composed of deep-water sedimentary and mafic volcanic rocks. This northward change in depositional environment and lithofacies is accompanied by a northward transition from epithermal-like structurally controlled, discontinuous, vein- and pod-shaped, Pb-Zn-Ag-Ba-(Cu) occurrences with relatively simple mineralogy

  1. Sandstone provenance and U-Pb ages of detrital zircons from Permian-Triassic forearc sediments within the Sukhothai Arc, northern Thailand: Record of volcanic-arc evolution in response to Paleo-Tethys subduction

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Kunii, Miyuki; Miyake, Yoshihiro; Hisada, Ken-ichiro; Kamata, Yoshihito; Ueno, Katsumi; Kon, Yoshiaki; Kurihara, Toshiyuki; Ueda, Hayato; Assavapatchara, San; Treerotchananon, Anuwat; Charoentitirat, Thasinee; Charusiri, Punya

    2017-09-01

    Provenance analysis and U-Pb dating of detrital zircons in Permian-Triassic forearc sediments from the Sukhothai Arc in northern Thailand clarify the evolution of a missing arc system associated with Paleo-Tethys subduction. The turbidite-dominant formations within the forearc sediments include the Permian Ngao Group (Kiu Lom, Pha Huat, and Huai Thak formations), the Early to earliest Late Triassic Lampang Group (Phra That and Hong Hoi formations), and the Late Triassic Song Group (Pha Daeng and Wang Chin formations). The sandstones are quartzose in the Pha Huat, Huai Thak, and Wang Chin formations, and lithic wacke in the Kiu Lom, Phra That, Hong Hoi and Pha Daeng formations. The quartzose sandstones contain abundant quartz, felsic volcanic and plutonic fragments, whereas the lithic sandstones contain mainly basaltic to felsic volcanic fragments. The youngest single-grain (YSG) zircon U-Pb age generally approximates the depositional age in the study area, but in the case of the limestone-dominant Pha Huat Formation the YSG age is clearly older. On the other hand, the youngest cluster U-Pb age (YC1σ) represents the peak of igneous activity in the source area. Geological evidence, geochemical signatures, and the YC1σ ages of the sandstones have allowed us to reconstruct the Sukhothai arc evolution. The initial Sukhothai Arc (Late Carboniferous-Early Permian) developed as a continental island arc. Subsequently, there was general magmatic quiescence with minor I-type granitic activity during the Middle to early Late Permian. In the latest Permian to early Late Triassic, the Sukhothai Arc developed in tandem with Early to Middle Triassic I-type granitic activity, Middle to Late Triassic volcanism, evolution of an accretionary complex, and an abundant supply of sediments from the volcanic rocks to the trench through a forearc basin. Subsequently, the Sukhothai Arc became quiescent as the Paleo-Tethys closed after the Late Triassic. In addition, parts of sediments of

  2. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction

    USGS Publications Warehouse

    Ward, P.D.; Garrison, G.H.; Haggart, J.W.; Kring, D.A.; Beattie, M.J.

    2004-01-01

    Stable isotope analyses of Late Triassic to earliest Jurassic strata from Kennecott Point in the Queen Charlotte Islands, British Columbia, Canada shows the presence of two distinct and different organic carbon isotope anomalies at the Norian/Rhaetian and Rhaetian/Hettangian (=Triassic/Jurassic) stage boundaries. At the older of these boundaries, which is marked by the disappearance of the bivalve Monotis, the isotope record shows a series of short-lived positive excursions toward heavier values. Strata approaching this boundary show evidence of increasing anoxia. At the higher boundary, marked by the disappearance of the last remaining Triassic ammonites and over 50 species of radiolarians, the isotopic pattern consists of a series of short duration negative anomalies. The two events, separated by the duration of the Rhaetian age, comprise the end-Triassic mass extinction. While there is no definitive evidence as to cause, the isotopic record does not appear similar to that of the impact-caused Cretaceous/Tertiary boundary extinction. ?? 2004 Published by Elsevier B.V.

  3. Geochemical evidences for palaeoclimatic fluctuations at the Triassic-Jurassic boundary: southwestern margin of the Neotethys in the Salt Range, Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Wagreich, Michael; Jan, Irfanullah; Kürschner, Wolfram Michael; Gier, Susanne

    2017-04-01

    The Triassic-Jurassic boundary interval reveals a change from warm-arid to a warm and humid climate in the Tethyan domain. Sea-level reconstruction records across the European basins during this interval reveal an end-Triassic global regression event and is linked to the Central Atlantic Magmatic Province (CAMP) activity and Pangaea breakup. In the Tethyan Salt Range of Pakistan a succession of Upper Triassic dolomites/green-black mudstones (Kingriali Formation), overlying quartzose sandstone, mudstones, laterites and Lower Jurassic conglomerates/pebbly sandstones (Datta Formation) provides information on the palaeoclimatic evolution of the area. Preliminary palynological results from the mudstones indicate a Rhaetian age for the Kingriali Formation and a Hettangian age for the Datta Formation. X-ray diffraction (XRD) analysis of the mudstones (upper part of the Kingriali Formation) indicates the presence of mainly illite while kaolinite is a minor component. The kaolinite content, a reflection of the advanced stage of chemical weathering and hence warm-humid conditions, increases up-section in the overlying sandstone-mudstone succession. The overlying laterite-bauxite horizons lack illite/smectite and are entirely composed of kaolinite, boehmite and haematite. At places these kaolinite rich horizons are mined in the area (Western Salt Range). The bulk rock geochemistry of the succession confirms a similar trend. The Chemical Index of Alteration (CIA) displays an increasing trend from the Upper Triassic shales (CIA 75-80) through the overlying sandstones/mudstones-laterites to the overlying quartz rich sandstones and mudstones (CIA 90-97). The overall results for the succession reveal an increasing chemical maturity trend (increase in the intensity of chemical weathering) from Rhaetian to Hettangian thereby supporting a change from warm-arid to a warm-humid palaeoclimate, probably extreme greenhouse conditions.

  4. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Percival, Lawrence M. E.; Ruhl, Micha; Hesselbo, Stephen P.; Jenkyns, Hugh C.; Mather, Tamsin A.; Whiteside, Jessica H.

    2017-07-01

    The Central Atlantic Magmatic Province (CAMP) has long been proposed as having a causal relationship with the end-Triassic extinction event (˜201.5 Ma). In North America and northern Africa, CAMP is preserved as multiple basaltic units interbedded with uppermost Triassic to lowermost Jurassic sediments. However, it has been unclear whether this apparent pulsing was a local feature, or if pulses in the intensity of CAMP volcanism characterized the emplacement of the province as a whole. Here, six geographically widespread Triassic-Jurassic records, representing varied paleoenvironments, are analyzed for mercury (Hg) concentrations and Hg/total organic carbon (Hg/TOC) ratios. Volcanism is a major source of mercury to the modern environment. Clear increases in Hg and Hg/TOC are observed at the end-Triassic extinction horizon, confirming that a volcanically induced global Hg cycle perturbation occurred at that time. The established correlation between the extinction horizon and lowest CAMP basalts allows this sedimentary Hg excursion to be stratigraphically tied to a specific flood basalt unit, strengthening the case for volcanic Hg as the driver of sedimentary Hg/TOC spikes. Additional Hg/TOC peaks are also documented between the extinction horizon and the Triassic-Jurassic boundary (separated by ˜200 ky), supporting pulsatory intensity of CAMP volcanism across the entire province and providing direct evidence for episodic volatile release during the initial stages of CAMP emplacement. Pulsatory volcanism, and associated perturbations in the ocean-atmosphere system, likely had profound implications for the rate and magnitude of the end-Triassic mass extinction and subsequent biotic recovery.

  5. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    USGS Publications Warehouse

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the

  6. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, J.C.; Bai, G.P.; Hamilton, P.J.

    1995-07-03

    Dawsonite, NaAlCO{sub 3}(OH){sub 2}, is widespread as a cement, replacement, and cavity filling in Permo-Triassic sedimentary rocks of the Bowen-Gunnedah-Sydney basin system eastern Australia. The origin of dawsonite in these rocks was studied by petrographic and stable isotope analysis. Dawsonite {delta}{sup 13}C (PDB) values range from {minus}4.0 to +4.1{per_thousand} and are remarkably consistent throughout the Bowen-Gunnedah-Sydney basin system. These values indicate either a marine carbonate or magmatic source for carbon in the dawsonite. A magmatic carbon source is considered more likely on the basis that (1) evidence of and the cause for widespread marine carbonate dissolution in the sedimentary successionsmore » are not apparent, (2) dawsonite is widespread in both marine and nonmarine facies, (3) the region has been the site of major igneous activity, (4) other dawsonite deposits of similar carbon isotopic composition are linked to igneous activity, and (5) magmatic CO{sub 2} accumulations are known in parts of the Bowen-Gunnedah-Sydney basin system. The timing of igneous activity in the Bowen Basin constrains the timing of dawsonite formation in the Bowen-Gunnedah-Sydney basin system to the Tertiary, consistent with textural relationships, which indicate that dawsonite formed late during the burial history of the Permo-triassic sequences. The distribution and interpreted origin of dawsonite implies magmatic CO{sub 2} seepage in the Bowen-Gunnedah-Sydney basin system on a continental scale.« less

  7. A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California

    NASA Astrophysics Data System (ADS)

    Barth, Andrew P.; Tosdal, R. M.; Wooden, J. L.

    1990-11-01

    Triassic magmatism in the southwest U.S. Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and we suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited data for associated Triassic(?) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic(?) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to alkalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.

  8. A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, A.P.; Tosdal, R.M.; Wooden, J.L.

    1990-11-10

    Triassic magmatism in the southwest US Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and the authors suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited datamore » for associated Triassic ( ) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic( ) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to akalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.« less

  9. Recovery vs. Restructuring: Establishing Ecologic Patterns in Early and Middle Triassic Paleocommunities (Invited)

    NASA Astrophysics Data System (ADS)

    Fraiser, M.; Dineen, A.; Sheehan, P.

    2013-12-01

    Published data has been interpreted as indicating that marine ecological devastation following the end-Permian mass extinction was protracted and may have lasted 5 million years into the Middle Triassic (Anisian). However, a review of previous literature shows that understanding of biotic recovery is typically based on only a few components of the ecosystem, such as on taxonomic diversity, a single genus/phylum, or facies. Typically, paleocommunities are considered fully recovered when dominance and diversity are regained and normal ecosystem functioning has resumed. However, in addition to the biodiversity crash at the end of the Permian, taxonomic and ecologic structure also changed,with the extinction marking the faunal shift from brachiopod-rich Paleozoic Evolutionary Fauna (EF) to the mollusc-rich Modern EF. This suggests that the extreme reorganizational nature of the Triassic does not adhere to the standard definition of recovery, which is a return to previous conditions. Thus, we propose the term 'restructuring' to describe this interval, as Early and Middle Triassic communities might not exhibit the typical characteristics of a 'normal' Permian one. To more fully characterize Triassic ecologic restructuring, paleoecologists should take into account functional diversity and redundancy. We quantified functional richness and regularity in four different paleocommunities from classic Permian and Triassic sections. Functional richness was low in paleocommunities after the end-Permian mass extinction, but increased to high levels by the Middle Triassic. In contrast, functional regularity was low in the Middle Permian, but high in all the Triassic paleocommunities. The change from low to high functional regularity/redundancy at the P/T boundary may be a factor of the highly stressful Triassic environmental conditions (i.e. anoxia, hypercapnia), as high regularity in a community can boost survival in harsh environments. Parameters such as these will more

  10. Coupled organic and carbonate δ13C records of the late Triassic and early Jurassic in northern Italy: implications for carbon cycling during the aftermath of the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Bachan, A.; van de Schootbrugge, B.; Payne, J.

    2011-12-01

    A large protracted positive carbon isotope excursion has been observed in the lowermost Jurassic following the end-Triassic mass extinction. However, the lack of paired records from carbonate rocks (δ13Ccarb) and organic carbon (δ13Corg) and limited biostratigraphic constraints leave open the possibility that variations in δ13Ccarb and δ13Corg are not correlative and do not represent a shift in the δ13C of the global carbon pool. Consequently, the long term carbon cycle behavior following the end-Triassic mass extinction remains incompletely understood. Here we present the first extended, coupled δ13Ccarb and δ13Corg records of the uppermost Triassic and lowermost Jurassic from stratigraphic sections in the Lombardy Basin of northern Italy. The large positive excursion previously observed in the carbonates also occurs in the organics from the same samples, but with a smaller magnitude. Because few post-depositional mechanisms affect the isotopic composition of Ccarb and Corg in similar ways, the correspondence of the two curves presents strong support for a primary origin for the large positive isotopic excursion. The more muted response of the organics is consistent with variation in the fractionation between carbonates and organic carbon, mixing of contemporaneous organic matter with extrabasinal organic carbon of a constant isotopic composition, or some combination of the two. In either case, the occurrence of the positive excursion in multiple locations globally in both carbonates and organic matter is best explained by a change in the isotopic value of the global carbon reservoir. The elevated δ13C values and increased magnitude of the difference between the carbonates and organics is consistent with the predicted biogeochemical consequences of heightened pCO2. The coincidence of the extinction and carbon cycle disturbance with emplacement of the Central Atlantic Magmatic Province suggests that volatiles derived from its emplacement were the likely

  11. Redescription of Bellerophon bittneri (Gastropoda: Triassic) from Wyoming.

    USGS Publications Warehouse

    Yochelson, E.L.; Boyd, D.W.; Wardlaw, B.

    1985-01-01

    Bellerophon bittneri Newell and Kummel is an Early Triassic bellerophontacean from the Dinwoody Formation in the Wind River Mountains. The available type material consists of one fair, but incomplete, external mold, which resembles a Bellerophon but is actually a Retispira. After repeated search, additional specimens were found at one locality in the southern Wind River Range of Wyoming; Retispira bittneri is redescribed from this new material. Like other Triassic bellerophontaceans, there is nothing unusual about the species apart from occurrence in the Mesozoic; it is clearly congeneric with Permian Retispira from underlying rocks. -Authors

  12. Buried Mesozoic rift basins of Moroccan Atlantic continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, N.; Jabour, H.; El Mostaine, M.

    1995-08-01

    The Atlantic continental margin is the largest frontier area for oil and gas exploration in Morocco. Most of the activity has been concentrated where Upper Jurassic carbonate rocks have been the drilling objectives, with only one significant but non commercial oil discovery. Recent exploration activities have focused on early Mesozoic Rift basins buried beneath the post-rift sediments of the Middle Atlantic coastal plain. Many of these basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness to be classified as efficient oil prone source rock. Location of inferred rift basins beneath the Atlantic coastal plainmore » were determined by analysis of drilled-hole data in combination with gravity anomaly and aeromagnetic maps. These rift basins are characterized by several half graben filled by synrift sediments of Triassic age probably deposited in lacustrine environment. Coeval rift basins are known to be present in the U.S. Atlantic continental margin. Basin modeling suggested that many of the less deeply bored rift basins beneath the coastal plain are still within the oil window and present the most attractive exploration targets in the area.« less

  13. Importance of carbon isotopic data of the Permian-Triassic boundary layers in the Verkhoyansk region for the global correlation of the basal Triassic layer

    NASA Astrophysics Data System (ADS)

    Zakharov, Yu. D.; Biakov, A. S.; Richoz, S.; Horacek, M.

    2015-01-01

    This paper is dedicated to a global correlation of marine Permian-Triassic boundary layers on the basis of partially published and original data on the δ13Corg and δ13Ccarb values of the Suol section (Setorym River, South Verkhoyansk region). The section consists of six carbon isotopic intervals, which are easily distinguishable in the carbon isotopic curves for a series of Permian-Triassic reference sections of Eurasia and Northern America, including paleontologically described sections of Central Iran, Kashmir, and Southern China. This suggests that the Permian-Triassic boundary in the Suol section is close to the carbon isotopic minimum of interval IV. In light of new data, we suggest considering the upper part of the Late Permian Changhsingian Stage and the lower substage of the Early Triassic Induan Stage of Siberia in the volumes of the rank Otoceras concavum zone and the Tompophiceras pascoei and Wordieoceras decipiens zones, respectively. The O. concavum zone of the Verkhoyansk region probably corresponds to the Late Changhsingian Hypophiceras triviale zone of Greenland. The carbon isotopic intervals II, III, IV, and V in the Permian-Triassic boundary layers of the Verkhoyansk region traced in a series of the reference sections of Eurasia correspond, most likely, to intensification of volcanic activity at the end of the Late Changhsingian and to the first massive eruptions of Siberian traps at the end of the Changhsingian and the beginning of the Induan Stages. New data indicate the possible survival of ammonoids of the Otoceratoidea superfamily at the species level after mass extinction of organisms at the end of the Permian.

  14. Middle-Upper Triassic and Middle Jurassic tetrapod track assemblages of southern Tunisia, Sahara Platform

    NASA Astrophysics Data System (ADS)

    Niedźwiedzki, Grzegorz; Soussi, Mohamed; Boukhalfa, Kamel; Gierliński, Gerard D.

    2017-05-01

    Three tetrapod track assemblages from the early-middle Mesozoic of southern Tunisia are reported. The strata exposed at the Tejra 2 clay-pit near the Medenine and Rehach site, located in the vicinity of Kirchaou, contain the first tetrapod tracks found in the Triassic of Tunisia. The Middle Jurassic (early Aalenian) dinosaur tracks are reported from the Mestaoua plain near Tataouine. In the Middle Triassic outcrop of the Tejra 2 clay-pit, tridactyl tracks of small and medium-sized dinosauromorphs, were discovered. These tracks represent the oldest evidence of dinosaur-lineage elements in the Triassic deposits of Tunisia. Similar tracks have been described from the Middle Triassic of Argentina, France and Morocco. An isolated set of the manus and pes of a quadrupedal tetrapod discovered in Late Triassic Rehach tracksite is referred to a therapsid tracemaker. The Middle Jurassic deposits of the Mestaoua plain reveal small and large tridactyl theropod dinosaur tracks (Theropoda track indet. A-C). Based on comparison with the abundant record of Triassic tetrapod ichnofossils from Europe and North America, the ichnofauna described here indicates the presence of a therapsid-dinosauromorph ichnoassociation (without typical Chirotheriidae tracks) in the Middle and Late Triassic, which sheds light on the dispersal of the Middle-Upper Triassic tetrapod ichnofaunas in this part of Gondwana. The reported Middle Jurassic ichnofauna show close similarities to dinosaur track assemblages from the Lower and Middle Jurassic of northwestern Africa, North America, Europe and also southeastern Asia. Sedimentological and lithostratigraphic data of each new tracksite have been defined on published data and new observations. Taken together, these discoveries present a tantalizing window into the evolutionary history of tetrapods from the Triassic and Jurassic of southern Tunisia. Given the limited early Mesozoic tetrapod record from the region, these discoveries are of both temporal and

  15. Early archosauromorph remains from the Permo-Triassic Buena Vista Formation of north-eastern Uruguay

    PubMed Central

    Velozo, Pablo; Meneghel, Melitta; Piñeiro, Graciela

    2015-01-01

    The Permo-Triassic archosauromorph record is crucial to understand the impact of the Permo-Triassic mass extinction on the early evolution of the group and its subsequent dominance in Mesozoic terrestrial ecosystems. However, the Permo-Triassic archosauromorph record is still very poor in most continents and hampers the identification of global macroevolutionary patterns. Here we describe cranial and postcranial bones from the Permo-Triassic Buena Vista Formation of northeastern Uruguay that contribute to increase the meagre early archosauromorph record from South America. A basioccipital fused to both partial exoccipitals and three cervical vertebrae are assigned to Archosauromorpha based on apomorphies or a unique combination of characters. The archosauromorph remains of the Buena Vista Formation probably represent a multi-taxonomic assemblage composed of non-archosauriform archosauromorphs and a ‘proterosuchid-grade’ animal. This assemblage does not contribute in the discussion of a Late Permian or Early Triassic age for the Buena Vista Formation, but reinforces the broad palaeobiogeographic distribution of ‘proterosuchid grade’ diapsids in Permo-Triassic beds worldwide. PMID:25737816

  16. Petroleum geology and resources of the West Siberian Basin, Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2003-01-01

    The West Siberian basin is the largest petroleum basin in the world covering an area of about 2.2 million km2. The basin occupies a swampy plain between the Ural Mountains and the Yenisey River. On the north, the basin extends offshore into the southern Kara Sea. On the west, north, and east, the basin is surrounded by the Ural, Yenisey Ridge, and Turukhan-Igarka foldbelts that experienced major deformations during the Hercynian tectonic event and the Novaya Zemlya foldbelt that was deformed in early Cimmerian (Triassic) time. On the south, the folded Caledonian structures of the Central Kazakhstan and Altay-Sayan regions dip northward beneath the basin?s sedimentary cover. The basin is a relatively undeformed Mesozoic sag that overlies the Hercynian accreted terrane and the Early Triassic rift system. The basement is composed of foldbelts that were deformed in Late Carboniferous?Permian time during collision of the Siberian and Kazakhstan continents with the Russian craton. The basement also includes several microcontinental blocks with a relatively undeformed Paleozoic sedimentary sequence. The sedimentary succession of the basin is composed of Middle Triassic through Tertiary clastic rocks. The lower part of this succession is present only in the northern part of the basin; southward, progressively younger strata onlap the basement, so that in the southern areas the basement is overlain by Toarcian and younger rocks. The important stage in tectono-stratigraphic development of the basin was formation of a deep-water sea in Volgian?early Berriasian time. The sea covered more than one million km2 in the central basin area. Highly organic-rich siliceous shales of the Bazhenov Formation were deposited during this time in anoxic conditions on the sea bottom. Rocks of this formation have generated more than 80 percent of West Siberian oil reserves and probably a substantial part of its gas reserves. The deep-water basin was filled by prograding clastic clinoforms

  17. Tetrapod tracks in Permo–Triassic eolian beds of southern Brazil (Paraná Basin)

    PubMed Central

    Dentzien-Dias, Paula; Lucas, Spencer G.; Schultz, Cesar L.

    2018-01-01

    Tetrapod tracks in eolianites are widespread in the fossil record since the late Paleozoic. Among these ichnofaunas, the ichnogenus Chelichnus is the most representative of the Permian tetrapod ichnological record of eolian deposits of Europe, North America and South America, where the Chelichnus Ichnofacies often occurs. In this contribution, we describe five sets of tracks (one of which is preserved in cross-section), representing the first occurrence of Dicynodontipus and Chelichnus in the “Pirambóia Formation” of southern Brazil. This unit represents a humid desert in southwestern Pangea and its lower and upper contacts lead us to consider its age as Lopingian–Induan. The five sets of tracks studied were compared with several ichnotaxa and body fossils with appendicular elements preserved, allowing us to attribute these tracks to dicynodonts and other indeterminate therapsids. Even though the “Pirambóia Formation” track record is sparse and sub-optimally preserved, it is an important key to better understand the occupation of arid environments by tetrapods across the Permo–Triassic boundary. PMID:29796341

  18. Tetrapod tracks in Permo-Triassic eolian beds of southern Brazil (Paraná Basin).

    PubMed

    Francischini, Heitor; Dentzien-Dias, Paula; Lucas, Spencer G; Schultz, Cesar L

    2018-01-01

    Tetrapod tracks in eolianites are widespread in the fossil record since the late Paleozoic. Among these ichnofaunas, the ichnogenus Chelichnus is the most representative of the Permian tetrapod ichnological record of eolian deposits of Europe, North America and South America, where the Chelichnus Ichnofacies often occurs. In this contribution, we describe five sets of tracks (one of which is preserved in cross-section), representing the first occurrence of Dicynodontipus and Chelichnus in the "Pirambóia Formation" of southern Brazil. This unit represents a humid desert in southwestern Pangea and its lower and upper contacts lead us to consider its age as Lopingian-Induan. The five sets of tracks studied were compared with several ichnotaxa and body fossils with appendicular elements preserved, allowing us to attribute these tracks to dicynodonts and other indeterminate therapsids. Even though the "Pirambóia Formation" track record is sparse and sub-optimally preserved, it is an important key to better understand the occupation of arid environments by tetrapods across the Permo-Triassic boundary.

  19. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  20. Atmospheric Carbon Injection Linked to End-Triassic Mass Extinction

    NASA Astrophysics Data System (ADS)

    Ruhl, Micha; Bonis, Nina R.; Reichart, Gert-Jan; Damsté, Jaap S. Sinninghe; Kürschner, Wolfram M.

    2011-07-01

    The end-Triassic mass extinction (~201.4 million years ago), marked by terrestrial ecosystem turnover and up to ~50% loss in marine biodiversity, has been attributed to intensified volcanic activity during the break-up of Pangaea. Here, we present compound-specific carbon-isotope data of long-chain n-alkanes derived from waxes of land plants, showing a ~8.5 per mil negative excursion, coincident with the extinction interval. These data indicate strong carbon-13 depletion of the end-Triassic atmosphere, within only 10,000 to 20,000 years. The magnitude and rate of this carbon-cycle disruption can be explained by the injection of at least ~12 × 103 gigatons of isotopically depleted carbon as methane into the atmosphere. Concurrent vegetation changes reflect strong warming and an enhanced hydrological cycle. Hence, end-Triassic events are robustly linked to methane-derived massive carbon release and associated climate change.

  1. Atmospheric carbon injection linked to end-Triassic mass extinction.

    PubMed

    Ruhl, Micha; Bonis, Nina R; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S; Kürschner, Wolfram M

    2011-07-22

    The end-Triassic mass extinction (~201.4 million years ago), marked by terrestrial ecosystem turnover and up to ~50% loss in marine biodiversity, has been attributed to intensified volcanic activity during the break-up of Pangaea. Here, we present compound-specific carbon-isotope data of long-chain n-alkanes derived from waxes of land plants, showing a ~8.5 per mil negative excursion, coincident with the extinction interval. These data indicate strong carbon-13 depletion of the end-Triassic atmosphere, within only 10,000 to 20,000 years. The magnitude and rate of this carbon-cycle disruption can be explained by the injection of at least ~12 × 10(3) gigatons of isotopically depleted carbon as methane into the atmosphere. Concurrent vegetation changes reflect strong warming and an enhanced hydrological cycle. Hence, end-Triassic events are robustly linked to methane-derived massive carbon release and associated climate change.

  2. Geophysical observations on northern part of Georges Bank and adjacent basins of Gulf of Maine

    USGS Publications Warehouse

    Oldale, R.N.; Hathaway, J.C.; Dillon, William P.; Hendricks, J.D.; Robb, James M.

    1974-01-01

    Continuous-seismic-reflection and magnetic-intensity profiles provide data for inferences about the geology of the northern part of Georges Bank and the basins of the Gulf of Maine adjacent to the bank.Basement is inferred to be mostly sedimentary and volcanic rocks of Paleozoic age that were metamorphosed and intruded locally by felsic and mafic plutons near the end of the Paleozoic Era. During Late Triassic time, large fault basins formed within the Gulf of Maine and probably beneath Georges Bank. The fault basins and a possible major northeast-trending fault zone beneath the northern part of the bank probably formed as a result of the opening Atlantic during the Mesozoic. Nonmarine sediments, associated with mafic flows and intrusive rocks, were deposited in the fault basins as they formed. The upper surface of the Triassic and pre-Triassic rocks that comprise basement is an unconformity that makes up much of the bottom of the Gulf of Maine. Depth to the basement surface beneath the gulf differ greatly because of fluvial erosion in Tertiary time and glacial erosion in Pleistocene time. Beneath the northern part of Georges Bank the basement surface is smoother and slopes southward. Prominent valleys, cut before Late Cretaceous time, are present beneath this part of the bank.Cretaceous, Tertiary, and possibly Jurassic times were characterized by episodes of coastal-plain deposition and fluvial erosion. During this time a very thick wedge of sediment, mostly of Jurassic(?) and Cretaceous ages, was deposited on the shelf. Major periods of erosion took place at the close of the Cretaceous and during the Pliocene. Fluvial erosion during the Pliocene removed much of the coastal-plain sedimentary wedge and formed the Gulf of Maine.Pleistocene glaciers eroded all but a few remnants of the coastal-plain sediments within the gulf and deposited a thick section of drift against the north slope of Georges Bank and a thin veneer of outwash on the bank. Marine sediments were

  3. Rare Earth Elements of the Permian-Triassic Conodonts from Shelf Basin to Shallow Platform: Implications for Oceanic Redox Conditions immediately After the End-Permian Mass Extinction

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhao, L.; Chen, Z.; Chen, J.; Chen, Y.

    2013-12-01

    Rare-earth elements (REEs) can provide information regarding the influence of weathering fluxes and hydrothermal inputs on seawater chemistry as well as processes that fractionate REEs between solid and aqueous phases. Of these, cerium (Ce) distributions may provide information about variations in dissolved oxygen in seawater, and thus assess the redox conditions. The short residence times of REEs in seawater (~300-1,000 yr) can result in unique REE signatures in local watermasses. REE patterns preserved in biogenic apatite such as conodonts are ideal proxies for revealing original seawater chemistry. Here, we measured the REE content of in-situ, single albid crowns using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in combination with an ArF (λ=193 nm) excimer laser (Lambda Physiks GeoLas 2005) and quadrupole ICP-MS (Agilent 7500a). LA-ICP-MS is ideally suited for analyzing conodonts due to its ability to measure compositional variation within single conodont elements. It has the capability to determine, with high spatial resolution, continuous compositional depth profiles through the concentric layered structure of component histologies. To evaluate paleoceanographic conditions immediately after the Permian-Triassic (P-Tr) mass extinction in various depositional settings, we sampled a nearly contemporaneous strata unit, the P-Tr boundary bed, just above the extinction horizon from six sections in South China. They represent various depositional settings from shelf basin (Chaohu and Daxiakou sections), lower part of ramp (Meishan section), normal shallow platform (Yangou section), and platform microbialite (Chongyang and Xiushui sections). The sampled unit is constrained by conodonts Hindeodus changxingensis, H. parvus, and H. staeschei Zones in Meishan. REE results obtained from conodont albid crowns show that the seawater in lower ramp and shelf basin settings contains much higher REE concentrations than that in shallow platform. Ce

  4. Discovery of a Triassic magmatic arc source for the Permo-Triassic Karakaya subduction complex, NW Turkey

    NASA Astrophysics Data System (ADS)

    Ayda Ustaömer, Petek; Ustaömer, Timur; Gerdes, Axel; Robertson, Alastair H. F.; Zulauf, Gernold

    2014-05-01

    The Permo-Triassic Karakaya Complex is well explained by northward subduction of Palaeotethys but until now no corresponding magmatic arc has been identified in the region. With the aim of determining the compositions and ages of the source units, ten sandstone samples were collected from the mappably distinct Ortaoba, Hodul, Kendirli and Orhanlar Units. Zircon grains were extracted from these sandstones and >1300 were dated by the U-Pb method and subsequently analysed for the Lu-Hf isotopic compositions by LA-MC-ICPMS at Goethe University, Frankfurt. The U-Pb-Hf isotope systematics are indicative of two different sediment provenances. The first, represented by the Ortaoba, Hodul and Kendirli Units, is dominated by igneous rocks of Triassic (250-220 Ma), Early Carboniferous-Early Permian (290-340 Ma) and Early to Mid-Devonian (385-400 Ma) ages. The second provenance, represented by the Orhanlar Unit, is indicative of derivation from a peri-Gondwanan terrane. In case of the first provenance, the Devonian and Carboniferous source rocks exibit intermediate eHf(t) values (-11 to -3), consistent with the formation at a continental margin where juvenile mantle-derived magmas mixed with (recycled) old crust having Palaeoproterozoic Hf model ages. In contrast, the Triassic arc magma exhibits higher eHf(t) values (-6 to +6), consistent with the mixing of juvenile mantle-derived melts with (recycled) old crust perhaps somewhat rejuvanated during the Cadomian period. We have therefore identified a Triassic magmatic arc as predicted by the interpretation of the Karakaya Complex as an accretionary complex related to northward subduction (Carboniferous and Devonian granites are already well documented in NW Turkey). Possible explanations for the lack of any outcrop of the source magmatic arc are that it was later subducted or the Karakaya Complex was displaced laterally from its source arc (both post 220 Ma). Strike-slip displacement (driven by oblique subduction?) can also

  5. Unraveling the hydrocarbon charge potential of the Nordkapp Basin, Barents Sea: An integrated approach to reduce exploration risk in complex salt basins

    NASA Astrophysics Data System (ADS)

    Schenk, Oliver; Shtukert, Olga; Bishop, Andrew; Kornpihl, Kristijan; Milne, Graham

    2014-05-01

    The Nordkapp Basin, Barents Sea, is an intra-continental syn-rift basin containing many complex salt structures. The salt is late-Carboniferous to Early Permian in age, with regional extension in the Triassic initiating the salt movement resulting in formation of sub- and mini-basins with significant subsidence (especially in the northeastern part of the basin). Subsequent tectonic phases allowed growth and distortion of salt diapirs that were later affected by uplift and erosion during Tertiary resulting in the formation of salt-related traps in Triassic and Lower Jurassic strata. During Plio-Pleistocene, glacial erosion removed additional Mesozoic and Cenozoic strata. This basin is regarded as a frontier salt province. A small hydrocarbon discovery (Pandora well) in the southwestern part of the basin points to the presence several functioning petroleum systems. The primary play type is related to salt traps below overhangs. Such structures are however, very difficult to image with conventional seismic techniques due to i) generation of multiples from sea floor and top of shallow salt bodies and ii) seismic shadow zones within the salt (possibly resulting from shale and carbonate stringers) which cause severe diffractions so that prospective areas adjacent to the salt remain elusive. Arctic exploration is expensive and the ability to focus on the highest potential targets is essential. A unique solution to this challenging subsurface Arctic environment was developed by integrating petroleum system modeling with full azimuth broadband seismic acquisition and processing. This integrated approach allows intelligent location of seismic surveys over structures which have the maximum chance of success of hydrocarbon charge. Petroleum system modeling was conducted for four seismic sections. Salt was reconstructed according to the diapiric evolution presented in Nilsen et al. (1995) and Koyi et al. (1995). Episodes of major erosion were assigned to Tertiary (tectonic) and

  6. Triassic actinopterygian fishes: the recovery after the end-Permian crisis.

    PubMed

    Tintori, Andrea; Hitij, Tomaž; Jiang, Dayong; Lombardo, Cristina; Sun, Zuoyu

    2014-08-01

    In the last 15 years, the discovery of several new actinopterygian fish faunas from the Early and Middle Triassic of the Tethys, cast new light on the timing, speed and range of their recovery after the end-Permian crisis. In addition to several new taxa having been described, the stratigraphical and geographical record of many others have been greatly extended. In fact, most of the new fossiliferous sites are in southern China, thus at the Eastern end of the Tethys, and furthermore a few are somewhat older (Chaohu, Panxian, Luoping) than the major classical Western Tethys sites (Monte San Giorgio). Following these new finds, it is possible to have a better definition of the Triassic recovery stages. Indeed, after a quite short phase till the end of the Smithian (Olenekian, Early Triassic) in which a rather consistent fauna was present all around the Pangea coasts, a major radiation occurred in the Early-Middle Anisian after the new Middle Triassic fish fauna already appeared in the late Early Triassic, thus occuring well before what was previously supposed from the Alps localities. Furthermore, the new assemblages from southern China point to an early broader differentiation among the basal neopterygians rather than in the 'subholosteans', the group that was then dominant in the Western Tethys since the Late Anisian. It stands that during the Norian a new basal neopterygian radiation gave rise to several new branches that dominated the remaining part of the Mesozoic. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  7. Multivariate analyses reveal a new assemblage of diverse and small archosauriforms (Reptilia, Diapsida) from the Upper Triassic of India

    NASA Astrophysics Data System (ADS)

    Shafi Bhat, Mohd; Ray, Sanghamitra; Mohan Datta, Pradipendra

    2017-04-01

    The study is based on a large collection of vertebrate microfossils collected from the Upper Triassic Tiki Formation of the Rewa Gondwana basin of India, which is a mud-dominated fluvial succession. About 8600 kg of mudrocks from the Tiki Formation were screen washed to yield 1865 vertebrate microfossils, of which 67% are isolated teeth. Of these, there are about 450 well-preserved teeth, which are leaf-shaped, slightly recurved and have subtriangular crowns with expanded and asymmetric bases, and distinct denticles both on the posterior or anterior carinae. The morphology of these teeth suggests that these belong to Archosauriformes (Heckert, 2004; Irmis et al., 2007). Since the teeth were found isolated, without being associated with any other skeletal elements, it is not possible to ascertain their taxonomic position up to the generic and species level. However, based on their distinct dental attributes, twelve morphotypes are identified, of which five show similarity with the teeth of the basal saurischian dinosaurs. Principal Component and Canonical Variate analyses (PCA and CVA) are performed on these isolated teeth to evaluate the differentiation of the specimens based on the variance of their variables and to assess the consistency of identification by qualitative and quantitative methods (Hammer and Harper, 2006). PCA and CVA are applied to the variance-covariance matrix of the logarithmically transformed variables, the latter including six measured dimensions characterizing the different crown proportions. Since the first three principal components (PCs) account for more than 98% of the total variance, PC4 is discarded. Principal component scores are plotted on PC 1 and PC 2, and PC 2 and PC 3 to show the scatter of the archosauriform teeth examined. Although distinct clustering of specimens belonging to the different morphotypes is seen, there is considerable overlapping as represented by the convex hull polygons. The quantitative analyses show that many

  8. From thrusting to transpressional tectonics in the Aghdarband Basin (NE Iran): evidence for Cimmerian oblique convergence

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Balini, Marco; Ghassemi, Mohammad Reza; Zanchetta, Stefano

    2010-05-01

    The Aghdarband Basin, consisting of a strongly deformed arc-related Triassic marine succession, is a key-area for the study of the Cimmerian events, as it is unconformably covered by mid-Jurassic gently folded sediments entirely sealing the Cimmerian compressive structures. The basin developed during part of the Triassic in a highly mobile tectonic context suggested by abrupt facies variations and local unconformities. In addition, syn-sedimentary tectonic activity is testified by the occurrence of carbonate olistholiths in the deepest parts of the basin. The marine succession, spanning from Olenekian to lowermost Carnian, shows at the base continental conglomerates andsandstones, as well as basaltic lava flows, possibly of Early Triassic age. They are followed by the shallow water Sefid Kuh Limestone, in which an intraformational unconformity has been now identified. This unit is locally covered by deep-water limestones of the Nazarkardeh Fm. which interfinger with slope facies of the Sefid Kuh Limestone. The volcaniclastic sandstone layers of the Sina Fm follow up-section with a deep unconformity, marked in several places by deep erosion and tilting of the underlying units. The Sina Fm. is in turn unconformably covered by the coal bearing shales of the Miankhui Fm., with a Norian-Rhaetian age testified by plant megafossils, marking the end of marine sedimentation and of volcanic-arc activity. The Triassic units are overthrusted to the south by Upper Palaeozoic siliciclastic successions showing in some cases a LG metamorphic imprint. They largely include the Qara Geithan Fm. consisting of granitic rocks, acidic to basic volcanics, and locally also large blocks of Permian bioclastic limestones derived from the erosion of the Palaeotethys accretionary wedge, exposed south of Aghdarband. The whole succession of the Aghdarband Basin, including the unconformable Miankhui Fm., is deeply involved in a north-verging thrust stack which interacts in the northern part of the

  9. The evidence for ocean acidification across the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Martindale, R. C.; Greene, S. E.; Ritterbush, K. A.; Bottjer, D. J.; Corsetti, F. A.; Berelson, W.

    2012-12-01

    The end-Triassic extinction is one of the "Big Five" mass extinctions of the Phanerozoic and until recently no consensus regarding the cause of this extinction has been established. Over the last decade, a robust temporal correlation between the eruption of the Central Atlantic Magmatic Province (CAMP) and the end-Triassic extinction has been established. This correlation has led to the speculation that the release of CO2 and volatiles from the CAMP flood basalts induced a carbon cycle perturbation that acidified the Triassic oceans. It has also been suggested that an acidification event could have been the key mechanism that caused the end-Triassic marine ecosystem collapse. By combining observations and data from multiple fields such as volcanology, paleoceanography, chemostratigraphy, paleontology, and sedimentology, one can assess whether or not there was an ocean acidification event and to what degree it contributed to the extinction. The eruption of the CAMP flood basalts began at the very end of the Triassic period, albeit before the official Triassic-Jurassic (T-J) boundary, (defined as the first Jurassic ammonite). CAMP is one of the largest continental flood basalts of the Phanerozoic (2-4 million cubic km) and was emplaced extremely rapidly (<1.6-2 Myr) in three to five pulses (possibly hundreds to tens of thousands of years). The massive injection of CAMP CO2 and other volcanic volatiles over such a short period of time would have caused a major change in ocean carbonate chemistry and, if short enough in duration, could have caused significant declines in oceanic carbonate saturation state (an ocean acidification event), possibly even undersaturating parts of the surface ocean with respect to aragonite and calcite. Although the change in saturation state of the ocean is extremely difficult to detect or quantify in the rock record, there is a distinct paucity of primary carbonate sediments in the T-J boundary interval, consistent with an ocean

  10. New insights into the crustal configuration of the Olga Basin from deep seismic and geochemistry data

    NASA Astrophysics Data System (ADS)

    Klitzke, Peter; Franke, Dieter; Blumenberg, Martin; Weniger, Philipp; Lutz, Rüdiger; Berglar, Kai; Ehrhardt, Axel

    2017-04-01

    The Norwegian Barents Sea, as the westernmost part of the Arctic Eurasian shelf, is located between the Proterozoic East-European Craton in the south and Cenozoic passive margins in the north and the west. This region has experienced multiple changes of the stress regime including Paleozoic continental collision, multi-stage late Paleozoic to Mesozoic rifting and Pliocene/Pleistocene uplift and erosion. Particularly the southwestern Barents Sea is in focus of academic as well as industry-driven studies since decades due to its hydrocarbon potential. This contributed to a comprehensive database and the corresponding petroleum systems are well understood. Opposed to that, potential petroleum systems of the northern Barents Sea are only poorly investigated. It is widely agreed that late Cenozoic uplift and erosion episodes were more pronounced to the north. As a consequence, potential Triassic source rocks are covered only locally by Jurassic strata but by a thin layer of Quaternary deposits. One objective of our Arctic activities is to shed new light on the evolution of potential petroleum systems in the northern Barents Sea. Therefore, geophysical and geological data were acquired southeast of Svalbard in the area of the Olga Basin in 2015. The obtained data include 1750 km of 2D multi-channel seismic lines, 350 km of wide angle seismic lines by means of sonobuoys, sediment echosounder data, multi-beam data and potential field data. First interpretation of the seismic profiles reveals a locally dense network of Triassic normal faults bordering the Olga basin and partly reaching as deep as to the acoustic basement. In particular, north of the Olga Basin this Triassic fault system seems to have experienced post-glacial reactivation as indicated by sediment echosounder data. Surface sediments were sampled by use of gravity and multi coring. Low concentrations of methane in the adsorbed fraction of hydrocarbon gases within the center of the Olga Basin imply that the

  11. Position of the Triassic-Jurassic boundary and timing of the end-Triassic extinctions on land: Data from the Moenave Formation on the southern Colorado Plateau, USA

    USGS Publications Warehouse

    Lucas, S.G.; Tanner, L.H.; Donohoo-Hurley, L.; Geissman, J.W.; Kozur, H.W.; Heckert, A.B.; Weems, R.E.

    2011-01-01

    Strata of the Moenave Formation on and adjacent to the southern Colorado Plateau in Utah-Arizona, U.S.A., represent one of the best known and most stratigraphically continuous, complete and fossiliferous terrestrial sections across the Triassic-Jurassic boundary. We present a synthesis of new biostratigraphic and magnetostratigraphic data collected from across the Moenave Formation outcrop belt, which extends from the St. George area in southwestern Utah to the Tuba City area in northern Arizona. These data include palynomorphs, conchostracans and vertebrate fossils (including footprints) and a composite polarity record based on four overlapping magnetostratigraphic sections. Placement of the Triassic-Jurassic boundary in strata of the Moenave Formation has long been imprecise and debatable, but these new data (especially the conchostracans) allow us to place the Triassic-Jurassic boundary relatively precisely in the middle part of the Whitmore Point Member of the Moenave Formation, stratigraphically well above the highest occurrence of crurotarsan body fossils or footprints. Correlation to marine sections based on this placement indicates that major terrestrial vertebrate extinctions preceded marine extinctions across the Triassic-Jurassic boundary and therefore were likely unrelated to the Central Atlantic Magmatic Province (CAMP) volcanism. ?? 2011 Elsevier B.V.

  12. Structural evolution of Cenozoic basins in northeastern Tunisia, in response to sinistral strike-slip movement on the El Alia-Teboursouk Fault

    NASA Astrophysics Data System (ADS)

    Bejaoui, Hamida; Aïfa, Tahar; Melki, Fetheddine; Zargouni, Fouad

    2017-10-01

    This paper resolves the structural complexity of Cenozoic sedimentary basins in northeastern Tunisia. These basins trend NE-SW to ∼ E-W, and are bordered by old fracture networks. Detailed descriptions of the structural features in outcrop and in subsurface data suggest that the El Alia-Teboursouk Fault zone in the Bizerte area evolved through a series of tectonic events. Cross sections, lithostratigraphic correlations, and interpretation of seismic profiles through the basins show evidence for: (i) a Triassic until Jurassic-Early Cretaceous rifting phase that induced lateral variations of facies and strata thicknesses; (ii) a set of faults oriented NE-SW, NW-SE, N-S, and E-W that guided sediment accumulation in pull-apart basins, which were subject to compressive and transpressive deformation during Eocene (Lutetian-Priabonian), Miocene (Tortonian), and Pliocene-Quaternary; and (iii) NNW-SSE to NS contractional events that occurred during the Late Pliocene. Part of the latest phase has been the formation of different synsedimentary folded structures with significant subsidence inversion. Such events have been responsible for the reactivation of inherited faults, and the intrusion of Triassic evaporites, ensuring the role of a slip layer. The combined effects of the different paleoconstraints and halokinetic movements are at the origin of the evolution of these pull-apart basins. The subsurface data suggest that an important fault displacement occurred during the Mesozoic-Cenozoic. The patterns of sediment accumulation in the different basins reflect a high activity of deep ancient faults.

  13. Associated skeletons of a new middle Triassic "Rauisuchia" from Brazil.

    PubMed

    França, Marco Aurélio G; Ferigolo, Jorge; Langer, Max C

    2011-05-01

    For more than 30 million years, in early Mesozoic Pangea, "rauisuchian" archosaurs were the apex predators in most terrestrial ecosystems, but their biology and evolutionary history remain poorly understood. We describe a new "rauisuchian" based on ten individuals found in a single locality from the Middle Triassic (Ladinian) Santa Maria Formation of southern Brazil. Nine articulated and associated skeletons were discovered, three of which have nearly complete skulls. Along with sedimentological and taphonomic data, this suggests that those highly successful predators exhibited some kind of intraspecific interaction. Other monotaxic assemblages of Triassic archosaurs are Late Triassic (Norian-Rhaetian) in age, approximately 10 million years younger than the material described here. Indeed, the studied assemblage may represent the earliest evidence of gregariousness among archosaurs, adding to our knowledge on the origin of a behavior pattern typical of extant taxa.

  14. Unappreciated diversification of stem archosaurs during the Middle Triassic predated the dominance of dinosaurs.

    PubMed

    Foth, Christian; Ezcurra, Martín D; Sookias, Roland B; Brusatte, Stephen L; Butler, Richard J

    2016-09-15

    Archosauromorpha originated in the middle-late Permian, radiated during the Triassic, and gave rise to the crown group Archosauria, a highly successful clade of reptiles in terrestrial ecosystems over the last 250 million years. However, scientific attention has mainly focused on the diversification of archosaurs, while their stem lineage (i.e. non-archosaurian archosauromorphs) has often been overlooked in discussions of the evolutionary success of Archosauria. Here, we analyse the cranial disparity of late Permian to Early Jurassic archosauromorphs and make comparisons between non-archosaurian archosauromorphs and archosaurs (including Pseudosuchia and Ornithodira) on the basis of two-dimensional geometric morphometrics. Our analysis recovers previously unappreciated high morphological disparity for non-archosaurian archosauromorphs, especially during the Middle Triassic, which abruptly declined during the early Late Triassic (Carnian). By contrast, cranial disparity of archosaurs increased from the Middle Triassic into the Late Triassic, declined during the end-Triassic extinction, but re-expanded towards the end of the Early Jurassic. Our study indicates that non-archosaurian archosauromorphs were highly diverse components of terrestrial ecosystems prior to the major radiation of archosaurs, including dinosaurs, while disparity patterns of the Ladinian and Carnian indicate a gradual faunal replacement of stem archosaurs by the crown group, including a short interval of partial overlap in morphospace during the Ladinian.

  15. The Timan-Pechora Basin province of northwest Arctic Russia; Domanik, Paleozoic total petroleum system

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.

  16. Lethally Hot Temperatures During the Early Triassic Greenhouse

    NASA Astrophysics Data System (ADS)

    Sun, Yadong; Joachimski, Michael M.; Wignall, Paul B.; Yan, Chunbo; Chen, Yanlong; Jiang, Haishui; Wang, Lina; Lai, Xulong

    2012-10-01

    Global warming is widely regarded to have played a contributing role in numerous past biotic crises. Here, we show that the end-Permian mass extinction coincided with a rapid temperature rise to exceptionally high values in the Early Triassic that were inimical to life in equatorial latitudes and suppressed ecosystem recovery. This was manifested in the loss of calcareous algae, the near-absence of fish in equatorial Tethys, and the dominance of small taxa of invertebrates during the thermal maxima. High temperatures drove most Early Triassic plants and animals out of equatorial terrestrial ecosystems and probably were a major cause of the end-Smithian crisis.

  17. Early Triassic Marine Biotic Recovery: The Predators' Perspective

    PubMed Central

    Scheyer, Torsten M.; Romano, Carlo; Jenks, Jim; Bucher, Hugo

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian) in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles) to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates) for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became apparent. PMID

  18. Early Triassic marine biotic recovery: the predators' perspective.

    PubMed

    Scheyer, Torsten M; Romano, Carlo; Jenks, Jim; Bucher, Hugo

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian) in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles) to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates) for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became apparent.

  19. Cadomian basement and Paleozoic to Triassic siliciclastics of the Taurides (Karacahisar dome, south-central Turkey): Paleogeographic constraints from U-Pb-Hf in zircons

    NASA Astrophysics Data System (ADS)

    Abbo, Avishai; Avigad, Dov; Gerdes, Axel; Güngör, Talip

    2015-06-01

    The Tauride block in Turkey is a peri-Gondwana, Cadomian-type terrane that rifted from the Afro-Arabian margin of Gondwana in the Permo-Triassic and re-accreted to Arabia in the Neogene. In the Karacahisar dome in the southern-central Taurides, Neoproterozoic basement metasediments and intrusive rocks are overlain by Cambro-Ordovician, Carboniferous and Triassic sediments. We studied U-Pb-Hf in zircons from major rock units exposed in Karacahisar in order to constrain the Cadomian crustal evolution of the Taurides, to evaluate the provenance of the Neoproterozoic and overlying sediments, to constrain the paleogeography of the Taurides, and to assess their linkage to Gondwana. The Neoproterozoic metasediments are low-grade metamorphic wacke-type turbidites that evolved in a broad back-arc basin peripheral to Afro-Arabia. Their detrital zircon U-Pb signal comprises a preponderance (40-68%) of Neoproterozoic-aged zircons (peak ages defined at 635 and 830 Ma), indicating that the sedimentary pile was built mainly from the erosion of Pan-African terranes from Afro-Arabia. The εHf values of the younger population (635 Ma) are mostly positive, indicating derivation from a juvenile arc, whereas Cryogenian-Tonian detrital zircons spread vertically (- 25 < εHf < 15), indicating a different provenance where mixing of juvenile magmas with Paleoproterozoic to Neoarchean crust was widespread. An unusually high proportion of pre-Neoproterozoic zircons is found in all Cadomian metasediments, including up to 31% Grenvillian-aged (ca. 1.0 Ga) and up to 35% of ca. 2.5 Ga zircons; about a third of the latter possess positive εHf values. Because only minor exposures of 1.0 and 2.5 Ga crustal vestiges are currently known in North Africa and Arabia, we infer that pre-Neoproterozoic terranes were dispersed within the Cadomian realm itself. The youngest detrital zircons in all Cadomian metasediments concentrate at 0.58 Ga, indicating that the proto-Cadomian back-arc basin was formed

  20. Quantitative challenges to our understanding of the tectonostratigraphic evolution of rift basin systems

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Kent, D. V.

    2012-12-01

    Pervasive orbitally-paced lake level cycles combined with magnetic polarity stratigraphy in central Pangean early Mesozoic rift basins provide a thus far unique and very large-scale quantitative basis for observing patterns of basin fill and comparisons with other basins. The 32 Myr accumulation rate history of the Newark basin is segmented into intervals lasting millions of years with virtually no change in the long-term accumulation rate (at the 400-kyr-scale), and the transitions between segments are abrupt and apparently basin-wide. This is startling, because the basin geometry was, and is, a half graben - triangular in cross section and dish-shaped in along-strike section. The long periods of time with virtually no change is challenging given a simple model of basin growth (1), suggesting some kind of compensation in sediment input for the increasing surface of the area of the basin through time. Perhaps even more challenging are observations based on magnetic polarity stratigraphy and the cyclicity, that basins distributed over a huge area of central Pangea (~700,000 km2) show parallel and correlative quantitative changes in accumulation rate with those of the Newark basin. The synchronous changes in the accumulation rate in these basins suggests a very large-scale linkage, the only plausible mechanism for which would seem to be at the plate-tectonic scale, perhaps involving extension rates. Together, we can speculate that some kind of balance between extension rates, basin accommodation space and perhaps regional drainage basin size might have been in operation The most dramatic accumulation rate change in the basins' histories occurred close to, and perhaps causally related to, the Triassic-Jurassic boundary and end-Triassic extinction. The Newark basin, for example exhibits a 4-to-5-fold increase in accumulation rate during the emplacement of the brief (<1 Myr) and aerially massive Central Atlantic Magmatic Province (CAMP) beginning at 201.5 Ma, the only

  1. Sedimentology of the lower part of the Upper Triassic Chinle Formation and its relationship to uranium deposits, White Canyon area, southeastern Utah

    USGS Publications Warehouse

    Dubiel, Russell F.

    1983-01-01

    Closely spaced measured stratigraphic sections of the lower part of the Late Triassic Chinle Formation in the White Canyon area of southeastern Utah depict a fluvial-deltaic-lacustrine depositional sequence that hosts uranium deposits in basal fluvial sandstones. The basal Shinarump Member consists of predominantly trough-crossbedded, coarse-grained sandstone and minor gray, carbonaceous mudstone and is interpreted as a valley-fill sequence overlain by deposits of a braided stream system. The overlying Monitor Butte Member is composed of cyclic- and foreset-bedded siltstone, sandstone, and mudstone and is interpreted as a succession of low-energy fluvial, deltaic and orqanicrich, lacustrine-marsh sediments. The overlying Moss Back Member is composed of a laterally extensive, coarse- to medium-grained, conglomeratic sandstone and is interpreted as a braided-stream system that flowed north to northwest. The entire sequence was deposited in response to changes in local base level associated with a large lake that lay to the west. Isopachs of lithofacies indicate distinct lacustrine basins and a correspondence between these facies and modern structural synclines. Facies changes and coincidence of isopach thicks suggest that structural synclines were active in the Late Triassic and influenced the pattern of sediment distribution within the basins. Uranium mineralization appears to be related to certain low-energy depositional environments in that uranium is localized in fluvial sandstones that lie beneath organic-rich lacustrine-marsh mudstones and carbonaceous delta-front sediments. The reducing environment preserved in these facies may have played an important role in the localization of uranium.

  2. Mass-wasting triggered by the end-Triassic mass-extinction

    NASA Astrophysics Data System (ADS)

    van de Schootbrugge, Bas; Vecoli, Marco; Strother, Paul; Lindstrom, Sofie; Oschmann, Wolfgang

    2014-05-01

    The end-Triassic dieback of tree-forming vegetation across NW Europe and the proliferation of a low-growing herbaceous pioneer vegetation composed of ferns and fern allies, likely had a major impact on weathering and erosion of emerged land masses. In a recently drilled core from northern Germany (Schandelah), palynological analyses provide evidence for this scenario. The uppermost Rhaetian Triletes Beds show increasing amounts of reworked Palaeozoic acritarchs and prasinophytes of up to 30% of the palynomorph fraction. Most of the acritarchs are singletons and can be assigned to Ordovician and Silurian species, such as Ankyrotrochus crispum, Oppilatala eoplanktonica, and Evittia spp. The average age of the reworked acritarch assemblages is observed to increase during the latest Rhaetian, leading to an inverted stratigraphy among Palaeozoic species. Further North, in the Stenlille cores from the Danish Basin, reworked Palaeozoic palynomorphs appear to constitute mainly sphaeromorphic prasinophytes and other Palaeozoic microfossils such as chitinozoans and carboniferous spores. Further south, at Mingolsheim (S Germany) the Triletes Beds contain a clear sign of soil reworking, including mycorrhizal fungal remains and cysts from probable soil organisms. These peculiar changes in palynological assemblages go hand-in-hand with important changes in sedimentology. The reworking of soil and bedrock is occurring in an interval that also contains evidence for earthquake activity in the form of widespread seismites. All these observations may be attributed to a number of mutually non-exclusive mechanisms, including decreased plant cover, an intensified hydrological cycle due to greenhouse warming, and the doming of the Central Atlantic Magmatic Province leading to continental-scale tectonic steepening of basin margins.

