Science.gov

Sample records for tbc failure mechanisms

  1. Degradation Mechanisms of an Advanced Jet Engine Service-Retired TBC Component

    NASA Astrophysics Data System (ADS)

    Wu, Rudder T.; Osawa, Makoto; Yokokawa, Tadaharu; Kawagishi, Kyoko; Harada, Hiroshi

    Current use of TBCs is subjected to premature spallation failure mainly due to the formation of thermally grown oxides (TGOs). Although extensive research has been carried out to gain better understanding of the thermo - mechanical and -chemical characteristics of TBCs, laboratory-scale studies and simulation tests are often carried out in conditions significantly differed from the complex and extreme environment typically of a modern gas-turbine engine, thus, failed to truly model service conditions. In particular, the difference in oxygen partial pressure and the effects of contaminants present in the engine compartment have often been neglected. In this respect, an investigation is carried out to study the in-service degradation of an EB-PVD TBC coated nozzle-guide vane. Several modes of degradation were observed due to three factors: 1) presence of residual stresses induced by the thermal-expansion mismatches, 2) evolution of bond coat microstructure and subsequent formation of oxide spinels, 3) deposition of CMAS on the surface of TBC.

  2. Scale Adhesion, Sulfur Content, and TBC Failure on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2002-01-01

    This paper summarizes the main effects of sulfur impurity content on the cyclic oxidation resistance of single crystal superalloys, with emphasis on scale and TBC adhesion. Eleven hundred degrees C cyclic oxidation of PWA 1480 produces scale spallation leading to a weight loss of more than 30 Mg/sq cm after 500 one-hr cycles for a sulfur content of 6 ppmw. The sulfur content was reduced to levels below 0.1 ppmw by hydrogen annealing, resulting in weight gains of only 0.5 to 1.0 Mg/sq cm after 1000 one-hr cycles. Samples were produced with various sulfur contents by adjusting the annealing temperature, time, and sample thickness (i.e., diffusion product Dt/L(exp 2)). The subsequent cyclic oxidation behavior, mapped over a sulfur content/thickness diagram, shows a transition to adherent behavior at sulfur levels equivalent to 1 monolayer of total segregation. Additional information is contained in the original extended abstract.

  3. Fatigue Testing of TBC on Structural Steel by Cyclic Bending

    NASA Astrophysics Data System (ADS)

    Musalek, Radek; Kovarik, Ondrej; Medricky, Jan; Curry, Nicholas; Bjorklund, Stefan; Nylen, Per

    2015-01-01

    For applications with variable loading, fatigue performance of coated parts is of utmost importance. In this study, fatigue performance of conventional structural steel coated with thermal barrier coating (TBC) was evaluated in cyclic bending mode by "SF-Test" device. Testing was carried out at each stage of the TBC preparation process, i.e., for as-received and grit-blasted substrates, as well as for samples with Ni-based bond-coat and complete TBC: bond-coat with YSZ-based top-coat. Comparison of results obtained for different loading amplitudes supplemented by fractographic analysis enabled identification of dominating failure mechanisms and demonstrated applicability of the high-frequency resonant bending test for evaluation of fatigue resistance alteration at each stage of the TBC deposition process.

  4. Failure Mechanism for Thermal Fatigue of Thermal Barrier Coating Systems

    NASA Astrophysics Data System (ADS)

    Giolli, C.; Scrivani, A.; Rizzi, G.; Borgioli, F.; Bolelli, G.; Lusvarghi, L.

    2009-06-01

    Thick thermal barrier coatings (TBCs), consisting of a CoNiCrAlY bond coat and yttria-partially stabilized zirconia top coat with different porosity values, were produced by air plasma spray (APS). The thermal fatigue resistance limit of the TBCs was tested by furnace cycling tests (FCT) according to the specifications of an original equipment manufacturer (OEM). The morphology, residual stresses, and micromechanical properties (microhardness, indentation fracture toughness) of the TBC systems before and after FCT were analyzed. The thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling; nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/top coat interface. The failure mechanism of thick TBCs was found to be similar to that of conventional thin TBC systems made by APS.

  5. Mechanisms of thermal barrier coating degradation and failure

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.; Sheffler, K. D.

    1985-01-01

    The objectives and initial results of a Thermal Barrier Coating (TBC) Life Prediction Model Development Program are described. The goals of this program are to: identify and understand TBC failure modes; generate quantitative TBC life data; and develop and verify a TBC life prediction model. The coating being studied is a two layer thermal barrier system incorporating a nominal ten mil outer layer of seven percent yttria partially stabilized zirconia plasma deposited over an inner layer of highly oxidation resistant low pressure plasma sprayed NiCrAlY bond coating. This coating currently is in flight service on turbine vane platforms in the JT-9D and PW2037 engines and is bill-of- material on turbine vane airfoils in the advanced PW4000 and IAE V2500 engines. Effort currently is in progress on the first task, which involves the identification and understanding of TBC failures. Five modes of coating damage were considered: thermomechanical ceramic failure; oxidative bond coat failure; hot corrosion; foreign object damage (FOD); and erosion.

  6. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation

    SciTech Connect

    Kong, Chen; Lange, Jeffrey J.; Samovski, Dmitri; Su, Xiong; Liu, Jialiu; Sundaresan, Sinju; Stahl, Philip D.

    2013-05-03

    Highlights: •Hominoid-specific oncogene TBC1D3 is targeted to plasma membrane by palmitoylation. •TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. •TBC1D3 palmitoylation governs growth factors-induced TBC1D3 degradation. •Post-translational modifications may regulate oncogenic properties of TBC1D3. -- Abstract: Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.

  7. Damage mechanics - failure modes

    SciTech Connect

    Krajcinovic, D.; Vujosevic, M.

    1996-12-31

    The present study summarizes the results of the DOE sponsored research program focused on the brittle failure of solids with disordered microstructure. The failure is related to the stochastic processes on the microstructural scale; namely, the nucleation and growth of microcracks. The intrinsic failure modes, such as the percolation, localization and creep rupture, are studied by emphasizing the effect of the micro-structural disorder. A rich spectrum of physical phenomena and new concepts that emerges from this research demonstrates the reasons behind the limitations of traditional, deterministic, and local continuum models.

  8. Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen

    NASA Astrophysics Data System (ADS)

    Subramanian, Rajivgandhi; Mori, Yuzuru; Yamagishi, Satoshi; Okazaki, Masakazu

    2015-09-01

    Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.

  9. Failure Mode/Mechanism Distributions

    DTIC Science & Technology

    1991-09-01

    Boards: Flashover (24996-000,NR) Broken NR Terminal Boards: Mechanical Breakage (24996-000,NR) Cortact Failure MR Terminals: (Intermittent contact... mechanism data on of various discrete semiconductor device types. The data has been compiled from reports of reliability demonstration tests conducted in...Room 3C0, Fnrbes Bu ilinn. Order No. FMD-91 Failure Mode/ Mechanism Distributions DTiC QUALIi INSPECTED 5 1991 Ace 94taa Yor SNTTS ai Prepared by: ,= t

  10. Metabolic mechanisms in heart failure.

    PubMed

    Ashrafian, Houman; Frenneaux, Michael P; Opie, Lionel H

    2007-07-24

    Although neurohumoral antagonism has successfully reduced heart failure morbidity and mortality, the residual disability and death rate remains unacceptably high. Though abnormalities of myocardial metabolism are associated with heart failure, recent data suggest that heart failure may itself promote metabolic changes such as insulin resistance, in part through neurohumoral activation. A detrimental self-perpetuating cycle (heart failure --> altered metabolism --> heart failure) that promotes the progression of heart failure may thus be postulated. Accordingly, we review the cellular mechanisms and pathophysiology of altered metabolism and insulin resistance in heart failure. It is hypothesized that the ensuing detrimental myocardial energetic perturbations result from neurohumoral activation, increased adverse free fatty acid metabolism, decreased protective glucose metabolism, and in some cases insulin resistance. The result is depletion of myocardial ATP, phosphocreatine, and creatine kinase with decreased efficiency of mechanical work. On the basis of the mechanisms outlined, appropriate therapies to mitigate aberrant metabolism include intense neurohumoral antagonism, limitation of diuretics, correction of hypokalemia, exercise, and diet. We also discuss more novel mechanistic-based therapies to ameliorate metabolism and insulin resistance in heart failure. For example, metabolic modulators may optimize myocardial substrate utilization to improve cardiac function and exercise performance beyond standard care. The ultimate success of metabolic-based therapy will be manifest by its capacity further to lessen the residual mortality in heart failure.

  11. The lustering of TBC-2

    SciTech Connect

    Diver, R.B.; Jones, S.; Robb, S.; Mahoney, A.R.

    1995-05-01

    Two test bed concentrators (TBCs) were designed to provide high-performance test beds for advanced solar receivers and converters. However, the second-surface silvered-glass mirror facets on the TBCs, which were originally manufactured by the Jet Propulsion Laboratory, have experienced severe silver corrosion. To restore reflectance, TBC-2 was refurbished with a lustering technique developed at Sandia National Laboratories. In the lustering technique, second-surface silvered thin-glass mirrors were applied over the corroded facets, thereby increasing the dish reflectivity and raising the available power of TBC-2 from approximately 70 to 78 kW{sub t}. Degradation of the original optical accuracy of the TBC facets was determined to be minimal. Lustering was chosen over facet replacement because of the lower cost, the anticipated improvement in corrosion resistance, and the shorter project duration. This report includes background information, details of the lustering process, and test results from TBC-2 characterization, both before and after lustering.

  12. Stresses and Cracking During Chromia-Spinel-NiO Cluster Formation in TBC Systems

    NASA Astrophysics Data System (ADS)

    Eriksson, Robert; Gupta, Mohit; Broitman, Esteban; Jonnalagadda, Krishna Praveen; Nylén, Per; Lin Peng, Ru

    2015-08-01

    Thermal barrier coatings (TBC) are used in gas turbines to reduce the temperatures in the underlying substrate. There are several mechanisms that may cause the TBC to fail; one of them is cracking in the coating interface due to extensive oxidation. In the present study, the role of so called chromia-spinel-NiO (CSN) clusters in TBC failure was studied. Such clusters have previously been found to be prone to cracking. Finite element modeling was performed on a CSN cluster to find out at which stage of its formation it cracks and what the driving mechanisms of cracking are. The geometry of a cluster was obtained from micrographs and modeled as close as possible. Nanoindentation was performed on the cluster to get the correct Young's moduli. The volumetric expansion associated with the formation of NiO was also included. It was found that the cracking of the CSN clusters is likely to occur during its last stage of formation as the last Ni-rich core oxidizes. Furthermore, it was shown that the volumetric expansion associated with the oxidation only plays a minor role and that the main reason for cracking is the high coefficient of thermal expansion of NiO.

  13. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    SciTech Connect

    Gleeson, Brian

    2014-09-30

    Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potential to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K2SO4, and FeS) and environmental oxidants (i.e., O2, H2O and CO2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.

  14. Parametric Studies Of Failure Mechanisms In Thermal Barrier Coatings During Thermal Cycling Using FEM

    NASA Astrophysics Data System (ADS)

    Srivathsa, B.; Das, D. K.

    2015-12-01

    Thermal barrier coatings (TBCs) are widely used on different hot components of gas turbine engines such as blades and vanes. Although, several mechanisms for the failure of the TBCs have been suggested, it is largely accepted that the durability of these coatings is primarily determined by the residual stresses that are developed during the thermal cycling. In the present study, the residual stress build-up in an electron beam physical vapour deposition (EB-PVD) based TBCs on a coupon during thermal cycling has been studied by varying three parameters such as the cooling rate, TBC thickness and substrate thickness. A two-dimensional thermomechanical generalized plane strain finite element simulations have been performed for thousand cycles. It was observed that these variations change the stress profile significantly and the stress severity factor increases non-linearly. Overall, the predictions of the model agree with reported experimental results and help in predicting the failure mechanisms.

  15. Sulfur and Moisture Effects on Alumina Scale and TBC Spallation

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2007-01-01

    cause is related to a hydrogen embrittlement reaction: Al alloy + 3 H2O = Al(OH)3 + 3H(+) + 3e(-). This mechanism is derived from an analogous moisture-induced hydrogen embrittlement mechanism originally shown for Ni3Al and FeAl intermetallics. Consequently, a cathodic hydrogen charging technique was used to demonstrate that electrolytic de-scaling occurs for these otherwise adherent alumina scales formed on Y-doped Rene'N5, in support of hydrogen effects. Finally, some TBC observations are discussed in light of all of the above. Plasma sprayed 8YSZ coatings, produced on PWA1484 without a bond coat, were found to survive more than 1000 1-hr cycles at 1100 C when desulfurized to below 0.1 ppmw. At higher sulfur (1.2 ppmw) levels, moisture sensitivity and delayed TBC failure, referred to as Desk Top Spallation, occurred at just 200 hr. Despite a large degree of scatter, a factor of 5 in life improvement is indicated for desulfurized samples in cyclic furnace tests, confirming the beneficial effect of low sulfur alloys on model TBC systems. (DTS and moisture effects are also observed on commercially applied PVD 7YSZ coatings on Rene'N5+Y with Pt-aluminide bond coats). These types of catastrophic failure were subverted on the model system by segmenting the substrate into a network of 0.010 high ribs, spaced in. apart, prior to plasma spraying. No failures occurred after 1000 cycles at 1150 C or after 2000 cycles at 1100 C, even after water immersion. The benefit is described in terms of elasticity models and a critical buckling stress.

  16. Mechanical Failure Prognosis Through Oil Debris Monitoring

    DTIC Science & Technology

    1975-01-01

    AD/A-006 19U MECHANICAL FAILURE PROGNOSIS THROUGH OIL DEBRIS MONITORING Alan Beex"bower Exxon Research and Engineering Company Prepared...PERIOD COVERED Final Report 18 June 1973 to 1 August 197A 4. TITLE (•«id Subl/rl«) MECHANICAL FAILURE PROGNOSIS THROUGH OIL DEBRIS ...Company project entitled "Mechanical Failure Prognosis through Debris Analysis." This study was conducted for the Eustis Directorate, U.S. Army Air

  17. Crystal structure of TBC1D15 GTPase-activating protein (GAP) domain and its activity on Rab GTPases.

    PubMed

    Chen, Yan-Na; Gu, Xin; Zhou, X Edward; Wang, Weidong; Cheng, Dandan; Ge, Yinghua; Ye, Fei; Xu, H Eric; Lv, Zhengbing

    2017-04-01

    TBC1D15 belongs to the TBC (Tre-2/Bub2/Cdc16) domain family and functions as a GTPase-activating protein (GAP) for Rab GTPases. So far, the structure of TBC1D15 or the TBC1D15·Rab complex has not been determined, thus, its catalytic mechanism on Rab GTPases is still unclear. In this study, we solved the crystal structures of the Shark and Sus TBC1D15 GAP domains, to 2.8 Å and 2.5 Å resolution, respectively. Shark-TBC1D15 and Sus-TBC1D15 belong to the same subfamily of TBC domain-containing proteins, and their GAP-domain structures are highly similar. This demonstrates the evolutionary conservation of the TBC1D15 protein family. Meanwhile, the newly determined crystal structures display new variations compared to the structures of yeast Gyp1p Rab GAP domain and TBC1D1. GAP assays show that Shark and Sus GAPs both have higher catalytic activity on Rab11a·GTP than Rab7a·GTP, which differs from the previous study. We also demonstrated the importance of arginine and glutamine on the catalytic sites of Shark GAP and Sus GAP. When arginine and glutamine are changed to alanine or lysine, the activities of Shark GAP and Sus GAP are lost.

  18. Enigmatic Moisture Effects on Al2O3 Scale and TBC Adhesion

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    Alumina scale adhesion to high temperature alloys is known to be affected primarily by sulfur segregation and reactive element additions. However adherent scales can become partially compromised by excessive strain energy and cyclic cracking. With time, exposure of such scales to moisture can lead to spontaneous interfacial decohesion, occurring while the samples are maintained at ambient conditions. Examples of this Moisture-Induced Delayed Spallation (MIDS) are presented for NiCrAl and single crystal superalloys, becoming more severe with sulfur level and cyclic exposure conditions. Similarly, delayed failure or Desk Top Spallation (DTS) results are reviewed for TBC s, culminating in the water drop failure test. Both phenomena are discussed in terms of moisture effects on bulk alumina and bulk aluminides. A mechanism is proposed based on hydrogen embrittlement and is supported by a cathodic hydrogen charging experiment. Hydroxylation of aluminum from the alloy interface appears to be the relevant basic reaction.

  19. Field failure mechanisms for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Dumas, L. N.; Shumka, A.

    1981-01-01

    Beginning in 1976, Department of Energy field centers have installed and monitored a number of field tests and application experiments using current state-of-the-art photovoltaic modules. On-site observations of module physical and electrical degradation, together with in-depth laboratory analysis of failed modules, permits an overall assessment of the nature and causes of early field failures. Data on failure rates are presented, and key failure mechanisms are analyzed with respect to origin, effect, and prospects for correction. It is concluded that all failure modes identified to date are avoidable or controllable through sound design and production practices.

  20. IUD failures--possible mechanisms.

    PubMed

    Barwin, B N; Gillieson, M

    1983-09-01

    Failure rates with IUDs have decreased markedly due to better design and increased surface area, as well as the addition of copper and progesterone agents. There is a constant pregnancy rate for all devices varying between 0.7 and 3.6 for 100 woman years' use. Ultrasound scans were carried out in 23 patients with positive pregnancy tests. With the exception of 5 pregnancies, 18 IUDs were located in the lower segment of the uterus below the gestational sac. This was probably as a result of 1 or more of the following: poor IUD positioning, partial expulsion of the IUD, malposition of IUD, abnormal geometry of the uterine cavity, myometrial contractions, impeded or diminished immunological response to a foreign body, antiprostaglandins, and rate of calcium or other deposits on the copper IUD. When the IUD was below the gestational sac as demonstrated by ultrasound, IUD removal resulted in no spontaneous abortions.

  1. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  2. Molecular Mechanisms of Right Ventricular Failure

    PubMed Central

    Reddy, Sushma; Bernstein, Daniel

    2015-01-01

    An abundance of data has provided insight into the mechanisms underlying the development of left ventricular (LV) hypertrophy and its progression to LV failure. In contrast, there is minimal data on the adaptation of the right ventricle (RV) to pressure and volume overload and the transition to RV failure. This is a critical clinical question, as the RV is uniquely at risk in many patients with repaired or palliated congenital heart disease and in those with pulmonary hypertension. Standard heart failure therapies have failed to improve function or survival in these patients, suggesting a divergence in the molecular mechanisms of RV vs. LV failure. Although, on the cellular level, the remodeling responses of the RV and LV to pressure overload are largely similar, there are several key differences: the stressed RV is more susceptible to oxidative stress, has a reduced angiogenic response, and is more likely to activate cell death pathways than the stressed LV. Together, these differences could explain the more rapid progression of the RV to failure vs. the LV. This review will highlight known molecular differences between the RV and LV responses to hemodynamic stress, the unique stressors on the RV associated with congenital heart disease, and the need to better understand these molecular mechanisms if we are to develop RV-specific heart failure therapeutics. PMID:26527692

  3. Moisture-Induced TBC Spallation on Turbine Blade Samples

    NASA Technical Reports Server (NTRS)

    Smialek, James

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. The weekend effect or DeskTop Spallation (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond coat are reported. Cut sections were intermittently oxidized at 1100, 1150, and 1200 C and monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that embrittle the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  4. Moisture-Induced TBC Spallation on Turbine Blade Samples

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. "The weekend effect" or "DeskTop Spallation" (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that 'embrittle' the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  5. Economics of mechanical ventilation and respiratory failure.

    PubMed

    Cooke, Colin R

    2012-01-01

    For patients with acute respiratory failure, mechanical ventilation provides the most definitive life-sustaining therapy. Because of the intense resources required to care for these patients, its use accounts for considerable costs. There is great societal need to ensure that use of mechanical ventilation maximizes societal benefits while minimizing costs, and that mechanical ventilation, and ventilator support in general, is delivered in the most efficient and cost-effective manner. This review summarizes the economic aspects of mechanical ventilation and summarizes the existing literature that examines its economic impact cost effectiveness.

  6. Mechanical circulatory devices in acute heart failure.

    PubMed

    Teuteberg, Jeffrey J; Chou, Josephine C

    2014-07-01

    Cardiogenic shock remains a leading cause of mortality despite advances in the treatment of myocardial infarction and advanced heart failure. Medical therapy can be inadequate, and patients may need mechanical circulatory support (MCS). The proper application of MCS requires knowledge of the underlying cause of acute heart failure, familiarity with the circulatory support devices, and the potential benefits and limitations of device therapy. This article describes the most commonly used temporary ventricular assist devices and their use in the various causes of cardiogenic shock.

  7. Basic failure mechanisms in advanced composites

    NASA Technical Reports Server (NTRS)

    Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.

    1972-01-01

    Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.

  8. Mechanical circulatory support in heart failure

    PubMed Central

    Szczurek, Wioletta; Suliga, Kamil; Rempega, Grzegorz; Rajwa, Paweł

    2016-01-01

    The increasing number of end-stage heart failure patients eligible for heart transplant and the disproportionately low number of donor hearts have led to increased interest in ventricular assist devices (VAD). These devices can be used as a bridge to decision, bridge to recovery, or bridge to candidacy. The main advantage of mechanical circulatory support (MCS) is the improvement of organ perfusion and function, which leads to better quality of life and survival. The MCS can also be used as a destination therapy in end-stage heart failure patients who are not eligible for heart transplant. It should be remembered that, despite the tangible benefits, VAD implantation may also be associated with the risk of serious complications, such as bleeding, infection, arrhythmias, blood clots, right ventricular failure, and cardiovascular events. This study presents an up-to-date overview of the current knowledge on the role of MCS in modern medicine. PMID:27516785

  9. Basic failure mechanisms in advanced composites

    NASA Technical Reports Server (NTRS)

    Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.

    1971-01-01

    Fundamental failure mechanisms in carbon-epoxy composites were studied for more reliable prediction of the performance of these materials. Single and multiple fiber specimens were tested under tensile loads, and the sequence of failure events was observed. Parameters such as resin crack sensitivity, fiber surface treatment and variations in fibers from batch to batch are being evaluated. The analysis of bulk composite fracture processes using acoustic emission techniques is being studied in order to correlate microscopic observations with bulk composite behavior. Control of the fracture process through matrix and interface modification is being attempted, and study of failure processes in composite/metal specimens is being conducted. Most of the studies involved DEN 438 epoxy novolac as the matrix, but some experiments are now underway using the higher temperature resin ERLA 4617.

  10. Cyclic Failure Mechanisms of Thermal and Environmental Barrier Coating Systems Under Thermal Gradient Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Plasma-sprayed ZrO2-8wt%Y2O3 and mullite+BSAS/Si multilayer thermal and environmental barrier coating (TBC-EBC) systems on SiC/SiC ceramic matrix composite (CMC) substrates were thermally cyclic tested under high thermal gradients using a laser high-heat-flux rig in conjunction with furnace exposure in water-vapor environments. Coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after exposure. Sintering kinetics of the coating systems were also independently characterized using a dilatometer. It was found that the coating failure involved both the time-temperature dependent sintering and the cycle frequency dependent cyclic fatigue processes. The water vapor environments not only facilitated the initial coating conductivity increases due to enhanced sintering and interface reaction, but also promoted later conductivity reductions due to the accelerated coating cracking and delamination. The failure mechanisms of the coating systems are also discussed based on the cyclic test results and are correlated to the sintering and thermal stress behavior under the thermal gradient test conditions.

  11. PmTBC1D20, a Rab GTPase-activating protein from the black tiger shrimp, Penaeus monodon, is involved in white spot syndrome virus infection.

    PubMed

    Yingvilasprasert, Wanchart; Supungul, Premruethai; Tassanakajon, Anchalee

    2014-02-01

    TBC (TRE2/BUB2/CDC16) domain proteins contain an ≈ 200-amino-acid motif and function as Rab GTPase-activating proteins that are required for regulating the activity of Rab proteins, and so, in turn, endocytic membrane trafficking in cells. TBC domain family member 20 (TBC1D20) has recently been reported to mediate Hepatitis C virus replication. Herein, PmTBC1D20 identified from the black tiger shrimp, Penaeus monodon, was characterized and evaluated for its role in white spot syndrome virus (WSSV) infection. The full-length cDNA sequence of PmTBC1D20 contains 2003 bp with a predicted 1443 bp open reading frame encoding a deduced 480 amino acid protein. Its transcript levels were significantly up-regulated at 24 and 48 h by ≈ 2.3- and 2.1-fold, respectively, after systemic infection with WSSV. In addition, depletion of PmTBC1D20 transcript in shrimps by double stranded RNA interference led to a decrease in the level of transcripts of three WSSV genes (VP28, ie1 and wsv477). This suggests the importance of PmTBC1D20 in WSSV infection. This is the first report of TBC1D20 in a crustacean and reveals the possible mechanism used by WSSV to modulate the activity of the host protein, PmTBC1D20, for its benefit in viral trafficking and replication.

  12. Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Compiler); Shuart, M. J. (Compiler); Starnes, J. H., Jr. (Compiler); Williams, J. G. (Compiler)

    1983-01-01

    The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research.

  13. Mechanical failure of cavities in poroelastic media

    SciTech Connect

    Ozkan, G.; Ortoleva, P.

    1998-12-31

    The stress-induced failure of cavities in poroelastic media is investigated using an analytical solution of the elastic matrix inclusion problem of Eshelby and a rock failure criterion. The elastic properties of the porous matrix surrounding the cavity are modeled using a self-consistent version of the theory of Berryman while the cavity collapse criterion is based on a failure condition calibrated as a function of matrix mineralogy, grain size and porosity. The influence of the latter textural variables as well as pore fluid pressure and cavity shape and orientation relative to the far-field stress are evaluated. The region of failure on the cavity surface is identified. These results are applied to the prediction of vug stability in a sedimentary basin in the context of vuggy reservoir exploration and production.

  14. 76 FR 5494 - Pipeline Safety: Mechanical Fitting Failure Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... ``compression coupling'' to ``mechanical fitting,'' aligns a threat category with the annual report; and... announces the OMB approval of the revised Distribution Annual Report and a new Mechanical Fitting Failure... failures annually on the Annual Report Form by March 15, 2011. PHMSA used the DIMP final rule to open up...

  15. Failure mechanisms of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Krishnakumar

    Thermal barrier coatings (TBCs) allow operation of structural components, such as turbine blades and vanes in industrial and aircraft gas engines, at temperatures close to the substrate melting temperatures. They consist of four different layers; a high strength creep-resistant nickel-based superalloy substrate, an oxidation resistant bond coat (BC), a low thermal conductivity ceramic topcoat and a thermally grown oxide (TGO), that is predominantly alpha-Al 2O3, that forms between the BC and the TBC. Compressive stresses (3--5 GPa) that are generated in the thin TGO (0.25--8 mum) due to the mismatch in thermal coefficient of expansion between the TGO and BC play a critical role in the failure of these coatings. In this study, the failure mechanisms of a commercial yttria-stabilized zirconia (7YSZ) electron beam-physical vapor deposited (EB-PVD) coating on platinum aluminide (beta-(Ni,Pt)Al) bond coat have been identified. Two distinct mechanisms have been found responsible for the observed damage initiation and progression at the TGO/bond coat interface. The first mechanism leads to localized debonding at TGO/bond coat interface due to increased out-of-plane tensile stress, along bond coat features that manifest themselves as ridges. The second mechanism causes cavity formation at the TGO/bond coat interface, driven by cyclic plasticity of the bond coat. It has been found that the debonding at the TGO/bond coat interface due to the first mechanism is solely life determining. The final failure occurs by crack extension along either the TGO/bond coat interface or the TGO/YSZ interface or a combination of both, leading to large scale buckling. Based on these mechanisms, it is demonstrated that the bond coat grain size and the aspect ratio of the ridges have a profound influence on spallation lives of the coating. The removal of these ridges by fine polishing prior to TBC deposition led to a four-fold improvement in life. The failure mechanism identified for the

  16. Failure criterion for materials with spatially correlated mechanical properties.

    PubMed

    Faillettaz, J; Or, D

    2015-03-01

    The role of spatially correlated mechanical elements in the failure behavior of heterogeneous materials represented by fiber bundle models (FBMs) was evaluated systematically for different load redistribution rules. Increasing the range of spatial correlation for FBMs with local load sharing is marked by a transition from ductilelike failure characteristics into brittlelike failure. The study identified a global failure criterion based on macroscopic properties (external load and cumulative damage) that is independent of spatial correlation or load redistribution rules. This general metric could be applied to assess the mechanical stability of complex and heterogeneous systems and thus provide an important component for early warning of a class of geophysical ruptures.

  17. Failure mechanism characterization of platinum alloy

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Mcfarlen, W. T.

    1986-01-01

    This article describes procedures and results of testing performed on a platinum/10-percent rhodium, thin-wall tubular product. The purpose of the testing was to develop exemplar SEM fractographs to be used to characterize failures under various environmental conditions. Conditions evaluated for the platinum alloys included high temperature, hydrogen environment, braze metal contamination, and cyclic loading.

  18. Thesaurus of terms for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.

    1973-01-01

    A Thesaurus of approximately 700 subject terms used to describe the six problem areas in the mechanics of structural failure is presented. The initial criteria for the selection of terms are their significance and frequency of use in the literature describing the mechanics of structural failure. The purpose of the Thesaurus is to provide the Aerospace Safety Research and Data Institute a list of key works and identifiers that afford effective retrieval of information regarding failure modes and mechanisms for aerospace structures. The Thesaurus includes both a conventional listing of subject terms and a Key Words In Context (KWIC) listing.

  19. Effect of Increased Water Vapor Levels on TBC Lifetime

    SciTech Connect

    Pint, Bruce A; Garner, George Walter; Lowe, Tracie M; Haynes, James A; Zhang, Ying

    2011-01-01

    To investigate the effect of increased water vapor levels on thermal barrier coating (TBC) lifetime, furnace cycle tests were performed at 1150 C in air with 10 vol.% water vapor (similar to natural gas combustion) and 90 vol.%. Either Pt diffusion or Pt-modified aluminide bond coatings were applied to specimens from the same batch of a commercial second-generation single-crystal superalloy and commercial vapor-deposited yttria-stabilized zirconia (YSZ) top coats were applied. Three coatings of each type were furnace cycled to failure to compare the average lifetimes obtained in dry O{sub 2}, using the same superalloy batch and coating types. Average lifetimes with Pt diffusion coatings were unaffected by the addition of water vapor. In contrast, the average lifetime of Pt-modified aluminide coatings was reduced by more than 50% with 10% water vapor but only slightly reduced by 90% water vapor. Based on roughness measurements from similar specimens without a YSZ coating, the addition of 10% water vapor increased the rate of coating roughening more than 90% water vapor. Qualitatively, the amount of {beta}-phase depletion in the coatings exposed in 10% water vapor did not appear to be accelerated.

  20. IMPERMEABLE THIN AL2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2002-01-31

    In order to improve the hot corrosion resistance of conventional YSZ TBC system, the overlay of Al{sub 2}O{sub 3} coating was deposited on the TBC by EB-PVD techniques. Hot corrosion tests were carried out on the TBC with and without Al{sub 2}O{sub 3} coating in molten salts mixtures (Na{sub 2}SO{sub 4} + 5%V{sub 2}O{sub 5}) at 950 C for 10h. The microstructures of TBC and overlay before and after exposure were examined by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDX) and X-ray diffraction (XRD). It has been found that TBC will react with V{sub 2}O{sub 5} to form YVO{sub 4}. A substantial amount of M-phase was formed due to the leaching of Y{sub 2}O{sub 3} from YSZ. Al{sub 2}O{sub 3} overlay coating deposited by EB-PVD was dense, continues and adherent to the TBC. As a result, overlay Al{sub 2}O{sub 3} coating can prevent the YSZ from the attack by molten salts containing vanadium and arrest the penetration of salts into the YSZ along porous and cracks in the YSZ TBC, although there were some cracks in overlay Al{sub 2}O{sub 3} coating and at the interface between alumina and zirconia formed during hot corrosion tests due to the presence of tensile stress in the alumina coating. In the next reporting period, we will study the mechanisms of cracking of the overlay Al{sub 2}O{sub 3} layer and finish the hot corrosion tests of TBC with Al{sub 2}O{sub 3} coating deposited by high velocity oxy-fuel (HVOF) technique. The hot corrosion test of TBC with EB-PVD deposited Al{sub 2}O{sub 3} coating will be again performed. However before hot corrosion tests, a post-annealing will be carried out in vacuum (residual pressure 10{sup -3} Pa) at 1273K for 1h in order to transform the as-sputtered Al{sub 2}O{sub 3} overlay to crystalline {alpha}-Al{sub 2}O{sub 3} overlay.

  1. Mechanical failure and glass transition in metallic glasses

    SciTech Connect

    Egami, Takeshi

    2011-01-01

    The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  2. 77 FR 34457 - Pipeline Safety: Mechanical Fitting Failure Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Mechanical Fitting Failure Reports AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice; Issuance...

  3. TBC1D24 genotype–phenotype correlation

    PubMed Central

    Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico

    2016-01-01

    Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533

  4. Failure mechanisms of fibrin-based surgical tissue adhesives

    NASA Astrophysics Data System (ADS)

    Sierra, David Hugh

    A series of studies was performed to investigate the potential impact of heterogeneity in the matrix of multiple-component fibrin-based tissue adhesives upon their mechanical and biomechanical properties both in vivo and in vitro. Investigations into the failure mechanisms by stereological techniques demonstrated that heterogeneity could be measured quantitatively and that the variation in heterogeneity could be altered both by the means of component mixing and delivery and by the formulation of the sealant. Ex vivo tensile adhesive strength was found to be inversely proportional to the amount of heterogeneity. In contrast, in vivo tensile wound-closure strength was found to be relatively unaffected by the degree of heterogeneity, while in vivo parenchymal organ hemostasis in rabbits was found to be affected: greater heterogeneity appeared to correlate with an increase in hemostasis time and amount of sealant necessary to effect hemostasis. Tensile testing of the bulk sealant showed that mechanical parameters were proportional to fibrin concentration and that the physical characteristics of the failure supported a ductile mechanism. Strain hardening as a function of percentage of strain, and strain rate was observed for both concentrations, and syneresis was observed at low strain rates for the lower fibrin concentration. Blister testing demonstrated that burst pressure and failure energy were proportional to fibrin concentration and decreased with increasing flow rate. Higher fibrin concentration demonstrated predominately compact morphology debonds with cohesive failure loci, demonstrating shear or viscous failure in a viscoelastic rubbery adhesive. The lower fibrin concentration sealant exhibited predominately fractal morphology debonds with cohesive failure loci, supporting an elastoviscous material condition. The failure mechanism for these was hypothesized and shown to be flow-induced ductile fracture. Based on these findings, the failure mechanism was

  5. Rab28 is a TBC1D1/TBC1D4 substrate involved in GLUT4 trafficking.

    PubMed

    Zhou, Zhou; Menzel, Franziska; Benninghoff, Tim; Chadt, Alexandra; Du, Chen; Holman, Geoffrey D; Al-Hasani, Hadi

    2017-01-01

    The Rab-GTPase-activating proteins (GAPs) TBC1D1 and TBC1D4 play important roles in the insulin-stimulated translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane in muscle cells and adipocytes. We identified Rab28 as a substrate for the GAP domains of both TBC1D1 and TBC1D4 in vitro. Rab28 is expressed in adipose cells and skeletal muscle, and its GTP-binding state is acutely regulated by insulin. We found that in intact isolated mouse skeletal muscle, siRNA-mediated knockdown of Rab28 decreases basal glucose uptake. Conversely, in primary rat adipose cells, overexpression of Rab28-Q72L, a constitutively active mutant, increases basal cell surface levels of an epitope-tagged HA-GLUT4. Our results indicate that Rab28 is a novel GTPase involved in the intracellular retention of GLUT4 in insulin target cells.

  6. Intrinsic mechanisms of multilayer ceramic capacitor failure

    NASA Astrophysics Data System (ADS)

    Burton, L. C.

    1985-04-01

    The possible role of grain boundaries (GB) in MLC capacitors, with respect to insulation resistance and its degradation, is reviewed. Activation energy (E sub A) can be related directly to GB barrier height, Phi sub B. The voltage dependent activation energies for poly-Si, ZnO varistors and PTC devices has been attributed directly to E sub A. Varistor and PTC device degradation is caused GB passivation. A similar voltage dependence is reported here for barrier layer and COG capacitor types where E sub A decreases from 0.91 to 0.44eV and from 1.61 to 0.90eV respectively, with concurrent super-ohmic increases in leakage current. Such a voltage dependent E sub A is not seen for X7R devices, even though the current is super-ohmic. Reasons to account for this are discussed. It is concluded that the GB potential barrier may offer a major source of impedance to leakage current for MLC capacitors, and its decrease may result in failure. It has been ascertained that E sub A decreases for degraded X7R devices, with an increase in the I-V slope. These results are consistent with our earlier reports on degraded devices, and with the space charge limited current model for emission from electrodes. X7R chips with no internal electrodes exhibit both ohmic and super-ohmic characteristics, with activation energies independent of voltage. A near-exponential rate of current increase with time, accompanied by a linear decrease in E sub A, was seen for both X7R and Z5U capacitors.

  7. Static strength and failure mechanism of CFRP under biaxial loadings

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Hwang, W.; Park, H. C.; Han, K. S.

    1998-01-01

    Tests of cross-ply composite tubes were performed under combined axial and torsional loading up to failure. Strength properties and failure mechanisms were evaluated with reference to the biaxiality ratio of the loading. The scattering of the biaxial strength data was analyzed using the Weibull distribution. The axial contraction of carbon fiber-reinforced plastic (CFRP) tubes under biaxial loading was investigated theoretically and experimentally. Artificial neural networks were introduced to predict the failure strength using the algorithm of the error back-propagation. The prediction was also made by the Tsai-Wu theory using the experimental data and by the combined optimized tensor-polynomial theory. A comparison shows that the artificial neural network has the smallest root-mean square (RMS) error of the three prediction methods. The prediction of the axial contraction of the tubes correlates well with the results of a linear variable differential transformer (LVDT) of the testing machine. From the phenomenological analysis of the failure and the fractographic observations of the fracture surface, three types of failure modes and microscopic failure were investigated, depending on the biaxiality ratio, and the corresponding failure mechanisms are suggested.

  8. Mechanisms of Dynamic Deformation and Dynamic Failure in Aluminum Nitride

    DTIC Science & Technology

    2012-06-01

    study the deformation mechanisms under various load- ing conditions. 2. Experimental procedures The material investigated is a pressureless liquid phase...terminology The sintered AlN material system is illustrated in Fig. 2a. “Grain failure” is defined as the fracture of grains (transgranular fracture...representative of all sintered materials , as suggested by German [4]. Both grain boundary failure and grain–interphase failure are examples of so-called

  9. The distinct element analysis of toppling failure mechanisms

    NASA Astrophysics Data System (ADS)

    Özge Dinç, Şaziye; Sinan Işık, Nihat; Karaca, Zeki

    2016-04-01

    This project investigates the toppling failure mechanisms of rock masses having different rock materials and discontinuity properties in slopes that are designed in different heights. For this purpose, PFC2D as a distinct element code was used to anticipate the post failure behaviors of rock masses. After the simulation of laboratory tests on the samples in 2 (width) *4 (height) m, macro mechanical properties of rock masses were determined to be assigned the slopes. The properties of discontinuities were set up based on the smooth-joint method in PFC. The movements in the slopes -equipped with persistent and non-persistent discontinuities- were analyzed by using gravity increase method. The results show that the post failure behaviors of all rock samples have been controlled primarily by joint location and joint length. In addition to this, an increase on the slope height has an influence on the failure mechanism such that triggers the materials to transit from the toppling to circular yielding manner in some models. It has been also worth note that all models begin to fail as soon as the wing cracks develop by tension stresses, thus the tensile strength of the relevant rock material is the most critical mechanic parameter on the failure.

  10. Rockfall failure mechanisms in Yosemite Valley, California (USA)

    NASA Astrophysics Data System (ADS)

    Matasci, Battista; Guerin, Antoine; Carrea, Dario; Stock, Greg M.; Jaboyedoff, Michel; Collins, Brian

    2014-05-01

    Rockfall hazard is especially high in Yosemite Valley, with tens of rockfalls inventoried every year. A rockfall on 5 October 2013 from Ahwiyah Point consisted of a volume of 740 cubic meters and occurred within the perimeter of a larger event on 28 March 2009 that released 25'400 cubic meters of rock (Zimmer et al., 2012). In both events (2009 and 2013), the initial rockfall volumes dislodged a second one approximately equivalent in size by impacting the cliff below the source area during the fall. Rock fragments of up to several cubic meters were deposited on the talus slope, damaging a heavily used and recently reconstructed hiking path. We performed extensive mapping of structural features for several cliffs of Yosemite Valley to improve the assessment of the most susceptible rockfall areas. In particular we mapped and characterized the main brittle structures, the exfoliation joints and the failure mechanisms of the past rockfalls. Several failure mechanisms exist in Yosemite including the propagation of brittle structures that may lead to tensile, planar sliding, wedge sliding or toppling failures. Frequently, topographically-parallel exfoliation joints and topographically-oblique discontinuities coexist, resulting in complex failures. We also developed a methodology to examine how the distribution of joints within the cliff faces of Yosemite Valley affects overall stability with respect to the identified failure mechanisms. For these analyses, we used terrestrial laser scanning (TLS) to collect high resolution point clouds of the vertical and overhanging rock faces throughout the Valley. This provided the necessary 3D data to identify the main joint sets, perform spacing and trace length measurements, and calculate volumes of previous and potential rockfalls. We integrated this information with stability calculations to identify the likely failure mechanisms for each area of cliff and to obtain the number of potential failures per square meter of cliff face

  11. Mechanical failure probability of glasses in Earth orbit

    NASA Technical Reports Server (NTRS)

    Kinser, Donald L.; Wiedlocher, David E.

    1992-01-01

    Results of five years of earth-orbital exposure on mechanical properties of glasses indicate that radiation effects on mechanical properties of glasses, for the glasses examined, are less than the probable error of measurement. During the 5 year exposure, seven micrometeorite or space debris impacts occurred on the samples examined. These impacts were located in locations which were not subjected to effective mechanical testing, hence limited information on their influence upon mechanical strength was obtained. Combination of these results with micrometeorite and space debris impact frequency obtained by other experiments permits estimates of the failure probability of glasses exposed to mechanical loading under earth-orbit conditions. This probabilistic failure prediction is described and illustrated with examples.

  12. Testing within the continuum of multiple lubrication and failure mechanisms

    SciTech Connect

    Wedeven, L.D.; Totten, G.E.; Bishop, R.J. Jr.

    1997-12-31

    The inherent difficulty of bench testing for the tribological performance of hydraulic fluids is the interaction of multiple lubrication and failure mechanisms. The engineer judges the performance limits in descriptive terms relating to what the load bearing surfaces have experienced. The lubrication and failure pathway that leads to the final surface condition is at the mercy of what lubrication and failure mechanisms have been invoked. Lubrication mechanisms, such as hydrodynamic, elastohydrodynamic, and boundary can be isolated with specialized testing, along with failure mechanisms, such as those described in general terms of wear, scuffing, and pitting. The interaction and competitive nature of these mechanisms, which exist in hardware, makes bench testing a nightmare. A rational approach using a highly flexible and computerized test machine, WAM3, is described. The approach demonstrates how performance attributes of fluids and materials can be evaluated as they are made to travel through multiple lubrication and failure pathways. The testing protocol is terminated with the test specimen`s surface reaches the same failure condition the engineer uses to judge performance limits of component hardware. Testing pathways are demonstrated that lead to wear, scuffing and micro-pitting. Along the testing pathway, viscous film-forming attributes and chemical boundary lubrication attributes of the fluid are characterized. Tests conducted with a range of fluid types, including two hydraulic fluids, demonstrate a wide range of traction, viscous film-forming and boundary film attributes. The continuum approach, which maps out performance in terms of hardware relevant criteria, provides a means to determine the impact of development strategies based on fluid and material technologies.

  13. Effect of higher water vapor content on TBC performance

    SciTech Connect

    Pint, Bruce A; Haynes, James A

    2012-01-01

    Coal gasification, or IGCC (integrated gasification combined cycle), is one pathway toward cleaner use of coal for power generation with lower emissions. However, when coal-derived synthesis gas (i.e., syngas) is burned in turbines designed for natural gas, turbine manufacturers recommend 'derating,' or lowering the maximum temperature, which lowers the efficiency of the turbine, making electricity from IGCC more expensive. One possible reason for the derating is the higher water vapor contents in the exhaust gas. Water vapor has a detrimental effect on many oxidation-resistant high-temperature materials. In a turbine hot section, Ni-base superalloys are coated with a thermal barrier coating (TBC) allowing the gas temperature to be higher than the superalloy solidus temperature. TBCs have a low thermal conductivity ceramic top coating (typically Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}, or YSZ) and an oxidation-resistant metallic bond coating. For land-based gas turbines, the industry standard is air plasma sprayed (APS) YSZ and high velocity oxygen fuel (HVOF) sprayed NiCoCrAlY bond coatings. To investigate the role of higher water vapor content on TBC performance and possible mitigation strategies, furnace cycling experiments were conducted in dry O{sub 2} and air with 10% (typical with natural gas or jet fuel) or 50 vol% water vapor. Cycle frequency and temperature were accelerated to one hour at 1100 C (with 10 minute cooling to {approx}30 C between each thermal cycle) to induce early failures in coatings that are expected to operate for several years with a metal temperature of {approx}900 C. Coupons (16 mm diameter x 2 mm thick) of commercial second-generation single crystal superalloy CMSX4 were HVOF coated on both sides with {approx}125 {micro}m of Ni-22wt%Co-17Cr-12Al either with 0.7Y or 0.7Y-0.3Hf-0.4Si. One side was then coated with 190-240 {micro}m of APS YSZ. Coatings were cycled until the YSZ top coating spalled. Figure 2 shows the results of the

  14. Mechanical circulatory support for elderly heart failure patients.

    PubMed

    Butler, Craig R; Jugdutt, Bodh I

    2012-09-01

    End-stage systolic heart failure is an increasingly common problem in elderly patients and is associated with high cost, poor quality of life, and poor outcomes. Mechanical circulatory support is a promising therapy as both a bridge to transplantation and destination therapy. Elderly patients are frequently ineligible for heart transplantation because of their age and comorbidities, and the application of mechanical circulatory support for destination therapy in this population is not well defined. A review of the literature was undertaken to better characterize our experience to date with mechanical circulatory support in older heart failure populations. Mechanical circulatory support is being employed increasingly for destination therapy indications in older patients. The newer continuous flow devices appear to have disproportionate advantage in elderly patients, which has translated into marked improvement in 1- and 2-year survival. The rational implementation of MCS devices in elderly heart failure patients needs to focus on (1) continuous flow devices that appear to have particular benefit in this population, (2) extensive pre-MCS assessment including variables relating to frailty, and (3) intervening before these patients develop cardiogenic shock. More data are needed on the cost-benefit analysis of routine use of CF devices as destination therapy in elderly patients with heart failure.

  15. Mechanical properties and failure behavior of phosphorene with grain boundaries

    NASA Astrophysics Data System (ADS)

    Sorkin, V.; Zhang, Y. W.

    2017-02-01

    Using the density-functional tight-binding method, we studied the effect of grain boundaries on the mechanical properties and failure behavior of phosphorene. We found that the high-angle tilt boundaries with a higher density of (5∣7) defect pairs (oriented along the armchair direction) are stronger than the low-angle tilt boundaries with a lower defect density, and similarly the high-angle boundaries with a higher density of (4∣8) defect pairs (oriented along the zigzag direction) are stronger than the low-angle boundaries with a lower defect density. The failure is due to the rupture of the most pre-strained bonds in the heptagons of the (5∣7) defect pair or octagons of the (4∣8) pairs. The high-angle grain boundaries are better at accommodating the pre-strained bonds in heptagon and octagon defects, leading to a higher failure stress and strain. The results cannot be described by a Griffith-type fracture mechanics criterion, since this does not take into account the bond pre-stretching. Interestingly, these anomalous mechanical and failure characteristics of tilt grain boundaries in phosphorene are also shared by graphene and hexagonal boron nitride, signifying that they may be universal for 2D materials. The findings revealed here may be useful in tuning the mechanical properties of phosphorene via defect engineering for specific applications.

  16. Enhanced cardiac TBC1D10C expression lowers heart rate and enhances exercise capacity and survival

    PubMed Central

    Volland, Cornelia; Bremer, Sebastian; Hellenkamp, Kristian; Hartmann, Nico; Dybkova, Nataliya; Khadjeh, Sara; Kutschenko, Anna; Liebetanz, David; Wagner, Stefan; Unsöld, Bernhard; Didié, Michael; Toischer, Karl; Sossalla, Samuel; Hasenfuß, Gerd; Seidler, Tim

    2016-01-01

    TBC1D10C is a protein previously demonstrated to bind and inhibit Ras and Calcineurin. In cardiomyocytes, also CaMKII is inhibited and all three targeted enzymes are known to promote maladaptive cardiomyocyte hypertrophy. Here, in accordance with lack of Calcineurin inhibition in vivo, we did not observe a relevant anti-hypertrophic effect despite inhibition of Ras and CaMKII. However, cardiomyocyte-specific TBC1D10C overexpressing transgenic mice exhibited enhanced longevity. Ejection fraction and exercise capacity were enhanced in transgenic mice, but shortening of isolated cardiomyocytes was not increased. This suggests longevity resulted from enhanced cardiac performance but independent of cardiomyocyte contractile force. In further search for mechanisms, a transcriptome-wide analysis revealed expressional changes in several genes pertinent to control of heart rate (HR) including Hcn4, Scn10a, Sema3a and Cacna2d2. Indeed, telemetric holter recordings demonstrated slower atrial conduction and significantly lower HR. Pharmacological reduction of HR was previously demonstrated to enhance survival in mice. Thus, in addition to inhibition of stress signaling, TBC1D10C economizes generation of cardiac output via HR reduction, enhancing exercise capacity and survival. TBC1D10C may be a new target for HR reduction and longevity. PMID:27667030

  17. Influence of EB-PVD TBC Microstructure on Thermal Barrier Coating System Performance Under Cyclic Conditions

    SciTech Connect

    Leyens, C; Pint, B A; Schulz, U; Wright, I G

    1999-04-12

    The lifetimes of electron beam physical vapor deposited (EB-PVD) thermal barrier coating systems (TBCs) with three different microstructures of the Y2O3-stabilized ZrO, YSZ) ceramic top layer were investigated in lh thermal cycles at 1100 and 1150°C in flowing oxygen. Single crystal alloys CMSX-4 and Rene N5 that had been coated with an EB-PVD NiCoCrAlY bond coat were chosen as substrate materials. At 1150°C all samples failed after 80-100, lh cycles, predominantly at the bond coat/alumina interface after cooling down from test temperature. The alumina scale remained adherent to the YSZ after spallation. Despite the different YSZ microstructures no clear tendency regarding differences in spallation behavior were observed at 1150°C. At 1100°C the minimum lifetime was 750 , lh cycles for CMSX-4, whereas the first Rene N5 specimen failed after 1750, lh cycles. The longest TBC lifetime on CMSX-4 substrates was 1250, lh cycles, whereas the respective Rene N5 specimens have not yet failed after 2300, lh cycles. The failure mode at 1100°C was identical to that at 1150°C, i.e. the TBC spalled off the surface exposing bare metal after cooling. Even though not all specimens have failed to date, the available results at 1100°C suggested that both, the substrate alloy chemistry and the YSZ microstructure significantly affect the spallation resistance of the TBC.

  18. Failure Mechanisms for Ceramic Matrix Textile Composites at High Temperature

    SciTech Connect

    Cox, Brian

    1999-03-01

    OAK B188 Failure Mechanisms for Ceramic Matrix Textile Composites at High Temperature. This summary refers to work done in approximately the twelve months to the present in our contract ''Failure Mechanisms for Ceramic Matrix Textile Composites at High Temperature,'' which commenced in August, 1997. Our activities have consisted mainly of measurements of creep-controlled crack growth in ceramic matrix composites (CMCS) at high temperature; imaging of deformation fields in textile CMCS; the assessment of mechanisms of damage in textile composites, especially those with through-thickness reinforcement; the formulation of models of delamination crack growth under fatigue in textile composites; analytical models of the bridging traction law for creeping fibers in a CMC at high temperature; and an analytical model of a bridging fiber tow in a textile composite.

  19. Register of experts for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Stuhrke, W. F.

    1975-01-01

    This register is comprised of a list of approximately 300 experts from approximately 90 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure: (1) life prediction for structural materials, (2) fracture toughness testing, (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. The criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. Each author included is listed by organizational affiliation, address, and principal field of expertise. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The register includes two indexes; an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.

  20. Mechanism of fatigue failure of clay-epoxy nanocomposites.

    PubMed

    Juwono, Ariadne; Edward, Graham

    2006-12-01

    This work investigates the fatigue behaviour and the mechanism of fatigue failure of an epoxy resin with a dispersion of modified layered silicates in the polymer matrix. The fatigue properties are very important for structural application of nanocomposite materials. Clay-epoxy nanocomposites were successfully synthesized with a commercially available 1-Methylimidazole curing agent. The XRD and TEM findings demonstrated a pattern of clay morphology typically found in nanocomposite systems. The fatigue performance and fatigue failure mechanism of the clay-epoxy materials were studied under repetitive bending loads. The results showed that the fatigue life of filled epoxy improved significantly at strain amplitudes below a threshold value. The E-SEM observations of the epoxy and the clay-epoxy fracture surfaces showed different patterns. In conclusion, the addition of silicate strongly determines the fracture mechanism and enhances the fatigue performance.

  1. Deformation and failure mechanisms in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Newaz, G.; Majumdar, B. S.

    1991-01-01

    An investigation was undertaken to determine the key deformation mechanisms and their interaction leading to failure of both 0 degree and 90 degree Ti 15-3/SCS-6 laminae under monotonic loading. The experimental results suggest that inelastic deformation in the 0-degree lamina is dominated by plastic deformation and that in the 90-degree lamina is dominated by both fiber-matrix debonding and plasticity. The loading-unloading response, monitoring of Poisson's ratio and microscopy were utilized to identify the key deformation mechanisms. The sequence of deformation mechanisms leading to failure are identified for both the 0 and the 90-degree specimens. The threshold strains for plasticity or damage which are referred to as 'microdeformation' in the 0 deg and 90 deg laminae are approximately 0.004 and 0.002, respectively, at room temperature. These strain levels may be considered critical in initiation based structural design with these composites.

  2. Delayed mechanical failure of silver-interlayer diffusion bonds

    SciTech Connect

    Kassner, M.E. ); Rosen, R.S.; Henshall, G.A. . Physical Metallurgy and Joining Section)

    1990-12-01

    Silver-interlayer diffusion bonds were fabricated using planar-magnetron sputtering (PMS). The bonds exhibit very high tensile strengths, despite the soft interlayer, because of the constraint by the base metal. However, these joints undergo delayed failure at relatively low tensile stresses at ambient temperatures, apparently by a ductile microvoid coalescence mechanism at the bond interfaces. Two classes of delayed tensile failure were investigated. In the first case, the applied stress does not produced any plastic deformation in the base metal, and failure appears to be controlled by time-dependent plasticity within the silver interlayer as a result of the effective stress in the interlayer. The plasticity causes cavity nucleation and, eventually, interlinkage and failure. In the second case, time-dependent plasticity is observed in base metals, and concomitant shear occurs within the softer silver under a high triaxial stress state. Here, the time-dependent plasticity of the base metal accelerates plasticity and failure in the interlayer. These models were substantiated by careful analysis of the stress and temperature dependence of the rupture times, finite element analysis of the stress state within the interlayer, and microscopy of the fracture surfaces and interfaces loaded to various fractions of the expected rupture times. These findings are applicable to bonds in which the interlayers are prepared by processes other than physical vapor deposition.

  3. Assessing mechanical vulnerability in water distribution networks under multiple failures

    NASA Astrophysics Data System (ADS)

    Berardi, Luigi; Ugarelli, Rita; Røstum, Jon; Giustolisi, Orazio

    2014-03-01

    Understanding mechanical vulnerability of water distribution networks (WDN) is of direct relevance for water utilities since it entails two different purposes. On the one hand, it might support the identification of severe failure scenarios due to external causes (e.g., natural or intentional events) which result into the most critical consequences on WDN supply capacity. On the other hand, it aims at figure out the WDN portions which are more prone to be affected by asset disruptions. The complexity of such analysis stems from the number of possible scenarios with single and multiple simultaneous shutdowns of asset elements leading to modifications of network topology and insufficient water supply to customers. In this work, the search for the most disruptive combinations of multiple asset failure events is formulated and solved as a multiobjective optimization problem. The higher vulnerability failure scenarios are detected as those causing the lower supplied demand due to the lower number of simultaneous failures. The automatic detection of WDN topology, subsequent to the detachments of failed elements, is combined with pressure-driven analysis. The methodology is demonstrated on a real water distribution network. Results show that, besides the failures causing the detachment of reservoirs, tanks, or pumps, there are other different topological modifications which may cause severe WDN service disruptions. Such information is of direct relevance to support planning asset enhancement works and improve the preparedness to extreme events.

  4. Novel molecular mechanisms and regeneration therapy for heart failure.

    PubMed

    Oka, Toru; Morita, Hiroyuki; Komuro, Issei

    2016-03-01

    Heart failure (HF) is one of the leading causes of mortality in the world. Various molecular mechanisms have been proposed for HF, but its precise mechanisms are still largely unknown. In this review, summarizing the "President's Distinguished Lecture Award" of XX World Congress of International Society for Heart Research 2010 in Kyoto, Japan, we introduce recent our studies on HF, including 1) p53-induced suppression of Hif-1-induced angiogenesis as a novel mechanism of HF, 2) angiogenesis as a potential therapeutic strategy for HF, and 3) IGFBP-4 as a novel factor for cardiomyogenesis by inhibiting canonical Wnt signaling.

  5. Analysis of Mechanical Failure of Polymer Microneedles by Axial Force.

    PubMed

    Park, Jung-Hwan; Prausnitz, Mark R

    2010-04-01

    A polymeric microneedle has been developed for drug delivery applications. The ultimate goal of the polymeric microneedle is insertion into the specified region without failure for effective transdermal drug delivery. Mechanical failure of various geometries of microneedles by axial load was modeled using the Euler formula and the Johnson formula to predict the failure force of tapered-column microneedles. These formulas were compared with measured data to identify the mechanical behavior of microneedles by determining the critical factors including the actual length and end-fixed factor. The comparison of the two formulas with the data showed good agreement at the end-fixity (K) of 0.7. This value means that a microneedle column has one fixed end and one pinned end, and that part of the microneedle was overloaded by axial load. When the aspect ratio of length to equivalent diameter is 12:1 at 3 GPa of Young's modulus, there is a transition from the Euler region to the Johnson region by the decreased length and increased base diameter of the microneedle. A polymer having less than 3 GPa of stiffness would follow the Euler formula. A 12:1 aspect ratio of length to equivalent diameter of the microneedle was the mechanical indicator determining the failure mode between elastic buckling and inelastic buckling at less than 3 GPa of Young's modulus of polymer. Microneedles with below a 12:1 aspect ratio of length-to-equivalent diameter and more than 3 GPa of Young's were recommended for reducing sudden failure by buckling and for successfully inserting the microneedle into the skin.

  6. Fracture mechanics parameters for failure prediction of composite resins.

    PubMed

    De Groot, R; Van Elst, H C; Peters, M C

    1988-06-01

    This study contains the first part of a research project in which the applicability of fracture mechanics parameters to predict failure of a restored tooth was investigated. Fracture mechanics parameters have been used in dental research before, but were restricted to comparative studies between various brands of composites. The critical values of the opening mode stress intensity factor (KI), its equivalents, the strain energy release rate (GI), and the J integral (JI), were measured with single-edge notched-bend (SENB) specimens of dental composite in a three-point bend test. The measured values of KIc for Silux (KIc = 0.99 +/- 0.03 MNm-3/2) and P-30 (KIc = 1.88 +/- 0.12 MNm-3/2), compared with values from the literature, show quantitative agreement. The J integral was computed by means of finite element analysis (FEA) on a two-dimensional model of the SENB specimens. The critical value of the J integral (measured with SENB specimens, notch depth-to-width ratio (a/W) = 1/2) was used to predict failure of specimens having an arbitrary geometry. In this study, failure was predicted for SENB specimens with notch depth-to-width ratio (a/W) = 1/4 and 3/4. The predicted deflection and load at failure correspond well with the measured deflection and load.

  7. IMPERMEABLE THIN AL2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2002-08-31

    In order to improve the hot corrosion resistance of conventional YSZ TBC system, a dense and continues overlay of Al{sub 2}O{sub 3} coating of about 25 {micro}m thick was deposited on the surface of TBC by EB-PVD and high velocity oxy-fuel (HVOF) spray techniques. Hot corrosion tests were carried out on the TBC with and without Al{sub 2}O{sub 3} coating in molten salts mixtures (Na{sub 2}SO{sub 4} + 5% V{sub 2}O5) at 950 C for 10h. The microstructures of TBC and overlay before and after exposure were examined by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDX), X-ray diffraction (XRD) and secondary ion mass spectrometry (SIMS). It has been found that TBC will react with V{sub 2}O{sub 5} to form YVO{sub 4}. A substantial amount of M-phase of ZrO{sub 2} was formed due to the leaching of Y{sub 2}O{sub 3} from YSZ. During hot corrosion test, there were no significant interactions between overlay Al{sub 2}O{sub 3} coating and molten salts. After exposure, the alumina coating, especially produced by HVOF, was still very dense and cover the surface of YSZ, although they had been translated to {alpha}-Al{sub 2}O{sub 3} from original {gamma}-Al{sub 2}O{sub 3}. As a result, Al{sub 2}O{sub 3} overlay coating decreased the penetration of salts into the YSZ and prevented the YSZ from the attack by molten salts containing vanadium. Accordingly, only a few M-phase was formed in YSZ TBC, compared with TBC without overlay coating. The penetration of salts into alumina coating was thought to be through microcracks formed in overlay Al{sub 2}O{sub 3} coating and at the interface between alumina and zirconia due to the presence of tensile stress in the alumina coating. In the next year, we will study the mechanisms of cracking of the overlay Al{sub 2}O{sub 3} layer. The hot corrosion test of TBC with EB-PVD deposited Al{sub 2}O{sub 3} coating will be again performed. However before hot corrosion tests, the post-annealing will be carried out in

  8. Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application

    NASA Astrophysics Data System (ADS)

    Jarligo, M. O.; Mack, D. E.; Mauer, G.; Vaßen, R.; Stöver, D.

    2010-01-01

    High melting materials have always been very attractive candidates for materials development in thermal barrier coating (TBC) applications. Among these materials, complex perovskites with Ba(Mg1/3Ta2/3)O3 and La(Al1/4Mg1/2T1/4)O3 compositions have been developed and deposited in TBC systems by atmospheric plasma spraying. Spray parameters were optimized and in-flight particle temperatures were recorded using Accuraspray-g3 and DPV 2000. Plasma sprayed coatings were found to undergo non-stoichiometric decomposition of components which could have contributed to early failure of the coatings. Particle temperature diagnostics suggest that gun power of ~15 kW or lower where majority of the particles have already solidified upon impact to the substrate could probably prevent the decomposition of phases. Additionally, it has been found that the morphology of the powder feedstock plays a critical role during atmospheric plasma spraying of complex perovskites.

  9. Register of experts for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.

    1973-01-01

    A list of approximately 150 experts from approximately 60 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure is presented. Each author included is listed by organizational affiliation, address and principal field of expertise. The initial criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The Register includes two indexes: an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.

  10. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  11. Prevention of mechanical failures in implanted spinal cord stimulation systems.