  3. Osmium isotope evidence for a large Late Triassic impact event

    PubMed Central

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio (187Os/188Osi) of ∼0.477 to unradiogenic values of ∼0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous–Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3–7.8 km in diameter) produced a global decrease in seawater 187Os/188Os ratios in the Late Triassic. PMID:24036603

  4. Encasement and subsidence of salt minibasins: observations from the SE Precaspian Basin and numerical modeling.

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Duffy, Oliver B.; Hudec, Michael R.; Jackson, Christopher A.-L.; Dooley, Tim P.; Jackson, Martin P. A.; Burg, George

    2017-04-01

    The SE Precaspian Basin is characterized by an assemblage of Upper Permian to Triassic minibasins. A recently acquired borehole-constrained 3D reflection dataset reveals the existence of abundant intrasalt reflection packages lying in between the Permo-Triassic minibasins. We propose that most of the mapped intrasalt reflection packages in the study area are minibasins originally deposited on top of salt that were later incorporated into salt by encasement processes. This makes the SE Precaspian Basin a new example of a salt province populated by encased minibasins, which until now had been mainly described from the Gulf of Mexico. Identifying salt-encased sediment packages in the study area has been crucial, not only because they provide a new exploration target, but also because they can play a key role on improving seismic imaging of adjacent or deeper stratigraphic sections. Another remarkable feature observed in the seismic dataset is the widespread occurrence of distinct seismic sequences in the Permo-Triassic minibasins. Bowl- and wedge-shaped seismic sequences define discrete periods of vertical and asymmetric minibasin subsidence. In the absence of shortening, the bowl-to-wedge transition is typically associated with the timing of basal welding and subsequent rotation of the minibasins. Timing of minibasin welding has important implications when addressing the likelihood of suprasalt reservoir charging. We performed a set of 2D numerical simulations aimed at investigating what drives the tilting of minibasins and how it relates to welding. A key observation from the numerical models is that the bowl-to-wedge transition can predate the time of basal welding.

  5. Provenance of Permian-Triassic Gondwana Sequence Units Accreted to the Banda Arc: Constraints from U/Pb and Hf Analysis of Zircons and Igneous Geochemistry

    NASA Astrophysics Data System (ADS)

    Flores, J. A.; Spencer, C. J.; Harris, R. A.; Hoiland, C.

    2011-12-01

    Analysis of zircons from Australian affinity Permo-Triassic units of the Timor region yield age distributions with large peaks at 230-400 Ma and 1750-1900 Ma (n=435). Similar zircon age peaks are also found in rocks from NE Australia and the eastern Cimmerian block. It is likely that these terranes, which are now widely separated, were once part of the northern edge of Gondwana near what is now the NW margin of Australia. The Cimmerian Block was removed from Gondwana during Early Permian rifting and initiation of the Neo-Tethys Ocean. Hf analysis of zircon from the Aileu Complex in Timor and Kisar shows bimodal (juvenial and evolved) magmatism in the Gondwana Sequence of NW Australia at ~300 Ma. The magmatic event produced basalt with rift valley and ocean floor geochemical affinities, and rhyolite. Similar rock types and isotopic signatures are also found in Permo-Triassic igneous units throughout the Cimmerian continental block. The part of the Cimmerian Block with zircon distributions most like the Gondwana Sequence of NW Australia is the terranes of northern Tibet and Malaysia. The large 1750-1900 Ma zircon peak is much more wide spread, and appears in terranes from Baoshan (SW China) to Borneo. The Permo-Triassic rocks of the Timor region fill syn-rift intracratonic basins that successfully rifted in the Jurassic to form the NW margin of Australia. This passive continental margin first entered the Sunda Trench in the Timor region at around 8 Ma causing the Permo-Triassic rocks to accrete to the edge of the Asian Plate and emerge as a series of mountainous islands in the young collision zone. Eventually, the Australian continental margin will collide with the southern edge of the Asian plate and these Gondwana terranes will rejoin. However, it may be difficult to reconstruct the various ventures of they made over the past 300 Ma.

  6. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism

    NASA Astrophysics Data System (ADS)

    Song, Huyue; Tong, Jinnan; Algeo, Thomas J.; Horacek, Micha; Qiu, Haiou; Song, Haijun; Tian, Li; Chen, Zhong-Qiang

    2013-06-01

    Vertical gradients in the δ13C of seawater dissolved inorganic carbon (Δδ13CDIC) can be estimated for paleomarine systems based on δ13Ccarb data from sections representing a range of depositional water depths. An analysis of eight Lower Triassic sections from the northern Yangtze Platform and Nanpanjiang Basin, representing water depths of ~ 50 to 500 m, allowed reconstruction of Δδ13CDIC in Early Triassic seas of the South China craton for seven time slices representing four negative (N) and three positive (P) carbon-isotope excursions: 8.5‰ (N1), 5.8‰ (P1), 3.5‰ (N2), 6.5‰ (P2), 7.8‰ (N3), - 1.9‰ (P3), and 2.2‰ (N4). These values are much larger than vertical δ13CDIC gradients in the modern ocean (~ 1-3‰) due to intensified stratification and reduced vertical mixing in Early Triassic seas. Peaks in Δδ13CDIC around the PTB (N1) and in the early to mid-Smithian (P2-N3) coincided with episodes of strong climatic warming, reduced marine productivity, and expanded ocean anoxia. The Dienerian-Smithian boundary marks the onset of a major mid-Early Triassic disturbance, commencing ~ 1 Myr after the latest Permian mass extinction, that we link to a second eruptive stage of the Siberian Traps. Inhospitable oceanic conditions generally persisted until the early Spathian, when strong climatic cooling caused re-invigoration of global-ocean circulation, leading to an interval of negative Δδ13CDIC values and a sharp increase in δ13Ccarb driven by upwelling of nutrient-rich deepwaters. These developments marked the end of the main eruptive stage of the Siberian Traps.

  7. The Earliest Post-Paleozoic Freshwater Bivalves Preserved in Coprolites from the Karoo Basin, South Africa

    PubMed Central

    Yates, Adam M.; Neumann, Frank H.; Hancox, P. John

    2012-01-01

    Background Several clades of bivalve molluscs have invaded freshwaters at various times throughout Phanerozoic history. The most successful freshwater clade in the modern world is the Unionoida. Unionoids arose in the Triassic Period, sometime after the major extinction event at the End-Permian boundary and are now widely distributed across all continents except Antarctica. Until now, no freshwater bivalves of any kind were known to exist in the Early Triassic. Principal Findings Here we report on a faunule of two small freshwater bivalve species preserved in vertebrate coprolites from the Olenekian (Lower Triassic) of the Burgersdorp Formation of the Karoo Basin, South Africa. Positive identification of these bivalves is not possible due to the limited material. Nevertheless they do show similarities with Unionoida although they fall below the size range of extant unionoids. Phylogenetic analysis is not possible with such limited material and consequently the assignment remains somewhat speculative. Conclusions Bivalve molluscs re-invaded freshwaters soon after the End-Permian extinction event, during the earliest part of the recovery phase during the Olenekian Stage of the Early Triassic. If the specimens do represent unionoids then these Early Triassic examples may be an example of the Lilliput effect. Since the oldest incontrovertible freshwater unionoids are also from sub-Saharan Africa, it is possible that this subcontinent hosted the initial freshwater radiation of the Unionoida. This find also demonstrates the importance of coprolites as microenvironments of exceptional preservation that contain fossils of organisms that would otherwise have left no trace. PMID:22319562

  8. A new archosauriform (Reptilia: Diapsida) from the Manda beds (Middle Triassic) of southwestern Tanzania.

    PubMed

    Nesbitt, Sterling J; Butler, Richard J; Gower, David J

    2013-01-01

    Archosauria and their closest relatives, the non-archosaurian archosauriforms, diversified in the Early and Middle Triassic, soon after the end-Permian extinction. This diversification is poorly documented in most Lower and Middle Triassic rock sequences because fossils of early groups of archosauriforms are relatively rare compared to those of other amniotes. The early Middle Triassic (? late Anisian) Manda beds of southwestern Tanzania form an exception, with early archosaur skeletons being relatively common and preserved as articulated or associated specimens. The Manda archosaur assemblage is exceptionally diverse for the Middle Triassic. However, to date, no non-archosaurian archosauriforms have been reported from these rocks. Here, we name a new taxon, Asperoris mnyama gen. et sp. nov., from the Manda beds and thoroughly describe the only known specimen. The specimen consists of a well-preserved partial skull including tooth-bearing elements (premaxilla, maxilla), the nasal, partial skull roof, and several incomplete elements. All skull elements are covered in an autapomorphic highly rugose sculpturing. A unique combination of character states indicates that A. mnyama lies just outside Archosauria as a stem archosaur within Archosauriformes, but more precise relationships of A. mnyama relative to other early archosauriform clades (e.g., Erythrosuchidae) cannot be determined currently. Asperoris mnyama is the first confirmed non-archosaurian archosauriform from the Manda beds and increases the morphological and taxonomic diversity of early archosauriforms known from the Middle Triassic. The direct association of A. mnyama with species referable to Archosauria demonstrates that non-archosaurian archosauriforms were present during the rise and early diversification of Archosauria. Non-archosaurian archosauriforms and archosaurs co-occur in fossil reptile assemblages across Pangaea from the late Early Triassic to the end of the Late Triassic.

  9. Tectonic significance of porosity and permeability regimes in the red beds formations of the South Georgia Rift Basin

    NASA Astrophysics Data System (ADS)

    Akintunde, Olusoga M.; Knapp, Camelia C.; Knapp, James H.

    2014-09-01

    A simple, new porosity/permeability-depth profile was developed from available laboratory measurements on Triassic sedimentary red beds (sandstone) from parts of the South Georgia Rift (SGR) basin in order to investigate the feasibility for long-term CO2 storage. The study locations were: Sumter, Berkeley, Dunbarton, Clubhouse Crossroad-3 (CC-3) and Norris Lightsey wells. As expected, both porosity and permeability show changes with depth at the regional scale that was much greater than at local scale. The significant changes in porosity and permeability with depth suggest a highly compacted, deformed basin, and potentially, a history of uplift and erosion. The permeability is generally low both at shallow (less than 1826 ft/556.56 m) and deeper depths (greater than 1826 ft/556.56 m). Both porosity and permeability follow the normal trend, decreasing linearly with depth for most parts of the study locations with the exception of the Norris Lightsey well. A petrophysical study on a suite of well logs penetrating the Norris Lightsey red beds at depths sampled by the core-derived laboratory measurements shows an abnormal shift (by 50%) in the acoustic travel time and/or in the sonic-derived P-wave velocity that indicates possible faulting or fracturing at depth. The departure of the Norris Lightsey's porosities and permeabilities from the normal compaction trend may be a consequence of the existence of a fault/fracture controlled abnormal pressure condition at depth. The linear and non-linear behaviors of the porosity/permeability distribution throughout the basin imply the composition of the SGR red beds, and by extension analog/similar Triassic-Jurassic formations within the Eastern North American Margin have been altered by compaction, uplift, erosion and possible faulting that have shaped the evolution of these Triassic formations following the major phase of rifting.

  10. Geologic map of the Basque-Cantabrian Basin and a new tectonic interpretation of the Basque Arc

    NASA Astrophysics Data System (ADS)

    Ábalos, B.

    2016-11-01

    A new printable 1/200.000 bedrock geological map of the onshore Basque-Cantabrian Basin is presented, aimed to contribute to future geologic developments in the central segment of the Pyrenean-Cantabrian Alpine orogenic system. It is accompanied in separate appendixes by a historic report on the precedent geological maps and by a compilation above 350 bibliographic citations of maps and academic reports (usually overlooked or ignored) that are central to this contribution. Structural scrutiny of the map permits to propose a new tectonic interpretation of the Basque Arc, implementing previously published partial reconstructions. It is presented as a printable 1/400.000 tectonic map. The Basque Arc consists of various thrust slices that can expose at the surface basement rocks (Palaeozoic to Lower Triassic) and their sedimentary cover (uppermost Triassic to Tertiary), from which they are detached by intervening (Upper Triassic) evaporites and associated rocks. The slice-bounding thrusts are in most cases reactivated normal faults active during Meso-Cenozoic sedimentation that can be readily related to basement discontinuities generated during the Hercynian orogeny.

  11. Middle Triassic back-arc basalts from the blocks in the Mersin Mélange, southern Turkey: Implications for the geodynamic evolution of the Northern Neotethys

    NASA Astrophysics Data System (ADS)

    Sayit, Kaan; Bedi, Yavuz; Tekin, U. Kagan; Göncüoglu, M. Cemal; Okuyucu, Cengiz

    2017-01-01

    The Mersin Mélange is a tectonostratigraphic unit within the allochthonous Mersin Ophiolitic Complex in the Taurides, southern Turkey. This chaotic structure consists of blocks and tectonic slices of diverse origins and ages set in a clastic matrix of Upper Cretaceous age. In this study, we examine two blocks at two different sections characterized by basaltic lava flows alternating with radiolarian-bearing pelagic sediments. The radiolarian assemblage extracted from the mudstone-chert alternation overlying the lavas yields an upper Anisian age (Middle Triassic). The immobile element geochemistry suggests that the lava flows are predominantly characterized by sub-alkaline basalts. All lavas display pronounced negative Nb anomalies largely coupled with normal mid-ocean basalt (N-MORB)-like high field strength element (HFSE) patterns. On the basis of geochemical modelling, the basalts appear to have dominantly derived from spinel-peridotite and pre-depleted spinel-peridotite sources, while some enriched compositions can be explained by contribution of garnet-facies melts from enriched domains. The overall geochemical characteristics suggest generation of these Middle Triassic lavas at an intra-oceanic back-arc basin within the northern branch of Neotethys. This finding is of significant importance, since these rocks may represent the presence of the oldest subduction zone found thus far from the Neotethyan branches. This, in turn, suggests that the rupturing of the Gondwanan lithosphere responsible for the opening of the northern branch of Neotethys should have occurred during the Lower Triassic or earlier.

  12. The Newly Identified Subsurface Hazlehurst Formation and Implications for the Tectonic Evolution of the South Georgia Rift Basin, Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Cao, R.; Knapp, J. H.

    2016-12-01

    Integration of new 2-D seismic reflection profile with existing wells and potential field data from southeastern Georgia, USA provide exciting discovery of a new stratigraphic unit associated with the post-rift phase of the South Georgia Rift (SGR) basins. These data document an apparent reversal of rift basin asymmetry across the Warner Robins Transfer Zone, and the apparent presence of a new sub-horizontal stratigraphic unit (informally named the Hazlehurst Formation) which overlies with angular unconformity an inferred Triassic rift basin (Valdosta Basin), and sits below the regional Coastal Plain unconformity. Triassic rifting of the supercontinent Pangea left behind numerous extensional basins on what is now the eastern North American margin. The SGR is thought to be the most regionally extensive and best preserved of these basins, which were capped by thick basalt -flows of the Central Atlantic Magmatic Province (CAMP) and later buried beneath the Cretaceous and younger Coastal Plain section. Because it is buried beneath the Coastal Plain, the SGR is only known through relatively sparse drilling and geophysical methods. With these new seismic data acquired in 2013 near Hazlehurst, Georgia, we are able to put more constraints into the tectonic history of the basin. We test several hypotheses related to the SGR: (1) the "Transfer Zone" had to exist to transmit extensional strain between rift sub-basins with reverse polarities; (2) the newly identified sub-horizontal stratigraphic interval ("Hazlehurst Formation"), with a possible Jurassic age may represent a post-rift phase of regional subsidence; (3) the extent of this new unit appears to cover most of the coastal plain from eastern Mississippi to South Carolina. The result of this study suggests the previous inferred extent of the might need revision.

  13. Evolutionary and Ecological Sequelae of Mass Extinctions: Examples From the Continental Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Whiteside, J. H.

    2003-12-01

    after the boundary. Species flocks of semionotid fishes dominated earliest Jurassic giant rift lakes in eastern North America, but not Triassic or later Early Jurassic lakes in the same basins. Based on footprint data, it is quite possible that there were also species flocks of morphologically similar ceratosaurian theropod dinosaurs in the Early Jurassic.

  14. Picrite "Intelligence" from the Middle-Late Triassic Stikine arc: Composition of mantle wedge asthenosphere

    NASA Astrophysics Data System (ADS)

    Milidragovic, D.; Zagorevski, A.; Weis, D.; Joyce, N.; Chapman, J. B.

    2018-05-01

    Primitive, near-primary arc magmas occur as a volumetrically minor ≤100 m thick unit in the Canadian Cordillera of northwestern British Columbia, Canada. These primitive magmas formed an olivine-phyric, picritic tuff near the base of the Middle-Late Triassic Stuhini Group of the Stikine Terrane (Stikinia). A new 40Ar/39Ar age on hornblende from a cross-cutting basaltic dyke constrains the tuff to be older than 221 ± 2 Ma. An 87Sr/86Sr isochron of texturally-unmodified tuff samples yields 212 ± 25 Ma age, which is interpreted to represent syn-depositional equilibration with sea-water. Parental trace element magma composition of the picritic tuff is strongly depleted in most incompatible trace elements relative to MORB and implies a highly depleted ambient arc mantle. High-precision trace element and Hf-Nd-Pb isotopic analyses indicate an origin by mixing of a melt of depleted ambient asthenosphere with ≤2% of subducted sediment melt. Metasomatic addition of non-conservative incompatible elements through melting of subducted Panthalassa Ocean floor sediments accounts for the arc signature of the Stuhini Group picritic tuff, enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and high field strength elements (HFSE), and anomalous enrichment in Pb. The inferred Panthalassan sediments are similar in composition to the Neogene-Quaternary sediments of the modern northern Cascadia Basin. The initial Hf isotopic composition of the picritic tuff closely approximates that of the ambient Middle-Late Triassic asthenosphere beneath Stikinia and is notably less radiogenic than the age-corrected Hf isotopic composition of the Depleted (MORB) Mantle reservoir (DM or DMM). This suggests that the ambient asthenospheric mantle end-member experienced melt depletion (F ≤ 0.05) a short time before picrite petrogenesis. The mantle end-member in the source of the Stuhini Group picritic tuff is isotopically similar to the mantle source of

  15. The end-triassic mass extinction event

    NASA Technical Reports Server (NTRS)

    Hallam, A.

    1988-01-01

    The end-Triassic is the least studied of the five major episodes of mass extinction recognized in the Phanerozoic, and the Triassic-Jurassic boundary is not precisely defined in most parts of the world, with a paucity of good marine sections and an insufficiency of biostratigraphically valuable fossils. Despite these limitations it is clear that there was a significant episode of mass extinction, affecting many groups, in the Late Norian and the existing facts are consistent with it having taken place at the very end of the period. The best record globally comes from marine strata. There was an almost complete turnover of ammonites across the T-J boundary, with perhaps no more than one genus surviving. About half the bivalve genera and most of the species went extinct, as did many archaeogastropods. Many Paleozoic-dominant brachiopods also disappeared, as did the last of the conodonts. There was a major collapse and disappearance of the Alpine calcareous sponge. Among terrestrial biota, a significant extinction event involving tetrapods was recognized. With regard to possible environmental events that may be postulated to account for the extinctions, there is no evidence of any significant global change of climate at this time. The existence of the large Manicouagan crater in Quebec, dated as about late or end-Triassic, has led to the suggestion that an impact event might be implicated, but so far despite intensive search no unequivocal iridium anomaly or shocked quartz was discovered. On the other hand there is strong evidence for significant marine regression in many parts of the world. It is proposed therefore that the likeliest cause of the marine extinctions is severe reduction in habitat area caused either by regression of epicontinental seas, subsequent widespread anoxia during the succeeding transgression, or a combination of the two.

  16. Absence of Suction Feeding Ichthyosaurs and Its Implications for Triassic Mesopelagic Paleoecology

    PubMed Central

    Motani, Ryosuke; Ji, Cheng; Tomita, Taketeru; Kelley, Neil; Maxwell, Erin; Jiang, Da-yong; Sander, Paul Martin

    2013-01-01

    Mesozoic marine reptiles and modern marine mammals are often considered ecological analogs, but the extent of their similarity is largely unknown. Particularly important is the presence/absence of deep-diving suction feeders among Mesozoic marine reptiles because this would indicate the establishment of mesopelagic cephalopod and fish communities in the Mesozoic. A recent study suggested that diverse suction feeders, resembling the extant beaked whales, evolved among ichthyosaurs in the Triassic. However, this hypothesis has not been tested quantitatively. We examined four osteological features of jawed vertebrates that are closely linked to the mechanism of suction feeding, namely hyoid corpus ossification/calcification, hyobranchial apparatus robustness, mandibular bluntness, and mandibular pressure concentration index. Measurements were taken from 18 species of Triassic and Early Jurassic ichthyosaurs, including the presumed suction feeders. Statistical comparisons with extant sharks and marine mammals of known diets suggest that ichthyosaurian hyobranchial bones are significantly more slender than in suction-feeding sharks or cetaceans but similar to those of ram-feeding sharks. Most importantly, an ossified hyoid corpus to which hyoid retractor muscles attach is unknown in all but one ichthyosaur, whereas a strong integration of the ossified corpus and cornua of the hyobranchial apparatus has been identified in the literature as an important feature of suction feeders. Also, ichthyosaurian mandibles do not narrow rapidly to allow high suction pressure concentration within the oral cavity, unlike in beaked whales or sperm whales. In conclusion, it is most likely that Triassic and Early Jurassic ichthyosaurs were ‘ram-feeders’, without any beaked-whale-like suction feeder among them. When combined with the inferred inability for dim-light vision in relevant Triassic ichthyosaurs, the fossil record of ichthyosaurs does not suggest the establishment of modern

  17. Contrasting basin architecture and rifting style of the Vøring Basin, offshore mid-Norway and the Faroe-Shetland Basin, offshore United Kingdom

    NASA Astrophysics Data System (ADS)

    Schöpfer, Kateřina; Hinsch, Ralph

    2017-04-01

    are present in the Faroe-Shetland Basin, but are not recognisable in the Vøring Basin. (iv) Based on seismic data only, a Permian/Triassic rift phase can be suggested for the Vøring Basin, but the evidence for an equivalent rift phase in the Faroe-Shetland Basin is inconclusive. The present study demonstrates that basins developing above a complex mosaic of basement terrains accreted during orogenic phases can exhibit significant differences in their architecture. The origin of these differences may be considered to be a result of inherited pre-existing large-scale structures (e.g. pre-existing fault blocks) and/or a non-uniform crustal thickness prior to rifting.

  18. Depositional Record of the Bagua Basin, Northern Peru: Implications for Climate and Tectonic Evolution of Tropical South America

    NASA Astrophysics Data System (ADS)

    Moreno, F.; George, S. W. M.; Williams, L. A.; Horton, B. K.; Garzione, C. N.

    2015-12-01

    The Andes Mountains exert critical controls on the climate, hydrology, and biodiversity of South America. The Bagua Basin, a low elevation (400-600 m) intermontane basin in northern Peru, offers a unique opportunity to study the ecological, climatic, and structural evolution of the western topographic boundary of the Amazonian foreland. Situated between the Marañon fold-thrust belt of the Western Cordillera and basement block uplifts of the Eastern Cordillera, the Bagua region contains a protracted, semi-continuous record of Triassic through Pleistocene sedimentation. Whereas Triassic-Cretaceous marine deposits were potentially related to extension and regional thermal subsidence, a Paleocene-Eocene shift to shallow marine and fluvial systems marks the onset of foreland basin conditions. Oligocene-Miocene sedimentation corresponds to a braided-meandering fluvial system with exceptional development of paleosols. In this study, we use new detrital zircon U-Pb geochronologic and oxygen stable isotopic datasets to establish a chronology of pre-Andean and Andean processes within the Bagua Basin. Detrital zircon geochronology provides constraints on when the Western and Eastern cordilleras shed sediments into the basin. Syndepositional zircons within Eocene, Oligocene and Miocene strata provide key age control for a previously poorly constrained depositional chronology. Preliminary results suggest a dramatic provenance shift in which Paleocene deposits contain almost exclusively cratonic populations (500-1600 Ma) whereas Eocene deposits show a mix of syndepositional zircons from the magmatic arc, recycled Mesozoic zircons, and cratonic zircon populations. Oxygen stable isotopes (δ18O) of carbonate nodules from Neogene paleosols will help elucidate when the Eastern Cordillera became an orographic barrier intercepting moisture from the Amazon basin to the east. Together, these records will help uncover the history of tectonics and climate interaction in tropical South

  19. Ophiuroids Discovered in the Middle Triassic Hypersaline Environment

    PubMed Central

    Salamon, Mariusz A.; Niedźwiedzki, Robert; Lach, Rafał; Brachaniec, Tomasz; Gorzelak, Przemysław

    2012-01-01

    Echinoderms have long been considered to be one of the animal phyla that is strictly marine. However, there is growing evidence that some recent species may live in either brackish or hypersaline environments. Surprisingly, discoveries of fossil echinoderms in non-(open)marine paleoenvironments are lacking. In Wojkowice Quarry (Southern Poland), sediments of lowermost part of the Middle Triassic are exposed. In limestone layer with cellular structures and pseudomorphs after gypsum, two dense accumulations of articulated ophiuroids (Aspiduriella similis (Eck)) were documented. The sediments with ophiuroids were formed in environment of increased salinity waters as suggested by paleontological, sedimentological, petrographical and geochemical data. Discovery of Triassic hypersaline ophiuroids invalidates the paleontological assumption that fossil echinoderms are indicators of fully marine conditions. Thus caution needs to be taken when using fossil echinoderms in paleoenvironmental reconstructions. PMID:23185442

  20. Petroleum geology of the major producing basins of Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attar, A.; Chaouch, A.

    1988-08-01

    The South Atlas flexure divides Algeria into two contrasting geologic provinces: (1) the Saharan Atlas and offshore region in the north, both of which are part of the Mediterranean basin, and (2) the Saharan platform on the south, part of the North African craton. The limits of the various sedimentary basins on the Saharan platform are tied to late Paleozoic (Hercynian) crustal reactivation. Comparable structurally controlled basins in northern Algeria are the products of Mesozoic-Recent tectonism. The spatial and temporal distribution of hydrocarbons in the Algerian Sahara can be understood in terms of the geologic evolution of the region. Analysismore » of areas of proven hydrocarbon reserves permits the following generalizations. (1) There is a concentration of oil and gas fields northeast of a northwest-southeast-trending line connecting Hassi R'Mel with In Amenas. Production is also established in the Sbaa basin and in northern Algeria, where recent discoveries have been made in, respectively, upper Paleozoic and Mesozoic reservoirs. (2) Hydrocarbon are present throughout the entire sedimentary column, but major production currently is restricted to the lower Paleozoic (Cambrian-Ordovician and Lower Devonian) and Triassic reservoirs.« less

  1. Bone microstructure and the evolution of growth patterns in Permo-Triassic therocephalians (Amniota, Therapsida) of South Africa

    PubMed Central

    Botha-Brink, Jennifer

    2014-01-01

    Therocephalians were a speciose clade of nonmammalian therapsids whose ecological diversity and survivorship of the end-Permian mass extinction offer the potential to investigate the evolution of growth patterns across the clade and their underlying influences on post-extinction body size reductions, or ‘Lilliput effects’. We present a phylogenetic survey of limb bone histology and growth patterns in therocephalians from the Middle Permian through Middle Triassic of the Karoo Basin, South Africa. Histologic sections were prepared from 80 limb bones representing 11 genera of therocephalians. Histologic indicators of skeletal growth, including cortical vascularity (%CV) and mean primary osteon diameters (POD), were evaluated in a phylogenetic framework and assessed for correlations with other biologically significant variables (e.g., size and robusticity). Changes in %CV and POD correlated strongly with evolutionary changes in body size (i.e., smaller-bodied descendants tended to have lower %CV than their larger-bodied ancestors across the tree). Bone wall thickness tended to be high in early therocephalians and lower in the gracile-limbed baurioids, but showed no general correlation with cross-sectional area or degree of vascularity (and, thus, growth). Clade-level patterns, however, deviated from previously studied within-lineage patterns. For example, Moschorhinus, one of few therapsid genera to have survived the extinction boundary, demonstrated higher %CV in the Triassic than in the Permian despite its smaller size in the extinction aftermath. Results support a synergistic model of size reductions for Triassic therocephalians, influenced both by within-lineage heterochronic shifts in survivor taxa (as reported in Moschorhinus and the dicynodont Lystrosaurus) and phylogenetically inferred survival of small-bodied taxa that had evolved short growth durations (e.g., baurioids). These findings mirror the multi-causal Lilliput patterns described in marine faunas

  2. The role of E-W basement faults in the Mesozoic geodynamic evolution of the Gafsa and Chotts basins, south-central Tunisia

    NASA Astrophysics Data System (ADS)

    Amri, Dorra Tanfous; Dhahri, Ferid; Soussi, Mohamed; Gabtni, Hakim; Bédir, Mourad

    2017-10-01

    The Gafsa and Chotts intracratonic basins in south-central Tunisia are transitional zones between the Atlasic domain to the north and the Saharan platform to the south. The principal aim of this paper is to unravel the geodynamic evolution of these basins following an integrated approach including seismic, well log and gravity data. These data are used to highlight the tectonic control on the deposition of Jurassic and Lower Cretaceous series and to discuss the role of the main faults that controlled the basin architecture and Cretaceous-Tertiary inversion. The horizontal gravity gradient map of the study area highlights the pattern of discontinuities within the two basins and reveals the presence of deep E-W basement faults. Primary attention is given to the role played by the E-W faults system and that of the NW-SE Gafsa fault which was previously considered active since the Jurassic. Facies and thickness analyses based on new seismic interpretation and well data suggest that the E-W-oriented faults controlled the subsidence distribution especially during the Jurassic. The NW-SE faults seem to be key structures that controlled the basins paleogeography during Late Cretaceous-Cenozoic time. The upper Triassic evaporite bodies, which locally outline the main NW-SE Gafsa fault, are regarded as intrusive salt bodies rather than early diapiric extrusions as previously interpreted since they are rare and occurred only along main strike-slip faults. In addition, seismic lines show that Triassic rocks are deep and do not exhibit true diapiric features.

  3. Low-Flow Characteristics and Discharge Profiles for Selected Streams in the Cape Fear River Basin, North Carolina, Through 1998

    USGS Publications Warehouse

    Weaver, J.C.; Pope, B.F.

    2001-01-01

    An understanding of the magnitude and frequency of low-flow discharges is an important part of evaluating surface-water resources and planning for municipal and industrial economic expansion. Low-flow characteristics are summarized in this report for 67 continuous-record gaging stations and 121 partial-record measuring sites in the Cape Fear River Basin of North Carolina. Records of discharge collected through the 1998 water year were used in the analyses. Flow characteristics included in the summary are (1) average annual unit flow; (2) 7Q10 low-flow discharge, the minimum average discharge for a 7-consecutive-day period occurring, on average, once in 10 years; (3) 30Q2 low-flow discharge; (4) W7Q10 low-flow discharge, similar to 7Q10 discharge except that only flow during November through March is considered; and (5) 7Q2 low-flow discharge. Low-flow characteristics in the Cape Fear River Basin vary widely in response to changes in geology and soil types. The area of the basin with the lowest potentials for sustained base flows is underlain by the Triassic basin in parts of Durham, Wake, and Chatham Counties. Typically, these soils are derived from basalt and fine-grained sedimentary rocks that allow very little infiltration of water into the shallow aquifers for storage and later release to streams during periods of base flow. The area of the basin with the highest base flows is the Sand Hills region in parts of Moore, Harnett, Hoke, and Cumberland Counties. Streams in the Sand Hills have the highest unit low flows in the study area as well as in much of North Carolina. Well-drained sandy soils in combination with higher topographic relief relative to other areas in the Coastal Plain contribute to the occurrence of high potentials for sustained base flows. A number of sites in the upper part of the Cape Fear River Basin underlain by the Carolina Slate Belt and Triassic basin, as well many sites in lower areas of the Coastal Plain (particularly the Northeast Cape

  4. The roles of ecological first principles and evolutionary contingency in unraveling ecosystem response and reconstruction during the Permian-Triassic transition.

    NASA Astrophysics Data System (ADS)

    Roopnarine, P. D.; Weik, A.; Dineen, A.; Angielczyk, K.

    2016-12-01

    The Permian-Triassic mass extinction (PTME) is the most severe mass extinction recorded in Earth's history. Effects on the biosphere were complicated and often contradictory, e.g. selective species extinctions and exceptional species survival; prolonged miniaturization of some Early Triassic clades but rapid increases of size in others; and both simplified and complex trophic structures in various E. Triassic ecosystems. Here we present the results of a new generalized model of paleocommunity global stability (number of species capable of persistent coexistence in the absence of external perturbation), suggesting that community dynamics in response to species extinction, and the addition of new species in the aftermath of the PTME, is best understood as a complex outcome of predictable community dynamics and contingent, unpredictable evolutionary pathways. We applied the model to the best known PTME transitional terrestrial ecosystem, the Karoo Basin of South Africa. The model verifies previous claims that global stability scales negatively with increasing species richness and the strength of interspecific interactions. We also show that global stability scales negatively with intrinsic population growth rates. Taxon-rich Permian communities could therefore have persisted only under a restricted range of those parameters. Communities during three phases of the PTME, however, exhibited greater global stability than would be predicted from the pre-PTME communities. Those communities could therefore have maintained relative stabilities under a broader range of parameters, implying that species could have adapted by modifying life history and ecological traits with lesser negative consequences to community stability. The earliest post-PTME community with increased species richness, however, was less stable than would be predicted from pre-PTME communities. In both the extinction and aftermath communities, nonlinear deviations from the general scaling of stability

  5. Silicified wood from the Permian and Triassic of Antarctica: Tree rings from polar paleolatitudes

    USGS Publications Warehouse

    Ryberg, P.E.; Taylor, E.L.

    2007-01-01

    The mass extinction at the Permian-Triassic boundary produced a floral turnover in Gondwana in which Paleozoic seed ferns belonging to the Glossopteridales were replaced by corystosperm seed ferns and other seed plant groups in the Mesozoic. Secondary growth (wood production) in both plant groups provides information on plant growth in relation to environment in the form of permineralized tree rings. Techniques utilized to analyze extant wood can be used on fossil specimens to better understand the climate from both of these periods. Late Permian and early Middle Triassic tree rings from the Beardmore Glacier area indicate an environment where extensive plant growth occurred at polar latitudes (~80–85°S, Permian; ~75°S, Triassic). A rapid transition to dormancy in both the Permian and Triassic woods suggests a strong influence of the annual light/dark cycle within the Antarctic Circle on ring production. Latewood production in each ring was most likely triggered by the movement of the already low-angled sun below the horizon. The plants which produced the wood have been reconstructed as seasonally deciduous, based on structural and sedimentologic evidence. Although the Late Permian climate has been reconstructed as cold temperate and the Middle Triassic as a greenhouse, these differences are not reflected in tree ring anatomy or wood production in these plant fossils from the central Transantarctic Mountains.

  6. Distal facies variability within the Upper Triassic part of the Otuk Formation in northern Alaska

    USGS Publications Warehouse

    Whidden, Katherine J.; Dumoulin, Julie A.; Whalen, M.T.; Hutton, E.; Moore, Thomas; Gaswirth, Stephanie

    2014-01-01

    The Triassic-Jurassic Otuk Formation is a potentially important source rock in allochthonous structural positions in the northern foothills of the Brooks Range in the North Slope of Alaska. This study focuses on three localities of the Upper Triassic (Norian) limestone member, which form a present-day, 110-km-long, east-west transect in the central Brooks Range. All three sections are within the structurally lowest Endicott Mountain allochthon and are interpreted to have been deposited along a marine outer shelf with a ramp geometry.The uppermost limestone member of the Otuk was chosen for this study in order to better understand lateral and vertical variability within carbonate source rocks, to aid prediction of organic richness, and ultimately, to evaluate the potential for these units to act as continuous (or unconventional) reservoirs. At each locality, 1 to 4 m sections of the limestone member were measured and sampled in detail to capture fine-scale features. Hand sample and thin section descriptions reveal four major microfacies in the study area, and one diagenetically recrystallized microfacies. Microfacies 1 and 2 are interpreted to represent redeposition of material by downslope transport, whereas microfacies 3 and 4 have high total organic carbon (TOC) values and are classified as primary depositional organofacies. Microfacies 3 is interpreted to have been deposited under primarily high productivity conditions, with high concentrations of radiolarian tests. Microfacies 4 was deposited under the lowest relative-oxygen conditions, but abundant thin bivalve shells indicate that the sediment-water interface was probably not anoxic.The Otuk Formation is interpreted to have been deposited outboard of a southwest-facing ramp margin, with the location of the three limestone outcrops likely in relatively close proximity during deposition. All three sections have evidence of transported material, implying that the Triassic Alaskan Basin was not a low-energy, deep

  7. Mesozoic rift basins in western desert of Egypt, their southern extension and impact on future exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taha, M.A.

    1988-08-01

    Rift basins are a primary target of exploration in east, central, and west Africa. These intracratonic rift basins range in age from the Triassic to the Neogene and are filled with lagoonal-lacustrine sand-shale sequences. Several rift basins may be present in the Western Desert of Egypt. In the northeastern African platform, the Mesozoic Tethyan strand lines were previously interpreted to have limited southern extension onto the continent. This concept, based upon a relatively limited amount of subsurface data, has directed and focused the exploration for oil and gas to the northernmost 120 km of the Western Desert of Egypt. Recentmore » well and geophysical data indicate a southerly extension of mesozoic rift basins several hundred kilometers inland from the Mediterranean Sea. Shushan/Faghur and Abu Gharadig/Bahrein basins may represent subparallel Mesozoic basins, trending northeast-southwest. Marine Oxfordian-Kimmeridgian sediments were recently reported from wells drilled approximately 500 km south of the present-day Mediterranean shoreline. The link of these basins with the Sirte basin to the southwest in Libya is not well understood. Exploration is needed to evaluate the hydrocarbon potential of such basins.« less

  8. Molecular carbon isotope variations in core samples taken at the Permian-Triassic boundary layers in southern China

    NASA Astrophysics Data System (ADS)

    Wang, Ruiliang; Zhang, Shuichang; Brassell, Simon; Wang, Jiaxue; Lu, Zhengyuan; Ming, Qingzhong; Wang, Xiaomei; Bian, Lizeng

    2012-07-01

    Stable carbon isotope composition (δ13C) of carbonate sediments and the molecular (biomarker) characteristics of a continuous Permian-Triassic (PT) layer in southern China were studied to obtain geochemical signals of global change at the Permian-Triassic boundary (PTB). Carbonate carbon isotope values shifted toward positive before the end of the Permian period and then shifted negative above the PTB into the Triassic period. Molecular carbon isotope values of biomarkers followed the same trend at and below the PTB and remained negative in the Triassic layer. These biomarkers were acyclic isoprenoids, ranging from C15 to C40, steranes (C27 dominates) and terpenoids that were all significantly more abundant in samples from the Permian layer than those from the Triassic layer. The Triassic layer was distinguished by the dominance of higher molecular weight (waxy) n-alkanes. Stable carbon isotope values of individual components, including n-alkanes and acyclic isoprenoids such as phytane, isop-C25, and squalane, are depleted in δ13C by up to 8-10‰ in the Triassic samples as compared to the Permian. Measured molecular and isotopic variations of organic matter in the PT layers support the generally accepted view of Permian oceanic stagnation followed by a massive upwelling of toxic deep waters at the PTB. A series of large-scale (global) outgassing events may be associated with the carbon isotope shift we measured. This is also consistent with the lithological evidence we observed of white thin-clay layers in this region. Our findings, in context with a generally accepted stagnant Permian ocean, followed by massive upwelling of toxic deep waters might be the major causes of the largest global mass extinction event that occurred at the Permian-Triassic boundary.

  9. Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic.

    PubMed

    Brusatte, Stephen L; Niedźwiedzki, Grzegorz; Butler, Richard J

    2011-04-07

    The ascent of dinosaurs in the Triassic is an exemplary evolutionary radiation, but the earliest phase of dinosaur history remains poorly understood. Body fossils of close dinosaur relatives are rare, but indicate that the dinosaur stem lineage (Dinosauromorpha) originated by the latest Anisian (ca 242-244 Ma). Here, we report footprints from the Early-Middle Triassic of Poland, stratigraphically well constrained and identified using a conservative synapomorphy-based approach, which shifts the origin of the dinosaur stem lineage back to the Early Olenekian (ca 249-251 Ma), approximately 5-9 Myr earlier than indicated by body fossils, earlier than demonstrated by previous footprint records, and just a few million years after the Permian/Triassic mass extinction (252.3 Ma). Dinosauromorph tracks are rare in all Polish assemblages, suggesting that these animals were minor faunal components. The oldest tracks are quadrupedal, a morphology uncommon among the earliest dinosauromorph body fossils, but bipedality and moderately large body size had arisen by the Early Anisian (ca 246 Ma). Integrating trace fossils and body fossils demonstrates that the rise of dinosaurs was a drawn-out affair, perhaps initiated during recovery from the Permo-Triassic extinction.

  10. Reconstructing fluid-flow events in Lower-Triassic sandstones of the eastern Paris Basin by elemental tracing and isotopic dating of nanometric illite crystals

    NASA Astrophysics Data System (ADS)

    Blaise, Thomas; Clauer, Norbert; Cathelineau, Michel; Boiron, Marie-Christine; Techer, Isabelle; Boulvais, Philippe

    2016-03-01

    Lower- to Middle-Triassic sandstones from eastern Paris Basin were buried to a maximum depth of 2500 m at a paleo-temperature of about 100 °C. They contain extensive amounts of authigenic platy and filamentous illite particles similar to those reported in reservoirs generally buried at 3000 to -5000 m and subjected to temperatures of 120 to -150 °C. To evaluate this unexpected occurrence, such sandstones were collected from drill cores between 1825 and 2000 m depth, and nanometric-sized sub-fractions were separated. The illite crystals were identified by XRD, observed by SEM and TEM, analyzed for their major, trace, rare-earth elements and oxygen isotope compositions, and dated by K-Ar and Rb-Sr. Illite particles display varied growth features in the rock pore-space and on authigenic quartz and adularia that they postdate. TEM-EDS crystal-chemical in situ data show that the illite lath/fiber and platelet morphologies correspond at least to two populations with varied interlayer charges: between 0.7 and 0.9 for the former and between 0.8 and 1.0 for the latter, the Fe/Fe + Mg ratio being higher in the platelets. Except for the deeper conglomerate, the PAAS-normalized REE patterns of the illite crystals are bell-shaped, enriched in middle REEs. Ca-carbonates and Ca-phosphates were detected together with illite in the separates. These soluble components yield 87Sr/86Sr ratios that are not strictly in chemical equilibrium with the illite crystals, suggesting successive fluids flows with different chemical compositions. The K-Ar data of finer <0.05 μm illite separates confirm two crystallization events at 179.4 ± 4.5 and 149.4 ± 2.5 Ma during the Early and Late Jurassic. The slightly coarser fractions contain also earlier crystallized or detrital K-bearing minerals characterized by lower δ18O values. The δ18O of the finest authigenic illite separates tends to decrease slightly with depth, from 18.2 (±0.2) to 16.3 (±0.2)‰, suggesting different but

  11. New absolute paleointensity determinations for the Permian-Triassic boundary from the Kuznetsk Trap Basalts.

    NASA Astrophysics Data System (ADS)

    Kulakov, E.; Metelkin, D. V.; Kazansky, A.

    2015-12-01

    We report the results of a pilot absolute paleointensity study of the ~250 Ma basalts of Kuznetsk traps (Kuznetsk Basin, Altai-Sayan folded area). Studied samples are characterized by a reversed polarity of natural remanent magnetization that corresponds to the lower part of Siberian Trap basalts sequence. Geochemical similarity of Kuznets basalts with those from Norilsk region supports this interpretation. Primary origin of thermal remanence in our sample is confirmed by a positive backed contact test. Rock magnetic analyses indicate that the ChRM is carried by single-domain titanomagnetite. The Coe-version of the Thellier-Therllier double-heating method was utilized for the paleointensity determinations. In contrast to the previous studies of the Permian-Triassic Siberian trap basalts, our data indicate that by the P-T boundary the paleofield intensity was relatively high and comparable with geomagnetic field strength for the last 10 millions of years. New results question the duration of the "Mesozoic dipole-low".

  12. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna

    PubMed Central

    Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles

    2017-01-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage—the Paris Biota—from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200–million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era. PMID:28246643

  13. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna.

    PubMed

    Brayard, Arnaud; Krumenacker, L J; Botting, Joseph P; Jenks, James F; Bylund, Kevin G; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A; Thomazo, Christophe; Escarguel, Gilles

    2017-02-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.

  14. Regional tectonic framework of the Pranhita Godavari basin, India

    NASA Astrophysics Data System (ADS)

    Biswas, S. K.

    2003-03-01

    The Pranhita-Godavari Gondwana rift (PGR) has a co-genetic relationship with Permo-Triassic reactivation of the Narmada-Son Geofracture (NSG). The Satpura Gondwana basin represents the terminal depocentre against the NSG, which restricted the northwestward propagation of the PGR. The NE-SW tensional stress responsible for the NW-SE trending PGR could not propagate beyond the ramp formed by uplift along the NSG and transformed kinetically into an ENE directed horizontal shear along the NSG, inducing large scale strike-slip movements. The latter dynamics were responsible for ENE extension of the Satpura rift as a pull-apart basin. The PGR extends up to the present east coast of India, where it is apparently terminated by the NE-SW trending Bapatla ridge along the Eastern Ghat Rift (EGR). The subsurface data, however, shows that the PGR extends across the Bapatla ridge and continues beneath the Cretaceous-Tertiary sediments of the Krishna-Godavari basin (KG) in the EGR. Thus, the Permo-Triassic PGR appears to have continued in the Indo-Antarctic plate before the Cretaceous break up. The EGR, during break up of the continents, cuts across the PGR and the KG basin was superimposed on it. The PGR site is located on a paleo-suture between the Dharwar and Bastar proto-cratons. The master faults developed bordering the rift, and the intra-rift higher order faults followed the pre-existing fabric. The transverse transfer zones manifested as basement ridges, divide the rift into segments of tectono-sedimentary domains. The major domains are the Chintalapudi, Godavari, and Chandrapur sub-basins, each of which subsided differentially. The central Godavari sub-basin subsided most and shows maximum structural complexity and sediment accommodation. The rifting started with initial half-graben faulting along the northeastern master fault and expanded by successive half graben faulting. This gave rise to intra-basinal horsts and grabens, which exercised control on the syn

  15. Cyclo-, magneto-, and bio-stratigraphic constraints on the duration of the CAMP event and its relationship to the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Olsen, Paul E.; Kent, Dennis V.; Et-Touhami, Mohammed; Puffer, John

    Early Mesozoic tholeiitic flood basalts of the Central Atlantic Magmatic Province (CAMP) are interbedded throughout much of their extent with cyclical lacustrine strata, allowing Milankovitch calibration of the duration of the extrusive episode. This cyclostratigraphy extends from the Newark basin of the northeastern US, where it was first worked out, to Nova Scotia and Morocco and constrains the outcropping extrusive event to less than 600 ky in duration, beginning roughly 20 ky after the Triassic-Jurassic boundary, and to within one pollen and spore zone and one vertebrate biochron. Based principally on the well-known Newark astronomically calibrated magnetic polarity time scale with new additions from the Hartford basin, the rather large scatter in recent radiometric dates from across CAMP (>10 m.y. ), centering on about ˜200 m.y., is not likely to be real. Rather, the existing paleomagnetic data from both intrusive and extrusive rocks suggest emplacement of nearly all the CAMP within less than 3 m.y. of nearly entirely normal polarity. The very few examples of reversed magnetizations suggest that some CAMP activity probably occurred just prior to the Triassic-Jurassic boundary. Published paleomagnetic and 40Ar/39Ar data from the Clubhouse Crossroads Basalt are reviewed and with new paleomagnetic data suggest that alteration and possible core misorientation could be responsible for the apparent differences with the CAMP. The Clubhouse Crossroads Basalt at the base of the Coastal Plain of South Carolina and Georgia provides a link to the volumetrically massive volcanic wedge of seaward dipping reflectors present in the subsurface off the southeastern US that may be part of the same igneous event, suggesting that the CAMP marks the formation of the oldest Atlantic oceanic crust.

  16. Prelude of benthic community collapse during the end-Permian mass extinction in siliciclastic offshore sub-basin: Brachiopod evidence from South China

    NASA Astrophysics Data System (ADS)

    Wu, Huiting; He, Weihong; Weldon, Elizabeth A.

    2018-04-01

    Analysis of the Permian-Triassic palaeocommunities from basinal facies in South China provides an insight into the environmental deterioration occurring in the prelude to the mass extinction event. Quantitative and multivariate analyses on three brachiopod palaeocommunities from the Changhsingian to the earliest Triassic in basinal facies in South China have been undertaken in this study. Although the end-Permian extinction has been proved to be a one-stepped event, ecological warning signals appeared in the palaeocommunities long before the main pulse of the event. A brachiopod palaeocommunity turnover occurred in the upper part of the Clarkina changxingensis Zone, associated with a significant decrease of palaeocommunity diversity and brachiopod body size. During this turnover the dominant genera changed from Fusichonetes and Crurithyris (or/and Paracrurithyris) to the more competitive genus Crurithyris (or/and Paracrurithyris). The brachiopod palaeocommunity turnover was supposed to be triggered by the decreased marine primary productivity and increased volcanic activity. Moreover, such early warning signals are found not only in the deep-water siliceous facies, but also in the shallow-water clastic facies and carbonate rock facies in South China.

  17. An unusual archosaurian from the marine Triassic of China

    NASA Astrophysics Data System (ADS)

    Li, Chun; Wu, Xiao-Chun; Cheng, Yen-Nien; Sato, Tamaki; Wang, Liting

    2006-04-01

    A new Triassic archosaurian from China shows a number of aquatic specializations, of which the most striking is the extreme lateral compression of the long tail. Others that may also reflect aquatic adaptations include platelike scapula and coracoid, elongate neck with extremely long and slender ribs, and reduction of osteoderms. In contrast, its pelvic girdle and hind limb have no aquatic modifications. Anatomic features, taphonomy, and local geological data suggest that it may have lived in a coastal-island environment. This lifestyle, convergent with some Jurassic marine crocodyliforms that lived at least 40 million years later and the saltwater species of extant Crocodylus, contradicts with the prevailing view that Triassic archosaurians were restricted to nonmarine ecosystems. Its mosaic anatomy represents a previously unknown ecomorph within primitive archosaurians.

  18. A Short-Snouted, Middle Triassic Phytosaur and its Implications for the Morphological Evolution and Biogeography of Phytosauria.

    PubMed

    Stocker, Michelle R; Zhao, Li-Jun; Nesbitt, Sterling J; Wu, Xiao-Chun; Li, Chun

    2017-04-10

    Following the end-Permian extinction, terrestrial vertebrate diversity recovered by the Middle Triassic, and that diversity was now dominated by reptiles. However, those reptilian clades, including archosaurs and their closest relatives, are not commonly found until ~30 million years post-extinction in Late Triassic deposits despite time-calibrated phylogenetic analyses predicting an Early Triassic divergence for those clades. One of these groups from the Late Triassic, Phytosauria, is well known from a near-Pangean distribution, and this easily recognized clade bears an elongated rostrum with posteriorly retracted nares and numerous postcranial synapomorphies that are unique compared with all other contemporary reptiles. Here, we recognize the exquisitely preserved, nearly complete skeleton of Diandongosuchus fuyuanensis from the Middle Triassic of China as the oldest and basalmost phytosaur. The Middle Triassic age and lack of the characteristically-elongated rostrum fill a critical morphological and temporal gap in phytosaur evolution, indicating that the characteristic elongated rostrum of phytosaurs appeared subsequent to cranial and postcranial modifications associated with enhanced prey capture, predating that general trend of morphological evolution observed within Crocodyliformes. Additionally, Diandongosuchus supports that the clade was present across Pangea, suggesting early ecosystem exploration for Archosauriformes through nearshore environments and leading to ease of dispersal across the Tethys.

  19. A Short-Snouted, Middle Triassic Phytosaur and its Implications for the Morphological Evolution and Biogeography of Phytosauria

    PubMed Central

    Stocker, Michelle R.; Zhao, Li-Jun; Nesbitt, Sterling J.; Wu, Xiao-Chun; Li, Chun

    2017-01-01

    Following the end-Permian extinction, terrestrial vertebrate diversity recovered by the Middle Triassic, and that diversity was now dominated by reptiles. However, those reptilian clades, including archosaurs and their closest relatives, are not commonly found until ~30 million years post-extinction in Late Triassic deposits despite time-calibrated phylogenetic analyses predicting an Early Triassic divergence for those clades. One of these groups from the Late Triassic, Phytosauria, is well known from a near-Pangean distribution, and this easily recognized clade bears an elongated rostrum with posteriorly retracted nares and numerous postcranial synapomorphies that are unique compared with all other contemporary reptiles. Here, we recognize the exquisitely preserved, nearly complete skeleton of Diandongosuchus fuyuanensis from the Middle Triassic of China as the oldest and basalmost phytosaur. The Middle Triassic age and lack of the characteristically-elongated rostrum fill a critical morphological and temporal gap in phytosaur evolution, indicating that the characteristic elongated rostrum of phytosaurs appeared subsequent to cranial and postcranial modifications associated with enhanced prey capture, predating that general trend of morphological evolution observed within Crocodyliformes. Additionally, Diandongosuchus supports that the clade was present across Pangea, suggesting early ecosystem exploration for Archosauriformes through nearshore environments and leading to ease of dispersal across the Tethys. PMID:28393843

  20. Depositional environments and sedimentology of Vinita Beds, Richmond basin, Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornfeld, I.E.

    The Carnian (middle to late Middle Triassic Age) Richmond basin of northeast Virginia is the oldest of the exposed Newark rift basins of the eastern seaboard. These basins formed during the Mesozoic divergence of the continents. As presently defined, the Richmond basin is a large synclinal feature measuring 32 mi (53 km) long by 8 mi (13 km) wide, and is located west of Richmond, Virginia, and east of Amelia, Virginia. Sediments of the Richmond basin have been assigned to the Richmond Group and have been stratigraphically subdivided into the following informal units, oldest to youngest: coarse boulder breccias, coalmore » measures, Vinita Beds, and Otterdale Sandstone. The Vinita Beds are composed of arkosic sandstones, shales, siltstones, and minor amounts of coal, and are mineralogically immature. They are composed to angular to subrounded rock fragments, quartz, and feldspars, and are high micaceous and kaolinitic. In places, feldspars make up as much as 50% of the rock. Sandstones and conglomerates are cross-bedded and channeled, and shales and siltstones are thinly laminated. The Vinita Beds are rich in fossil fish, branchiopods, and plant fragments. These rocks were deposited in braided streams as well as in paludal and possible lacustrine environments in a humid and heavily vegetated setting.« less

  1. The Middle Triassic insect radiation revealed by isotopic age and iconic fossils from NW China

    NASA Astrophysics Data System (ADS)

    Zheng, Daran; Chang, Su-Chin; Wang, He; Fang, Yan; Wang, Jun; Feng, Chongqing; Xie, Guwei; Jarzembowski, Edmund A.; Zhang, Haichun; Wang, Bo

    2017-04-01

    Following the end-Permian mass extinction, the Triassic represented an important period witnessing the recovery and radiation of marine and terrestrial ecosystems. Terrestrial plants and vertebrates have been widely investigated; however the insects, the most diverse organisms on earth, remain enigmatic due to the rarity of Early-Middle Triassic fossils. Here we report new fossils from a Ladinian deposit dated at 238-237 Ma and a Carnian deposit in northwestern China, including the earliest definite caddisfly cases (Trichoptera) and water boatmen (Hemiptera), diverse polyphagan beetles (Coleoptera) and scorpionflies (Mecoptera). Our findings suggest that the Holometabola, comprising the majority of modern-day insect species, experienced an extraordinary diversification in the Middle Triassic and was already been dominant in some Middle and Late Triassic insect faunas, after the extinction of several ecologically dominant, Paleozoic insect groups in the latest Permian and earliest Triassic. This turnover is perhaps related to notable episodes of extreme warming and drying, leading to the eventual demise of coal-swamp ecosystems, evidenced by floral turnover during this interval. The forest revival during the Middle Triassic probably stimulated the rapid radiation and evolution of insects including some key aquatic lineages which built new associations that persist to the present day. Our results provide not only new insights into the early evolution of insect diversity and ecology, but also robust evidence for the view that the Triassic is the "Dawn of the Modern World". Besides, LA-ICP-MS U-Pb dating initially gave a late Ladinian age for the Tongchuan entomnfauna after the results: 237.41 ± 0.91 Ma and 238 ± 0.97 Ma. The age is in agreement with that of the marine Ladinian-Carnian boundary, representing a novel age constraint for the terrestrial strata near this boundary. This age can provide a calibration for marine and terrestrial correlation near Ladinian

  2. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction

    PubMed Central

    Percival, Lawrence M. E.; Ruhl, Micha; Hesselbo, Stephen P.; Jenkyns, Hugh C.; Mather, Tamsin A.; Whiteside, Jessica H.

    2017-01-01

    The Central Atlantic Magmatic Province (CAMP) has long been proposed as having a causal relationship with the end-Triassic extinction event (∼201.5 Ma). In North America and northern Africa, CAMP is preserved as multiple basaltic units interbedded with uppermost Triassic to lowermost Jurassic sediments. However, it has been unclear whether this apparent pulsing was a local feature, or if pulses in the intensity of CAMP volcanism characterized the emplacement of the province as a whole. Here, six geographically widespread Triassic–Jurassic records, representing varied paleoenvironments, are analyzed for mercury (Hg) concentrations and Hg/total organic carbon (Hg/TOC) ratios. Volcanism is a major source of mercury to the modern environment. Clear increases in Hg and Hg/TOC are observed at the end-Triassic extinction horizon, confirming that a volcanically induced global Hg cycle perturbation occurred at that time. The established correlation between the extinction horizon and lowest CAMP basalts allows this sedimentary Hg excursion to be stratigraphically tied to a specific flood basalt unit, strengthening the case for volcanic Hg as the driver of sedimentary Hg/TOC spikes. Additional Hg/TOC peaks are also documented between the extinction horizon and the Triassic–Jurassic boundary (separated by ∼200 ky), supporting pulsatory intensity of CAMP volcanism across the entire province and providing direct evidence for episodic volatile release during the initial stages of CAMP emplacement. Pulsatory volcanism, and associated perturbations in the ocean–atmosphere system, likely had profound implications for the rate and magnitude of the end-Triassic mass extinction and subsequent biotic recovery. PMID:28630294

  3. Floral Assemblages and Patterns of Insect Herbivory during the Permian to Triassic of Northeastern Italy.

    PubMed

    Labandeira, Conrad C; Kustatscher, Evelyn; Wappler, Torsten

    2016-01-01

    To discern the effect of the end-Permian (P-Tr) ecological crisis on land, interactions between plants and their insect herbivores were examined for four time intervals containing ten major floras from the Dolomites of northeastern Italy during a Permian-Triassic interval. These floras are: (i) the Kungurian Tregiovo Flora; (ii) the Wuchiapingian Bletterbach Flora; (iii) three Anisian floras; and (iv) five Ladinian floras. Derived plant-insect interactional data is based on 4242 plant specimens (1995 Permian, 2247 Triassic) allocated to 86 fossil taxa (32 Permian, 56 Triassic), representing lycophytes, sphenophytes, pteridophytes, pteridosperms, ginkgophytes, cycadophytes and coniferophytes from 37 million-year interval (23 m.yr. Permian, 14 m.yr. Triassic). Major Kungurian herbivorized plants were unaffiliated taxa and pteridosperms; later during the Wuchiapingian cycadophytes were predominantly consumed. For the Anisian, pteridosperms and cycadophytes were preferentially consumed, and subordinately pteridophytes, lycophytes and conifers. Ladinian herbivores overwhelming targeted pteridosperms and subordinately cycadophytes and conifers. Throughout the interval the percentage of insect-damaged leaves in bulk floras, as a proportion of total leaves examined, varied from 3.6% for the Kungurian (N = 464 leaves), 1.95% for the Wuchiapingian (N = 1531), 11.65% for the pooled Anisian (N = 1324), to 10.72% for the pooled Ladinian (N = 923), documenting an overall herbivory rise. The percentage of generalized consumption, equivalent to external foliage feeding, consistently exceeded the level of specialized consumption from internal feeding. Generalized damage ranged from 73.6% (Kungurian) of all feeding damage, to 79% (Wuchiapingian), 65.5% (pooled Anisian) and 73.2% (pooled Ladinian). Generalized-to-specialized ratios show minimal change through the interval, although herbivore component community structure (herbivore species feeding on a single plant-host species

  4. Floral Assemblages and Patterns of Insect Herbivory during the Permian to Triassic of Northeastern Italy

    PubMed Central

    Labandeira, Conrad C.; Kustatscher, Evelyn

    2016-01-01

    To discern the effect of the end-Permian (P-Tr) ecological crisis on land, interactions between plants and their insect herbivores were examined for four time intervals containing ten major floras from the Dolomites of northeastern Italy during a Permian–Triassic interval. These floras are: (i) the Kungurian Tregiovo Flora; (ii) the Wuchiapingian Bletterbach Flora; (iii) three Anisian floras; and (iv) five Ladinian floras. Derived plant–insect interactional data is based on 4242 plant specimens (1995 Permian, 2247 Triassic) allocated to 86 fossil taxa (32 Permian, 56 Triassic), representing lycophytes, sphenophytes, pteridophytes, pteridosperms, ginkgophytes, cycadophytes and coniferophytes from 37 million-year interval (23 m.yr. Permian, 14 m.yr. Triassic). Major Kungurian herbivorized plants were unaffiliated taxa and pteridosperms; later during the Wuchiapingian cycadophytes were predominantly consumed. For the Anisian, pteridosperms and cycadophytes were preferentially consumed, and subordinately pteridophytes, lycophytes and conifers. Ladinian herbivores overwhelming targeted pteridosperms and subordinately cycadophytes and conifers. Throughout the interval the percentage of insect-damaged leaves in bulk floras, as a proportion of total leaves examined, varied from 3.6% for the Kungurian (N = 464 leaves), 1.95% for the Wuchiapingian (N = 1531), 11.65% for the pooled Anisian (N = 1324), to 10.72% for the pooled Ladinian (N = 923), documenting an overall herbivory rise. The percentage of generalized consumption, equivalent to external foliage feeding, consistently exceeded the level of specialized consumption from internal feeding. Generalized damage ranged from 73.6% (Kungurian) of all feeding damage, to 79% (Wuchiapingian), 65.5% (pooled Anisian) and 73.2% (pooled Ladinian). Generalized-to-specialized ratios show minimal change through the interval, although herbivore component community structure (herbivore species feeding on a single plant-host species

  5. The Evolution of the Tethysides during the Medial to Late Triassic

    NASA Astrophysics Data System (ADS)

    Saǧdıç, Nurbike G.; Celâl Şengör, A. M.

    2016-04-01

    The Triassic is a time of widespread rifting within the future Alpides of the circum-Mediterranean countries. However, this rifting had little to do with the later, Sinemurian-Hettangian rifting that penetrated the Tethyan realm from the Atlantic Ocean. The eastern part of the rifting occurred south of the Palaeo-Tethys and seems to have been related to stretching above its extensional arc. Evidence for his stretching is seen in the Karakaya-Pelagonian-Pindos- Meliata-Hallstatt zones and the Eastern Mediterranean. The Eastern Mediterranean is separated from the other extensional zones by a Mikrasian continental fragment that had begun separating from Gondwana-Land already during the Permian. The rifting propagated eastward along the Carpathians (Transylvanian Nappes) and the Eastern and the Southern Alps from where it entered the future Provençal chains and finally the Pyrenees where evaporites were laid down in extensional basins. In the south, an area of rifting went from the Eastern Mediterranean into the High Atlas thus delimiting an Iberapulian continental fragment. The Iberapulian fragment became divided into an Iberian and an Apulian parts later during the Hettangian-Sinemurian rifting that also invaded the earlier extensional areas in the Atlas. The extension directions during the medial and late Triassic are controlled by the tectonics of the eastern end of the Palaeo-Tethys. Along its northern margin, i.e., along the Scythides, right-lateral motion dominated. Along the northern margin of the Mikrasian fragment subduction was nearly head-on (slightly oblique so as to impose a slight right-lateral motion along the arc), but the stretching along the Karakaya rift zones was probably orthogonal because of the similarly orthogonal stretching in the Eastern Mediterrarean. The kinematics is dependent on what sort of motion is imposed onto the Palaeo-Tethyan plate (s) along its (their) northern margin and the direction of stretching in the Eastern Mediterranean

  6. Integrated multi-stratigraphic study of the Coll de Terrers late Permian-Early Triassic continental succession from the Catalan Pyrenees (NE Iberian Peninsula): A geologic reference record for equatorial Pangaea

    NASA Astrophysics Data System (ADS)

    Mujal, Eudald; Fortuny, Josep; Pérez-Cano, Jordi; Dinarès-Turell, Jaume; Ibáñez-Insa, Jordi; Oms, Oriol; Vila, Isabel; Bolet, Arnau; Anadón, Pere

    2017-12-01

    The most severe biotic crisis on Earth history occurred during the Permian-Triassic (PT) transition around 252 Ma. Whereas in the marine realm such extinction event is well-constrained, in terrestrial settings it is still poorly known, mainly due to the lack of suitable complete sections. This is utterly the case along the Western Tethys region, located at Pangaea's equator, where terrestrial successions are typically build-up of red beds often characterised by a significant erosive gap at the base of the Triassic strata. Henceforth, documenting potentially complete terrestrial successions along the PT transition becomes fundamental. Here, we document the exceptional Coll de Terrers area from the Catalan Pyrenees (NE Iberian Peninsula), for which a multidisciplinary research is conducted along the PT transition. The red-bed succession, located in a long E-W extended narrow rift system known as Pyrenean Basin, resulted from a continuous sedimentary deposition evolving from meandering (lower Upper Red Unit) to playa-lake/ephemeral lacustrine (upper Upper Red Unit) and again to meandering settings (Buntsandstein facies). Sedimentary continuity is suggested by preliminary cyclostratigraphic analysis that warrants further analysis. Our combined sedimentological, mineralogical and geochemical data infer a humid-semiarid-humid climatic trend across the studied succession. The uppermost Permian strata, deposited under an orbitally controlled monsoonal regime, yields a relatively diverse ichnoassemblage mainly composed of tetrapod footprints and arthropod trace fossils. Such fossils indicate appropriate life conditions and water presence in levels that also display desiccation structures. These levels alternate with barren intervals formed under dry conditions, being thus indicative of strong seasonality. All these features are correlated with those reported elsewhere in Gondwana and Laurasia, and suggest that the Permian-Triassic boundary might be recorded somewhere around

  7. Under the armor: X-ray computed tomographic reconstruction of the internal skeleton of Coahomasuchus chathamensis (Archosauria: Aetosauria) from the Upper Triassic of North Carolina, USA, and a phylogenetic analysis of Aetosauria.

    PubMed

    Hoffman, Devin K; Heckert, Andrew B; Zanno, Lindsay E

    2018-01-01

    Aetosauria is a clade of heavily armored, quadrupedal omnivorous to herbivorous archosaurs known from the Late Triassic across what was the supercontinent of Pangea. Their abundance in many deposits relative to the paucity of other Triassic herbivores indicates that they were key components of Late Triassic ecosystems. However, their evolutionary relationships remain contentious due, in large part, to their extensive dermal armor, which often obstructs observation of internal skeletal anatomy and limits access to potentially informative characters. In an attempt to address this problem we reanalyzed the holotype of a recently described species of Coahomasuchus , C. chathamensis , from the Sanford sub-basin of North Carolina using computed tomography (CT). CT scans of the holotype specimen clarify preservation of the skeleton, revealing several articulated vertebrae and ribs, an isolated vertebra, left ulna, left scapula, and the right humerus, though none of the material resulted in updated phylogenetic scorings. Reexamination of aetosaur materials from the holotype locality also indicates that several isolated osteoderms and elements of the appendicular skeleton are newly referable. Based on these results, we update the Coahomasuchus chathamensis hypodigm and conduct a revised phylogenetic analysis with improved character scorings for Coahomasuchus and several other aetosaurs. Our study recovers Coahomasuchus in a polytomy with Aetosaurus and the Typothoracinae, in contrast with a recent analysis that recovered Coahomasuchus as a wild-card taxon.

  8. Under the armor: X-ray computed tomographic reconstruction of the internal skeleton of Coahomasuchus chathamensis (Archosauria: Aetosauria) from the Upper Triassic of North Carolina, USA, and a phylogenetic analysis of Aetosauria

    PubMed Central

    Heckert, Andrew B.; Zanno, Lindsay E.

    2018-01-01

    Aetosauria is a clade of heavily armored, quadrupedal omnivorous to herbivorous archosaurs known from the Late Triassic across what was the supercontinent of Pangea. Their abundance in many deposits relative to the paucity of other Triassic herbivores indicates that they were key components of Late Triassic ecosystems. However, their evolutionary relationships remain contentious due, in large part, to their extensive dermal armor, which often obstructs observation of internal skeletal anatomy and limits access to potentially informative characters. In an attempt to address this problem we reanalyzed the holotype of a recently described species of Coahomasuchus, C. chathamensis, from the Sanford sub-basin of North Carolina using computed tomography (CT). CT scans of the holotype specimen clarify preservation of the skeleton, revealing several articulated vertebrae and ribs, an isolated vertebra, left ulna, left scapula, and the right humerus, though none of the material resulted in updated phylogenetic scorings. Reexamination of aetosaur materials from the holotype locality also indicates that several isolated osteoderms and elements of the appendicular skeleton are newly referable. Based on these results, we update the Coahomasuchus chathamensis hypodigm and conduct a revised phylogenetic analysis with improved character scorings for Coahomasuchus and several other aetosaurs. Our study recovers Coahomasuchus in a polytomy with Aetosaurus and the Typothoracinae, in contrast with a recent analysis that recovered Coahomasuchus as a wild-card taxon. PMID:29456892

  9. Mercury anomalies as a proxy for large igneous province volicanism and effects on the carbon cycle in a U-Pb age-constrained section spanning the end-Triassic mass extinction, Levanto, Peru

    NASA Astrophysics Data System (ADS)

    Yager, J. A.; West, A. J.; Bergquist, B. A.; Thibodeau, A. M.; Corsetti, F. A.; Berelson, W.; Rosas, S.; Bottjer, D. J.

    2017-12-01

    Understanding the causes of the end-Triassic extinction and their potential relationship to Central Atlantic Magmatic Province (CAMP) volcanism necessitates careful correlation of carbon cycle records (largely from marine sections) and volcanism (largely from terrestrial successions) in a robust chronological framework. Here, we report stable carbon isotopes and mercury concentrations and isotopes from the Levanto section in Northern Peru as a putative proxy for CAMP (a large igneous province) in a marine section. Levanto represents deposition well below storm wave base and is lithologically homogenous before, during, and after the end-Triassic extinction interval, making it ideal for detailed chemostratigraphy. Furthermore, abundant intercalated ash beds allow us to correlate mercury concentrations in the marine record directly with CAMP basalt ages, providing a test of the correspondence of mercury anomalies with the eruption of CAMP volcanics. Age dating and C isotope analyses provide an opportunity to explore orbital tuning of the carbon isotope record and ground truth it with existing U-Pb ages from the section, a feature not available in any other marine sections examined to date. The abundance of U-Pb dated ashes in the Levanto section allows us to correlate orbital tuning with other basins, which lack absolute age control, providing a better understanding for the C cycle changes associated with the Triassic-Jurassic boundary.

  10. Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Yu, M.; Lehrmann, D.; van de Schootbrugge, B.; Payne, J. L.

    2013-01-01

    Large δ13C excursions, anomalous carbonate precipitates, low diversity assemblages of small fossils, and evidence for marine euxinia in uppermost Permian and Lower Triassic strata bear more similarity to Neoproterozoic carbonates than to the remainders of the Permian and Triassic systems. Middle Triassic diversification of marine ecosystems coincided with the waning of anoxia and stabilization of the global carbon cycle, suggesting that environment-ecosystem linkages were important to biological recovery. However, the Earth system behavior responsible for these large δ13C excursions remains poorly constrained. Here we present a continuous Early Triassic δ13Corg record from south China and use it to test the extent to which Early Triassic excursions in δ13Ccarb record changes in the δ13C of marine dissolved inorganic carbon (DIC). Regression analysis demonstrates a significant positive correlation between δ13Corg and δ13Ccarb across multiple sections that span a paleoenvironmental gradient. Such a correlation is incompatible with diagenetic alteration because no likely mechanism will alter both δ13Corg and δ13Ccarb records in parallel and therefore strongly indicates a primary depositional origin. A simple explanation for this correlation is that a substantial portion of the preserved Corg was derived from the contemporaneous DIC pool, implying that the observed excursions reflect variation in the δ13C of the exogenic carbon reservoir (ocean, atmosphere, biomass). These findings support existing evidence that large δ13C excursions are primary and therefore strengthen the case that large-scale changes to the carbon cycle were mechanistically linked to the low diversity and small size of Early Triassic fossils. Associated sedimentary and biogeochemical phenomena further suggest that similar associations in Neoproterozoic and Cambrian strata may reflect the same underlying controls.

  11. The occurrence and dominant controls on arsenic in the Newark and Gettysburg Basins.

    PubMed

    Blake, Johanna M; Peters, Stephen C

    2015-02-01

    Elevated arsenic (As) concentrations in groundwater and rocks have been found in crystalline and sedimentary aquifers from New England to Pennsylvania, USA. The arsenic geochemistry and water-rock interactions of the Northern Appalachian Mountains and the Newark Basin have been researched at length, however, little is known about arsenic in the Gettysburg Basin. Both the Newark and Gettysburg Basins were formed during the breakup of Pangea, sediment deposition occurred during the Triassic and lithologies are of similar depositional environment. We compile and review the work done in the Newark Basin and collect new samples in the Gettysburg Basin for comparison. The Gettysburg Basin has 18%-39% of rock samples with arsenic concentrations greater than the crustal average of 2 mg/kg, while the Newark Basin has 73% to 95% of rock samples above the crustal average. The strongest controls on arsenic in rocks of the Gettysburg Basin are the relationship between arsenic and iron and silicon concentrations while the strongest controls in the Newark Basin are the relationship between arsenic and iron and organic carbon concentrations. The groundwater arsenic concentrations follow similarly with 8-39% of water samples from the Gettysburg Basin above 10 μg/L and 24-54% of water samples from the Newark Basin above 10 μg/L. The strongest controls on arsenic in water of the Gettysburg Basin are pH, alkalinity and silicon, while the strongest controls in the Newark Basin are pH and alkalinity. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Evidence for long term deep CO2 confinement below thick Jurassic shales at Montmiral site (SE Basin of France)

    NASA Astrophysics Data System (ADS)

    Rubert, Y.; Ramboz, C.; Le Nindre, Y. M.; Lerouge, C.; Lescanne, M.

    2009-04-01

    Studies of natural CO2 analogues bring key information on the factors governing the long term (>1My) stability/instability of future anthropogenic CO2 storages. The main objective of this work is to trace the deep-origin CO2 migrations in fractures in the Montmiral CO2 deep natural occurrence (Valence Basin, SE France). The final objective is to document the reservoir feeding and the possible leakages through overlying series. The CO2 reservoir is hosted within a horst controlled by a N-S fault network. From the Triassic to Eocene, the Montmiral area was part of the South-East Basin of France. This period is marked by the Tethysian extension phase (Triassic-Cretaceous) followed by the closure of the basin which culminated during the Pyrenean compressive phase (Eocene). Then, from the late Eocene, the Valence Basin was individualised in particular during the Oligocene E-W rifting affecting the West of Europe. Finally the eastern border of the Basin was overthrusted by Mesozoic formations during the Alpine orogenesis (Miocene). The Montmiral CO2 reservoir is intersected by the currently productive V.Mo.2 well, drilled through Miocene to Triassic sedimentary formations, and reaching the Palaeozoic substratum at a depth of 2771 meters. The CO2 is trapped below a depth of 2340 meters, at the base of sandy, evaporitic and calcareous formations (2340-2771m), Triassic to Sinemurian in age. These units are overlain by a 575 m-thick Domerian to Oxfordian marly sequence which seals the CO2 reservoir. Above these marls, calcareous strata (1792-1095 m), Oxfordian to Cretaceous in age, and sandy clayey formations (1095-0 m), Oligocene and Miocene in age, are deposited. The various stratigraphic levels from the Miocene to the basement were cored over a total length of ~100m. From bottom to top, three lithological units, which exhibit well characterised contrasted diagenetic evolution, record various stages and effects of the CO2 migration: - Lower unit: Palaeozoic metamorphic

  13. Drilling the centre of the Thuringian Basin, Germany, to decipher potential interrelation between shallow and deep fluid systems

    NASA Astrophysics Data System (ADS)

    Kukowski, Nina; Totsche, Kai Uwe; Abratis, Michael; Habisreuther, Annett; Ward, Timothy; Influins Drilling-Team

    2014-05-01

    To shed light on the coupled dynamics of near surface and deep fluids in a sedimentary basin on various scales, ranging from the pore scale to the extent of an entire basin, is of paramount importance to understand the functioning of sedimentary basins fluid systems and therefore e.g. drinking water supply. It is also the fundamental goal of INFLUINS (INtegrated FLuid dynamics IN Sedimentary basins), a research initiative of several groups from Friedrich-Schiller University of Jena and their partners. This research association is focusing on the nearby Thuringian basin, a well confined, small intra-continental sedimentary basin in Germany, as a natural geo laboratory. In a multidisciplinary approach, embracing different fields of geophysics like seismic reflection profiling or airborne geomagnetics, structural geology, sedimentology, hydrogeology, hydrochemistry and hydrology, remote sensing, microbiology and mineralogy, among others, and including both, field-based, laboratory-based and computer-based research, an integral INFLUINS topic is the potential interaction of aquifers within the basin and at its rims. The Thuringian basin, which is composed of sedimentary rocks from the latest Paleozoic and mainly Triassic, is particularly suited to undertake such research as it is of relative small size, about 50 to 100 km, easily accessible, and quite well known from previous studies, and therefore also a perfect candidate for deep drilling. After the acquisition of 76 km seismic reflection data in spring 2011, to get as much relevant data as possible from a deep drilling at the cross point between two seismic profiles with a limited financial budget, an optimated core sampling and measuring strategy including partial coring, borehole geophysics and pump tests as well as a drill hole design, which enables for later continuation of drilling down to the basement, had been developed. Drilling Triassic rocks from Keuper to lower Buntsandstein was successfully realised down

  14. Permo-Triassic radiolaria from the Semanggol Formation, northwest Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Jasin, Basir

    1997-02-01

    A total of 32 species of radiolaria were identified from 20 chert samples at eight localities of the Semanggol Formation in north and south Kedah. Three assemblages of Radiolaria were recognised representing the Early Permian Pseudoalbaillella scalprata m. rhombothoracata. Late Permian Albaillella levis, and Middle Triassic Triassocampe deweveri Assemblage-Zone. The Pseudoalbaillella scalprata m. rhombothoracata Assemblage-Zone is discovered from Bukit Kampung Yoi and Bukit Larek, north Kedah. The Albaillella levis Assemblage-Zone is recorded from Bukit Tok Bertanduk, north Kedah and Merbau Palas, south Kedah. The Triassocampe deweveri Assemblage-Zone is found from the Lanjut Malau area, north Kedah. The radiolarian assemblages indicate that the age of the chert sequence in the Semanggol Formation ranges from Early permian to Middle Triassic.

  15. Exploring the pre-eruptive history of the Central Atlantic Magmatic Province (CAMP) and the link with the end Triassic extinction using high precision U-Pb zircon and baddeleyite geochronology

    NASA Astrophysics Data System (ADS)

    Davies, Joshua; Marzoli, Andrea; Bertrand, Hervé; Youbi, Nasrrddine; Schaltegger, Urs

    2015-04-01

    The Central Atlantic Magmatic Province (CAMP) is a massive outpouring of basaltic lava, dykes and sills that was predominantly emplaced into the Triassic-Jurassic basins of North and South America, Europe and Africa. These basins were, at the time, in the center of the paleo-supercontinent Pangea, and the CAMP flood basalts are associated with Pangea's break-up and the opening of the Atlantic Ocean. The global climatic and environmental impact of the basalt eruption has been temporally linked with the end-Triassic mass extinction, although the extinction horizon, defined by a carbon isotope excursion, is stratigraphically below the first basaltic flows in all of the currently identified basins. Therefore, if the extinction is related to the CAMP, it must be related to a process that occurred before the eruption of the first basalt flow, or is co-incident with a currently unidentified older basalt flow. Here we present high precision TIMS zircon U-Pb geochronology on zircons from the North Mountain basalt (NMB) in the Fundy basin, Canada, and also baddeleyite from the Foum Zuid dyke (FZD) in the Anti-Atlas, Morocco. The NMB zircons have been separated from the lowermost accessible basalt flow of the NMB sequence in a coarse-grained section, rather than from a felsic residual melt pod, which is the usual target for zircon geochronology in basalts. The baddeleyites from the FZD were also separated from a coarse-grained section of the dyke. The zircons and baddeleyites from the NMB and FZD samples contain an antecrystic population with ages more than 1 Ma older than the emplacement of the basalts. The U-Pb ages presented here suggest that there was magmatic activity relating to the CAMP before the eruption of the first basalts. There are a number of possible explanations for the old zircons 1) recycling of zircon from earlier phases of magmatism, which then would have to have been re-molten and entrained into the NMB and FZD magmas. 2) Recycling of crystal mush from

  16. A Triassic plesiosaurian skeleton and bone histology inform on evolution of a unique body plan

    PubMed Central

    Wintrich, Tanja; Hayashi, Shoji; Houssaye, Alexandra; Nakajima, Yasuhisa; Sander, P. Martin

    2017-01-01

    Secondary marine adaptation is a major pattern in amniote evolution, accompanied by specific bone histological adaptations. In the aftermath of the end-Permian extinction, diverse marine reptiles evolved early in the Triassic. Plesiosauria is the most diverse and one of the longest-lived clades of marine reptiles, but its bone histology is least known among the major marine amniote clades. Plesiosaurians had a unique and puzzling body plan, sporting four evenly shaped pointed flippers and (in most clades) a small head on a long, stiffened neck. The flippers were used as hydrofoils in underwater flight. A wide temporal, morphological, and morphometric gap separates plesiosaurians from their closest relatives (basal pistosaurs, Bobosaurus). For nearly two centuries, plesiosaurians were thought to appear suddenly in the earliest Jurassic after the end-Triassic extinctions. We describe the first Triassic plesiosaurian, from the Rhaetian of Germany, and compare its long bone histology to that of later plesiosaurians sampled for this study. The new taxon is recovered as a basal member of the Pliosauridae, revealing that diversification of plesiosaurians was a Triassic event and that several lineages must have crossed into the Jurassic. Plesiosaurian histology is strikingly uniform and different from stem sauropterygians. Histology suggests the concurrent evolution of fast growth and an elevated metabolic rate as an adaptation to cruising and efficient foraging in the open sea. The new specimen corroborates the hypothesis that open ocean life of plesiosaurians facilitated their survival of the end-Triassic extinctions. PMID:29242826

  17. Recycling an uplifted early foreland basin fill: An example from the Jaca basin (Southern Pyrenees, Spain)

    NASA Astrophysics Data System (ADS)

    Roigé, M.; Gómez-Gras, D.; Remacha, E.; Boya, S.; Viaplana-Muzas, M.; Teixell, A.

    2017-10-01

    In the northern Jaca basin (Southern Pyrenees), the replacement of deep-marine by terrestrial environments during the Eocene records a main drainage reorganization in the active Pyrenean pro-wedge, which leads to recycling of earlier foreland basin sediments. The onset of late Eocene-Oligocene terrestrial sedimentation is represented by four main alluvial fans: Santa Orosia, Canciás, Peña Oroel and San Juan de la Peña, which appear diachronously from east to west. These alluvial fans are the youngest preserved sediments deposited in the basin. We provide new data on sediment composition and sources for the late Eocene-Oligocene alluvial fans and precursor deltas of the Jaca basin. Sandstone petrography allows identification of the interplay of axially-fed sediments from the east with transversely-fed sediments from the north. Compositional data for the alluvial fans reflects a dominating proportion of recycled rock fragments derived from the erosion of a lower to middle Eocene flysch depocentre (the Hecho Group), located immediately to the north. In addition, pebble composition allows identification of a source in the North Pyrenean Zone that provided lithologies from the Cretaceous carbonate flysch, Jurassic dolostones and Triassic dolerites. Thus we infer this zone as part of the source area, located in the headwaters, which would have been unroofed from turbidite deposits during the late Eocene-Oligocene. These conclusions provide new insights on the response of drainage networks to uplift and topographic growth of the Pyrenees, where the water divide migrated southwards to its present day location.

  18. Comparing The North-east German Basin With The Polish Basin, Influenced By Major Crustal Fractures

    NASA Astrophysics Data System (ADS)

    Lamarche, J.; Scheck, M.; Otto, V.; Bayer, U.; Lewerenz, B.

    The North-East German Basin (NEGB) and the Polish Basin (PB) are two intraplate sedimentary basins in Central Europe, the development of which was controlled by deep crustal structures: the Elbe Fault System and the Teisseyre-Tornquist Zone, re- spectively. 3D structural models performed separately for each basin led to indepen- dent interpretations showing major similarities, but also significant differences. The outlook of the comparison between the NEGB and the PB is to lead to a joined 3D structural model, which allows reconstructing the synthetic geodynamic evolution of the area. The NEGB and PB are NW-SE-oriented. Both were initiated during Late Carboniferous and Lower Permian, when the post-Variscan rifting affected the com- posite Palaeozoic basement of Central Europe. During Triassic to Cretaceous times, both basins evolved due to thermal subsidence and pulses of tectonic subsidence. At the end of Cretaceous, the basins were tectonically inverted. The sedimentary succes- sions of the NEGB and PB are comparable. Particularly, the Zechstein salt induced comparable sedimentary structures and provided a decoupling level between pre- and post-Zechstein rocks during the Late Cretaceous tectonic inversion in both basins. At the crustal scale, both basins are presently limited to the SW by the NW-SE-oriented Elbe Fault System, that correlates with a positive gravity anomaly. Finally, both basins show a N-S differentiation regarding the detailed subsidence history, the structural set- ting and the salt pattern. In spite of the very similar tectonic evolution of the NEGB and the PB, their large-scale geometry and inversion-related structures are different. The NEGB is asymmetric with a shallow northern slope and a steep bounding fault at the SW margin (Elbe Fault System). In the NEGB, the Late Cretaceous tectonic inversion resulted in asymmetric uplift of the SW' border along the Elbe Fault Sys- tem, and in decreasing deformation in the cover towards North. In

  19. Foundation Report, Dam & Spillway, Taylorsville Lake, Ohio River Basin, Salt River, Kentucky.

    DTIC Science & Technology

    1983-04-01

    methods. The spacing of the primary holes was set on 10- foot centers, followed by secondary holes on 5- foot centers and tertiary holes on 2.5- foot ...88’ and 5+00. This area was further divided into 100- foot sections and drilled and grouted in alternating sections. Sections 7, 9 and 5 were drilled...100- foot sections and grouted by alternate sections to preclude violating the 100- foot spacing requirement. Many of the first holes on the left abutment

  20. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard

    2006-05-26

    expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.« less

  1. Paleomagnetism and magnetic fabric of the Triassic rocks from Spitsbergen

    NASA Astrophysics Data System (ADS)

    Dudzisz, K.; Szaniawski, R.; Michalski, K.; Manby, G.

    2017-12-01

    Understanding the origin and directions of the natural remanent magnetization and the tectonic deformation pattern reflected in magnetic fabric is of importance for investigation of the West Spitsbergen Fold and Thrust Belt (WSFTB) and its foreland. Previous research carried out on Triassic rocks from the study area concluded that these rocks record a composite magnetization of both, normal and reverse polarity, consisting of a primary Triassic remanence that is overlapped by a secondary post-folding component. Standard paleomagnetic procedures were conducted in order to determine the remanence components and a low-field AMS was applied to assess the degree and pattern of deformation. The AMS results from the WSFTB reveal a magnetic foliation that parallels the bedding planes and a dominantly NNW-SSE oriented magnetic lineation that is sub-parallel to the regional fold axial trend. These results imply a low to moderate degree of deformation and a maximum strain orientation parallel to that of the fold belt. These data are consistent with an orthogonal convergence model for the WSFTB formation. In turn, the magnetic fabric on the undeformed foreland displays a distinct NNE-SSW orientation that we attribute to the paleocurrent direction. Rock-magnetic analyses reveal that the dominant ferrimagnetic carriers are magnetite and titanomagnetite. The Triassic rocks are characterised by complicated NRM patterns often with overlapping unblocking temperature spectra of particular components. The dominant magnetisation is characterised, however, by a steep inclination of 70-80º. The derived paleomagnetic direction from the WSFTB falls on the Jurassic - recent sector of the apparent polar wander path (APWP) of Baltica after tectonic unfolding. These data imply that at least some of the identified secondary components could have originated before the Eurekan folding event (K/Pg), for example, in Early Cretaceous time which corresponds to the period of rifting events on Barents

  2. Large-Diameter Burrows of the Triassic Ischigualasto Basin, NW Argentina: Paleoecological and Paleoenvironmental Implications

    PubMed Central

    Colombi, Carina E.; Fernández, Eliana; Currie, Brian S.; Alcober, Oscar A.; Martínez, Ricardo; Correa, Gustavo

    2012-01-01

    Large-diameter ichnofossils comprising three morphotypes have been identified in the Upper Triassic Ischigualasto and Los Colorados formations of northwestern Argentina. These burrows add to the global record of the early appearance of fossorial behavior during early Mesozoic time. Morphotypes 1 and 2 are characterized by a network of tunnels and shafts that can be assigned to tetrapod burrows given similarities with previously described forms. However, differences in diameter, overall morphology, and stratigraphic occurrence allow their independent classification. Morphotype 3 forms a complex network of straight branches that intersect at oblique angles. Their calcareous composition and surface morphology indicate these structures have a composite biogenic origin likely developed due to combined plant/animal interactions. The association of Morphotypes 1 and 2 with fluvial overbank lithologies deposited under an extremely seasonal arid climate confirms interpretations that the early appearance of burrowing behavior was employed by vertebrates in response to both temperature and moisture-stress associated with seasonally or perpetually dry Pangean paleoclimates. Comparisons of burrow morphology and biomechanical attributes of the abundant paleovertebrate fauna preserved in both formations permit interpretations regarding the possible burrow architects for Morphotypes 1 and 2. In the case of the Morphotype 1, the burrow constructor could be one of the small carnivorous cynodonts, Ecteninion or Probelesodon. Assigning an architect for Morphotype 2 is more problematic due to mismatches between the observed burrow morphology and the size of the known Los Colorados vertebrates. PMID:23227195

  3. Carbonate Minerals with Magnesium in Triassic Terebratula Limestone in the Term of Limestone with Magnesium Application as a Sorbent in Desulfurization of Flue Gases

    NASA Astrophysics Data System (ADS)

    Stanienda-Pilecki, Katarzyna

    2017-09-01

    This article presents the results of studies of Triassic (Muschelkalk) carbonate rock samples of the Terebratula Beds taken from the area of the Polish part of the Germanic Basin. It is the area of Opole Silesia. The rocks were studied in the term of possibility of limestone with magnesium application in desulfurization of flue gases executed in power plants. Characteristic features of especially carbonate phases including magnesium-low-Mg calcite, high-Mg calcite, dolomite and huntite were presented in the article. They were studied to show that the presence of carbonate phases with magnesium, especially high-Mg calcite makes the desulfurization process more effective. Selected rock samples were examined using a microscope with polarized, transmitted light, X-ray diffraction, microprobe measurements and FTIR spectroscopy. The results of studies show a domination of low magnesium calcite in the limestones of the Terebratula Beds. In some samples dolomite and lower amounts of high-Mg calcite occurred. Moreover, huntite was identified. The studies were very important, because carbonate phases like high-Mg calcite and huntite which occurred in rocks of the Triassic Terebratula Beds were not investigated in details by other scientists but they presence in limestone sorbent could influence the effectiveness of desulfurization process.

  4. Analog modeling and kinematic restoration of inverted hangingwall synclinal basins developed above syn-kinematic salt: Application to the Lusitanian and Parentis basins

    NASA Astrophysics Data System (ADS)

    Roma, Maria; Vidal-Royo, Oskar; McClay, Ken; Ferrer, Oriol; Muñoz, Josep Anton

    2017-04-01

    The formation of hagingwall syncline basins is basically constrained by the geometry of the basement-involved fault, but also by salt distribution . The formation of such basins is common around the Iberian Peninsula (e.g. Lusitanian, Parentis, Basque-Cantabian, Cameros and Organyà basins) where Upper Triassic (Keuper) salt governed their polyphasic Mesozoic extension and their subsequent Alpine inversion. In this scenario, a precise interpretation of the sub-salt faults geometry and a reconstruction of the initial salt thickness are key to understand the kinematic evolution of such basins. Using an experimental approach (sandbox models) and these Mesozoic basins as natural analogues, the aim of this work is to: 1) investigate the main parameters that controlled the formation and evolution of hagingwall syncline basins analyzing the role of syn-kinematic salt during extension and subsequent inversion; and 2) quantify the deformation and salt mobilization based on restoration of analog model cross sections. The experimental results demonstrate that premature welds are developed by salt deflation with consequent upward propagation of the basal fault in salt-bearing rift systems with a large amount of extension,. In contrast, thicker salt inhibits the upward fault propagation, which results into a further salt migration and development of a hagingwall syncline basins flanked by salt walls. The inherited extensional architecture as well as salt continuity dramatically controlled subsequent inversion. Shortening initially produced the folding and the uplift of the synclinal basins. Minor reverse faults form as a consequence of overtightening of welded diapir stems. However, no trace of reverse faulting is found around diapirs stems, as ductile unit is still available for extrusion, squeezing and accommodation of shortening. Restoration of the sandbox models has demonstrated that this is a powerful tool to unravel the complex structures in the models and this may

  5. Geomicrobiological perspective on the pattern and causes of the 5-million-year Permo/Triassic biotic crisis

    NASA Astrophysics Data System (ADS)

    Xie, Shucheng; Wang, Yongbiao

    2011-03-01

    The pattern and causes of Permo/Triassic biotic crisis were mainly documented by faunal and terrestrial plant records. We reviewed herein the geomicrobiological perspective on this issue based on the reported cyanobacterial record. Two episodic cyanobacterial blooms were observed to couple with carbon isotope excursions and faunal mass extinction at Meishan section, suggestive of the presence of at least two episodic biotic crises across the Permian-Triassic boundary (PTB). The two episodes of cyanobacterial blooms, carbon isotope excursions and faunal mass extinction were, respectively, identified in several sections of the world, inferring the presence of two global changes across the PTB. Close associations among the three records (cyanobacterial bloom, shift in carbon isotope composition, and faunal extinction) were subsequently observed in three intervals in the Early Triassic, the protracted recovery period as previously thought, inferring the occurrence of more episodes of global changes. Spatiotemporal association of cyanobacterial blooms with volcanic materials in South China, and probably in South-east Asia, infers their causal relationship. Volcanism is believed to trigger the biotic crisis in several ways and to cause the close association among microbial blooms, the carbon isotope excursions and faunal mass extinctions in four intervals from the latest Permian to the Early Triassic. The major episodes of the well-known Siberian flood eruption are proposed to be responsible for the extinctions in the Early Triassic, but their synchronicity with the end-Permian extinction awaits more precise dating data to confirm. Geomicrobial records are thus suggestive of a long-term episodic biotic crisis (at least four episodes) lasting from the latest Permian to the end of the Early Triassic, induced by the global volcanic eruptions and sea level changes during Pangea formation.

  6. A giant Late Triassic ichthyosaur from the UK and a reinterpretation of the Aust Cliff ‘dinosaurian’ bones

    PubMed Central

    De la Salle, Paul; Massare, Judy A.; Gallois, Ramues

    2018-01-01

    The largest reported ichthyosaurs lived during the Late Triassic (~235–200 million years ago), and isolated, fragmentary bones could be easily mistaken for those of dinosaurs because of their size. We report the discovery of an isolated bone from the lower jaw of a giant ichthyosaur from the latest Triassic of Lilstock, Somerset, UK. It documents that giant ichthyosaurs persisted well into the Rhaetian Stage, and close to the time of the Late Triassic extinction event. This specimen has prompted the reinterpretation of several large, roughly cylindrical bones from the latest Triassic (Rhaetian Stage) Westbury Mudstone Formation from Aust Cliff, Gloucestershire, UK. We argue here that the Aust bones, previously identified as those of dinosaurs or large terrestrial archosaurs, are jaw fragments from giant ichthyosaurs. The Lilstock and Aust specimens might represent the largest ichthyosaurs currently known. PMID:29630618

  7. Timing of the End-Triassic Extinctions on Land: the Moenave Formation on the Southern Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Lucas, S. G.; Tanner, L. H.; Geissman, J. W.; Hurley, L. L.; Kozur, H.; Heckert, A.; Kuerschner, W.; Weems, R.

    2010-12-01

    Strata of the Moenave Formation on and adjacent to the southern Colorado Plateau in Utah-Arizona, USA represent one of the best known and most stratigraphically continuous, complete and fossiliferous terrestrial sections across the Triassic-Jurassic boundary. We present here a synthesis of new biostratigraphic and magnetostratigraphic data collected from the Moenave Formation across the outcrop belt, which extends from the St. George area in southwestern Utah to the Tuba City area in northern Arizona. These include, palynomorphs, conchostracans and vertebrate fossils (including footprints) and a composite polarity record based on four magnetostratigraphic sections. Placement of the Triassic-Jurassic boundary in strata of the Moenave Formation has long been imprecise and debatable, but these new data (especially the conchostracan) allow us to place the Triassic-Jurassic boundary relatively precisely in the middle part of the Whitmore Point Member of the Moenave Formation. This placement supports the conclusion that terrestrial extinctions preceded marine extinctions across the Triassic-Jurassic boundary and likely were unrelated to CAMP volcanism.

  8. A brief exegesis of End Triassic Extinction issues

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Grice, K.; Fox, C.; Kent, D. V.; Olsen, P. E.; Irmis, R. B.

    2017-12-01

    Recent reports of environmental proxy records through the end-Triassic extinction (ETE), in some cases coupled with high-resolution geochronologic data, provide new insights into cause and effect. For example, the emplacement of vast volumes of basalt in the Central Atlantic Magmatic Province (CAMP) are temporally associated with carbon isotopic excursions (CIEs), indications of widespread oceanic euxinia, distinct regional and perhaps very abrupt global sea level change, massive changes in atmospheric CO2, and the proliferation of "disaster" species, both on land and ocean. In the least, these indicate major disruptions in how the Earth works. However some striking and critical issues remain unresolved at a very basic level. Most important are the uncertainties in the stratigraphic relationships of marine extinctions to the various environmental proxy sections, particularly the GSSP for the base Hettangian in Austria, and the UK sections (notably St. Audrie's Bay). Here, the sequence of sporomorph and marine "invertebrate" turnover occurs in different order relative to the proxy record and lithostratigraphy. Thus the sequence of environmental events are, at present, of uncertain relationship to the extinction. Second, it is unclear what processes the various CIEs reflect in different environments; the canonical initial isotopic excursion in the UK, demonstrably correlatable over a huge area, was recorded in a lake in a restricted basin, unlike the isotopic data from surrounding marine strata. Could some CIEs in non-marine basins be diagenetic in nature, caused by the contact effects of overlying basalts? Finally, how does the clear and dramatic tropical non-marine record of the ETE, precisely located relative to the CAMP, relate to the marine record of the ETE, particularly at higher latitudes, where continental biotic turnover is not nearly as dramatic? Do these records correlate in a sufficiently tight temporal interval such that causation can be inferred? These

  9. Recovery collapse coincident with ongoing carbon cycle perturbations following the Permian-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Petsios, E.; Bottjer, D. J.

    2016-12-01

    The Permian-Triassic mass extinction, the largest extinction of the Phanerozoic, is attributed to volcanic outgassing from the Siberian Traps and the resulting climate change. Ongoing volcanism in the Early Triassic is implicated for continued carbon cycle instability following the initial event, reflected in large inorganic carbon isotope excursions throughout the 5 Mya interval. Recent paleoecological studies have shown that timing of recovery from the extinction in the Early Triassic is highly complex, differing between regions, with documented cases of "early" recovery in some environments. The importance of specific environmental factors, such as oxygen levels and sea surface temperatures, in aiding or hindering recovery following the extinction is the topic of ongoing study. Here we present an ecological survey of marine benthic communities from the Lower Triassic Blacktail Creek outcrop of the Dinwoody Formation, correlated bed-for-bed with inorganic carbon isotope values. We observe incipient recovery as communities show increasing richness and evenness throughout the section, followed by a `collapse' with a return of high dominance, low richness fauna coincident with large δ13Ccarb shifts. We observe a statistically significant correlation between the magnitude of δ13Ccarb excursions and benthic community complexity over a stratigraphic section, implying a shared causal mechanism acting at the local scale. The globally correlatable nature of these observed carbon isotope shifts, as well as an absence of lithologic evidence for oxygen limitation, points to thermal stress brought on by pulses of volcanism as the shared cause between recovery collapse and carbon cycle perturbations. We propose that the "early" recovery at Blacktail Creek was truncated by recurrent greenhouse gas induced thermal spikes, highlighting the interplay of local and global environmental conditions in expediting or hindering Early Triassic recovery.

  10. Structuring and evolution of Neogene transcurrent basins in the Tellian foreland domain, north-eastern Tunisia

    NASA Astrophysics Data System (ADS)

    Melki, Fetheddine; Zouaghi, Taher; Harrab, Salah; Sainz, Antonio Casas; Bédir, Mourad; Zargouni, Fouad

    2011-07-01

    The Neogene sedimentary basins (Serravallian to Quaternary) of the Tellian tectonic foreland in north-eastern Tunisia formed within the overall NE-SW sinistral strike-slip tectonic framework of the Ras El Korane-Thibar and El Alia-Teboursouk fault systems. From stratigraphic logs, structural cross sections and interpretation of 2D seismic lines and boreholes, the pre-Neogene basement can be interpreted to be structured according to Eocene (NW-SE) compressional and Oligocene extensional phases. This basement comprises structural highs (anticlines and horsts) and subsiding areas (synclines, half-grabens and grabens) formed during the Neogene. The subsiding areas are delineated by faults striking N030E, N-S and N140E, defining (i) narrow, strongly subsiding synclines, (ii) lozenge-shaped basins and (iii) trapezoidal basins. The architecture of their fill results from the sedimentary balance between tectonics and eustatism. Halokinesis and clay diapirism (driven by Triassic and Neogene evaporites and clays) also played an important role in basin evolution, contributing to the formation of domes and diapirs along active faults.

  11. The Indosinian orogeny: A perspective from sedimentary archives of north Vietnam

    NASA Astrophysics Data System (ADS)

    Rossignol, Camille; Bourquin, Sylvie; Hallot, Erwan; Poujol, Marc; Dabard, Marie-Pierre; Martini, Rossana; Villeneuve, Michel; Cornée, Jean-Jacques; Brayard, Arnaud; Roger, Françoise

    2018-06-01

    The Triassic stratigraphic framework for the Song Da and the Sam Nua basins, north Vietnam, suffers important discrepancies regarding both the depositional environments and ages of the main formations they contain. Using sedimentological analyses and dating (foraminifer biostratigraphy and U-Pb dating on detrital zircon), we provide an improved stratigraphic framework for both basins. A striking feature in the Song Da Basin, located on the southern margin of the South China Block, is the diachronous deposition, over a basal unconformity, of terrestrial and marine deposits. The sedimentary succession of the Song Da Basin points to a foreland setting during the late Early to the Middle Triassic, which contrasts with the commonly interpreted rift setting. On the northern margin of the Indochina Block, the Sam Nua basin recorded the activity of a proximal magmatic arc during the late Permian up to the Anisian. This arc resulted from the subduction of a southward dipping oceanic slab that separated the South China block from the Indochina block. During the Middle to the Late Triassic, the Song Da and Sam Nua basins underwent erosion that led to the formation of a major unconformity, resulting from the erosion of the Middle Triassic Indosinian mountain belt, built after an ongoing continental collision between the South China and the Indochina blocks. Later, during the Late Triassic, as syn- to post-orogenic foreland basins in a terrestrial setting, the Song Da and Sam Nua basins experienced the deposition of very coarse detrital material representing products of the mountain belt erosion.

  12. Time-scale calibration by U-Pb geochronology: Examples from the Triassic Period

    NASA Astrophysics Data System (ADS)

    Mundil, R.

    2009-05-01

    U-Pb zircon geochronology, pioneered by Tom Krogh, is a cornerstone for the calibration of the time scale. Before Krogh's innovations, U-Pb geochronology was essentially limited by laboratory blank Pb (typically hundreds of nanograms) inherent in the then existing zircon dissolution and purification methods. The introduction of high pressure HF dissolution combined with miniature ion exchange columns (1) reduced the blank by orders of magnitude and allowed mass-spectrometric analyses of minute amounts of material (picograms of Pb and U). Krogh also recognized the need for minimizing the effects of Pb loss, and the introduction of the air-abrasion technique was the method of choice for two decades (2), until the development of the combined annealing and chemical abrasion technique resulted in essentially closed system zircons (3). These are the prerequisite for obtaining precise (permil-level) and accurate radio-isotopic ages of individual zircons contained in primary volcanic ash deposits, which are primary targets for the calibration of the time scale if they occur within fossil bearing sediments. A prime example is the calibration of the Triassic time scale which improved significantly using these techniques. The ages for the base and the top of the Triassic are constrained by U-Pb ages to 252.3 (4) and 201.5 Ma (5), respectively. These dates also constrain the ages of major extinction events at the Permian-Triassic and Triassic-Jurassic boundaries, and are statistically indistinguishable from ages obtained for the Siberian Traps and volcanic products from the Central Atlantic Magmatic Province, respectively, suggesting a causal link. Ages for these continental volcanics, however, are mostly from the K-Ar (40Ar/39Ar) system which requires accounting and correcting for a systematic bias of ca 1 % between U-Pb and 40Ar/39Ar isotopic ages (the 40Ar/39Ar ages being younger) (6). Robust U-Pb age constraints also exist for the Induan- Olenekian boundary (251.2 Ma, (7

  13. High-precision U-Pb zircon geochronological constraints on the End-Triassic Mass Extinction, the late Triassic Astronomical Time Scale and geochemical evolution of CAMP magmatism

    NASA Astrophysics Data System (ADS)

    Blackburn, T. J.; Olsen, P. E.; Bowring, S. A.; McLean, N. M.; Kent, D. V.; Puffer, J. H.; McHone, G.; Rasbury, T.

    2012-12-01

    for eight CAMP flows and sills from the eastern U.S. and Morocco. These data are used first to independently test the astronomically calibrated time scale and sediment accumulation rates within the Triassic-Jurassic rift basins along the eastern North America. The U-Pb, paleontological, magnetostratigraphic and astronomical data are combined to constrain the onset and duration of the CAMP and clarify the temporal relationship between the CAMP and the ETE. The dataset together allows more precise estimates of eruptive volume per unit time, a requirement for rigorous evaluation of climate-driven models for the extinction.

  14. Permian-Triassic Tethyan realm reorganization: Implications for the outward Pangea margin

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Jaillard, Etienne; Martelat, Jean-Emmanuel; Guillot, Stéphane; Braun, Jean

    2018-01-01

    We present a new conceptual model to explain the first order Permian-Triassic evolution of the whole > 30 000 km long Pangea margin facing the Panthalassa ocean. Compilation of available geological, geochemical, geochronogical and paleomagnetic data all along this system allowed us to distinguish three part of the margin: western Laurentia, western Gondwana and eastern Gondwana. These segments record distinct tectonic and magmatic events, which all occur synchronously along the whole margin and correlate well with the main geodynamic events of this period, i.e. subduction of the Paleotethys mid-ocean ridge at 310-280 Ma, opening of the Neotethys at 280-260 Ma, counterclockwise rotation of Pangea at 260-230 Ma and closure of the Paleotethys at 230-220 Ma. Between 260 and 230 Ma, the reorganization of the Tethyan realm triggered the up to 35° rotation of Pangea around an Euler pole located in northernmost South America. This implied both an increase and a decrease of the convergence rate between the margin and the Panthalassa ocean, north and south of the Euler pole, respectively. Thus, the Permian-Triassic Pangean margin was marked: in western Laurentia by marginal sea closure, in western Gondwana by widespread bimodal magmatic and volcanic activity, in eastern Gondwana by transpressive orogenic phase. Therefore, we propose that the Permian-Triassic evolution of the outward margin of Pangea was controlled by the Tethyan realm reorganization.

  15. Annual Peak-Flow Frequency Characteristics and (or) Peak Dam-Pool-Elevation Frequency Characteristics of Dry Dams and Selected Streamflow-Gaging Stations in the Great Miami River Basin, Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2009-01-01

    This report describes the results of a study to determine frequency characteristics of postregulation annual peak flows at streamflow-gaging stations at or near the Lockington, Taylorsville, Englewood, Huffman, and Germantown dry dams in the Miami Conservancy District flood-protection system (southwestern Ohio) and five other streamflow-gaging stations in the Great Miami River Basin further downstream from one or more of the dams. In addition, this report describes frequency characteristics of annual peak elevations of the dry-dam pools. In most cases, log-Pearson Type III distributions were fit to postregulation annual peak-flow values through 2007 (the most recent year of published peak-flow values at the time of this analysis) and annual peak dam-pool storage values for the period 1922-2008 to determine peaks with recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. For one streamflow-gaging station (03272100) with a short period of record, frequency characteristics were estimated by means of a process involving interpolation of peak-flow yields determined for an upstream and downstream gage. Once storages had been estimated for the various recurrence intervals, corresponding dam-pool elevations were determined from elevation-storage ratings provided by the Miami Conservancy District.

  16. A new stem group echinoid from the Triassic of China leads to a revised macroevolutionary history of echinoids during the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Thompson, Jeffrey R.; Hu, Shi-xue; Zhang, Qi-Yue; Petsios, Elizabeth; Cotton, Laura J.; Huang, Jin-Yuan; Zhou, Chang-yong; Wen, Wen; Bottjer, David J.

    2018-01-01

    The Permian-Triassic bottleneck has long been thought to have drastically altered the course of echinoid evolution, with the extinction of the entire echinoid stem group having taken place during the end-Permian mass extinction. The Early Triassic fossil record of echinoids is, however, sparse, and new fossils are paving the way for a revised interpretation of the evolutionary history of echinoids during the Permian-Triassic crisis and Early Mesozoic. A new species of echinoid, Yunnanechinus luopingensis n. sp. recovered from the Middle Triassic (Anisian) Luoping Biota fossil Lagerstätte of South China, displays morphologies that are not characteristic of the echinoid crown group. We have used phylogenetic analyses to further demonstrate that Yunnanechinus is not a member of the echinoid crown group. Thus a clade of stem group echinoids survived into the Middle Triassic, enduring the global crisis that characterized the end-Permian and Early Triassic. Therefore, stem group echinoids did not go extinct during the Palaeozoic, as previously thought, and appear to have coexisted with the echinoid crown group for at least 23 million years. Stem group echinoids thus exhibited the Lazarus effect during the latest Permian and Early Triassic, while crown group echinoids did not.

  17. Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism

    USGS Publications Warehouse

    Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.

    2015-01-01

    The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.These observations indicate that two primary provenance areas provided

  18. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida

    NASA Astrophysics Data System (ADS)

    Pritchard, Adam C.; Nesbitt, Sterling J.

    2017-10-01

    The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda.

  19. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida

    PubMed Central

    Nesbitt, Sterling J.

    2017-01-01

    The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda. PMID:29134065

  20. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida.

    PubMed

    Pritchard, Adam C; Nesbitt, Sterling J

    2017-10-01

    The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda.

  1. Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs

    NASA Astrophysics Data System (ADS)

    Rothschild, B. M.; Xiaoting, Z.; Martin, L. D.

    2012-06-01

    Decompression syndrome (caisson disease or the "the bends") resulting in avascular necrosis has been documented in mosasaurs, sauropterygians, ichthyosaurs, and turtles from the Middle Jurassic to Late Cretaceous, but it was unclear that this disease occurred as far back as the Triassic. We have examined a large Triassic sample of ichthyosaurs and compared it with an equally large post-Triassic sample. Avascular necrosis was observed in over 15 % of Late Middle Jurassic to Cretaceous ichthyosaurs with the highest occurrence (18 %) in the Early Cretaceous, but was rare or absent in geologically older specimens. Triassic reptiles that dive were either physiologically protected, or rapid changes of their position in the water column rare and insignificant enough to prevent being recorded in the skeleton. Emergency surfacing due to a threat from an underwater predator may be the most important cause of avascular necrosis for air-breathing divers, with relative frequency of such events documented in the skeleton. Diving in the Triassic appears to have been a "leisurely" behavior until the evolution of large predators in the Late Jurassic that forced sudden depth alterations contributed to a higher occurrence of bends.

  2. Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs.

    PubMed

    Rothschild, B M; Xiaoting, Z; Martin, L D

    2012-06-01

    Decompression syndrome (caisson disease or the "the bends") resulting in avascular necrosis has been documented in mosasaurs, sauropterygians, ichthyosaurs, and turtles from the Middle Jurassic to Late Cretaceous, but it was unclear that this disease occurred as far back as the Triassic. We have examined a large Triassic sample of ichthyosaurs and compared it with an equally large post-Triassic sample. Avascular necrosis was observed in over 15% of Late Middle Jurassic to Cretaceous ichthyosaurs with the highest occurrence (18%) in the Early Cretaceous, but was rare or absent in geologically older specimens. Triassic reptiles that dive were either physiologically protected, or rapid changes of their position in the water column rare and insignificant enough to prevent being recorded in the skeleton. Emergency surfacing due to a threat from an underwater predator may be the most important cause of avascular necrosis for air-breathing divers, with relative frequency of such events documented in the skeleton. Diving in the Triassic appears to have been a "leisurely" behavior until the evolution of large predators in the Late Jurassic that forced sudden depth alterations contributed to a higher occurrence of bends.

  3. New Data on the Clevosaurus (Sphenodontia: Clevosauridae) from the Upper Triassic of Southern Brazil

    PubMed Central

    Hsiou, Annie Schmaltz; De França, Marco Aurélio Gallo; Ferigolo, Jorge

    2015-01-01

    The sphenodontian fossil record in South America is well known from Mesozoic and Paleogene deposits of Argentinean Patagonia, mainly represented by opisthodontians, or taxa closely related to the modern Sphenodon. In contrast, the Brazilian fossil record is restricted to the Caturrita Formation, Late Triassic of Rio Grande do Sul, represented by several specimens of Clevosauridae, including Clevosaurus brasiliensis Bonaparte and Sues, 2006. Traditionally, Clevosauridae includes several Late Triassic to Early Jurassic taxa, such as Polysphenodon, Brachyrhinodon, and Clevosaurus, the latter well-represented by several species. The detailed description of the specimen MCN-PV 2852 allowed the first systematic revision of most Clevosaurus species. Within Clevosauridae, Polysphenodon is the most basal taxon, and an IterPCR analysis revealed Brachrhynodon as a possible Clevosaurus; C. petilus, C. wangi, and C. mcgilli as possibly distinct taxonomic entities; and the South African Clevosaurus sp. is not closely related to C. brasiliensis. These data indicate the need of a deep phylogenetic review of Clevosauridae, in order to discover synapomorphic characters among the diversity of these Triassic/Jurassic sphenodontians. PMID:26355294

  4. La province magmatique de l'Atlantique central dans le bassin des Ksour (Atlas saharien, Algérie)

    NASA Astrophysics Data System (ADS)

    Meddah, Amar; Bertrand, Hervé; Elmi, Serge

    2007-01-01

    The volcanic succession from the Triassic basin of the Ksour Mountains is formed by three basaltic units, interlayered with siliciclastic to evaporitic sedimentary levels and overlain by Rhaetian-Hettangian limestones. These basalts are low-Ti continental tholeiites that show, from bottom to top, the same chemical evolution as the basalts from the Triassic basins in the Moroccan High Atlas. This volcanism represents the easternmost witness of the central Atlantic magmatic province (CAMP) associated with the central Atlantic rifting, at the Triassic-Jurassic (Tr-J) boundary.