    PubMed

    Henderson, Jaimie M; Schade, C M; Sasaki, John; Caraway, David L; Oakley, John C

    2006-07-01

    Introduction.  Spinal cord stimulation (SCS) is an effective procedure for the treatment of neuropathic extremity pain, with success rates approaching 70%. However, mechanical failures, including breakage and migration, can significantly limit the long-term effectiveness of SCS. A systematic analysis of surgical techniques was undertaken by a consensus group, coupled with extensive in vivo and in vitro biomechanical testing of system components. Methods.  A computer model based on morphometric data was used to predict movement in a standard SCS system between an anchored lead and pulse generator placed in various locations. These displacements were then used to determine a realistic range of forces exerted on components of the SCS system. Laboratory fixtures were constructed to subject leads and anchors to repetitive stresses until failure occurred. An in vivo sheep model also was used to determine system compliances and failure thresholds in a biologically realistic setting. A panel of experienced implanters then interpreted the results and related them to clinical observations. Results.  Use of a soft silastic anchor pushed through the fascia to provide a larger bend radius for the lead was associated with a time to failure 65 times longer than an anchored but unsupported lead. In addition, failures of surgical paddle leads occurred when used with an anchor, whereas without an anchor, no failures occurred to 1 million cycles. Based on these findings, the panel recommended a paramedian approach, abdominal pulse generator placement, maximizing bend radius by pushing the anchor through the fascia, and anchoring of the extension connector near the lead anchor. Discussion.  Several factors are important in longevity of SCS systems. We discovered that technical factors can make a large difference in SCS reliability and that strict attention to these "best practices" will provide the best chance for maintaining the integrity of SCS systems over the long term.

  12. Failure Mechanisms of Ana Slide, Eivissa Channel, Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Lafuerza, S.; Sultan, N.; Canals, M.; Lastras, G.; Cattaneo, A.; Frigola, J.; Costa, S.; Berndt, C.

    2011-12-01

    Fluid seepage has been considered as the most plausible explanation to account for slope instabilities in the Eivissa Channel in between the Iberian Peninsula and the Balearic Islands, Western Mediterranean Sea. In situ geotechnical tests and sediment cores obtained in the Ana Slide area, on the Balearic slope of the Eivissa Channel, suggest that the development of the basal failure surface (BFS) was favoured by contrasting hydro-mechanical properties between a coarse unit (U7) charged with methane and a fine-grained unit above (U6). The presence of past methane seepage has been inferred from high magnetic susceptibility values found in sediments from the headwall area and is supported by seismic reflection data. Geotechnical data from piezocone tests, laboratory analyses and numerical calculations indicate degradation of the undrained shear strength generated by methane exsolution and expansion as the only plausible mechanism to explain the origin of Ana Slide. The probability of failure for different critical failure surfaces has been investigated by using the SAMU-3D slope stability model taking into account the role of free gas in the development of the landslide. According to SAMU-3D, the most probable failure surface is related to a minimum degradation of the undrained shear strength of units U6 and U7 of 95% and a basal failure surface developed at the base of U6, which acted as a weak layer. Wheeler's theory suggests that 9% of free-gas saturation in U7 is enough to reduce the undrained shear strength by 95%. However, using the theory of the undrained equilibrium behaviour of gassy sediments we conclude that the excess fluid pressure generated by gas exsolution and expansion is not relevant to bring the slope to fail.

  13. Failure mechanism of the polymer infiltration of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Buchheim, Jakob; Park, Hyung Gyu

    2016-11-01

    Polymer melt infiltration is one of the feasible methods for manufacturing filter membranes out of carbon nanotubes (CNTs) on large scales. Practically, however, its process suffers from low yields, and the mechanism behind this failure is rather poorly understood. Here, we investigate a failure mechanism of polymer melt infiltration of vertical aligned (VA-) CNTs. In penetrating the VA-CNT interstices, polymer melts exert a capillarity-induced attractive force laterally on CNTs at the moving meniscus, leading to locally agglomerated macroscale bunches. Such a large configurational change can deform and distort individual CNTs so much as to cause buckling or breakdown of the alignment. In view of membrane manufacturing, this irreversible distortion of nanotubes is detrimental, as it could block the transport path of the membranes. The failure mechanism of the polymer melt infiltration is largely attributed to steric hindrance and an energy penalty of confined polymer chains. Euler beam theory and scaling analysis affirm that CNTs with low aspect ratio, thick walls and sparse distribution can maintain their vertical alignment. Our results can enrich a mechanistic understanding of the polymer melt infiltration process and offer guidelines to the facile large-scale manufacturing of the CNT-polymer filter membranes.

  14. Reliability assessment on interfacial failure of thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Wei; Yang, Li; Zhou, Yi-Chun; He, Li-Min; Zhu, Wang; Cai, Can-Ying; Lu, Chun-Sheng

    2016-10-01

    Thermal barrier coatings (TBCs) usually exhibit an uncertain lifetime owing to their scattering mechanical properties and severe service conditions. To consider these uncertainties, a reliability assessment method is proposed based on failure probability analysis. First, a limit state equation is established to demarcate the boundary between failure and safe regions, and then the failure probability is calculated by the integration of a probability density function in the failure area according to the first- or second-order moment. It is shown that the parameters related to interfacial failure follow a Weibull distribution in two types of TBC. The interfacial failure of TBCs is significantly affected by the thermal mismatch of material properties and the temperature drop in service.

  15. The role of microstructure and phase distribution in the failure mechanisms and life prediction model for PSZ coatings

    NASA Technical Reports Server (NTRS)

    Sisson, R. D., Jr.; Sone, Ichiro; Biederman, R. R.

    1985-01-01

    Partially Stabilized Zirconia (PSZ) may become widely used for Thermal Barrier Coatings (TBC). Failure of these coatings can occur due to thermal fatigue in oxidizing atmospheres. The failure is due to the strains that develop due to thermal gradients, differences in thermal expansion coefficients, and oxidation of the bond coating. The role of microstructure and the cubic, tetragonal, and monoclinic phase distribution in the strain development and subsequent failure will be discussed. An X-ray diffraction technique for accurate determination of the fraction of each phase in PSZ will be applied to understanding the phase transformations and strain development. These results will be discussed in terms of developing a model for life prediction in PSZ coatings during thermal cycling.

  16. Methods of failure and reliability assessment for mechanical heart pumps.

    PubMed

    Patel, Sonna M; Allaire, Paul E; Wood, Houston G; Throckmorton, Amy L; Tribble, Curt G; Olsen, Don B

    2005-01-01

    Medical Instrumentation (AAMI), and the Bethesda Conference. It further discusses studies that evaluate the failure, reliability, and safety of artificial blood pumps including in vitro and in vivo testing. A descriptive summary of mechanical and human error studies and methods of artificial blood pumps is detailed.

  17. Bibliography of information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.; Shaffer, R. A.; Smith, D. M.

    1973-01-01

    A bibliography of approximately 1500 reference citations related to six problem areas in the mechanics of failure in aerospace structures is presented. The bibliography represents a search of the literature published in the ten year period 1962-1972 and is largely limited to documents published in the United States. Listings are subdivided into the six problem areas: (1) life prediction of structural materials; (2) fracture toughness data; (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. An author index is included.

  18. 49 CFR 191.12 - Distribution Systems: Mechanical Fitting Failure Reports

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Distribution Systems: Mechanical Fitting Failure...-RELATED CONDITION REPORTS § 191.12 Distribution Systems: Mechanical Fitting Failure Reports Each mechanical fitting failure, as required by § 192.1009, must be submitted on a Mechanical Fitting...

  19. 49 CFR 191.12 - Distribution Systems: Mechanical Fitting Failure Reports

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Distribution Systems: Mechanical Fitting Failure...-RELATED CONDITION REPORTS § 191.12 Distribution Systems: Mechanical Fitting Failure Reports Each mechanical fitting failure, as required by § 192.1009, must be submitted on a Mechanical Fitting...

  20. 49 CFR 191.12 - Distribution Systems: Mechanical Fitting Failure Reports

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Distribution Systems: Mechanical Fitting Failure...-RELATED CONDITION REPORTS § 191.12 Distribution Systems: Mechanical Fitting Failure Reports Each mechanical fitting failure, as required by § 192.1009, must be submitted on a Mechanical Fitting...

  1. 49 CFR 191.12 - Distribution Systems: Mechanical Fitting Failure Reports

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Distribution Systems: Mechanical Fitting Failure...-RELATED CONDITION REPORTS § 191.12 Distribution Systems: Mechanical Fitting Failure Reports Each mechanical fitting failure, as required by § 192.1009, must be submitted on a Mechanical Fitting...

  2. Failure analysis for micro-electrical-mechanical systems (MEMS)

    SciTech Connect

    Peterson, K.A.; Tangyunyong, P.; Barton, D.L.

    1997-10-01

    Micro-Electrical Mechanical Systems (MEMS) is an emerging technology with demonstrated potential for a wide range of applications including sensors and actuators for medical, industrial, consumer, military, automotive and instrumentation products. Failure analysis (FA) of MEMS is critically needed for the successful design, fabrication, performance analysis and reliability assurance of this new technology. Many devices have been examined using techniques developed for integrated circuit analysis, including optical inspection, scanning laser microscopy (SLM), scanning electron microscopy (SEM), focused ion beam (FIB) techniques, atomic force microscopy (AFM), infrared (IR) microscopy, light emission (LE) microscopy, acoustic microscopy and acoustic emission analysis. For example, the FIB was used to microsection microengines that developed poor performance characteristics. Subsequent SEM analysis clearly demonstrated the absence of wear on gear, hub, and pin joint bearing surfaces, contrary to expectations. Another example involved the use of infrared microscopy for thermal analysis of operating microengines. Hot spots were located, which did not involve the gear or hub, but indicated contact between comb structures which drive microengines. Voltage contrast imaging proved useful on static and operating MEMS in both the SEM and the FIB and identified electrostatic clamping as a potentially significant contributor to failure mechanisms in microengines. This work describes MEMS devices, FA techniques, failure modes, and examples of FA of MEMS.

  3. [Heart failure due to ischemia--the adaptive mechanisms].

    PubMed

    Mitu, M; Mitu, F

    1999-01-01

    Chronic myocardial ischemia is the leading cause of disturbances in myocardial contractility (myocardial infarction) or hemodynamic overload upon the left ventricle. The heart reactions consist in a series of adaptative mechanisms in order to maintain its pump function: Frank-Starling mechanism, myocardial hypertrophy and neurohumoral activation. In heart failure, the cardiac output is maintained by an increase of the preload which enhances the contractility (Frank-Starling law). Myocardial ischemia influences the systolic and diastolic function. The decrease of cardiac output leads to neurohumoral responses which, in the initial stages of cardiac failure are compensatory; along with the progression of the disease, they exert adverse effects. Increased activity of the sympathetic nervous system induces high cardiac rates, chronotropic incompetence. Activation of the renin-angiotensin system held to myocardial and vascular hypertrophy, vasoconstriction, fluid retention. Endothelin is the most powerful vasoconstrictor; its plasmatic concentrations correlate with the severity of the disease. Vasodilator mediators released in cardiac failure are the natriuretic peptide, nitric oxide, dopamine, prostacicline, bradikinin.

  4. Reduced synaptic vesicle protein degradation at lysosomes curbs TBC1D24/sky-induced neurodegeneration.

    PubMed

    Fernandes, Ana Clara; Uytterhoeven, Valerie; Kuenen, Sabine; Wang, Yu-Chun; Slabbaert, Jan R; Swerts, Jef; Kasprowicz, Jaroslaw; Aerts, Stein; Verstreken, Patrik

    2014-11-24

    Synaptic demise and accumulation of dysfunctional proteins are thought of as common features in neurodegeneration. However, the mechanisms by which synaptic proteins turn over remain elusive. In this paper, we study Drosophila melanogaster lacking active TBC1D24/Skywalker (Sky), a protein that in humans causes severe neurodegeneration, epilepsy, and DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome, and identify endosome-to-lysosome trafficking as a mechanism for degradation of synaptic vesicle-associated proteins. In fly sky mutants, synaptic vesicles traveled excessively to endosomes. Using chimeric fluorescent timers, we show that synaptic vesicle-associated proteins were younger on average, suggesting that older proteins are more efficiently degraded. Using a genetic screen, we find that reducing endosomal-to-lysosomal trafficking, controlled by the homotypic fusion and vacuole protein sorting (HOPS) complex, rescued the neurotransmission and neurodegeneration defects in sky mutants. Consistently, synaptic vesicle proteins were older in HOPS complex mutants, and these mutants also showed reduced neurotransmission. Our findings define a mechanism in which synaptic transmission is facilitated by efficient protein turnover at lysosomes and identify a potential strategy to suppress defects arising from TBC1D24 mutations in humans.

  5. Non-destructive microwave evaluation of TBC delamination induced by acute angle laser drilling

    NASA Astrophysics Data System (ADS)

    Sezer, H. K.; Li, Lin; Wu, Z.; Anderson, B.; Williams, P.

    2007-01-01

    Laser drilling has been applied to the production of cooling holes of various size and angles in the modern aerospace gas turbine components such as turbine blades, nozzle guide vanes, combustion chambers and afterburner. These parts are usually made of heat resistant nickel superalloys. The superalloy substrate is coated with yttria-stabilized zirconia thermal barrier coatings (TBCs) to protect them from reaching excessive temperatures in hot engine environments. Drilling the parts at acute angles to the surface is complicated because (i) multiple layers are being drilled through, (ii) the melt ejection and heat flow patterns around the hole are non-symmetrical and (iii) the drilling distance is greater than when drilling normal to the surface. In a previous investigation by the authors, delamination of TBC was addressed as a main problem of angled drilling and mechanisms involved were discussed. Characterization of delamination cracks was normally performed via metallographic techniques. It involves sectioning the samples using an abrasive cutting machine, grinding with successively finer silicon carbide paper up to the centre of the hole and polishing to allow optical microscopic analysis of the cracks. However, clamping and sectioning process of thermal-spray-coated workpieces can introduce cracks in brittle coatings due to the drag of the cut-off wheels. Hence, it is not possible to decide if the delamination is caused as a result of post-process sectioning or laser drilling. In this paper, a microwave non-destructive testing (NDT) technique is employed to evaluate the integrity of TBC after acute angle laser drilling. An Agilent 8510 XF network analyser operating over the frequency range of 45 MHz to 110 GHz was used to measure the amplitude and phase variations of scattered waves. The results significantly indicated the existence of delamination of 1-1.5 mm long at the TBC/substrate interface on the leading edge part of an acute-angled hole laser drilled

  6. Mechanisms of carotid body chemoreflex dysfunction during heart failure

    PubMed Central

    Schultz, Harold D.; Marcus, Noah J.; Del Rio, Rodrigo

    2015-01-01

    Recent advances have drawn interest in the potential for carotid body (CB) ablation or desensitization as an effective strategy for clinical treatment and management of cardio-respiratory diseases including hypertension, heart failure, diabetes mellitus, metabolic syndrome, and renal failure. These disease states have in common sympathetic overactivity, which plays an important role in the development and progression of the disease and is often associated with breathing dysregulation, which in turn likely mediates or aggravates the autonomic imbalance. Evidence from both chronic heart failure (CHF) patients and animal models indicates that the CB chemoreflex is enhanced in CHF and contributes to the tonic elevation in sympathetic activity and the development of periodic breathing associated with the disease. Although this maladaptive change likely derives from altered function at all levels of the reflex arc, a tonic increase in afferent activity from CB glomus cells is likely to be a main driving force. This report will focus on our understanding of mechanisms that alter CB function in CHF and their potential translational impact on treatment of CHF. PMID:25398713

  7. Experimental Investigations Of Failure Mechanisms Associated With Slow Slip Events

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Tamarkin, T.

    2010-12-01

    Slow slip events such as very low frequency earthquakes (VLFEs) are detected in the Nankai accretionary prism [Ito and Obara, 2006]. It is proposed that high pore fluid pressure weakens the out-of-sequence-thrusts and mega-splay faults by reducing effective normal stress on the fault plane and consequently generates slip instability producing low stress drop VLFEs. However, the frictional behaviors and failure mechanisms associated with reduction of effective normal stress are not well understood. In this study, we conducted frictional experiments on porous sedimentary rocks with a saw-cut. Sediments with different clay content from NantroSEIZE drilling project ODP Legs 315, 316, and 322 are used as fault gouge. A new triaxial loading configuration was designed to investigate the effect of high pore pressure on frictional instability and failure modes. During the deformation experiments, samples were subjected to constant axial stress and decreasing radial stresses. Distinguishing from the conventional loading configuration in which mean stress increases during deformation, with the alternative loading path, mean stress decreases during deformation. Under fully drained conditions where pore pressure remains constant, the effective stress decreases in these experiments, analoguous to increasing pore pressure. Our preliminary results indicate that: 1) frictional strength is comparable to that observed under conventional loading; 2) the rate of fracture energy release is considerably slower, which bears similar characteristics with observed slow slip events. Microstructural analyses on the deformed samples provide experimental constraints on deformation mechanisms associated with slow slip events.

  8. Knowledge Discovery Process for Characterization of Materials Failure Mechanism

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1999-01-01

    It is the intent of this project to provide a platform to visualize the various data collected from stress-strain testing of composite ceramic matrix materials. The data collected from the stress-strain tests are acoustic emissions (AE). As a material is subjected to a stress-strain test, various failure mechanisms occur in the material. The recorded sounds emitted during the test may correspond to various failure mechanisms. This project, thus, will give a possible way to visualize the data and data derived from the recorded AE. The stress-strain testing was performed on several composite matrix material combinations. Each of these tests produced anywhere from 1000 to 10,000+ AE events. For each AE event recorded, several characteristics in both the time and frequency domains are created. This project has two goals. First, this project will provide a summation page for a selected waveform. This page will include all of the characteristics determined from the AE event waveform along with graphs of the AE event waveform and its corresponding Power Spectrum. The other function of this project is to retrieve and display selected AE event waveforms for comparison.

  9. Mechanisms and pathways of growth failure in primordial dwarfism.

    PubMed

    Klingseisen, Anna; Jackson, Andrew P

    2011-10-01

    The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth.

  10. The use of experimental bending tests to more accurate numerical description of TBC damage process

    NASA Astrophysics Data System (ADS)

    Sadowski, T.; Golewski, P.

    2016-04-01

    Thermal barrier coatings (TBCs) have been extensively used in aircraft engines to protect critical engine parts such as blades and combustion chambers, which are exposed to high temperatures and corrosive environment. The blades of turbine engines are additionally exposed to high mechanical loads. These loads are created by the high rotational speed of the rotor (30 000 rot/min), causing the tensile and bending stresses. Therefore, experimental testing of coated samples is necessary in order to determine strength properties of TBCs. Beam samples with dimensions 50×10×2 mm were used in those studies. The TBC system consisted of 150 μm thick bond coat (NiCoCrAlY) and 300 μm thick top coat (YSZ) made by APS (air plasma spray) process. Samples were tested by three-point bending test with various loads. After bending tests, the samples were subjected to microscopic observation to determine the quantity of cracks and their depth. The above mentioned results were used to build numerical model and calibrate material data in Abaqus program. Brittle cracking damage model was applied for the TBC layer, which allows to remove elements after reaching criterion. Surface based cohesive behavior was used to model the delamination which may occur at the boundary between bond coat and top coat.

  11. Characterization of Alumina Interfaces in TBC Systems

    SciTech Connect

    Pint, Bruce A; More, Karren Leslie

    2009-01-01

    Interfacial segregants in thermally grown {alpha}-Al{sub 2}O{sub 3} scales formed during high temperature exposure of thermal barrier coating systems reflect the oxygen-active dopants present in the bond coating and substrate, such as Y and Hf. These dopants diffuse outward and segregate to the substrate-alumina interface and the alumina grain boundaries. Related studies suggest that these segregants affect the growth and mechanical properties of the alumina-scale; however, the characterization of segregation in alumina formed on coated superalloy systems has been limited. Segregation examples evaluated using analytical transmission electron microscopy are given from traditional Pt-modified aluminide coatings and newer Pt diffusion coatings. Model systems are used to illustrate that grain boundary segregants on the columnar alumina boundaries are not because of the reverse diffusion of cations from the Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} top coating, and that interstitial elements in the substrate likely affect the outward flux of cation dopants. The dynamic nature of this segregation and oxygen-potential gradient-driven diffusion is discussed in light of observations of substrate dopant and interstitial contents affecting coating performance.

  12. Failure Mechanisms in High Chrome Oxide Gasifier Refractories

    NASA Astrophysics Data System (ADS)

    Bennett, James P.; Kwong, Kyei-Sing

    2011-04-01

    Gasification is a high-temperature, high-pressure chemical process used to convert a carbon feedstock into CO and H2 (syngas) for use in power generation and the production of chemicals. It is also a leading candidate as a source of hydrogen in a hydrogen economy and is one of several technologies expected to see increased use in advanced fossil fuel power systems in the future. Gasification is being evaluated because of its high efficiency, its ability to capture CO2 for sequestration or reuse in other applications, and its potential for carbon feedstock fuel flexibility. At the heart of the gasification process is a gasifier, a high pressure chemical reaction vessel used to contain the interactions between carbon and water in a shortage of oxygen, producing syngas. The gasifier is lined with high chrome oxide materials to protect the containment vessel. Gasifiers are complex systems, and failure of the refractories used to line them was identified by industry as a limitation to their reliability and availability and to their increased use. NETL researchers have examined spent high-Cr2O3 (over 90 pct Cr2O3) refractories from numerous gasifiers to determine in-service failure mechanisms. This analysis revealed that premature failure of the high chrome oxide refractories was related to ash in the carbon feedstock, which liquefies during gasification and interacts with the refractories, leading to wear by chemical dissolution or spalling (structural and chemical). A discussion of this postmortem wear of spent refractory materials and of thermodynamic modeling used to explain microstructural changes leading to wear are explained in this article. This information will serve the basis to develop improved performance refractory materials.

  13. Mechanisms of compressive failure in woven composites and stitched laminates

    NASA Technical Reports Server (NTRS)

    Cox, B. N.; Dadkhah, M. S.; Inman, R. V.; Morris, W. L.; Schroeder, S.

    1992-01-01

    Stitched laminates and angle interlock woven composites have been studied in uniaxial, in-plane, monotonic compression. Failure mechanisms have been found to depend strongly on both the reinforcement architecture and the degree of constraint imposed by the loading grips. Stitched laminates show higher compressive strength, but are brittle, possessing no load bearing capacity beyond the strain for peak load. Post-mortem inspection shows a localized shear band of buckled and broken fibers, which is evidently the product of an unstably propagating kink band. Similar shear bands are found in the woven composites if the constraint of lateral displacements is weak; but, under strong constraint, damage is not localized but distributed throughout the gauge section. While the woven composites tested are weaker than the stitched laminates, they continue to bear significant loads to compressive strains of approx. 15 percent, even when most damage is confined to a shear band.

  14. Structural remodeling and mechanical function in heart failure.

    PubMed

    Leonard, Bridget Louise; Smaill, Bruce Henry; LeGrice, Ian John

    2012-02-01

    The cardiac extracellular matrix (ECM) is the three-dimensional scaffold that defines the geometry and muscular architecture of the cardiac chambers and transmits forces produced during the cardiac cycle throughout the heart wall. The cardiac ECM is an active system that responds to the stresses to which it is exposed and in the normal heart is adapted to facilitate efficient mechanical function. There are marked differences in the short- and medium-term changes in ventricular geometry and cardiac ECM that occur as a result of volume overload, hypertension, and ischemic cardiomyopathy. Despite this, there is a widespread view that a common remodeling "phenotype" governs the final progression to end-stage heart failure in different forms of heart disease. In this review article, we make the case that this interpretation is not consistent with the clinical and experimental data on the topic. We argue that there is a need for new theoretical and experimental models that will enable stresses acting on the ECM and resultant deformations to be estimated more accurately and provide better spatial resolution of local signaling mechanisms that are activated as a result. These developments are necessary to link the effects of structural remodeling with altered cardiac mechanical function.

  15. Doxorubicin induced heart failure: Phenotype and molecular mechanisms

    PubMed Central

    Mitry, Maria A.; Edwards, John G.

    2016-01-01

    Long term survival of childhood cancers is now more than 70%. Anthracyclines, including doxorubicin, are some of the most efficacious anticancer drugs available. However, its use as a chemotherapeutic agent is severely hindered by its dose-limiting toxicities. Most notably observed is cardiotoxicity, but other organ systems are also degraded by doxorubicin use. Despite the years of its use and the amount of information written about this drug, an understanding of its cellular mechanisms is not fully appreciated. The mechanisms by which doxorubicin induces cytotoxicity in target cancer cells have given insight about how the drug damages cardiomyocytes. The major mechanisms of doxorubicin actions are thought to be as an oxidant generator and as an inhibitor of topoisomerase 2. However, other signaling pathways are also invoked with significant consequences for the cardiomyocyte. Further the interaction between oxidant generation and topoisomerase function has only recently been appreciated and the consequences of this interaction are still not fully understood. The unfortunate consequences of doxorubicin within cardiomyocytes have promoted the search for new drugs and methods that can prevent or reverse the damage caused to the heart after treatment in cancer patients. Alternative protocols have lessened the impact on newly diagnosed cancer patients. However the years of doxorubicin use have generated a need for monitoring the onset of cardiotoxicity as well as understanding its potential long-term consequences. Although a fairly clear understanding of the short-term pathologic mechanisms of doxorubicin actions has been achieved, the long-term mechanisms of doxorubicin induced heart failure remain to be carefully delineated. PMID:27213178

  16. On study of nonclassical problems of fracture and failure mechanics and related mechanisms

    NASA Astrophysics Data System (ADS)

    Guz, A. N.

    2009-01-01

    Nonclassical problems of fracture and failure mechanics that have been analyzed by the author and his collaborators at the S. P. Timoshenko Institute of Mechanics (Kiev, National Academy of Sciences of Ukraine) during the past forty years are considered in brief. The results of the analysis are presented in a form that would be quite informative for the majority of experts interested in various fundamental and applied aspects of fracture and failure problems including the identification of related mechanisms. This paper was prepared on invitation of the Editorial Board of the journal "Annals. The European Academy of Sciences" and may be considered as an Extended Pascal Medal Lecture (The 2007 Blaise Pascal Medal in Materials Sciences of the EAS)

  17. Simulated Hail Ice Mechanical Properties and Failure Mechanism at Quasi-Static Strain Rates

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan M.

    Hail is a significant threat to aircraft both on the ground and in the air. Aeronautical engineers are interested in better understanding the properties of hail to improve the safety of new aircraft. However, the failure mechanism and mechanical properties of hail, as opposed to clear ice, are not well understood. A literature review identifies basic mechanical properties of ice and a failure mechanism based upon the state of stress within an ice sphere is proposed. To better understand the properties of Simulated Hail Ice (SHI), several tests were conducted using both clear and cotton fiber reinforced ice. Pictures were taken to show the internal crystal structure of SHI. SHI crush tests were conducted to identify the overall force-displacement trends at various quasi-static strain rates. High speed photography was also used to visually track the failure mechanism of spherical SHI. Compression tests were done to measure the compression strength of SHI and results were compared to literature data. Fracture toughness tests were conducted to identify the crack resistance of SHI. Results from testing clear ice samples were successfully compared to previously published literature data to instill confidence in the testing methods. The methods were subsequently used to test and characterize the cotton fiber reinforced ice.

  18. Mechanism underlying renal failure caused by pathogenic Candida albicans infection.

    PubMed

    Jae-Chen, Shin; Young-Joo, Jeon; Seon-Min, Park; Kang Seok, Seo; Jung-Hyun, Shim; Jung-Il, Chae

    2015-03-01

    Candida albicans (C. albicans) is an opportunistic fungal pathogen that commonly causes nosocomial infections. Systemic candidiasis is encountered with increasing frequency in immunocompromised hosts, leading to renal failure that results in severe morbidity and mortality. The present study investigated the mechanisms underlying kidney susceptibility following infection with several C. albicans strains, such as B311 and SC5314. Fungal growth of the highly virulent SC5314 strain was 10(3)-fold higher compared to the nonpathogenic B311 strain in the kidneys. An intravenous challenge of SC5314 in mice, elevated blood urea nitrogen (BUN) and creatine levels, which resulted in mortality at 8 or 35 days after infection in a dose- and time-dependent manner, whereas all the B311-infected mice had BUN and creatinine levels in the normal range and survived. Whether virulent C. albicans may escape clearance by activating signaling pathways that lead to the production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was investigated. B311 infections significantly elevated TNF-α and IL-1β mRNA expression in the kidneys, whereas the expression in SC5314-infected mice remained unchanged. Furthermore, B311 infection significantly elevated the plasma levels of TNF-α and IL-1β. These results indicated that the less virulent strains of C. albicans induced pro-inflammatory cytokines in mice. These results determined that an impairment of the protective mechanisms occurred in the kidneys with virulent C. albicans infection.

  19. Calcium cycling proteins and heart failure: mechanisms and therapeutics.

    PubMed

    Marks, Andrew R

    2013-01-01

    Ca2+-dependent signaling is highly regulated in cardiomyocytes and determines the force of cardiac muscle contraction. Ca2+ cycling refers to the release and reuptake of intracellular Ca2+ that drives muscle contraction and relaxation. In failing hearts, Ca2+ cycling is profoundly altered, resulting in impaired contractility and fatal cardiac arrhythmias. The key defects in Ca2+ cycling occur at the level of the sarcoplasmic reticulum (SR), a Ca2+ storage organelle in muscle. Defects in the regulation of Ca2+ cycling proteins including the ryanodine receptor 2, cardiac (RyR2)/Ca2+ release channel macromolecular complexes and the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a)/phospholamban complex contribute to heart failure. RyR2s are oxidized, nitrosylated, and PKA hyperphosphorylated, resulting in "leaky" channels in failing hearts. These leaky RyR2s contribute to depletion of Ca2+ from the SR, and the leaking Ca2+ depolarizes cardiomyocytes and triggers fatal arrhythmias. SERCA2a is downregulated and phospholamban is hypophosphorylated in failing hearts, resulting in impaired SR Ca2+ reuptake that conspires with leaky RyR2 to deplete SR Ca2+. Two new therapeutic strategies for heart failure (HF) are now being tested in clinical trials: (a) fixing the leak in RyR2 channels with a novel class of Ca2+-release channel stabilizers called Rycals and (b) increasing expression of SERCA2a to improve SR Ca2+ reuptake with viral-mediated gene therapy. There are many potential opportunities for additional mechanism-based therapeutics involving the machinery that regulates Ca2+ cycling in the heart.

  20. Failure mechanisms in composite panels subjected to underwater impulsive loads

    NASA Astrophysics Data System (ADS)

    Latourte, Félix; Grégoire, David; Zenkert, Dan; Wei, Xiaoding; Espinosa, Horacio D.

    2011-08-01

    This work examines the performance of composite panels when subjected to underwater impulsive loads. The scaled fluid-structure experimental methodology developed by Espinosa and co-workers was employed. Failure modes, damage mechanisms and their distributions were identified and quantified for composite monolithic and sandwich panels subjected to typical blast loadings. The temporal evolutions of panel deflection and center deflection histories were obtained from shadow Moiré fringes acquired in real time by means of high speed photography. A linear relationship of zero intercept between peak center deflections versus applied impulse per areal mass was obtained for composite monolithic panels. For composite sandwich panels, the relationship between maximum center deflection versus applied impulse per areal mass was found to be approximately bilinear but with a higher slope. Performance improvement of sandwich versus monolithic composite panels was, therefore, established specially at sufficiently high impulses per areal mass ( I0/ M¯>170 m s -1). Severe failure was observed in solid panels subjected to impulses per areal mass larger than 300 m s -1. Extensive fiber fracture occurred in the center of the panels, where cracks formed a cross pattern through the plate thickness and delamination was very extensive on the sample edges due to bending effects. Similar levels of damage were observed in sandwich panels but at much higher impulses per areal mass. The experimental work reported in this paper encompasses not only characterization of the dynamic performance of monolithic and sandwich panels but also post-mortem characterization by means of both non-destructive and microscopy techniques. The spatial distribution of delamination and matrix cracking were quantified, as a function of applied impulse, in both monolithic and sandwich panels. The extent of core crushing was also quantified in the case of sandwich panels. The quantified variables represent ideal

  1. A mixture Weibull proportional hazard model for mechanical system failure prediction utilising lifetime and monitoring data

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Hua, Cheng; Xu, Guanghua

    2014-02-01

    As mechanical systems increase in complexity, it is becoming more and more common to observe multiple failure modes. The system failure can be regarded as the result of interaction and competition between different failure modes. It is therefore necessary to combine multiple failure modes when analysing the failure of an overall system. In this paper, a mixture Weibull proportional hazard model (MWPHM) is proposed to predict the failure of a mechanical system with multiple failure modes. The mixed model parameters are estimated by combining historical lifetime and monitoring data of all failure modes. In addition, the system failure probability density is obtained by proportionally mixing the failure probability density of multiple failure modes. Monitoring data are input into the MWPHM to estimate the system reliability and predict the system failure time. A simulated sample set is used to verify the ability of the MWPHM to model multiple failure modes. Finally, the MWPHM and the traditional Weibull proportional hazard model (WPHM) are applied to a high-pressure water descaling pump, which has two failure modes: sealing ring wear and thrust bearing damage. Results show that the MWPHM is greatly superior in system failure prediction to the WPHM.