  5. New stem-sauropodomorph (Dinosauria, Saurischia) from the Triassic of Brazil

    NASA Astrophysics Data System (ADS)

    Cabreira, Sergio F.; Schultz, Cesar L.; Bittencourt, Jonathas S.; Soares, Marina B.; Fortier, Daniel C.; Silva, Lúcio R.; Langer, Max C.

    2011-12-01

    Post-Triassic theropod, sauropodomorph, and ornithischian dinosaurs are readily recognized based on the set of traits that typically characterize each of these groups. On the contrary, most of the early members of those lineages lack such specializations, but share a range of generalized traits also seen in more basal dinosauromorphs. Here, we report on a new Late Triassic dinosaur from the Santa Maria Formation of Rio Grande do Sul, southern Brazil. The specimen comprises the disarticulated partial skeleton of a single individual, including most of the skull bones. Based on four phylogenetic analyses, the new dinosaur fits consistently on the sauropodomorph stem, but lacks several typical features of sauropodomorphs, showing dinosaur plesiomorphies together with some neotheropod traits. This is not an exception among basal dinosaurs, the early radiation of which is characterized by a mosaic pattern of character acquisition, resulting in the uncertain phylogenetic placement of various early members of the group.

  6. Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone

    NASA Astrophysics Data System (ADS)

    Surmik, Dawid; Rothschild, Bruce M.; Pawlicki, Roman

    2017-04-01

    Fossilized soft tissues, occasionally found together with skeletal remains, provide insights to the physiology and functional morphology of extinct organisms. Herein, we present unusual fossilized structures from the cortical region of bone identified in isolated skeletal remains of Middle Triassic nothosaurs from Upper Silesia, Poland. The ribbed or annuli-shaped structures have been found in a sample of partially demineralized coracoid and are interpreted as either giant red blood cells or as blood vessel walls. The most probable function is reinforcing the blood vessels from changes of nitrogen pressure in air-breathing diving reptiles. These structures seem to have been built of extensible muscle layers which prevent the vessel damage during rapid ascent. Such suspected function presented here is parsimonious with results of previous studies, which indicate rarity of the pathological modification of bones associated with decompression syndrome in Middle Triassic nothosaurs.

  7. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism

    NASA Astrophysics Data System (ADS)

    van de Schootbrugge, B.; Quan, T. M.; Lindström, S.; Püttmann, W.; Heunisch, C.; Pross, J.; Fiebig, J.; Petschick, R.; Röhling, H.-G.; Richoz, S.; Rosenthal, Y.; Falkowski, P. G.

    2009-08-01

    One of the five largest mass extinctions of the past 600million years occurred at the boundary of the Triassic and Jurassic periods, 201.6million years ago. The loss of marine biodiversity at the time has been linked to extreme greenhouse warming, triggered by the release of carbon dioxide from flood basalt volcanism in the central Atlantic Ocean. In contrast, the biotic turnover in terrestrial ecosystems is not well understood, and cannot be readily reconciled with the effects of massive volcanism. Here we present pollen, spore and geochemical analyses across the Triassic/Jurassic boundary from three drill cores from Germany and Sweden. We show that gymnosperm forests in northwest Europe were transiently replaced by fern and fern-associated vegetation, a pioneer assemblage commonly found in disturbed ecosystems. The Triassic/Jurassic boundary is also marked by an enrichment of polycyclic aromatic hydrocarbons, which, in the absence of charcoal peaks, we interpret as an indication of incomplete combustion of organic matter by ascending flood basalt lava. We conclude that the terrestrial vegetation shift is so severe and wide ranging that it is unlikely to have been triggered by greenhouse warming alone. Instead, we suggest that the release of pollutants such as sulphur dioxide and toxic compounds such as the polycyclic aromatic hydrocarbons may have contributed to the extinction.

  8. Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis.

    PubMed

    Dunhill, Alexander M; Wills, Matthew A

    2015-08-11

    Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind.

  9. Dissolution of Permian salt and Mesozoic depositional trends, Powder River basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, D.L.; Bean, D.W.

    1983-08-01

    Salt deposits in the Powder River basin of Wyoming occur in the Late Permian Ervay Member of the Goose Egg Formation which was deposited in a redbed-evaporite trend extending from the Williston basin of North Dakota to the Alliance basin of Nebraska and Wyoming. However, only remnants of the once extensive Ervay salt remain in the Powder River basin, with major salt dissolution events occurring during Late Jurassic and Early Cretaceous. Subsidence and deposition at the surface were contemporaneous with subsurface salt dissolution except in areas where uplift and erosion were occurring. Earliest dissolution of the Ervay salt occurred inmore » the Jurassic, during regional uplift and erosion of the overlying Triassic Chugwater Formation in the present Hartville uplift and southeastern Powder River basin areas. Thickness variations of the Canyon Springs and Stockade Beaver members of the early Late Jurassic Sundance Formation, which unconformably overlie the deeply eroded Chugwater Formation, may be related in part to dissolution of the Ervay salt. Extensive salt dissolution, synsubsidence, and syndeposition occurred throughout most of the Powder River basin during the latest Jurassic and Early Cretaceous. Many producing fields from the Mowry, Muddy, and Dakota formations exhibit either rapid stratigraphic changes syndepositional to salt collapse or fracture-enhanced reservoir quality due to postdepositional salt collapse. Major Muddy accumulations occurring in areas of local Ervay salt collapse include Kitty, Hilight, Fiddler Creek, and Clareton which have produced jointly over 172 million bbl of oil. The relationship of Ervay salt dissolution to Lower Cretaceous deposition can be exploited as an effective exploration tool.« less

  10. The Bowland Basin, NW England: Base metal mineralisation and its relationship to basin evolution

    NASA Astrophysics Data System (ADS)

    Gaunt, Jonathan Mark

    The Bowland Basin of NW England is a Carboniferous half graben. The Basin was initiated in the Devonian and actively extended during the Carboniferous until the late Westphalian. From the late Westphalian to the early Permian the Bowland Basin underwent inversion in response to Hercynian collision tectonics. Renewed subsidence commenced in the Permian and continued until inversion in the Cenozoic. The sedimentary succession of the Bowland Basin is dominated by Carboniferous strata, but some Permo-Triassic strata are present. The basal sedimentary succession may be comprised of Devonian to early Dinantian syn-rift clastics. The main Dinantian succession is comprised of interbedded limestones, calcareous mudstones and clastic strata. The Dinantian strata include the Waulsortian-facies Clitheroe Limestone and the Limekiln Wood Limestone, both of which host mineralisation. The overlying Namurian is comprised of shales and sandstones. The diagenetic history of the Limekiln Wood Limestone and Waulsortian-facies Clitheroe Limestone in the Cow Ark-Marl Hill Moor district is a function of changes in the burial environment during the Carboniferous. Both exhibit a pre-basin inversion diagenetic sequence that changes with time from shallow to moderate burial depth cements. Late Carbonifeous basin inversion resulted in the formation of tectonic stylolites. Tectonic stylolitisation was postdated by dolomitisation and silicification. Dolomitisation and silicification are suggested to have taken place in the deep burial environment. The base metal mineralisation studied in this work comes from the Cow Ark- Marl Hill Moor district, which is sited on the present basin inversion axis. Mineralisation occurs as four distinct episodes (Period 1, Period 2, Period 3 and Post-Period 3) within a complex multigeneration vein suite. The vein suite, which postdates tectonic stylolitisation and hence end-Carboniferous basin inversion, is comprised of calcite, baroque dolomite, baroque ankerite

  11. Summary of the geology and resources of uranium in the San Juan Basin and adjacent region, New Mexico, Arizona, Utah, and Colorado

    USGS Publications Warehouse

    Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.

    1978-01-01

    The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic

  12. The Permian–Triassic transition in Colorado

    USGS Publications Warehouse

    Hagadorn, James S.; Whitely, Karen R.; Lahey, Bonita L.; Henderson, Charles M.; Holm-Denoma, Christopher S.

    2016-01-01

    The Lykins Formation and its equivalents in Colorado are a stratigraphically poorly constrained suite of redbeds and intercalated stromatolitic carbonates, which is hypothesized to span the Permian-Triassic boundary. Herein we present a preliminary detrital zircon geochronology, new fossil occurrences, and δ13C chemostratigraphy for exposures along the Front Range and in southeastern Colorado, to refine understanding of the unit's age and depositional history.Detrital zircons from the uppermost Lykins Formation and an overlying eolianite consist of a complex and highly diverse primary and multi-cycle grain population transported from Laurentian and Gondwanan terranes, potentially both by wind and water. Youngest concordant zircons do not rule out deposition of the uppermost Lykins Formation during a portion of Early Triassic time. Conodonts from the lower Lykins Formation require Middle Permian (Guadalupian) deposition. Conodont alteration indices of 1 indicate the unit has a shallow burial history and is amenable to paleomagnetic inquiry. Conodonts, together with other vertebrate, invertebrate, microfossil, and trace fossils, suggest a very shallow to emergent marine origin for the unit's most substantial carbonates, and hint at a marine origin for the unit's intercalated gypsum-anhydrite members. Chemostratigraphy corroborates field evidence of emergence and karst development capping certain units, like the Forelle Limestone Member of the Lykins Formation, where potential sequence boundaries appear to be punctuated by a short-lived meteoric signature.Results presented here are a progress report of ongoing work in these successions. This field trip consists of a brief tour through exposures of the Lykins Formation, in which we will examine well-known localities as well as view new ones for which we seek insights.

  13. The Sredne-Amursky basin: A migrating cretaceous depocenter for the Amur river, eastern Siberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, M.; Maslanyj, M.; Davidson, K.

    1993-09-01

    Recently acquired seismic, well, and regional geological data imply favorable conditions for the accumulation of oil and gas in the 20,000 km[sup 2] Sredne-Amursky basin. Major graben and northeast-trending sinistral wrench-fault systems are recognized in the basin. Lower and Upper Cretaceous sediments are up to 9000 and 3000 m thick, respectively. Paleogeographic reconstructions imply that during the Late Triassic-Early Cretaceous the Sredne-Amursky basin was part of a narrow marine embayment (back-arc basin), which was open to the north. During the Cretaceous, the region was part of a foreland basin complicated by strike-slip, which produced subsidence related to transtension during obliquemore » collision of the Sikhote-Alin arc with Eurasian margin. Contemporaneous uplift also related to this collision migrated from south to north and may have sourced northward-directed deltas and alluvial fans, which fed northward into the closing back-arc basin between 130 and 85 Ma. The progradational clastic succession of the Berriasian-Albian and the Late Cretaceous fluvial, brackish water and paralic sediments within the basin may be analogous to the highly productive late Tertiary clastics of the Amur River delta in the northeast Sakhalin basin. Cretaceous-Tertiary lacustrine-deltaic sapropelic shales provide significant source and seal potential and potential reservoirs occur in the Cretaceous and Tertiary. Structural plays were developed during Cretaceous rifting and subsequent strike-slip deformation. If the full hydrocarbon potential of the Sredne-Amursky basin is to be realized, the regional appraisal suggests that exploration should be focused toward the identification of plays related to prograding Cretaceous deltaic depositional systems.« less

  14. Steeply-dipping extension fractures in the Newark basin, New Jersey

    USGS Publications Warehouse

    Herman, G.C.

    2009-01-01

    Late Triassic and Early Jurassic bedrock in the Newark basin is pervasively fractured as a result of Mesozoic rifting of the east-central North American continental margin. Tectonic rifting imparted systematic sets of steeply-dipping, en ??chelon, Mode I, extension fractures in basin strata including ordinary joints and veins. These fractures are arranged in transitional-tensional arrays resembling normal dip-slip shear zones. They contributed to crustal stretching, sagging, and eventual faulting of basin rift deposits. Extension fractures display progressive linkage and spatial clustering that probably controlled incipient fault growth. They cluster into three prominent strike groups correlated to early, intermediate, and late-stage tectonic events reflecting about 50- 60?? of counterclockwise rotation of incremental stretching directions. Finite strain analyses show that extension fractures allowed the stretching of basin strata by a few percent, and these fractures impart stratigraphic dips up to a few degrees in directions opposing fracture dips. Fracture groups display three-dimensional spatial variability but consistent geometric relations. Younger fractures locally cut across and terminate against older fractures having more complex vein-cement morphologies and bed-normal folds from stratigraphic compaction. A fourth, youngest group of extension fractures occur sporadically and strike about E-W in obliquely inverted crustal blocks. A geometric analysis of overlapping fracture sets shows how fracture groups result from incremental rotation of an extending tectonic plate, and that old fractures can reactivate with oblique slip components in the contemporary, compressive stress regime. ?? 2008 Elsevier Ltd. All rights reserved.

  15. Astrochronology of the Anisian stage (Middle Triassic) at the Guandao reference section, South China

    NASA Astrophysics Data System (ADS)

    Li, Mingsong; Huang, Chunju; Hinnov, Linda; Chen, Weizhe; Ogg, James; Tian, Wei

    2018-01-01

    A high-precision global timescale for the Early and Middle Triassic is the key to understanding the nature, pattern and rates of biotic recovery following the end-Permian mass extinction. The Guandao section of Guizhou Province of South China is an important reference section for the magnetic polarity pattern, conodont datums, geochemical anomalies and interpreted temperature history through the Anisian (Middle Triassic). We analyzed the high-resolution gamma-ray and magnetic susceptibility series from the complete Anisian stage. Intensity variations are indicative of fluctuating terrestrial clay influxes showing strong signals that match predicted astronomical solutions for eccentricity and precession. Astronomical tuning of these series to interpreted 405-kyr long-eccentricity cycles yields a 5.3 Myr duration for the Anisian at Guandao. When combined with the astrochronology of the Early Triassic, then the projected age of the Anisian-Ladinian boundary relative to the base-Triassic date of 251.9 Ma is 241.5 ± 0.1 Ma. This provides a 10-Myr reference timescale for other key geological events, including conodont zones, geomagnetic polarity chrons, rates of marine carbon- and oxygen isotope excursions and global sea-level changes, that were associated with the repeated biotic crises and recovery episodes after the end-Permian mass extinction. The middle Anisian humid phase in ca. 244-244.5 Ma was probably a global event, which may have been linked to the middle Anisian warming event and sea-level change. Sea-level fluctuations at Guandao generally correlate with those in western Tethyan and Boreal regions in time, confirming sea-level changes during the Anisian were of eustatic origin.

  16. Integrated geophysical study of the Triassic salt bodies' geometry and evolution in central Tunisia

    NASA Astrophysics Data System (ADS)

    Azaiez, Hajer; Amri, Dorra Tanfous; Gabtni, Hakim; Bedir, Mourad; Soussi, Mohamed

    2008-01-01

    A comprehensive study, integrating gravity, magnetic and seismic reflection data, has been used to resolve the complex Triassic salt body geometry and evolution in central Tunisia. Regional seismic lines across the study area show a detachment level in the Upper Triassic evaporites, associated with chaotic seismic facies below the Souinia, Majoura, and Mezzouna structures. The Jurassic and Lower Cretaceous seismic horizons display pinching-outs and onlapping around these structures. A stack-velocity section confirms the existence of a high-velocity body beneath the Souinia Mountain. Regional gravity and magnetic profiles in this area were elaborated from ETAP (the Tunisian Firm of Petroleum Activities) measure stations. These profiles were plotted following the same layout from the west (Souinia) to the east (Mezzouna), across the Majoura and Kharrouba mountains. They highlight associated gravity and magnetic negative anomalies. These gravity and magnetic data coupled to the reflection seismic data demonstrate that, in the Souinia, Majoura, and El Hafey zones, the Triassic salt reaches a salt pillow and a salt-dome stage, without piercing the cover. These stages are expressed by moderately low gravity anomalies. On the other hand, in the Mezzouna area (part of the North-South Axis), the Triassic salt had pierced its cover during the Upper Cretaceous and the Tertiary, reaching a more advanced stage as a salt diapir and salt wall. These stages express important low gravity and magnetic anomalies. These results confirm the model of Tanfous et al. (2005) of halokinetic movements by fault intrusions inducing, from the west to the east, structures at different stages of salt pillow, salt dome, and salt diapir.

  17. Inclination Shallowing in the Permian/Triassic Boundary Sedimentary Sections of the East European Platform: the New Paleomagnetic Pole and its Significance for GAD Hypothesis

    NASA Astrophysics Data System (ADS)

    Veselovskiy, R. V.; Fetisova, A. M.; Balabanov, Y.

    2017-12-01

    One of the key challenges which are traditionally encountered in studying the paleomagnetism of terrigenous sedimentary strata is the necessity to allow for the effect of shallowing of paleomagnetic inclinations which takes place under the compaction of the sediment at the early stages of diagenesis and most clearly manifests itself in the case of midlatitude sedimentation. Traditionally, estimating the coefficient of inclination flattening (f) implies routine re-deposition experiments and studying their magnetic anisotropy (Kodama, 2012), which is not possible in every standard paleomagnetic laboratory. The Elongation-Inclination (E/I) statistical method for estimating the coefficient of inclination shallowing, which was recently suggested in (Tauxe and Kent, 2004), does not require the investigation of the rock material in a specially equipped laboratory but toughens the requirements on the paleomagnetic data and, primarily, regarding the volume of the data, which significantly restricts the possibilities of the post factum estimation and correction for inclination shallowing. We present the results of the paleomagnetic reinvestigation of the some key sections of the Upper Permian and Lower Triassic rocks located on the East European Platform. The obtained paleomagnetic data allowed us to estimate the coefficient of inclination shallowing by the E/I method and calculate a new P-Tr paleomagnetic pole for Europe. The absence of a statistically significant difference between the mean Siberian, European and North American Permian-Triassic paleomagnetic poles allow us to conclude that 252 Ma the configuration of the Earth's magnetic field was predominantly dipole. We believe that the assumption of the non-dipolarity of the geomagnetic field at the Permian-Triassic boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), arose due to the failure to take into account the

  18. Geomorphological stability of Permo-Triassic albitized profiles - case study of the Montseny-Guilleries High (NE Iberia)

    NASA Astrophysics Data System (ADS)

    Parcerisa, D.; Casas, L.; Franke, C.; Gomez-Gras, D.; Lacasa, G.; Nunez, J. A.; Thiry, M.

    2010-05-01

    Massif paleoalteration profiles (≥ 200 m) occur in the upper parts of the Montseny-Guilleries High (NE Catalan Coastal Ranges). The profiles consist of hard albitized-chloritized-hematized facies in the lower part and softer kaolinized-hematized facies in the upper part of the section. Preliminary paleomagnetic data show Triassic ages for both, the albitized and the kaolinized parts, and point to a surficial formation altered under oxidising conditions. Similar paleoalteration profiles have already been described and dated to Triassic ages elsewhere in Europe [Schmitt, 1992; Ricordel et al., 2007; Parcerisa et al., 2009]. These Permian-Triassic alterations are following a succession of different mineral transformations from the top to the base of the profile: 1) Red facies are defined by an increase in the amount and size of haematite crystals leading to the red colour of the rocks. The increase on haematite content is pervasively affecting the whole rock and is accompanied by the kaolinitization of the feldspars. 2) Pink facies: here, the granite shows an uniform pink colouration, which is mainly due to the albitization of the primary Ca-bearing plagioclases, accompanied by a precipitation of minute haematite, sericite, and calcite crystals inside the albite. Additionally primary biotite is fully chloritized. The pink granites are much more resistant to the present-day weathering than the "unaltered" facies at the base of the profile. 3) Spotted facies is characterized by a partial alteration of the rock, which caused a pink-screened aspect to the rock. The alteration developed along the fractures and is less well developed or absent in the non-fractured zones. In the pink-screened facies, the plagioclases are partially albitized and contain numerous hematite inclusions. Biotites are usually almost entirely chloritized. 4) Unaltered facies: These granites are coloured white to greyish, containing plagioclase and K-feldspar that do not show any trace of

  19. Implication of Guigo and L'Hajeb Causses in the renewal and circulations of Saïs basin groundwaters (Middle-Atlas Causses, Morocco).

    NASA Astrophysics Data System (ADS)

    Miche, H.; Saracco, G.; Mayer, A.; Qarqori, K.; Rouai, M.; Dekayir, A.; Chalikakis, K.; Emblanch, C.

    2017-12-01

    In a context of overexploitation of the karst system of the Middle-Atlas Causses feeding the Saïs basin and, with the current climatic variations, the study of circulations and of renewal of waters of this system in the Fes-Meknes area becomes essential for the population, in order to maintain a sufficient quality of waters with a good management. By coupling hydrochemical and isotopic analyzes methods (δD, δ18O, 222Rn), saturation indices obtained from PHREEQC code and the help of a principal component analysis (PCA) of ten springs and three wells, a first conceptual model of groundwater flows of this karst system was obtained. These waters are mainly renewed by the rainfall of L'Hajeb Causse and secondarily by the rainfall of Guigo Causse containing several springs. Hydrochemistry and saturation indexes allowed us to highlight two types of waters: a main contribution of Liasic origin and two low contributions of Triassic origin at the southern extremities (SW, SE) of the basin. We pointed out the existence of five local recharge zones of different altitudes (900 to 1500 m asl.) including the two main mixing zones to the south (SE, SW). Radon-222 showed areas of rapid exchanges (upwelling time less than two weeks) between waters of Liasic aquifer and the ones of Triassic origin of high radon activity. The use of PCA on hydrochemical data, allowed us to refine the kind of waters, their transit times and highlighted the existence of several mixing zones between the Triassic aquitard and the Liasic aquifers in more or less faulted structures for the two causses. Our results allow us to obtain a first conceptual model of groundwater circulations between the two causses and the Saïs basin. Previous campaigns of electrical resistivity tomography coupled with electromagnetic measurements (EM34) revealed lateral and vertical variations of electrical conductivity changing with the depth along the North-South axis, and a preferential drain perpendicularly to the causses

  20. The Late Triassic bivalve Monotis in accreted terranes of Alaska

    USGS Publications Warehouse

    Silberling, Norman J.; Grant-Mackie, J. A.; Nichols, K.M.

    1997-01-01

    Late Triassic bivalves of the genus Monotis occur in at least 16 of the lithotectonic terranes and subterranes that together comprise nearly all of Alaska, and they also occur in the Upper Yukon region of Alaska where Triassic strata are regarded as representing non-accretionary North America. On the basis of collections made thus far, 14 kinds of Monotis that differ at the species or subspecies level can be recognized from alaska. These are grouped into the subgenera Monotis (Monotis), M. (Pacimonotis), M. (Entomonotis), and M. (Eomonotis). In places, Monotis shells of one kind or another occur in rock-forming abundance. On the basis of superpositional data from Alaska, as well as from elsewhere in North America and Far Eastern Russia, at least four distince biostratigraphic levels can be discriminated utilizing Monotis species. Different species of M. (Eomonotis) characterize two middle Norian levels, both probably within the supper middle Norian Columbianus Ammonite Zone. Two additional levels are recognized in the lower upper Norian Cordilleranus Ammonite Zone utilizing species of M. (Monotis) or M. (Entomonotis), both of which subgenera are restricted to the late Norian. An attached-floating mode of life is commonly attributed to Monotis; thus, these bivalves would have been pseudoplanktonic surface dwellers that were sensitive to surface-water temperature and paleolatitude. Distinctly different kinds of Monotis occur at different paleolatitudes along the Pacific and Arctic margins of the North American craton inboard of the accreted terranes. Comparison between thse craton-bound Monotis faunas and those of the Alaskan terranes in southern Alaska south of the Denali fault were paleoequatorial in latitude during Late Triassic time. Among these terranes, the Alexander terrane was possibly in the southern hemisphere at that time. Terranes of northern Alaska, on the other hand, represent middle, possibly high-middle, northern paleolatitudes.

  1. Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades

    PubMed Central

    Rey, Kévin; Amiot, Romain; Fourel, François; Abdala, Fernando; Fluteau, Frédéric; Jalil, Nour-Eddine; Liu, Jun; Rubidge, Bruce S; Smith, Roger MH; Steyer, J Sébastien; Viglietti, Pia A; Wang, Xu; Lécuyer, Christophe

    2017-01-01

    The only true living endothermic vertebrates are birds and mammals, which produce and regulate their internal temperature quite independently from their surroundings. For mammal ancestors, anatomical clues suggest that endothermy originated during the Permian or Triassic. Here we investigate the origin of mammalian thermoregulation by analysing apatite stable oxygen isotope compositions (δ18Op) of some of their Permo-Triassic therapsid relatives. Comparing of the δ18Op values of therapsid bone and tooth apatites to those of co-existing non-therapsid tetrapods, demonstrates different body temperatures and thermoregulatory strategies. It is proposed that cynodonts and dicynodonts independently acquired constant elevated thermometabolism, respectively within the Eucynodontia and Lystrosauridae + Kannemeyeriiformes clades. We conclude that mammalian endothermy originated in the Epicynodontia during the middle-late Permian. Major global climatic and environmental fluctuations were the most likely selective pressures on the success of such elevated thermometabolism. DOI: http://dx.doi.org/10.7554/eLife.28589.001 PMID:28716184

  2. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic

    NASA Astrophysics Data System (ADS)

    Song, Haijun; Wignall, Paul B.; Tong, Jinnan; Song, Huyue; Chen, Jing; Chu, Daoliang; Tian, Li; Luo, Mao; Zong, Keqing; Chen, Yanlong; Lai, Xulong; Zhang, Kexin; Wang, Hongmei

    2015-08-01

    New 87Sr/86Sr data based on 127 well-preserved and well-dated conodont samples from South China were measured using a new technique (LA-MC-ICPMS) based on single conodont albid crown analysis. These reveal a spectacular climb in seawater 87Sr/86Sr ratios during the Early Triassic that was the most rapid of the Phanerozoic. The rapid increase began in Bed 25 of the Meishan section (GSSP of the Permian-Triassic boundary, PTB), and coincided closely with the latest Permian extinction. Modeling results indicate that the accelerated rise of 87Sr/86Sr ratios can be ascribed to a rapid increase (>2.8×) of riverine flux of Sr caused by intensified weathering. This phenomenon could in turn be related to an intensification of warming-driven runoff and vegetation die-off. Continued rise of 87Sr/86Sr ratios in the Early Triassic indicates that continental weathering rates were enhanced >1.9 times compared to those of the Late Permian. Continental weathering rates began to decline in the middle-late Spathian, which may have played a role in the decrease of oceanic anoxia and recovery of marine benthos. The 87Sr/86Sr values decline gradually into the Middle Triassic to an equilibrium values around 1.2 times those of the Late Permian level, suggesting that vegetation coverage did not attain pre-extinction levels thereby allowing higher runoff.

  3. Nitrogen isotope and trace metal analyses from the Mingolsheim core (Germany): Evidence for redox variations across the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Quan, Tracy M.; van de Schootbrugge, Bas; Field, M. Paul; Rosenthal, Yair; Falkowski, Paul G.

    2008-06-01

    The Triassic-Jurassic (T-J) boundary was one of the largest but least understood mass extinction events in the Phanerozoic. We measured bulk organic nitrogen and carbon isotopes and trace metal concentrations from a core near Mingolsheim (Germany) to infer paleoenvironmental conditions associated with this event. Poorly fossiliferous claystones across the boundary have relatively low δ15N values and low concentrations of redox-sensitive elements, characteristic of an oxic environment with significant terrestrial input. The Early Jurassic features enrichment in δ15N coincident with high redox-sensitive element concentrations, indicating an increase in water column denitrification and decreased oxygen concentrations. These redox state variations are concordant with shifts in abundance and species composition in terrestrial and marine microflora. We propose that the mass extinction at the T-J boundary was caused by a series of events resulting in a long period of stratification, deep-water hypoxia, and denitrification in this region of the Tethys Ocean basin.

  4. Reworked calcretes: their significance in the reconstruction of alluvial sequences (Permian and Triassic, Minorca, Balearic Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Gómez-Gras, D.; Alonso-Zarza, A. M.

    2003-05-01

    , stages II (P2) and V (B2). This caused the greatest aggradation of the floodplains, which are formed of thick sequences of fine-grained sediments, isolated meandering channels, weakly developed calcretes (compound) and reworked calcrete deposits, mostly of types 1 and 2. The density of channels notably increased in stage III (P3), highstand interval, because of the reduction of accommodation space, this could favour the formation of composite or even cumulative palaeosols, but of difficult preservation. Reworked calcrete deposits are mostly of type 3, but types 1 and 2 are also recognised. The reworked calcrete deposits are an important part of the Permian and Triassic fluvial sediments and their occurrence and characteristics are important in order to interpret the infill of terrestrial basins and the construction of floodplains.

  5. Biostratigraphic restudy documents Triassic/Jurassic section in Georges Bank COST G-2 well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousminer, H.L.; Steinkraus, W.E.; Hall, R.E.

    1984-04-01

    In 1977, the COST G-2 well as drilled in Georges Bank, 132 mi (212 km) east of Nantucket Island to a total depth of 21,874 ft (6667 m). Biostratigraphic studies of 363 sidewall and conventional cores and 695 cutting samples resulted in a detailed zonation from the Late Jurassic to the present. Restudy of the original samples, as well as new preparations from previously unstudied core material, resulted in revision of the zonation of the Late Jurassic and older section. On the basis of our study of pollen and spores, dinoflagellates, nannofossils, and foraminifers, we revised the age sequence asmore » follows: 5856 ft (1785 m) Late Jurassic (Thithonian); 6000 ft (1829 m) Kimmeridgian; 6420 ft (1957 m) Oxfordian; 6818 ft (2078 m) Callovian; 8200 ft (2499 m) Bathonian; 9677 ft (2950 m) Bajocian; 14567 ft (4440 m) Norian (Late Triassic). Norian dinoflagellate cysts and Tasmanites sp. indicate that intermittent normal marine sedimentation was taking place on Georges Bank as early as Norian time, although most of the Triassic section (+14,500 ft or 4420 m to T.D.) interpreted as having been deposited under evaporitic sabkha-like conditions. The Norian dinoflagellates (Noricysta, Heibergella, Hebecysta, Suessia, Dapcodinium, and Rhombodella) include species common to both Arctic Canada and the Tethyan region, indicating a possible Late Triassic marine connection.« less

  6. Synchrotron Reveals Early Triassic Odd Couple: Injured Amphibian and Aestivating Therapsid Share Burrow

    PubMed Central

    Fernandez, Vincent; Abdala, Fernando; Carlson, Kristian J.; Cook, Della Collins; Rubidge, Bruce S.; Yates, Adam; Tafforeau, Paul

    2013-01-01

    Fossorialism is a beneficial adaptation for brooding, predator avoidance and protection from extreme climate. The abundance of fossilised burrow casts from the Early Triassic of southern Africa is viewed as a behavioural response by many tetrapods to the harsh conditions following the Permo-Triassic mass-extinction event. However, scarcity of vertebrate remains associated with these burrows leaves many ecological questions unanswered. Synchrotron scanning of a lithified burrow cast from the Early Triassic of the Karoo unveiled a unique mixed-species association: an injured temnospondyl amphibian (Broomistega) that sheltered in a burrow occupied by an aestivating therapsid (Thrinaxodon). The discovery of this rare rhinesuchid represents the first occurrence in the fossil record of a temnospondyl in a burrow. The amphibian skeleton shows signs of a crushing trauma with partially healed fractures on several consecutive ribs. The presence of a relatively large intruder in what is interpreted to be a Thrinaxodon burrow implies that the therapsid tolerated the amphibian’s presence. Among possible explanations for such unlikely cohabitation, Thrinaxodon aestivation is most plausible, an interpretation supported by the numerous Thrinaxodon specimens fossilised in curled-up postures. Recent advances in synchrotron imaging have enabled visualization of the contents of burrow casts, thus providing a novel tool to elucidate not only anatomy but also ecology and biology of ancient tetrapods. PMID:23805181

  7. Evolution of tholeiitic diabase sheet systems in the eastern United States: examples from the Culpeper Basin, Virginia-Maryland, and the Gettysburg Basin, Pennsylvania

    USGS Publications Warehouse

    Woodruff, L.G.; Froelich, A.J.; Belkin, H.E.; Gottfried, D.

    1995-01-01

    High-TiO2, quartz-normative (HTQ) tholeiite sheets of Early Jurassic age have intruded mainly Late Triassic sedimentary rocks in several early Mesozoic basins in the eastern US. Field observations, petrographic study, geochemical analyses and stable isotope data from three HTQ sheet systems were used to develop a general model of magmatic differentiation and magmatic-hydrothermal interaction for HTQ sheets. The three sheet systems have remarkably similar major-oxide and trace-element compositions. Cumulus and evolved diabase in comagmatic sheets separated by tens of kilometers are related by igneous differentiation. Differentiated diabase in all three sheets have petrographic and geochemical signatures and fluid inclusions indicating hydrothermal alteration beginning near magmatic temperatures and continuing to relatively low temperatures. Sulfur and oxygen isotope data are consistent with a magmatic origin for the hydrothermal fluid. -from Authors

  8. Palaeogeographic reconstruction of sandstones using weighted mean grain-size maps, with examples from the Karoo Basin (South Africa) and the Sydney Basin (Australia)

    NASA Astrophysics Data System (ADS)

    le Roux, J. P.

    1992-12-01

    Although sandstone grain-size maps can be a powerful means of reconstructing ancient depositional environments, they have rarely been used in the past. In this paper, two case studies are presented to illustrate the potential of this technique where other, more conventional methods may not be applicable. In the first case, a braided to anastomosing river system in the Triassic Molteno Formation of the South African Karoo Basin is examined. The weighted mean grain-size map clearly portrays the distribution of channels and islands and compares very well with other methods of reconstruction. The second case study examines an offshore shoal in the Permian Nowra Sandstone of the Sydney Basin in Australia. Here the grain-size map shows a north-northeasterly trend parallel to the orientation of the shoal, with a zone of coarsest grains displaced to the east of the shoal crest. This probably reflects the location of the breaker zone. As grain size is an important factor controlling the porosity and permeability of sediments, these maps can provide very useful information when exploring for epigenetic, stratabound ore deposits such as uranium, or planning production wells for oil and gas.

  9. Records of Triassic volcanism in Pangean Great Lakes, and implications for reconstructing the distal effects of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Percival, L.; Kinney, S.; Olsen, P. E.; Mather, T. A.; Philpotts, A.

    2017-12-01

    Documentation of the precise timing of volcanic eruptions in sedimentary records is key for linking volcanic activity to both historical and geological episodes of environmental change. Deposition of tuffs in sediments, and sedimentary enrichment of trace metals linked to igneous processes, are both commonly used for such correlations. In particular, sedimentary mercury (Hg) enrichments have been used as a marker for volcanic activity from Large Igneous Provinces (LIPs) to support their link to episodes of major climate change and mass extinction in the geological record. However, linking such enrichments to a specific eruption or eruption products is often challenging or impossible. In this study, the mercury records from two exactly contemporaneous latest Triassic-earliest Jurassic rift lakes are presented. Both sedimentary records feature igneous units proposed to be related to the later (Early Jurassic) stages of volcanism of the Central Atlantic Magmatic Province (CAMP). These CAMP units include a small tuff unit identified by thin-section petrology and identified at 10 localities over a distance of over 200 km, and a major CAMP basalt flow overlying this tuff (and dated at 200.916±0.064 Ma) which is also known across multiple sedimentary basins in both North America and Morocco and is thought to have been emplaced about 120 kyr after the tuff. A potential stratigraphic correlation between Hg enrichments and the igneous units is considered, and compared to the established records of mercury enrichments from the latest Triassic that are thought to be coeval with the earlier stages of CAMP volcanism. Investigating the Hg records of sedimentary successions containing tuffs and basalt units is an important step for demonstrating whether the mercury emissions from specific individual volcanic eruptions in the deep past can be identified in the geological record, and are thus important tools for interpreting the causes of associated past geological events, such as

  10. Oceanographic Changes through the Early Triassic Crisis Interval

    NASA Astrophysics Data System (ADS)

    Algeo, T. J.

    2013-12-01

    Recent studies of diverse paleoceanographic proxies have provided the basis for reconstructing in some detail oceanographic changes during the end-Permian mass extinction and through the ~5-million-year-long Early Triassic crisis interval. Conodont δ18O records have demonstrated strong warming, to tropical sea-surface temperatures as high as 40oC, during the Griesbachian to Dienerian substages1-2. The crisis interval also was associated with major perturbations in the marine carbon and sulfur cycles. Three episodes of strong warming coincided with decreases in marine carbonate δ13C and marine sulfate δ34S 3, as well as increases in Δδ13Cvert4 and enhanced subaerial weathering fluxes5-6. Lower δ13Ccarb and δ34Ssulf values are indicative of more limited burial of reduced C and S in organic carbon and pyrite, consistent with declines in marine productivity and bacterial sulfate reduction3. Increased Δδ13Cvert is indicative of intensified stratification of the oceanic water column4, and increased subaerial weathering fluxes probably reflect higher soil reaction rates and possibly an intensified hydrologic cycle5-6. Collectively, these patterns are indicative of the globally integrated response of marine and terrestrial regimes to episodic perturbations in the form of extreme warming events1-2,7. These warming events may have been triggered by major volcanic eruptions8, as suggested by recent studies of volcanic ash layers9-10 and rare earth elements11 in South China P-Tr boundary sections. The ~2-million-year-long Early Triassic interval of extreme sea-surface temperatures came to an abrupt end around the Smithian-Spathian boundary1-2. Cooling coincided with a sharp decline in Δδ13Cvert due to stronger vertical overturning circulation4 and a major positive excursion in δ13Ccarb due to increased marine productivity related to greater mixing of nutrients into the ocean-surface layer12. The late Spathian was characterized by a final, weaker episode of sea

  11. Anisian (Middle Triassic) marine ichnocoenoses from the eastern and western margins of the Kamdian Continent, Yunnan Province, SW China: Implications for the Triassic biotic recovery

    NASA Astrophysics Data System (ADS)

    Feng, Xueqian; Chen, Zhong-Qiang; Woods, Adam; Pei, Yu; Wu, Siqi; Fang, Yuheng; Luo, Mao; Xu, Yaling

    2017-10-01

    Two Anisian (Middle Triassic) marine ichnocoenoses are reported from the Boyun and Junmachang (JMC) sections located along the eastern and western margins of the Kamdian Continent, Yunnan Province, Southwest China, respectively. The Boyun ichnoassemblage is middle Anisian in age and is dominated by robust Rhizocorallium, while the JMC ichnoassemblage is of an early Anisian age and is characterized by the presence of Zoophycos. The ichnoassemblage horizons of the Boyun section represent an inner ramp environment, while the JMC section was likely situated in a mid-ramp setting near storm wave base as indicated by the presence of tempestites. The ichnofossil-bearing successions are usually highly bioturbated in both the Boyun (BI 3-5, BPBI 5) and JMC (BI 3-4, BPBI 3-4) sections. Three large, morphologically complicated ichnogenera: 1) Rhizocorallium; 2) Thalassinoides; and, 3) Zoophycos characterize the Anisian ichnocoenoses. Of these, Rhizocorallium has mean and maximum tube diameters up to 20.4 mm and 28 mm, respectively, while Thalassinoides mean and maximum tube diameters are 14.2 mm and 22 mm, respectively. Zoophycos is present in the early Anisian strata of the JMC section, and represents the oldest known occurrence of this ichnogenus following the latest Permian mass extinction. Similar to coeval ichnoassemblages elsewhere in the world, the Yunnan ichnocoenoses embrace a relatively low ichnodiversity, but their burrows usually penetrate deeply into the sediment, and include large and complex Rhizocorallium and Thalassinoides. All of these ichnologic features are indicative of recovery stage 4 after the latest Permian crisis. Anisian ichnoassemblages occur globally in six different habitat settings, and all show similar ecologic characteristics except for slightly different degrees of ichnotaxonomic richness, indicating that depositional environment is not a crucial factor shaping the recovery of the trace-makers, but may have an impact on their ichnodiversity

  12. Triassic metasediments in the internal Dinarides (Kopaonik area, southern Serbia): stratigraphy, paleogeographic and tectonic significance

    NASA Astrophysics Data System (ADS)

    Schefer, Senecio; Egli, Daniel; Missoni, Sigrid; Bernoulli, Daniel; Fügenschuh, Bernhard; Gawlick, Hans-Jürgen; Jovanović, Divna; Krystyn, Leopold; Lein, Richard; Schmid, Stefan M.; Sudar, Milan N.

    2010-04-01

    Strongly deformed and metamorphosed sediments in the Studenica Valley and Kopaonik area in southern Serbia expose the easternmost occurrences of Triassic sediments in the Dinarides. In these areas, Upper Paleozoic terrigenous sediments are overlain by Lower Triassic siliciclastics and limestones and by Anisian shallow-water carbonates. A pronounced facies change to hemipelagic and distal turbiditic, cherty metalimestones (Kopaonik Formation) testifies a Late Anisian drowning of the former shallow-water carbonate shelf. Sedimentation of the Kopaonik Formation was contemporaneous with shallow-water carbonate production on nearby carbonate platforms that were the source areas of diluted turbidity currents reaching the depositional area of this formation. The Kopaonik Formation was dated by conodont faunas as Late Anisian to Norian and possibly extends into the Early Jurassic. It is therefore considered an equivalent of the grey Hallstatt facies of the Eastern Alps, the Western Carpathians, and the Albanides-Hellenides. The coeval carbonate platforms were generally situated in more proximal areas of the Adriatic margin, whereas the distal margin was dominated by hemipelagic/pelagic and distal turbiditic sedimentation, facing the evolving Neotethys Ocean to the east. A similar arrangement of Triassic facies belts can be recognized all along the evolving Meliata-Maliac-Vardar branch of Neotethys, which is in line with a ‘one-ocean-hypothesis’ for the Dinarides: all the ophiolites presently located southwest of the Drina-Ivanjica and Kopaonik thrust sheets are derived from an area to the east, and the Drina-Ivanjica and Kopaonik units emerge in tectonic windows from below this ophiolite nappe. On the base of the Triassic facies distribution we see neither argument for an independent Dinaridic Ocean nor evidence for isolated terranes or blocks.

  13. Evidence for Late Permian-Upper Triassic ocean acidification from calcium isotopes in carbonate of the Kamura section in Japan

    NASA Astrophysics Data System (ADS)

    Ye, F.; Zhao, L., Sr.; Chen, Z. Q.; Wang, X.

    2017-12-01

    Calcium and carbon cycles are tightly related in the ocean, for example, through continental weathering and deposition of carbonate, thus, very important for exploring evolutions of marine environment during the earth history. The end-Permian mass extinction is the biggest biological disaster in the Phanerozoic and there are several studies talking about variations of calcium isotopes across the Permian-Triassic boundary (PTB). However, these studies are all from the Tethys regions (Payne et al., 2010; Hinojosa et al., 2012), while the Panthalassic Ocean is still unknown to people. Moreover, evolutions of the calcium isotopes during the Early to Late Triassic is also poorly studied (Blattler et al., 2012). Here, we studied an Uppermost Permian to Upper Triassic shallow water successions (Kamura section, Southwest Japan) in the Central Panthalassic Ocean. The Kamura section is far away from the continent without any clastic pollution, therefore, could preserved reliable δ44/40Cacarb signals. Conodont zonation and carbonate carbon isotope also provide precious time framework which is necessary for the explaining of the δ44/40Cacarb profile. In Kamura, δ44/40Cacarb and δ13Ccarb both exhibit negative excursions across the PTB, the δ44/40Cacarb value in the end-Permian is 1.0398‰ then abrupt decrease to the minimum value of 0.1524‰. CO2-driven global ocean acidification best explains the coincidence of the δ44/40Cacarb excursion with negative excursions in the δ13Ccarb of carbonates until the Early Smithian(N1a, N1b, N1c, P1, N2, P2). In the Middle and the Late Triassic, the δ44/40 Cacarb average approximately 1.1‰. During the Middle and Late Triassic, strong relationships between δ44/40Cacarb and δ13Ccarb are collapsed, indicating a normal pH values of the seawater in those time. The Siberian Trap volcanism probably played a significant role on the δ44/40Cacarb until the late Early Triassic. After that, δ44/40Cacarb was mostly controlled by carbonate

  14. Geochronologic evidence of a large magmatic province in northern Patagonia encompassing the Permian-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Luppo, Tomás; López de Luchi, Mónica G.; Rapalini, Augusto E.; Martínez Dopico, Carmen I.; Fanning, Christopher M.

    2018-03-01

    The Los Menucos Complex (northern Patagonia) consists of ∼6 km thick succession of acidic and intermediate volcanic and pyroclastic products, which has been traditionally assigned to the Middle/Late Triassic. New U/Pb (SHRIMP) zircon crystallization ages of 257 ± 2 Ma at the base, 252 ± 2 Ma at an intermediate level and 248 ± 2 Ma near the top of the sequence, indicate that this volcanic event took place in about 10 Ma around the Permian-Triassic boundary. This volcanism can now be considered as the effusive terms of the neighboring and coeval La Esperanza Plutono-Volcanic Complex. This indicates that the climax of activity of a large magmatic province in northern Patagonia was coetaneous with the end-Permian mass extinctions. Likely correlation of La Esperanza- Los Menucos magmatic province with similar volcanic and plutonic rocks across other areas of northern Patagonia suggest a much larger extension than previously envisaged for this event. Its age, large volume and explosive nature suggest that the previously ignored potential role that this volcanism might have played in climatic deterioration around the Permian-Triassic boundary should be investigated.

  15. Palinspastic reconstruction of Lower Mesozoic stratigraphic sequences near the latitude of Las Vegas: Implications for the entire Great Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzolf, J.E.

    1993-04-01

    On the Colorado Plateau, lower Mesozoic stratigraphy is subdivided by regional unconformities into the Lower Triassic Moenkopi, Upper Triassic Chinle, Lower and Middle( ) Jurassic Glen Canyon, and Middle Jurassic lower San Rafael tectonosequences. Palinspastic reconstruction for Cenozoic extensional and mesozoic compressional deformations near the latitude of Las Vegas indicates the Moenkopi tectono-sequence constructed a passive-margin-like architecture of modest width overlapping folded. Thrust-faulted, and intruded Permian strata, with state boundaries fixed relative to the Colorado Plateau, comparison of the location of the Early Triassic shelf-slope break near latitude 36[degree] with the palinspastically restored location of the shelf-slope break in southeasternmore » Idaho implies strata of the Moenkopi tectonosequence in the Mesozoic marine province of northwest NV lay in western utah in the Early Triassic. This reconstruction: suggests that the Galconda and Last Chance faults are part of the same thrust system; aligns late Carnian paleovalleys of the chinle tectonosequence on the Colorado Plateau with a coeval northwest-trending paleovalley cut across the Star Pea, and the Norian Cottonwood paleovalley with the coeval Grass Valley delta; defines a narrow, northward deepening back-arc basin in which the Glen Canyon tectonosequence was deposited; aligns east-facing half grabens along the back side of the arc from the Cowhole Mountains to the Clan Alpine Range; projects the volcan-arc/back-arc transition from northwest Arizona to the east side of the Idaho batholith; and predicts the abrupt facies change from silicic volcanics to marine strata of the lower San Rafael sequence lay in western Utah. The paleogeographic was altered in the late Bathonian to Callovian by back-arc extension north of a line extending from Cedar City, UT to Mina, NV. The palinspastic reconstruction implies the Paleozoic was tectonically stacked at the close of the Paleozoic.« less

  16. A new high-precision 40Ar/39Ar age for the Rochechouart impact structure: At least 5 Ma older than the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin E.; Mark, Darren F.; Lee, Martin R.; Simpson, Sarah L.

    2017-08-01

    The Rochechourt impact structure in south-central France, with maximum diameter of 40-50 km, has previously been dated to within 1% uncertainty of the Triassic-Jurassic boundary, at which time 30% of global genera became extinct. To evaluate the temporal relationship between the impact and the Triassic-Jurassic boundary at high precision, we have re-examined the structure's age using multicollector ARGUS-V 40Ar/39Ar mass spectrometry. Results from four aliquots of impact melt are highly reproducible, and yield an age of 206.92 ± 0.20/0.32 Ma (2σ, full analytical/external uncertainties). Thus, the Rochechouart impact structure predates the Triassic-Jurassic boundary by 5.6 ± 0.4 Ma and so is not temporally linked to the mass extinction. Rochechouart has formerly been proposed to be part of a multiple impact event, but when compared with new ages from the other purported "paired" structures, the results provide no evidence for synchronous impacts in the Late Triassic. The widespread Central Atlantic Magmatic Province flood basalts remain the most likely cause of the Triassic-Jurassic mass extinction.

  17. Structure, stratigraphy, and petroleum geology of the Little Plain basin, northwestern Hungary

    USGS Publications Warehouse

    Mattick, R.E.; Teleki, P.G.; Phillips, R.L.; Clayton, J.L.; David, G.; Pogcsas, G.; Bardocz, B.; Simon, E.

    1996-01-01

    The basement of the Little Plain (Kisalfo??ld) basin is composed of two parts: an eastern part comprised of folded and overthrusted Triassic and Paleozoic rocks of the Pelso block (Transdanubian Central Range) compressed in the Early Cretaceous, and a western part consisting of stacked nappes of the Austroalpine zone of Paleozoic rocks, significantly metamorphosed during Cretaceous and later compression, overriding Jurassic oceanic rift-zone rocks of the Penninic zone. The evolution of the basin began in the late Karpatian-early Badenian (middle Miocene) when the eastern part of the basin began to open along conjugate sets of northeast- and northwest-trending normal faults. Neogene rocks in the study area, on the average, contain less than 0.5 wt. % total organic carbon (TOC) and, therefore, are not considered effective source rocks. Locally, however, where TOC values are as high as 3 wt. %, significant amounts of gas may have been generated and expelled. Although potential stratigraphic traps are numerous in the Neogene section, these potential traps must be downgraded because of the small amount of hydrocarbons discovered in structural traps to date. With the exception of the Cretaceous, the Mesozoic section has not been actively explored. Large anticlinal and overthrust structures involving pre-Cretaceous strata remain undrilled.

  18. Reconnaissance de la structure géologique du bassin de saïss occidental, Maroc, par sondages électriquesPreliminary survey of the structure and hydrogeology of the western Saiss Basin, Morocco, using electrical resistivity

    NASA Astrophysics Data System (ADS)

    Essahlaoui, A.; Sahbi, H.; Bahi, L.; El-Yamine, N.

    2001-05-01

    A geophysical study, based on 96 electrical resistivity measurements with a line length up to 4 km, was performed in the southern and southwestern parts of the Meknes Plateau, Morocco, which is a part of the Saiss Basin, located between the Rif Range to the north and the Middle Atlas Range to the south. This basin, whose maximum depth is ˜ 1.5 km in the north, is filled with Triassic to Quaternary deposits overlying the Palæozoic basement and includes two main aquifers. The interpretation of the resistivity measurements, calibrated from deep boreholes, made it possible to obtain a new hydrogeological model for the Saiss Basin. The understanding of the basin structure is of primary importance for the water supply of this area, which has been affected by severe droughts in recent years.

  19. Evaporitic sedimentation in the Southeastern Anatolian Foreland Basin: New insights on the Neotethys closure

    NASA Astrophysics Data System (ADS)

    Yeşilova, Çetin; Helvacı, Cahit; Carrillo, Emilio

    2018-07-01

    We integrate stratigraphic, petrographic and geochemical analysis of subsurface data (wells) together with field surveys to study the sedimentation of a marginal Miocene sub-basin of the Southeastern Anatolian Foreland Basin (SEAFB; SE Turkey). This sub-basin, located in the Batman-Siirt region, is characterized by the existence of evaporites (carbonates, sulphates and chlorides) and alluvial detritus which were divided in the following five lithostratigraphic members, from older to younger: Lower and Upper Yapılar; and Lower, Middle and Upper Sulha. These members deposited in an epicontinental mudflat during the Early Miocene. Both the bromine content and the sulphur and oxygen isotope composition (δ34SV-CDT and δ18OV-SMOW) of halite and sulphates samples, respectively, also suggest a marine origin of the precipitation brines. However, influence of geothermal fluids and dissolution-and-re-precipitation of evaporites from uplifted areas in these brines, such as the Early Miocene members and/or Triassic units, is interpreted. Comparing and integrating our results with data documented in previous works, it is here recognized that the depositional model of the studied sub-basin differs from that which explain the coeval sedimentation of units situated in the western part of the SEAFB. Moreover, our model shows some depositional and paleoenvironmental similarities with Miocene evaporites located in the Mesopotamian Foreland Basin. This work provides valuable insights on the Middle Miocene Salinity Crisis which is related to the evolution of the Neotethys closure.

  20. Geology and assessment of undiscovered oil and gas resources of the Timan-Pechora Basin Province, Russia, 2008

    USGS Publications Warehouse

    Schenk, Christopher J.; Moore, Thomas E.; Gautier, D.L.

    2017-11-15

    The Timan-Pechora Basin Province is a triangular area that represents the northeasternmost cratonic block of east European Russia. A 75-year history of petroleum exploration and production in the area there has led to the discovery of more than 16 billion barrels of oil (BBO) and 40 trillion cubic feet of gas (TCFG). Three geologic assessment units (AUs) were defined for assessing the potential for undiscovered oil and gas resources in the province: (1) the Northwest Izhma Depression AU, which includes all potential structures and reservoirs that formed in the northwestern part of the Izhma-Pechora Depression, although this part of the basin contains only sparse source and reservoir rocks and so was not assessed quantitatively; (2) the Main Basin Platform AU, which includes all potential structures and reservoirs that formed in the central part of the basin, where the tectonic and petroleum system evolution was complex; and (3) the Foredeep Basins AU, which includes all potential structures and reservoirs that formed within the thick sedimentary section of the foredeep basins west of the Uralian fold and thrust belt during the Permian and Triassic Uralian orogeny.For the Timan-Pechora Basin Province, the estimated means of undiscovered resources are 3.3 BBO, 17 TCFG, and 0.3 billion barrels of natural-gas liquids (BBNGL). For the AU areas north of the Arctic Circle in the province, the estimated means of undiscovered resources are 1.7 BBO, 9.0 TCFG, and 0.2 BBNGL. These assessment results indicate that exploration in the Timan-Pechora Basin Province is at a mature level.