  2. Deformation and Failure Mechanisms of Shape Memory Alloys

    SciTech Connect

    Daly, Samantha Hayes

    2015-04-15

    The goal of this research was to understand the fundamental mechanics that drive the deformation and failure of shape memory alloys (SMAs). SMAs are difficult materials to characterize because of the complex phase transformations that give rise to their unique properties, including shape memory and superelasticity. These phase transformations occur across multiple length scales (one example being the martensite-austenite twinning that underlies macroscopic strain localization) and result in a large hysteresis. In order to optimize the use of this hysteretic behavior in energy storage and damping applications, we must first have a quantitative understanding of this transformation behavior. Prior results on shape memory alloys have been largely qualitative (i.e., mapping phase transformations through cracked oxide coatings or surface morphology). The PI developed and utilized new approaches to provide a quantitative, full-field characterization of phase transformation, conducting a comprehensive suite of experiments across multiple length scales and tying these results to theoretical and computational analysis. The research funded by this award utilized new combinations of scanning electron microscopy, diffraction, digital image correlation, and custom testing equipment and procedures to study phase transformation processes at a wide range of length scales, with a focus at small length scales with spatial resolution on the order of 1 nanometer. These experiments probe the basic connections between length scales during phase transformation. In addition to the insights gained on the fundamental mechanisms driving transformations in shape memory alloys, the unique experimental methodologies developed under this award are applicable to a wide range of solid-to-solid phase transformations and other strain localization mechanisms.

  3. Investigation of Interface States and Failure Mechanisms in Mnos Devices

    NASA Astrophysics Data System (ADS)

    Lu, Hsing-Liang

    The objective of this dissertation is to conduct a quantitative study of the interface state characteristics at Si-SiO(,2) interface and the failure mechanisms in the silicon MNOS nonvolatile memory devices under different write/erase (W/E) cycling conditions. The main thrust of this research is to quantitatively characterize the interface states in MNOS devices and to correlate the results of the measurements to the failure mechanisms in the exercised MNOS devices for W/E cycles up to 1 x 10('11) cycles. The Constant-Capacitance Deep Level Transient Spectroscopy (CC-DLTS) technique is employed for the first time to characterize the interface states in the MNOS device. The existing theory for the CC-DLTS technique is modified to analyze the interface state density and electron capture cross sections of the trap states at Si-SiO(,2) interface. An exact equivalent circuit model for the p('+)-gridded MNOS capacitors is developed to predict the high frequency C -V behavior in the exercised MNOS devices. The results show little change in the interface state density was observed for W/E cycles less than 1 x 10('7) and increased rapidly for W/E cycles greater than 1 x 10('7). For W/E cycles greater than 5 x 10('9), a gradual increase in interface state density with W/E cyclings was observed. The negative shift of threshold voltage in the exercised MNOS devices can be attributed to the creation of interface states for W/E cycles less than 10('9) and primarily due to the generation of interface states for W/E cycles exceeding 1 x 10('9). The increase in interface state densities and the degradation of the thin oxide layer after prolonged W/E cycling increase the back tunneling current which results in the increase of retention decay rate. Furthermore, mobility degradation in the inversion layer was observed in the MNOS transistors for W/E cycling exceeds 10('9). This is attributed to the generation of surface state densities. Improvement in retention and endurance of the

  4. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice

    PubMed Central

    Ju, Xiang-Chun; Hou, Qiong-Qiong; Sheng, Ai-Li; Wu, Kong-Yan; Zhou, Yang; Jin, Ying; Wen, Tieqiao; Yang, Zhengang; Wang, Xiaoqun; Luo, Zhen-Ge

    2016-01-01

    Cortical expansion and folding are often linked to the evolution of higher intelligence, but molecular and cellular mechanisms underlying cortical folding remain poorly understood. The hominoid-specific gene TBC1D3 undergoes segmental duplications during hominoid evolution, but its role in brain development has not been explored. Here, we found that expression of TBC1D3 in ventricular cortical progenitors of mice via in utero electroporation caused delamination of ventricular radial glia cells (vRGs) and promoted generation of self-renewing basal progenitors with typical morphology of outer radial glia (oRG), which are most abundant in primates. Furthermore, down-regulation of TBC1D3 in cultured human brain slices decreased generation of oRGs. Interestingly, localized oRG proliferation resulting from either in utero electroporation or transgenic expression of TBC1D3, was often found to underlie cortical regions exhibiting folding. Thus, we have identified a hominoid gene that is required for oRG generation in regulating the cortical expansion and folding. DOI: http://dx.doi.org/10.7554/eLife.18197.001 PMID:27504805

  5. A zipper network model of the failure mechanics of extracellular matrices.

    PubMed

    Ritter, Michael C; Jesudason, Rajiv; Majumdar, Arnab; Stamenovic, Dimitrije; Buczek-Thomas, Jo Ann; Stone, Phillip J; Nugent, Matthew A; Suki, Béla

    2009-01-27

    Mechanical failure of soft tissues is characteristic of life-threatening diseases, including capillary stress failure, pulmonary emphysema, and vessel wall aneurysms. Failure occurs when mechanical forces are sufficiently high to rupture the enzymatically weakened extracellular matrix (ECM). Elastin, an important structural ECM protein, is known to stretch beyond 200% strain before failing. However, ECM constructs and native vessel walls composed primarily of elastin and proteoglycans (PGs) have been found to fail at much lower strains. In this study, we hypothesized that PGs significantly contribute to tissue failure. To test this, we developed a zipper network model (ZNM), in which springs representing elastin are organized into long wavy fibers in a zipper-like formation and placed within a network of springs mimicking PGs. Elastin and PG springs possessed distinct mechanical and failure properties. Simulations using the ZNM showed that the failure of PGs alone reduces the global failure strain of the ECM well below that of elastin, and hence, digestion of elastin does not influence the failure strain. Network analysis suggested that whereas PGs drive the failure process and define the failure strain, elastin determines the peak and failure stresses. Predictions of the ZNM were experimentally confirmed by measuring the failure properties of engineered elastin-rich ECM constructs before and after digestion with trypsin, which cleaves the core protein of PGs without affecting elastin. This study reveals a role for PGs in the failure properties of engineered and native ECM with implications for the design of engineered tissues.

  6. Failure Criterion for Brick Masonry: A Micro-Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Kawa, Marek

    2015-02-01

    The paper deals with the formulation of failure criterion for an in-plane loaded masonry. Using micro-mechanics approach the strength estimation for masonry microstructure with constituents obeying the Drucker-Prager criterion is determined numerically. The procedure invokes lower bound analysis: for assumed stress fields constructed within masonry periodic cell critical load is obtained as a solution of constrained optimization problem. The analysis is carried out for many different loading conditions at different orientations of bed joints. The performance of the approach is verified against solutions obtained for corresponding layered and block microstructures, which provides the upper and lower strength bounds for masonry microstructure, respectively. Subsequently, a phenomenological anisotropic strength criterion for masonry microstructure is proposed. The criterion has a form of conjunction of Jaeger critical plane condition and Tsai-Wu criterion. The model proposed is identified based on the fitting of numerical results obtained from the microstructural analysis. Identified criterion is then verified against results obtained for different loading orientations. It appears that strength of masonry microstructure can be satisfactorily described by the criterion proposed.

  7. Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure

    PubMed Central

    Gupte, Anisha A.; Hamilton, Dale J.; Cordero-Reyes, Andrea M.; Youker, Keith A.; Yin, Zheng; Estep, Jerry D.; Stevens, Robert D.; Wenner, Brett; Ilkayeva, Olga; Loebe, Matthias; Peterson, Leif E.; Lyon, Christopher J.; Wong, Stephen T.C.; Newgard, Christopher B.; Torre-Amione, Guillermo; Taegtmeyer, Heinrich; Hsueh, Willa A.

    2015-01-01

    Background Impaired bioenergetics is a prominent feature of the failing heart, but the underlying metabolic perturbations are poorly understood. Methods and Results We compared metabolomic, gene transcript, and protein data from six paired failing human left ventricular (LV) tissue samples obtained during left ventricular assist device (LVAD) insertion (heart failure (HF) samples) and at heart transplant (post-LVAD samples). Non-failing left ventricular (NFLV) wall samples procured from explanted hearts of patients with right HF served as novel comparison samples. Metabolomic analyses uncovered a distinct pattern in HF tissue: 2.6 fold increased pyruvate concentrations coupled with reduced Krebs cycle intermediates and short-chain acylcarnitines, suggesting a global reduction in substrate oxidation. These findings were associated with decreased transcript levels for enzymes that catalyze fatty acid oxidation and pyruvate metabolism and for key transcriptional regulators of mitochondrial metabolism and biogenesis, peroxisome proliferator-activated receptor gamma co-activator1α (PGC1A, 1.3 fold) and estrogen-related receptor α (ERRA, 1.2 fold) and γ (ERRG, 2.2 fold). Thus, parallel decreases in key transcription factors and their target metabolic enzyme genes can explain the decreases in associated metabolic intermediates. Mechanical support with LVAD improved all of these metabolic and transcriptional defects. Conclusions These observations underscore an important pathophysiologic role for severely defective metabolism in HF, while the reversibility of these defects by LVAD suggests metabolic resilience of the human heart. PMID:24825877

  8. Mechanisms of renal hyporesponsiveness to BNP in heart failure.

    PubMed

    Egom, Emmanuel E; Feridooni, Tiam; Hotchkiss, Adam; Kruzliak, Peter; Pasumarthi, Kishore B S

    2015-06-01

    The B-type natriuretic peptide (BNP), a member of the family of vasoactive peptides, is a potent natriuretic, diuretic, and vasodilatory peptide that contributes to blood pressure and volume homeostasis. These attributes make BNP an ideal drug that could aid in diuresing a fluid-overloaded patient who had poor or worsening renal function. Despite the potential benefits of BNP, accumulating evidence suggests that simply increasing the amount of circulating BNP does not necessarily increase natriuresis in patients with heart failure (HF). Moreover, despite high BNP levels, natriuresis falls when HF progresses from a compensated to a decompensated state, suggesting the emergence of renal resistance to BNP. Although likely multifactorial, several mechanisms have been proposed to explain renal hyporesponsiveness in HF, including, but not limited to, decreased renal BNP availability, down-regulation of natriuretic peptide receptors, and altered BNP intracellular signal transduction pathways. Thus, a better understanding of renal hyporesponsiveness in HF is required to devise strategies to develop novel agents and technologies that directly restore renal BNP efficiency. It is hoped that development of these new therapeutic approaches will serve to limit sodium retention in patients with HF, which may ultimately delay the progression to overt HF.

  9. Development of Mechanical and Failure Properties in Sheep Cerebral Arteries.

    PubMed

    Nye, Kevin S; Converse, Matthew I; Dahl, Mar Janna; Albertine, Kurt H; Monson, Kenneth L

    2017-04-01

    Traumatic brain injury (TBI) is a devastating problem for people of all ages, but the nature of the response to such injury is often different in children than in adults. Cerebral vessel damage and dysfunction are common following TBI, but age-dependent, large-deformation vessel response has not been characterized. Our objective was to investigate the mechanical properties of cerebral arteries as a function of development. Sheep middle cerebral arteries from four age groups (fetal, newborn, juvenile, and adult) were subjected to biaxial loading around physiological conditions and then to failure in the axial direction. Results show little difference among age groups under physiological loading conditions, but response varied significantly with age in response to large axial deformation. Vessels from all age groups reached the same ultimate stretch level, but the amount of stress carried at a given level of stretch increased significantly with age through the developmental period (fetal to juvenile). Our results are the first to identify changes in cerebral vessel response to large deformations with age and may lead to new insights regarding differences in response to TBI with age.

  10. Failure mechanisms during melt injection along dykes in Iceland

    NASA Astrophysics Data System (ADS)

    White, Robert S.; Agustsdottir, Thorbjorg; Greenfield, Tim; Green, Robert; Brandsdottir, Bryndis; Woods, Jennifer; Pugh, David

    2015-04-01

    We show moment tensor solutions from seismicity produced during two extremely well monitored dyke injections in the mid-crust of Iceland. They demonstrate failure by double couple mechanisms with little or no volumetric component. The inferred failure planes are consistently orientated parallel to the dyke, from which we infer that the seismicity is produced primarily by breaking chilled magma emplaced during an earlier injection episode. The first dyke injection was at Upptyppingar in 2007 in the Northern Rift Zone of Iceland. Melt was injected in the mid-crust from 17.5 to 13.5 km depth over a 9 month period before freezing in situ. The dyke was inclined with a dip of approximately 50 degrees. The second dyke was injected sub-horizontally from Bárðarbunga at a depth of about 7 km over a two week period in late August 2014 until it erupted 45 km away in Holuhraun. The Holuhraun eruption precisely reoccupied old craters from a late eighteenth century (c. 1797) eruption. The petrology of the eighteenth century basalts suggests that the melt also came from Bárðarbunga. It is likely therefore that the 2014 dyke closely followed the earlier eighteenth century dyke path. Both dyke injections were monitored by a dense seismic network of broad-band three-component seismic stations deployed and operated from 2006 to the present by the University of Cambridge in collaboration with the Institute of Earth Sciences, University of Iceland. These enable well constrained hypocentral locations and moment tensor solutions to be made. At its present peak the network consists of over 75 broadband seismometers. Fifteen additional seismometers were deployed in the days immediately following the onset of the dyke injection, including four seismometers on the Vatnajökull ice cap beneath which the dyke propagated and the remainder on Holuhraun surrounding the eventual eruption site: indeed two of the seismometers had to be rescued shortly before they were encroached by the advancing

  11. Toward Optimum Scale and TBC Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1998-01-01

    Single crystal superalloys exhibit excellent cyclic oxidation resistance if their sulfur content is reduced from typical impurity levels of approximately 5 ppmw to below 0.5 ppmw. Excellent alumina scale adhesion was documented for PWA 1480 and PWA 1484 without yttrium additions. Hydrogen annealing produced effective desulfurization of PWA 1480 to less than 0.2 ppmw and was also used to achieve controlled intermediate levels. The direct relationship between cyclic oxidation behavior and sulfur content was shown. An adhesion criterion was proposed based on the total amount of sulfur available for interfacial segregation, e.g., less than or equal to 0.2 ppmw S will maximize adhesion for a 1 mm thick sample. PWA 1484, melt desulfurized to 0.3 ppmw S, also exhibited excellent cyclic oxidation resistance and encouraging TBC lives (10 mils of 8YSZ, plasma sprayed without a bond coat) in 1100 C cyclic oxidation tests.

  12. Mechanisms for the reciprocity failure in photorefractive polymers

    NASA Astrophysics Data System (ADS)

    Blanche, Pierre-Alexandre; Lynn, Brittany; Norwood, Robert A.; Peyghambarian, Nasser

    2016-09-01

    We measured the diffraction efficiency response of two photorefractive polymer devices according to the duration of the single laser pulse used to record the hologram. The pulse duration was varied from 6 nanoseconds to 1 second, while the pulse energy density was maintained constant at 30 mJ/cm2. This changed the peak power from 5 ×109 mW to 30 mW. We observed a strong reciprocity failure of the efficiency according to the pulse duration, with a reduction as large as a factor 35 between 1 second and 30 μs pulse duration. At even lower pulse duration (< 30 μs), the efficiency leveled out and remained constant down to the nanosecond exposure time. The same behavior was observed for samples composed of the same material but with and without buffer layers deposited on the electrodes, and different voltages applied during the holographic recording. We explained these experimental results based on the charge transport mechanism involved in the photorefractive process. The plateau is attributed to the single excitation of the charge carriers by short pulses (τp < 30 μs). The increase of efficiency for longer pulse duration (τp > 30 μs) is explained by multiple excitations of the charge carriers that allows longer distance to be traveled from the excitation sites. This longer separation distance between the carriers increases the amplitude of the space-charge field, and improves the index modulation. The understanding of the response of the diffraction efficiency according to the pulse duration is particularly important for the optimization of photorefractive materials to be used at high refresh rate such as in videorate 3D display.

  13. Failure mechanisms of thermal barrier coatings exposed to elevated temperatures

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Lowell, C. E.

    1982-01-01

    The failure of a ZrO2-8%Y2O3/Ni-14% Al-0.1% Zr coating system on Rene 41 in Mach 0.3 burner rig tests was characterized. High flame and metal temperatures were employed in order to accelerate coating failure. Failure by delamination was shown to precede surface cracking or spalling. This type of failure could be duplicated by cooling down the specimen after a single long duration isothermal high temperature cycle in a burner rig or a furnace, but only if the atmosphere was oxidizing. Stresses due to thermal expansion mismatch on cooling coupled with the effects of plastic deformation of the bond coat and oxidation of the irregular bond coat are the probable life limiting factors. Heat up stresses alone could not fail the coating in the burner rig tests. Spalling eventually occurs on heat up but only after the coating has already failed through delamination.

  14. Acute-on-chronic liver failure: terminology, mechanisms and management.

    PubMed

    Sarin, Shiv K; Choudhury, Ashok

    2016-03-01

    Acute-on-chronic liver failure (ACLF) is a distinct clinical entity and differs from acute liver failure and decompensated cirrhosis in timing, presence of acute precipitant, course of disease and potential for unaided recovery. The definition involves outlining the acute and chronic insults to include a homogenous patient group with liver failure and an expected outcome in a specific timeframe. The pathophysiology of ACLF relates to persistent inflammation, immune dysregulation with initial wide-spread immune activation, a state of systematic inflammatory response syndrome and subsequent sepsis due to immune paresis. The disease severity and outcome can be predicted by both hepatic and extrahepatic organ failure(s). Clinical recovery is expected with the use of nucleoside analogues for hepatitis B, and steroids for severe alcoholic hepatitis and, possibly, severe autoimmune hepatitis. Artificial liver support systems help remove toxins and metabolites and serve as a bridge therapy before liver transplantation. Hepatic regeneration during ongoing liver failure, although challenging, is possible through the use of growth factors. Liver transplantation remains the definitive treatment with a good outcome. Pre-emptive antiviral agents for hepatitis B before chemotherapy to prevent viral reactivation and caution in using potentially hepatotoxic drugs can prevent the development of ACLF.

  15. Mechanism of gas pipeline failures on Balboa Boulevard during the 1994 Northridge earthquake

    SciTech Connect

    Nishio, Nobuaki

    1995-12-31

    A possible mechanism of gas pipeline failures on Balboa Boulevard during the 1994 Northridge earthquake is proposed. This mechanism is the one that has been adopted by the Japan Gas Association in the Recommended Practice for the Earthquake-Resistant Design of Gas Pipelines. The possible mode of ground displacement that might have caused the above pipeline failures is also discussed.

  16. Mechanism maps for electromigration-induced failure of metal and alloy interconnects

    NASA Astrophysics Data System (ADS)

    Andleigh, Vaibhav K.; Srikar, V. T.; Park, Young-Joon; Thompson, Carl V.

    1999-12-01

    Numerical simulation of electromigration-induced stress evolution provides a versatile technique for analyzing the reliability of interconnects under a wide range of conditions. We study the evolution of stress in confined, layered, stud-terminated, pure metal, and alloy interconnects. Failure times are estimated using different failure criteria associated with different failure modes for broad ranges of line lengths and current densities. The simulation results can be conveniently catalogued through construction of failure mechanism maps that display domains of dominance of different failure modes. Failure mechanism maps are constructed for several different failure criteria, illustrating regimes of line immortality, void-nucleation-limited failure, void-growth-limited failure, and compressive failure as a function of line length and current density. The effects of changes in failure criteria, geometry, and composition are studied for representative interconnect stacks at accelerated and service temperatures. Failure maps may be used to: (i) provide an overview of predicted reliability behavior, (ii) assess how data from accelerated tests can be accurately scaled to service conditions, and (iii) predict the effects of changes in interconnect and shunt-layer materials and dimensions on interconnect reliability.

  17. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    SciTech Connect

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  18. Burn prevention mechanisms and outcomes: pitfalls, failures and successes.

    PubMed

    Atiyeh, Bishara S; Costagliola, Michel; Hayek, Shady N

    2009-03-01

    Burns are responsible for significant mortality and morbidity worldwide and are among the most devastating of all injuries, with outcomes spanning the spectrum from physical impairments and disabilities to emotional and mental consequences. Management of burns and their sequelae even in well-equipped, modern burn units of advanced affluent societies remains demanding and extremely costly. Undoubtedly, in most low and middle income countries (LMICs) with limited resources and inaccessibility to sophisticated skills and technologies, the same standard of care is obviously not possible. Unfortunately, over 90% of fatal fire-related burns occur in developing or LMICs with South-East Asia alone accounting for over half of these fire-related deaths. If burn prevention is an essential part of any integrated burn management protocol anywhere, focusing on burn prevention in LMICs rather than treatment cannot be over-emphasized where it remains the major and probably the only available way of reducing the current state of morbidity and mortality. Like other injury mechanisms, the prevention of burns requires adequate knowledge of the epidemiological characteristics and associated risk factors, it is hence important to define clearly, the social, cultural and economic factors, which contribute to burn causation. While much has been accomplished in the areas of primary and secondary prevention of fires and burns in many developed or high-income countries (HICs) such as the United States due to sustained research on the epidemiology and risk factors, the same cannot be said for many LMICs. Many health authorities, agencies, corporations and even medical personnel in LMICs consider injury prevention to have a much lower priority than disease prevention for understandable reasons. Consequently, burns prevention programmes fail to receive the government funding that they deserve. Prevention programmes need to be executed with patience, persistence, and precision, targeting high

  19. Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes.

    PubMed

    Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David

    2016-03-23

    Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid(®) and Torlon(®) as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C₆mim][Tf₂N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse.

  20. Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes

    PubMed Central

    Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David

    2016-01-01

    Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid® and Torlon® as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse. PMID:27023620

  1. Failure of thick, low density air plasma sprayed thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Helminiak, Michael Aaron

    This research was directed at developing fundamental understandings of the variables that influence the performance of air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBC). Focus was placed on understanding how and why each variable influenced the performance of the TBC system along with how the individual variables interacted with one another. It includes research on the effect of surface roughness of NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying, the interdiffusion behavior of bond coats coupled to commercial superalloys, and the microstructural and compositional control of APS topcoats to maximize the coating thicknesses that can be applied without spallation. The specimens used for this research were prepared by Praxair Surface Technologies and have been evaluated using cyclic oxidation and thermal shock tests. TBC performance was sensitive to bond coat roughness with the rougher bond coats having improved cyclic performance than the smoother bond coats. The explanation being the rough bond coat surface hindered the propagation of the delamination cracks. The failure mechanisms of the APS coatings were found to depend on a combination of the topcoat thickness, topcoat microstructure and the coefficient of thermal expansion (CTE) mismatch between the superalloy and topcoat. Thinner topcoats tended to fail at the topcoat/TGO interface due to bond coat oxidation whereas thicker topcoats failed within the topcoat due to the strain energy release rate of the thicker coating exceeding the fracture strength of the topcoat. Properties of free-standing high and conventional purity YSZ topcoats of both a lowdensity (LD) and dense-vertically fissure (DVF) microstructures were evaluated. The densification rate and phase evolution were sensitive to the YSZ purity and the starting microstructure. Increasing the impurity content resulted in enhanced sintering and phase decomposition rates, with the exception of the

  2. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice

    PubMed Central

    Hargett, Stefan R.; Walker, Natalie N.; Hussain, Syed S.; Hoehn, Kyle L.

    2015-01-01

    Tbc1d1 is a Rab GTPase-activating protein (GAP) implicated in regulating intracellular retention and cell surface localization of the glucose transporter GLUT4 and thus glucose uptake in a phosphorylation-dependent manner. Tbc1d1 is most abundant in skeletal muscle but is expressed at varying levels among different skeletal muscles. Previous studies with male Tbc1d1-deficient (Tbc1d1−/−) mice on standard and high-fat diets established a role for Tbc1d1 in glucose, lipid, and energy homeostasis. Here we describe similar, but also additional abnormalities in male and female Tbc1d1−/− mice. We corroborate that Tbc1d1 loss leads to skeletal muscle-specific and skeletal muscle type-dependent abnormalities in GLUT4 expression and glucose uptake in female and male mice. Using subcellular fractionation, we show that Tbc1d1 controls basal intracellular GLUT4 retention in large skeletal muscles. However, cell surface labeling of extensor digitorum longus muscle indicates that Tbc1d1 does not regulate basal GLUT4 cell surface exposure as previously suggested. Consistent with earlier observations, female and male Tbc1d1−/− mice demonstrate increased energy expenditure and skeletal muscle fatty acid oxidation. Interestingly, we observe sex-dependent differences in in vivo phenotypes. Female, but not male, Tbc1d1−/− mice have decreased body weight and impaired glucose and insulin tolerance, but only male Tbc1d1−/− mice show increased lipid clearance after oil gavage. We surmise that similar changes at the tissue level cause differences in whole-body metabolism between male and female Tbc1d1−/− mice and between male Tbc1d1−/− mice in different studies due to variations in body composition and nutrient handling. PMID:26015432

  3. Focus on Mechanical Failures: Mechanisms and Detection. Proceedings of the Meeting (45th) of the Mechanical Failures Prevention Group Held in Annapolis, Maryland on April 9 - 11, 1999

    DTIC Science & Technology

    1991-04-04

    reproduction is for U.S. Government purposes. Acceslon For NTIS CRA&M DTIC TAB Unannowk’I•.: JustifIcdtiron L Dist ibjtio ! Avaiiobll,ly O’,ale. Avait a...Dickson, S. Lalonde and L . Shiqiong Catastrophic Temperature Increase During the Separation of High Strength Alloys 79 in Tensile Loading D. D. Make/and...Nemarich and W. W. Boblitt S~iii Beyond Failure Avoidance: Evolution of an Expert System of Mechanical Systems 135 Integrity Management R. L . Kincaid

  4. Formation and Failure of Elastomer Networks via Thermal, Mechanical and Surface Characterization

    DTIC Science & Technology

    1979-12-01

    Cootinue on reverse side If O.cesearyn7md Identity by block number) .4Fracture mechanism IGA TMA SBR Degradation ZnO particles ESCA Oxidative embrittlement Z...TARADC6M and EARCH TECHNICAL REPORT : NO. 12498 FORMATION AND FAILURE OF -ELASTOMER NETWORKS VIA " THERMAL, MECHANICAL AND SURFACE CHARACTERIZATION...PERIOD COVERED Foratonand Failure of Elastomer Networks via Final ½,chnical Rtepo¶t * hermal, Mechanical and Surface Characterization@ Aug. e4

  5. Science Underpinning TBC Design to Overcome the CMAS Threat to Progress in Gas Turbine Technology

    DTIC Science & Technology

    2015-09-30

    Science Underpinning TBC Design to Overcome the CMAS Threat to Progress in Gas Turbine Technology Sb. GRANT NUMBER NOOO 14-08-1-0522 Sc. PROGRAM ELEMENT...degradation in current and future gas turbine engines with expected material temperatures :::=:: 1300°C. The overarching goal was to elucidate the...Z39.1t Final Report on ONR Grant No. N00014-08-1-0522 SCIENCE UNDERPINNING TBC DESIGN TO OVERCOME THE CMAS THREAT TO PROGRESS IN GAS TURBINE

  6. Register of specialized sources for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Denny, F. J.

    1973-01-01

    Specialized information sources that generate information relative to six problem areas in aerospace mechanics of structural failure are identified. Selection for inclusion was based upon information obtained from the individual knowledge and professional contacts of Martin Marietta Aerospace staff members and the information uncovered by the staff of technical reviewers. Activities listed perform basic or applied research related to the mechanics of structural failure and publish the results of such research. The purpose of the register is to present, in easy reference form, original sources for dependable information regarding failure modes and mechanisms of aerospace structures.

  7. Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR

    PubMed Central

    Vizoso, Miguel; Ferreira, Humberto J; Lopez-Serra, Paula; Javier Carmona, F; Martínez-Cardús, Anna; Girotti, Maria Romina; Villanueva, Alberto; Guil, Sonia; Moutinho, Catia; Liz, Julia; Portela, Anna; Heyn, Holger; Moran, Sebastian; Vidal, August; Martinez-Iniesta, Maria; Manzano, Jose L; Fernandez-Figueras, Maria Teresa; Elez, Elena; Muñoz-Couselo, Eva; Botella-Estrada, Rafael; Berrocal, Alfonso; Pontén, Fredrik; van den Oord, Joost; Gallagher, William M; Frederick, Dennie T; Flaherty, Keith T; McDermott, Ultan; Lorigan, Paul; Marais, Richard; Esteller, Manel

    2016-01-01

    Metastasis is responsible for most cancer-related deaths, and, among common tumor types, melanoma is one with great potential to metastasize. Here we study the contribution of epigenetic changes to the dissemination process by analyzing the changes that occur at the DNA methylation level between primary cancer cells and metastases. We found a hypomethylation event that reactivates a cryptic transcript of the Rab GTPase activating protein TBC1D16 (TBC1D16-47 kDa; referred to hereafter as TBC1D16-47KD) to be a characteristic feature of the metastatic cascade. This short isoform of TBC1D16 exacerbates melanoma growth and metastasis both in vitro and in vivo. By combining immunoprecipitation and mass spectrometry, we identified RAB5C as a new TBC1D16 target and showed that it regulates EGFR in melanoma cells. We also found that epigenetic reactivation of TBC1D16-47KD is associated with poor clinical outcome in melanoma, while conferring greater sensitivity to BRAF and MEK inhibitors. PMID:26030178

  8. TBC2health: a database of experimentally validated health-beneficial effects of tea bioactive compounds.

    PubMed

    Zhang, Shihua; Xuan, Hongdong; Zhang, Liang; Fu, Sicong; Wang, Yijun; Yang, Hua; Tai, Yuling; Song, Youhong; Zhang, Jinsong; Ho, Chi-Tang; Li, Shaowen; Wan, Xiaochun

    2016-07-06

    Tea is one of the most consumed beverages in the world. Considerable studies show the exceptional health benefits (e.g. antioxidation, cancer prevention) of tea owing to its various bioactive components. However, data from these extensively published papers had not been made available in a central database. To lay a foundation in improving the understanding of healthy tea functions, we established a TBC2health database that currently documents 1338 relationships between 497 tea bioactive compounds and 206 diseases (or phenotypes) manually culled from over 300 published articles. Each entry in TBC2health contains comprehensive information about a bioactive relationship that can be accessed in three aspects: (i) compound information, (ii) disease (or phenotype) information and (iii) evidence and reference. Using the curated bioactive relationships, a bipartite network was reconstructed and the corresponding network (or sub-network) visualization and topological analyses are provided for users. This database has a user-friendly interface for entry browse, search and download. In addition, TBC2health provides a submission page and several useful tools (e.g. BLAST, molecular docking) to facilitate use of the database. Consequently, TBC2health can serve as a valuable bioinformatics platform for the exploration of beneficial effects of tea on human health. TBC2health is freely available at http://camellia.ahau.edu.cn/TBC2health.

  9. Method of Testing and Predicting Failures of Electronic Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Patterson-Hine, Frances A.

    1996-01-01

    A method employing a knowledge base of human expertise comprising a reliability model analysis implemented for diagnostic routines is disclosed. The reliability analysis comprises digraph models that determine target events created by hardware failures human actions, and other factors affecting the system operation. The reliability analysis contains a wealth of human expertise information that is used to build automatic diagnostic routines and which provides a knowledge base that can be used to solve other artificial intelligence problems.

  10. High Strain-Rate and Quasi-Static Ductile Failure Mechanisms in Porous Materials

    DTIC Science & Technology

    2007-11-02

    detailed understanding of the interrelated physical mechanisms that can result in ductile material failure in rate-dependent porous crystalline materials subjected...strains and slip-rates, and hydrostatic stresses on failure paths and ligament damage in face centered cubic (f.c.c.) crystalline materials have been

  11. Lock-up failure of a four-bar linkage deployment mechanism

    NASA Technical Reports Server (NTRS)

    Zinn, Michael

    1993-01-01

    A successful failure investigation of a four-bar linkage deployment mechanism has been performed. Possible failure causes such as the mismatch of material coefficient of thermal expansion (CTE), excessive hinge friction, limit switch interference, and thermal gradient induced resistive preload were investigated and are discussed. The final conclusions and corrective actions taken are described. Finally, valuable lessons learned during the investigation are discussed.