  1. Structure and age of the Lower Magdalena Valley basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central andes against the Caribbean basin

    NASA Astrophysics Data System (ADS)

    Mora-Bohórquez, J. Alejandro; Ibánez-Mejia, Mauricio; Oncken, Onno; de Freitas, Mario; Vélez, Vickye; Mesa, Andrés; Serna, Lina

    2017-03-01

    Detailed interpretations of reflection seismic data and new U-Pb and Hf isotope geochemistry in zircon, reveal that the basement of the Lower Magdalena Valley basin is the northward continuation of the basement terranes of the northern Central Cordillera, and thus that the Lower Magdalena experienced a similar pre-Cenozoic tectonic history as the latter. New U-Pb and Hf analyses of zircon from borehole basement samples retrieved in the basin show that the southeastern region consists of Permo-Triassic (232-300Ma) metasediments, which were intruded by Late Cretaceous (75-89 Ma) granitoids. In the northern Central Cordillera, west of the Palestina Fault System, similar Permo-Triassic terranes are also intruded by Late Cretaceous felsic plutons and display ESE-WNW-trending structures. Therefore, our new data and analyses prove not only the extension of the Permo-Triassic Tahamí-Panzenú terrane into the western Lower Magdalena, but also the along-strike continuity of the Upper Cretaceous magmatic arc of the northern Central Cordillera, which includes the Antioquia Batholith and related plutons. Hf isotopic analyses from the Upper Cretaceous Bonga pluton suggest that it intruded new crust with oceanic affinity, which we interpret as the northern continuation of a Lower Cretaceous oceanic terrane (Quebradagrande?) into the westernmost Lower Magdalena. Volcanic andesitic basement predominates in the northwestern Lower Magdalena while Cretaceous low-grade metamorphic rocks that correlate with similar terranes in the Sierra Nevada de Santa Marta and Guajira are dominant in the northeast, suggesting that the Tahamí-Panzenú terrane does not extend into the northern Lower Magdalena. Although the northeastern region of the Lower Magdalena has a similar NE-SW fabric as the San Lucas Ridge of the northeastern Central Cordillera and the Sierra Nevada de Santa Marta, lithologic and geochronologic data suggest that the San Lucas terrane terminates to the north against the

  2. Geodynamics and synchronous filling of rift-type basin evolved through compression tectonics

    NASA Astrophysics Data System (ADS)

    Papdimitriou, Nikolas; Nader, Fadi; Gorini, Christian; Deschamps, Remy

    2016-04-01

    The Levant Basin falls in the category of frontier basins, and is bounded by the Eratosthenes seamount to the West, the Nile cone delta to the south, Cyprus to the north and Lebanon to the east. The Levant Basin was initially a rift type basin, which is located at a major plate boundary since the Late Triassic. It evolved later on through compression tectonics. The post-rift phase prevailed since the Late Jurassic and is expressed by the gradual initiation of a passive margin. A thick infill, mostly of deep water sediments (about 12 km thick) is accounted for the Levant Basin. The post-rift sediments are pinching-out along the slope of the well preserved (and imaged) eastern margin of the Eratosthenes seamount, which is essentially made up of Mesozoic platform carbonates (about 5 km). Thus, the Eratosthenes carbonate platform was adjacent to the deep marine facies of the Levant Basin until the late Cretaceous/Cenozoic. At that time, both the Eratosthenes seamount and the Levant Basin became part of a foreland basin along the Cyprus Arc zone as a result of the collision of the African and Eurasian plates. The objective of this contribution is to investigate the timing and the mechanisms of flexural subsidence as well as the sedimentary filling of Levant Basin (through a source-to-sink approach) in a well-deformed tectonic region. The interpretation of twenty-four 2D seismic profiles coupled with the available ODP wells, offshore Cyprus, aims to define the primary reflectors and seismic packages. Then, concepts of seismic stratigraphy and sequence stratigraphy are applied to achieve a better understanding of the tectonostratigraphy and sedimentary architecture of the Eratosthenes seamount (as an isolated carbonate platform) and its surroundings. Recent offshore discoveries south of the Eratosthenes seamount (e.g., Zhor) have confirmed the presence of gas accumulations exceeding 30Tcf in subsalt Lower Miocene carbonate buildups, making out the understanding of the

  3. Petroleum geology and resources of the North Caspian Basin, Kazakhstan and Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The North Caspian basin is a petroleum-rich but lightly explored basin located in Kazakhstan and Russia. It occupies the shallow northern portion of the Caspian Sea and a large plain to the north of the sea between the Volga and Ural Rivers and farther east to the Mugodzhary Highland, which is the southern continuation of the Ural foldbelt. The basin is bounded by the Paleozoic carbonate platform of the Volga-Ural province to the north and west and by the Ural, South Emba, and Karpinsky Hercynian foldbelts to the east and south. The basin was originated by pre-Late Devonian rifting and subsequent spreading that opened the oceanic crust, but the precise time of these tectonic events is not known. The sedimentary succession of the basin is more than 20 km thick in the central areas. The drilled Upper Devonian to Tertiary part of this succession includes a prominent thick Kungurian (uppermost Lower Permian) salt formation that separates strata into the subsalt and suprasalt sequences and played an important role in the formation of oil and gas fields. Shallow-shelf carbonate formations that contain various reefs and alternate with clastic wedges compose the subsalt sequence on the 1 basin margins. Basinward, these rocks grade into deep-water anoxic black shales and turbidites. The Kungurian salt formation is strongly deformed into domes and intervening depressions. The most active halokinesis occurred during Late Permian?Triassic time, but growth of salt domes continued later and some of them are exposed on the present-day surface. The suprasalt sequence is mostly composed of clastic rocks that are several kilometers thick in depressions between salt domes. A single total petroleum system is defined in the North Caspian basin. Discovered reserves are about 19.7 billion barrels of oil and natural gas liquids and 157 trillion cubic feet of gas. Much of the reserves are concentrated in the supergiant Tengiz, Karachaganak, and Astrakhan fields. A recent new oil discovery

  4. Palaeo-equatorial temperatures and carbon-cycle evolution at the Triassic- Jurassic boundary: A stable isotope perspective from shallow-water carbonates from the UAE

    NASA Astrophysics Data System (ADS)

    Honig, M. R.; John, C. M.

    2013-12-01

    The Triassic-Jurassic boundary was marked by global changes including carbon-cycle perturbations and the opening of the Atlantic Ocean. These changes were accompanied by one of the major extinction events of the Phanerozoic. The carbon-cycle perturbations have been recorded in carbon isotope curves from bulk carbonates, organic carbon and fossil wood in several Tethyan locations and have been used for chemostratigraphic purposes. Here we present data from shallow-marine carbonates deposited on a homoclinal Middle Eastern carbonate ramp (United Arab Emirates). Our site was located at the equator throughout the Late Triassic and the Early Jurassic, and this study provides the first constraints of environmental changes at the low-latitudes for the Triassic-Jurassic boundary. Shallow-marine carbonate depositional systems are extremely sensitive to palaeoenvironmental changes and their usefulness for chemostratigraphy is being debated. However, the palaeogeographic location of the studied carbonate ramp gives us a unique insight into a tropical carbonate factory at a time of severe global change. Stable isotope measurements (carbon and oxygen) are being carried out on micrite, ooids and shell material along the Triassic-Jurassic boundary. The stable isotope results on micrite show a prominent negative shift in carbon isotope values of approximately 2 ‰ just below the inferred position of the Triassic-Jurassic boundary. A similar isotopic trend is also observed across the Tethys but with a range of amplitudes (from ~2 ‰ to ~4 ‰). These results seem to indicate that the neritic carbonates from our studied section can be used for chemostratigraphic purposes, and the amplitudes of the carbon isotope shifts provide critical constraints on the magnitude of carbon-cycle perturbations at low latitudes across the Triassic-Jurassic boundary. Seawater temperatures across the Triassic-Jurassic boundary will be constrained using the clumped isotope palaeo-thermometer applied

  5. Palaeoclimatic conditions in the Late Triassic-Early Jurassic of southern Africa: A geochemical assessment of the Elliot Formation

    NASA Astrophysics Data System (ADS)

    Sciscio, Lara; Bordy, Emese M.

    2016-07-01

    The Triassic-Jurassic boundary marks a global faunal turnover event that is generally considered as the third largest of five major biological crises in the Phanerozoic geological record of Earth. Determining the controlling factors of this event and their relative contributions to the biotic turnover associated with it is on-going globally. The Upper Triassic and Lower Jurassic rock record of southern Africa presents a unique opportunity for better constraining how and why the biosphere was affected at this time not only because the succession is richly fossiliferous, but also because it contains important palaeoenvironmental clues. Using mainly sedimentary geochemical proxies (i.e., major, trace and rare earth elements), our study is the first quantitative assessment of the palaeoclimatic conditions during the deposition of the Elliot Formation, a continental red bed succession that straddles the Triassic-Jurassic boundary in southern Africa. Employing clay mineralogy as well as the indices of chemical alteration and compositional variability, our results confirm earlier qualitative sedimentological studies and indicate that the deposition of the Upper Triassic and Lower Jurassic Elliot Formation occurred under increasingly dry environmental conditions that inhibited chemical weathering in this southern part of Pangea. Moreover, the study questions the universal validity of those studies that suggest a sudden increase in humidity for the Lower Jurassic record and supports predictions of long-term global warming after continental flood basalt emplacement.

  6. New mayfly genera from the Middle Triassic of Poland and their evolutionary and paleogeographic implications (Ephemerida: Litophlebiidae, Vogesonymphidae).

    PubMed

    Sinitshenkova, Nina D; Aristov, Daniil S; Wegierek, Piotr; Żyła, Dagmara

    2015-04-24

    Two new mayfly genera and species from the Triassic deposits of the Pałęgi area (southeast Poland) are described. This is the first description of aquatic insects from the Pałęgi locality. Triassolitophlebia palegica gen. et sp. nov. (Litophlebiidae) is established on the basis of an isolated forewing. This is the first finding of this family in the Northern Hemisphere, known previously only from the Molteno Formation (South Africa). This is also the first mayfly family from the Triassic which has been found in both Hemispheres, providing additional evidence of the presumed similarity of aquatic insect faunas in the Southern and Northern Hemispheres during the Triassic. The consistent wing venation of ancient mayflies with homonomous wings could be evidence that they originated from the same ancestor. The second new mayfly, Palegonympha triassica gen. et sp. nov. (Vogesonymphidae), is described on the basis of a single fossil nymph (imprint of the exuviae) and indicates the similarity of the Pałęgi arthropod assemblage to that described from the Middle Triassic of France. The presence of a mayfly nymph in the last instar stage suggests not only that the Pałęgi deposit represents a fluvial environment with well-oxygenated and limpid water but also that these conditions lasted long enough to allow for such development.

  7. Mesozoic-Early Cenozoic Retroarc Basin Evolution in Response to Changing Tectonic Regimes, Southern Central Andes

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; Stockli, D. F.

    2017-12-01

    Spatial and temporal variations in pre-Andean deformation, inherited lithospheric discontinuities, and subduction geometry have been documented for the southern Central Andes (27-40°S). However, the influence of inherited crustal structures and changing subduction zone dynamics on along-strike (N-S) and across-strike (E-W) variations in upper-plate deformation and basin evolution remains poorly understood. The La Ramada Basin in the High Andes at 32°S preserves the northernmost succession correlated with the well-studied Neuquen Basin to the south. New maximum depositional ages and provenance information provided by detrital zircon U-Pb geochronology refine the chronostratigraphic and provenance framework of La Ramada Basin deposits and improve reconstructions of structural activity and subsidence mechanisms during polyphase basin evolution. Updated along- and across-strike comparisons with Neuquen and intraplate depocenters provide an unparalleled opportunity to examine long-term fluctuations in stress regime, modes of variable plate coupling, structural reactivation, and basin evolution. Zircon U-Pb age distributions constrain Mesozoic-Cenozoic ages of La Ramada clastic units and identify a previously unrecognized period of Paleogene nonmarine deposition. Late Triassic-Jurassic synrift and post-rift deposits record sediment derivation from the eastern half-graben footwall and western Andean volcanic arc during periods of slab rollback and thermal subsidence. Uplift of the Coastal Cordillera and introduction of Coastal Cordillera sediment at 107 Ma represents the first signature of initial Andean uplift associated with accumulation in the La Ramada Basin. Finally, newly identified Paleogene extensional structures and intra-arc deposits in the western La Ramada Basin are correlated with the extensional Abanico Basin system ( 28°S-44°S) to the west in Chile. Development and inversion of this system of intra-arc depocenters suggests that shortening and uplift in

  8. Paleomagnetism of the Late Triassic Hound Island Volcanics: Revisited

    USGS Publications Warehouse

    Haeussler, Peter J.; Coe, Robert S.; Onstott, T.C.

    1992-01-01

    The collision and accretion of the Alexander terrane profoundly influenced the geologic history of Alaska and western Canada; however, the terrane's displacement history is only poorly constrained by sparse paleomagnetic studies. We studied the paleomagnetism of the Hound Island Volcanics in order to evaluate the location of the Alexander terrane in Late Triassic time. We collected 618 samples at 102 sites in and near the Keku Strait, Alaska, from the Late Triassic Hound Island Volcanics, the Permian Pybus Formation, and 23-Ma gabbroic intrusions. We found three components of magnetization in the Hound Island Volcanics. The high-temperature component (component A) resides in hematite and magnetite and was found only in highly oxidized lava flows in a geographically restricted area. We think it is primary, or acquired soon after eruption of the lavas, principally because the directions pass a fold test. The paleolatitude indicated by this component (19.2° ± 10.3°) is similar to those determined for various portions of Wrangellia, consistent with the geologic interpretation that the Alexander terrane was with the Wrangellia terrane in Late Triassic time. We found two overprint directions in the Hound Island Volcanics. Component B was acquired 23 m.y. ago due to intrusion of gabbroic dikes and sills. This interpretation is indicated by the similarity of upper-hemisphere directions in the Hound Island Volcanics to those in the gabbro. Component C, found in both the Hound Island Volcanics and the Permian Pybus Formation, is oriented northeast and down, fails a regional fold test, and was acquired after regional deformation around 90 to 100 Ma. This overprint direction yields a paleolatitude similar to, but slightly higher than, slightly older rocks from the Coast Plutonic Complex, suggesting that the Alexander terrane was displaced 17° in early Late Cretaceous time. The occurrence of these two separate overprinting events provides a satisfying explanation of the

  9. The role of land-marine teleconnections in the tropical proximal Permian-Triassic Marine Zone, Levant Basin, Israel: Insights from stable isotope pairing

    NASA Astrophysics Data System (ADS)

    Korngreen, D.; Zilberman, T.

    2017-07-01

    Three Late Permian - early Middle Triassic successions (Avdat 1, Pleshet 1 and David 1 boreholes, Levant Basin, Israel), located in relatively proximal and distal order from land within a broad tropical mixed carbonate/siliciclastic open marine zone, were studied using carbonate and organic matter contents (organic and inorganic carbon) in order to demonstrate the degree of effect of the land-marine teleconnection on the isotopic signatures at the depositional environment. The δ13Ccarb profiles exhibit sequential negative/positive fluctuations, which are correlatable with the reported worldwide sequential negative-shift events, enabled further stratigraphic division of the successions to stages and sub-stages. The successions changed their relative siliciclastic content relative to the degree of influence of each terrestrial influx source (eastern or southern), an outcome of humid up to extreme aridization hinterland exchanges, actually recording the expansion or contraction of the paleo-ITCZ. The δ18O profiles exhibited a range of values (- 5‰ to - 7.5‰ on average) typical to the western NeoTethys and similar to the reported worldwide climate trends with three major warming periods: (I) Late Permian to the PTB; (II) Late Dienerian - most of the Smithian; (III) early-mid Anisian, and two relatively cool periods: Griesbachian-Dienerian and Late Smithian - Spathian, but each of the three periods exhibiting short respites with the opposite trend. The δ13Ccarb, δ18Ocarb and the δ13Corg profiles of the proximal position consistently differ in magnitude from the distal ones, assuming a high contribution and involvement of meteoric water rich in terrestrial OM derived from the nearby supercontinent and affecting also the original water δ18Oseawater value (calculated to about - 3‰),which seemingly should be applied on the entire western Tethys seaway. During times of associations with maximum ITCZ contraction, the δ13Corg values of - 31‰ to - 33‰ in the

  10. Deposystem architectures and lithofacies of a submarine fan-dominated deep sea succession in an orogen: A case study from the Upper Triassic Langjiexue Group of southern Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, Chaokai; Li, Xianghui; Mattern, Frank; Mao, Guozheng; Zeng, Qinggao; Xu, Wenli

    2015-11-01

    Over thirty stratigraphic sections of the Himalaya orogen Upper Triassic Langjiexue Group in southern Tibet, China, were studied to interpret the environments and lithofacies. The facies associations channel (A), lobe (B), levee-interchannel (C), and basin plain (D) with nine facies (A1-3, B1-3, and C1-3) were distinguished. They form six architectural elements: channel-interchannel, overbank-levee, crevasse-splay, outer fan-lobe, fan-fringe, and basin plain. Taking into account the facies analysis, (sub-) deposystem correlation, paleocurrent dispersal pattern, and restoration of primary stratal width, the Langjiexue Group displays the architecture of a coalescing submarine fan-dominated deep sea deposystem, measuring about 400-500 km × 600-700 km in size or even more, one of the largest pre-Cenozoic submarine fans ever reported. Subdivisionally, four fans, lacking inner fans, could have coalesced laterally within the submarine fan deposystem, and at least six submarine fan developments were vertically succeeded by mid- to outer-fan deposits with progradational to retrogradational successions. According to the range of 30-70% of sandstone content, the fan deposystem is mud- and sand-rich, suggesting a medium-far (over 400-600 km) transport of sediment from the source area.

  11. Facies architecture of a Triassic rift-related Silicic Volcano-Sedimentary succession in the Tethyan realm, Peonias subzone, Vardar (Axios) Zone, northern Greece; Regional implications

    NASA Astrophysics Data System (ADS)

    Asvesta, Argyro; Dimitriadis, Sarantis

    2010-06-01

    In northern Greece, along the western edge of the Paleozoic Vertiscos terrane (Serbomacedonian massif) and within the Peonias subzone - the eastern part of the Vardar (Axios) Zone - a Silicic Volcano-Sedimentary (SVS) succession of Permo(?)-Skythian to Mid Triassic age records the development of a faulted continental margin and the formation of rhyolitic volcanoes along a continental shelf fringed by neritic carbonate accumulations. It represents the early rifting extensional stages that eventually led to the opening of the main oceanic basin in the western part of the Vardar (Axios) Zone (the Almopias Oceanic Basin). Even though the SVS succession is deformed, altered, extensively silicified and metamorphosed in the low greenschist facies, primary textures, original contacts and facies relationships are recognized in some places allowing clues for the facies architecture and the depositional environment. Volcanic and sedimentary facies analysis has been carried out at Nea Santa and Kolchida rhyolitic volcanic centres. Pyroclastic facies, mostly composed of gas-supported lapilli tuffs and locally intercalated accretionary lapilli tuffs, built the early cones which were then overridden by rhyolitic aphyric and minor K-feldspar-phyric lava flows. The characteristics of facies, especially the presence of accretionary lapilli, imply subaerial to coastal emplacement at this early stage. The mature and final stages of volcanism are mostly represented by quartz-feldspar porphyry intrusions that probably occupied the vents. At Nea Santa area, the presence of resedimented hyaloclastite facies indicates subaqueous emplacement of rhyolitic lavas and/or lobes. Moreover, quartz-feldspar-phyric sills and a partly extrusive dome featuring peperites at their margins are inferred to have intruded unconsolidated, wet carbonate sediments of the overlying Triassic Neritic Carbonate Formation, in a shallow submarine environment. The dome had probably reached above wave-base as is

  12. A revision of the Norian Conchostracan Zonation in North America and its implications for Late Triassic North American tectonic history

    USGS Publications Warehouse

    Weems, Robert E.; Lucas, Spencer G.

    2015-01-01

    Collections of Upper Triassic (Norian) conchostracans from the upper Cumnock and lower Sanford formations (North Carolina), Bull Run Formation (Virginia), Gettysburg Formation (Pennsylvania), Passaic Formation (New Jersey), Blomidon Formation (Nova Scotia), and Redonda Formation (New Mexico) have significantly expanded our knowledge of the Norian conchostracan faunas in these units. These collections show that the temporal and spatial distribution of Norian conchostracans in North America is more complex and more environmentally controlled than previously thought. The new collections require a revision and simplification of the published conchostracan zonation for this interval. The revised zonation, based almost entirely on evolution within the lineage of the conchostracan genus Shipingia, consists of five zones: the Shipingia weemsi-Euestheria buravasi zone (Lacian), the Shipingia mcdonaldi zone (lower Alaunian), the Shipingia hebaozhaiensis zone (upper Alaunian), the Shipingia olseni zone (lower and middle Sevatian), and the Shipingia gerbachmanni zone (upper Sevatian). A new species of Norian conchostracan, Wannerestheria kozuri, is described from the Groveton Member of the Bull Run Formation (Virginia). Two new members (Plum Run and Fairfield members) are named in the Gettysburg Formation (Gettysburg Basin, Maryland and Pennsylvania). The distribution of upper Carnian and Norian strata in the Fundy, Newark, Gettysburg, and Culpeper basins indicates that there was a significant, previously undetected tectonic reorganization within these basins that occurred around the Carnian-Norian boundary. The presence of an upper Norian-lower Rhaetian unconformity within the Newark Supergroup is reaffirmed. A re-evaluation of the conchostracan record from the Redonda Formation of the Chinle Group in New Mexico indicates that the four conchostracan-bearing lacustrine beds in this unit are part of only a single, consistently recognizable conchostracan zone, which we here

  13. Geothermal energy from the Pannonian Basins System: An outcrop analogue study of exploration target horizons in Hungary

    NASA Astrophysics Data System (ADS)

    Götz, Annette E.; Sass, Ingo; Török, Ákos

    2015-04-01

    The characterization of geothermal reservoirs of deep sedimentary basins is supported by outcrop analogue studies since reservoir characteristics are strongly related to the sedimentary facies and thus influence the basic direction of geothermal field development and applied technology (Sass & Götz, 2012). Petro- and thermophysical rock properties are key parameters in geothermal reservoir characterization and the data gained from outcrop samples serve to understand the reservoir system. New data from the Meso- and Cenozoic sedimentary rocks of Budapest include carbonates and siliciclastics of Triassic, Eocene, Oligocene and Miocene age, exposed on the western side of the river Danube in the Buda Hills (Götz et al., 2014). Field and laboratory analyses revealed distinct horizons of different geothermal potential and thus, enable to identify and interpret corresponding exploration target horizons in geothermal prone depths in the Budapest region as well as in the Hungarian sub-basins of the Pannonian Basins System (Zala and Danube basins, Great Plain) exhibiting geothermal anomalies. References Götz, A.E., Török, Á., Sass, I., 2014. Geothermal reservoir characteristics of Meso- and Cenozoic sedimentary rocks of Budapest (Hungary). German Journal of Geosciences, 165, 487-493. Sass, I., Götz, A.E., 2012. Geothermal reservoir characterization: a thermofacies concept. Terra Nova, 24, 142-147.

  14. Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.

    2016-12-01

    Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its

  15. The Collyhurst Sandstone as a secondary storage unit for CCS in the East Irish Sea Basin (UK)

    NASA Astrophysics Data System (ADS)

    Gamboa, D.; Williams, J. D. O.; Kirk, K.; Gent, C. M. A.; Bentham, M.; Schofield, D. I.

    2016-12-01

    Carbon Capture and Storage (CCS) is key technology for low-carbon energy and industry. The UK hosts a large CO2 storage potential offshore with an estimated capacity of 78 Gt. The East Irish Sea Basin (EISB) is the key area for CCS in the western UK, with a CO2 storage potential of 1.7 Gt in hydrocarbon fields and in saline aquifers within the Triassic Sherwood Sandstone Formation. However, this theoretical storage capacity does not consider the secondary storage potential in the lower Permian Collyhurst Sandstone Formation. 3D seismic data were used to characterise the Collyhurst Sandstone Formation in the EISB. On the southern basin domain, numerous fault-bound blocks limit the lateral continuity of the sandstone strata, while on the northern domain the sandstones are intersected by less faults. The caprock for the Collyhurst sandstones is variable. The Manchester Marls predominate in the south, transitioning to the St. Bees evaporites towards the north. The evaporites in the EISB cause overburden faults to terminate or detach along Upper Permian strata, limiting the deformation of the underlying reservoir units. Five main storage closures have been identified in the Permian strata. In the southern and central area these are predominantly fault bounded, occurring at depths over 1000m. Despite the higher Collyhurst sandstone thickness in the southern IESB, the dolomitic nature of the caprock constitutes a storage risk in this area. Closures in the northern area are deeper (around 2000-2500m) and wider, reaching areas of 34Km2, and are overlain by evaporitic caprocks. The larger Collyhurst closures to the north underlie large Triassic fields with high storage potential. The spatial overlap favours storage plans including secondary storage units in the EISB. The results of this work also expand the understanding of prospective areas for CO2 sequestration in the East Irish Sea Basin in locations where the primary Sherwood Sandstone Formation is either too shallow

  16. The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation

    PubMed Central

    Butler, Richard J.; Brusatte, Stephen L.; Reich, Mike; Nesbitt, Sterling J.; Schoch, Rainer R.; Hornung, Jahn J.

    2011-01-01

    Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which

  17. The sail-backed reptile Ctenosauriscus from the latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation.

    PubMed

    Butler, Richard J; Brusatte, Stephen L; Reich, Mike; Nesbitt, Sterling J; Schoch, Rainer R; Hornung, Jahn J

    2011-01-01

    Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3-247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the 'sail' of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian-Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs.

  18. The structural evolution of the Ghadames and Illizi basins during the Paleozoic, Mesozoic and Cenozoic: Petroleum implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, F.J.; Boudjema, A.; Lounis, R.

    1995-08-01

    The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over largemore » distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.« less

  19. Petroleum geology and resources of the middle Caspian Basin, Former Soviet Union

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The Middle Caspian basin occupies a large area between the Great Caucasus foldbelt and the southern edge of the Precambrian Russian craton. The basin also includes the central part of the Caspian Sea and the South Mangyshlak subbasin east of the sea. The basin was formed on the Hercynian accreted terrane during Late Permian?Triassic through Quaternary time. Structurally, the basin consists of the fold-and-thrust zone of the northern Caucasus foothills, the foredeep and foreland slope, the Stavropol-Prikumsk uplift and East Manych trough to the north of the slope, and the South Mangyshlak subbasin and slope of the Karabogaz arch east of the Caspian Sea. All these major structures extend offshore. Four total petroleum systems (TPS) have been identified in the basin. The South Mangyshlak TPS contains more than 40 discovered fields. The principal reserves are in Lower?Middle Jurassic sandstone reservoirs in structural traps. Source rocks are poorly known, but geologic data indicate that they are in the Triassic taphrogenic sequence. Migration of oil and gas significantly postdated maturation of source rocks and was related to faulting and fracturing during middle Miocene to present time. A single assessment unit covers the entire TPS. Largest undiscovered resources of this assessment unit are expected in the largely undrilled offshore portion of the TPS, especially on the western plunge of the Mangyshlak meganticline. The Terek-Caspian TPS occupies the fold-and-thrust belt, foredeep, and adjoining foreland slope. About 50 hydrocarbon fields, primarily oil, have been discovered in the TPS. Almost all hydrocarbon reserves are in faulted structural traps related to thrusting of the foldbelt, and most traps are in frontal edges of the thrust sheets. The traps are further complicated by plastic deformation of Upper Jurassic salt and Maykop series (Oligocene? lower Miocene) shale. Principal reservoirs are fractured Upper Cretaceous carbonates and middle Miocene sandstones

  20. Carbonate "Clumped" Isotope Determination of Seawater Temperature During the End-Triassic Extinction Event

    NASA Astrophysics Data System (ADS)

    Gammariello, R. T., Jr.; Petryshyn, V. A.; Ibarra, Y.; Greene, S. E.; Corsetti, F. A.; Bottjer, D. J.; Tripati, A.

    2014-12-01

    Stromatolites are laminated sedimentary structures that are commonly thought to be created by cyanobacteria, either through the trapping and binding of sediment, or through metabolically-induced precipitation. However, stromatolite formation is poorly understood. In general, stromatolite abundance was higher in the Proterozoic than the Phanerozoic, but notable increases in stromatolite abundance occur in association with Phanerozoic mass extinction events. Here, we focus on stromatolites from the latest Triassic Cotham Marble (United Kingdom) that are associated with the extinction interval. The end-Triassic mass extinction is coincident with large-scale volcanism in the Central Atlantic Magmatic Province (CAMP) and the associated breakup of Pangea. Some hypothesize that CAMP-associated increases in atmospheric CO2 led to a rise in global temperatures and ocean acidification that caused or enhanced the extinction. In order to quantify the role of climate change with respect to the end-Triassic mass extinction, we applied the carbonate "clumped" isotope paleothermometer to the well-preserved Cotham Marble stromatolites. The stromatolites were deposited in the shallow Tethys Sea, and today occur in several localities across the southwestern UK. The stromatolites alternate on the cm scale between laminated and dendrolitic microstructures and each was microdrilled for clumped isotope analysis. The two microstructures display different temperatures of formation, where the dendrolitic portions apparently grew under cooler conditions than laminated layers, and younger layers grew in cooler conditions than older layers. Our results suggest that temperature fluctuated and potentially trended towards amelioration of the warm temperatures during the deposition of the Cotham Marble.

  1. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  2. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2018-06-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  3. Geology of the Pennsylvanian and Permian Culter Group and Permian Kaibab Limestone in the Paradox Basin, southeastern Utah and southwestern Colorado

    USGS Publications Warehouse

    Condon, Steven M.

    1997-01-01

    The Cutler Formation is composed of thick, arkosic, alluvial sandstones shed southwestward from the Uncompahgre highlands into the Paradox Basin. Salt tectonism played an important role in deposition of the Cutler in some areas. In the northeast part of the basin, more than 8,000 ft, and as much as 15,000 ft, of arkose was trapped between rising salt anticlines - this arkose is thin to absent over the crests of some anticlines. In the western and southern parts of the basin, the Cutler is recognized as a Group consisting of, in ascending order: the lower Cutler beds, Cedar Mesa Sandstone, Organ Rock Formation, White Rim Sandstone, and De Chelly Sandstone. The aggregate thickness of these formations is less than 2,000 ft. The formations of the Cutler Group were deposited in a complex system of alluvial, eolian, and marine environments characterized by abrupt vertical and lateral lithologic changes. The basal Cutler is Pennsylvanian in age, but the bulk of the Group was deposited during the Permian. The Cutler is conformably underlain by the Pennsylvanian Hermosa Group across most of the basin. It is overlain unconformably by the Permian Kaibab Limestone in the western part of the Paradox Basin. The Cutler or Kaibab are overlain unconformably by the Triassic Moenkopi or Chinle Formations.

  4. Chapter 3: Geologic Assessment of Undiscovered Oil and Gas Resources in the Phosphoria Total Petroleum System of the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Kirschbaum, M.A.; Lillis, P.G.; Roberts, L.N.R.

    2007-01-01

    The Phosphoria Total Petroleum System (TPS) encompasses the entire Wind River Basin Province, an area of 4.7 million acres in central Wyoming. The source rocks most likely are black, organic-rich shales of the Meade Peak and Retort Phosphatic Shale Members of the Permian Phosphoria Formation located in the Wyoming and Idaho thrust belt to the west and southwest of the province. Petroleum was generated and expelled during Jurassic and Cretaceous time in westernmost Wyoming and is interpreted to have migrated into the province through carrier beds of the Pennsylvanian Tensleep Sandstone where it was preserved in hypothesized regional stratigraphic traps in the Tensleep and Permian Park City Formation. Secondary migration occurred during the development of structural traps associated with the Laramide orogeny. The main reservoirs are in the Tensleep Sandstone and Park City Formation and minor reservoirs are in the Mississippian Madison Limestone, Mississippian-Pennsylvanian Amsden Formation, Triassic Chugwater Group, and Jurassic Nugget Sandstone and Sundance Formation. The traps are sealed by shale or evaporite beds of the Park City, Amsden, and Triassic Dinwoody Formations, Triassic Chugwater Group, and Jurassic Gypsum Spring Formation. A single conventional oil and gas assessment unit (AU), the Tensleep-Park City AU, was defined for the Phosphoria TPS. Both the AU and TPS cover the entire Wind River Basin Province. Oil is produced from 18 anticlinal fields, the last of which was discovered in 1957, and the possibility of discovering new structural oil accumulations is considered to be relatively low. Nonassociated gas is produced from only two fields, but may be underexplored in the province. The discovery of new gas is more promising, but will be from deep structures. The bulk of new oil and gas accumulations is dependent on the discovery of hypothesized stratigraphic traps in isolated carbonate reservoirs of the Park City Formation. Mean resource estimates for

  5. Origin and time-space distribution of hydrothermal systems in east-central Australian sedimentary basins: Constraints from illite geochronology and isotope geochemistry.

    NASA Astrophysics Data System (ADS)

    Uysal, I. Tonguç

    2016-04-01

    Some well-known precious mineral deposits and hydrocarbon resources occur extensively in east-central Australian sedimentary Basins. The metal occurrences are abundant in northwestern and eastern part of Queensland, whereas no significant deposits are known in large areas further south, which may, however, be hidden beneath the Jurassic-Cretaceous sedimentary basins. Important hydrocarbon resources exist within the Jurassic-Cretaceous sedimentary rocks at relatively shallow depths, of which the distribution represent zones of high paleo-geothermal gradients. This study examines the time-space distribution in relation to the regional tectonic history of concealed metal deposits and areas of high paleo-geothermal gradient leading to hydrocarbon maturation. To this end, authigenic illitic clay minerals representing various locations and stratigraphic depths in east-central Australia were investigated, of which the Rb-Sr and Ar-Ar geochronology and stable isotope geochemistry assist in delineating zones of hydrothermal systems responsible for hydro-carbon maturation/migration and potentially ore deposition. The Late Carboniferous - Early Permian crustal extension that affected large areas of eastern Australia and led to the epithermal mineralisations (e.g., the Drummond Basin) is also recorded in northern South Australia and southwest Queensland. A Late Triassic - Early Jurassic tectonic event being responsible for coal maturation and gas generation in the Bowen Basin and the epithermal mineralisation in the North Arm goldfield in SE Queensland likewise affected the areas much further west in Queensland. Some illites from the basement in outback Queensland and fault gouges from the Demon Fault in NE New South Wales yield younger Rb-Sr and Ar-Ar ages indicating the effect of hydrothermal processes as a result of a Middle-Upper Jurassic tectonic event. The majority of illite samples from the crystalline basement rocks, Permian Cooper Basin, and Jurassic

  6. Tetrapod distribution and temperature rise during the Permian–Triassic mass extinction

    PubMed Central

    2018-01-01

    The Permian–Triassic mass extinction (PTME) had an enormous impact on life in three ways: by substantially reducing diversity, by reshuffling the composition of ecosystems and by expelling life from the tropics following episodes of intense global warming. But was there really an ‘equatorial tetrapod gap', and how long did it last? Here, we consider both skeletal and footprint data, and find a more complex pattern: (i) tetrapods were distributed both at high and low latitudes during this time; (ii) there was a clear geographic disjunction through the PTME, with tetrapod distribution shifting 10–15° poleward; and (iii) there was a rapid expansion phase across the whole of Pangea following the PTME. These changes are consistent with a model of generalized migration of tetrapods to higher latitudinal, cooler regions, to escape from the superhot equatorial climate in the earliest Triassic, but the effect was shorter in time scale, and not as pronounced as had been proposed. In the recovery phase following the PTME, this episode of forced range expansion also appears to have promoted the emergence and radiation of entirely new groups, such as the archosaurs, including the dinosaurs. PMID:29321300

  7. Tetrapod distribution and temperature rise during the Permian-Triassic mass extinction.

    PubMed

    Bernardi, Massimo; Petti, Fabio Massimo; Benton, Michael J

    2018-01-10

    The Permian-Triassic mass extinction (PTME) had an enormous impact on life in three ways: by substantially reducing diversity, by reshuffling the composition of ecosystems and by expelling life from the tropics following episodes of intense global warming. But was there really an 'equatorial tetrapod gap', and how long did it last? Here, we consider both skeletal and footprint data, and find a more complex pattern: (i) tetrapods were distributed both at high and low latitudes during this time; (ii) there was a clear geographic disjunction through the PTME, with tetrapod distribution shifting 10-15° poleward; and (iii) there was a rapid expansion phase across the whole of Pangea following the PTME. These changes are consistent with a model of generalized migration of tetrapods to higher latitudinal, cooler regions, to escape from the superhot equatorial climate in the earliest Triassic, but the effect was shorter in time scale, and not as pronounced as had been proposed. In the recovery phase following the PTME, this episode of forced range expansion also appears to have promoted the emergence and radiation of entirely new groups, such as the archosaurs, including the dinosaurs. © 2018 The Authors.

  8. Depositional facies, environments and sequence stratigraphic interpretation of the Middle Triassic-Lower Cretaceous (pre-Late Albian) succession in Arif El-Naga anticline, northeast Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    El-Azabi, M. H.; El-Araby, A.

    2005-01-01

    The Middle Triassic-Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short

  9. Early Triassic wrinkle structures on land: stressed environments and oases for life

    NASA Astrophysics Data System (ADS)

    Chu, Daoliang; Tong, Jinnan; Song, Haijun; Benton, Michael J.; Bottjer, David J.; Song, Huyue; Tian, Li

    2015-06-01

    Wrinkle structures in rocks younger than the Permian-Triassic (P-Tr) extinction have been reported repeatedly in marine strata, but rarely mentioned in rocks recording land. Here, three newly studied terrestrial P-Tr boundary rock succession in North China have yielded diverse wrinkle structures. All of these wrinkles are preserved in barely bioturbated shore-shallow lacustrine siliciclastic deposits of the Liujiagou Formation. Conversely, both the lacustrine siliciclastic deposits of the underlying Sunjiagou Formation and the overlying Heshanggou Formation show rich bioturbation, but no wrinkle structures or other microbial-related structures. The occurrence of terrestrial wrinkle structures in the studied sections reflects abnormal hydrochemical and physical environments, presumably associated with the extinction of terrestrial organisms. Only very rare trace fossils occurred in the aftermath of the P-Tr extinction, but most of them were preserved together with the microbial mats. This suggests that microbial mats acted as potential oases for the surviving aquatic animals, as a source of food and oxygen. The new finds suggests that extreme environmental stresses were prevalent both in the sea and on land through most of the Early Triassic.

  10. Repeated Carbon-Cycle Disturbances at the Permian-Triassic Boundary Separate two Mass Extinctions

    NASA Astrophysics Data System (ADS)

    Nicol, J. A.; Watson, L.; Claire, M.; Buick, R.; Catling, D. C.

    2004-12-01

    Non-marine organic matter in Permian-Triassic sediments from the Blue Mountains, eastern Australia shows seven negative δ13C excursions of up to 7%, terminating with a positive excursion of 4%. Fluctuations start at the late Permian Glossopteris floral extinction and continue until just above the palynological Permian-Triassic boundary, correlated with the peak of marine mass extinction. The isotopic fluctuations are not linked to changes in depositional setting, kerogen composition or plant community, so they evidently resulted from global perturbations in atmospheric δ13C and/or CO2. The pattern was not produced by a single catastrophe such as a meteorite impact, and carbon-cycle calculations indicate that gas release during flood-basalt volcanism was insufficient. Methane-hydrate melting can generate a single -7% shift, but cannot produce rapid multiple excursions without repeated reservoir regeneration and release. However, the data are consistent with repeated overturning of a stratified ocean, expelling toxic gases that promoted sequential mass extinctions in the terrestrial and marine realms.

  11. Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada

    USGS Publications Warehouse

    Silberling, Norman J.; Nichols, K.M.

    1982-01-01

    Cephalopods and bivalves of the genus Daonella occur at certain levels throughout the Middle Triassic section in the Humboldt Range, northwestern Nevada. These fossiliferous strata are assigned to the Fossil Hill Member and upper member of the Prida Formation, which here forms the oldest part of the Star Peak Group. The distribution and abundance of fossils within the section is uneven, partly because of original depositional patterns within the dominantly calcareous succession and partly because of diagenetic secondary dolomitization and hydrothermal metamorphism in parts of the range.Lower and middle Anisian fossil localities are restricted to the northern part of the range and are scattered, so that only three demonstrably distinct stratigraphic levels are represented. Cephalopods from these localities are characteristic of the Caurus Zone and typify the lower and upper parts of the Hyatti Zone, a new zonal unit whose faunas have affinity with those from the older parts of the Varium Zone in Canada.The upper Anisian and lowermost Ladinian, as exposed in the vicinity of Fossil Hill in the southern part of the range, are extremely fossiliferous. Cephalopod and Daonella shells form a major component of many of the limestone interbeds in the calcareous fine-grained clastic section here. Stratigraphically controlled bedrock collections representing at least 20 successive levels have been made from the Fossil Hill area, which is the type locality for the Rotelliformis, Meeki, and Occidentalis Zones of the upper Anisian and the Subasperum Zone of the lower Ladinian. Above the Subasperum Zone fossils are again scarce; upper Ladinian faunas representing the Daonella lommeli beds occur at only a few places in the upper member of the Prida Formation.Although unevenly fossiliferous, the succession of Middle Triassic cephalopod and Daonella faunas in the Humboldt Range is one of the most complete of any known in the world. Newly collected faunas from this succession provide

  12. Hydrogeology of the Pictured Cliffs Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona, and Utah

    USGS Publications Warehouse

    Dam, William L.; Kernodle, J.M.; Thorn, C.R.; Levings, G.W.; Craigg, S.D.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer System Analysis (RASA) study of the San Juan structural basin that began in October 1984. The purposes of the study (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams, and (3) determine the availability and quality of ground water. Previous reports in this series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Gallup Sandstone (Kernodle and others, 1989), Morrison Formation (Dam and others, 1990), Point Lookout Sandstone (Craigg and others, 1990), Kirtland Shale and Fruitland Formation (Kernodle and others, 1990), Menefee Formation (Levings and others, 1990), Cliff House Sandstone (Thorn and others, 1990), and Ojo Alamo Sandstone (Thorn and others, 1990) in the San Juan structural basin. This report summarizes information on the geology and the occurrence and quality of water in the Pictured Cliffs Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the RASA study or derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's data base, and the Dwight's ENERGYDATA Inc. BRIN database. Although all data available for the Pictured Cliffs Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin in New Mexico, Colorado, Arizona, and Utah has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic and younger age; therefore, the study area is less extensive than the structural basin. Triassic through Tertiary

  13. Investigating A Unique Open Ocean Geochemical Record Of the End Triassic Mass Extinction from Panthalassa

    NASA Astrophysics Data System (ADS)

    Marroquín, S. M.; Gill, B. C.; Them, T. R., II; Trabucho-Alexandre, J. P.; Aberhan, M.; Owens, J. D.; Gröcke, D. R.; Caruthers, A. H.

    2017-12-01

    The end-Triassic mass extinction ( 201 Ma) was a time of intense disturbance for marine communities. This event is estimated to have produced as much as a loss of 80% of known marine species. The protracted interval of elevated extinction rates is also characterized by a major carbon cycle perturbation and potentially widespread oxygen deficiency within the oceans. While the causes of extinction and environmental feedbacks are still debated it is hypothesized to have been triggered by massive volcanism associated with the Central Atlantic Magmatic Province flood basalts. However, our understanding of the Latest Triassic-Earliest Jurassic interval is limited due to the lack of well-preserved stratigraphic successions outside of the Tethys Ocean (present day Europe), with most of the records from epicontinental and marginal marine settings. To expand our understanding of this critical interval, our study seeks to document biological and environmental changes elsewhere. Specifically, we document and reconstruct these changes in the equatorial Panthalassan Ocean. We will present new data from a sedimentary succession preserved in the Wrangell Mountains of Alaska that spans the Late Triassic through Early Jurassic. The sedimentary succession represents a mixed carbonate-siliciclastic ramp that was deposited at tropical latitudes, adjacent to an island arc in the open Panthalassan Ocean. This succession affords a unique view of open marine conditions, and also holds the potential for excellent temporal control as it contains abundant ash layers throughout, as well as, key ammonite and bivalve fossil occurrences that provide biostratigraphic control. We will present an integrated geochemical and paleontological record from this site using several geochemical proxies (carbon, δ13Ccarb and % total organic carbon, sulfur, δ34S, as well as pyrite contents and iron speciation) along with ammonite and bivalve occurrence data to reconstruct the record of environmental and

  14. The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction.

    PubMed

    Ezcurra, Martín D; Butler, Richard J

    2018-06-13

    One of the key faunal transitions in Earth history occurred after the Permo-Triassic mass extinction ( ca 252.2 Ma), when the previously obscure archosauromorphs (which include crocodylians, dinosaurs and birds) become the dominant terrestrial vertebrates. Here, we place all known middle Permian-early Late Triassic archosauromorph species into an explicit phylogenetic context, and quantify biodiversity change through this interval. Our results indicate the following sequence of diversification: a morphologically conservative and globally distributed post-extinction 'disaster fauna'; a major but cryptic and poorly sampled phylogenetic diversification with significantly elevated evolutionary rates; and a marked increase in species counts, abundance, and disparity contemporaneous with global ecosystem stabilization some 5 million years after the extinction. This multiphase event transformed global ecosystems, with far-reaching consequences for Mesozoic and modern faunas. © 2018 The Author(s).

  15. The Permian-Triassic boundary & mass extinction in China

    USGS Publications Warehouse

    Metcalfe, I.; Nicoll, R.S.; Mundil, R.; Foster, C.; Glen, J.; Lyons, J.; Xiaofeng, W.; Cheng-Yuan, W.; Renne, P.R.; Black, L.; Xun, Q.; Xiaodong, M.

    2001-01-01

    The first appearance of Hindeodus parvus (Kozur & Pjatakova) at the Permian-Triassic (P-T) GSSP level (base of Bed 27c) at Meishan is here confirmed. Hindeodus changxingensis Wang occurs from Beds 26 to 29 at Meishan and appears to be restricted to the narrow boundary interval immediately above the main mass extinction level in Bed 25. It is suggested that this species is therefore a valuable P-T boundary interval index taxon. Our collections from the Shangsi section confirm that the first occurrence of Hindeodus parvus in that section is about 5 in above the highest level from which a typical Permian fauna is recovered. This may suggest that that some section may be missing at Meishan. The age of the currently defined Permian-Triassic Boundary is estimated by our own studies and a reassessment of previous worker's data at c. 253 Ma, slightly older than our IDTIMS 206Pb/238U age of 252.5 ??0.3 Ma for Bed 28, just 8 cm above the GSSP boundary (Mundil et al., 2001). The age of the main mass extinction, at the base of Bed 25 at Meishan, is estimated at slightly older than 254 Ma based on an age of >254 Ma for the Bed 25 ash. Regardless of the absolute age of the boundary, it is evident that the claimed <165,000 y short duration for the negative carbon isotope excursion at the P-T boundary (Bowring et al., 1998) cannot be confirmed. Purportedly extraterrestrial fullerenes at the boundary (Hecker et al., 2001) have equivocal significance due to their chronostratigraphic non-uniqueness and their occurrence in a volcanic ash.

  16. Troglomorphism in the middle Triassic crinoids from Poland.

    PubMed

    Brom, Krzysztof R; Brachaniec, Tomasz; Salamon, Mariusz A

    2015-10-01

    In this paper, we document the Middle Triassic marine fauna recovered from the fissure/cave system of Stare Gliny (southern Poland) developed in the Devonian host dolomite. The fossils are mostly represented by in situ preserved and small-sized holdfasts of crinoids (Crinoidea) that are attached to the cave walls. Other fossils found in the cave infills include articulated brittle stars and brachiopods. Our findings constitute the oldest Mesozoic evidence for troglophile crinoids. We suggest that troglomorphism in these echinoderms was likely related to protection against predation, which underscores the magnitude of anti-predatory adaptations to increased predation pressure that occurred during the Early Mesozoic Marine Revolution.

  17. Possible climate effects of the CAMP intrusive and extrusive activity and its influence on the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Marzoli, A.; Davies, J.; Valeriani, L.; Preto, N.; Cirilli, S.; Panfili, G.; Dal Corso, J.; Vasconcellos, E.; Ernesto, M.; Youbi, N.; Callegaro, S.

    2017-12-01

    The end-Triassic global climate changes were probably triggered by the emplacement of the CAMP (Central Atlantic magmatic province). Here we explore the possibility that CAMP intrusions triggered global warming, while CAMP eruptions triggered short-lived cooling events. The main phase of the end-Triassic environmental changes and mass extinction was marked by two carbon isotopic excursions (CIEs). Based on stratigraphic and geochronologic data, we show that the earliest CAMP intrusions were emplaced at ca. 201.6 Ma prior to the first CIE (Davies et al., 2017). The main phase of CAMP magmatism started during the first CIE at ca. 201.5 Ma and continued until the second CIE and the Triassic-Jurassic boundary (at ca. 201.3 Ma). In particular, intrusion of the over 1 million cubic km of basaltic sills in Amazonia (Brazil) and of widespread sills from North America and Africa occurred within this interval. Multidisciplinary analyses show that organic matter rich sediments close to the sills from Brazil, Morocco, and the USA underwent contact metamorphism and organic carbon depletion. Such process may have released large amounts of thermogenic gases (CO2 and CH4) leading to global perturbation of the carbon cycle and to global warming. The timing of CAMP volcanic eruptions is well constrained by combined geochronologic, stratigraphic and palynologic data. In Morocco, newly observed palynological assemblages for sediments at the top of the lava piles are nearly identical to those found at the base of the volcanic sequences. These new data combined with carbon isotopic data indicate that over 95% of the CAMP lava flows in Morocco erupted during a short time interval at the very beginning of the end-Triassic extinction interval. A similar scenario applies possibly to the lava flows from North America. CAMP basalts are quite sulfur rich (up to 1800 ppm) suggesting that CAMP eruptions emitted large amounts of SO2. Such emissions lead possibly to short-lived cooling events

  18. Biostratigraphy and event stratigraphy in Iran around the Permian Triassic Boundary (PTB): Implications for the causes of the PTB biotic crisis

    NASA Astrophysics Data System (ADS)

    Kozur, H. W.

    2007-01-01

    The conodont succession and stratigraphic events around the Permian-Triassic boundary (PTB) have been investigated in detail in the open sea deposits of Iran (Abadeh and Shahreza in central Iran, and Jolfa and Zal in northwestern Iran). This investigation produced a very detailed conodont zonation from the Clarkina nodosa Zone up to the Isarcicella isarcica Zone. All significant events have been accurately located and dated within this zonation, and the duration of most of these conodont zones has been calculated by cross-correlation with continental lake deposits that display obvious Milankovitch cyclicity. The unusually short duration of all conodont zones in the interval from the C. nodosa up to the Hindeodus parvus Zone indicates that there was persistent high ecological stress during this time interval. Most of the conodont zones can be accurately correlated with South China. In the interval from the C. hauschkei Zone to the H. parvus Zone, even correlation with the Arctic is possible. Within three thin stratigraphic intervals, the Changhsingian (Dorashamian) warm water conodont fauna of the C. subcarinata lineage is replaced by a cool water fauna with small H. typicalis, rare Merrillina sp., and cool water Clarkina that have very widely spaced denticles. The uppermost cool water fauna horizon comprises the lower C. zhangi Zone and can be accurately correlated with continental beds by recognition of a short reversed magnetozone below the long uppermost Permian-lowermost Triassic normal magnetozone. In Iran and Transcaucasia, this short reversed zone comprises the upper C. changxingensis- C. deflecta Zone and most of the C. zhangi Zone. Its top lies 50 cm below the top of the Paratirolites Limestone (s.s.) in the Dorasham 2 section, which is at the beginning of the upper quarter of the C. zhangi Zone. In the Germanic Basin, this short palaeomagnetic interval comprises the lower and the basal part of the upper Fulda Formation. On the Russian Platform, the

  19. Footprints of large theropod dinosaurs and implications on the age of Triassic biotas from Southern Brazil

    NASA Astrophysics Data System (ADS)

    da Silva, Rafael Costa; Barboni, Ronaldo; Dutra, Tânia; Godoy, Michel Marques; Binotto, Raquel Barros

    2012-11-01

    Dinosaur footprints found in an outcrop of the Caturrita Formation (Rio Grande do Sul State, Southern Brazil), associated with a diverse and well preserved record of fauna and flora, reopen the debate about its exclusive Triassic age. The studied footprints were identified as Eubrontes isp. and are interpreted as having been produced by large theropod dinosaurs. The morphological characteristics and dimensions of the footprints are more derived than those commonly found in the Carnian-Norian, and are more consistent with those found during the Rhaetian-Jurassic. The trackmaker does not correspond to any type of dinosaur yet known from Triassic rocks of Brazil. Recent studies with the paleofloristic content of this unit also support a more advanced Rhaetian or even Jurassic age for this unit.

  20. The Triassic reworking of the Yunkai massif (South China): EMP monazite and U-Pb zircon geochronologic evidence

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Liu, Yung-Hsin; Lee, Chi-Yu; Sano, Yuji; Zhou, Han-Wen; Xiang, Hua; Takahata, Naoto

    2017-01-01

    Geohistory of the Yunkai massif in South China Block is important in understanding the geodynamics for the build-up of this block during the Phanerozoic orogenies. To investigate this massif, we conduct EMP monazite and U-Pb zircon geochronological determinations on mineral inclusions and separate for seventeen samples in four groups, representing metamorphic rocks from core domain, the Gaozhou Complex (amphibolite facies, NE-striking) and the Yunkai Group (greenschist facies, NW-striking) of this massif and adjacent undeformed granites. Some EMP monazite ages are consistent with the NanoSIMS results. Monazite inclusions, mostly with long axis parallel to the cleavage of platy and elongated hosts, give distinguishable age results for NW- and NE-trending deformations at 244-236 Ma and 236-233 Ma, respectively. They also yield ages of 233-230 Ma for core domain gneissic granites and 232-229 Ma for undefomed granites. Combining U-Pb zircon ages of the same group, 245 Ma and 230 Ma are suggested to constrain the time of two phases of deformation. Aside from ubiquity of Triassic ages in studied rocks, ages of detrital monazite in the meta-sandstone match the major U-Pb zircon age clusters of the metamorphic rock that are largely concentrated at Neoproterozoic (1.0-0.9 Ga) and Early Paleozoic (444-431 Ma). Based on these geochronological data, Triassic is interpreted as representing the time for recrystallization of these host minerals on the Early Paleozoic protolith, and the also popular Neoproterozoic age is probably inherited. With this context, Yunkai massif is regarded as a strongly reactivated Triassic metamorphic terrain on an Early Paleozoic basement which had incorporated sediments with Neoproterozoic provenances. Triassic tectonic evolution of the Yunkai massif is suggested to have been controlled by converging geodynamics of the South China and Indochina Blocks as well as mafic magma emplacement related to the Emeishan large igneous province (E-LIP).

  1. Hydrogeology of the Point Lookout Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah

    USGS Publications Warehouse

    Craigg, Steven D.; Dam, W.L.; Kernodle, J.M.; Thorn, C.R.; Levings, G.W.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), Menefee Formation (Levings and others, 1990), and Cliff House Sandstone (Thorn and others, 1990), in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Point Lookout Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's database, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Point Lookout Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less areally extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the

  2. Hydrogeology of the Cliff House Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah

    USGS Publications Warehouse

    Thorn, Conde R.; Levings, G.W.; Craigg, S.D.; Dam, W.L.; Kernodle, J.M.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Point Lookout Sandstone (Craigg and others, 1990), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), and Menefee Formation (Levings and others, 1990) in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Cliff House Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's data base, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Cliff House Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the

  3. Changing palaeoenvironments and tetrapod populations in the Daptocephalus Assemblage Zone (Karoo Basin, South Africa) indicate early onset of the Permo-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Viglietti, Pia A.; Smith, Roger M. H.; Rubidge, Bruce S.

    2018-02-01

    Important palaeoenvironmental differences are identified during deposition of the latest Permian Daptocephalus Assemblage Zone (DaAZ) of the South African Beaufort Group (Karoo Supergoup), which is also divided into a Lower and Upper subzone. A lacustrine floodplain facies association showing evidence for higher water tables and subaqueous conditions on the floodplains is present in Lower DaAZ. The change to well-drained floodplain facies association in the Upper DaAZ is coincident with a faunal turnover as evidenced by the last appearance of the dicynodont Dicynodon lacerticeps, the therocephalian Theriognathus microps, the cynodont Procynosuchus delaharpeae, and first appearance of the dicynodont Lystrosaurus maccaigi within the Ripplemead member. Considering the well documented 3-phased extinction of Karoo tetrapods during the Permo-Triassic Mass Extinction (PTME), the facies transition between the Lower and Upper DaAZ represents earlier than previously documented palaeoenvironmental changes associated with the onset of this major global biotic crisis.

  4. Utilizing Integrated Prediction Error Filter Analysis (INPEFA) to divide base-level cycle of fan-deltas: A case study of the Triassic Baikouquan Formation in Mabei Slope Area, Mahu Depression, Junggar Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Rui; Zhu, Rui; Qu, Jianhua; Wu, Jun; You, Xincai; Sun, Yuqiu; Zhou, Yuanquan (Nancy)

    2018-05-01

    The Mahu Depression is an important hydrocarbon-bearing foreland sag located at the northwestern margin of the Junggar Basin, China. On the northern slope of the depression, large coarse-grained proximal fan-delta depositional systems developed in the Lower Triassic Baikouquan Formation (T1b). Some lithologic hydrocarbon reservoirs have been found in the conglomerates of the formation since recent years. However, the rapid vertical and horizontal lithology variations make it is difficult to divide the base-level cycle of the formation using the conventional methods. Spectral analysis technologies, such as Integrated Prediction Error Filter Analysis (INPEFA), provide another effective way to overcome this difficultly. In this paper, processed by INPEFA, conventional resistivity logs are utilized to study the base-level cycle of the fan-delta depositional systems. The negative trend of the INPEFA curve indicates the base-level fall semi-cycles, adversely, positive trend suggests the rise semi-cycles. Base-level cycles of Baikouquan Formation are divided in single and correlation wells. One long-term base-level rise semi-cycle, including three medium-term base-level cycles, is identified overall the Baikouquan Formation. The medium-term base-level cycles are characterized as rise semi-cycles mainly in the fan-delta plain, symmetric cycles in the fan-delta front and fall semi-cycles mainly in the pro-fan-delta. The short-term base-level rise semi-cycles most developed in the braided channels, sub-aqueous distributary channels and sheet sands. While, the interdistributary bays and pro-fan-delta mud indicate short-term base-level fall semi-cycles. Finally, based on the method of INPEFA, sequence filling model of Baikouquan formation is established.

  5. Conodont biostratigraphy of the Permian-Triassic boundary sequence at Lung Cam, Vietnam

    USGS Publications Warehouse

    Wardlaw, Bruce R.; Nestell, Merlynd K.; Nestell, Galina P.; Ellwood, Brooks B.; Lan, Luu Thi Phuong

    2015-01-01

    The occurrences of a few specimens of Clarkina and many specimens of Hindeodus at the Permian-Triassic boundary section at Lung Cam, Vietnam allow accurate graphic correlation to the P-T boundary stratotype at Meishan, China. One species of Clarkina, ten species and two subspecies of Hindeodus, and the apparatuses of Hindeodus latidentatus and Merrillina ultima are described and illustrated.

  6. Deep structure of Porcupine Basin and nature of the Porcupine Median Ridge from seismic refraction tomography

    NASA Astrophysics Data System (ADS)

    Watremez, L.; Chen, C.; Prada, M.; Minshull, T. A.; O'Reilly, B.; Reston, T. J.; Wagner, G.; Gaw, V.; Klaeschen, D.; Shannon, P.

    2015-12-01

    The Porcupine Basin is a narrow V-shaped failed rifted basin located offshore SW Ireland. It is of Permo-Triassic to Cenozoic age, with the main rifting phase in the Late Jurassic to Early Cretaceous. Porcupine Basin is a key study area to learn about the processes of continental extension and to understand the thermal history of this rifted basin. Previous studies show increasing stretching factors, from less than 1.5 to the North to more than 6 to the South. A ridge feature, the Porcupine Median Ridge, has been identified in the middle of the southernmost part of the basin. During the last three decades, this ridge has been successively interpreted as a volcanic structure, a diapir of partially serpentinized mantle, or a block of continental crust. Its nature still remains debated today. In this study, we use arrival times from refractions and wide-angle reflections in the sedimentary, crustal and mantle layers to image the crustal structure of the thinnest part of the basin, the geometry of the continental thinning from margin to margin, and the Porcupine Median Ridge. The final velocity model is then compared with coincident seismic reflection data. We show that (1) the basin is asymmetric, (2) P-wave velocities in the uppermost mantle are lower than expected for unaltered peridotites, implying upper-mantle serpentinisation, (3) the nature of Porcupine Median Ridge is probably volcanic, and (4) the amount of thinning is greater than shown in previous studies. We discuss the thermal implications of these results for the evolution of this rift system and the processes leading to the formation of failed rifts. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.

  7. Permian-Triassic thermal anomaly of the active margin of South America as a result of plate kinematics reorganization

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Jaillard, Etienne; Guillot, Stéphane; Martelat, Jean-Emmanuel; Braun, Jean

    2013-04-01

    From Permian to Triassic times, tectonic plate reorganization provoked Pangaea breakup, counterclockwise rotation of Gondwana, closing of the Paleo-Tethys Ocean and opening of the Neo-Tethys oceanic realm. Meanwhile, the switch from arc volcanism to widespread S-type magmatism along the western South American active margin around 275-265 Ma is symptomatic of the onset of a large-scale Permian-Triassic thermal anomaly (PTTA)affecting the whole margin. Here we report metamorphic and U-Pb geochronological results from the El Oro metamorphic complex in the forearc zone of southwestern Ecuador, which recorded the last step, at 230-225 Ma, of the PTTA. The change in the drift direction of Gondwana from north to east at ca. 270 Ma was related to plate reorganization and provoked the verticalization of the subducted Panthalassa slab. As the slab verticalized, strong heat advection produced a high heat flow beneath the active margin inducing the development of a huge thermal anomaly responsible for the PTTA, which lasted 30 Ma. This voluminous magmatic activity culminated at the Permian-Triassic boundary, and may have contributed to the degradation of life conditions on the Earth surface.

  8. Structural geology of the Rub' Al-Khali Basin, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Stewart, S. A.

    2016-10-01

    The Rub' Al-Khali basin lies below a Quaternary sand sea, and the structural evolution from the Late Precambrian to Neogene is known only from reflection seismic, gravity, and magnetic data, and wells. Gravity and magnetic data show north-south and northwest-southeast trends, matching mapped Precambrian faults. The deepest structures imaged on reflection seismic data are undrilled Precambrian rifts filled with layered strata at depths up to 13 km. The distribution of Ediacaran-Cambrian Ara/Hormuz mobile salt is restricted to an embayment in the eastern Rub' Al-Khali. The Precambrian rifts show local inversion and were peneplained at base Phanerozoic. A broad crustal-scale fold (Qatar Arch) developed in the Carboniferous and amplified in the Late Triassic, separating subbasins in the west and east Rub' Al-Khali. A phase of kilometer-scale folding occurred in the Late Cretaceous, coeval with thrusting and ophiolite obduction in eastern Oman. These folds trend predominantly north-south, oblique to the northwesterly shortening direction, and occasionally have steep fault zones close to their axial surfaces. The trend and location of these folds closely matches the Precambrian lineaments identified in this study, demonstrating preferential reactivation of basement structures. Compression along the Zagros suture reactivated these folds in the Neogene, this time the result of highly oblique, north-northeast to south-southwest shortening. Cretaceous-Tertiary fold style is interpreted as transpression with minor strain partitioning. Permian, Jurassic, and Eocene evaporite horizons played no role in the structural evolution of the basin, but the Eocene evaporites caused widespread kilometer-scale dissolution collapse structures in the basin center.

  9. Geometry and kinematics of Majiatan Fold-and-thrust Belt, Western Ordos Basin: implication for Tectonic Evolution of North-South Tectonic Belt

    NASA Astrophysics Data System (ADS)

    He, D.

    2017-12-01

    The Helan-Chuandian North-South Tectonic Belt crossed the central Chinese mainland. It is a boundary of geological, geophysical, and geographic system of Chinese continent tectonics from shallow to deep, and a key zone for tectonic and geomorphologic inversion during Mesozoic to Cenozoic. It is superimposed by the southeastward and northeastward propagation of Qinghai-Tibet Plateau in late Cenozoic. It is thus the critical division for West and East China since Mesozoic. The Majiatan fold-and-thrust belt (MFTB), locating at the central part of HCNSTB and the western margin of Ordos Basin, is formed by the tectonic evolution of the Helan-Liupanshan Mountains. Based on the newly-acquired high-resolution seismic profiles, deep boreholes, and surface geology, the paper discusses the geometry, kinematics, and geodynamic evolution of MFTB. With the Upper Carboniferous coal measures and the pre-Sinian ductile zone as the detachments, MFTB is a multi-level detached thrust system. The thrusting was mainly during latest Jurassic to Late Cretaceous, breaking-forward in the foreland, and resulting in a shortening rate of 25-29%. By structural restoration, this area underwent extension in Middle Proterozoic to Paleozoic, which can be divided into three phases of rifting such as Middle to Late Proterozoic, Cambiran to Ordovician, and Caboniferous to early Permian. It underwent compression since Late Triassic, including such periods as Latest Triassic, Late Jurassic to early Cretaceous, Late Cretaceous to early Paleogene, and Pliocene to Quaternary, with the largest shortening around Late Jurassic to early Cretaceous period (i.e. the mid-Yanshanian movement by the local name). However, trans-extension since Eocene around the Ordos Basin got rise to the formation the Yingchuan, Hetao, and Weihe grabens. It is concluded that MFTB is the leading edge of the intra-continental Helan orogenic belt, and formed by multi-phase breaking-forward thrusting during Late Jurassic to Cretaceous

  10. Integrating facies and structural analyses with subsidence history in a Jurassic-Cretaceous intraplatform basin: Outcome for paleogeography of the Panormide Southern Tethyan margin (NW Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Basilone, Luca; Sulli, Attilio; Gasparo Morticelli, Maurizio

    2016-06-01

    We illustrate the tectono-sedimentary evolution of a Jurassic-Cretaceous intraplatform basin in a fold and thrust belt present setting (Cala Rossa basin). Detailed stratigraphy and facies analysis of Upper Triassic-Eocene successions outcropping in the Palermo Mts (NW Sicily), integrated with structural analysis, restoration and basin analysis, led to recognize and describe into the intraplatform basin the proximal and distal depositional areas respect to the bordered carbonate platform sectors. Carbonate platform was characterized by a rimmed reef growing with progradational trends towards the basin, as suggested by the several reworked shallow-water materials interlayered into the deep-water succession. More, the occurrence of thick resedimented breccia levels into the deep-water succession suggests the time and the characters of synsedimentary tectonics occurred during the Late Jurassic. The study sections, involved in the building processes of the Sicilian fold and thrust belt, were restored in order to obtain the original width of the Cala Rossa basin, useful to reconstruct the original geometries and opening mechanisms of the basin. Basin analysis allowed reconstructing the subsidence history of three sectors with different paleobathymetry, evidencing the role exerted by tectonics in the evolution of the narrow Cala Rossa basin. In our interpretation, a transtensional dextral Lower Jurassic fault system, WNW-ESE (present-day) oriented, has activated a wedge shaped pull-apart basin. In the frame of the geodynamic evolution of the Southern Tethyan rifted continental margin, the Cala Rossa basin could have been affected by Jurassic transtensional faults related to the lateral westward motion of Africa relative to Europe.

  11. Revision of the Dysmorphoptilidae (Hemiptera: Cicadomorpha: Prosboloidea) of the Queensland Triassic-Part 2.

    PubMed

    Lambkin, Kevin J

    2016-03-15

    The extinct hemipteran family Dysmorphoptilidae was a major component of the Triassic insect fauna of Queensland preserved at the Denmark Hill, Dinmore, Mount Crosby and Gayndah fossil insect sites. A total of 13 species have now been identified, of which eight species in five genera were examined in the first part of this revision. This second part revises the remaining five species in three genera. Eoscartoides Evans, 1956 (= Mesonirvana Evans, 1956, syn. nov.), comprising Eoscartoides bryani Evans, 1956 (= Mesonirvana abrupta Evans, 1956, syn. nov.) (Mount Crosby), Eoscartoides orthocladus (Tillyard, 1922) comb. nov. (Denmark Hill), and Eoscartoides dmitryi sp. nov. (Dinmore), is distinguished by a strongly developed arc-like strigil in the basal costal space, a very short stem of RA, and a deeply forked M1+2. The monotypic Eoscarterella Evans, 1956, with type species Eoscarterella media Evans, 1956 (Mount Crosby), has a strongly lobate tegmen with peculiar surface sculpture and M1+2 simple. Eoscartoides and Eoscarterella differ from most dysmorphoptilids in having more or less lobate tegmina with even margins (without the antero-apical emargination so typical of the family), as well as the early entry of RA1 into the costal margin and the associated extensive and antero-apically positioned RA2. These characters are also shared with two other dysmorphoptilids, the Australian Permian Belmontocarta Evans and an unnamed Triassic species from Kyrgyzstan, and the four thus form a distinct subgroup within the family. On the other hand, the monotypic Trifidella Evans, 1956 (= Alotrifidus Evans, 1956, syn. nov.), with type species Trifidella perfecta Evans, 1956 (= Alotrifidus interruptus Evans, 1956, syn. nov.) (Mount Crosby), is a more typical dysmorphoptilid with a distinct emargination, RA entering the margin much more apically, and RA2 of limited extent. Trifidella is presumably the sister of the Queensland Triassic Dysmorphoptiloides Evans, sharing the basal

  12. A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates.

    PubMed

    Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang

    2013-01-07

    Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought.

  13. Influx of Dissolved Silica in Shallow Marine Environments in the Early Rhaetian (Late Triassic): Implications for Timing of Supercontinental Rifting

    NASA Astrophysics Data System (ADS)

    Tackett, L.

    2017-12-01

    The Rhaetian Stage of the Late Triassic terminated with a mass extinction, but the late Norian-early Rhaetian paleoecological and geochemical transitions and their relationship to events leading up to the End-Triassic mass extinction are poorly understood. To address this issue, presented here is a multi-proxy dataset from New York Canyon, Nevada (USA) relating isotope chemostratigraphy (Sr, C, O), shallow marine benthic macrofossils, and microfossils. At this Panthalassan locality the Norian-Rhaetian boundary is characterized by a negative strontium isotope excursion that facilitates correlation with Tethyan deposits. In sedimentary horizons immediately below and above this excursion, siliceous demosponge spicules (desmids) are abundant components of the microfossil populations, and silicification of calcareous microfossils becomes common. In the sedimentary beds marking the main excursion, hexactinellid sponge spicules are abundant. These results indicate a large input of dissolved silica in shallow marine environments, while the negative strontium values are consistent with increased seafloor spreading and hydrothermal vent activity or basalt weathering, either scenario being a plausible silica source for the typically silica-limited sponges that proliferated during this interval. The biosedimentary features observed across the Norian-Rhaetian boundary are similar to those observed in the earliest Jurassic in marine sections around the world following the End-Triassic mass extinction, but no clear biotic turnover is observed across the Norian-Rhaetian boundary in this succession. Thus, biosedimentary shifts across the Norian-Rhaetian boundary may add important geochemical context to the end-Triassic mass extinction event.

  14. The Triassic upwelling system of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Yurchenko, I.; Graham, S. A.

    2017-12-01

    The Middle to Upper Triassic Shublik Formation of Arctic Alaska is a laterally and vertically heterogeneous rock unit that has been analyzed both in outcrop and in the subsurface. The Shublik Formation sediments are distinguished by a characteristic set of lithologies that include glauconitic, phosphatic, organic-rich, and cherty facies consistent with a coastal upwelling zone deposition interpretation. It is often recognized by abundance of impressions and shells of distinctive Triassic bivalves. To understand main controls on lithofacies distributions, this study reviews and refines lithologic and paleoenvironmental interpretations of the Shublik Formation, and incorporates the newly acquired detailed geochemical analyses of two complete Shublik cores. This work focuses on organic geochemistry (analyses of biomarkers and diamondoids), chemostratigraphy (hand-held XRF), and iron speciation analysis to reconstruct paleoproductivity and redox conditions. Based on the available evidence, during Shublik deposition, an upwelling-influenced open shelf resulted in high nutrient supply that stimulated algal blooms leading to high net organic productivity, reduced water transparency, oxygen deficiency, and water column stratification. Evidence of such eutrophic conditions is indicated by the lack of photic benthic organisms, bioturbation and trace fossils, and dominance of the monospecific light-independent epibenthic bivalves. The flat, subcircular, thin shells of these carbonate-secreting organisms allowed them to adapt to dysoxic conditions, and float on soft, soupy, muddy substrate. The distinctive clay- and organic-rich facies with abundant bivalves occurred on the mid to outer stable broad shelf, and were deposited when organic productivity at times overlapped with periods of increased siliciclastic input controlled by sea level and changes in local sediment dispersal systems, and therefore are more spatially and temporally localized than the widespread clay

  15. Detrital zircon U-Pb geochronology of Cambrian to Triassic miogeoclinal and eugeoclinal strata of Sonora, Mexico

    USGS Publications Warehouse

    Gehrels, G.E.; Stewart, John H.

    1998-01-01

    One hundred and eighty two individual detrital zircon grains from Cambrian through Permian miogeoclinal strata, Ordovician eugeoclinal rocks, and Triassic post-orogenic sediments in northwestern Sonora have been analyzed. During Cambrian, Devonian, Permian, and Triassic time, most zircons accumulating along this part of the Cordilleran margin were shed from 1.40-1.45 and 1.62-1.78 Ga igneous rocks that are widespread in the southwestern United States and northwestern Mexico. Zircons with ages of approximately 1.11 Ga are common in Cambrian strata and were apparently shed from granite bodies near the sample site. The sources of 225-280 Ma zircons in our Triassic sample are more problematic, as few igneous rocks of these ages are recognized in northwestern Mexico. Such sources may be present but unrecognized, or the grains could have been derived from igneous rocks of the appropriate ages to the northwest in the Mojave Desert region, to the east in Chihuahua and Coahuila, or to the south in accreted(?) arc-type terranes. Because the zircon grains in our Cambrian and Devonian to Triassic samples could have accumulated in proximity to basement rocks near their present position or in the Death Valley region of southern California, our data do not support or refute the existence of the Mojave-Sonora megashear. Ordovician strata of both miogeoclinal and eugeoclinal affinity are dominated by >1.77 Ga detrital zircons, which are considerably older than most basement rocks in the region. Zircon grains in the miogeoclinal sample were apparently derived from the Peace River arch area of northwestern Canada and transported southward by longshore currents. The eugeoclinal grains may also have come from the Peace River arch region, with southward transport by either sedimentary or tectonic processes, or they may have been shed from off-shelf slivers of continents (perhaps Antarctica?) removed from the Cordilleran margin during Neoproterozoic rifting. It is also possible that the

  16. Age and microfacies of oceanic Upper Triassic radiolarite components from the Middle Jurassic ophiolitic mélange in the Zlatibor Mountains (Inner Dinarides, Serbia) and their provenance

    NASA Astrophysics Data System (ADS)

    Gawlick, Hans-Jürgen; Djerić, Nevenka; Missoni, Sigrid; Bragin, Nikita Yu.; Lein, Richard; Sudar, Milan; Jovanović, Divna

    2017-08-01

    Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt) west of the Drina-Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje-Ljubiš-Visoka-Radoševo mélange) contains a mixture of blocks of 1) oceanic crust, 2) Middle and Upper Triassic ribbon radiolarites, and 3) open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1) the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2) the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange). We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A) on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef), B) between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef), and C) in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon). The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange) filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and slightly older

  17. Dobrogeria aegyssensis, a new early Spathian (Early Triassic) coelacanth from North Dobrogea (Romania)

    NASA Astrophysics Data System (ADS)

    Cavin, Lionel; Grădinaru, Eugen

    2014-06-01

    The Early Triassic witnessed the highest taxic diversity of coelacanths (or Actinistia), a clade with a single living genus today. This peak of diversity is accentuated here with the description of a new coelacanth discovered in the lower Spathian (Upper Olenekian, Lower Triassic) cropping out in the Tulcea Veche (Old Tulcea) promontory, in the city of Tulcea, in North Dobrogea, Romania. The bone remains were preserved in a block of limestone, which was chemically dissolved. The resulting 3D and matrix-free ossifications correspond mostly to elements of the skull and branchial apparatus. Posterior parietals, postparietal with associated prootic and basisphenoid allow a precise description of the neurocranium. Ossifications of the lower jaw, together with branchial and pectoral elements, complete the description of this coelacanth and support the coining of a new generic and specific name, Dobrogeria aegyssensis. A phylogenetic analysis of actinistians with the new species recovers clades which were found in most recent analyses, i.e. the Sasseniidae, the Laugiidae, the Coelacanthiformes, the Latimerioidei, the Mawsoniidae and the Latimeriidae, and identifies the new taxon as a non-latimerioid coelacanthiform.

  18. A new Late Triassic age for the Puesto Viejo Group (San Rafael depocenter, Argentina): SHRIMP U-Pb zircon dating and biostratigraphic correlations across southern Gondwana

    NASA Astrophysics Data System (ADS)

    Ottone, Eduardo G.; Monti, Mariana; Marsicano, Claudia A.; de la Fuente, Marcelo S.; Naipauer, Maximiliano; Armstrong, Richard; Mancuso, Adriana C.

    2014-12-01

    The Puesto Viejo Group crops out in the San Rafael Block, southwest Mendoza, at approximately 35° S and 68°20‧ W. It consists of the basal mainly grayish Quebrada de los Fósiles Formation (QF) overlying by the reddish Río Seco de la Quebrada Formation (RSQ). The basal unit includes both plant remains (pleuromeians and sphenopsids) and vertebrates (scattered fish scales, dicynodont synapsids and remains of an archosauriform). In contrast, the RSQ beds have yielded only tetrapods, although a more diverse fauna. The latter includes cynodonts as Cynognathus, Pascualognathus and Diademodon, and also dicynodonts (Vinceria and Kannemeyeria). Based on the assemblage of tetrapod taxa the bearing levels were correlated to the Cynognathus AZ of South Africa and thus referred to the Middle Triassic (Anisian). We obtained a SHRIMP 238U/206Pb age of 235.8 ± 2.0 Ma from a rhyolitic ignimbrite interdigitated between the QF and RSQ formations at the Quebrada de los Fósiles section. This new radiometric date for the Puesto Viejo Group suggests that the tetrapod fauna in the RSQ beds existed, instead, during the Late Triassic (early Carnian) some 10 Ma later than the currently accepted age. Two scenarios might explain our results: first, the Cynognathus AZ of South Africa is wrongly assigned to the lower Middle Triassic (Anisan) and should be considered younger in age, Late Triassic (Carnian); second, the relative age of the Cynognathus AZ of South Africa is correct but the inferred range of Cynognathus and Diademodon is incorrect as they were present during the Late Triassic (Carnian) at least in South America. In any case, this new date pose serious doubts about the validity of biostratigraphic correlations based solely on tetrapod taxa, a common practice for Triassic continental successions across Gondwana.

  19. Facies analysis of Lofer cycles (Upper Triassic), in the Argolis Peninsula (Greece)

    NASA Astrophysics Data System (ADS)

    Pomoni-Papaioannou, F.

    The Upper Triassic carbonate sediments of Argolis Peninsula are part of the Upper Triassic-Lower Jurassic extensive and thick neritic carbonate formations (Pantokrator facies) that formed at the passive Pelagonian margin and are considered as Dachstein-type platform carbonates. Facies analysis of the Upper Triassic "Lofer-type" lagoonal-peritidal cycles in the Dhidimi area, proved that cycles, although mostly incomplete, were regressive shallowing-upward. The ideal elementary cyclothems are meter-scale in thickness and begin with a subtidal bed (Member C), represented by a peloidal dolostone with megalodonts (wackestone or packstone), being followed by a stromatolitic intertidal dolomitic mudstone and/or fenestral intertidal dolomitic mudstone (Member B) that is overlain by dolocrete (terrestrial stromatolites or pisoidic dolomite) or a supratidal "soil conglomerate" in red micritic matrix (Member A). Lofer-cycle boundaries are defined at the erosional surfaces and accordingly the Lofer cyclothems are unconformity-bounded units. Due to common post-depositional truncation of the subtidal and intertidal facies, the supratidal members prevail, being developed, in places, directly upon subaerial exposure surfaces (erosionally reduced cyclothems). Peritidal layers are characterized by a well-expressed lamination, sheet cracks, tepee structures, fenestral pores and karst dissolution cavities. The studied lagoonal-peritidal cycles are considered to have been deposited in a tidal-flat setting (inner platform), repeatedly exposed under subaerial conditions, in the context of a broader tropical rimmed platform. Although the studied area was tectonically active due to rift-activity and the autocyclic processes should also be taken in consideration, the great lateral correlatability of cycles, the facies shifting and the widespread erosion that resulted in superposition of supratidal-pedogenic facies directly upon subtidal members (subaerial erosional unconformity), indicating

  20. A molecular and isotopic study of palaeoenvironmental conditions through the middle Cambrian in the Georgina Basin, central Australia

    NASA Astrophysics Data System (ADS)

    Pagès, Anais; Schmid, Susanne; Edwards, Dianne; Barnes, Stephen; He, Nannan; Grice, Kliti

    2016-08-01

    The Cambrian period marks an important point in Earth's history with profound changes in the ocean's biogeochemistry and the occurrence of the most significant evolutionary event in the history of life, the Cambrian explosion. The Cambrian explosion is described as a succession of complex cycles of extinctions and radiations. This study integrates biomarkers and their compound-specific stable carbon isotopes to investigate the palaeoenvironmental depositional conditions in middle Cambrian (Series 3) sedimentary rocks (Thorntonia Limestone, Inca Formation and Currant Bush Limestone) from two drillholes in the Undilla Sub-basin in the eastern Georgina Basin, central Australia. The occurrence of photic zone euxinia (PZE) was detected throughout these three formations by the identification of green sulfur bacteria Chlorobiaceae-derived biomarkers, including a series of 2,3,6-aryl isoprenoids and the intact biomarker isorenieratane. Pulses of enhanced PZE conditions were detected in two core intervals (90-110 mKB, Currant Bush Limestone and 170-200 mKB, Inca Formation) by an increase in the 2,3,6-aryl isoprenoids and C19 biphenyl concentrations. These enhanced PZE conditions were followed by blooms of phytoplankton, as demonstrated by the increase in algal-derived biomarker (i.e. pristane, phytane and the C19n-alkane) concentrations and compound-specific isotopes. These observations confirm that palaeoenvironmental conditions were similar to those reported for the Permian/Triassic and Triassic/Jurassic mass extinction events. The sterane distributions varied across the three formations reflecting possible changes in the phytoplanktonic communities through time. Although a rise in atmospheric oxygen during the Cambrian has been previously associated with the rapid evolution of metazoans, the ecological challenges related to widespread anoxia must have had a major influence on the evolution of life in Cambrian oceans.

  1. A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates

    PubMed Central

    Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang

    2013-01-01

    Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought. PMID:23118437

  2. The Summerville Formation: Evidence for a sub-horizontal stratigraphic sequence below the post-rift unconformity in the Middleton Place Summerville Seismic Zone

    NASA Astrophysics Data System (ADS)

    Getz, Joseph Edward

    The Middleton Place Summerville Seismic Zone (MPSSZ) near Summerville, South Carolina was the site of renewed extensive investigation, beginning in the 1970's, for the source of the 1886 Charleston earthquake. Reactivation of faults associated with a putative fault-bounded Triassic rift basin through analysis of seismic reflection, seismic refraction, and well data has since become the favored interpretation for the source of MPSSZ seismicity. Critical to this interpretation is the association of continental redbed sedimentary rocks with Triassic basins identified throughout the North American Atlantic margin. Reanalysis of 18 seismic reflection profiles and 25 seismic refraction profiles within the MPSSZ suggests that the red beds found here are a thin, sub-horizontal, regionally extensive, generally unbroken subsurface stratigraphic sequence distinct from the sedimentary architecture observed in analog Triassic rift systems. In addition, this sequence appears to unconformably overly a structural depression (the Jedberg basin) previously interpreted as a Triassic rift basin in the vicinity of the MPSSZ. In addition to the geometries observed on seismic reflection profiles, seismic refraction velocities ranging from 4.2 to 6.1 km/s can be correlated with (1) Jurassic basalt flows, (2) the newly proposed Summerville Formation, and (3) the Basement (B) sequences respectively. The current study maps the Summerville red bed section and its bounding reflectors. In addition to mapping the regional extent of the newly proposed Summerville Formation, refraction velocities and changes in reflection character, the lateral extent of the basalt flows can be changed to a more localized flow rather than a regionally extensive flow of which was previously thought. Reanalysis of data in the MPSSZ suggests that the area may not be part of the Triassic South Georgia Rift system due to the sub-horizontal geometry of the red bed reflections, the apparent lack of faulting, and their

  3. Remagnetization mechanisms in Triassic red beds from South China

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J.; Zhao, Xiang; Roberts, Andrew P.; Yang, Zhenyu; Jin, Chunsheng; Liu, Jianxing

    2017-12-01

    Paleogeographic reconstructions based on paleomagnetic data rely on the reliability of the natural remanent magnetization (NRM) as a primary geomagnetic signal. Remagnetizations, however, can be common in many rock types, including late Paleozoic and Mesozoic red beds, and they complicate paleogeographic interpretations. Extracting the primary NRM from partially remagnetized rocks, and understanding the remagnetization mechanism are important in these contexts. We carried out a systematic paleomagnetic study of red bed samples from the Triassic Huangmaqing Formation, Nanjing (32.0°N, 118.9°E), South China. Two NRM components carried by secondary and primary hematite are isolated in 47 of the 94 samples studied, where the latter component has a direction in stratigraphic coordinates of D = 29.2 °, I = 34.6 ° (α95 = 10.9 °, 47 samples from 6 sites) that yields a paleopole of λ = 60.8°N, ϕ = 228.1°E, dp / dm = 12.5 / 7.2, which is consistent with Triassic pole positions for the South China Block. A secondary chemical remanent magnetization (CRM) (D = 227.1 °, I = 80.8 °, α95 = 7.3 °) is documented in all 94 samples from 10 sites and is carried by pigmentary hematite that is inferred to have been generated by magnetite oxidation during orogenic activity. This secondary component has steep inclinations and is interpreted to have been influenced by a combination of the remanence carried by original parent magnetite, the orogenic stress field, and the prevailing geomagnetic field direction during deformation. This CRM direction is recorded commonly by red beds from the South China Block, and is significant for regional tectonic studies in the area.

  4. Body Size Evolution in Conodonts from the Cambrian through the Triassic

    NASA Astrophysics Data System (ADS)

    Schaal, E. K.; Morgan, D. J.; Payne, J.

    2013-12-01

    The size of an organism exercises tremendous control over its physiology, life history, and ecology, yet the factors that influence body size evolution remain poorly understood. One major limitation is the lack of appropriate datasets spanning long intervals of evolutionary time. Here, we document size trends in conodonts (tooth-like microfossils from marine chordates) because they evolved rapidly and are known to change size during intervals of environmental change. By measuring photographs from the Catalogue of Conodonts (Ziegler 1982), we compiled a database of conodont P1 element measurements for 575 species and subspecies from the Cambrian through Triassic periods. Because tooth size correlates with body size in conodont animals and their extant relatives, conodont element length can serve as a proxy for the size of the conodont animal. We find that mean and maximum size across species increased during the early Paleozoic, peaked during the Devonian-Mississippian, and then generally decreased until conodonts went extinct at the end of the Triassic. We used regression analyses to compare conodont mean size trends to potential environmental predictors, such as changing atmospheric pO2, atmospheric pCO2, and sea level. Conodont size exhibited poor correlation with these environmental factors, suggesting that conodont evolution may have been more strongly influenced by other environmental covariates or ecological variables such as predation and competition.

  5. Petroleum systems of the Po Basin Province of northern Italy and the northern Adriatic Sea; Porto Garibaldi (biogenic), Meride/Riva di Solto (thermal), and Marnoso Arenacea (thermal)

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Porto Garibaldi total petroleum system dominates the Po Basin Province of onshore northern Italy and offshore Italy and Croatia in the northern Adriatic Sea. Porto Garibaldi contains Pliocene (primarily) and Pleistocene (secondarily) biogenic gas ? approximately 16 TCF (2.66 BBOE) ultimately recoverable ? accumulated in co-eval siliciclastic reservoirs. This area was the northwestern edge of the Gondwanan (African) continental plate in pre-Hercynian time until the assembly of Pangea, a dominantly carbonate passive continental margin during the Mesozoic breakup of Pangea, and a Cenozoic collision zone with siliciclastic foredeep and foreland regions surrounded by thrust belts. At least two other petroleum systems, with Triassic (Meride / Riva di Solto) and Miocene (Marnoso Arenacea) source rocks, contribute oil and thermal gas reserves (nearly 1 BBOE) to the province. The major time of hydrocarbon expulsion of the thermal systems was Late Neogene during the Alpine and Apennine orogenies. Local Mesozoic oil expulsion from Triassic rocks also occurred, but those oils either were not trapped or were leaked from faulty traps through time.

  6. Extension style in the Orphan Basin during the Mesozoic North Atlantic rifting

    NASA Astrophysics Data System (ADS)

    Gouiza, Mohamed; Hall, Jeremy

    2013-04-01

    The Orphan Basin, lying along the Newfoundland passive continental margin, has formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. Regional deep seismic reflection profiles across the basin indicate that the Neoproterozoic basement has been affected by repeated extensional episodes between the Late Triassic/Jurassic and the Early Cretaceous. Deformation initiated in the eastern part of the Orphan basin in the Jurassic and migrated toward the west in the Early Cretaceous, resulting in numerous rift structures filled with Jurassic-Lower Cretaceous syn-rift successions and sealed by thick Upper Cretaceous-Cenozoic post-rift sediments. The seismic data show an extremely attenuated crust underneath the eastern and western part of the deep basin, forming two sub-basins associated with the development of rifting. The two sub-basins are separated by a wide structural high with a relatively thick crust and are bounded to the west by the continental shelf domain. Restoration of the Orphan Basin along a 2D crustal section (520 km long), yields a total amount of stretching of about 144 km, while the total crustal thinning indicates an extension of around 250 km, assuming mass conservation along the section and an initial crustal thickness of 28 km. Brittle deformation accommodated by normal faults is documented in the seismic profiles and affected essentially the present-day upper portion of the crust, and represents only 60% of the total extension which thinned the Orphan crust. The remaining crustal thinning must involve other deformation processes which are not (easily) recognizable in the seismic data. We propose two models that could explain discrepancies between brittle deformation and total crustal thinning during lithospheric extension. The first model assumes the reactivation of pre-rift inherited structures, which act as crustal-scale detachments during the early stages of rifting. The second

  7. Exceptional appendage and soft-tissue preservation in a Middle Triassic horseshoe crab from SW China.

    PubMed

    Hu, Shixue; Zhang, Qiyue; Feldmann, Rodney M; Benton, Michael J; Schweitzer, Carrie E; Huang, Jinyuan; Wen, Wen; Zhou, Changyong; Xie, Tao; Lü, Tao; Hong, Shuigen

    2017-10-26

    Horseshoe crabs are classic "living fossils", supposedly slowly evolving, conservative taxa, with a long fossil record back to the Ordovician. The evolution of their exoskeleton is well documented by fossils, but appendage and soft-tissue preservation is extremely rare. Here we analyse details of appendage and soft-tissue preservation in Yunnanolimulus luopingensis, a Middle Triassic (ca. 244 million years old) horseshoe crab from Yunnan Province, SW China. The remarkable preservation of anatomical details including the chelicerae, five pairs of walking appendages, opisthosomal appendages with book gills, muscles, and fine setae permits comparison with extant horseshoe crabs. The close anatomical similarity between the Middle Triassic horseshoe crabs and their recent analogues documents anatomical conservatism for over 240 million years, suggesting persistence of lifestyle. The occurrence of Carcinoscorpius-type claspers on the first and second walking legs in male individuals of Y. luopingensis indicates that simple chelate claspers in males are plesiomorphic for horseshoe crabs, and the bulbous claspers in Tachypleus and Limulus are derived.

  8. Milankovitch and sub-Milankovitch cycles of the Early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Wu, H.; Zhang, S.; Feng, Q.; Jiang, G.; Li, H.; Yang, T.

    2011-12-01

    The most profound mass extinction in the Phanerozoic occurred at the end of the Permian, with global loss of nearly 90% of marine invertebrate species and 70% of terrestrial vertebrate genera. Recent studies suggested that volcanisms represented by the Siberian Trap were most likely cause of the end-Permian extinction. The post-extinction periods in the Early Triassic was characterized by low biodiversity, reduced abundance and size of invertebrates, hiatus in coal deposition, anomalously high sediment fluxes, and large perturbations of the carbon cycle, which have been interpreted as the consequence of persistently unfavorable environmental conditions. However, the time framework for the Early Triassic geological, biological and geochemical events is traditionally established by conodont biostratigraphy, but the absolute duration of condont biozones are not well constrained. In this study, a rock magnetic cyclostratigraphy, based on high-resolution analysis (2440 samples) of magnetic susceptibility (MS) and anhysteretic remanent magnetization (ARM) intensity variations, was developed for the 55.1-m-thick, Early Triassic Daye Formation at the Daxiakou section, Hubei province in South China. The Daye Formation shows exceptionally well-preserved lithological cycles with alternations of thin-bedded mudstone, marl and limestone, which are closely tracked by the MS and ARM variations. Power spectral, wavelet and amplitude modulation (AM) analysis of the ARM and MS series reveal strong evidence for the presence of Milankovitch to sub-Milankovitch frequencies dominated by precession index signal and 4-5 ka cycles. Cycles expressed by variations in MS and ARM were likely controlled by the input of fine-grained detrital magnetite, which in turn may be driven by astronomically induced changes in monsoon intensity in the equatorial eastern Tethys during the Early Triassic greenhouse period. On the basis of the 100-ka tuning results, the astronomically constrained duration of

  9. Additive effects of acidification and mineralogy on calcium isotopes in Triassic/Jurassic boundary limestones

    DOE PAGES

    Jost, Adam B.; Bachan, Aviv; van de Schootbrugge, Bas; ...

    2016-12-29

    The end-Triassic mass extinction coincided with a negative δ 13 C excursion, consistent with release of 13C-depleted CO 2 from the Central Atlantic Magmatic Province. However, the amount of carbon released and its effects on ocean chemistry are poorly constrained. The co upled nature of the carbon and calcium cycles allows calcium isotopes to be used for constraining carbon cycle dynamics and vice versa. We present a high-resolution calcium isotope (δ 44/40 Ca) record from 100 m of marine limestone spanning the Triassic/Jurassic boundary in two stratigraphic sections from northern Italy. Immediately above the extinction horizon and the associated negativemore » excursion in δ 13 C, δ 44/40 Ca decreases by ca. 0.8‰ in 20 m of section and then recovers to preexcursion values. Coupled numerical models of the geological carbon and calcium cycles demonstrate that this δ 44/40 Ca excursion is too large to be explained by changes to seawater δ 44/40 Ca alone, regardless of CO 2 injection volume and duration. Less than 20% of the δ 44/40 Ca excursion can be attributed to acidification. The remaining 80% likely reflects a higher proportion of aragonite in the original sediment, based largely on high concentrations of Sr in the samples. Our study demonstrates that coupled models of the carbon and calcium cycles have the potential to help distinguish contributions of primary seawater isotopic changes from local or diagenetic effects on the δ 44/40 Ca of carbonate sediments. Finally, differentiating between these effects is critical for constraining the impact of ocean acidification during the end-Triassic mass extinction, as well as for interpreting other environmental events in the geologic past.« less

  10. Additive effects of acidification and mineralogy on calcium isotopes in Triassic/Jurassic boundary limestones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost, Adam B.; Bachan, Aviv; van de Schootbrugge, Bas

    The end-Triassic mass extinction coincided with a negative δ 13 C excursion, consistent with release of 13C-depleted CO 2 from the Central Atlantic Magmatic Province. However, the amount of carbon released and its effects on ocean chemistry are poorly constrained. The co upled nature of the carbon and calcium cycles allows calcium isotopes to be used for constraining carbon cycle dynamics and vice versa. We present a high-resolution calcium isotope (δ 44/40 Ca) record from 100 m of marine limestone spanning the Triassic/Jurassic boundary in two stratigraphic sections from northern Italy. Immediately above the extinction horizon and the associated negativemore » excursion in δ 13 C, δ 44/40 Ca decreases by ca. 0.8‰ in 20 m of section and then recovers to preexcursion values. Coupled numerical models of the geological carbon and calcium cycles demonstrate that this δ 44/40 Ca excursion is too large to be explained by changes to seawater δ 44/40 Ca alone, regardless of CO 2 injection volume and duration. Less than 20% of the δ 44/40 Ca excursion can be attributed to acidification. The remaining 80% likely reflects a higher proportion of aragonite in the original sediment, based largely on high concentrations of Sr in the samples. Our study demonstrates that coupled models of the carbon and calcium cycles have the potential to help distinguish contributions of primary seawater isotopic changes from local or diagenetic effects on the δ 44/40 Ca of carbonate sediments. Finally, differentiating between these effects is critical for constraining the impact of ocean acidification during the end-Triassic mass extinction, as well as for interpreting other environmental events in the geologic past.« less

  11. Examining early-diagenetic processes as a chief sink for carbonate in the aftermath of the Triassic-Jurassic crisis: Hettangian concretions of Muller Canyon, NV, USA

    NASA Astrophysics Data System (ADS)

    Ritterbush, K. A.; Loyd, S. J.; Corsetti, F. A.; Bottjer, D. J.; Berelson, W.

    2015-12-01

    Tectonic, climate, and biotic changes across the Triassic-Jurassic transition appear to have resulted in a "carbonate gap" in the rock record of many shallow marine environments. Ecological state changes documented in near-shore settings in both Tethys and Panthassa show an earliest Jurassic switch to sponge-dominated biosiliceous sedimentation regimes. The Sunrise Formation exposed in the Gabbs Valley Range of Nevada (USA) records a peculiar juxtaposition of Hettangian carbonate-rich strata that contain demosponge spicules as the primary bioclast. It is unclear 1) why biocalcifiers were not recorded in higher abundance in this near-shore back-arc basin setting; 2) why carbonates formed following a biosiliceous regime; and 3) what the lithology indicates about post-extinction marine geochemical dynamics. Detailed sedimentological, paleontological, and geochemical analyses were applied to a 20-m thick sequence of limestone and chert in the Muller Canyon area, which is the Auxiliary Stratotype for the Triassic/Jurassic boundary. Concretion anatomy, bioclast microfacies, and oxygen and carbon isotopic signatures all indicate the Hettangian limestones are chiefly diagenetic concretions that all formed very shallowly, some essentially at the sediment-water interface. We infer that local bottom waters and/or pore waters were supersaturated with respect to calcium carbonate and that this contributed to widespread concretion sedimentation independent of biomineralization. Ecological incumbency of the demosponge meadows may have been supported by concurrent augmentation of marine silica concentration and this apparently proved inhospitable to re-colonization of benthic biocalcifying macrofauna. Together the biotic and lithologic consequences of the extinction represent million-year scale ecological restructuring and highlight early diagenetic precipitation as a major sink in long-term regional carbonate cycling. Perhaps the widespread 'carbonate gap' is actually a gap in

  12. Pre-existing normal faults have limited control on the rift geometry of the northern North Sea

    NASA Astrophysics Data System (ADS)

    Claringbould, Johan S.; Bell, Rebecca E.; Jackson, Christopher A.-L.; Gawthorpe, Robert L.; Odinsen, Tore

    2017-10-01

    Many rifts develop in response to multiphase extension with numerical and physical models suggesting that reactivation of first-phase normal faults and rift-related variations in bulk crustal rheology control the evolution and final geometry of subsequent rifts. However, many natural multiphase rifts are deeply buried and thus poorly exposed in the field and poorly imaged in seismic reflection data, making it difficult to test these models. Here we integrate recent 3D seismic reflection and borehole data across the entire East Shetland Basin, northern North Sea, to constrain the long-term, regional development of this multiphase rift. We document the following key stages of basin development: (i) pre-Triassic to earliest Triassic development of multiple sub-basins controlled by widely distributed, NNW- to NE-trending, east- and west-dipping faults; (ii) Triassic activity on a single major, NE-trending, west-dipping fault located near the basins western margin, and formation of a large half-graben; and (iii) Jurassic development of a large, E-dipping, N- to NE-trending half-graben near the eastern margin of the basin, which was associated with rift narrowing and strain focusing in the Viking Graben. In contrast to previous studies, which argue for two discrete periods of rifting during the Permian-Triassic and Late Jurassic-Early Cretaceous, we find that rifting in the East Shetland Basin was protracted from pre-Triassic to Cretaceous. We find that, during the Jurassic, most pre-Jurassic normal faults were buried and in some cases cross-cut by newly formed faults, with only a few being reactivated. Previously developed faults thus had only a limited control on the evolution and geometry of the later rift. We instead argue that strain migration and rift narrowing was linked to the evolving thermal state of the lithosphere, an interpretation supporting the predictions of lithosphere-scale numerical models. Our study indicates that additional regional studies of

  13. Stratigraphic and structural relationships between Meso-Cenozoic Lagonegro basin and coeval carbonate platforms in southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Pescatore, Tullio; Renda, Pietro; Schiattarella, Marcello; Tramutoli, Mariano

    1999-12-01

    Stratigraphic studies and facies analysis integrated with a new geological and structural survey of the Meso-Cenozoic units outcropping in the Campania-Lucania Apennines, southern Italy, allowed us to restore the palaeogeographic pattern and the tectonic evolution of the chain during Oligo-Miocene times. The southern Apennines are a N150°-striking and NE-verging fold-and-thrust belt mainly derived from the deformation of the African-Apulian passive margin. Four wide belts with different features have been recognized in the chain area. From east to west the following units outcrop: (a) successions characterized by basinal to marginal facies, ranging in age from Cretaceous to Miocene, tectonically lying on Plio-Pleistocene foredeep deposits; (b) successions characterized by shallow-water, basinal and shelf-margin facies, ranging in age from middle Triassic to Miocene ('Lagonegro units'), overthrust on the previous ones; (c) Triassic to Miocene carbonate platform successions ('Apenninic platform units'), overthrust on the Lagonegro units; (d) Jurassic-Cretaceous to Miocene deep-water successions (ophiolite-bearing or 'internal' units and associated siliciclastic wedges), outcropping along the Tyrrhenian belt and the Calabria-Lucania boundary, overthrust on the Apenninic platform units. All these units tectonically lie on the buried Apulian platform which is covered, at least in the eastern sector of the chain, by Pliocene to Pleistocene foredeep deposits. Stratigraphic patterns of the Cretaceous to lower Miocene Lagonegro successions are coherent with the platform margin ones. Calcareous clastics of the Lagonegro basin are in fact supplied by an adjacent western platform, as inferred by several sedimentological evidences (slump and palaeocurrent directions and decreasing grain size towards the depocentre of the basin). Tectonic relationships among the different units of the chain — with particular emphasis on the Lagonegro and Apenninic platform units of the

  14. The new Permian-Triassic paleomagnetic pole for the East European Platform corrected for inclination shallowing

    NASA Astrophysics Data System (ADS)

    Fetisova, A. M.; Veselovskiy, R. V.; Scholze, F.; Balabanov, Yu. P.

    2018-01-01

    The results of detailed paleomagnetic studies in seven Upper Permian and Lower Triassic reference sections of East Europe (Middle Volga and Orenburg region) and Central Germany are presented. For each section, the coefficient of inclination shallowing f (King, 1955) is estimated by the Elongation-Inclination (E-I) method (Tauxe and Kent, 2004) and is found to vary from 0.4 to 0.9. The paleomagnetic directions, corrected for the inclination shallowing, are used to calculate the new Late Permian-Early Triassic paleomagnetic pole for the East European Platform (N = 7, PLat = 52.1°, PLong = 155.8°, A95 = 6.6°). Based on this pole, the geocentric axial dipole hypothesis close to the Paleozoic/Mesozoic boundary is tested by the single plate method. The absence of the statistically significant distinction between the obtained pole and the average Permian-Triassic (P-Tr) paleomagnetic pole of the Siberian Platform and the coeval pole of the North American Platform corrected for the opening of the Atlantic (Shatsillo et al., 2006) is interpreted by us as evidence that 250 Ma the configuration of the magnetic field of the Earth was predominantly dipolar; i.e., the contribution of nondipole components was at most 10% of the main magnetic field. In our opinion, the hypothesis of the nondipolity of the geomagnetic field at the P-Tr boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), resulted from disregarding the effect of inclination shallowing in the paleomagnetic determinations from sedimentary rocks of "stable" Europe (the East European platform and West European plate).

  15. Prolonged Permian Triassic ecological crisis recorded by molluscan dominance in Late Permian offshore assemblages.

    PubMed

    Clapham, Matthew E; Bottjer, David J

    2007-08-07

    The end-Permian mass extinction was the largest biotic crisis in the history of animal life, eliminating as many as 95% of all species and dramatically altering the ecological structure of marine communities. Although the causes of this pronounced ecosystem shift have been widely debated, the broad consensus based on inferences from global taxonomic diversity patterns suggests that the shift from abundant brachiopods to dominant molluscs was abrupt and largely driven by the catastrophic effects of the end-Permian mass extinction. Here we analyze relative abundance counts of >33,000 fossil individuals from 24 silicified Middle and Late Permian paleocommunities, documenting a substantial ecological shift to numerical dominance by molluscs in the Late Permian, before the major taxonomic shift at the end-Permian mass extinction. This ecological change was coincident with the development of fluctuating anoxic conditions in deep marine basins, suggesting that numerical dominance by more tolerant molluscs may have been driven by variably stressful environmental conditions. Recognition of substantial ecological deterioration in the Late Permian also implies that the end-Permian extinction was the climax of a protracted environmental crisis. Although the Late Permian shift to molluscan dominance was a pronounced ecological change, quantitative counts of 847 Carboniferous-Cretaceous collections from the Paleobiology Database indicate that it was only the first stage in a stepwise transition that culminated with the final shift to molluscan dominance in the Late Jurassic. Therefore, the ecological transition from brachiopods to bivalves was more protracted and complex than their simple Permian-Triassic switch in diversity.

  16. Prolonged Permian–Triassic ecological crisis recorded by molluscan dominance in Late Permian offshore assemblages

    PubMed Central

    Clapham, Matthew E.; Bottjer, David J.

    2007-01-01

    The end-Permian mass extinction was the largest biotic crisis in the history of animal life, eliminating as many as 95% of all species and dramatically altering the ecological structure of marine communities. Although the causes of this pronounced ecosystem shift have been widely debated, the broad consensus based on inferences from global taxonomic diversity patterns suggests that the shift from abundant brachiopods to dominant molluscs was abrupt and largely driven by the catastrophic effects of the end-Permian mass extinction. Here we analyze relative abundance counts of >33,000 fossil individuals from 24 silicified Middle and Late Permian paleocommunities, documenting a substantial ecological shift to numerical dominance by molluscs in the Late Permian, before the major taxonomic shift at the end-Permian mass extinction. This ecological change was coincident with the development of fluctuating anoxic conditions in deep marine basins, suggesting that numerical dominance by more tolerant molluscs may have been driven by variably stressful environmental conditions. Recognition of substantial ecological deterioration in the Late Permian also implies that the end-Permian extinction was the climax of a protracted environmental crisis. Although the Late Permian shift to molluscan dominance was a pronounced ecological change, quantitative counts of 847 Carboniferous–Cretaceous collections from the Paleobiology Database indicate that it was only the first stage in a stepwise transition that culminated with the final shift to molluscan dominance in the Late Jurassic. Therefore, the ecological transition from brachiopods to bivalves was more protracted and complex than their simple Permian–Triassic switch in diversity. PMID:17664426

  17. Tectonic evolution and hydrocarbon accumulation in the Yabulai Basin, western China

    NASA Astrophysics Data System (ADS)

    Zheng, Min; Wu, Xiaozhi

    2014-05-01

    The Yabulai petroliferous basin is located at the north of Hexi Corridor, western China, striking NEE and covering an area of 1.5×104 km2. It is bounded on the south by Beidashan Mountain to the Chaoshui Basin, on the east by Bayanwulashan Mountain to the Bayanhaote Basin, and on the northwest by Yabulai Mountain to the Yingen-Ejinaqi Basin. It is a Meso-cenozoic compressive depression residual basin. In view of regional geotectonics, the Yabulai basin sits in the middle-southern transition belt of Arershan massif in North China Craton. Driven by Indosinian movement at the late Triassic, two near EW normal faults were developed under the regional extensional stress along the northern fringe of Beidashan Mountain and the southern fringe of Yabulai Mountain front in the Arershan massif, forming the embryonic form of the Yabulai rift lake basin. Since Yanshan period, the Yabulai basin evolved in two major stages: Jurassic rift lake basin and Cretaceous rift lake basin. During early Yanshan period, EW striking Yabulai tensional rift was formed. Its major controlling fault was Beidashan normal fault, and the depocenter was at the south of this basin. During middle Yanshan period, collision orogenesis led to sharp uplift at the north of this basin where the middle-lower Jurassic formations were intensely eroded. During late Yanshan period, the Alashan massif and its northern area covered in an extensional tectonic environment, and EW striking normal faults were generated at the Yabulai Mountain front. Such faults moved violently and subsided quickly to form a new EW striking extensional rift basin with the depocenter at the south of Yabulai Mountain. During Himalayan period, the Alashan massif remained at a SN horizontal compressional tectonic environment; under the compressional and strike slip actions, a NW striking and south dipping thrusting nappe structure was formed in the south of the Yabulai basin, which broke the Beidashan normal fault to provide the echelon

  18. The restricted gemuk group: A triassic to lower cretaceous succession in southwestern alaska

    USGS Publications Warehouse

    Miller, M.L.; Bradley, D.C.; Bundtzen, T.K.; Blodgett, R.B.; Pessagno, E.A.; Tucker, R.D.; Harris, A.G.

    2007-01-01

    oldest grain is 292 Ma. The youngest zircons are probably not much older than the sandstone itself. Point counts of restricted Gemuk Group sandstones yield average ratios of 24/29/47 for Q/F/L, 15/83/2 for Ls/Lv/Lm, and 41/48/11 for Qm/P/K. In the field, sandstones of the restricted Gemuk Group are not easily distinguished from sandstones of the overlying Upper Cretaceous turbidite-dominated Kuskokwim Group. Petrographically, however, the restricted Gemuk Group has modal K-feldspar, whereas the Kuskokwim Group generally does not (average Qm/P/K of 64/36/0). Some K-feldspar-bearing graywacke that was previously mapped as Kuskokwim Group (Cady et al., 1955) is here reassigned to the restricted Gemuk Group. Major- and trace element geochemistry of shales from the restricted Gemuk Group and the Kuskokwim Group show distinct differences. The chemical index of alteration (CIA) is distinctly higher forshales of the Kuskokwim Group than for those of the restricted Gemuk Group, suggesting more intense weathering during deposition of the Kuskokwim Group. The restricted Gemuk Group represents an estimated 90-100 m.y. of deep-water sedimentation, first accompanied by submarine volcanism and later by nearby explosive arc activity. Two hypotheses are presented for the tectonic setting. One model that needs additional testing is that the restricted Gemuk Group consists of imbricated oceanic plate stratigraphy. Based on available information, our preferred model is that it was deposited in a back-arc, intra-arc, or forearc basin that was subsequently deformed. The terrane affinity of the restricted Gemuk Group is uncertain. The rocks of this area were formerly assigned to the Hagemeister subterrane of the Togiak terrane-a Late Triassic to Early Cretaceous arc-but our data show this to be a poor match. None of the other possibilities (e.g., Nukluk and Tikchik subterranes of the Goodnews terrane) is viable; hence, the terrane subdivision and distribution in southwestern Alaska may need

  19. Heterogeneities of mechanical properties in potential geothermal reservoir rocks of the North German Basin

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2012-04-01

    Heterogeneous rock properties in terms of layering and complex infrastructure of fault zones are typical phenomena in sedimentary basins such as the North German Basin. To be able to model reservoir stimulation in layered stratifications and to better adapt the drilling strategy to the rock mechanical conditions it is important to have knowledge about the effects of heterogeneous rock properties on fracture propagation and fault zone infrastructure for typical sedimentary reservoir rocks in the North German Basin. Therefore we aim at quantifying these properties by performing structural geological field studies in outcrop analogues combined with laboratory analyses. The field studies in Rotliegend sandstones (Lower Permian), the sandstones of the Middle Bunter (Lower Triassic) and the sandstones of the Upper Keuper (Upper Triassic) focus on 1) host rock fracture systems and 2) fault zone infrastructure. We analyse quantitatively the dimension, geometry, persistence and connectivity of fracture systems separately for host rocks and fault damage zones. The results show that in rocks with distinctive layering (sandstones and shales) natural fractures are often restricted to individual layers, that is, they are stratabound. The probability of fracture arrest seems to depend on the stiffness contrast between the two layers and on the thickness of the softer layer. The field studies are complemented by systematic sampling to obtain mechanical property variations caused by the layering. For the samples we measure the parameters Young's modulus, compressive and tensile strengths, elastic strain energy, density and porosity. The results show that the mechanical properties vary considerably and many samples are clearly anisotropic. That is, samples taken perpendicular to layering commonly have higher strengths but lower stiffnesses than those taken parallel to layering. We combine the results of laboratory analyses and field measurements to specify the mechanical

  20. Tectonic Evolution of the Central Andes during Mesozoic-Cenozoic times: Insights from the Salar de Atacama Basin

    NASA Astrophysics Data System (ADS)

    Peña Gomez, M. A.; Bascunan, S. A.; Becerra, J.; Rubilar, J. F.; Gómez, I.; Narea, K.; Martínez, F.; Arriagada, C.; Le Roux, J.; Deckart, K.

    2015-12-01

    The classic Salar de Atacama Basin, located in the Central Andes of northern Chile, holds a remarkable yet not fully understood record of tectonic events since mid-Cretaceous times. Based on the growing amount of data collected over the last years, such as high-detail maps and U-Pb geochronology, we present an updated model for the development of this area after the Triassic. A major compressional event is recorded around the mid-Late Cretaceous (ca. 107 Ma) with the deposition of synorogenic continental successions reflecting the uplift of the Coastal Cordillera area farther to the west, and effectively initiating the foreland basin. The deformation front migrated eastwards during the Late Campanian (ca. 79 Ma), where it exhumed and deformed the Late Cretaceous magmatic arc and the crystalline basement of Cordillera de Domeyko. The K-T Event (ca. 65 Ma), recently identified in the basin, involved the same source areas, though the facies indicate a closer proximity to the source. The compressional record of the basin is continued by the Eocene Incaic Event (ca. 45 Ma), with deep exhumation of the Cordillera de Domeyko and the cannibalization of previous deposits. A change to an extensional regime during the Oligocene (ca. 28 Ma) is shown by the deposition of more than 4 km of evaporitic and clastic successions. A partial inversion of the basin occurred during the Miocene (ca.10 Ma-present), as shown by the deformation seen in the Cordillera de la Sal. As such, the basin shows that the uplift of the Cordillera de Domeyko was not one isolated episode, but a prolonged and complex event, punctuated by episodes of major deformation. It also highlights the need to take into account the Mesozoic-Cenozoic deformation events for any model trying to explain the building of the modern-day Andes.

  1. Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic.

    PubMed

    Gueidan, Cécile; Ruibal, Constantino; de Hoog, G S; Schneider, Harald

    2011-10-01

    Non-lichenized rock-inhabiting fungi (RIF) are slow-growing melanized ascomycetes colonizing rock surfaces in arid environments. They possess adaptations, which allow them to tolerate extreme abiotic conditions, such as high UV radiations and extreme temperatures. They belong to two separate lineages, one consisting in the sister classes Dothideomycetes and Arthoniomycetes (Dothideomyceta), and the other consisting in the order Chaetothyriales (Eurotiomycetes). Because RIF often form early diverging groups in Chaetothyriales and Dothideomyceta, the ancestors of these two lineages were suggested to most likely be rock-inhabitants. The lineage of RIF related to the Chaetothyriales shows a much narrower phylogenetic spectrum than the lineage of RIF related to Dothideomyceta, suggesting a much more ancient origin for the latter. Our study aims at investigating the times of origin of RIF using a relaxed clock model and several fossil and secondary calibrations. Our results show that the RIF in Dothideomyceta evolved in the late Devonian, much earlier than the RIF in Chaetothyriales, which originated in the middle Triassic. The origin of the chaetothyrialean RIF correlates well with a period of recovery after the Permian-Triassic mass extinction and an expansion of arid landmasses. The period preceding the diversification of the RIF related to Dothideomyceta (Silurian--Devonian) is also characterized by large arid landmasses, but temperatures were much cooler than during the Triassic. The paleoclimate record provides a good explanation for the diversification of fungi subjected to abiotic stresses and adapted to life on rock surfaces in nutrient-poor habitats. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Palynofloral associations before and after the Permian-Triassic mass extinction, Kap Stosch, East Greenland

    NASA Astrophysics Data System (ADS)

    Schneebeli-Hermann, Elke; Hochuli, Peter A.; Bucher, Hugo

    2017-08-01

    The Permian-Triassic boundary (PTB) interval is known to document a major biodiversity crisis in the history of life. It is generally accepted that this crisis had a significant impact on marine invertebrates. The consequences for terrestrial ecosystems are still controversially discussed. Based on palynological analysis we present a high time resolution microfloral succession of the expanded Late Permian (Wuchiapingian)-Early Triassic (Dienerian) section from Kap Stosch, East Greenland. The quantitative distribution of palynomorphs (range charts and relative abundance data) allows for the differentiation of six distinct palynofloral associations. Ammonoids and conodonts provide independent age control for these assemblages. The Wuchiapingian association I, documented from the Ravnefjeld Formation, shows a typical Late Permian assemblage dominated by bisaccate and monosaccate pollen grains and Vittatina spp. It is separated from association II, present in the basal part of the Wordie Creek Formation, by an important hiatus. This association of Changhsingian or earliest Griesbachian age is characterised by the common occurrence of Ephedripites spp. and reduced abundance and diversity of Vittatina spp. Association III, dated as Griesbachian by the presence of ammonoids, is marked by high relative abundances of taeniate bisaccate pollen grains and high spore diversity. A distinct floral break occurs between the gymnosperm dominated Permian and Griesbachian floras and the lycopsid spore dominated Dienerian associations IV-VI. Ammonoid occurrences verify a Dienerian age for the latter associations. Association V is marked by the absence of non-taeniate bisaccate, striate monosaccate pollen grains, and Vittatina spp. Aratrisporites spp. a typical Triassic lycopsid spore occur consistently from this level onwards. Association VI is characterised by highest lycopsid spore abundances. Cluster analysis demonstrates that Griesbachian assemblages (associations II?-III) are

  3. Documenting mudstone heterogeneity by use of principal component analysis of X-ray diffraction and portable X-ray fluorescence data: A case study in the Triassic Shublik Formation, Alaska North Slope

    USGS Publications Warehouse

    Boehlke, Adam; Whidden, Katherine J.; Benzel, William M.