  12. The Correlation of the TBC Lifetimes in Burner Cycling Test with Thermal Gradient and Furnace Isothermal Cycling Test by TGO Effects

    NASA Astrophysics Data System (ADS)

    Li, Chang-Jiu; Dong, Hui; Ding, Hang; Yang, Guan-Jun; Li, Cheng-Xin

    2017-02-01

    Two types of typical thermal cycling tests are used for the evaluation of thermal cycling lifetime of thermal barrier coatings. Those are the burner cycling test with a thermal gradient and the isothermal furnace cycling test. There are diverse explanations to test results up to now. Although certain correlations should exist between the results obtained by two types of the tests, no evident parameters in two tests were directly related, possibly due to large range of difference test conditions. In this investigation, a series of TBC samples with carefully prepared Al2O3-based TGO of different thicknesses were used for both the burner cycling and the furnace cycling tests. The relationships between thermal cycling lifetime and TGO thickness were obtained for two types of the tests. It was found that TGO thickness presents the same influence tendency despite of different types of thermal cycling test. The results reveal the existence of the critical TGO thickness by which the transition of failure mode takes place. Moreover, the values of the critical TGO thickness for two tests are comparable. The results evidently suggest that the lifetimes during different thermal cycling tests can be correlated by TGO effects on failure behavior. However, it is clear that the apparent dominant driving factors to TBC failure are different in two types of tests. Accordingly, the burner cycling test could be used for optimizing the durability of ceramic top coat by separating the effect of individual factors through test condition design, while the furnace cycling test results represent the integrated TBC durable performance of the bond coat and top ceramic coating.

  13. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  14. Mechanical properties and failure mechanisms of carbon fiber reinforced epoxy laminated composites

    NASA Astrophysics Data System (ADS)

    Richards Thissell, W.; Zurek, Anna K.; Addessio, Frank

    1996-05-01

    The mechanical behavior of quasi-isotropic and unidirectional epoxy-matrix carbon-fiber laminated composites subjected to compressive loading at strain rates of 10-3 and 2000 s-1 are described. Failure in the studied composites was dominated by delamination which proceeded by brittle fracture of the epoxy-matrix. The matrix-fiber bonding in these composites is very strong and prevented the occurrence of significant fiber-pullout. The mode I delamination strain energy release rate of the unidirectional composites was determined using the double cantilever beam and hole in plate compression method. The DCB method indicated a significant R curve effect attributed to fiber bridging while the presently available hole in plate analytical methods show questionable validity for highly anisotropic materials.

  15. Mechanical properties and failure mechanisms of carbon fiber reinforced epoxy laminated composites

    SciTech Connect

    Thissell, W.R.; Zurek, A.K.; Addessio, F.

    1995-09-01

    The mechanical behavior of quasi-isotropic and unidirectional epoxy-matrix carbon-fiber laminated composites subjected compressive loading at strain rates of 10{sup {minus}3} and 2000 s{sup {minus}1} are described. Failure in the studied composites was dominated by delamination which proceeded by brittle fracture of the epoxy-matrix. The matrix-fiber bonding in these composites is very strong and prevented the occurrence of significant fiber-pullout. The mode I delamination strain energy release rate of the unidirectional composites was determined using the double cantilever beam and hole in plate compression method. The DCB method indicated a significant R curve effect attributed to fiber bridging while the presently available hole in plate analytical methods show questionable validity for highly anisotropic materials.

  16. Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2000-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies. Acceleration induced failure mechanisms varied from conventional surface mount (SM) failures for CSPs. Examples of unrealistic life projections for other CSPs are also presented. The cumulative cycles to failure for ceramic BGA assemblies performed under different conditions, including plots of their two Weibull parameters, are presented. The results are for cycles in the range of -30 C to 100 C, -55 C to 100 C, and -55 C to 125 C. Failure mechanisms as well as cycles to failure for thermal shock and thermal cycling conditions in the range of -55 C to 125 C were compared. Projection to other temperature cycling ranges using a modified Coffin-Manson relationship is also presented.

  17. Failure mechanisms in laminated carbon/carbon composites under biaxial compression

    SciTech Connect

    Grape, J.A.; Gupta, V.

    1995-07-01

    The failure mechanisms of 2D carbon/carbon (C/C) woven laminates have been determined under inplane biaxial compression loads, and the associated failure envelopes that account for the effect of matrix-type and loading directions were also obtained. The failure was in the form of micro-kinking of fiber bundles, interspersed with localized interply delaminations to form an overall shear fault. The shear fault was aligned with the major axis of loading except at above 75% of balanced biaxial compressive stress where failure occurred along both axes. Although the biaxial strength varied significantly with the ratio of in-plane principal stresses, R, there was no variation in the local failure mechanisms. Accordingly, it was found that the samples fail upon achieving a critical strain along the primary axis of loading.

  18. The Influence of Temperature on Microelectronic Device Failure Mechanisms. Phase 2

    DTIC Science & Technology

    1993-09-04

    201 5.9 Derating for Failure Mechanisms in First-level Interconnects 207 5.10 Derating for Failure Mechanisms in the Package Case 222 5.11 Derating for...semiconductor device; first- level interconnects that may be wirebonds, flip-chip, or tape automated bonds; die attach; substrate; substrate attach; case ; lid...1990] 5.5. Due to the non-linear dependence of life under TDDB on temperature, worst case manufacturing defect magnitude, or electric field, derating

  19. Comparative transcriptome analysis between an evolved abscisic acid-overproducing mutant Botrytis cinerea TBC-A and its ancestral strain Botrytis cinerea TBC-6

    PubMed Central

    Ding, Zhongtao; Zhang, Zhi; Zhong, Juan; Luo, Di; Zhou, Jinyan; Yang, Jie; Xiao, Liang; Shu, Dan; Tan, Hong

    2016-01-01

    Abscisic acid (ABA) is a classical phytohormone which plays an important role in plant stress resistance. Moreover, ABA is also found to regulate the activation of innate immune cells and glucose homeostasis in mammals. Therefore, this ‘stress hormone’ is of great importance to theoretical research and agricultural and medical applications. Botrytis cinerea is a well-known phytopathogenic ascomycete that synthesizes ABA via a pathway substantially different from higher plants. Identification of the functional genes involved in ABA biosynthesis in B. cinerea would be of special interest. We developed an ABA-overproducing mutant strain, B. cinerea TBC-A, previously and obtained a 41.5-Mb genome sequence of B. cinerea TBC-A. In this study, the transcriptomes of B. cinerea TBC-A and its ancestral strain TBC-6 were sequenced under identical fermentation conditions. A stringent comparative transcriptome analysis was performed to identify differentially expressed genes participating in the metabolic pathways related to ABA biosynthesis in B. cinerea. This study provides the first global view of the transcriptional changes underlying the very different ABA productivity of the B. cinerea strains and will expand our knowledge of the molecular basis for ABA biosynthesis in B. cinerea. PMID:27892476

  20. Deformation and failure mechanisms of graphite/epoxy composites under static loading

    NASA Technical Reports Server (NTRS)

    Clements, L. L.

    1981-01-01

    The mechanisms of deformation and failure of graphite epoxy composites under static loading were clarified. The influence of moisture and temperature upon these mechanisms were also investigated. Because the longitudinal tensile properties are the most critical to the performance of the composite, these properties were investigated in detail. Both ultimate and elastic mechanical properties were investigated, but the study of mechanisms emphasized those leading to failure of the composite. The graphite epoxy composite selected for study was the system being used in several NASA sponsored flight test programs.

  1. Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension

    SciTech Connect

    Anoop Krishnan, N. M. Ghosh, Debraj

    2014-07-28

    The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation of failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure.

  2. A New Rock Strength Criterion from Microcracking Mechanisms Which Provides Theoretical Evidence of Hybrid Failure

    NASA Astrophysics Data System (ADS)

    Zhu, Qi-Zhi

    2017-02-01

    A proper criterion describing when material fails is essential for deep understanding and constitutive modeling of rock damage and failure by microcracking. Physically, such a criterion should be the global effect of local mechanical response and microstructure evolution inside the material. This paper aims at deriving a new mechanisms-based failure criterion for brittle rocks, based on micromechanical unilateral damage-friction coupling analyses rather than on the basic results from the classical linear elastic fracture mechanics. The failure functions respectively describing three failure modes (purely tensile mode, tensile-shear mode as well as compressive-shear mode) are achieved in a unified upscaling framework and illustrated in the Mohr plane and also in the plane of principal stresses. The strength envelope is proved to be continuous and smooth with a compressive to tensile strength ratio dependent on material properties. Comparisons with experimental data are finally carried out. By this work, we also provide a theoretical evidence on the hybrid failure and the smooth transition from tensile failure to compressive-shear failure.

  3. Investigation of failure mechanisms in integrated vacuum circuits

    NASA Technical Reports Server (NTRS)

    Rosengreen, A.

    1972-01-01

    The fabrication techniques of integrated vacuum circuits are described in detail. Data obtained from a specially designed test circuit are presented. The data show that the emission observed in reverse biased devices is due to cross-talk between the devices and can be eliminated by electrostatic shielding. The lifetime of the cathodes has been improved by proper activation techniques. None of the cathodes on life test has shown any sign of failure after more than 3500 hours. Life tests of triodes show a decline of anode current by a factor of two to three after a few days. The current recovers when the large positive anode voltage (100 V) has been removed for a few hours. It is suggested that this is due to trapped charges in the sapphire substrate. Evidence of the presence of such charges is given, and a model of the charge distribution is presented consistent with the measurements. Solution of the problem associated with the decay of triode current may require proper treatment of the sapphire surface and/or changes in the deposition technique of the thin metal films.

  4. Mechanical properties and failure behavior of unidirectional porous ceramics

    PubMed Central

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45–80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume. PMID:27075397

  5. Sarcopenia in heart failure: mechanisms and therapeutic strategies

    PubMed Central

    Collamati, Agnese; Marzetti, Emanuele; Calvani, Riccardo; Tosato, Matteo; D'Angelo, Emanuela; Sisto, Alex N; Landi, Francesco

    2016-01-01

    Chronic heart failure (CHF) is a highly prevalent condition among the elderly and is associated with considerable morbidity, institutionalization and mortality. In its advanced stages, CHF is often accompanied by the loss of muscle mass and strength. Sarcopenia is a geriatric syndrome that has been actively studied in recent years due to its association with a wide range of adverse health outcomes. The goal of this review is to discuss the relationship between CHF and sarcopenia, with a focus on shared pathophysiological pathways and treatments. Malnutrition, systemic inflammation, endocrine imbalances, and oxidative stress appear to connect sarcopenia and CHF. At the muscular level, alterations of the ubiquitin proteasome system, myostatin signaling, and apoptosis have been described in both sarcopenia and CHF and could play a role in the loss of muscle mass and function. Possible therapeutic strategies to impede the progression of muscle wasting in CHF patients include protein and vitamin D supplementation, structured physical exercise, and the administration of angiotensin-converting enzyme inhibitors and β-blockers. Hormonal supplementation with growth hormone, testosterone, and ghrelin is also discussed as a potential treatment. PMID:27605943

  6. Mechanical properties and failure behavior of unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-04-01

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

  7. Failure recovery solutions using cognitive mechanisms based on software-defined optical network platform

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Guo, Lei; Hou, Weigang; Zhang, Qihan; Wang, Siqi

    2017-01-01

    Fault tolerance is one of the most desirable properties in the optical network since a large amount of data will be lost if the failure recovery cannot be well achieved. The software-defined network is an innovative paradigm-which decouples the control module from the underlying data forwarding plane-to make fast decisions on detecting and restoring link failures. Therefore, we focus on failure recovery solutions based on software-defined optical networks. The out-of-band control mechanism is utilized for the communication between the controller and the data forwarding elements. We demonstrate the performance of the proposed solutions-including a failure detection scheme, a dynamic all pairs shortest paths algorithm, and a failure recovery application-based on our software-defined optical network platform. Experimental demonstration and numerical evaluation both show its overall feasibility and efficiency.

  8. Subchondral bone microarchitecture and failure mechanism under compression: A finite element study.

    PubMed

    Malekipour, Fatemeh; Oetomo, Denny; Lee, Peter Vee-Sin

    2017-02-21

    Subchondral bone (SCB) microdamage is commonly observed in traumatic joint injuries and has been strongly associated with post-traumatic osteoarthritis (PTOA). Knowledge of the three-dimensional stress and strain distribution within the SCB tissue helps to understand the mechanism of SCB failure, and may lead to an improved understanding of mechanisms of PTOA initiation, prevention and treatment. In this study, we used high-resolution micro-computed tomography (µCT)-based finite element (FE) modelling of cartilage-bone to evaluate the failure mechanism and the locations of SCB tissue at high-risk of initial failure under compression. The µCT images of five cartilage-bone specimens with an average SCB thickness of 1.23±0.20mm were used to develop five µCT-based FE models. The FE models were analysed under axial compressions of approximately 30MPa applied to the cartilage surface while the bone edges were constrained. Strain and stress-based failure criteria were then applied to evaluate the failure mechanism of the SCB tissue under excessive compression through articular cartilage. µCT-based FE models predicted two locations in the SCB at high-risk of initial failure: (1) the interface of the calcified-uncalcified cartilage due to excessive tension, and (2) the trabecular bone beneath the subchondral plate due to excessive compression. µCT-based FE models of cartilage-bone enabled us to quantify the distribution of the applied compression which was transferred through the articular cartilage to its underlying SCB, and to investigate the mechanism and the mode of SCB tissue failure. Ultimately, the results will help to understand the mechanism of injury formation in relation to PTOA.

  9. The molecular mechanisms of hemodialysis vascular access failure

    PubMed Central

    Franzoni, Marco; Misra, Sanjay

    2016-01-01

    The arteriovenous fistula has been used for more than 50 years to provide vascular access for patients undergoing hemodialysis. More than 1.5 million patients worldwide have end stage renal disease and this population will continue to grow. The arteriovenous fistula is the preferred vascular access for patients, but its patency rate at 1 year is only 60%. The majority of arteriovenous fistulas fail because of intimal hyperplasia. In recent years, there have been many studies investigating the molecular mechanisms responsible for intimal hyperplasia and subsequent thrombosis. These studies have identified common pathways including inflammation, uremia, hypoxia, sheer stress, and increased thrombogenicity. These cellular mechanisms lead to increased proliferation, migration, and eventually stenosis. These pathways work synergistically through shared molecular messengers. In this review, we will examine the literature concerning the molecular basis of hemodialysis vascular access malfunction. PMID:26806833

  10. Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates

    PubMed Central

    Song, Z. Q.; Ni, Y.; Peng, L. M.; Liang, H. Y.; He, L. H.

    2016-01-01

    Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites. PMID:27029955

  11. Tip cooling effect and failure mechanism of field-emitting carbon nanotubes.

    PubMed

    Wei, Wei; Liu, Yang; Wei, Yang; Jiang, Kaili; Peng, Lian-Mao; Fan, Shoushan

    2007-01-01

    The cooling effect accompanying field electron emission has been considered for a single carbon nanotube (CNT) used as a field emission (FE) electron source. An improved model for the failure mechanism of field emitting CNTs has been proposed and validated. Our model predicts a maximum temperature (T-max) located at an interior point rather than the tip of the CNTs, and the failure of the CNT emitters tends to take place at the T-max point, inducing a segment by segment breakdown process. A combination of Joule heating and electrostatic force effect is proposed responsible for initiating the failure of the field emitting CNT and validated by in situ FE observation.

  12. Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism

    NASA Technical Reports Server (NTRS)

    Dervan, Jared; Robertson, Brandan; Staab, Lucas; Culberson, Michael; Pellicciotti, Joseph

    2014-01-01

    The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations referenced in detail in the NESC final report [1] including identified lessons learned to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.

  13. Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism

    NASA Technical Reports Server (NTRS)

    Dervan, Jared; Robertson, Brandon; Staab, Lucas; Culberson, Michael; Pellicciotti, Joseph

    2014-01-01

    The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations referenced in detail in the NESC final report including identified lessons learned to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.

  14. Effect of Coatings and Processing on Failure Mechanisms of Polycarbonate Material. Phase 1

    DTIC Science & Technology

    1991-11-01

    brittle transition in the mechanical behavior of ballistically impacted polycarbonate materials with protective coatings . Polycarbonate embrittlement...pressures associated with the impact of polycarbonate material with and without protective coatings ; (2 ) Definition of polycarbonate substrate and coating ...is associated with the presence of protective coatings on the PC. It is desirable to investigate the mechanisms underlying this brittle failure and

  15. Predictors of extubation failure and reintubation in newborn infants subjected to mechanical ventilation

    PubMed Central

    Costa, Ana Cristina de Oliveira; Schettino, Renata de Carvalho; Ferreira, Sandra Clecêncio

    2014-01-01

    Objective To identify risk factors for extubation failure and reintubation in newborn infants subjected to mechanical ventilation and to establish whether ventilation parameters and blood gas analysis behave as predictors of those outcomes. Methods Prospective study conducted at a neonatal intensive care unit from May to November 2011. A total of 176 infants of both genders subjected to mechanical ventilation were assessed after extubation. Extubation failure was defined as the need to resume mechanical ventilation within less than 72 hours. Reintubation was defined as the need to reintubate the infants any time after the first 72 hours. Results Based on the univariate analysis, the variables gestational age <28 weeks, birth weight <1,000g and low Apgar scores were associated with extubation failure and reintubation. Based on the multivariate analysis, the variables length of mechanical ventilation (days), potential of hydrogen (pH) and partial pressure of oxygen (pO2) remained associated with extubation failure, and the five-minute Apgar score and age at extubation were associated with reintubation. Conclusion Low five-minute Apgar scores, age at extubation, length of mechanical ventilation, acid-base disorders and hyperoxia exhibited associations with the investigated outcomes of extubation failure and reintubation. PMID:24770689

  16. An autonomous recovery mechanism against optical distribution network failures in EPON

    NASA Astrophysics Data System (ADS)

    Liem, Andrew Tanny; Hwang, I.-Shyan; Nikoukar, AliAkbar

    2014-10-01

    Ethernet Passive Optical Network (EPON) is chosen for servicing diverse applications with higher bandwidth and Quality-of-Service (QoS), starting from Fiber-To-The-Home (FTTH), FTTB (business/building) and FTTO (office). Typically, a single OLT can provide services to both residential and business customers on the same Optical Line Terminal (OLT) port; thus, any failures in the system will cause a great loss for both network operators and customers. Network operators are looking for low-cost and high service availability mechanisms that focus on the failures that occur within the drop fiber section because the majority of faults are in this particular section. Therefore, in this paper, we propose an autonomous recovery mechanism that provides protection and recovery against Drop Distribution Fiber (DDF) link faults or transceiver failure at the ONU(s) in EPON systems. In the proposed mechanism, the ONU can automatically detect any signal anomalies in the physical layer or transceiver failure, switching the working line to the protection line and sending the critical event alarm to OLT via its neighbor. Each ONU has a protection line, which is connected to the nearest neighbor ONU, and therefore, when failure occurs, the ONU can still transmit and receive data via the neighbor ONU. Lastly, the Fault Dynamic Bandwidth Allocation for recovery mechanism is presented. Simulation results show that our proposed autonomous recovery mechanism is able to maintain the overall QoS performance in terms of mean packet delay, system throughput, packet loss and EF jitter.

  17. Mechanical behavior and failure mechanisms of Li-ion battery separators

    NASA Astrophysics Data System (ADS)

    Kalnaus, Sergiy; Wang, Yanli; Turner, John A.

    2017-04-01

    Anisotropic mechanical properties were experimentally determined and compared for three types of commercially available Li-ion battery separators: Celgard 2325, Celgard PP2075 dry-processed polymer separators, and DreamWeaver Gold 40 non-woven separator. Significant amount of anisotropy of properties was determined, with the Young's modulus being different by up to a factor of 5 and ultimate strength being different by a factor of 10 between orthogonal directions within a polymer separator layer. Strain rate sensitivity was investigated by applying strain rates ranging from 1 ṡ10-4 s-1 to 0.1 s-1. Significant strengthening was observed and the strain rate strengthening coefficients were determined for both elastic modulus and yield stress in case of polymer separators. Digital image correlation technique was used to measure and map the strains over the specimen's gage section. Significant strain concentration in bands running perpendicular to the tensile axis was observed in polymer separator samples oriented in transverse direction. Such localized necking allows for extremely high strains close to 300% to develop in the material. The failure mode was remarkably different for all three types of separators which adds additional variable in safe design of Li-ion batteries for prevention of internal short circuits.

  18. Mechanical behavior and failure mechanisms of Li-ion battery separators

    DOE PAGES

    Kalnaus, Sergiy; Wang, Yanli; Turner, John A.

    2017-03-09

    We determine and compare anisotropic mechanical properties for three types of commercially available Li-ion battery separators: Celgard 2325, Celgard PP2075 dry-processed polymer separators, and DreamWeaver Gold 40 non-woven separator. Significant amount of anisotropy of properties was determined, with the Young's modulus being different by up to a factor of 5 and ultimate strength being different by a factor of 10 between orthogonal directions within a polymer separator layer. Strain rate sensitivity was investigated by applying strain rates ranging from 1•10-4 s-1 to 0.1 s-1. Significant strengthening was observed and the strain rate strengthening coefficients were determined for both elastic modulusmore » and yield stress in case of polymer separators. Digital image correlation technique was used to measure and map the strains over the specimen's gage section. A significant strain concentration in bands running perpendicular to the tensile axis was observed in polymer separator samples oriented in transverse direction. Such localized necking allows for extremely high strains close to 300% to develop in the material. Furthermore, the failure mode was remarkably different for all three types of separators which adds additional variable in safe design of Li-ion batteries for prevention of internal short circuits.« less

  19. Evidence of an emerging levee failure mechanism causing disastrous floods in Italy

    NASA Astrophysics Data System (ADS)

    Orlandini, Stefano; Moretti, Giovanni; Albertson, John D.

    2015-10-01

    A levee failure occurred along the Secchia River, Northern Italy, on 19 January 2014, resulting in flood damage in excess of $500 million. In response to this failure, immediate surveillance of other levees in the region led to the identification of a second breach developing on the neighboring Panaro River, where rapid mitigation efforts were successful in averting a full levee failure. The paired breach events that occurred along the Secchia and Panaro Rivers provided an excellent window on an emerging levee failure mechanism. In the Secchia River, by combining the information content of photographs taken from helicopters in the early stage of breach development and 10 cm resolution aerial photographs taken in 2010 and 2012, animal burrows were found to exist in the precise levee location where the breach originated. In the Panaro River, internal erosion was observed to occur at a location where a crested porcupine den was known to exist and this erosion led to the collapse of the levee top. This paper uses detailed numerical modeling of rainfall, river flow, and variably saturated flow in the levee to explore the hydraulic and geotechnical mechanisms that were triggered along the Secchia and Panaro Rivers by activities of burrowing animals leading to levee failures. As habitats become more fragmented and constrained along river corridors, it is possible that this failure mechanism could become more prevalent and, therefore, will demand greater attention in both the design and maintenance of earthen hydraulic structures as well as in wildlife management.

  20. TBC1D24 Mutation Causes Autosomal Dominant Non-Syndromic Hearing Loss

    PubMed Central

    Azaiez, Hela; Booth, Kevin T.; Bu, Fengxiao; Huygen, Patrick; Shibata, Seiji; Shearer, A. Eliot; Kolbe, Diana; Meyer, Nicole; Black-Ziegelbein, E. Ann; Smith, Richard J.H.

    2014-01-01

    Hereditary hearing loss (HHL) is extremely heterogeneous. Over 70 genes have been identified to date, and with the advent of massively parallel sequencing, the pace of novel gene discovery has accelerated. In a family segregating progressive autosomal dominant non-syndromic hearing loss (ADNSHL) we used OtoSCOPE® to exclude mutations in known deafness genes and then performed segregation mapping and whole exome sequencing (WES) to identify a unique variant, p.Ser178Leu, in TBC1D24 that segregates with the hearing loss phenotype. TBC1D24 encodes a GTPase-activating protein expressed in the cochlea. Ser178 is highly conserved across vertebrates and its change is predicted to be damaging. Other variants in TBC1D24 have been associated with a panoply of clinical symptoms including autosomal recessive NSHL (ARNSHL), syndromic hearing impairment associated with onychodystrophy, osteodystrophy, mental retardation and seizures (DOORS syndrome), and a wide range of epileptic disorders. PMID:24729539

  1. Original mechanism of failure initiation revealed through modelling of naturally occurring microstructures

    NASA Astrophysics Data System (ADS)

    Gorbatikh, Larissa; Lomov, Stepan V.; Verpoest, Ignaas

    2010-05-01

    Motivated to reveal original mechanisms of failure resistance, we developed a material model that encompasses most reoccurring microstructural features of natural composites. The interesting result of the work is a notion that material failure is governed by the quality of interactions between hierarchical levels in the material microstructure. With intelligent use of the structure, these interactions can be tuned to create a powerful synergetic effect on the material failure behaviour. For example, while exploring different mechanisms of failure initiation in composites with bimodal size reinforcements (an indirect way to model two levels of hierarchy simultaneously) we found that failure initiation could be shifted from stress concentration sites of the higher level to the lower level. One could say that the material behaviour became insensitive to the presence of reinforcements on the higher level—a phenomenon that is counterintuitive to what is commonly known. The new mechanism of failure initiation could only be activated in composites with a highly controlled structural organization—in the studied case, reinforcements of the lower level needed to establish lamellar pathways between reinforcements of the higher level. These pathways lead to formation of an intriguing network-like microstructure. Intelligent communication between reinforcements in such a network created the necessary synergy to change the failure initiation mechanism in a discontinuous fashion. Another finding was that by establishing such a network, tensile stresses near dangerous stress concentration sites were locally transformed into compressive stresses. Resemblance of the revealed mechanism to phenomena on the nano-scale was also discussed. In the course of this work a new method was developed to investigate interactions between reinforcements and their collective input into effective and local properties of a composite. The reinforcement phase was modelled with the use of rigid

  2. Influence of metabolic dysfunction on cardiac mechanics in decompensated hypertrophy and heart failure.

    PubMed

    Tewari, Shivendra G; Bugenhagen, Scott M; Vinnakota, Kalyan C; Rice, J Jeremy; Janssen, Paul M L; Beard, Daniel A

    2016-05-01

    Alterations in energetic state of the myocardium are associated with decompensated heart failure in humans and in animal models. However, the functional consequences of the observed changes in energetic state on mechanical function are not known. The primary aim of the study was to quantify mechanical/energetic coupling in the heart and to determine if energetic dysfunction can contribute to mechanical failure. A secondary aim was to apply a quantitative systems pharmacology analysis to investigate the effects of drugs that target cross-bridge cycling kinetics in heart failure-associated energetic dysfunction. Herein, a model of metabolite- and calcium-dependent myocardial mechanics was developed from calcium concentration and tension time courses in rat cardiac muscle obtained at different lengths and stimulation frequencies. The muscle dynamics model accounting for the effect of metabolites was integrated into a model of the cardiac ventricles to simulate pressure-volume dynamics in the heart. This cardiac model was integrated into a simple model of the circulation to investigate the effects of metabolic state on whole-body function. Simulations predict that reductions in metabolite pools observed in canine models of heart failure can cause systolic dysfunction, blood volume expansion, venous congestion, and ventricular dilation. Simulations also predict that myosin-activating drugs may partially counteract the effects of energetic state on cross-bridge mechanics in heart failure while increasing myocardial oxygen consumption. Our model analysis demonstrates how metabolic changes observed in heart failure are alone sufficient to cause systolic dysfunction and whole-body heart failure symptoms.

  3. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    SciTech Connect

    Zbib, Hussein M.; Bahr, David F.

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these

  4. Intrinsic mechanisms of multi-layer ceramic capacitor failure

    NASA Astrophysics Data System (ADS)

    Burton, L. C.

    1984-04-01

    The major objective of this research is to obtain an improved understanding of degradation mechanisms of MLC capacitors. This is being approached from several directions: (1) Capacitors (mainly Z5U and X7R types) that are new or in various degrees of degradation (as judged by insulation resistance) have been cross sectioned for SEM and optical examination, and for compositional measurements using energy dispersive X-ray analysis (EDAX), Auger electron spectroscopy (AES), and electron beam microprobe. (2) Electrical measurements on similar devices include current-voltage, current-temperature and impedance-frequency. (3) Thermoelectric measurements have been made on non-electroded X7R chips in order to separate the carrier concentration from the drift mobility, and to observe their change following reduction of the ceramic.

  5. Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response.

    PubMed

    Jung, GangSeob; Qin, Zhao; Buehler, Markus J

    2015-01-01

    The behavior of chemical bonding under various mechanical loadings is an intriguing mechanochemical property of biological materials, and the property plays a critical role in determining their deformation and failure mechanisms. Because of their astonishing mechanical properties and roles in constituting the basis of a variety of physiologically relevant materials, biological protein materials have been intensively studied. Understanding the relation between chemical bond networks (structures) and their mechanical properties offers great possibilities to enable new materials design in nanotechnology and new medical treatments for human diseases. Here we focus on how the chemical bonds in biological systems affect mechanical properties and how they change during mechanical deformation and failure. Three representative cases of biomaterials related to the human diseases are discussed in case studies, including: amyloids, intermediate filaments, and collagen, each describing mechanochemical features and how they relate to the pathological conditions at multiple scales.

  6. On the isotropy of the dynamic mechanical and failure properties of swaged tungsten heavy alloys

    NASA Astrophysics Data System (ADS)

    Rittel, D.; Levin, R.; Dorogoy, A.

    2004-12-01

    The quasi-static and dynamic mechanical and failure properties of a swaged tungsten-base heavy alloy rod have been investigated, with emphasis on the orientation of the specimens in the rod. Three orientations were considered, 0, 45, and 90 deg, with respect to the longitudinal axis of the rod. Compression, tension, and dominant shear tests were carried out. With the exception of the 0 deg orientation, all the orientations displayed quite similar mechanical characteristics in tension and compression. Dynamic shear revealed a critical strain for adiabatic shear failure of ɛ c ≈0.13, independent of the orientation and quite inferior to the quasi-static ductility. The present study confirms previous results obtained for one (generally unspecified) orientation and extends them to three orientations. Failure mechanisms were thoroughly characterized and it appears that significant damage does not develop prior to final failure. It is concluded that, for practical purposes, the swaged heavy alloy considered here can be regarded as isotropic from a mechanical and failure point of view, in spite of its microstructural anisotropy resulting from the swaging process.

  7. Load redistribution rules for progressive failure in shallow landslides: Threshold mechanical models

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2017-01-01

    Rainfall-induced landslides are often preceded by progressive failures that culminate in abrupt mass release. Local failure progression is captured by a landslide hydro-mechanical triggering model that represents the soil mantle as interacting columns linked by tensile and compressive mechanical "bonds." Mechanical bonds may fail at a prescribed threshold leaving a modeling challenge of how to redistribute their load to neighboring intact soil columns. We employed an elastic spring-block model to analytically derive redistribution rules defined by the stiffness ratio of compressive to tensile bonds. These linear-elastic rules were generalized to real soil using measurable Young's modulus and Poisson's ratio. Results indicate that "local" failure characteristics of ductile-like soils (e.g., clay) are reproduced by low stiffness ratios, whereas "global" failure of brittle sandy soils corresponds to large stiffness ratios. Systematic analyses yield guidelines for selecting load redistribution rules for failure of geological materials and mass-movement phenomena represented by discrete threshold-mechanics.

  8. Product Reliability Trends, Derating Considerations and Failure Mechanisms with Scaled CMOS

    NASA Technical Reports Server (NTRS)

    White, Mark; Vu, Duc; Nguyen, Duc; Ruiz, Ron; Chen, Yuan; Bernstein, Joseph B.

    2006-01-01

    As microelectronics is scaled into the deep sub-micron regime, space and aerospace users of advanced technology CMOS are reassessing how scaling effects impact long-term product reliability. The effects of electromigration (EM), time-dependent-dielectric-breakdown (TDDB) and hot carrier degradation (HCI and NBTI) wearout mechanisms on scaled technologies and product reliability are investigated, accelerated stress testing across several technology nodes is performed, and FA is conducted to confirm the failure mechanism(s).