    2017-01-01

    Determining the chemical and mineralogical variability within fine-grained mudrocks poses analytical challenges but is potentially useful for documenting subtle stratigraphic differences in physicochemical environments that may influence petroleum reservoir properties and behavior. In this study, we investigate the utility of combining principal component analysis (PCA) of X-ray diffraction (XRD) data and portable X-ray fluorescence (pXRF) data to identify simplifying relationships within a large number of samples and subsequently evaluate a subset that encompasses the full spectrum or range of mineral and chemical variability within a vertical section. Samples were collected and analyzed from a vertical core of the Shublik Formation, a heterogeneous, phosphate-rich, calcareous mudstone-to-marl unit deposited in the Arctic Alaska Basin (AAB) during the Middle and Late Triassic. The Shublik is a major petroleum source rock in the Alaskan North Slope, and is considered a prime target for continuous self-sourced resource plays.

  4. Extreme Modification of the Tetrapod Forelimb in a Triassic Diapsid Reptile.

    PubMed

    Pritchard, Adam C; Turner, Alan H; Irmis, Randall B; Nesbitt, Sterling J; Smith, Nathan D

    2016-10-24

    The tetrapod forelimb is one of the most versatile structures in vertebrate evolution, having been co-opted for an enormous array of functions. However, the structural relationships between the bones of the forelimb have remained largely unchanged throughout the 375 million year history of Tetrapoda, with a radius and ulna made up of elongate, paralleling shafts contacting a series of shorter carpal bones. These features are consistent across nearly all known tetrapods, suggesting that the morphospace encompassed by these taxa is limited by some sort of constraint(s). Here, we report on a series of three-dimensionally preserved fossils of the small-bodied (<1 m) Late Triassic diapsid reptile Drepanosaurus, from the Chinle Formation of New Mexico, USA, which dramatically diverge from this pattern. Along with the crushed type specimen from Italy, these specimens have a flattened, crescent-shaped ulna with a long axis perpendicular to that of the radius and hyperelongate, shaft-like carpal bones contacting the ulna that are proximodistally longer than the radius. The second digit supports a massive, hooked claw. This condition has similarities to living "hook-and-pull" digging mammals and demonstrates that specialized, modern ecological roles had developed during the Triassic Period, over 200 million years ago. The forelimb bones in Drepanosaurus represent previously unknown morphologies for a tetrapod and, thus, a dramatic expansion of known tetrapod forelimb morphospace. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Mesozoic lacustrine system in the Parnaíba Basin, northeastern Brazil: Paleogeographic implications for west Gondwana

    NASA Astrophysics Data System (ADS)

    Cardoso, Alexandre Ribeiro; Nogueira, Afonso César Rodrigues; Abrantes, Francisco Romério; Rabelo, Cleber Eduardo Neri

    2017-03-01

    The fragmentation of the West Gondwana during Early Triassic to Cretaceous was marked by intense climatic changes, concomitant with the establishment of extensive desertic/lacustrine systems. These deposits succeeded the emplacement and extrusion of lava flows, related to the pre-rift phase and initial opening of the Equatorial Atlantic Ocean. The thermal phase is recorded in the Upper Jurassic-Lower Cretaceous Pastos Bons Formation, exposed mainly in southeast parts of the Parnaíba Basin, Northeastern Brazil. The sedimentary facies of this unit were grouped in two facies associations (FA), representative of a shallow lacustrine system, influenced by episodic hyperpycnal and oscillatory flows. Central lake facies association (FA1) is composed by laminated mudstone (Ml), sandstone/mudstone rhythmite (S/Mr) and sandstone with even-parallel lamination (Sel). Flysch-like delta front (FA2) consists in sandstones with wave structures (Sw), sandstones with even-parallel stratification (Ses), massive sandstones (Sm), sandstones with soft-sediment deformation structures (Sd) and laminated mudstones (Ml). FA1 was deposited in the deepest portions of the lake, characterized by low energy, episodically disturbed by siliciclastic influx. FA2 presents sandy deposits generated by unconfined flow, probably fed by ephemeral stream flows that generated thickening upward of tabular sandstone beds. The progressive filling of the lake resulted in recurrent shoaling up of the water level and reworking by wave action. The installation of Pastos Bons lakes was controlled by thermal subsidence, mainly in restricted depocenters. The siliciclastic fluvial inflow can be related to the adjacent humid desertic facies, formed under climatic attenuation, typical of post-Triassic period, with reduced biological activity. Smectite and abundant feldspars, in lacustrine facies, corroborate an arid climate, with incipient chemical weathering. The new facies and stratigraphic data present in this

  6. Delayed recovery from the end-Triassic extinction due to an increase in the extent of ocean anoxia

    NASA Astrophysics Data System (ADS)

    Jost, A. B.; Bachan, A.; van de Schootbrugge, B.; Lau, K. V.; Weaver, K. L.; Maher, K.; Payne, J.

    2015-12-01

    The end-Triassic mass extinction was likely triggered by a rapid rise in pCO2 associated with the emplacement of the Central Atlantic Magmatic Province (CAMP) ca. 201 Ma. Shallow-marine anoxia has long been hypothesized to have caused the extinction and/or delayed the recovery of marine life. However, due to a lack of proxy data, the effects of CAMP emplacement on seawater chemistry remain poorly constrained. Local proxies for anoxia may not reflect widespread ocean redox conditions. However, coupled records of U concentration and isotopic composition (δ238U) in CaCO3 sediments precipitated beneath well-oxygenated bottom waters can potentially serve as a proxy for the global extent of anoxia due to fractionation of U during reduction and associated imbalances in the marine U cycle due to redox changes. We measured δ238U and Th/U values in shallow marine limestones from two stratigraphic sections in the Lombardy Basin, northern Italy, spanning over 400 m, to quantify the change in the extent of ocean anoxia during the end-Triassic extinction. We observe a ca. 0.6‰ negative excursion in δ238U beginning in the lowermost Jurassic, coeval with the onset of the negative δ13C excursion and persisting for the duration of subsequent high δ13C values in the lower-middle Hettangian (earliest Jurassic). Th/U values are generally low at the T/J boundary, peak near the nadir of the δ238U excursion, and steadily return to pre-event values by the end of the measured section. Using a numerical model of the U cycle, we demonstrate that this excursion corresponds to a thirty-fold increase in the extent of anoxia worldwide and a simultaneous increase in the riverine U flux, consistent with increased weathering and eutrophication following massive CO2 injection from CAMP volcanism. Scenarios involving an increase in marine anoxia would also predict higher rates of organic C burial, explaining the large protracted positive δ13C excursion in the lower-mid Hettangian. Recovery of

  7. Community stability and selective extinction during the Permian-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2015-10-01

    The fossil record contains exemplars of extreme biodiversity crises. Here, we examined the stability of terrestrial paleocommunities from South Africa during Earth's most severe mass extinction, the Permian-Triassic. We show that stability depended critically on functional diversity and patterns of guild interaction, regardless of species richness. Paleocommunities exhibited less transient instability—relative to model communities with alternative community organization—and significantly greater probabilities of being locally stable during the mass extinction. Functional patterns that have evolved during an ecosystem's history support significantly more stable communities than hypothetical alternatives.

  8. Late Mesozoic tectonics of the Southern-Thai Peninsula: from transpression to basins opening

    NASA Astrophysics Data System (ADS)

    Sautter, Benjamin; Pubellier, Manuel; Menier, David

    2015-04-01

    The petroleum basins of the Southern Thailand Peninsula are poorly known and their final geometry is controlled by the Tertiary stress variations applied on pre-existing Paleozoic and Mesozoic basement structures. From the end of Mesozoic times, the arrival of Indian plate was accomodated by transpressionnal deformation along the Western Margin of Sunda Plate. Evidences of this strain are the motions along several regional strike Slip Faults (Sagaing, Three Pagodas, Mae Ping, Red River, Ranong and Klong Marui Faults) as well as compressional features (folds and thrusts) evidenced onshore. Due to changes in the boundary forces, these structures were reactivated during the Tertiary, leading to the opening of basins in this part of Sundaland. We present a structural analysis based on geomorphology, fieldwork and seismic interpretation of the Southern Thai Peninsula with emphasis on the deformation's style onshore from Ranong to Satun and offshore from Eastern Mergui to Songhkla. By analyzing morphostructures and drainage anomalies from Digital Elevation Model (SRTM and ASTER), we highlight a predominance of N-S structures in the Southern Thai Peninsula: both in the granitic belt and in the sedimentary cover. The Triassic-Jurassic (Indosinian) post-collision granitic belt is intensely fractured, with 2 penetrative directions: N140 and N50. On both sides, the sedimentary units appear folded at a large wavelength (~20km). On most of the studied outcrops, Triassic to Early Cretaceous series are gently tilted and weakly fractured whereas the Paleozoic ones shows intense fracturation and steep dipping beds. Moreover, all the Paleozoic stratas display a constant N-S S1 which does not appear in the Mezosoic sediments. Althought most of the post-Mesozoic sediments do not crop out due to thick vegetal cover, several Tertiary basins can be easily seen from seismic data both onshore and offshore. These data suggest that rifting started in the Eocene and was accommodated by large

  9. Stratigraphy and structure along the Pensacola Arch/Conecuh Embayment margin in northwest Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, J.G.

    1993-03-01

    Stratigraphic and structural analysis of deep borehole data along the Pensacola Arch/Conecuh Embayment margin in eastern Santa Rosa County, Florida reveals a northeast-trending basement normal fault that is downthrown to the northwest. The fault functioned as a border fault of a half-graben (or graben ) that developed during continental rifting of Pangea in the Late Triassic and Early Jurassic. The upthrown or horst block was a paleotopographic high that formed the southeastern boundary of the Middle to Late Jurassic Conecuh Embayment. A second, younger basement fault trends approximately perpendicular to the half-graben border fault. Late Triassic synrift continental sediments, depositedmore » on the downthrown block of the half-graben, pinch-out abruptly to the southeast pre-Mesozoic Suwannee Basin basement. The border fault is located approximately where the Triassic sedimentary wedge pinches out. Middle to Upper Jurassic drift-stage strata of the Conecuh embayment progressively onlap the post-rift unconformity toward the southeast. Upper Jurassic Smackover Formation carbonates and evaporites apparently overstep Triassic deposits and rest directly on Suwannee Basin quartzitic sandstone near their depositional limit at the Pensacola Arch. The Smackover Formation thins significantly toward the southeast in association with the Triassic pinch-out and half-graben border fault. The pinch-out trend of the Smackover Formation suggests a northeast-southwest orientation for the Triassic border fault and supports a horst-block origin for the Pensacola Arch.« less

  10. Detrital Zircon Provenance response to slip transfer from the San Gabriel Fault to the San Andreas Fault in Late Miocene-Early Pliocene Ridge Basin, southern California

    NASA Astrophysics Data System (ADS)

    Zhao, V.; Cohen, H.; Cecil, R.; Heermance, R. V., III

    2016-12-01

    The San Andreas Fault (SAF) in southern California has created a dynamic plate-boundary that has controlled basin depocenters, fluvial systems, and range uplift since the early Miocene. From 11-5 Ma, dextral slip was localized along the San Gabriel Fault (SGF) north of Los Angeles. Slip was transferred onto the SAF in the Late Miocene or Early Pliocene, but the timing and landscape implications of this tectonic reorganization are not well constrained. We use detrital zircon (DZ) geochronology from the Ridge Basin, located at the nexus of the SGF and SAF, to determine the provenance of stratigraphy during this fault reorganization. We present data from two samples (n=187) from Middle to Upper Miocene Ridge Route Formation (RRF) and four samples (n=483) from Pliocene Hungry Valley Formation (HVF) of Ridge Basin Group. All Ridge Basin samples have peaks at ca. 1.7 Ga, though the relative proportion of Precambrian grains decreases upsection. RRF samples have two dominant Mesozoic peaks at ca. 150 Ma and at ca. 80 Ma. HVF has peak ages of 145-135 Ma and ca. 77 Ma. HVF samples also have Triassic peaks at 235-220 Ma, which is absent in the RRF. To evaluate the provenance of these samples, modern sands were collected from five major drainages in the San Gabriel (SGM, n=181), the San Bernardino Mountains (SBM, n=258) and a rock sample from the Middle Miocene Crowder Formation (n=99) between the ranges. DZ spectra of the RRF is dissimilar to that of modern rivers draining the SGM, although we acknowledge that a more proximal source from the western Transverse Ranges or Sierra Pelona is possible. The source for HVF is more problematic, in that the DZ spectra of the HVF is unlike that of all modern rivers and Crowder Formation. Triassic zircons combined with the presence of unique volcanic clasts suggest a source from the Granite Mountain area in the Mojave Desert. The differences in DZ spectra between RRF and HVF suggests that the transfer of slip from the SGF to the SAF in

  11. Testing the limits in a greenhouse ocean: Did low nitrogen availability limit marine productivity during the end-Triassic mass extinction?

    NASA Astrophysics Data System (ADS)

    Schoepfer, Shane D.; Algeo, Thomas J.; Ward, Peter D.; Williford, Kenneth H.; Haggart, James W.

    2016-10-01

    The end-Triassic mass extinction has been characterized as a 'greenhouse extinction', related to rapid atmospheric warming and associated changes in ocean circulation and oxygenation. The response of the marine nitrogen cycle to these oceanographic changes, and the extent to which mass extinction intervals represent a deviation in nitrogen cycling from other ice-free 'greenhouse' periods of Earth history, remain poorly understood. The well-studied Kennecott Point section in Haida Gwaii, British Columbia, Canada, was deposited in the open Panthalassic Ocean, and is used here as a test case to better understand changes in the nitrogen cycle and marine productivity from the pre-crisis greenhouse of the Rhaetian to the latest-Rhaetian crisis interval. We estimated marine productivity from the late Norian to the early Hettangian using TOC- and P-based paleoproductivity transform equations, and then compared these estimates to records of sedimentary nitrogen isotopes, redox-sensitive trace elements, and biomarker data. Major negative excursions in δ15N (to ≤ 0 ‰) correspond to periods of depressed marine productivity. During these episodes, the development of a stable pycnocline below the base of the photic zone suppressed vertical mixing and limited N availability in surface waters, leading to low productivity and increased nitrogen fixation, as well as ecological stresses in the photic zone. The subsequent shoaling of euxinic waters into the ocean surface layer was fatal for most Triassic marine fauna, although the introduction of regenerated NH4+ into the photic zone may have allowed phytoplankton productivity to recover. These results indicate that the open-ocean nitrogen cycle was influenced by climatic changes during the latest Triassic, despite having existed in a greenhouse state for over 50 million years previously, and that low N availability limited marine productivity for hundreds of thousands of years during the end-Triassic crisis.

  12. Detrital and volcanic zircon U-Pb ages from southern Mendoza (Argentina): An insight on the source regions in the northern part of the Neuquén Basin

    NASA Astrophysics Data System (ADS)

    Naipauer, Maximiliano; Tapia, Felipe; Mescua, José; Farías, Marcelo; Pimentel, Marcio M.; Ramos, Victor A.

    2015-12-01

    The infill of the Neuquén Basin recorded the Meso-Cenozoic geological and tectonic evolution of the southern Central Andes being an excellent site to investigate how the pattern of detrital zircon ages varies trough time. In this work we analyze the U-Pb (LA-MC-ICP-MS) zircon ages from sedimentary and volcanic rocks related to synrift and retroarc stages of the northern part of the Neuquén Basin. These data define the crystallization age of the synrift volcanism at 223 ± 2 Ma (Cerro Negro Andesite) and the maximum depositional age of the original synrift sediments at ca. 204 Ma (El Freno Formation). Two different pulses of rifting could be recognized according to the absolute ages, the oldest developed during the Norian and the younger during the Rhaetian-Sinemurian. The source regions of the El Freno Formation show that the Choiyoi magmatic province was the main source rock of sediment supply. An important amount of detrital zircons with Triassic ages was identified and interpreted as a source area related to the synrift magmatism. The maximum depositional age calculated for the Tordillo Formation in the Atuel-La Valenciana depocenter is at ca. 149 Ma; as well as in other places of the Neuquén Basin, the U-Pb ages calculated in the Late Jurassic Tordillo Formation do not agree with the absolute age of the Kimmeridgian-Tithonian boundary (ca. 152 Ma). The main source region of sediment in the Tordillo Formation was the Andean magmatic arc. Basement regions were also present with age peaks at the Carboniferous, Neoproterozoic, and Mesoproterozoic; these regions were probably located to the east in the San Rafael Block. The pattern of zircon ages summarized for the Late Jurassic Tordillo and Lagunillas formations were interpreted as a record of the magmatic activity during the Triassic and Jurassic in the southern Central Andes. A waning of the magmatism is inferred to have happened during the Triassic. The evident lack of ages observed around ca. 200 Ma suggests

  13. The Pangaean megamonsoon - evidence from the Upper Triassic Chinle Formation, Colorado Plateau

    USGS Publications Warehouse

    Dubiel, R.F.; Totman, Parrish J.; Parrish, J.M.; Good, S.C.

    1991-01-01

    The Chinle was deposited between about 5?? to 15??N paleolatitude in the western equatorial region of Pangaea, a key area for documenting the effects of the monsoonal climate. This study summarizes sedimentological and paleontologic data from the Chinle Formation on the Colorado Plateau and integrates that data with paleoclimatic models. The evidence for abundant moisture and seasonality attest to the reversal of equatorial flow and support the hypothesis that the Triassic Pangaean climate was dominated by monsoonal circulation. -from Authors

  14. A new herrerasaurid (Dinosauria, Saurischia) from the Upper Triassic Ischigualasto Formation of northwestern Argentina.

    PubMed

    Alcober, Oscar A; Martinez, Ricardo N

    2010-10-19

    Herrerasauridae comprises a basal clade of dinosaurs best known from the Upper Triassic of Argentina and Brazil, which have yielded remains of Herrerasaurus ischigualastensis and Staurikosaurus pricei, respectively. Systematic opinion regarding the position of Herrerasauridae at the base of Dinosauria has varied. Here we describe a new herrerasaurid, Sanjuansaurus gordilloi gen. n., sp. n., based on a partial skeleton from Carnian-age strata of the the Upper Triassic Ischigualasto Formation of northwestern Argentina. The new taxon is diagnosed by numerous features, including long, band-shaped and posterolaterally oriented transverse process on the posterior cervical vertebrae; neural spines of the sixth to eighth dorsal vertebrae, at least, bearing acute anterior and posterior processes; scapula and coracoid with everted lateral margins of the glenoid; and short pubis (63% of the femoral length). Phylogenetic analysis placed Sanjuansaurus within a monophyletic Herrerasauridae, at the base of Theropoda and including Herrerasaurus and Staurikosaurus. The presence of Sanjuansaurus at the base of the Ischigualasto Formation, along with other dinosaurs such as Herrerasaurus, Eoraptor, Panphagia, and Chromogisaurus suggests that saurischian dinosaurs in southwestern Pangea were already widely diversified by the late Carnian rather than increasing in diversity across the Carnian-Norian boundary.

  15. Early evolution of the southern margin of the Neuquén Basin, Argentina: Tectono-stratigraphic implications for rift evolution and exploration of hydrocarbon plays

    NASA Astrophysics Data System (ADS)

    D'Elia, Leandro; Bilmes, Andrés; Franzese, Juan R.; Veiga, Gonzalo D.; Hernández, Mariano; Muravchik, Martín

    2015-12-01

    Long-lived rift basins are characterized by a complex structural and tectonic evolution. They present significant lateral and vertical stratigraphic variations that determine diverse basin-patterns at different timing, scale and location. These issues cause difficulties to establish facies models, correlations and stratal stacking patterns of the fault-related stratigraphy, specially when exploration of hydrocarbon plays proceeds on the subsurface of a basin. The present case study corresponds to the rift-successions of the Neuquén Basin. This basin formed in response to continental extension that took place at the western margin of Gondwana during the Late Triassic-Early Jurassic. A tectono-stratigraphic analysis of the initial successions of the southern part of the Neuquén Basin was carried out. Three syn-rift sequences were determined. These syn-rift sequences were located in different extensional depocentres during the rifting phases. The specific periods of rifting show distinctly different structural and stratigraphic styles: from non-volcanic to volcanic successions and/or from continental to marine sedimentation. The results were compared with surface and subsurface interpretations performed for other depocentres of the basin, devising an integrated rifting scheme for the whole basin. The more accepted tectono-stratigraphic scheme that assumes the deposits of the first marine transgression (Cuyo Cycle) as indicative of the onset of a post-rift phase is reconsidered. In the southern part of the basin, the marine deposits (lower Cuyo Cycle) were integrated into the syn-rift phase, implying the existence of different tectonic signatures for Cuyo Cycle along the basin. The rift climax becomes younger from north to south along the basin. The post-rift initiation followed the diachronic ending of the main syn-rift phase throughout the Neuquén Basin. Thus, initiation of the post-rift stage started in the north and proceeded towards the south, constituting a

  16. THM large spatial-temporal model to simulate the past 2 Ma hydrogeological evolution of Paris Basin including natural tracer transport as part of site characterization for radwaste repository project Cigéo - France

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, A., Sr.

    2017-12-01

    Hydrogeological site characterization for deep geological high level and intermediate level long lived radioactive waste repository cover a large time scale needed for safety analysis and calculation. Hydrogeological performance of a site relies also on the effects of geodynamic evolution as tectonic uplift, erosion/sedimentation and climate including glaciation on the groundwater flow and solute and heat transfer. Thermo-Hydro-Mechanical model of multilayered aquifer system of Paris Basin is developed to reproduce the present time flow and the natural tracer (Helium) concentration profiles based on the last 2 Ma of geodynamic evolution. Present time geological conceptual model consist of 27 layers at Paris Basin (Triassic-Tertiary) with refinement at project site scale (29 layers from Triassic to Portlandian). Target layers are the clay host formation of Callovo-Oxfrodian age (160 Ma) and the surrounding aquifer layers of Oxfordian and Dogger. Modelled processes are: groundwater flow, heat and solutes (natural tracers) transport, freezing and thawing of groundwater (expansion and retreat of permafrost), deformation of the multilayered aquifer system induced by differential tectonic uplift and the hydro-mechanical stress effect as caused by erosion of the outcropping layers. Numerical simulation considers a period from 2 Ma BP and up to the present. Transient boundary conditions are governed by geodynamic processes: (i) modification of the geometry of the basin and (ii) temperatures along the topography will change according to a series of 15 identical climate cycles with multiple permafrost (glaciation) periods. Numerical model contains 71 layers and 18 million cells. The solution procedure solves three coupled systems of equations, head, temperature and concentrations, by the use of a finite difference method, and by applying extensive parallel processing. The major modelling results related to the processes of importance for site characterization as hydraulic

  17. Carbon isotope evidence for a vigorous biological pump in the wake of end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Yu, M.; Jost, A. B.; Payne, J.

    2009-12-01

    Ocean anoxia and euxinia have long been linked to the end-Permian mass extinction and the subsequent Early Triassic interval of delayed biotic recovery. This anoxic, sulfidic episode has been ascribed to both low- and high-productivity states in the marine water column, leaving the causes of euxinia and the mechanisms underlying delayed recovery poorly understood. To examine the nature of the end-Permian and Early Triassic biological production, we measured the carbon isotopic composition of carbonates from an exceptionally preserved carbonate platform in the Nanpanjiang Basin of south China. 13C of limestones from 5 stratigraphic sections displays a gradient of approximately 4‰ from shallow to deep water within the Lower Triassic. The limestones are systematically enriched in the platform interior relative to coeval slope and basin margin deposits by 2-4‰ at the peaks of correlative positive and negative δ13C excursions. This gradient subsequently collapses to less than 1‰ in the Middle Triassic, coincident with accelerated biotic recovery and cessation of δ13C excursions. Based on the relationship between δ18O and δ13C, trace metal analyses, and lithostratigraphic context, we conclude that the carbon isotope gradient is unlikely to reflect meteoric diagenesis, organic matter remineralization, or changes in the mixing ratio of sediment sources and minerals across the platform. Instead, we interpret the relatively depleted δ13C values toward the basin as reflecting DIC input from 13C-depleted deep waters during early diagenesis in a nutrient-rich, euxinic ocean. These observations suggest that a vigorous prokaryote-driven biological pump sustained Early Triassic ocean anoxia and inhibited recovery of animal ecosystems.

  18. A new Triassic shortening-extrusion tectonic model for Central-Eastern Asia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China)

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Faure, Michel; Chen, Yan; Shi, Guanzhong; Xu, Bei

    2015-09-01

    At the northern margin of the North China Block (NCB), the Xilamulun Fault (XMF) is a key belt to decipher the tectonic evolution of Central-Eastern Asia, as it records the Paleozoic final closure of the Paleo-Asian Ocean, and localizes a Late Triassic intracontinental deformation. In this study, structural analysis, 40Ar-39Ar dating, and paleomagnetic studies were performed to investigate the kinematics of the XMF and to further discuss its Triassic geodynamic significance in the Central-Eastern Asia framework after the Paleozoic Central Asian Orogenic evolution. The structural analyses reveal two phases of ductile deformation. The first one (D1), which displays N-verging and E-W trending folds, is related to the Early Paleozoic collisional event between the NCB and the Songliao-Hunshandake Block (SHB). The second phase (D2) displays a high-angle foliation and a pervasive sub-horizontal E-W stretching lineation with kinematic criteria indicative of dextral strike-slip shearing. The 40Ar-39Ar dating on mylonitic granite places the main shearing event around 227-209 Ma. This D2 shearing is coeval with that of the dextral strike-slip Bayan Obo-Chifeng Fault (BCF) and the Chicheng-Fengning-Longhua Fault to the south, which together constitute a dextral shearing fault system on the northern margin of the NCB during the Late Triassic. The paleomagnetic study performed on the Middle Permian Guangxingyuan pluton, located between the XMF and BCF, documents a local clockwise rotation of this pluton with respect to the NCB and SHB. Our multidisciplinary study suggests an NNW-SSE shortening and strike-slip shearing dominated tectonic setting on the northern margin of the NCB during the Late Triassic. Combining the contemporaneous dextral strike-slip movements of the XMF and BCF in northern China and the sinistral strike-slip movement of East Gobi Fault (EGF) in southeastern Mongolia with the large-scale tectonic framework, a Late Triassic NNW-SSE shortening-eastward extrusion

  19. A new Triassic shortening-extrusion tectonic model for Central-EasternAsia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China)

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Faure, Michel; Chen, Yan; Xu, Bei

    2017-04-01

    At the northern margin of the North China Block (NCB), the Xilamulun Fault (XMF) is a key belt to decipher the tectonic evolution of Central-Eastern Asia, as it records the Paleozoic final closure of the Paleo-Asian Ocean, and localizes a Late Triassic intracontinental deformation. In this study, structural analysis, 40Ar-39Ar dating, and paleomagnetic studies were performed to investigate the kinematics of the XMF and to further discuss its Triassic geodynamic significance in the Central-Eastern Asia framework after the Paleozoic Central Asian Orogenic evolution. The structural analyses reveal two phases of ductile deformation. The first one (D1), which displays N-verging and E-W trending folds, is related to the Early Paleozoic collisional event between the NCB and the Songliao-Hunshandake Block (SHB). The second phase (D2) displays a high-angle foliation and a pervasive sub-horizontalE-W stretching lineation with kinematic criteria indicative of dextral strike-slip shearing. The 40Ar-39Ar dating on mylonitic granite places the main shearing event around 227-209 Ma. This D2 shearing is coeval with that of the dextral strike-slip Bayan Obo-Chifeng Fault (BCF) and the Chicheng-Fengning-Longhua Fault to the south, which together constitute a dextral shearing fault system on the northern margin of the NCB during the Late Triassic. The paleomagnetic study performed on the Middle Permian Guangxingyuan pluton, located between the XMF and BCF, documents a local clockwise rotation of this pluton with respect to the NCB and SHB. Our multidisciplinary study suggests anNNW-SSE shortening and strike-slip shearing dominated tectonic setting on the northern margin of the NCB during the Late Triassic. Combining the contemporaneous dextral strike-slip movements of the XMF and BCF in northern China and the sinistral strike-slip movement of East Gobi Fault (EGF) in southeastern Mongolia with the large-scale tectonic framework, a Late Triassic NNW-SSE shortening-eastward extrusion

  20. High diversity, low disparity and small body size in plesiosaurs (Reptilia, Sauropterygia) from the Triassic-Jurassic boundary.

    PubMed

    Benson, Roger B J; Evans, Mark; Druckenmiller, Patrick S

    2012-01-01

    Invasion of the open ocean by tetrapods represents a major evolutionary transition that occurred independently in cetaceans, mosasauroids, chelonioids (sea turtles), ichthyosaurs and plesiosaurs. Plesiosaurian reptiles invaded pelagic ocean environments immediately following the Late Triassic extinctions. This diversification is recorded by three intensively-sampled European fossil faunas, spanning 20 million years (Ma). These provide an unparalleled opportunity to document changes in key macroevolutionary parameters associated with secondary adaptation to pelagic life in tetrapods. A comprehensive assessment focuses on the oldest fauna, from the Blue Lias Formation of Street, and nearby localities, in Somerset, UK (Earliest Jurassic: 200 Ma), identifying three new species representing two small-bodied rhomaleosaurids (Stratesaurus taylori gen et sp. nov.; Avalonnectes arturi gen. et sp. nov) and the most basal plesiosauroid, Eoplesiosaurus antiquior gen. et sp. nov. The initial radiation of plesiosaurs was characterised by high, but short-lived, diversity of an archaic clade, Rhomaleosauridae. Representatives of this initial radiation were replaced by derived, neoplesiosaurian plesiosaurs at small-medium body sizes during a more gradual accumulation of morphological disparity. This gradualistic modality suggests that adaptive radiations within tetrapod subclades are not always characterised by the initially high levels of disparity observed in the Paleozoic origins of major metazoan body plans, or in the origin of tetrapods. High rhomaleosaurid diversity immediately following the Triassic-Jurassic boundary supports the gradual model of Late Triassic extinctions, mostly predating the boundary itself. Increase in both maximum and minimum body length early in plesiosaurian history suggests a driven evolutionary trend. However, Maximum-likelihood models suggest only passive expansion into higher body size categories.

  1. Hydrochemical constraints between the karst Tabular Middle Atlas Causses and the Saïs basin (Morocco): implications of groundwater circulation

    NASA Astrophysics Data System (ADS)

    Miche, Hélène; Saracco, Ginette; Mayer, Adriano; Qarqori, Khaoula; Rouai, Mohamed; Dekayir, Abdelilah; Chalikakis, Konstantinos; Emblanch, Christophe

    2018-02-01

    The karst Tabular Middle Atlas Causses reservoir is the main drinking-water supply of Fez-Meknes region (Saïs Basin) in Morocco. Recent analyses showed a decline in associated groundwater chemical quality and increased turbidity. To understand this hydrosystem, four surveys were undertaken during fall and spring, 2009-2011. Hydrogeochemical studies coupled with isotopic analyses (δ18O, δD and 222Rn) showed that the aquifers between the causses (mountains) and the Saïs Basin are of Liassic origin and at the southern extremities are of Triassic origin. Five recharge zones of different altitudes have been defined, including two main mixing zones in the south. Deuterium excess results suggest local recharge, while a plot of δ18O versus δD characterizes a confined aquifer in the eastern sector. 222Rn results reveal areas of rapid exchanges with an upwelling time of less than 2 weeks. A schematic conceptual model is presented to explain the groundwater circulation system and the behavior of this karst system.

  2. A Middle Triassic thoracopterid from China highlights the evolutionary origin of overwater gliding in early ray-finned fishes

    PubMed Central

    Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen

    2015-01-01

    Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized ‘four-winged’ gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged ‘peltopleurid’ Peripeltopleurus, from the Middle Triassic (Ladinian, 235–242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the ‘cranial specialization–asymmetrical caudal fin–enlarged paired fins–scale reduction’ sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. PMID:25568155

  3. The oldest dinosaur? A Middle Triassic dinosauriform from Tanzania.

    PubMed

    Nesbitt, Sterling J; Barrett, Paul M; Werning, Sarah; Sidor, Christian A; Charig, Alan J

    2013-02-23

    The rise of dinosaurs was a major event in vertebrate history, but the timing of the origin and early diversification of the group remain poorly constrained. Here, we describe Nyasasaurus parringtoni gen. et sp. nov., which is identified as either the earliest known member of, or the sister-taxon to, Dinosauria. Nyasasaurus possesses a unique combination of dinosaur character states and an elevated growth rate similar to that of definitive early dinosaurs. It demonstrates that the initial dinosaur radiation occurred over a longer timescale than previously thought (possibly 15 Myr earlier), and that dinosaurs and their immediate relatives are better understood as part of a larger Middle Triassic archosauriform radiation. The African provenance of Nyasasaurus supports a southern Pangaean origin for Dinosauria.

  4. Geologic framework for the national assessment of carbon dioxide storage resources: Powder River Basin, Wyoming, Montana, South Dakota, and Nebraska: Chapter B in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Craddock, William H.; Drake II, Ronald M.; Mars, John L.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven A.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2012-01-01

    This report presents ten storage assessment units (SAUs) within the Powder River Basin of Wyoming, Montana, South Dakota, and Nebraska. The Powder River Basin contains a thick succession of sedimentary rocks that accumulated steadily throughout much of the Phanerozoic, and at least three stratigraphic packages contain strata that are suitable for CO2 storage. Pennsylvanian through Triassic siliciclastic strata contain two potential storage units: the Pennsylvanian and Permian Tensleep Sandstone and Minnelusa Formation, and the Triassic Crow Mountain Sandstone. Jurassic siliciclastic strata contain one potential storage unit: the lower part of the Sundance Formation. Cretaceous siliciclastic strata contain seven potential storage units: (1) the Fall River and Lakota Formations, (2) the Muddy Sandstone, (3) the Frontier Sandstone and Turner Sandy Member of the Carlile Shale, (4) the Sussex and Shannon Sandstone Members of Cody Shale, and (5) the Parkman, (6) Teapot, and (7) Teckla Sandstone Members of the Mesaverde Formation. For each SAU, we discuss the areal distribution of suitable CO2 reservoir rock. We also characterize the overlying sealing unit and describe the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net thickness, porosity, permeability, and groundwater salinity. Case-by-case strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are presented. Although assessment results are not contained in this report, the geologic information included herein will be employed to calculate the potential storage space in the various SAUs.

  5. Evaluating the provenance of Permian-Triassic and Palaeocene-Eocene ash beds by high precision U-Pb and Lu-Hf isotopic analyses of zircons: linking local sedimentary records to global events

    NASA Astrophysics Data System (ADS)

    Eivind Augland, Lars; Jones, Morgan; Planke, Sverre; Svensen, Henrik; Tegner, Christian

    2016-04-01

    Zircons are a powerful tool in geochronology and isotope geochemistry, as their affinity for U and Hf in the crystal structure and the low initial Pb and Lu allow for precise and accurate dating by U-Pb ID-TIMS and precise and accurate determination of initial Hf isotopic composition by solution MC-ICP-MS analysis. The U-Pb analyses provide accurate chronostratigraphic controls on the sedimentary successions and absolute age frames for the biotic evolution across geological boundaries. Moreover, the analyses of Lu-Hf by solution MC-ICP-MS after Hf-purification column chemistry provide a powerful and robust fingerprinting tool to test the provenance of individual ash beds. Here we focus on ash beds from Permian-Triassic and Palaeocene successions in Svalbard and from the Palaeocene-Eocene Thermal Maximum (PETM) in Fur, Denmark. Used in combination with whole rock geochemistry from the ash layers and the available geochemical and isotopic data from potential source volcanoes, these data are used to evaluate the provenance of the Permian-Triassic and Palaeocene ashes preserved in Svalbard and PETM ashes in Denmark. If explosive eruptions from volcanic centres such as the Siberian Traps and the North Atlantic Igneous Province (NAIP) can be traced to distal basins as ash layers, they provide robust tests of hypotheses of global synchronicity of environmental changes and biotic crises. In addition, the potential correlation of ash layers with source volcanoes will aid in constraining the extent of explosive volcanism in the respective volcanic centres. The new integrated data sets will also contribute to establish new reference sections for the study of these boundary events when combined with stable isotope data and biostratigraphy.

  6. Plate tectonic controls on atmospheric CO2 levels since the Triassic.

    PubMed

    Van Der Meer, Douwe G; Zeebe, Richard E; van Hinsbergen, Douwe J J; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H

    2014-03-25

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250-200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data.

  7. Plate tectonic controls on atmospheric CO2 levels since the Triassic

    PubMed Central

    Van Der Meer, Douwe G.; Zeebe, Richard E.; van Hinsbergen, Douwe J. J.; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H.

    2014-01-01

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250–200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data. PMID:24616495

  8. Inverse geothermal modelling applied to Danish sedimentary basins

    NASA Astrophysics Data System (ADS)

    Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.

    2017-10-01

    This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures

  9. Spatial coincidence and similar geochemistry of Late Triassic and Eocene-Oligocene magmatism in the Andes of northern Chile: evidence from the MMH porphyry type Cu-Mo deposit, Chuquicamata District

    NASA Astrophysics Data System (ADS)

    Zentilli, Marcos; Maksaev, Victor; Boric, Ricardo; Wilson, Jessica

    2018-04-01

    The MMH porphyry type copper-molybdenum deposit in northern Chile is the newest mine in the Chuquicamata District, one of largest copper concentrations on Earth. Mineralized Eocene-Oligocene porphyry intrusions are hosted by essentially barren Triassic granodiorites. Despite a century of exploitation, geologists still have problems in the mine distinguishing the Triassic granodiorite from the most important ore-carrying Eocene porphyries in the district. To resolve the problem, internally consistent high-quality geochemical analyses of the Triassic and Tertiary intrusives were carried out: explaining the confusion, they show that the rock units in question are nearly identical in composition and thus respond equally to hydrothermal alteration. In detail, the only difference in terms of chemical composition is that the main Eocene-Oligocene porphyries carry relatively less Fe and Ni. Unexpectedly, the mineralized Eocene-Oligocene porphyries have consistently less U and Th than other Tertiary intrusions in the district, a characteristic that may be valuable in exploration. The supergiant copper-molybdenum deposits in the Central Andes were formed within a narrow interval between 45 and 31 Ma, close to 7% of the 200 My duration of "Andean" magmatism, which resulted from subduction of oceanic lithosphere under South America since the Jurassic. Although recent work has shown that subduction was active on the margin since Paleozoic times, pre-Andean (pre-Jurassic) "Gondwanan" magmatism is often described as being very different, having involved crustal melting and the generation of massive peraluminous rhyolites and granites. This study shows that the indistinguishable Late Triassic and Eocene-Oligocene intrusions occupy the same narrow NS geographic belt in northern Chile. If it is accepted that magma character may determine the potential to generate economic Cu-Mo deposits, then Late Triassic volcano-plutonic centres in the same location in the South American margin

  10. Sedimentary organic matter characterization of the Triassic-Jurassic boundary GSSP at Kuhjoch (Austria)

    NASA Astrophysics Data System (ADS)

    Ruhl, M.; Veld, H.; Kürschner, W. M.

    2010-03-01

    The Triassic-Jurassic (T-J) boundary interval coincides with enhanced extinction rates in the marine realm and pronounced changes in terrestrial ecosystems on the continents. It is further marked by distinct negative excursions in the δ13C org and δ13C carb signature that may represent strong perturbations of the global carbon cycle. We present integrated geochemical, stable-isotope and palynological data from the Kuhjoch section, the Global boundary Stratotype Section and Point (GSSP) for the base of the Jurassic (Northern Calcareous Alps, Austria). We show that the initial carbon isotope excursion (CIE), coinciding with the marine extinction interval and the formation of black shales in the western Tethys Eiberg Basin, is marked by only minor changes in kerogen type, which is mainly of terrestrial origin. Increased Total Organic Carbon (TOC) concentrations of 9% at the first half of the initial CIE coincide with Hydrogen Index (HI) values of over 600 mg HC/g TOC. The high correlation (with R2 = 0.93) between HI values and terrestrial Cheirolepidiaceaen conifer pollen suggests a terrestrial source for the hydrogen enriched organic compounds. The lack of major changes in source of the sedimentary organic matter suggests that changes in the δ13C org composition are genuine and represent true disturbances of the global C-cycle. The sudden decrease in total inorganic carbon (TIC) concentrations likely represents the onset of a biocalcification crisis. It coincides with a 4.5‰ negative shift in δ13C org values and possibly corresponds to the onset of CAMP related volcanic activity. The second half of the initial CIE is marked by the dramatic increase of green algae remains in the sediment. The simultaneous increase of the C org/N tot ratio suggests increased marine primary production at the final stage of black shale formation.

  11. Bagua Basin: an Archive of the Tectonic Evolution of the Northern Peruvian Andes.

    NASA Astrophysics Data System (ADS)

    Moreno, F.; Garzione, C. N.; George, S. W. M.; Williams, L. A.

    2017-12-01

    The Cenozoic sediments of the intermontane Bagua Basin contain the record of the orogenic history of the northern Peruvian Andes. This Andean segment is constituted by a relatively narrow and low elevation orogen compared to the Central Andean Plateau. Understanding the similarities and differences of the tectonic evolution between these two provinces provides insights into the processes that govern the evolution of fold-thrust belts and orogenic plateaus. We use stratigraphic and sedimentologic field observations, detrital zircons (DZ) provenance analysis and stable isotopes paleoenvironmental analysis to reconstruct the regional tectonic history. Our results reveal the evolution of Bagua Basin, as a foreland basin related to the Andean belt since late Cretaceous time. The late Cretaceous Fundo el Triunfo Fm. records shelf deposits in a backbulge setting associated with a distant orogenic load. The Early Cretaceous DZ signature contained in these deposits reveal the early exhumation of Mesozoic rocks in the forebulge. The Paleocene fluvial deposits of the Rentema Fm. and the estuarine deposits of the Eocene Series record the transition to a forebulge setting. The Jurassic and Triassic DZ signature contained in the Paleocene and Eocene deposits reveal the continued exhumation of Mesozoic rocks during forebulge migration. The fluvial-floodplain succession of the Sambimera Fm. overlays the Eocene Series, recording intermediate and proximal foredeep deposition. Sambimera deposits contains sin-depositional Cenozoic DZ populations that reveal strong magmatism in the west. Comparison of δ18O and δ13C values from Sambimera and Rentema pedogenic carbonate nodules (δ18O -9‰ vs. -5‰ and δ13C -12.5‰ vs. -10‰) suggests that the Sambimera fluvial-floodplain system was more distal from the shoreline, based on the relatively negative δ18O values, and deposited in a drier climate, based on the relatively positive δ13C values. A four million year unconformity

  12. Triassic pollen date moroccan high atlas and the incipient rifting of pangea as middle carnian.

    PubMed

    Cousminer, H L; Manspeizer, W

    1976-03-05

    Palynomorphs from the High Atlas Mountains south of Marrakech define the Minutosaccus-Patinasporites Concurrent Range Zone, which is time-stratigraphically equivalent to the Swiss and English middle Keuper, type Carnian of Austria, and North American Triassic beds in Virginia, North Carolina, Pennsylvania, New Jersey, Texas, New Mexico, and Arizona, thus dating an early episode of continental rifting between Africa and North America.

  13. Reconnaissance Borehole Geophysical, Geological, and Hydrological Data from the Proposed Hydrodynamic Compartments of the Culpeper Basin in Loudoun, Prince William, Culpeper, Orange, and Fairfax Counties, Virginia (Version 1.0)

    USGS Publications Warehouse

    Ryan, Michael P.; Pierce, Herbert A.; Johnson, Carole D.; Sutphin, David M.; Daniels, David L.; Smoot, Joseph P.; Costain, John K.; Coruh, Cahit; Harlow, George E.

    2006-01-01

    The Culpeper basin is part of a much larger system of ancient depressions or troughs, that lie inboard of the Atlantic Coastal Plain, and largely within the Applachian Piedmont Geologic Province of eastern North America, and the transition region with the neighboring Blue Ridge Geologic Province. This basin system formed during an abortive attempt to make a great ocean basin during the Late Triassic and Early Jurassic, and the eroded remnants of the basins record major episodes of sedimentation, igneous intrusion and eruption, and pervasive contact metamorphism. Altogether, some twenty nine basins formed between what is now Nova Scotia and Georgia. Many of these basins are discontinuous along their strike, and have therefore recorded isolated environments for fluvial and lacustrine sedimentation. Several basins (including the Culpeper, Gettysburg, and Newark basins) are fault-bounded on the west, and Mesozoic crustal stretching has produced assymetrical patterns of basin subsidence resulting in a progressive basin deepening to the west, and a virtual onlap relationship with the pre-basin Proterozoic rocks to the east. A result of such a pattern of basin deepening is the development of sequences of sandstones and siltstones that systemmatically increase in dip towards the accomodating western border faults. A second major structural theme in several of the major Mesozoic basins (including the Culpeper) concerns the geometry of igneous intrusion, as discussed below. Froelich (1982, 1985) and Lee and Froelich (1989) discuss the general geology of the Culpeper basin, and Smoot (1989) discusses the sedimentation environments and sedimentary facies of the Mesozoic with respect to fluvial and shallow lacustrine deposition in the Culpeper basin. Ryan and others, 2007a, b, discuss the role of diabase-induced compartmentalization in the Culpeper basin (and other Mesozoic basins), and illustrate (using alteration mineral suites within the diabase and adjacent hornfels, among

  14. Late Triassic tropical climate of Pangea: Carbon isotopic and other insights into the rise of dinosaurs

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Lindström, S.; Irmis, R. B.; Glasspool, I.; Schaller, M. F.; Dunlavey, M.; Nesbitt, S. J.; Smith, N. D.; Turner, A. H.

    2015-12-01

    The rarity and species-poor nature of early dinosaurs and their relatives at low paleolatitudes persisted for 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New environmental reconstructions from stable carbon isotope ratios of preserved organic matter (δ13Corg), atmospheric pCO2 data based on the δ13C of soil carbonate, palynological, and wildfire data from charcoal from early dinosaur-bearing strata at low paleolatitudes in western North America show that variations in δ13Corg and palynomorph ecotypes are tightly correlated, displaying large and high-frequency excursions. These variations occurred within an environment characterized by elevated and increasing atmospheric pCO2, pervasive wildfires, and rapidly fluctuating extreme climatic conditions. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions until the end-Triassic, the large-bodied, fast-growing tachymetabolic dinosaurian herbivores were not. We hypothesize that the greater resources required by the herbivores made it difficult from them to adapt to the unstable conditions at low paleolatitudes in the Late Triassic.

  15. The Early to Middle Triassic continental-marine transition of NW Bulgaria: sedimentology, palynology and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Ajdanlijsky, George; Götz, Annette E.; Strasser, André

    2018-04-01

    Sedimentary facies and cycles of the Triassic continental-marine transition of NW Bulgaria are documented in detail from reference sections along the Iskar river gorge between the villages of Tserovo and Opletnya. The depositional environments evolved from anastomosing and meandering river systems in the Petrohan Terrigenous Group to mixed fluvial and tidal settings in the Svidol Formation, and to peritidal and shallow-marine conditions in the Opletnya Member of the Mogila Formation. For the first time, the palynostratigraphic data presented here allow for dating the transitional interval and for the precise identification of a major sequence boundary between the Petrohan Terrigenous Group and the Svidol Formation (Iskar Carbonate Group). This boundary most probably corresponds to the major sequence boundary Ol4 occurring in the upper Olenekian of the Tethyan realm and thus enables interregional correlation. The identification of regionally traceable sequence boundaries based on biostratigraphic age control is a first step towards a more accurate stratigraphic correlation and palaeogeographic interpretation of the Early to early Middle Triassic in NW Bulgaria.

  16. Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction.

    PubMed

    Zatoń, Michał; Niedźwiedzki, Grzegorz; Blom, Henning; Kear, Benjamin P

    2016-11-08

    The end-Permian mass extinction constituted the most devastating biotic crisis of the Phanerozoic. Its aftermath was characterized by harsh marine conditions incorporating volcanically induced oceanic warming, widespread anoxia and acidification. Bio-productivity accordingly experienced marked fluctuations. In particular, low palaeolatitude hard substrate communities from shallow seas fringing Western Pangaea and the Tethyan Realm were extremely impoverished, being dominated by monogeneric colonies of filter-feeding microconchid tubeworms. Here we present the first equivalent field data for Boreal hard substrate assemblages from the earliest Triassic (Induan) of East Greenland. This region bordered a discrete bio-realm situated at mid-high palaeolatitude (>30°N). Nevertheless, hard substrate biotas were compositionally identical to those from elsewhere, with microconchids encrusting Claraia bivalves and algal buildups on the sea floor. Biostratigraphical correlation further shows that Boreal microconchids underwent progressive tube modification and unique taxic diversification concordant with changing habitats over time. We interpret this as a post-extinction recovery and adaptive radiation sequence that mirrored coeval subequatorial faunas, and thus confirms hard substrate ecosystem depletion as a hallmark of the earliest Triassic interval globally.

  17. Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Zatoń, Michał; Niedźwiedzki, Grzegorz; Blom, Henning; Kear, Benjamin P.

    2016-11-01

    The end-Permian mass extinction constituted the most devastating biotic crisis of the Phanerozoic. Its aftermath was characterized by harsh marine conditions incorporating volcanically induced oceanic warming, widespread anoxia and acidification. Bio-productivity accordingly experienced marked fluctuations. In particular, low palaeolatitude hard substrate communities from shallow seas fringing Western Pangaea and the Tethyan Realm were extremely impoverished, being dominated by monogeneric colonies of filter-feeding microconchid tubeworms. Here we present the first equivalent field data for Boreal hard substrate assemblages from the earliest Triassic (Induan) of East Greenland. This region bordered a discrete bio-realm situated at mid-high palaeolatitude (>30°N). Nevertheless, hard substrate biotas were compositionally identical to those from elsewhere, with microconchids encrusting Claraia bivalves and algal buildups on the sea floor. Biostratigraphical correlation further shows that Boreal microconchids underwent progressive tube modification and unique taxic diversification concordant with changing habitats over time. We interpret this as a post-extinction recovery and adaptive radiation sequence that mirrored coeval subequatorial faunas, and thus confirms hard substrate ecosystem depletion as a hallmark of the earliest Triassic interval globally.

  18. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    NASA Astrophysics Data System (ADS)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  19. Structural complexity at and around the Triassic-Jurassic GSSP at Kuhjoch, Northern Calcareous Alps, Austria

    NASA Astrophysics Data System (ADS)

    Palotai, M.; Pálfy, J.; Sasvári, Á.

    2017-10-01

    One of the key requirements for a Global Stratotype Section and Point (GSSP) is the absence of tectonic disturbance. The GSSP for the Triassic-Jurassic system boundary was recently defined at Kuhjoch, Northern Calcareous Alps, Austria. New field observations in the area of the Triassic-Jurassic boundary GSSP site demonstrate that the overturned, tight, and almost upright Karwendel syncline was formed at semibrittle deformation conditions, confirmed by axial planar foliation. Tight to isoclinal folds at various scales were related to a tectonic transport to the north. Brittle faulting occurred before and after folding as confirmed by tilt tests (the rotation of structural data by the average bedding). Foliation is ubiquitous in the incompetent units, including the Kendlbach Formation at the GSSP. A reverse fault (inferred to be formed as a normal fault before folding) crosscuts the GSSP sections, results in the partial tectonic omission of the Schattwald Beds, and thus makes it impossible to measure a complete and continuous stratigraphic section across the whole Kendlbach Formation. Based on these observations, the Kuhjoch sections do not fulfil the specific requirement for a GSSP regarding the absence of tectonic disturbances near boundary level.

  20. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery

    NASA Astrophysics Data System (ADS)

    Zhang, Guijie; Zhang, Xiaolin; Hu, Dongping; Li, Dandan; Algeo, Thomas J.; Farquhar, James; Henderson, Charles M.; Qin, Liping; Shen, Megan; Shen, Danielle; Schoepfer, Shane D.; Chen, Kefan; Shen, Yanan

    2017-02-01

    The end-Permian mass extinction represents the most severe biotic crisis for the last 540 million years, and the marine ecosystem recovery from this extinction was protracted, spanning the entirety of the Early Triassic and possibly longer. Numerous studies from the low-latitude Paleotethys and high-latitude Boreal oceans have examined the possible link between ocean chemistry changes and the end-Permian mass extinction. However, redox chemistry changes in the Panthalassic Ocean, comprising ˜85-90% of the global ocean area, remain under debate. Here, we report multiple S-isotopic data of pyrite from Upper Permian-Lower Triassic deep-sea sediments of the Panthalassic Ocean, now present in outcrops of western Canada and Japan. We find a sulfur isotope signal of negative Δ33S with either positive δ34S or negative δ34S that implies mixing of sulfide sulfur with different δ34S before, during, and after the end-Permian mass extinction. The precise coincidence of the negative Δ33S anomaly with the extinction horizon in western Canada suggests that shoaling of H2S-rich waters may have driven the end-Permian mass extinction. Our data also imply episodic euxinia and oscillations between sulfidic and oxic conditions during the earliest Triassic, providing evidence of a causal link between incursion of sulfidic waters and the delayed recovery of the marine ecosystem.

  1. Absolute Plate Motion Control Since the Triassic from the Cocos Slab and its Associated Subduction Record in Mexico

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.; Spakman, W.

    2017-12-01

    A positive wave speed anomaly interpreted as the Cocos slab stretches from the uppermost mantle at the Middle America trench in the west, to the lowermost mantle below the Atlantic in the east. The length and continuity of this slab indicates long-lived, uninterrupted eastward subduction of the attached Cocos Plate and its predecessor, the Farallon Plate. The geological record of Mexico contains Triassic to present day evidence of subduction, of which the post-Late Cretaceous phase is of continental margin-style. Interpretations of the pre-Upper Cretaceous subduction-related rock assemblages are under debate, and vary from far-travelled exotic intra-oceanic island arc character to in-situ extended continental margin origin. We present new paleomagnetic data that show that Triassic, Jurassic and Cretaceous subduction-related rocks from the Vizcaíno Peninsula and the Guerrero terrane have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. The entire Triassic-present day subduction record, and hence, reconstructed trench location, can therefore be linked to the Cocos slab, which provides control on longitudinal plate motion of North America since the time of Pangea. Compared to the latest state of the art mantle frames, in which longitudes are essentially unconstrained for pre-Cretaceous times, our reconstructed absolute position of North America requires a significant westward longitudinal shift for Mesozoic times.

  2. A Middle Triassic thoracopterid from China highlights the evolutionary origin of overwater gliding in early ray-finned fishes.

    PubMed

    Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen

    2015-01-01

    Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized 'four-winged' gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged 'peltopleurid' Peripeltopleurus, from the Middle Triassic (Ladinian, 235-242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the 'cranial specialization-asymmetrical caudal fin-enlarged paired fins-scale reduction' sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Kerogen morphology and geochemistry at the Permian-Triassic transition in the Meishan section, South China: Implication for paleoenvironmental variation

    NASA Astrophysics Data System (ADS)

    Sawada, Ken; Kaiho, Kunio; Okano, Kazuki

    2012-08-01

    Detailed fluorescent microscopic observations and organic geochemical analyses for insoluble sedimentary organic matter (kerogens) are conducted on the end-Permian to earliest Triassic sediments in the Meishan section A of South China. The main objectives of the present study are to reconstruct variations of marine and terrestrial environments, and to evaluate bulk characteristics of terrestrial input in the palaeo-Tethys ocean for the Permian-Triassic boundary (PTB). Most of kerogens in the Meishan section are mainly composed of marine algae-derived amorphous organic matter, while terrestrial plant-derived amorphous organic matter is remarkably dominant in the mass extinction horizon reported previously. The relative abundances of marine organic matter may vary depending on marine production rather than terrestrial input in the palaeo-Tethys associated with changing terrestrial vegetation. We also identified aromatic furans as major compounds in kerogen pyrolysate of all layers. It is possible that sources of aromatic furans with alkyl group, fungi and lichen, proliferated as disaster biota in terrestrial ecosystem through the PTB. Higher abundances of herbaceous organic matter are observed in the layers above the mass extinction horizon. However, the conifer biomarker retene can be identified in kerogen pyrolysates of all layers. These results imply that the productions of herbaceous plants increased as dominant pioneer biota in early stage of recovery for terrestrial ecosystem after its collapse, but also that woody plant potentially continued to be produced in land area throughout the end-Permian and earliest-Triassic.