  9. Conditions and possible mechanisms of VCD-induced ovarian failure.

    PubMed

    Liu, Wei; Wang, Ling-Yan; Xing, Xiao-Xue; Fan, Guan-Wei

    2015-12-01

    Perimenopause is an important period in women's lives, in which they experience a series of physiological changes. Current animal models of perimenopause fail to adequately replicate this particular stage in female life, while current in vitro models are too simplistic and cannot account for systemic effects. Neither the naturally-ageing animal model, nor the ovariectomised animal model, mimic the natural transitional process that is the menopause. In vivo and in vitro studies have confirmed that the occupational chemical, 4-vinylcyclohexene diepoxide (VCD), can cause selective destruction of the ovarian primordial and primary follicles of rats and mice by accelerating the apoptotic process, which successfully mimics the perimenopausal state in women. However, it is the in vivo VCD-induced rodent perimenopausal models that are currently the most widely used in research, rather than any of the available in vitro models. Studies on the mechanisms involved have found that VCD induces ovotoxicity via interference with the c-kit/kit ligand and apoptotic signalling pathways, among others. Overall, the VCD-induced perimenopausal animal models have provided some insight into female perimenopause, but they are far from ideal models of the human situation.

  10. Failure mechanism of Ta diffusion barrier between Cu and Si

    NASA Astrophysics Data System (ADS)

    Laurila, Tomi; Zeng, Kejun; Kivilahti, Jorma K.; Molarius, Jyrki; Suni, Ilkka

    2000-09-01

    The reaction mechanisms in the Si/Ta/Cu metallization system and their relation to the microstructure of thin films are discussed on the basis of experimental results and the assessment of the ternary Si-Ta-Cu phase diagram at 700 °C. With the help of sheet resistance measurements, Rutherford backscattering spectroscopy, x-ray diffraction, a scanning electron microscope, and a transmission electron microscope, the Ta barrier layer was observed to fail at temperatures above 650 °C due to the formation of TaSi2, the diffusion of Cu through the silicide layer, and the resulting formation of Cu3Si precipitates. However, in order for the TaSi2 phase to form first, the Ta diffusion barrier layer must be thick enough (e.g., 50-100 nm) to prevent Cu diffusion into the Si substrate up to the temperature of TaSi2 formation (˜650 °C). Independent of the Ta layer thickness, Cu3Si was present as large nodules, whereas the TaSi2 existed as a uniform layer. The resulting reaction structure was found to be in local equilibrium on the basis of the assessed Si-Ta-Cu phase diagram at 700 °C, and therefore no further reactions were expected. The role of oxygen was also found to be important in the reactions and it seems to have a strong effect on the thermal stability of the barrier layer.

  11. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording.

    PubMed

    Kozai, Takashi D Y; Catt, Kasey; Li, Xia; Gugel, Zhannetta V; Olafsson, Valur T; Vazquez, Alberto L; Cui, X Tracy

    2015-01-01

    Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133-189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array.

  12. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording

    PubMed Central

    Kozai, Takashi D. Y.; Catt, Kasey; Li, Xia; Gugel, Zhannetta V.; Olafsson, Valur T.; Vazquez, Alberto L.; Cui, X. Tracy

    2014-01-01

    Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133–189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array. PMID:25453935

  13. Effect of current reversal on the failure mechanism of Al-Cu-Si narrow interconnects

    SciTech Connect

    Kim, C.U.; Kang, S.H.; Morris, J.W. Jr. |

    1996-02-01

    The work reported here concerns the effect of a brief exposure to a reversed current on the electromigration failure of narrow Al-Cu thin-film conducting lines. While the precise mechanism by which Cu retards electromigration in Al-Cu alloys is not fully understood, the consistent observation that electromigration failure is preceded by the sweeping of Cu from the failure site can be used to improve electromigration resistance by stabilizing the distribution of Cu. One way of doing this is to expose the Al-Cu line to a reverse current for some period of time. The present work shows that this method is particularly effective in thin lines with `quasi-bamboo` microstructures. It has the effect of building a reservoir of Cu at the upstream ends of the polygranular segments that are the preferred failure sites, and significantly increases both the mean time of failure, and the time to first failure of a distribution of lines. It can be inferred from these results that Al-Cu lines that conduct alternating current should be exceptionally resistant to electromigration failure. 11 refs., 8 figs.

  14. Modeling the Progressive Failure of Jointed Rock Slope Using Fracture Mechanics and the Strength Reduction Method

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Cao, Ping; Meng, Jingjing; Li, Kaihui; Fan, Wenchen

    2015-03-01

    The fracturing process during the progressive failure of a jointed rock slope is numerically investigated by using fracture mechanics and the strength reduction method (SRM). A displacement discontinuity method containing frictional elements is developed for the calculation of the stress intensity factor (SIF). The failure initiation of the jointed rock slope is analyzed by evaluating the SIF. A new joint model is proposed by combining solid elements with interface elements in the commercial software FLAC3D. These represent the discontinuous planes in a rock mass on which sliding or separation can occur. The progressive failure process is simulated by reducing the shear strength of the rock mass, which includes the process of stress concentration, crack initiation, crack propagation, slip weakening, and coalescence of failure surfaces. The factor of safety (FS) and location of the critical failure surface are determined by the SRM. The influence of the joint inclination is investigated using the FS and the SIF. Laboratory experiments on specimens containing an inclined flaw under compression-shear stress are also conducted to investigate the effect of the angle between the shear direction and the flaw inclination, which provides an experimental explanation for the shear behavior of jointed rock. The results show that the joint inclination dominates the failure behavior of jointed rock slope, and two failure patterns have been classified.

  15. Failure mechanisms and structural optimization of shredder hammer for metal scraps

    NASA Astrophysics Data System (ADS)

    Zhou, Xianyan; Hu, Zhili; Tao, Yijun; Qin, Xunpeng; Hua, Lin

    2016-07-01

    Recycling retired cars can relieve the environmental pollution and resource waste efficiently. However, a few publications can be found on the failure mechanisms and optimization method of recycling equipment, shredders. Thus, the failure mechanisms and structural optimization of shredder hammers for retired cars are studied aiming improving shredding efficiency and reducing cost. Failure types of shredder hammer are studied theoretically, and it is found that wear failure and fatigue failure are the two main failure types of shredder hammer. The shredding process of metal scraps is analyzed by finite element method, and it can be divided into four stages based on the stress states: initial stage, collision stage, grinding stage and separation stage. It is proved that the shredding efficiency can be improved by increasing cutouts on the hammer head. Finally, it is determined that the hammer with two cutouts is the optimal structure for metal scraps, which can improve the shredding efficiency by 20% and lengthen the hammer life by 15%. This study provides scientific basis for the industry application and theoretical foundation for further research.

  16. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-09-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local “soft short circuits” in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data.

  17. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts

    PubMed Central

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-01-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local “soft short circuits” in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data. PMID:27581185

  18. Failure and runout of giant landslides on Hawaiian volcanoes; cases of enigmatic mechanics?

    USGS Publications Warehouse

    Iverson, R.M.

    1991-01-01

    Landslide failure and runout are distinct mechanical processes. Whereas failure is a quasi-static phenomenon that generally can be quantified by means of conventional limit-equilibrium or elastostatic stress analyses, runout is a dynamic phenomenon that can be quantified only if momentum transport and energy dissipation in moving landslides are understood. The balance of forces that governs landslide failure is highly sensitive to only a few factors: the slope morphology, pore-pressure distribution, friction coefficient, and a lateral pressure coefficient. None of these factors produces scale-dependent effects. Consequently, although runout dynamics of giant landslides are poorly understood and are possibly scale-dependent, failure mechanisms are generally less vexing. Giant landslides that have occurred on Hawaiian volcanoes pose an exception to this generalization; both their failure and runout appear to be mechanically enigmatic. Failure is difficult to explain because the volcano slopes are typically inclined less than ten degrees, and simple ground-water flow analyses show that the pore-pressure distributions necessary to trigger failure of these low-angle slopes are unlikely to arise in high-permeability volcanic rocks. Similarly, limit-equilibrium analyses show that dike injection at prospective headscarps provides insufficient pressure to push the landslides downslope. Large earthquakes or the presence of extraordinarily weak rocks might facilitate failure, but these hypotheses remain untested. On the basis of GLORIA data reported by Moore et al. (JGR, 94, 1989, p. 17465), some giant Hawaiian landslides appear to have descent-to-runout (H/L) ratios smaller than 0.1, which indicate remarkably efficient post-failure movement. Runout paths are entirely submarine. However, most of the mechanisms proposed to account for efficient runout of giant landslides (e.g., air-layer lubrication, acoustic fluidization, mechanical fluidization, pore-fluid vaporization

  19. Effects of elastase on the mechanical and failure properties of engineered elastin-rich matrices.

    PubMed

    Black, Lauren D; Brewer, Kelly K; Morris, Shirley M; Schreiber, Barbara M; Toselli, Paul; Nugent, Matthew A; Suki, Bela; Stone, Phillip J

    2005-04-01

    Pulmonary emphysema and vessel wall aneurysms are diseases characterized by elastolytic damage to elastin fibers that leads to mechanical failure. To model this, neonatal rat aortic smooth muscle cells were cultured, accumulating an extracellular matrix rich in elastin, and mechanical measurements were made before and during enzymatic digestion of elastin. Specifically, the cells in the cultures were killed with sodium azide, the cultures were lifted from the flask, cut into small strips, and fixed to a computer-controlled lever arm and a force transducer. The strips were subjected to a broadband displacement signal to study the dynamic mechanical properties of the samples. Also, quasi-static stress-strain curves were measured. The dynamic data were fit to a linear viscoelastic model to estimate the tissues' loss (G) and storage (H) modulus coefficients, which were evaluated before and during 30 min of elastase treatment, at which point a failure test was performed. G and H decreased significantly to 30% of their baseline values after 30 min. The failure stress of control samples was approximately 15 times higher than that of the digested samples. Understanding the structure-function relationship of elastin networks and the effects of elastolytic injury on their mechanical properties can lead to the elucidation of the mechanism of elastin fiber failure and evaluation of possible treatments to enhance repair in diseases involving elastolytic injury.

  20. The Therapeutic Outcomes of Mechanical Ventilation in Hematological Malignancy Patients with Respiratory Failure.

    PubMed

    Fujiwara, Yusuke; Yamaguchi, Hiroki; Kobayashi, Katsuya; Marumo, Atsushi; Omori, Ikuko; Yamanaka, Satoshi; Yui, Shunsuke; Fukunaga, Keiko; Ryotokuji, Takeshi; Hirakawa, Tsuneaki; Okabe, Masahiro; Wakita, Satoshi; Tamai, Hayato; Okamoto, Muneo; Nakayama, Kazutaka; Takeda, Shinhiro; Inokuchi, Koiti

    2016-01-01

    Objective In hematological malignancy patients, the complication of acute respiratory failure often reaches a degree of severity that necessitates mechanical ventilation. The objective of the present study was to investigate the therapeutic outcomes of mechanical ventilation in hematological malignancy patients with respiratory failure and to analyze the factors that are associated with successful treatment in order to identify the issues that should be addressed in the future. Methods The present study was a retrospective analysis of 71 hematological malignancy patients with non-cardiogenic acute respiratory failure who were treated with mechanical ventilation at Nippon Medical School Hospital between 2003 and 2014. Results Twenty-six patients (36.6%) were treated with mechanical ventilation in an intensive care unit (ICU). Non-invasive positive pressure ventilation (NPPV) was applied in 29 cases (40.8%). The rate of successful mechanical ventilation treatment with NPPV alone was 13.8%. The rate of endotracheal extubation was 17.7%. A univariate analysis revealed that the following factors were associated with the successful extubation of patients who received invasive mechanical ventilation: respiratory management in an ICU (p=0.012); remission of the hematological disease (p=0.011); female gender (p=0.048); low levels of accompanying non-respiratory organ failure (p=0.041); and the non-use of extracorporeal circulation (p=0.005). A subsequent multivariate analysis revealed that respiratory management in an ICU was the only variable associated with successful extubation (p=0.030). Conclusion The outcomes of hematological malignancy patients who receive mechanical ventilation treatment for respiratory failure are very poor. Respiratory management in an ICU environment may be useful in improving the therapeutic outcomes of such patients.

  1. A power-cycling-induced failure mechanism in IGBT multichip modules

    SciTech Connect

    Malberti, P.; Ciappa, M.; Cattomio, R.

    1995-12-31

    Catastrophic burn-out occurring during power-cycling of Insulated Gate Bipolar Transistors (IGBT) multichip modules have been observed to arise as a secondary failure mechanism caused by the lifting of the emitter aluminum bonding wires. In effect, the successive lift-off of the aluminum wires results in a current crowding through few IGBT cells with consequent triggering of the internal parasitic thyristor-structure. Basing on failure analysis data, this paper presents a simple qualitative model for the time dependent lift-off of aluminum bondwires in IGBT modules occurring during either field operation, or accelerated tests. This power-cycling induced failure mechanism is described in terms of the reconstruction of the aluminum interconnection as consequence of plastic deformation. Some practical conclusions are finally drawn for power cycle testing and for optimal thermal design.

  2. Degradation and corresponding failure mechanism for GaN-based LEDs

    NASA Astrophysics Data System (ADS)

    Fu, Jiajia; Zhao, Lixia; Cao, Haicheng; Sun, Xuejiao; Sun, Baojuan; Wang, Junxi; Li, Jinmin

    2016-05-01

    The degradation behaviors of high power GaN-based vertical blue LEDs on Si substrates were measured using in-situ accelerated life test. The results show that the dominant failure mechanism would be different during the operation. Besides that, the corresponding associated failure mechanisms were investigated systematically by using different analysis technologies, such as Scan Electron Microscopy, Reflectivity spectroscopy, Transient Thermal Analysis, Raman Spectra, etc. It is shown that initially, the failure modes were mainly originated from the semiconductor die and interconnect, while afterwards, the following serious deterioration of the radiant fluxes was attributed to the package. The interface material and quality, such as die attach and frame, play an important role in determining the thermal performance and reliability. In addition, the heating effect during the operation will also release the compressive strain in the chip. These findings will help to improve the reliability of GaN-based LEDs, especially for the LEDs with vertical structure.

  3. The microstructural mechanism of electromigration failure in narrow interconnects of Al alloys

    SciTech Connect

    Kim, Choongun

    1993-04-01

    This thesis reports a study of the mechanism of electromigration failure in Al-2Cu-1Si thin-film conducting lines on Si. Samples were patterned from 0.5 μm thick vapor-deposited films with various mean grain sizes (G), and had lines widths (W) of 1.3, 2, 4 and 6 μm. The lines were aged at various conditions to change the Cu-precipitate distribution and were tested to failure at T = 225°C and j = 2.5 x 106 A/cm2. Some samples were tested over a range of substrate temperatures, current densities and current reversal times. Aging produces an initially dense distribution of metastable θ' (Al2Cu; coherent) in the grain interiors, with stable θ (Al2Cu; incoherent) at the grain boundaries. The intragranular θ' is gradually absorbed into the grain boundary precipitates. In the wide lines the mean time to failure increases slowly and monotonically with pre-aging time and current reversal time. The failure mode is the formation and coalescence of voids that form on grain boundaries with an apparent activation energy of 0.65 eV. In the narrow lines, the lines failed by a transgranular-slit mechanism with an activation energy near 0.93 eV. The distribution of the polygranular segments and the kinetics of failure varies with the linewidths. Failure occurs after Cu has been swept from the grains that fail. Pre-aging the line to create a more stable distribution of Cu significantly increases the time to failure. When the density of intragranular θ-phase precipitates is maximized, the transgranular-slit failure mechanism is suppressed, and the bamboo grain fails by diffuse thinning to rupture. The results from the current reversal test indicate that the time to sweep Cu in the polygranular segments is longer for longer polygranular segments. Thus the time to first failure in an array of lines is much longer than predicted by a log-normal fit to the distribution of failure times.

  4. Some Aspects of the Failure Mechanisms in BaTiO3-Based Multilayer Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, David Donhang; Sampson, Michael J.

    2012-01-01

    The objective of this presentation is to gain insight into possible failure mechanisms in BaTiO3-based ceramic capacitors that may be associated with the reliability degradation that accompanies a reduction in dielectric thickness, as reported by Intel Corporation in 2010. The volumetric efficiency (microF/cm3) of a multilayer ceramic capacitor (MLCC) has been shown to not increase limitlessly due to the grain size effect on the dielectric constant of ferroelectric ceramic BaTiO3 material. The reliability of an MLCC has been discussed with respect to its structure. The MLCCs with higher numbers of dielectric layers will pose more challenges for the reliability of dielectric material, which is the case for most base-metal-electrode (BME) capacitors. A number of MLCCs manufactured using both precious-metal-electrode (PME) and BME technology, with 25 V rating and various chip sizes and capacitances, were tested at accelerated stress levels. Most of these MLCCs had a failure behavior with two mixed failure modes: the well-known rapid dielectric wearout, and so-called 'early failures." The two failure modes can be distinguished when the testing data were presented and normalized at use-level using a 2-parameter Weibull plot. The early failures had a slope parameter of Beta >1, indicating that the early failures are not infant mortalities. Early failures are triggered due to external electrical overstress and become dominant as dielectric layer thickness decreases, accompanied by a dramatic reduction in reliability. This indicates that early failures are the main cause of the reliability degradation in MLCCs as dielectric layer thickness decreases. All of the early failures are characterized by an avalanche-like breakdown leakage current. The failures have been attributed to the extrinsic minor construction defects introduced during fabrication of the capacitors. A reliability model including dielectric thickness and extrinsic defect feature size is proposed in this

  5. Structural and mechanistic insights into regulation of the retromer coat by TBC1d5

    PubMed Central

    Jia, Da; Zhang, Jin-San; Li, Fang; Wang, Jing; Deng, Zhihui; White, Mark A.; Osborne, Douglas G.; Phillips-Krawczak, Christine; Gomez, Timothy S.; Li, Haiying; Singla, Amika; Burstein, Ezra; Billadeau, Daniel D.; Rosen, Michael K.

    2016-01-01

    Retromer is a membrane coat complex that is recruited to endosomes by the small GTPase Rab7 and sorting nexin 3. The timing of this interaction and consequent endosomal dynamics are thought to be regulated by the guanine nucleotide cycle of Rab7. Here we demonstrate that TBC1d5, a GTPase-activating protein (GAP) for Rab7, is a high-affinity ligand of the retromer cargo selective complex VPS26/VPS29/VPS35. The crystal structure of the TBC1d5 GAP domain bound to VPS29 and complementary biochemical and cellular data show that a loop from TBC1d5 binds to a conserved hydrophobic pocket on VPS29 opposite the VPS29–VPS35 interface. Additional data suggest that a distinct loop of the GAP domain may contact VPS35. Loss of TBC1d5 causes defective retromer-dependent trafficking of receptors. Our findings illustrate how retromer recruits a GAP, which is likely to be involved in the timing of Rab7 inactivation leading to membrane uncoating, with important consequences for receptor trafficking. PMID:27827364

  6. Therapeutic efficacy of TBC3711 in monocrotaline-induced pulmonary hypertension

    PubMed Central

    2011-01-01

    Background Endothelin-1 signalling plays an important role in pathogenesis of pulmonary hypertension. Although different endothelin-A receptor antagonists are developed, a novel therapeutic option to cure the disease is still needed. This study aims to investigate the therapeutic efficacy of the selective endothelin-A receptor antagonist TBC3711 in monocrotaline-induced pulmonary hypertension in rats. Methods Monocrotaline-injected male Sprague-Dawley rats were randomized and treated orally from day 21 to 35 either with TBC3711 (Dose: 30 mg/kg body weight/day) or placebo. Echocardiographic measurements of different hemodynamic and right-heart hypertrophy parameters were performed. After day 35, rats were sacrificed for invasive hemodynamic and right-heart hypertrophy measurements. Additionally, histologic assessment of pulmonary vascular and right-heart remodelling was performed. Results The novel endothelin-A receptor antagonist TBC3711 significantly attenuated monocrotaline-induced pulmonary hypertension, as evident from improved hemodynamics and right-heart hypertrophy in comparison with placebo group. In addition, muscularization and medial wall thickness of distal pulmonary vessels were ameliorated. The histologic evaluation of the right ventricle showed a significant reduction in fibrosis and cardiomyocyte size, suggesting an improvement in right-heart remodelling. Conclusion The results of this study suggest that the selective endothelin-A receptor antagonist TBC3711 demonstrates therapeutic benefit in rats with established pulmonary hypertension, thus representing a useful therapeutic approach for treatment of pulmonary hypertension. PMID:21699729

  7. Mechanical and failure properties of extracellular matrix sheets as a function of structural protein composition.

    PubMed

    Black, Lauren D; Allen, Philip G; Morris, Shirley M; Stone, Phillip J; Suki, Béla

    2008-03-01

    The goal of this study was to determine how alterations in protein composition of the extracellular matrix (ECM) affect its functional properties. To achieve this, we investigated the changes in the mechanical and failure properties of ECM sheets generated by neonatal rat aortic smooth muscle cells engineered to contain varying amounts of collagen and elastin. Samples underwent static and dynamic mechanical measurements before, during, and after 30 min of elastase digestion followed by a failure test. Microscopic imaging was used to measure thickness at two strain levels to estimate the true stress and moduli in the ECM sheets. We found that adding collagen to the ECM increased the stiffness. However, further increasing collagen content altered matrix organization with a subsequent decrease in the failure strain. We also introduced collagen-related percolation in a nonlinear elastic network model to interpret these results. Additionally, linear elastic moduli correlated with failure stress which may allow the in vivo estimation of the stress tolerance of ECM. We conclude that, in engineered replacement tissues, there is a tradeoff between improved mechanical properties and decreased extensibility, which can impact their effectiveness and how well they match the mechanical properties of native tissue.

  8. Effect of Substrate Surface Finish on the Lubrication and Failure Mechanisms of Molybdenum Disulfide Films

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1980-01-01

    An optical microscope was used to study the lubrication and failure mechanisms of rubbed (burnished) MoS2 films applied to three substrate surface finishes - polished, sanded, and sandblasted - as a function of sliding distance. The lubrication mechanism was the plastic flow of thin films of MoS2 between flat plateaus on the rider and on the metallic substrate. If the substrates were rough, flat plateaus were created during 'run in' and the MoS2 flowed across them. Wear life was extended by increasing surface roughness since valleys in the roughened substrate served as reservoirs for MoS2 and a deposit site for wear debris. In moist air, the failure mechanism was the transformation of metallic colored MoS2 films to a black, powdery material that was found by X ray diffraction to consist primarily of alpha iron and MoO3 powders. In dry argon, the failure mechanism was the gradual depletion of the MoS2 film from the contact region by transverse flow. Analysis of the wear debris on the wear track at failure showed it consisted mainly of alpha iron and some residual MoS2. No molybdenum oxides were found.

  9. Lubrication and failure mechanisms of molybdenum disulfide films. 2: Effect of substrate roughness

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1978-01-01

    An optical microscope was used to study the lubrication and failure mechanisms of rubbed MoS2 films applied to three substrate surface finishes; polished, sanded, and sandblasted as a function of sliding distance. The lubrication mechanism was the plastic flow of thin films of MoS2 between flat plateaus on the rider and on the metallic substrate. If the substrate was rough, flat plateaus were created during run-in and the MoS2 flowed across them. Wear life was extended by increasing surface roughness since valleys in the roughened substrate served as reservoirs for MoS2 and as deposit sites for wear debris. In moist air the failure mechanism was the transformation of metallic colored MoS2 films to a black, powdery material that was found by X-ray diffraction to be alpha iron, MoO3, and possibly FeMoO3. In dry argon the failure mechanism was the gradual depletion of MoS2 from the contact region by transverse flow, and the wear debris on the track at failure was alpha iron, residual MoS2, and possibly FeS.

  10. Effect of substrate surface finish on the lubrication and failure mechanisms of molybdenum disulfide films

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1981-01-01

    An optical microscope was used to study the lubrication and failure mechanisms of rubbed (burnished) MoS2 films applied to three substrate surface finishes - polished, sanded, and sandblasted - as a function of sliding distance. The lubrication mechanism was the plastic flow of thin films of MoS2 between flat plateaus on the rider and on the metallic substrate. If the substrate was rough, flat plateaus were created during 'run-in' and the MoS2 flowed across them. Wear life was extended by increasing surface roughness since valleys in the roughened substrate served as reservoirs for MoS2 and a deposit site for wear debris. In moist air, the failure mechanism was the transformation of metallic-colored MoS2 films to a black, powdery material that was found by X-ray diffraction to consist primarily of alpha-iron and MoO3 powders. In dry argon, the failure mechanism was the gradual depletion of the MoS2 film from the contact region by transverse flow. Analysis of the wear debris on the wear track at failure showed it consisted mainly of alpha-iron and some residual MoS2. No molybdenum oxides were found.

  11. Basic failure mechanisms in advanced composites. [composed of epoxy resins reinforced with carbon fibers

    NASA Technical Reports Server (NTRS)

    Mazzio, V. F.; Mehan, R. L.; Mullin, J. V.

    1973-01-01

    The fundamental failure mechanisms which result from the interaction of thermal cycling and mechanical loading of carbon-epoxy composites were studied. This work was confined to epoxy resin uniderictionally reinforced with HTS carbon fibers, and consists of first identifying local fiber, matrix and interface failure mechanisms using the model composite specimen containing a small number of fibers so that optical techniques can be used for characterization. After the local fracture process has been established for both mechanical loading and thermal cycling, engineering composite properties and gross fracture modes are then examined to determine how the local events contribute to real composite performance. Flexural strength in high fiber content specimens shows an increase in strength with increased thermal cycling. Similar behavior is noted for 25 v/o material up to 200 cycles; however, there is a drastic reduction after 200 cycles indicating a major loss of integrity probably through the accumulation of local cleavage cracks in the tensile region.

  12. Failure strain and mechanical property data for the Type IIIA waste tank liners

    SciTech Connect

    Thomas, J.K.

    1992-06-01

    The SRS Waste Tanks at the Savannah River Site to be employed in the In-Tank Precipitation (ITP) process are undergoing a structural evaluation in order to define their response to a hypothetical deflagration accident. This report provides mechanical property data to support the structural analyses, and characterizes the impact of mechanical property variability and materials degradation on the failure strain of the primary liner.

  13. Failure mechanisms of anterior cruciate ligament prostheses: in vitro wear study.

    PubMed

    Poddevin, N; King, M W; Guidoin, R G

    1997-01-01

    Previous retrieval studies analyzing the cause of failure of anterior cruciate ligament (ACL) prostheses identified a wear mechanism. However, the relative importance of yarn on bone compared to yarn on yarn wear has not been clearly understood. Therefore, the objective of this study was to elucidate which type of wear is the dominant cause of clinical failure. A variety of ACL prosthetic structures were exposed to two in vitro tests: one for yarn on yarn and the other for a novel yarn on bone wear test system. The latter included the use of both smooth (uncut) and rough (cut) bone surfaces to simulate the conditions around the condyle and at the exit of the tibial tunnel, respectively. The damaged textile structures were viewed by SEM. The various fiber fracture morphologies were identified and classified for the two types of wear tests; for the smooth and rough bone surfaces; for the braided, knitted, woven, and twisted textile structures; and for the three types of fibers that were included: polyethylene terephthalate, polypropylene, and ultrahigh molecular weight polyethylene. The results confirmed that yarn on bone and yarn on yarn wear phenomena are associated with significantly different failure mechanisms. While the more aggressive rough (or cut) bone causes more rapid and intense fiber damage and faster ACL failure than the smooth (uncut) osseous surface, both abradants cause the same type of abrasive wear phenomenon. Differences in failure mechanisms were identified between the different textile structures and the different fiber types. By interpreting the damaged fiber images from clinically failed and retrieved ACL prostheses, we are now able to confirm that the predominant cause of synthetic ACL failure is yarn on bone abrasion. Improvements in future ACL prosthesis designs will only be possible by eliminating or minimizing the effect of this type of abrasive wear.

  14. Percutaneous mechanical assist for severe cardiogenic shock due to acute right ventricular failure.

    PubMed

    Kipp, Ryan; Raval, Amish N

    2015-05-01

    Acute right ventricular failure can lead to severe cardiogenic shock and death. Recovery may be achieved with early supportive measures. In many patients, intravenous fluid and inotropic resuscitation is inadequate to improve cardiac output. In these cases, percutaneous mechanical assist may provide a non-surgical bridge to recovery. Herein, we describe a case series of patients with severe, refractory cardiogenic shock due to acute right ventricular failure who received a continuous flow percutaneous ventricular device primarily utilizing the right internal jugular vein for out flow cannula placement.

  15. Investigation of static and cyclic bearing failure mechanisms for GR/EP laminates

    NASA Technical Reports Server (NTRS)

    Walter, R. W.; Tuttle, M. M.

    1992-01-01

    Static, cyclic load (fatigue), and residual strength testing of graphite-epoxy (GR/EP) and aluminum pin bearing joints was completed to study bearing failure mechanisms. Parameters investigated included static strength, failure mode, fatigue life, hole growth, joint stiffness, and residual strength. Comparative evaluation of these results show that the MIL-HDBK-5 convention for the definition of bearing strength can be used for GR/EP materials while maintaining the same, or improved, level of structural integrity shown for metal joints.

  16. Failure mechanism analysis of electromigration dominated damage in TiSi2 nanowires

    NASA Astrophysics Data System (ADS)

    Zou, Chen-Xia; Xu, Jun; Zhang, Xin-Zheng; Song, Xue-Feng; Yu, Da-Peng

    2009-06-01

    Electromigration-induced damage has been an important concern in very large scale integrated circuit design for a long time and will be a major road block in the pursuit of nanoelectronics devices and next generation power electronics. In this letter, the failure mechanism analysis on two-terminal TiSi2 nanowire devices was reported. Electromigration dominant mass migration is observed and verified by energy dispersive spectroscopy. The contribution of thermomigration is discussed based on temperature simulation. This work provides useful reference for future devices and the failure analysis on nanostructures.

  17. Continuum Damage Mechanics Models for the Analysis of Progressive Failure in Open-Hole Tension Laminates

    NASA Technical Reports Server (NTRS)

    Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.

    2011-01-01

    The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.

  18. Failure Behavior Simulation for Bolted Composite Joints Based on Damage Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Xiao, Yi; Ishikawa, Takashi

    This paper presents the development of an accumulative damage model based on continuum damage mechanics (CDM) to simulate the bearing failure and response in the bolted composite joints. The simulation is implemented into a general-purpose FEM code ABAQUS. The main damage mechanisms observed from experimental study are described as accumulated compressive damage that appeared by matrix compression failure and fiber compression-shear failure. The fundamental approach consists of contact problem at the pin/hole interface, progressive damage, large deformation problem and material nonlinear problem. A complex approach based on a nonlinear shear elasticity theory combined with a continuum damage mechanics approach can be also utilized to represent the material nonlinear behavior during loading. The damage accumulation criteria using the hybrid method based on Hashin and Yamada-Sun’s failure criteria are adopted, and the stress redistribution analysis using a degradation model for the damaged ply is performed. The accurate prediction results include progressive damage and strength response of the joints that agrees well with the existing experimental data.

  19. Dynamic loading affects the mechanical properties and failure site of porcine spines.

    PubMed

    Yingling, Vanessa R; Callaghan, Jack P; McGill, Stuart M

    1997-07-01

    OBJECTIVE: The purpose of this study was to investigate the effect of load rate on the mechanical characteristics of spinal motion segments under compressive loading. DESIGN: An in vitro experiment using a porcine model which ensured a homogeneous population for age, weight, genetic background and physical activity. BACKGROUND: Spinal motion segments comprise of viscoelastic materials, and as a result the rate of loading will modulate mechanical characteristics and fracture patterns of the segments. METHODS: Twenty-six cervical porcine spines were excised immediately post-mortem with all soft tissue intact. Spines were then separated into two specimens each consisting of three vertebral bodies and the two intervening intervertebral discs (C2-C4 and C5-C7) and loaded to failure under five loading rates (100, 1000, 3000, 10 000 and 16 000 N s(-1)). After the specimens failed, they were dissected to determine the mode of failure. RESULTS: Dynamic loading increases the ultimate load compared with quasi-static loading (100 N s(-1)), whereas the magnitude of dynamic loading (1000-16 000 N s(-1)) appears not to have a significant affect. Stiffness behaved in a similar manner. The displacement to failure of specimens decreased as load rate increased, although there was a diminishing effect at high load rates. Furthermore, failure at low load rates occurred exclusively in the endplate, whereas failure of the vertebral body appeared with greater frequency at higher load rates. CONCLUSIONS: The mechanical characteristics and resulting injuries of porcine spinal motion segments were affected as the loading rates changed from quasi-static to dynamic. The modulating factors of the mechanical characteristics of the spine need to be understood if valid models are to be designed which will increase the understanding of spinal function, and are important for choosing better injury prevention and rehabilitation programmes.