  4. Tectonics of Chukchi Sea Shelf sedimentary basins and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Agasheva, Mariia; Antonina, Stoupakova; Anna, Suslova; Yury, Karpov

    2016-04-01

    The Chukchi Sea Shelf placed in the East Arctic offshore of Russia between East Siberian Sea Shelf and North Slope Alaska. The Chukchi margin is considered as high petroleum potential play. The major problem is absence of core material from drilling wells in Russian part of Chukchi Shelf, hence strong complex geological and geophysical analyses such as seismic stratigraphy interpretation should be provided. In addition, similarity to North Slope and Beaufort Basins (North Chukchi) and Hope Basin (South Chukchi) allow to infer the resembling sedimentary succession and petroleum systems. The Chukchi Sea Shelf include North and South Chukchi Basins, which are separated by Wrangel-Herald Arch and characterized by different opening time. The North Chukchi basin is formed as a general part of Canada Basin opened in Early Cretaceous. The South Chukchi Basin is characterized by a transtensional origin of the basin, this deformation related to motion on the Kobuk Fault [1]. Because seismic reflections follow chronostratigraphic correlations, it is possible to achieve stratigraphic interpretation. The main seismic horizons were indicated as: PU, JU, LCU, BU, mBU marking each regional unconformities. Reconstruction of main tectonic events of basin is important for building correct geological model. Since there are no drilling wells in the North and South Chukchi basins, source rocks could not be proven. Referring to the North Chukchi basin, source rocks equivalents of Lower Cretaceous Pebble Shale Formation, Lower Jurassic Kingdak shales and Upper Triassic Shublik Formation (North Slope) is possible exhibited [2]. In the South Chukchi, it is possible that Cretaceous source rocks could be mature for hydrocarbon generation. Erosions and uplifts that could effect on hydrocarbon preservation was substantially in Lower Jurassic and Early Cretaceous periods. Most of the structures may be connected with fault and stratigraphy traps. The structure formed at Wrangel-Herald Arch to

  5. Seismic sequence stratigraphy and platform to basin reservoir structuring of Lower Cretaceous deposits in the Sidi Aïch-Majoura region (Central Tunisia)

    NASA Astrophysics Data System (ADS)

    Azaïez, Hajer; Bédir, Mourad; Tanfous, Dorra; Soussi, Mohamed

    2007-05-01

    In central Tunisia, Lower Cretaceous deposits represent carbonate and sandstone reservoir series that correspond to proven oil fields. The main problems for hydrocarbon exploration of these levels are their basin tectonic configuration and their sequence distribution in addition to the source rock availability. The Central Atlas of Tunisia is characterized by deep seated faults directed northeast-southwest, northwest-southeast and north-south. These faults limit inherited tectonic blocks and show intruded Triassic salt domes. Lower Cretaceous series outcropping in the region along the anticline flanks present platform deposits. The seismic interpretation has followed the Exxon methodologies in the 26th A.A.P.G. Memoir. The defined Lower Cretaceous seismic units were calibrated with petroleum well data and tied to stratigraphic sequences established by outcrop studies. This allows the subsurface identification of subsiding zones and thus sequence deposit distribution. Seismic mapping of these units boundary shows a structuring from a platform to basin blocks zones and helps to understand the hydrocarbon reservoir systems-tract and horizon distribution around these domains.

  6. Appraisal of water resources in the Hackensack River basin, New Jersey

    USGS Publications Warehouse

    Carswell, L.D.

    1976-01-01

    The Hackensack River basin, in the northern part of the New Jersey-New York metropolitan area, includes some of the most highly urbanized areas in the United States as well as a largely undeveloped 23.4 square mile area of tidal marsh referred to as the Hackensack Meadows. Bedrock in the Hackensack River basin, consisting of the Newark Group of Triassic age, is composed of diabase dikes and sills and gently westward dipping sandstone, conglomerate, and shale. The Brunswick Formation of the Newark Group is the only important bedrock aquifer in the basin. Water occurs in this aquifer in joints and fractures. The zone of most abundant and largest water-bearing joints and fractures occurs generally within 200 feet of land surface in lowland areas of major streams and within 400 to 500 feet of land surface in upland areas. Reported yields of industrial and public-supply wells tapping the Brunswick are as much as 600 gpm (gallons per minute): the median yield is 100 gpm. The formation is anisotropic; the greatest permeability and thus the movement of water in response to pumping are parallel to the strike of bedding. Therefore, wells in well fields alined perpendicular to strike have minimum interference. The Newark Group is overlain by unconsolidated deposits of till, varved silt and clay, alluvium, and sand and gravel of Quaternary age. Sand and gravel aquifers consist of (1) deltaic deposits formed at the mouths of streams that entered ancient Lake Hackensack in the western part of the basin and (2) valley-fill deposits along the eastern side of the basin. These aquifers locally yield large quantities of water (greater than 300 gpm) to wells. The chemical quality of water in the Brunswick Formation is generally good, and the water is relatively low in dissolved mineral matter in the upper area of the Hackensack River basin. In the lower area of the basin, water in the Brunswick is highly mineralized: specific conductance ranges from 579 to 3,480 micromhos per

  7. Late Triassic paleomagnetic result from the Baoshan Terrane, West Yunnan of China: Implication for orientation of the East Paleotethys suture zone and timing of the Sibumasu-Indochina collision

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Huang, Baochun; Yan, Yonggang; Zhang, Donghai

    2015-11-01

    In order to better understand the paleogeographic position of the Baoshan Terrane in the northernmost part of the Sibumasu Block during formation of the Pangea supercontinent, a paleomagnetic study has been conducted on Late Triassic basaltic lavas from the southern part of the Baoshan Terrane in the West Yunnan region of Southwest China. Following detailed rock magnetic investigations and progressive thermal demagnetization, stable characteristic remanent magnetizations (ChRMs) were successfully isolated from Late Triassic Niuhetang lava flows. The ChRMs are of dual polarity and pass fold and reversal tests with magnetic carriers dominated by magnetite and subordinate oxidation-induced hematite; we thus interpret them as a primary remanence. This new paleomagnetic result indicates that the Baoshan Terrane was located at low paleolatitudes of ∼15°N in the Northern Hemisphere during Late Triassic times. Together with available paleomagnetic data from the Baoshan Terrane and surrounding areas, a wider paleomagnetic comparison supports the view that the East Paleotethys Ocean separated the Sibumasu and Indochina blocks and closed no later than Late Triassic times. We argue that the currently approximately north-to-south directed Changning-Menglian suture zone is very likely to have been oriented nearly east-to-west at the time of the Sibumasu-Indochina collision.

  8. Proliferation of MISS-related microbial mats following the end-Permian mass extinction in terrestrial ecosystems: Evidence from the Lower Triassic of the Yiyang area, Henan Province, North China

    NASA Astrophysics Data System (ADS)

    Tu, Chenyi; Chen, Zhong-Qiang; Retallack, Gregory J.; Huang, Yuangeng; Fang, Yuheng

    2016-03-01

    Microbially induced sedimentary structures (MISSs) are commonly present in siliciclastic shallow marine settings following the end-Permian mass extinction, but have been rarely reported in the post-extinction terrestrial ecosystems. Here, we present six types of well-preserved MISSs from the upper Sunjiagou Formation and lower Liujiagou Formation of Induan (Early Triassic) age in the Yiyang area, Henan Province, North China. These MISSs include: polygonal sand cracks, worm-like structures, wrinkle structures, sponge pore fabrics, gas domes, and leveled ripple marks. Microanalysis shows that these MISSs are characterized by thin clayey laminae and filamentous mica grains arranged parallel to bedding plane as well as oriented matrix supported quartz grains, which are indicative of biogenic origin. Facies analysis suggests that the MISS-hosting sediments were deposited in a fluvial sedimentary system during the Early Triassic, including lake delta, riverbeds/point bars, and flood plain paleoenvironments. Abundant MISSs from Yiyang indicate that microbes also proliferated in terrestrial ecosystems in the aftermath of the Permian-Triassic (P-Tr) biocrisis, like they behaved in marine ecosystems. Microbial blooms, together with dramatic loss of metazoans, may reflect environmental stress and degradation of terrestrial ecosystems or arid climate immediately after the severe Permian-Triassic ecologic crisis.

  9. Magnetostratigraphy of a Marine Triassic-Jurassic Boundary Section, Kennecott Point, Queen Charlotte Islands: Implications for the Temporal Correlation of a 'Big Five' Mass Extinction Event.

    NASA Astrophysics Data System (ADS)

    Hilburn, I. A.; Kirschvink, J. L.; Ward, P. D.; Haggart, J. W.; Raub, T. D.

    2008-12-01

    Several causes have been proposed for Triassic-Jurassic (T-J) boundary extinctions, including global ocean anoxia/euxinia, an impact event, and/or eruption of the massive Central Atlantic Magmatic Province (CAMP), but poor intercontinental correlation makes testing these difficult. Sections at Kennecott Point, Queen Charlotte Islands, British Columbia span the late Norian through Rhaetian (Triassic) and into the earliest Hettangian (Jurassic) and provide the best integrated magneto- and chemostratigraphic framework for placing necessary temporal constraints upon the T-J mass extinctions. At Kennecott Point, turnover of radiolaria and ammonoids define the T-J boundary marine extinction and are coincident with a 2 ‰ negative excursion in δ13Corg similar in magnitude to that observed at Ferguson Hill (Muller Canyon), Nevada (1, 2). With Conodont Alteration Index values in the 1-2 range, Kennecott Point provides the ideal setting for use of magnetostratigraphy to tie the marine isotope excursion into the chronostratigraphic framework of the Newark, Hartford, and Fundy Basins. In the summer of 2005, we collected a ~1m resolution magnetostratigraphic section from 105 m of deep marine, silt- and sandstone turbidites and interbedded mudstones, spanning the T-J boundary at Kennecott Point. Hybrid progressive demagnetization - including zero-field, low-temperature cycling; low-field AF cleaning; and thermal demagnetization in ~25°C steps to 445°C under flowing N2 gas (3) - first removed a Northerly, steeply inclined component interpreted to be a Tertiary overprint, revealing an underlying dual-polarity component of moderate inclination. Five major polarity zones extend through our section, with several short, one-sample reversals interspersed amongst them. Comparison of this pattern with other T-J boundary sections (4-6) argues for a Northern hemisphere origin of our site, albeit with large vertical-axis rotations. A long normal chron bounds the T-J boundary punctuated

  10. Geochemistry of a Triassic dyke swarm in the North Patagonian Massif, Argentina. Implications for a postorogenic event of the Permian Gondwanide orogeny

    NASA Astrophysics Data System (ADS)

    González, Santiago N.; Greco, Gerson A.; González, Pablo D.; Sato, Ana M.; Llambías, Eduardo J.; Varela, Ricardo

    2016-10-01

    Permo-Triassic magmatism is widespread in the eastern North Patagonian Massif and has been related to the Gondwanide orogeny. Although a magmatic arc setting is widely accepted for the Permian plutonic rocks, the origin and geotectonic setting for the Triassic plutonic and volcanic rocks are still unknown. A NW-SE Triassic dyke swarm composed of andesites and latites with minor rhyolites was previously described in the Sierra Grande - Rincon de Paileman area. The dyke swarm was associated with extensional tectonics which was linked to a postorogenic process. In this paper we present new geochemical data of the rocks that form the swarm. Trachyandesites and rhyolites were separated based on their geochemical characteristics. Both groups may be considered originated from different sources. On the other hand, the content of incompatible elements (LILE and HFSE) indicates a strong relation between the swarm and an active continental margin. The samples also show a transitional signature between continental-arc and postcollisional or anorogenic settings. The new geochemical data on the dyke swarm support the idea of a magmatism that was linked to a postorogenic extensional tectonic regime related to a continental magmatic arc. Such an extension started in the Paleopacific margin of Pangea during the Anisian and might indicate the beginning of the Pangea break-up.

  11. Palaeogeography of Late Triassic red-beds in Singapore and the Indosinian Orogeny

    NASA Astrophysics Data System (ADS)

    Oliver, Grahame; Prave, Anthony

    2013-10-01

    A red-bed facies of the Upper Triassic Jurong Formation has been logged on Sentosa Island, Singapore. An overall coarsening and thickening-upward pattern is well developed. The lower part of the section is dominated by purple-red, massive to finely laminated illite-smectite-kaolin-rich mudstones containing thin, discontinuous lenses of fine sandstone marked by low-angle lamination and small ripples. One dinosaur-like foot print has been discovered in a loose block of red mudstone. It is concluded that this is a lacustrine sequence and it is proposed to name the lake, Lake Sentosa. The upper part of the sequence consists of flat-laminated to trough cross-bedded medium-grained sandstone and granule to cobble conglomerates alternating with purple-red mudstone. The mudstone-sandstone packages are arranged in decametre-scale coarsening-upward cycles. The channelling and decimetre-scale cross-bedding characterising the sandstone and conglomeratic beds is evidence for deposition by flashy fluvial flood processes, possibly feeding into the lake as a fresh water delta. One possible dinosaur trackway in granule size conglomerate has been located. Detrital zircon U-Pb ages vary from 2.7 Ba to 209 Ma with significant populations at ˜245 Ma and 220 Ma. These ages throw light on the timing of the Indosinian Orogeny. The molasse red-beds of the Jurong Formation were deposited in a half graben formed in the hangingwall of the Bukit Timah Fault when central Peninsular Malaysia went into extension following the climax of the Indosinian Orogeny in the Late Triassic.

  12. Chemistry of a low temperature geothermal reservoir: The Triassic sandstone aquifer at Melleray, FR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuataz, Francois-David; Fouillac, Christian; Detoc, Aylvie

    1988-01-01

    The Triassic sandstone aquifer offers on a regional scale, a large potential for low-temperature geothermal exploitation in the Paris Basin. The Na-Cl water n the aquifer has highly variable mineralization (TDS = 4 to 110 g/l) and a wide range of temperature (50º to >100ºC). Chemical studies have been carried out on the Melleray site near Orléans, where a single wel was producing a Na-Cl geothermal water (TDS = 35 g/l) at a wellhead temperature of 72ºC to provide heat for greenhouses. The purpose of these studies is to understand the chemical phenomena occurring in the geothermal loop and tomore » determine the treatment of the fluid and the exploitation procedures necessary for proper reinjection conditions to be achieved. During the tests performed after the drilling operations, chemical variations in the fluid were noticed between several producing zones in the aquifer. Daily geochemical monitoring of the fluid was carried out during two periods of differing exploitation conditions, respectively pumping at 148 m{sup 3}/h and artesian flow at 36 m{sup 3}/h. Vertical heterogeneities of the aquifer can explain the variations observed for the high flowrate. Filtration experiments revealed that the particle load varies with the discharge rate and that over 95 weight % of the particles are smaller than 1 micrometer. The chemistry of the particles varies greatly, according to their origin as corrosion products from the well casing, particles drawn out of the rock or minerals newly formed through water-rock reactions. Finally, small-scale oxidation experiments were carried out on the geothermal fluid to observe the behavior of Fe and SiO{sub 2} and to favour particle aggregates for easier filtration or decantation processes.« less

  13. Source and Extent of Volcanic Ashes at the Permian-Triassic Boundary in South China and Its implications

    NASA Astrophysics Data System (ADS)

    Wang, M.; Zhong, Y. T.; Hou, Y. L.; He, B.

    2017-12-01

    Highly correlated with the Permian-Triassic Boundary (PTB) Mass Extinction in stratigraphic section, volcanic ashes around the P-T Boundary in South China have been suggested to be a likely cause of the PTB Mass Extinction. So the nature, source and extent of these volcanic ashes have great significance in figuring out the cause of the PTB Mass Extinction. In this study, we attempt to constrain the source and extent of the PTB volcanic ashes in South China by studying pyroclastic sedimentary rocks and the spatial distribution of tuffs and ashes in South China. The detrital zircons of tuffaceous sandstones from Penglaitan section yield an age spectrum peaked at 252Ma, with ɛHf(t) values varying from -20 to -5 ,and have Nb/Hf, Th/Nb and Hf/Th ratios similar to those from arc/orogenic-related settings. Coarse tuffaceous sandstones imply that their source is in limited distance. Those pyroclastic sedimentary rocks in Penglaitan are well correlated with the PTB volcanic ashes in Meishan GSSP section in stratigraphy. In the spatial distribution, pyroclastic sedimentary rocks and tuffs distribute only in southwest of South China, while finer volcanic ashes are mainly in the northern part. This spatial distribution suggests the source of tuffs and ashes was to the south or southwest of South China. Former studies especially that of Permian-Triassic magmatism in Hainan Island have supported the existence of a continental arc related to the subduction and closure of Palaeo-Tethys on the southwestern margin of South China during Permian to early Triassic. It is suggested that the PTB ashes possibly derived from this Paleo-Tethys continental arc. The fact that volcanic ashes haven't been reported or found in PTB stratum in North China or Northwest China implies a limited extent of the volcanism, which thus is too small to cause the PTB mass extinction.

  14. Permo-Triassic vertebrate extinctions: A program

    NASA Technical Reports Server (NTRS)

    Olson, E. C.

    1988-01-01

    Since the time of the Authors' study on this subject, a great deal of new information has become available. Concepts of the nature of extinctions have changed materially. The Authors' conclusion that a catastrophic event was not responsible for the extinction of vertebrates has modified to the extent that hypotheses involving either the impact of a massive extra-terrestrial body or volcanism provide plausible but not currently fully testable hypotheses. Stated changes resulted in a rapid decrease in organic diversity, as the ratio of origins of taxa to extinctions shifted from strongly positive to negative, with momentary equilibrium being reached at about the Permo-Triassic boundary. The proximate causes of the changes in the terrestrial biota appear to lie in two primary factors: (1) strong climatic changes (global mean temperatures, temperature ranges, humidity) and (2) susceptibility of the dominant vertebrates (large dicynodonts) and the glossopteris flora to disruption of the equlibrium of the world ecosystem. The following proximate causes have been proposed: (1) rhythmic fluctuations in solar radiation, (2) tectonic events as Pangea assembled, altering land-ocean relationships, patterns of wind and water circulation and continental physiography, (3) volcanism, and (4) changes subsequent to impacts of one or more massive extra terrestrial objects, bodies or comets. These hypotheses are discussed.

  15. Two types of bone necrosis in the Middle Triassic Pistosaurus longaevus bones: the results of integrated studies

    NASA Astrophysics Data System (ADS)

    Surmik, Dawid; Rothschild, Bruce M.; Dulski, Mateusz; Janiszewska, Katarzyna

    2017-07-01

    Avascular necrosis, diagnosed on the basis of either a specific pathological modification of the articular surfaces of bone or its radiologic appearance in vertebral centra, has been recognized in many Mesozoic marine reptiles as well as in present-day marine mammals. Its presence in the zoological and paleontologic record is usually associated with decompression syndrome, a disease that affects secondarily aquatic vertebrates that could dive. Bone necrosis can also be caused by infectious processes, but it differs in appearance from decompression syndrome-associated aseptic necrosis. Herein, we report evidence of septic necrosis in the proximal articular surface of the femur of a marine reptile, Pistosaurus longaevus, from the Middle Triassic of Poland and Germany. This is the oldest recognition of septic necrosis associated with septic arthritis in the fossil record so far, and the mineralogical composition of pathologically altered bone is described herein in detail. The occurrence of septic necrosis is contrasted with decompression syndrome-associated avascular necrosis, also described in Pistosaurus longaevus bone from Middle Triassic of Germany.

  16. Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach Terranes along the Trans-Alaska Crustal Transect in the Chugach Mountains and Southern Copper River Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Plafker, George; Nokleberg, W. J.; Lull, J. S.

    1989-04-01

    The Trans-Alaskan Crustal Transect in the southern Copper River Basin and Chugach Mountains traverses the margins of the Peninsular and Wrangellia terranes, and the adjacent accretionary oceanic units of the Chugach terrane to the south. The southern Wrangellia terrane margin consists of a polymetamorphosed magmatic arc complex at least in part of Pennsylvanian age (Strelna Metamorphics and metagranodiorite) and tonalitic metaplutonic rocks of the Late Jurassic Chitina magmatic arc. The southern Peninsular terrane margin is underlain by rocks of the Late Triassic (?) and Early Jurassic Talkeetna magmatic arc (Talkeetna Formation and Border Ranges ultra-mafic-mafic assemblage) on Permian or older basement rocks. The Peninsular and Wrangellia terranes are parts of a dominantly oceanic superterrane (composite Terrane II) that was amalgamated by Late Triassic time and was accreted to terranes of continental affinity north of the Denali fault system in the mid- to Late Cretaceous. The Chugach terrane in the transect area consists of three successively accreted units: (1) minor greenschist and intercalated blueschist, the schist of Liberty Creek, of unknown protolith age that was metamorphosed and probably accreted during the Early Jurassic, (2) the McHugh Complex (Late Triassic to mid-Cretaceous protolith age), a melange of mixed oceanic, volcaniclastic, and olistostromal rocks that is metamorphosed to prehnite-pumpellyite and lower greenschist facies that was accreted by middle Cretaceous time, and (3) the Upper Cretaceous Valdez Group, mainly magmatic arc-derived flysch and lesser oceanic volcanic rocks of greenschist facies that was accreted by early Paleocene time. A regional thermal event that culminated in early middle Eocene time (48-52 Ma) resulted in widespread greenschist facies metamorphism and plutonism.

  17. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China

    NASA Astrophysics Data System (ADS)

    Xian, Benzhong; Wang, Junhui; Gong, Chenglin; Yin, Yu; Chao, Chuzhi; Liu, Jianping; Zhang, Guodong; Yan, Qi

    2018-06-01

    Subaquatic channels are known as active conduits for the delivery of terrigenous sediments into related marine and lacustrine basins, as well as important targets for hydrocarbon exploration. Compared to submarine channels, lacustrine subaqueous channels created by hyperpycnal flows are understudied. Using well-exposed outcrops collected from three different locations in the southern Ordos Basin, central China, morphologies and architecture of a channelized hyperpycnal system were studied and classified. Six facies associations represent sedimentary processes from strong erosion by bedload dominated hyperpycnal flows, to transitional deposition jointly controlled by bedload and suspended-load dominated hyperpycnal flows, finally to deposition from suspended-load dominated hyperpycnal flows. On the basis of channel morphologies, infilling sediments and sedimentary processes, the documented channels can be classified into four main categories, which are erosional, bedload dominated, suspended-load dominated, and depositional channels. In very proximal and very distal locations, erosional channels and depositional channels serve as two end-members, while in middle areas, bedload-dominated channels and suspended-load dominated channels are transitional types. Erosional channels, as a response to strong erosion from bedload dominated hyperpycnal flows on upper slope, were mainly filled by mud interbedded with thin sand beds. As flow energy decreases, bedload dominated channels develop on middle slopes, which are characterized mainly by under- to balanced sediment infillings with cross-bedded sandstones and/or minor massive sandstones. Compared to bedload dominated channels, suspended-load dominated channels mainly develop in deeper water, and were filled mainly by massive or planar-laminated sandstones. Depositional channels, as a response to suspended-load dominated hyperpycnal flows in deep-water areas, are characterized by thin-medium bed classical turbidites with

  18. A carapace-like bony 'body tube' in an early triassic marine reptile and the onset of marine tetrapod predation.

    PubMed

    Chen, Xiao-hong; Motani, Ryosuke; Cheng, Long; Jiang, Da-yong; Rieppel, Olivier

    2014-01-01

    Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan'an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan'an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan'an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles.

  19. Petroleum geology and resources of the Dnieper-Donets Basin, Ukraine and Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The Dnieper-Donets basin is almost entirely in Ukraine, and it is the principal producer of hydrocarbons in that country. A small southeastern part of the basin is in Russia. The basin is bounded by the Voronezh high of the Russian craton to the northeast and by the Ukrainian shield to the southwest. The basin is principally a Late Devonian rift that is overlain by a Carboniferous to Early Permian postrift sag. The Devonian rift structure extends northwestward into the Pripyat basin of Belarus; the two basins are separated by the Bragin-Loev uplift, which is a Devonian volcanic center. Southeastward, the Dnieper-Donets basin has a gradational boundary with the Donbas foldbelt, which is a structurally inverted and deformed part of the basin. The sedimentary succession of the basin consists of four tectono-stratigraphic sequences. The prerift platform sequence includes Middle Devonian to lower Frasnian, mainly clastic, rocks that were deposited in an extensive intracratonic basin. 1 The Upper Devonian synrift sequence probably is as thick as 4?5 kilometers. It is composed of marine carbonate, clastic, and volcanic rocks and two salt formations, of Frasnian and Famennian age, that are deformed into salt domes and plugs. The postrift sag sequence consists of Carboniferous and Lower Permian clastic marine and alluvial deltaic rocks that are as thick as 11 kilometers in the southeastern part of the basin. The Lower Permian interval includes a salt formation that is an important regional seal for oil and gas fields. The basin was affected by strong compression in Artinskian (Early Permian) time, when southeastern basin areas were uplifted and deeply eroded and the Donbas foldbelt was formed. The postrift platform sequence includes Triassic through Tertiary rocks that were deposited in a shallow platform depression that extended far beyond the Dnieper-Donets basin boundaries. A single total petroleum system encompassing the entire sedimentary succession is identified in

  20. Newly discovered Late Triassic Baqing eclogite in central Tibet indicates an anticlockwise West-East Qiangtang collision.

    PubMed

    Zhang, Yu-Xiu; Jin, Xin; Zhang, Kai-Jun; Sun, Wei-Dong; Liu, Jian-Ming; Zhou, Xiao-Yao; Yan, Li-Long

    2018-01-17

    The Triassic eclogite-bearing central Qiangtang metamorphic belt (CQMB) in the northern Tibetan Plateau has been debated whether it is a metamorphic core complex underthrust from the Jinsha Paleo-Tethys or an in-situ Shuanghu suture. The CQMB is thus a key issue to elucidate the crustal architecture of the northern Tibetan Plateau, the tectonics of the eastern Tethys, and the petrogenesis of Cenozoic high-K magmatism. We here report the newly discovered Baqing eclogite along the eastern extension of the CQMB near the Baqing town, central Tibet. These eclogites are characterized by the garnet + omphacite + rutile + phengite + quartz assemblages. Primary eclogite-facies metamorphic pressure-temperature estimates yield consistent minimum pressure of 25 ± 1 kbar at 730 ± 60 °C. U-Pb dating on zircons that contain inclusions (garnet + omphacite + rutile + phengite) gave eclogite-facies metamorphic ages of 223 Ma. The geochemical continental crustal signature and the presence of Paleozoic cores in the zircons indicate that the Baqing eclogite formed by continental subduction and marks an eastward-younging anticlockwise West-East Qiangtang collision along the Shuanghu suture from the Middle to Late Triassic.

  1. PSD Applicability Analysis for a Past Change at the Georgia-Pacific Taylorsville Facility Particleboard Plant, Taylorsville, Mississippi

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  2. Early Late Triassic Subduction in the Northern Branch of Neotethys?: Petrological and Paleontological Constraints from the middle Carnian basalts in the Lycian Nappes

    NASA Astrophysics Data System (ADS)

    Sayit, K.; Göncüoglu, M. C.; Tekin, U. K.

    2015-12-01

    The Lycian Nappes, SW Anatolia, are represented by a stack of thrust sheets derived from the northern branch of Neotethys (i.e. Izmir-Ankara Ocean) and the northern margin of the Tauride-Anatolide platform. The Turunç Unit, which is now preserved within a tectonic slice of the Lycian Nappes, includes among others the Neotethys-derived basalt blocks with pelagic intra-pillow carbonate infillings of middle Carnian age (early Late Triassic). Here, we focus on the geochemistry of the Turunç basalts to shed light into their petrogenetic evolution within the Neotethyan framework. Immobile trace element systematics indicate that the Turunç lavas are sub-alkaline basalts, with geochemical signatures resembling to those generated above subduction zones. Detailed examination of the Turunç volcanics reveals two chemical groups. Both groups are variably enriched in Th and La relative to Nb, and exhibit depleted Zr and Hf contents relative to N-MORB. Of the two groups, however, Group 2 is more enriched in Th, but with a similar Nb content, which results in higher Th/Nb ratios (0.21-0.27) compared to those of Group 1 (0.08-0.11). Both groups reflect similar REE systematics; they display marked enrichment in LREE relative to HREE ([La/Yb]N = 4.8-8.9). Trace element characteristics of the Turunç basalts indicate that their mantle source has been modified by slab-derived component(s). Taking into account that the Turunc Unit includes no continent-derived detritus, we suggest that the Turunç lavas represent fragments of a Late Triassic island arc formed on the Neotethyan oceanic lithosphere. This may further imply that the Neotethyan oceanic lithosphere had already been formed by the early Late Triassic, thus suggesting a pre-early Late Triassic oceanization of the northern branch of Neotethys.

  3. A new marine reptile from the Triassic of China, with a highly specialized feeding adaptation.

    PubMed

    Cheng, Long; Chen, Xiao-Hong; Shang, Qing-Hua; Wu, Xiao-Chun

    2014-03-01

    The Luoping fauna (Anisian, Middle Triassic) is probably the oldest of Triassic faunas in Guizhou-Yunnan area, China. The reptilian assemblage is comprised of ichthyosaurs, a number of sauropterygians (pachypleurosaur-like forms), saurosphargids, protorosaurs, and archosauriforms. Here, we report on a peculiar reptile, newly found in this fauna. Its dentition is fence or comb-like and bears more than 175 pleurodont teeth in each ramus of the upper and lower jaws, tooth crown is needle-like distally and blade-shaped proximally; its rostrum strongly bends downward and the anterior end of its mandible expands both dorsally and ventrally to form a shovel-headed structure; and its ungual phalanges are hoof-shaped. The specializations of the jaws and dentition indicate that the reptile may have been adapted to a way of bottom-filter feeding in water. It is obvious that such delicate teeth are not strong enough to catch prey, but were probably used as a barrier to filter microorganisms or benthic invertebrates such as sea worms. These were collected by the specialized jaws, which may have functioned as a shovel or pushdozer (the mandible) and a grasper or scratcher (the rostrum). Our preliminary analysis suggests that the new reptile might be more closely related to the Sauropterygia than to other marine reptiles.

  4. A new marine reptile from the Triassic of China, with a highly specialized feeding adaptation

    NASA Astrophysics Data System (ADS)

    Cheng, Long; Chen, Xiao-Hong; Shang, Qing-Hua; Wu, Xiao-Chun

    2014-03-01

    The Luoping fauna (Anisian, Middle Triassic) is probably the oldest of Triassic faunas in Guizhou-Yunnan area, China. The reptilian assemblage is comprised of ichthyosaurs, a number of sauropterygians (pachypleurosaur-like forms), saurosphargids, protorosaurs, and archosauriforms. Here, we report on a peculiar reptile, newly found in this fauna. Its dentition is fence or comb-like and bears more than 175 pleurodont teeth in each ramus of the upper and lower jaws, tooth crown is needle-like distally and blade-shaped proximally; its rostrum strongly bends downward and the anterior end of its mandible expands both dorsally and ventrally to form a shovel-headed structure; and its ungual phalanges are hoof-shaped. The specializations of the jaws and dentition indicate that the reptile may have been adapted to a way of bottom-filter feeding in water. It is obvious that such delicate teeth are not strong enough to catch prey, but were probably used as a barrier to filter microorganisms or benthic invertebrates such as sea worms. These were collected by the specialized jaws, which may have functioned as a shovel or pushdozer (the mandible) and a grasper or scratcher (the rostrum). Our preliminary analysis suggests that the new reptile might be more closely related to the Sauropterygia than to other marine reptiles.

  5. Influence of climate change and marine chemistry on ecological shifts following the Triassic/Jurassic mass extinction

    NASA Astrophysics Data System (ADS)

    Ritterbush, K. A.; West, A. J.; Berelson, W.; Rosas, S.; Bottjer, D. J.; Yager, J. A.; Corsetti, F. A.

    2014-12-01

    Two aspects of the Triassic/Jurassic transition that seem incongruous are increasing warming and increasing ecological dominance by siliceous sponges on shallow shelves. Warming is interpreted from proxy data showing increased atmospheric carbon dioxide concentrations associated with eruption pulses of the Central Atlantic Province (CAMP) basalts across rifting Pangea. Post-extinction ecological dominance by siliceous sponges is found in recent field investigations of Nevada and Peru, and literature on the Austrian Alps. Whereas evidence from the Panthalassan siliceous sponge ramps of the early Jurassic clearly records deposition on sub- and tropical shallow shelves (a warm environment), modern sponge occupations of comparable intensity exist only in deep and cold environments. Resolving this apparent contrast requires consideration of silica cycling. Silica is a limiting nutrient for siliceous sponges, and the post-extinction sponges of the earliest Jurassic show desmid spicule morphologies matching modern phenotypic indicators of high silica concentration. During the Triassic the major documented biosiliceous sink was radiolarian deep sea chert deposits despite a major species-level turnover at the extinction. Diatoms did not exist in the Triassic. A major alteration to silica cycling in the early Jurassic could have resulted from increased terrigenous supply for two reasons: increased atmospheric carbon dioxide would likely intensify continental weathering, and the extensive flood basalts produced an easily-weathered silica source. Simple box model calculations allow consideration of supply vs demand, and of the pace of possible changes. Potential weathering rates of silica are contrasted with recent published data on sponge silica sequestration, showing that the presence of the CAMP basalts alone could support increased sponge abundance across tropical carbonate shelves. Estimates of doubling and residence times in a simple one-box model show that the change in

  6. Late Triassic granitic rocks of the Central Qiangtang Orogenic Belt, northern Tibet: tracing crustal thickening through post-collisional silicic magmatism

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, J.

    2017-12-01

    The Central Qiangtang Orogenic Belt (CQOB) was formed through Triassic continental collision between the Southern and Northern Qiangtang terranes. Numerous granitic intrusions occur along the CQOB, forming a Late Triassic granitic belt that stretches 1000 km from west to east. This Central Qiangtang granitic belt was believed to constitute most of the CQOB. Therefore, the CQOB thus provides a typical composite orogen for the study of relationships between granitoid magmatism and orogenic processes. Recently, many studies have been carried out, and the close relationship of the magmatic belt with the evolutionary history of the CQOB is well established. Late Triassic intrusive rocks are widely exposed in the Riwanchaka area of Central Qiangtang, northern Tibet. In this study, new U-Pb zircon ages reveal that Late Triassic magmatism in Riwanchaka took place at ca 225-205 Ma, coeval with exhumation of the metamorphic rocks in Central Qiangtang. Our new and previously published data enable us to correlate the subduction-related volcanic arc rocks in the Riwanchaka area to a post-collisional extension setting related to slab break-off during northward subduction of the Paleo-Tethys Ocean seafloor. Geochemical characteristics suggested that the samples from CQOB can be divided into low-Sr/Y granitoids (LSG) and high-Sr/Y granitoids (HSG). The LSG are normal calc-alkaline I-type granitoids, characterized by varying major and trace element contents indicative of partial melting of ancient mafic lower crust. The HSG are characterized by high Sr/Y ratios and (La/Yb)N (chondrite-normalized) ratios. These signatures indicate that the HSG were derived by partial melting of garnet-bearing thickened lower crust. The crustal structure and evolution of the CQOB are considered on the basis of available data and variations in Sr/Y, La/Yb, and Hf isotopic ratios. Temporal geochemical and Hf isotopic changes, diagnostic of crustal thickening, indicate that the CQOB was greatly

  7. États de contraintes et mécanismes d'ouverture et de fermeture des bassins permiens du Maroc hercynien. L'exemple des bassins des Jebilet et des RéhamnaStates of stresses and opening/closing mechanisms of the Permian basins in Hercynian Morocco. The example of the Jebilet and Réhamna Basins

    NASA Astrophysics Data System (ADS)

    Saidi, Amal; Tahiri, Abdelfatah; Ait Brahim, Lahcen; Saidi, Maraim

    The fracturing analysis in the Permian basins of Jebilet and Rehamna (Hercynian Morocco) and the underlying terranes allowed us to suggest a model for their opening. Three tectonic episodes are distinguished: a transtensional episode NNE-SSW-trending (Permian I), occurring during the opening along sinistral wrench faults N70-110-trending, associated with synsedimentary normal faults; a transpressive episode ESE-WNW-trending (Permian II), initiating the closure, the normal faults playing back reverse faults and the N70 trending faults dextral wrench faults; a compressional episode NNW-SSE (post-Permian, ante-Triassic), accentuating the closure and the deformation and putting an end to the Tardi-Hercynian compressive movements. To cite this article: A. Saidi et al., C. R. Geoscience 334 (2002) 221-226.

  8. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China

    USGS Publications Warehouse

    Mao, J.; Qiu, Yumin; Goldfarb, R.J.; Zhang, Z.; Garwin, S.; Fengshou, R.

    2002-01-01

    Gold deposits of the western Qinling belt occur within the western part of the Qinling-Dabie-Sulu orogen, which is located between the Precambrian North China and Yangtze cratons and east of the Songpan-Ganzi basin. The early Paleozoic to early Mesozoic orogen can be divided into northern, central, and southern zones, separated by the Shangdan and Lixian-Shanyang thrust fault systems. The northern zone consists of an early Paleozoic arc accreted to the North China craton by ca. 450 Ma. The central zone, which contains numerous orogenic gold deposits, is dominated by clastic rocks formed in a late Paleozoic basin between the converging cratonic blocks. The southern zone is characterized by the easternmost exposure of Triassic sedimentary rocks of the Songpan-Ganzi basin. These Early to Late Triassic turbidities, in part calcareous, of the immense Songpan-Ganzi basin also border the western Qinling belt to the west. Carlinlike gold deposits are abundant (1) along a westward extension of the southern zone defined by a window of early Paleozoic clastic rocks extending into the basin, and (2) within the easternmost margin of the basinal rocks to the south of the extension, and in adjacent cover rocks of the Yangtze craton. Triassic and Early Jurassic synkinematic granitoids are widespread across the western Qinling belt, as well as in the Songpan-Ganzi basin. Orogenic lode gold deposits along brittle-ductile shear zones occur within greenschist-facies, highly deformed, Devonian and younger clastic rocks of the central zone. Mainly coarse-grained gold, along with pyrite, pyrrhotite, arsenopyrite, and minor base metal sulfides, occur in networks of quartz veinlets, brecciated wall rock, and are dissminated in altered wall rock. Isotopic dates suggest that the deposits formed during the Late Triassic to Middle Jurassic as the leading edge of the Yangtze craton was thrust beneath rocks of the western Qinling belt. Many gold-bearing placers are distributed along the river

  9. Mesozoic Continental Sediment-dispersal Systems of Mexico Linked to Development of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lawton, T. F.; Molina-Garza, R. S.; Barboza-Gudiño, R.; Rogers, R. D.

    2013-05-01

    Major sediment dispersal systems on western Pangea evolved in concert with thermal uplift, rift and drift phases of the Gulf of Mexico Basin, and were influenced by development of a continental arc on Pangea's western margin. Existing literature and preliminary data from fieldwork, sandstone petrology and detrital zircon analysis reveal how major drainages in Mexico changed from Late Triassic through Late Jurassic time and offer predictions for the ultimate destinations of sand-rich detritus along the Gulf and paleo-Pacific margins. Late Triassic rivers drained away from and across the present site of the Gulf of Mexico, which was then the location of a major thermal dome, the Texas uplift of recent literature. These high-discharge rivers with relatively mature sediment composition fed a large-volume submarine fan system on the paleo-Pacific continental margin of Mexico. Predictably, detrital zircon age populations are diverse and record sources as far away as the Amazonian craton. This enormous fluvial system was cut off abruptly near the Triassic-Jurassic boundary by extensive reorganization of continental drainages. Early and Middle Jurassic drainage systems had local headwaters and deposited sediment in extensional basins associated with arc magmatism. Redbeds accumulated across northern and eastern Mexico and Chiapas in long, narrow basins whose locations and dimensions are recorded primarily by inverted antiformal massifs. The Jurassic continental successions overlie Upper Triassic strata and local subvolcanic plutons; they contain interbedded volcanic rocks and thus have been interpreted as part of the Nazas continental-margin arc. The detritus of these fluvial systems is volcanic-lithic; syndepositional grain ages are common in the detrital zircon populations, which are mixed with Oaxaquia-derived Permo-Triassic and Grenville age populations. By this time, interior Pangea no longer supplied sediment to the paleo-Pacific margin, possibly because the

  10. The Lower Triassic sedimentary and carbon isotope records from Tulong (South Tibet) and their significance for Tethyan palaeoceanography

    NASA Astrophysics Data System (ADS)

    Brühwiler, Thomas; Goudemand, Nicolas; Galfetti, Thomas; Bucher, Hugo; Baud, Aymon; Ware, David; Hermann, Elke; Hochuli, Peter A.; Martini, Rossanna

    2009-12-01

    The Lower Triassic sedimentary and carbonate/organic carbon isotope records from the Tulong area (South Tibet) are documented in their integrality for the first time. New age control is provided by ammonoid and conodont biostratigraphy. The basal Triassic series consists of Griesbachian dolomitic limestones, similar to the Kathwai Member in the Salt Range (Pakistan) and to the Otoceras Beds in Spiti (India). The overlying thin-bedded limestones of Dienerian age strongly resemble the Lower Ceratite Limestone of the Salt Range. They are followed by a thick series of dark green, silty shales of Dienerian-early Smithian age without fauna that strikingly resemble the Ceratite Marls of the Salt Range. This interval is overlain by thin-bedded, light grey fossil-rich limestones of middle to late Smithian age, resembling the Upper Ceratite Limestone of the Salt Range. These are followed by a shale interval of early Spathian age that has no direct counterpart in other Tethyan sections. Carbonate production resumes during the late early and middle Spathian with the deposition of red, bioclastic nodular limestone ("Ammonitico Rosso" type facies). Apart from its colour this facies is similar to the one of the Niti Limestone in Spiti and of the Spathian nodular limestone in Guangxi (South China). As in other Tethyan localities such as Spiti, the early-middle Anisian part of the Tulong section is strongly condensed and is characterized by grey, thin-bedded limestones with phosphatized ammonoids. As for many other Tethyan localities the carbon isotope record from Tulong is characterized by a late Griesbachian-Dienerian positive δ13C carb excursion (2‰), and a very prominent positive excursion (5‰) at the Smithian-Spathian boundary, thus confirming the well-documented perturbations of the global carbon cycle following the Permian-Triassic mass extinction event.

  11. Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería basins

    NASA Astrophysics Data System (ADS)

    Montes, Camilo; Guzman, Georgina; Bayona, German; Cardona, Agustin; Valencia, Victor; Jaramillo, Carlos

    2010-10-01

    A moderate amount of vertical-axis clockwise rotation of the Santa Marta massif (30°) explains as much as 115 km of extension (stretching of 1.75) along its trailing edge (Plato-San Jorge basin) and up to 56 km of simultaneous shortening with an angular shear of 0.57 along its leading edge (Perijá range). Extensional deformation is recorded in the 260 km-wide, fan-shaped Plato-San Jorge basin by a 2-8 km thick, shallowing-upward and almost entirely fine-grained, upper Eocene and younger sedimentary sequence. The simultaneous initiation of shortening in the Cesar-Ranchería basin is documented by Mesozoic strata placed on to lower Eocene syntectonic strata (Tabaco Formation and equivalents) along the northwest-verging, shallow dipping (9-12° to the southeast) and discrete Cerrejón thrust. First-order subsidence analysis in the Plato-San Jorge basin is consistent with crustal stretching values between 1.5 and 2, also predicted by the rigid-body rotation of the Santa Marta massif. The model predicts about 100 km of right-lateral displacement along the Oca fault and 45 km of left-lateral displacement along the Santa Marta-Bucaramanga fault. Clockwise rotation of a rigid Santa Marta massif, and simultaneous Paleogene opening of the Plato-San Jorge basin and emplacement of the Cerrejón thrust sheet would have resulted in the fragmentation of the Cordillera Central-Santa Marta massif province. New U/Pb ages (241 ± 3 Ma) on granitoid rocks from industry boreholes in the Plato-San Jorge basin confirm the presence of fragments of a now segmented, Late Permian to Early Triassic age, two-mica, granitic province that once spanned the Santa Marta massif to the northernmost Cordillera Central.

  12. Lateral mobility of minibasins during shortening: Insights from the SE Precaspian Basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Duffy, Oliver B.; Fernandez, Naiara; Hudec, Michael R.; Jackson, Martin P. A.; Burg, George; Dooley, Tim P.; A-L Jackson, Christopher

    2017-04-01

    Minibasin provinces are widespread and can be found in all types of salt tectonic settings, many of which are prone to shortening. Previous studies of how minibasin provinces shorten assume that the salt between the minibasins is homogeneous and that the base of salt is flat or of low relief, such that minibasins are free to move laterally. Here we investigate how minibasin provinces respond to shortening when the lateral mobility of the minibasins is restricted by intra-salt sediment bodies. We examine a borehole-constrained, 3D seismic reflection dataset from the SE Precaspian Basin (onshore western Kazakhstan). The study area is characterised by large, supra-salt minibasins and an array of smaller intra-salt sediment packages distributed between these larger minibasins. We first outline the evidence of episodic shortening between the Late Triassic and present-day, after the onset of supra-salt minibasin subsidence. Next, we document spatial variations in shortening style, showing how these relate to the concentration of intra-salt sediment packages. Finally, we develop synoptic models showing how intra-salt sediment packages influence both the lateral mobility of minibasins during shortening and the resultant structural style, and we compare and contrast our findings with existing models and other natural examples of shortened minibasin provinces. We conclude that minibasin provinces may have different degrees of lateral mobility depending on the presence, or absence, of intrasalt barriers, and that these variations provide a first-order control on basin-shortening style and tectono-stratigraphic evolution.

  13. Timing is everything - implications of a new correlation of Triassic-Jurassic boundary successions and the Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Lindström, Sofie; van de Schootbrugge, Bas; Pedersen, Gunver K.; Alsen, Peter; Thibault, Nicolas; Hansen, Katrine H.; Dybkjær, Karen; Bjerrum, Christian J.; Nielsen, Lars Henrik

    2017-04-01

    Understanding mass extinctions requires a clear insight into the stratigraphy of boundary sections, which allows for long-distance correlations and correct distinction of the sequence of events. However, even after the ratification of a Global Stratotype Section and Point, global correlations of Triassic-Jurassic boundary (TJB) successions are hampered by the fact that many of the traditionally used fossil groups were severely affected by the end-Triassic mass extinction (ETE). Recently, a new correlation of key TJB successions in Europe, U.S.A. and Peru, based on a combination of biotic (palynology and ammonites), geochemical (δ13Corg) and radiometric (U/Pb ages) constraints, was presented. This new correlation has an impact on the causality and temporal development during the end-Triassic event, as it indicates that the bulk of the hitherto dated, high-titanium, quartz normalized volcanism of the Central Atlantic Magmatic Province (CAMP) preceded or was contemporaneous to the onset of the mass extinction. It further shows that the maximum phase of the mass extinction, which affected both the terrestrial and marine ecosystems, was associated with a major regression and repeated, enhanced earthquake activity in Europe. A subsequent transgression resulted in the formation of hiati or condensed successions in many areas in Europe. Later phases of volcanic activity of the CAMP, producing low titanium, quartz normalized and high-iron, quartz normalized basaltic rocks, continued close to the first occurrence of Jurassic ammonites and the defined TJB. This new correlations enables a reconstruction of the sequence of events; including records of e.g. pCO2 from soil carbonates and plant fossils, rare earth elements, biomarkers, charcoal, which allows an insight into the causality of this biotic crises.

  14. Triassic North American paleodrainage networks and sediment dispersal of the Chinle Formation: A quantitative approach utilizing detrital zircons

    NASA Astrophysics Data System (ADS)

    Blum, M. D.; Umbarger, K.

    2017-12-01

    The Triassic Chinle Formation is a fluvial succession deposited in a backarc setting across the present-day Colorado Plateau of the southwestern United States. Existing studies have proposed various mechanisms responsible for the unique stratigraphic architecture and depositional sequences of the Chinle. However, these studies lack necessary age control to correlate stratigraphic patterns with contemporaneous mechanisms. This study will collect new samples for detrital zircon analysis, as well as upgrade existing samples (to n=300) from Dickinson and Gehrels (2008), to improve the resolution of Triassic sediment provenance from source-to-sink. The improved dataset allows appraisal of the multiple provenance terranes that contributed to the Chinle depositional system to delineate and reconstruct paleodrainage patterns. The additional samples will be collected systematically from the base of the Chinle, and vertically throughout the section to capture a regional story of how the continental scale drainage reorganized through time. U-Pb ages of detrital zircons will be utilized to provide quantitative fingerprinting information to constrain interpretations for the origin and transport history of the Chinle fluvial succession in time and space.

  15. Paleozoic evolution of active margin basins in the southern Central Andes (northwestern Argentina and northern Chile)

    NASA Astrophysics Data System (ADS)

    Bahlburg, H.; Breitkreuz, C.

    originated as an extensional structure at the continental margin of Gondwana. Independent lines of evidence imply that basin evolution was not connected to subduction. Thus, the basin could not have been in a fore-arc position as previously postulated. Above the folded Devonian-Early Carboniferous strata, a continental volcanic arc developed from the Late Carboniferous to the Middle Triassic. It represents the link between the Choiyoi Province in central Chile and Argentina, and the Mitu Group rift in southern Peru. The volcanic arc succession is characterized by the prevalence of silicic lavas and tuffs and volcaniclastic sedimentary rocks. During the latest Carboniferous, a thick ostracod-bearing lacustrine unit formed in an extended lake in the area of the Depresión Preandina. This lake basin originated in an intra-arc tensional setting. During the Early Permian, marine limestones were deposited on a marine platform west and east of the volcanic arc, connected to the depositional area of the Copacabana Formation in southern Peru.

  16. Hydrocarbon potential of Morocco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achnin, H.; Nairn, A.E.M.

    1988-08-01

    Morocco lies at the junction of the African and Eurasian plates and carries a record of their movements since the end of the Precambrian. Four structural regions with basins and troughs can be identified: Saharan (Tarfaya-Ayoun and Tindouf basins); Anti-Atlas (Souss and Ouarzazate troughs and Boudnib basin); the Essaouria, Doukkala, Tadla, Missour, High Plateau, and Guercif basins; and Meseta and Rif (Rharb and Pre-Rif basins). The targets in the Tindouf basin are Paleozoic, Cambrian, Ordovician (clastics), Devonian (limestones), and Carboniferous reservoirs sourced primarily by Silurian shales. In the remaining basins, excluding the Rharb, the reservoirs are Triassic detritals, limestones atmore » the base of the Lias and Dogger, Malm detritals, and sandy horizons in the Cretaceous. In addition to the Silurian, potential source rocks include the Carboniferous and Permo-Carboniferous shales and clays; Jurassic shales, marls, and carbonates; and Cretaceous clays. In the Rharb basin, the objectives are sand lenses within the Miocene marls. The maturation level of the organic matter generally corresponds to oil and gas. The traps are stratigraphic (lenses and reefs) and structural (horsts and folds). The seals in the pre-Jurassic rocks are shales and evaporites; in the younger rocks, shales and marl. Hydrocarbon accumulations have been found in Paleozoic, Triassic, Liassic, Malm, and Miocene rocks.« less

  17. New Insights into the Provenance of the Southern Junggar Basin in the Jurassic from Heavy Mineral Analysis and Sedimentary Characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, T. Q.; Wu, C.; Zhu, W.

    2017-12-01

    Being a vital component of foreland basin of Central-western China, Southern Junggar Basin has observed solid evidences of oil and gas in recent years without a considerable advancement. The key reason behind this is the lack of systematic study on sedimentary provenance analysis of the Southern Junggar basin. Three parts of the Southern Junggar basin, including the western segment (Sikeshu Sag), the central segment (Qigu Fault-Fold Belt) and the eastern segment (Fukang Fault Zone), possess varied provenance systems, giving rise to difficulties for oil-gas exploration. In this study, 3468 heavy minerals data as well as the sedimentary environment analysis of 10 profiles and 7 boreholes were used to investigate the provenances of the deposits in the southern Junggar basin . Based on this research, it reveals that: Sikeshu sag initially shaped the foreland basin prototype in the Triassic and its provenance area of the sediments from the Sikeshu sag has primarily been situated in zhongguai uplift-chepaizi uplift depositional systems located in the northwestern margin of the Junggar Basin. From the early Jurassic, the key sources were likely to be late Carboniferous to early Permain post-collisional volcanic rocks from the North Tian Shan block to Centrao Tian Shan. In the Xishanyao formation, Abundant lithic metamorphic, epidote and garnet that suggests the source rocks were possibly late Carboniferous subduction-related arc volcanic rocks of the Central Tian Shan. In the Toutunhe formation, Bogda Mountains began uplifting and gradually becoming the major provenance. Moreover, the sedimentary boundaries of Junggar basin have also shifted towards the North Tian Shan again. In the late Jurassic, the conglomerates of the Kalazha formation directly overlie the fine-grained red beds of Qigu formation, which throw light on the rapid tectonic uplift of the North Tian Shan. In the eastern segment, meandering river delta and shore-lacustrine environments were fully developed

  18. Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata

    NASA Astrophysics Data System (ADS)

    Weibel, R.; Lindström, S.; Pedersen, G. K.; Johansson, L.; Dybkjær, K.; Whitehouse, M. J.; Boyce, A. J.; Leng, M. J.

    2016-08-01

    In a terrestrial Triassic-Jurassic boundary succession of southern Sweden, perfectly zoned sphaerosiderites are restricted to a specific sandy interval deposited during the end-Triassic event. Underlying and overlying this sand interval there are several other types of siderite micromorphologies, i.e. poorly zoned sphaerosiderite, spheroidal (ellipsoid) siderite, spherical siderite and rhombohedral siderite. Siderite overgrowths occur mainly as rhombohedral crystals on perfectly zoned sphaerosiderite and as radiating fibrous crystals on spheroidal siderite. Concretionary sparry, microspar and/or micritic siderite cement postdate all of these micromorphologies. The carbon isotope composition of the siderite measured by conventional mass spectrometry shows the characteristic broad span of data, probably as a result of multiple stages of microbial activity. SIMS (secondary ion mass spectrometry) revealed generally higher δ13C values for the concretionary cement than the perfectly zoned sphaerosiderite, spheroidal siderite and their overgrowths, which marks a change in the carbon source during burial. All the various siderite morphologies have almost identical oxygen isotope values reflecting the palaeo-groundwater composition. A pedogenic/freshwater origin is supported by the trace element compositions of varying Fe:Mn ratios and low Mg contents. Fluctuating groundwater is the most likely explanation for uniform repeated siderite zones of varying Fe:Mn ratios reflecting alternating physiochemical conditions and hostility to microbial life/activity. Bacterially mediated siderite precipitation likely incorporated Mn and other metal ions during conditions that are not favourable for the bacteria and continued with Fe-rich siderite precipitation as the physico-chemical conditions changed into optimal conditions again, reflecting the response to groundwater fluctuations.

  19. An interpretation of the 1996 aeromagnetic data for the Santa Cruz basin, Tumacacori Mountains, Santa Rita Mountains, and Patagonia Mountains, south-central Arizona

    USGS Publications Warehouse

    Gettings, Mark E.

    2002-01-01

    High resolution aeromagnetic survey data flown at 250 m above the terrain and 250 m line spacing over the Santa Cruz Valley and the surrounding Tumacacori, Patagonia, and Santa Rita Mountains has been interpreted by correlation of the magnetic anomaly field and various derivative maps with geologic maps. Measurements of in-situ magnetic properties of several of the map units determined whether or not mapped lithologies were responsible for observed anomalies. Correlation of the magnetic anomaly field with mapped geology shows that numerous map units of volcanic and intrusive rocks from Jurassic Middle Tertiary in age are reversely polarized, some of which have not been previously reported. Trends derived from the magnetic anomaly data correlate closely with structures from major tectonic events in the geologic history of the area including Triassic-Jurassic crustal accretion and magmatism, Laramide magmatism and tectonism, northeast-southwest Mid-Tertiary extension, and east-west Basin and Range extension. Application of two textural measures to the magnetic anomaly data, number of peaks and troughs per km (a measure of roughness) and Euclidean length per km (a measure of amplitude), delineated areas of consistent magnetic anomaly texture. These measures were successful at the delineation of areas of consistent magnetic lithology both on the surface and in the subsurface beneath basin fill. Several areas of basement prospective for mineral resources beneath basin fill were identified.

  20. New Early Triassic trace fossil records from South China: implications for biotic recovery following the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Luo, M.; George, A. D.; Chen, Z.; Zhang, Y.

    2013-12-01

    New Early Triassic trace fossil assemblages are documented from the Susong and Tianshengqiao areas in South China to evaluate the mode and tempo of biotic recovery of epifaunal and infaunal organisms following the end-Permian mass extinction. The Susong succession is exposed in Anhui area of the Lower Yangtze region and comprises mudstone and carbonate facies that record overall shallowing from offshore to supratidal settings. The Tianshengqiao succession crops out in the Luoping area, Yuannan Province of the Upper Yangtze region, and consists of mixed carbonate and siliciclastic facies which were deposited in shallow marine to offshore settings. Bivalve and conodont biostratigraphy helps constrain the chronostratigraphic framework of the Lower Triassic successions in these two sections. Griesbachian to Dieneria ichnological records in both successions are characterized by low ichnodiversity, low ichnofabric indices (ii=1-2) and low bedding plane bioturbation indices (bpbi=1-2). Higher ii (ii= 3 and 4) corresponding to densely populated diminutive Skolithos in the Tianshengqiao succession suggest an opportunistic strategy during earliest Triassic deposition. Ichnological data from the Susong succession show an increase in ichnodiversity during the Smithian. A total of 12 ichnogenera including Arenicolites, Chondrites, Gyrochorte, Laevicyclus, Monocraterion, Palaeophycus, Phycodes, Plaolites, Thalassinoides, Treptichnus, Trichichnus and one problematic trace are identified. Ichnofabric indices (ii) and bpbi increase to moderate to high levels (ii = 4-5, bpbi= 3-5). Although complex traces such as Rhizocorallium are in Spathian strata in this section, the low levels of ichnodiversity, ichnofabric indices and diminutive Planolites suggest a decline in recovery. In the Tianshengqiao succession, ichnofabric indices exhibit a moderate to high value (ii= 3 to 5), however, only six ichnogenera are found and Planolites burrows are consistently small (average diameter at 3