  20. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Results of an ongoing research program into the reliability of terrestrial solar cells are presented. Laboratory accelerated testing procedures are used to identify failure/degradation modes which are then related to basic physical, chemical, and metallurgical phenomena. In the most recent tests, ten different types of production cells, both with and without encapsulation, from eight different manufacturers were subjected to a variety of accelerated tests. Results indicated the presence of a number of hitherto undetected failure mechanisms, including Schottky barrier formation at back contacts and loss of adhesion of grid metallization. The mechanism of Schottky barrier formation is explained by hydrogen, formed by the dissociation of water molecules at the contact surface, diffusing to the metal semiconductor interface. This same mechanism accounts for the surprising increase in sensitivity to accelerated stress conditions that was observed in some cells when encapsulated.

  1. Deformation and failure mechanisms of 18650 battery cells under axial compression

    NASA Astrophysics Data System (ADS)

    Zhu, Juner; Zhang, Xiaowei; Sahraei, Elham; Wierzbicki, Tomasz

    2016-12-01

    An important deformation mode during ground impacts of battery packs made of cylindrical battery cells is axial compression. This type of loading subjects the cell to a complex deformation pattern and failure mechanism. The design of endcaps plays an important role in such deformations. To explore the sequence of deformation and the underlying failure mechanisms, a combined experimental/numerical study was carried out. Tests were conducted on 18650 cells, and the deformation of each component was carefully investigated and documented. There are four different stages in the force-displacement curve, corresponding with deformation of various components in the endcap assembly. A short circuit happens at a displacement of 4 mm. To clarify these observations, a detailed Finite Element model was set up, covering the geometry and the mechanical property of almost all the components of the cell. Using the simulation results, the sequence of the axial compression was revealed, which was subsequently validated by Micro CT scans as well as analytical solutions. Based on the precise analysis of the mechanical behavior, the cause of the short circuit during axial loading was clarified. Two failure mechanisms in the separator at the top section of the cell explain the possible causes of short circuit.

  2. Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites

    NASA Technical Reports Server (NTRS)

    Ha, Jong-Bae; Nairn, John A.

    1992-01-01

    A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.

  3. Tensile Properties and Failure Mechanism of 3D Woven Hollow Integrated Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Cai, Deng'an; Zhou, Guangming; Lu, Fangzhou

    2017-01-01

    Tensile properties and failure mechanism of 3D woven hollow integrated sandwich composites are investigated experimentally, theoretically and numerically in this paper. Firstly, the tensile properties are obtained by quasi-static tensile tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results shows that the tensile performances of the warp are better than that of the weft. By observing the broken specimens, it is found that the touch parts between yarns are the main failure regions under tension. Then, a theoretical method is developed to predict the tensile properties. By comparing with the experimental data, the accuracy of the theoretical method is verified. Simultaneously, a finite element model is established to predict the tensile behavior of the composites. The numerical results agree well with the experimental data. Moreover, the simulated progressive damages show that the contact regions in the warp and weft tension are both the initial failure areas.

  4. Incidence and causes of non-invasive mechanical ventilation failure after initial success

    PubMed Central

    Moretti, M.; Cilione, C.; Tampieri, A.; Fracchia, C.; Marchioni, A.; Nava, S.

    2000-01-01

    BACKGROUND—The rate of failure of non-invasive mechanical ventilation (NIMV) in patients with chronic obstructive pulmonary disease (COPD) with acute respiratory insufficiency ranges from 5% to 40%. Most of the studies report an incidence of "late failure" (after >48 hours of NIMV) of about 10-20%. The recognition of this subset of patients is critical because prolonged application of NIMV may unduly delay the time of intubation.
METHODS—In this multicentre study the primary aims were to assess the rate of "late NIMV failure" and possible associated predictive factors; secondary aims of the study were evaluation of the best ventilatory strategy in this subset of patients and their outcomes in and out of hospital. The study was performed in two respiratory intensive care units (ICUs) on patients with COPD admitted with an episode of hypercapnic respiratory failure (mean (SD) pH 7.23(0.07), PaCO2 85.3 (15.8) mm Hg).
RESULTS—One hundred and thirty seven patients initially responded to NIMV in terms of objective (arterial blood gas tensions) and subjective improvement. After 8.4 (2.8) days of NIMV 31 patients (23%; 95% confidence interval (CI) 18 to 33) experienced a new episode of acute respiratory failure while still ventilated. The occurrence of "late NIMV failure" was significantly associated with functional limitations (ADL scale) before admission to the respiratory ICU, the presence of medical complications (particularly hyperglycaemia), and a lower pH on admission. Depending on their willingness or not to be intubated, the patients received invasive ventilation (n=19) or "more aggressive" (more hours/day) NIMV (n=12). Eleven (92%) of those in this latter subgroup died while in the respiratory ICU compared with 10 (53%) of the patients receiving invasive ventilation. The overall 90 day mortality was 21% and, after discharge from hospital, was similar in the "late NIMV failure" group and in patients who did not experience a second episode of acute

  5. The mechanism of electromigration failure of narrow Al-2Cu-1Si thin-film interconnects

    SciTech Connect

    Kim, C.; Morris, J.W. Jr. )

    1993-05-15

    This work is principally concerned with the microstructure of electromigration failure in narrow Al-2Cu-1Si conducting lines on Si. Samples were patterned from 0.5-[mu]m-thick vapor-deposited films with mean grain size of 2.4 [mu]m, and had linewidths of 1.3 [mu]m ([ital W]/[ital G][approx]0.5), 2 [mu]m ([ital W]/[ital G][approx]0.8), and 6 [mu]m ([ital W]/[ital G][approx]2.5). The lines were tested to failure at [ital T]=226 [degree]C and [ital j]=2.5[times]10[sup 6] A/cm[sup 2]. Other samples were tested over a range of substrate temperatures and current densities to test the effect of these variables, and 1.3 [mu]m lines were tested after preaging at 226 [degree]C for various times to change the Cu-precipitate distribution prior to testing. Three failure modes were observed: The 6 [mu]m specimens failed by separation along grain boundaries with an apparent activation energy of 0.65 eV; the 1.3 [mu]m specimens that were preaged for 24 h failed after very long times by gradual thinning to rupture; all other narrow lines failed by the transgranular-slit mechanism with an activation energy near 0.93 eV. Microstructural studies suggest that the transgranular-slit failure mechanism is due to the accumulation of a supersaturation of vacancies in the bamboo grains that terminate polygranular segments in the line. Failure occurs after Cu has been swept from the grain that fails. Failure happens first at the end of the longest polygranular segment of the line, at a time that decreases exponentially with the polygranular segment length. Preaging the line to create a more stable distribution of Cu lengthens the time required to sweep Cu from the longest polygranular segment, and significantly increases the time to failure. In the optimal case the transgranular-slit failure mechanism is suppressed, and the bamboo grain fails by diffuse thinning to rupture.

  6. Analysis of seismic disaster failure mechanism and dam-break simulation of high arch dam

    NASA Astrophysics Data System (ADS)

    Zhang, Jingkui; Zhang, Liaojun

    2014-06-01

    Based on a Chinese national high arch dam located in a meizoseismal region, a nonlinear numerical analysis model of the damage and failure process of a dam-foundation system is established by employing a 3-D deformable distinct element code (3DEC) and its re-development functions. The proposed analysis model considers the dam-foundation-reservoir coupling effect, influence of nonlinear contact in the opening and closing of the dam seam surface and abutment rock joints during strong earthquakes, and radiation damping of far field energy dissipation according to the actual workability state of an arch dam. A safety assessment method and safety evaluation criteria is developed to better understand the arch dam system disaster process from local damage to ultimate failure. The dynamic characteristics, disaster mechanism, limit bearing capacity and the entire failure process of a high arch dam under a strong earthquake are then analyzed. Further, the seismic safety of the arch dam is evaluated according to the proposed evaluation criteria and safety assessment method. As a result, some useful conclusions are obtained for some aspects of the disaster mechanism and failure process of an arch dam. The analysis method and conclusions may be useful in engineering practice.

  7. Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure

    PubMed Central

    Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne

    2013-01-01

    The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321

  8. Retrogressive Failures in Sand Deposits of the Mississippi River. Report 1. Field Investigations, Laboratory Studies and Analysis of the Hypothesized Failure Mechanism

    DTIC Science & Technology

    1988-06-01

    mechanism and placement of the next threaded rod. Cone tip resistance and sleeve friction were plotted on a strip chart recorder during pushing. The cone...pressure in the riser was isolated from the regulator by closure of a valve between the two. The strip chart recorder plotting the transducer readings...failure than against strip or two-dimensional failure (Prof. Donald Taylor took exception to this statement in a later meeting of consultants). The

  9. The Mechanics of Left Ventricular Contraction in Acute Experimental Cardiac Failure*

    PubMed Central

    Ross, John; Covell, James W.; Sonnenblick, Edmund H.

    1967-01-01

    The effects of acute cardiac failure induced by pentobarbital or pronethalol on the basic mechanical properties of the intact left ventricle were examined in the dog, and the influence on auxotonic and isovolumic contractions of the increase in end-diastolic volume that usually accompanies cardiac failure was assessed. The right heart bypass preparation was employed, and isovolumic beats were induced by sudden balloon occlusion of the aortic root. The ventricular pressure-volume curve was determined directly, and the mechanical responses of the myocardial fibers and contractile elements were calculated. When end-diastolic pressure was held constant, failure reduced the extent of circumferential fiber shortening, and the tension-velocity relation calculated during isovolumic beats was always shifted, with reductions in both maximal velocity (average decrease 30%) and maximal developed tension (average 23%); in addition, during failure achievement of maximal contractile element velocity and maximal tension was delayed, whereas the total duration of contraction was always prolonged. Acetylstrophanthidin tended to reverse all of these changes. When end-diastolic volume was augmented during failure at a constant stroke volume, the extent of circumferential fiber shortening was reduced (3.82 cm to 2.02 cm), and during ejection the fiber and contractile element velocities were diminished at wall tensions comparable to control; maximal velocity and velocity at peak tension were also decreased. The tension-velocity relation during isovolumic beats was shifted by failure with consistent reductions in maximal shortening velocity, but changes in maximal tension were small. Maximal instantaneous power was always reduced by failure, and a striking alteration occurred in the relation between work expended in stretching the series elastic component and the external work; the former, “internal work,” increased by an average of 90%, the latter diminished by 11%, and the total

  10. Deformation and failure of single- and multi-phase silicate liquids: seismic precursors and mechanical work

    NASA Astrophysics Data System (ADS)

    Vasseur, Jeremie; Lavallée, Yan; Hess, Kai-Uwe; Wassermann, Joachim; Dingwell, Donald B.

    2013-04-01

    Along with many others, volcanic unrest is regarded as a catastrophic material failure phenomenon and is often preceded by diverse precursory signals. Although a volcanic system intrinsically behave in a non-linear and stochastic way, these precursors display systematic evolutionary trends to upcoming eruptions. Seismic signals in particular are in general dramatically increasing prior to an eruption and have been extensively reported to show accelerating rates through time, as well as in the laboratory before failure of rock samples. At the lab-scale, acoustic emissions (AE) are high frequency transient stress waves used to track fracture initiation and propagation inside a rock sample. Synthesized glass samples featuring a range of porosities (0 - 30%) and natural rock samples from volcán de Colima, Mexico, have been failed under high temperature uniaxial compression experiments at constant stresses and strain rates. Using the monitored AEs and the generated mechanical work during deformation, we investigated the evolutionary trends of energy patterns associated to different degrees of heterogeneity. We observed that the failure of dense, poorly porous glasses is achieved by exceeding elevated strength and thus requires a significant accumulation of strain, meaning only pervasive small-scale cracking is occurring. More porous glasses as well as volcanic samples need much lower applied stress and deformation to fail, as fractures are nucleating, propagating and coalescing into localized large-scale cracks, taking the advantage of the existence of numerous defects (voids for glasses, voids and crystals for volcanic rocks). These observations demonstrate that the mechanical work generated through cracking is efficiently distributed inside denser and more homogeneous samples, as underlined by the overall lower AE energy released during experiments. In contrast, the quicker and larger AE energy released during the loading of heterogeneous samples shows that the

  11. Molecular Mechanisms of HIV Type 1 Prophylaxis Failure Revealed by Single-Genome Sequencing

    PubMed Central

    Li, Hui; Blair, Lily; Chen, Yalu; Learn, Gerald; Pfafferott, Katja; John, Mina; Bhattacharya, Tanmoy; Hahn, Beatrice H.; Mallal, Simon; Shaw, George M.; Bar, Katharine J.

    2013-01-01

    Trials of human immunodeficiency virus type 1 (HIV) pre- and postexposure prophylaxis show promise. Here, we describe a novel strategy for deciphering mechanisms of prophylaxis failure that could improve therapeutic outcomes. A healthcare worker began antiretroviral prophylaxis immediately after a high-risk needlestick injury but nonetheless became viremic 11 weeks later. Single-genome sequencing of plasma viral RNA identified 15 drug susceptible transmitted/founder HIV genomes responsible for productive infection. Sequences emanating from these genomes exhibited extremely low diversity, suggesting virus sequestration as opposed to low-level replication as the cause of breakthrough infection. Identification of transmitted/founder viruses allows for genome-wide assessment of molecular mechanisms of prophylaxis failure. PMID:24023257

  12. Heart Transplant and Mechanical Circulatory Support in Patients With Advanced Heart Failure.

    PubMed

    Sánchez-Enrique, Cristina; Jorde, Ulrich P; González-Costello, José

    2017-02-07

    Patients with advanced heart failure have a poor prognosis and heart transplant is still the best treatment option. However, the scarcity of donors, long waiting times, and an increasing number of unstable patients have favored the development of mechanical circulatory support. This review summarizes the indications for heart transplant, candidate evaluation, current immunosuppression strategies, the evaluation and treatment of rejection, infectious prophylaxis, and short and long-term outcomes. Regarding mechanical circulatory support, we distinguish between short- and long-term support and the distinct strategies that can be used: bridge to decision, recovery, candidacy, transplant, and destination therapy. We then discuss indications, risk assessment, management of complications, especially with long-term support, and outcomes. Finally, we discuss future challenges and how the widespread use of long-term support for patients with advanced heart failure will only be viable if their complications and costs are reduced.

  13. Molecular mechanisms of HIV type 1 prophylaxis failure revealed by single-genome sequencing.

    PubMed

    Li, Hui; Blair, Lily; Chen, Yalu; Learn, Gerald; Pfafferott, Katja; John, Mina; Bhattacharya, Tanmoy; Hahn, Beatrice H; Mallal, Simon; Shaw, George M; Bar, Katharine J

    2013-11-15

    Trials of human immunodeficiency virus type 1 (HIV) pre- and postexposure prophylaxis show promise. Here, we describe a novel strategy for deciphering mechanisms of prophylaxis failure that could improve therapeutic outcomes. A healthcare worker began antiretroviral prophylaxis immediately after a high-risk needlestick injury but nonetheless became viremic 11 weeks later. Single-genome sequencing of plasma viral RNA identified 15 drug susceptible transmitted/founder HIV genomes responsible for productive infection. Sequences emanating from these genomes exhibited extremely low diversity, suggesting virus sequestration as opposed to low-level replication as the cause of breakthrough infection. Identification of transmitted/founder viruses allows for genome-wide assessment of molecular mechanisms of prophylaxis failure.

  14. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.

    PubMed

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Anaraki, A P; Ahmadi, S M; Zadpoor, A A; Schmauder, S

    2015-10-01

    Since the advent of additive manufacturing techniques, regular porous biomaterials have emerged as promising candidates for tissue engineering scaffolds owing to their controllable pore architecture and feasibility in producing scaffolds from a variety of biomaterials. The architecture of scaffolds could be designed to achieve similar mechanical properties as in the host bone tissue, thereby avoiding issues such as stress shielding in bone replacement procedure. In this paper, the deformation and failure mechanisms of porous titanium (Ti6Al4V) biomaterials manufactured by selective laser melting from two different types of repeating unit cells, namely cubic and diamond lattice structures, with four different porosities are studied. The mechanical behavior of the above-mentioned porous biomaterials was studied using finite element models. The computational results were compared with the experimental findings from a previous study of ours. The Johnson-Cook plasticity and damage model was implemented in the finite element models to simulate the failure of the additively manufactured scaffolds under compression. The computationally predicted stress-strain curves were compared with the experimental ones. The computational models incorporating the Johnson-Cook damage model could predict the plateau stress and maximum stress at the first peak with less than 18% error. Moreover, the computationally predicted deformation modes were in good agreement with the results of scaling law analysis. A layer-by-layer failure mechanism was found for the stretch-dominated structures, i.e. structures made from the cubic unit cell, while the failure of the bending-dominated structures, i.e. structures made from the diamond unit cells, was accompanied by the shearing bands of 45°.

  15. Bibliography of information on mechanics of structural failure (hydrogen embrittlement, protective coatings, composite materials, NDE)

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.

    1976-01-01

    This bibliography is comprised of approximately 1,600 reference citations related to four problem areas in the mechanics of failure in aerospace structures. The bibliography represents a search of the literature published in the period 1962-1976, the effort being largely limited to documents published in the United States. Listings are subdivided into the four problem areas: Hydrogen Embrittlement; Protective Coatings; Composite Materials; and Nondestructive Evaluation. An author index is included.

  16. Research Study to Define the Critical Failure Mechanisms in Notched Composites under Compression Fatigue Loading.

    DTIC Science & Technology

    1981-03-01

    A0-13 654 MATERIALS SCIENCES CORP SPRING HOUSE PA FGS 11/ " RESEARCH STUDY TO DEFINE THE CRITICAL FAILURE MECHANISMS IN NOT--ETC(U) MAR 81 B W ROSEN... House , PA 19477 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Naval Air Systems Command March, 1981 Washington, DC 20361 13. NUMBER OF PAGES...fatigue of a laminate containing a hole. The emphasis is upon understanding the governing physical phe- nomnena. Accordingly, the experimental tasks

  17. Increased Dicarbonyl Stress as a Novel Mechanism of Multi-Organ Failure in Critical Illness

    PubMed Central

    van Bussel, Bas C. T.; van de Poll, Marcel C. G.; Schalkwijk, Casper G.; Bergmans, Dennis C. J. J.

    2017-01-01

    Molecular pathological pathways leading to multi-organ failure in critical illness are progressively being unravelled. However, attempts to modulate these pathways have not yet improved the clinical outcome. Therefore, new targetable mechanisms should be investigated. We hypothesize that increased dicarbonyl stress is such a mechanism. Dicarbonyl stress is the accumulation of dicarbonyl metabolites (i.e., methylglyoxal, glyoxal, and 3-deoxyglucosone) that damages intracellular proteins, modifies extracellular matrix proteins, and alters plasma proteins. Increased dicarbonyl stress has been shown to impair the renal, cardiovascular, and central nervous system function, and possibly also the hepatic and respiratory function. In addition to hyperglycaemia, hypoxia and inflammation can cause increased dicarbonyl stress, and these conditions are prevalent in critical illness. Hypoxia and inflammation have been shown to drive the rapid intracellular accumulation of reactive dicarbonyls, i.e., through reduced glyoxalase-1 activity, which is the key enzyme in the dicarbonyl detoxification enzyme system. In critical illness, hypoxia and inflammation, with or without hyperglycaemia, could thus increase dicarbonyl stress in a way that might contribute to multi-organ failure. Thus, we hypothesize that increased dicarbonyl stress in critical illness, such as sepsis and major trauma, contributes to the development of multi-organ failure. This mechanism has the potential for new therapeutic intervention in critical care. PMID:28178202

  18. Increased Dicarbonyl Stress as a Novel Mechanism of Multi-Organ Failure in Critical Illness.

    PubMed

    van Bussel, Bas C T; van de Poll, Marcel C G; Schalkwijk, Casper G; Bergmans, Dennis C J J

    2017-02-07

    Molecular pathological pathways leading to multi-organ failure in critical illness are progressively being unravelled. However, attempts to modulate these pathways have not yet improved the clinical outcome. Therefore, new targetable mechanisms should be investigated. We hypothesize that increased dicarbonyl stress is such a mechanism. Dicarbonyl stress is the accumulation of dicarbonyl metabolites (i.e., methylglyoxal, glyoxal, and 3-deoxyglucosone) that damages intracellular proteins, modifies extracellular matrix proteins, and alters plasma proteins. Increased dicarbonyl stress has been shown to impair the renal, cardiovascular, and central nervous system function, and possibly also the hepatic and respiratory function. In addition to hyperglycaemia, hypoxia and inflammation can cause increased dicarbonyl stress, and these conditions are prevalent in critical illness. Hypoxia and inflammation have been shown to drive the rapid intracellular accumulation of reactive dicarbonyls, i.e., through reduced glyoxalase-1 activity, which is the key enzyme in the dicarbonyl detoxification enzyme system. In critical illness, hypoxia and inflammation, with or without hyperglycaemia, could thus increase dicarbonyl stress in a way that might contribute to multi-organ failure. Thus, we hypothesize that increased dicarbonyl stress in critical illness, such as sepsis and major trauma, contributes to the development of multi-organ failure. This mechanism has the potential for new therapeutic intervention in critical care.

  19. Damage mechanisms and failure modes of cortical bone under components of physiological loading.

    PubMed

    George, W T; Vashishth, D

    2005-09-01

    Fatigue damage development in cortical bone was investigated in vitro under different mechanical components of physiological loading including tension, compression, and torsion. During each test, stress and strain data were collected continuously to monitor and statistically determine the occurrence of the primary, secondary, and tertiary stages associated with fatigue and/or creep failure of bone. The resultant microdamage and failure modes were identified by histological and fractographic analysis, respectively. The tensile group demonstrated Mode I cracking and the three classic stages of fatigue and creep suggesting a low crack initiation threshold, steady crack propagation and final failure by coalescence of microcracks. In contrast, the compressive group displayed Mode II cracking and a two-stage fatigue behavior with limited creep suggesting a high crack initiation threshold followed by a sudden fracture. The torsion group also displayed a two-stage fatigue profile but demonstrated extensive damage from mixed mode (Modes II and III) microcracking and predominant time-dependent damage. Thus, fatigue behavior of bone was found to be uniquely related to the individual mechanical components of physiological loading and the latter determined the specific damage mechanisms associated with fatigue fracture.

  20. Clinical factors associated with weaning failure in patients requiring prolonged mechanical ventilation

    PubMed Central

    Shin, Hong-Joon; Chang, Jin-Sun; Ahn, Seong; Kim, Tae-Ok; Park, Cheol-Kyu; Lim, Jung-Hwan; Oh, In-Jae; Kim, Yu-Il; Lim, Sung-Chul; Kim, Young-Chul

    2017-01-01

    Background For patients requiring prolonged mechanical ventilation (PMV), weaning is difficult and mortality is very high. PMV has been defined recently, by consensus, as constituting ≥21 consecutive days of mechanical ventilation (MV) for ≥6 hours per day. This study aimed to evaluate the clinical factors predicting weaning failure in patients undergoing PMV in medical intensive care unit (ICU). Methods We retrospectively reviewed the clinical and laboratory characteristics of 127 patients who received MV for more than 21 days in the medical ICU at Chonnam National University Hospital in South Korea between January 2005 and December 2014. Patients who underwent surgery or experienced trauma were excluded from this study. Results Among the 127 patients requiring PMV, 41 (32.3%) were successfully weaned from MV. The median age of the weaning failure group was higher than that of the weaning success group (74.0 vs. 70.0 years; P=0.003). The proportion of male patients was 58.5% in the weaning success group and 72.1% in the weaning failure group, respectively. The most common reasons for ICU admission were respiratory causes (66.1%) followed by cardiovascular causes (16.5%) in both groups. ICU mortality and in-hospital mortality rates were 55.1% and 55.9%, respectively. In the multivariate analysis, respiratory causes of ICU admission [odds ratio (OR), 3.98; 95% confidence interval (CI), 1.29–12.30; P=0.016] and a high sequential organ failure assessment (SOFA) score on day 21 of MV (OR, 1.47; 95% CI, 1.17–1.85; P=0.001) were significantly associated with weaning failure in patients requiring PMV. The area under the receiver operating characteristic (ROC) curve of the SOFA score on day 21 of MV for predicting weaning failure was 0.77 (95% CI, 0.67–0.87; P=0.000). Conclusions Respiratory causes of ICU admission and a high SOFA score on day 21 of MV could be predictive of weaning failure in patients requiring PMV. PMID:28203417

  1. Optical performance of the TBC-2 solar collector before and after the 1993 mirror lustering

    SciTech Connect

    Houser, R.; Strachan, J.

    1995-02-01

    In 1993, the mirror facets of one of Sandia`s point-focusing solar collectors, the Test Bed Concentrator {number_sign}2 (TBC-2), were reconditioned. The concentrator`s optical performance was evaluated before and after this operation. This report summarizes and compares the results of these tests. The tests demonstrated that the concentrator`s total power and peak flux were increased while the overall flux distribution in the focal plane remained qualitatively the same.

  2. A molecular-dynamics study of defects and failure mechanisms in strained heteroepitaxial interfaces

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod E.; Bachlechner, Martina E.

    2006-03-01

    The formation and growth of pits and pit-like structures through a delamination-driven mechanism have been observed in the analysis of comprehensive molecular dynamics simulations of a laterally strained Si(111)/Si3N4(0001) interfacial system. These phenomena contribute to the ultimate mechanical failure of the simulated samples. Several factors play a key role the nucleation and growth of the pits including temperature and strain rate. Here we present an overview of the dependence of pit nucleation and morphology on both global and local conditions for a representative range of temperatures and applied strain rates.

  3. Failure mechanisms of polycrystalline diamond compact drill bits in geothermal environments

    SciTech Connect

    Hoover, E.R.; Pope, L.E.

    1981-09-01

    Over the past few years the interest in polycrystalline diamond compact (PDC) drill bits has grown proportionately with their successful use in drilling oil and gas wells in the North Sea and the United States. This keen interest led to a research program at Sandia to develop PDC drill bits suitable for the severe drilling conditions encountered in geothermal fields. Recently, three different PDC drill bits were tested using either air or mud drilling fluids: one in the laboratory with hot air, one in the Geysers field with air, and one in the Geysers field with mud. All three tests were unsuccessful due to failure of the braze joint used to attach the PDC drill blanks to the tungsten carbide studs. A post-mortem failure analysis of the defective cutters identified three major failure mechanisms: peripheral nonbonding caused by braze oxidation during the brazing step, nonbonding between PDC drill blanks and the braze due to contamination prior to brazing, and hot shortness. No evidence was found to suggest that the braze failures in the Geysers field tests were caused by frictional heating. In addition, inspection of the PDC/stud cutter assemblies using ultrasonic techniques was found to be ineffective for detecting the presence of hot shortness in the braze joint.

  4. Effect of Hf Additions to Pt Aluminide Bond Coats on EB-PVD TBC Life

    NASA Technical Reports Server (NTRS)

    Nesbitt, James; Nagaraj, Ben; Williams, Jeffrey

    2000-01-01

    Small Hf additions were incorporated into a Pt aluminide coating during chemical vapor deposition (CVD) on single crystal RENE N5 substrates. Standard yttria-stabilized zirconia top coats were subsequently deposited onto the coated substrates by electron beam-physical vapor deposition (EB-PVD). The coated substrates underwent accelerated thermal cycle testing in a furnace at a temperature in excess of 1121 C (2050 F) (45 minute hot exposure, 15 minute cool to approximately 121 C (250 F)) until the thermal barrier coating (TBC) failed by spallation. Incorporating Hf in the bond coat increased the TBC life by slightly more than three times that of a baseline coating without added Hf. Scanning electron microscopy of the spalled surfaces indicated that the presence of the Hf increased the adherence of the thermally grown alumina to the Pt aluminide bond coat. The presence of oxide pegs growing into the coating from the thermally grown alumina may also partially account for the improved TBC life by creating a near-surface layer with a graded coefficient of thermal expansion.

  5. [Home mechanical ventilation: Invasive and noninvasive ventilation therapy for chronic respiratory failure].

    PubMed

    Huttmann, S E; Storre, J H; Windisch, W

    2015-06-01

    Home mechanical ventilation represents a valuable therapeutic option to improve alveolar ventilation in patients with chronic respiratory failure. For this purpose both invasive ventilation via tracheostomy and noninvasive ventilation via facemasks are available. The primary goal of home mechanical ventilation is a reduction of symptoms, improvement of quality of life and in many cases reduction of mortality. Elective establishment of home mechanical ventilation is typically provided for noninvasive ventilation in respect to clinical symptoms and partial pressure of carbon dioxide depending on the underlying disease. However, invasive mechanical ventilation is increasingly being used to continue ventilatory support in polymorbid patients following unsuccessful weaning. Recommendations and guidelines have been published by the German Respiratory Society (DGP).

  6. Tension Strength, Failure Prediction and Damage Mechanisms in 2D Triaxial Braided Composites with Notch

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Anglin, Colin

    1995-01-01

    The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to 2D triaxial braided textile composite materials. Four different fiber architectures were considered; braid angle, yarn and braider size, percentage of longitudinal yarns and braider angle varied. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yarn cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch strain between textile and tape equivalents could be detected for small braid angle, but the correlations were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.

  7. Failure Mechanism of Fast-Charged Lithium Metal Batteries in Liquid Electrolyte

    SciTech Connect

    Lu, Dongping; Shao, Yuyan; Lozano, Terence J.; Bennett, Wendy D.; Graff, Gordon L.; Polzin, Bryant; Zhang, Jiguang; Engelhard, Mark H.; Saenz, Natalio T.; Henderson, Wesley A.; Bhattacharya, Priyanka; Liu, Jun; Xiao, Jie

    2015-02-01

    In recent years, lithium anode has re-attracted broad interest because of the necessity of employing lithium metal in the next-generation battery technologies such as lithium sulfur (Li-S) and lithium oxygen (Li-O2) batteries. Fast capacity degradation and safety issue associated with rechargeable lithium metal batteries have been reported, although the fundamental understanding on the failure mechanism of lithium metal at high charge rate is still under debate due to the complicated interfacial chemistry between lithium metal and electrolyte. Herein, we demonstrate that, at high current density, the quick growth of porous solid electrolyte interphase towards bulk lithium, instead of towards the separator, dramatically builds up the cell impedance that directly leads to the cell failure. Understanding the lithium metal failure mechanism is very critical to gauge the various approaches used to address the stability and safety issues associated with lithium metal anode. Otherwise, all cells will fail quickly at high rates before the observation of any positive effects that might be brought from adopting the new strategies to protect lithium.

  8. Failure mechanism of shear-wall dominant multi-story buildings

    USGS Publications Warehouse

    Yuksel, S.B.; Kalkan, E.

    2008-01-01

    The recent trend in the building industry of Turkey as well as in many European countries is towards utilizing the tunnel form (shear-wall dominant) construction system for development of multi-story residential units. The tunnel form buildings diverge from other conventional reinforced concrete (RC) buildings due to the lack of beams and columns in their structural integrity. The vertical load-carrying members of these buildings are the structural-walls only, and the floor system is a flat plate. Besides the constructive advantages, tunnel form buildings provide superior seismic performance compared to conventional RC frame and dual systems as observed during the recent devastating earthquakes in Turkey (1999 Mw 7.4 Kocaeli, Mw 7.2 Duzce, and 2004 Mw 6.5 Bingol). With its proven earthquake performance, the tunnel form system is becoming the primary construction technique in many seismically active regions. In this study, a series of nonlinear analyses were conducted using finite element (FE) models to augment our understanding on their failure mechanism under lateral forces. In order to represent the nonlinear behavior adequately, The FE models were verified with the results of experimental studies performed on three dimensional (3D) scaled tunnel form building specimens. The results of this study indicate that the structural walls of tunnel form buildings may exhibit brittle flexural failure under lateral loading, if they are not properly reinforced. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in the outermost shear-walls.

  9. Cardiac function after acute support with direct mechanical ventricular actuation in chronic heart failure.

    PubMed

    McConnell, Patrick I; Anstadt, Mark P; Del Rio, Carlos L; Preston, Thomas J; Ueyama, Yukie; Youngblood, Brad L

    2014-01-01

    Direct mechanical ventricular actuation (DMVA) exerts direct cardiac compression/decompression and does not require blood contact. The safety and effects of DMVA support in chronically dysfunctional beating hearts in vivo have not been established. This study evaluated hemodynamics and load-independent systolic/diastolic cardiac function before/after acute support (2 hours) using DMVA in small hearts with induced chronic failure. Chronic heart failure was created in seven small dogs (15 ± 2 kg) via either serial coronary microembolizations or right-ventricular overdrive pacing. Dogs were instrumented to measure cardiac output, hemodynamic pressures, left ventricular volumes for pressure-volume analysis via preload reduction. Temporary cardiac support using a DMVA device was instituted for 2 hours. Hemodynamic and mechanical assessments, including dobutamine dose-responses, were compared both before and after support. Hemodynamic indices were preserved with support. Both left-ventricular systolic and diastolic function were improved postsupport, as the slopes of the preload-recruitable stroke work (+29 ± 7%, p < 0.05) and the end-diastolic pressure-volume relationship (EDPVR: -28 ± 9%, p < 0.05) improved post-DMVA support. Diastolic/systolic myocardial reserve, as assessed by responsiveness to dobutamine challenges, was preserved after DMVA support. Short-term DMVA support can safely and effectively sustain hemodynamics, whereas triggering favorable effects on cardiac function in the setting of chronic heart failure. In particular, DMVA support preserved load-independent diastolic function and reserve.

  10. Lubrication and failure mechanisms of molybdenum disulfide films. 1: Effect of atmosphere

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1978-01-01

    Friction, wear, and wear lives of rubbed molybdenum disulfide (MoS2 films applied to sanded 440C HT steel surfaces were evaluated in moist air, dry air, and dry argon. Optical microscope observations were made as a function of sliding distance to determine the effect of moisture and oxygen on the lubricating and failure mechanisms of MoS2 films. In general, the lubrication process consisted of the formation of a thin, metallic colored, coalesced film of MoS2 that flowed between the surfaces in relative motion. In air, failure was due to the transformation of the metallic colored, coalesced films to a black, powdery material. Water in the air appeared to accelerate the transformation rate. In argon, no transformation of MoS2 was observed with the microscope, but cracking and spalling of the coalesced film occurred and resulted in the gradual depletion of the film.

  11. Failure mechanisms in CoCrMo modular femoral stems for revision total hip arthroplasty.

    PubMed

    Wang, Qiong; Parry, Michael; Masri, Bassam A; Duncan, Clive; Wang, Rizhi

    2016-04-28

    In this retrieval study, we reported the failure mechanisms of the CoCrMo-based hip implants. Systematic analyses on the clinically failed modular femoral stems from Revitan™ revision prostheses revealed a multistep fracture process. Multiple microcracks were first developed under the combined action of pitting corrosion and dynamic tensile stress on the lateral side of the CoCrMo connection taper. These microcracks then served as the initiation sites of further corrosion fatigue cracking leading to the final catastrophic failure. This crack initiation process has not been previously reported on retrieved CoCrMo components and our findings provide valuable information on the clinical performance of such implants, as well as the material selection and structural designs of future modular stems. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  12. Investigation of failure mechanism of thermal barrier coatings (TBCs) deposited by EB-PVD technique

    NASA Astrophysics Data System (ADS)

    Shahid, M. R.; Abbas, Musharaf

    2013-06-01

    Failure mechanism of thermal barrier coatings (TBCs) prepared by electron beam physical vapor deposition (EB-PVD) technique owing to formation of micro cracks was investigated. The TBCs were deposited on the Ni-based super alloy IN-100 and the micro cracks were observed within the top ceramic coat of thermally cycled TBCs at 1050°C. It was observed that these cracks propagate in the ceramic coat in the direction normal to interface while no cracks were observed in the bond coat. SEM/EDS studies revealed that some non-uniform oxides were formed on the interface between ceramic top and metallic bond coat just below the cracks. Study proposed that the cracks were initiated due to stress owing to big difference in Pilling-Bed worth ratio of non-uniform oxides as well as thermal stress, which caused the formation of cracks in top ceramic coat leading to failure of TBCs

  13. Effect of Superalloy Substrate and Bond Coating on TBC Lifetime

    SciTech Connect

    Pint, Bruce A; Haynes, James A; Zhang, Ying

    2010-01-01

    Several different single-crystal superalloys were coated with different bond coatings to study the effect of composition on the cyclic oxidation lifetime of an yttria-stabilized zirconia (YSZ) top coating deposited by electron beam physical vapor deposition from a commercial source. Three different superalloys were coated with a 7 {micro}m Pt layer that was diffused into the surface prior to YSZ deposition. One of the superalloys, N5, was coated with a low activity, Pt-modified aluminide coating and Pt-diffusion coatings with 3 and 7 {micro}m of Pt. Three coatings of each type were furnace cycled to failure in 1 h cycles at 1150 C to assess average coating lifetime. The 7 {micro}m Pt diffusion coating on N5 had an average YSZ coating lifetime >50% higher than a Pt-modified aluminide coating on N5. Without a YSZ coating, the Pt-modified aluminide coating on N5 showed the typical surface deformation during cycling, however, the deformation was greatly reduced when constrained by the YSZ coating. The 3 {micro}m Pt diffusion coating had a similar average lifetime as the Pt-modified aluminide coating but a much wider scatter. The Pt diffusion bond coating on superalloy X4 containing Ti exhibited the shortest YSZ coating lifetime, this alloy-coating combination also showed the worst alumina scale adhesion without a YSZ coating. The third generation superalloy N6 exhibited the longest coating lifetime with a 7 {micro}m Pt diffusion coating.

  14. A numerical study on intended and unintended failure mechanisms in blanking of sandwich plates

    NASA Astrophysics Data System (ADS)

    Chen, L.; Soyarslan, C.; Tekkaya, A. E.

    2013-05-01

    Metal-polymer-metal sandwich plates are widely used in the automotive and aerospace industry. As for different applications the sandwich plates can be divided into two types. They are sound-damping laminates with a polymer core much thinner than the metallic faces and low-density laminates with a core thickness of approximately 40-60% of the total thickness. One frequent process step in production of parts made of these plates is the blanking process whose hereditary effects draw the limits of further forming stages or service performance and life; e.g. the failure of the adhesive in the thermoplastic polymer interface affects the sound-damping efficiency intensively. With this motivation, we present FE simulation of an axi-symmetric blanking process of steel/polyethylene/steel sound-damping laminates. The mechanical behavior of the metallic layers was characterized by finite strain rate independent elasto-plasticity where progressive material deterioration and fracture are given account for using continuum damage mechanics (CDM). This material model is made accessible via implementations as VUMAT subroutines for ABAQUS/Explicit. Possible failure of the thermoplastic polymer which may lead to delamination of the metallic layers is modeled using ABAQUS built-in cohesive zone elements. The results show that existing intended and unintended failure modes, e.g. blanking of the metallic and thermoplastic polymer constituents as well as failure of polymer layer under shear and compression, can be effectively studied with the proposed framework for process enhancement. As a future work, a damage coupled nonlinear visco-elastic constitutive model will be devised for the simulation of the thermoplastic layer in low-density laminates.

  15. The application of fracture mechanics to failure analysis of photovoltaic solar modules

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1981-01-01

    Cracking of silicon solar cells and solar module transparent cover panels such as glass or polymethylmethacrylate (PMMA) is a major cause of photovoltaic solar module failure in field service. Silicon and cover materials are brittle, and cracking of these materials is expected to result from the extension of preexisting flaws under stress. Study of the cracking mechanisms is therefore an appropriate area for the application of fracture mechanics principles. In this study, fracture mechanics techniques were employed to identify the mode of crack propagation, to examine the fracture-initiating flaw, to estimate the nature and magnitude of fracture stress in the field, and to predict analytically the service lifetime. Recommendations for corrective actions are also made.

  16. Methods And Systms For Analyzing The Degradation And Failure Of Mechanical Systems

    DOEpatents

    Jarrell, Donald B.; Sisk, Daniel R.; Hatley, Darrel D.; Kirihara, Leslie J.; Peters, Timothy J.

    2005-02-08

    Methods and systems for identifying, understanding, and predicting the degradation and failure of mechanical systems are disclosed. The methods include measuring and quantifying stressors that are responsible for the activation of degradation mechanisms in the machine component of interest. The intensity of the stressor may be correlated with the rate of physical degradation according to some determinable function such that a derivative relationship exists between the machine performance, degradation, and the underlying stressor. The derivative relationship may be used to make diagnostic and prognostic calculations concerning the performance and projected life of the machine. These calculations may be performed in real time to allow the machine operator to quickly adjust the operational parameters of the machinery in order to help minimize or eliminate the effects of the degradation mechanism, thereby prolonging the life of the machine. Various systems implementing the methods are also disclosed.

  17. Mechanical Ventilation during Extracorporeal Membrane Oxygenation in Patients with Acute Severe Respiratory Failure.

    PubMed

    Zhang, Zhongheng; Gu, Wan-Jie; Chen, Kun; Ni, Hongying

    2017-01-01

    Conventionally, a substantial number of patients with acute respiratory failure require mechanical ventilation (MV) to avert catastrophe of hypoxemia and hypercapnia. However, mechanical ventilation per se can cause lung injury, accelerating the disease progression. Extracorporeal membrane oxygenation (ECMO) provides an alternative to rescue patients with severe respiratory failure that conventional mechanical ventilation fails to maintain adequate gas exchange. The physiology behind ECMO and its interaction with MV were reviewed. Next, we discussed the timing of ECMO initiation based on the risks and benefits of ECMO. During the running of ECMO, the protective ventilation strategy can be employed without worrying about catastrophic hypoxemia and carbon dioxide retention. There is a large body of evidence showing that protective ventilation with low tidal volume, high positive end-expiratory pressure, and prone positioning can provide benefits on mortality outcome. More recently, there is an increasing popularity on the use of awake and spontaneous breathing for patients undergoing ECMO, which is thought to be beneficial in terms of rehabilitation.

  18. Mechanical Ventilation during Extracorporeal Membrane Oxygenation in Patients with Acute Severe Respiratory Failure

    PubMed Central

    Gu, Wan-Jie; Chen, Kun; Ni, Hongying

    2017-01-01

    Conventionally, a substantial number of patients with acute respiratory failure require mechanical ventilation (MV) to avert catastrophe of hypoxemia and hypercapnia. However, mechanical ventilation per se can cause lung injury, accelerating the disease progression. Extracorporeal membrane oxygenation (ECMO) provides an alternative to rescue patients with severe respiratory failure that conventional mechanical ventilation fails to maintain adequate gas exchange. The physiology behind ECMO and its interaction with MV were reviewed. Next, we discussed the timing of ECMO initiation based on the risks and benefits of ECMO. During the running of ECMO, the protective ventilation strategy can be employed without worrying about catastrophic hypoxemia and carbon dioxide retention. There is a large body of evidence showing that protective ventilation with low tidal volume, high positive end-expiratory pressure, and prone positioning can provide benefits on mortality outcome. More recently, there is an increasing popularity on the use of awake and spontaneous breathing for patients undergoing ECMO, which is thought to be beneficial in terms of rehabilitation. PMID:28127231

  19. Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model.

    PubMed

    Radvanyi, Etienne; Porcher, Willy; De Vito, Eric; Montani, Alexandre; Franger, Sylvain; Jouanneau Si Larbi, Séverine

    2014-08-28

    With a specific capacity of 3600 mA h g(-1), silicon is a promising anode active material for Li-ion batteries (LIBs). However, because of the huge volume changes undergone by Si particles upon (de)alloying with lithium, Si electrodes suffer from rapid capacity fading. A deep understanding of the associated failure mechanisms is necessary to improve these electrochemical performances. To reach this goal, we investigate here nano-Si based electrodes by several characterization techniques. Thanks to all these techniques, many aspects, such as the behaviour of the active material or the solid electrolyte interphase (SEI) and the lithiation mechanisms, are studied upon cycling. A clear picture of the failure mechanisms of nano-Si based electrodes is provided. In particular, by combining Hg analyses, SEM observations of electrode cross-sections, and EIS measurements, we follow the evolution of the porosity within the electrode. For the first time, our results clearly show a real dynamic of the pore size distribution: the first cycles lead to the formation of a micrometric porosity which is not present initially. During the following cycles, these large pores are progressively filled up with SEI products which form continuously at the Si particle surface. Thus, from the 50th cycle, Li(+) ion diffusion is dramatically hindered leading to a strongly heterogeneous lithiation of the electrode and a rapid capacity fading.

  20. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    SciTech Connect

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.

  1. Failure Mechanisms of Air Entrainment in Drop Impact on Lubricated Surfaces

    NASA Astrophysics Data System (ADS)

    Pack, Min; Hu, Han; Kim, Dong-Ook; Zheng, Zhong; Stone, Howard; Sun, Ying; Drexel University Team; Princeton University Team

    2016-11-01

    Lubricated surfaces have recently been introduced and studied due to their potential benefit in various applications. Combining the techniques of total internal reflection microscopy and reflection interference microscopy, we examine the dynamics of an underlying air film upon drop impact on a lubricated substrate. In contrast to drop impact on solid surfaces where asperities cause random breakup of the entraining air film, we report two air film failure mechanisms on lubricated surfaces. In particular, using thin liquid films of high viscosity, we show that air film rupture shifts from a randomly driven to a controlled event. At low Weber numbers (We) the droplet bounces. At intermediate We, the air film fails at the center as the drop top surface crashes downward owing to impact-induced capillary waves; the resulting liquid-liquid contact time is found to be independent of We. In contrast, at high We, the air film failure occurs much earlier in time at the first inflection point of the air film shape away from the drop center, where the liquid-liquid van der Waals interactions become important. The predictable failure modes of the air film upon drop impact sheds light on droplet deposition in applications such as lubricant-infused self-cleaning surfaces. Support for this work was provided by the National Science Foundation under Grant No. CMMI-1401438 to Y.S.

  2. Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism

    NASA Technical Reports Server (NTRS)

    Dervan, Jared; Robertson, Brandon; Staab, Lucas; Culberson, Michael

    2014-01-01

    Commodities are transferred between the Multi-Purpose Crew Vehicle (MPCV) crew module (CM) and service module (SM) via an external umbilical that is driven apart with spring-loaded struts after the structural connection is severed. The spring struts must operate correctly for the modules to separate safely. There was no vibration testing of strut development units scoped in the MPCV Program Plan; therefore, any design problems discovered as a result of vibration testing would not have been found until the component qualification. The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations including identified lessons learned and best practices to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.

  3. On the failure load and mechanism of polycrystalline graphene by nanoindentation.

    PubMed

    Sha, Z D; Wan, Q; Pei, Q X; Quek, S S; Liu, Z S; Zhang, Y W; Shenoy, V B

    2014-12-11

    Nanoindentation has been recently used to measure the mechanical properties of polycrystalline graphene. However, the measured failure loads are found to be scattered widely and vary from lab to lab. We perform molecular dynamics simulations of nanoindentation on polycrystalline graphene at different sites including grain center, grain boundary (GB), GB triple junction, and holes. Depending on the relative position between the indenter tip and defects, significant scattering in failure load is observed. This scattering is found to arise from a combination of the non-uniform stress state, varied and weakened strengths of different defects, and the relative location between the indenter tip and the defects in polycrystalline graphene. Consequently, the failure behavior of polycrystalline graphene by nanoindentation is critically dependent on the indentation site, and is thus distinct from uniaxial tensile loading. Our work highlights the importance of the interaction between the indentation tip and defects, and the need to explicitly consider the defect characteristics at and near the indentation site in polycrystalline graphene during nanoindentation.

  4. The Response and Failure Mechanisms of Circular Metal and Composite Plates Subjected to Underwater Shock Loading

    DTIC Science & Technology

    1990-02-01

    thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. 17 COSATI CODES I 1...composite materials. This thesis , hopefully, will provide some information pertaining to the dynamic response and failure mechanisms of composite plates or...82170 0 - OL Z > QDO (A o (9 0 ai y 11 u mnE o E E >’ crw~~ ~ a’ &a" & a fulu- Q1 -0 0 t) -(ii* ’. I) ( S m I-(r Cr Yn wm \\f I y0 u m \\ 136 to LO (J Ul

  5. [Non-invasive mechanical ventilation in the treatment of acute heart failure].

    PubMed

    Alfonso Megido, Joaquín; González Franco, Alvaro

    2014-03-01

    When acute heart failure progresses and there is acute cardiogenic pulmonary edema, routine therapeutic measures should be accompanied by other measures that help to correct oxygenation of the patient. The final and most drastic step is mechanical ventilation. Non-invasive ventilation has been developed in the last few years as a method that attempts to improve oxygenation without the need for intubation, thus, in theory, reducing morbidity and mortality in these patients. The present article describes the controversies surrounding the results of this technique and discusses its indications. The article also discusses how to start non-invasive ventilation in patients with acute pulmonary edema from a practical point of view.

  6. User-defined Material Model for Thermo-mechanical Progressive Failure Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2008-01-01

    Previously a user-defined material model for orthotropic bimodulus materials was developed for linear and nonlinear stress analysis of composite structures using either shell or solid finite elements within a nonlinear finite element analysis tool. Extensions of this user-defined material model to thermo-mechanical progressive failure analysis are described, and the required input data are documented. The extensions include providing for temperature-dependent material properties, archival of the elastic strains, and a thermal strain calculation for materials exhibiting a stress-free temperature.

  7. Mutations in TBC1D24, a Gene Associated With Epilepsy, Also Cause Nonsyndromic Deafness DFNB86

    PubMed Central

    Rehman, Atteeq U.; Santos-Cortez, Regie Lyn P.; Morell, Robert J.; Drummond, Meghan C.; Ito, Taku; Lee, Kwanghyuk; Khan, Asma A.; Basra, Muhammad Asim R.; Wasif, Naveed; Ayub, Muhammad; Ali, Rana A.; Raza, Syed I.; Nickerson, Deborah A.; Shendure, Jay; Bamshad, Michael; Riazuddin, Saima; Billington, Neil; Khan, Shaheen N.; Friedman, Penelope L.; Griffith, Andrew J.; Ahmad, Wasim; Riazuddin, Sheikh; Leal, Suzanne M.; Friedman, Thomas B.

    2014-01-01

    Inherited deafness is clinically and genetically heterogeneous. We recently mapped DFNB86, a locus associated with nonsyndromic deafness, to chromosome 16p. In this study, whole-exome sequencing was performed with genomic DNA from affected individuals from three large consanguineous families in which markers linked to DFNB86 segregate with profound deafness. Analyses of these data revealed homozygous mutation c.208G>T (p.Asp70Tyr) or c.878G>C (p.Arg293Pro) in TBC1D24 as the underlying cause of deafness in the three families. Sanger sequence analysis of TBC1D24 in an additional large family in which deafness segregates with DFNB86 identified the c.208G>T (p.Asp70Tyr) substitution. These mutations affect TBC1D24 amino acid residues that are conserved in orthologs ranging from fruit fly to human. Neither variant was observed in databases of single-nucleotide variants or in 634 chromosomes from ethnically matched control subjects. TBC1D24 in the mouse inner ear was immunolocalized predominantly to spiral ganglion neurons, indicating that DFNB86 deafness might be an auditory neuropathy spectrum disorder. Previously, six recessive mutations in TBC1D24 were reported to cause seizures (hearing loss was not reported) ranging in severity from epilepsy with otherwise normal development to epileptic encephalopathy resulting in childhood death. Two of our four families in which deafness segregates with mutant alleles of TBC1D24 were available for neurological examination. Cosegregation of epilepsy and deafness was not observed in these two families. Although the causal relationship between genotype and phenotype is not presently understood, our findings, combined with published data, indicate that recessive alleles of TBC1D24 can cause either epilepsy or nonsyndromic deafness. PMID:24387994

  8. Mutations in TBC1D24, a gene associated with epilepsy, also cause nonsyndromic deafness DFNB86.

    PubMed

    Rehman, Atteeq U; Santos-Cortez, Regie Lyn P; Morell, Robert J; Drummond, Meghan C; Ito, Taku; Lee, Kwanghyuk; Khan, Asma A; Basra, Muhammad Asim R; Wasif, Naveed; Ayub, Muhammad; Ali, Rana A; Raza, Syed I; Nickerson, Deborah A; Shendure, Jay; Bamshad, Michael; Riazuddin, Saima; Billington, Neil; Khan, Shaheen N; Friedman, Penelope L; Griffith, Andrew J; Ahmad, Wasim; Riazuddin, Sheikh; Leal, Suzanne M; Friedman, Thomas B

    2014-01-02

    Inherited deafness is clinically and genetically heterogeneous. We recently mapped DFNB86, a locus associated with nonsyndromic deafness, to chromosome 16p. In this study, whole-exome sequencing was performed with genomic DNA from affected individuals from three large consanguineous families in which markers linked to DFNB86 segregate with profound deafness. Analyses of these data revealed homozygous mutation c.208G>T (p.Asp70Tyr) or c.878G>C (p.Arg293Pro) in TBC1D24 as the underlying cause of deafness in the three families. Sanger sequence analysis of TBC1D24 in an additional large family in which deafness segregates with DFNB86 identified the c.208G>T (p.Asp70Tyr) substitution. These mutations affect TBC1D24 amino acid residues that are conserved in orthologs ranging from fruit fly to human. Neither variant was observed in databases of single-nucleotide variants or in 634 chromosomes from ethnically matched control subjects. TBC1D24 in the mouse inner ear was immunolocalized predominantly to spiral ganglion neurons, indicating that DFNB86 deafness might be an auditory neuropathy spectrum disorder. Previously, six recessive mutations in TBC1D24 were reported to cause seizures (hearing loss was not reported) ranging in severity from epilepsy with otherwise normal development to epileptic encephalopathy resulting in childhood death. Two of our four families in which deafness segregates with mutant alleles of TBC1D24 were available for neurological examination. Cosegregation of epilepsy and deafness was not observed in these two families. Although the causal relationship between genotype and phenotype is not presently understood, our findings, combined with published data, indicate that recessive alleles of TBC1D24 can cause either epilepsy or nonsyndromic deafness.

  9. A damage mechanics approach for quantifying stress changes due to brittle failure of porous rocks

    NASA Astrophysics Data System (ADS)

    Jacquey, Antoine B.; Cacace, Mauro; Blöcher, Guido; Milsch, Harald; Scheck-Wenderoth, Magdalena

    2016-04-01

    Natural fault zones or man-made injection or production of fluid impact the regional stress distribution in Earth's crust and can be responsible for localized stress discontinuities. Understanding the processes controlling fracturing of the porous rocks and mechanical behaviour of fault zones is therefore of interest for several applications including geothermal energy production. In this contribution, we will present a thermodynamically consistent visco-poroelastic damage model which can deal with the multi-scale and multi-physics nature of the physical processes controlling the deformation of porous rocks during and after brittle failure. Deformation of a porous medium is crucially influenced by the changes in the effective stress. Considering a strain-formulated yield cap and the compaction-dilation transition, three different regimes can be identified: quasi-elastic deformation, cataclastic compaction with microcracking (damage accumulation) and macroscopic brittle failure with dilation. The governing equations for deformation, damage accumulation/healing and fluid flow have been implemented in a fully-coupled finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for such non-linear context. To illustrate the model, simulation of a compaction experiment of a sandstone leading to shear failure will be presented which allows to quantify the stress drop accompanying the failure. Finally, we will demonstrate that this approach can also be used at the field scale to simulate hydraulic fracturing and assess the resulting changes in the stress field.

  10. Leptin Reduces the Expression and Increases the Phosphorylation of the Negative Regulators of GLUT4 Traffic TBC1D1 and TBC1D4 in Muscle of ob/ob Mice

    PubMed Central

    Sáinz, Neira; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Ramírez, Beatriz; Lancha, Andoni; Burgos-Ramos, Emma; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2012-01-01

    Leptin improves insulin sensitivity in skeletal muscle. Our goal was to determine whether proteins controlling GLUT4 traffic are altered by leptin deficiency and in vivo leptin administration in skeletal muscle of wild type and ob/ob mice. Leptin-deficient ob/ob mice were divided in three groups: control, leptin-treated (1 mg/kg/d) and leptin pair-fed ob/ob mice. Microarray analysis revealed that 1,546 and 1,127 genes were regulated by leptin deficiency and leptin treatment, respectively. Among these, we identified 24 genes involved in intracellular vesicle-mediated transport in ob/ob mice. TBC1 domain family, member 1 (Tbc1d1), a negative regulator of GLUT4 translocation, was up-regulated (P = 0.001) in ob/ob mice as compared to wild types. Importantly, leptin treatment reduced the transcript levels of Tbc1d1 (P<0.001) and Tbc1d4 (P = 0.004) in the leptin-treated ob/ob as compared to pair-fed ob/ob animals. In addition, phosphorylation levels of TBC1D1 and TBC1D4 were enhanced in leptin-treated ob/ob as compared to control ob/ob (P = 0.015 and P = 0.023, respectively) and pair-fed ob/ob (P = 0.036 and P = 0.034, respectively) mice. Despite similar GLUT4 protein expression in wild type and ob/ob groups a different immunolocalization of this protein was evidenced in muscle sections. Leptin treatment increased GLUT4 immunoreactivity in gastrocnemius and extensor digitorum longus sections of leptin-treated ob/ob mice. Moreover, GLUT4 protein detected in immunoprecipitates from TBC1D4 was reduced by leptin replacement compared to control ob/ob (P = 0.013) and pair-fed ob/ob (P = 0.037) mice. Our findings suggest that leptin enhances the intracellular GLUT4 transport in skeletal muscle of ob/ob animals by reducing the expression and activity of the negative regulators of GLUT4 traffic TBC1D1 and TBC1D4. PMID:22253718

  11. The Effect of Defects on Mechanical Properties and Failure Mechanisms of Graphene

    NASA Astrophysics Data System (ADS)

    Willman, Jonathan; Gonzalez, Joseph; Perriot, Romain; Oleynik, Ivan

    Recent experiments involving nanoindentation of graphene have demonstrated counterintuitive increasing of Young's modulus with increasing concentrations of point defects in graphene. To fully resolve this controversy we perform large-scale molecular dynamics simulations of graphene nanoindentation. The relaible description of interatomic interactions is achieved by using recently developed screened environment-dependent bond order (SED-REBO) potential. The elastic properties of the defective graphene, the breaking strength and the mechanisms of fracture under indenter are investigated as a function of defect concentration and other factors specific to Atomic Force Microscopy (AFM) nanoindentation experiments.

  12. Structural Basis of the Interaction between Tuberous Sclerosis Complex 1 (TSC1) and Tre2-Bub2-Cdc16 Domain Family Member 7 (TBC1D7).

    PubMed

    Qin, Jiayue; Wang, Zhizhi; Hoogeveen-Westerveld, Marianne; Shen, Guobo; Gong, Weimin; Nellist, Mark; Xu, Wenqing

    2016-04-15

    Mutations in TSC1 or TSC2 cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterized by the occurrence of benign tumors in various vital organs and tissues. TSC1 and TSC2, the TSC1 and TSC2 gene products, form the TSC protein complex that senses specific cellular growth conditions to control mTORC1 signaling. TBC1D7 is the third subunit of the TSC complex, and helps to stabilize the TSC1-TSC2 complex through its direct interaction with TSC1. Homozygous inactivation of TBC1D7 causes intellectual disability and megaencephaly. Here we report the crystal structure of a TSC1-TBC1D7 complex and biochemical characterization of the TSC1-TBC1D7 interaction. TBC1D7 interacts with the C-terminal region of the predicted coiled-coil domain of TSC1. The TSC1-TBC1D7 interface is largely hydrophobic, involving the α4 helix of TBC1D7. Each TBC1D7 molecule interacts simultaneously with two parallel TSC1 helices from two TSC1 molecules, suggesting that TBC1D7 may stabilize the TSC complex by tethering the C-terminal ends of two TSC1 coiled-coils.

  13. Synthesis and Structural and Theoretical Characterization of a Nickel (0) Complex of Tribenzocyclyne (TBC) and the Preparation of a Novel Organometallic Conductor

    DTIC Science & Technology

    1989-05-05

    number) 9 Rtection of Ni(COD)2 with TBC in benzene affords a planar nickel(0) complex, Ni(TBC). with the nickel atom coordinated equally by all three...Case Western Reserve University Cleveland, Ohio 44106-2699 Abstract. Reaction of Ni(COD)2 with TBC in benzene affords a planar nickel(O) complex, Ni...cm) "l at 0.6 electrons per TBC unit. Introducti Transition metal complexes of planar te allomacrocycles, including ligand systems such as the

  14. DEFORMATION AND FRACTURE OF POORLY CONSOLIDATED MEDIA - Borehole Failure Mechanisms in High-Porosity Sandstone

    SciTech Connect

    Bezalel c. Haimson

    2005-06-10

    We investigated failure mechanisms around boreholes and the formation of borehole breakouts in high-porosity sandstone, with particular interest to grain-scale micromechanics of failure leading to the hitherto unrecognized fracture-like borehole breakouts and apparent compaction band formation in poorly consolidated granular materials. We also looked at a variety of drilling-related factors that contribute to the type, size and shape of borehole breakouts. The objective was to assess their effect on the ability to establish correlations between breakout geometry and in situ stress magnitudes, as well as on borehole stability prediction, and hydrocarbon/water extraction in general. We identified two classes of medium to high porosity (12-30%) sandstones, arkosic, consisting of 50-70% quartz and 15 to 50% feldspar, and quartz-rich sandstones, in which quartz grain contents varied from 90 to 100%. In arkose sandstones critical far-field stress magnitudes induced compressive failure around boreholes in the form of V-shaped (dog-eared) breakouts, the result of dilatant intra-and trans-granular microcracking subparallel to both the maximum horizontal far-field stress and to the borehole wall. On the other hand, boreholes in quartz-rich sandstones failed by developing fracture-like breakouts. These are long and very narrow (several grain diameters) tabular failure zones perpendicular to the maximum stress. Evidence provided mainly by SEM observations suggests a failure process initiated by localized grain-bond loosening along the least horizontal far-field stress springline, the packing of these grains into a lower porosity compaction band resembling those discovered in Navajo and Aztec sandstones, and the emptying of the loosened grains by the circulating drilling fluid starting from the borehole wall. Although the immediate several grain layers at the breakout tip often contain some cracked or even crushed grains, the failure mechanism enabled by the formation of the

  15. Impact performance characteristics and modeling failure mechanisms of pultruded glass-graphite/epoxy hybrid composite beams

    NASA Astrophysics Data System (ADS)

    Kowsika, Murthy V. S. L. N.

    In this study, investigation was performed to comprehend the influence of hybridization on the impact performance in terms of the energy absorption characteristics and delamination fracture toughness of pultruded uni-directional composite materials. In order to evaluate the improvements/changes in the impact performance as a result of hybridization, apart from considering mono-fiber reinforced all-graphite and all-glass composites, several types of sandwich hybrid composites comprising of both graphite as well as glass fibers were included in the investigation. By keeping a constant overall fiber content, the lay-up sequence and the volume fraction of each type of fiber are altered in these pultruded composites to determine the trend in the mechanical behavior as a result of hybridization. The response of pultruded all-graphite, all-glass and glass-graphite hybrid composites is evaluated under two different incident impact energy conditions. A high incident energy (HIE) and a low incident energy (LIE) of impact are chosen to cause either complete fracture or induce delamination, respectively, for assessing the energy absorption characteristics (crashworthiness) and delamination fracture toughness of these composites. Finite element modeling is performed under static as well as dynamic loading conditions to simulate the stress distribution and to predict the energy absorption behavior of composites. Progressive damage due to sequential ply failure was modeled by utilizing the failure strain data obtained from static and HTE impact tests for analyzing the post-initial ply failure characteristics of pultruded composites. Finite element modeling was also performed to simulate delamination crack propagation at various levels through the thickness. The strain energy release rate computed using the virtual crack closure technique was monitored to determine the likelihood of delamination crack propagation with increment in crack growth for the pultruded composites under

  16. Noninvasive Mechanical Ventilation in Acute Respiratory Failure Patients: A Respiratory Therapist Perspective

    PubMed Central

    Hidalgo, V; Giugliano-Jaramillo, C; Pérez, R; Cerpa, F; Budini, H; Cáceres, D; Gutiérrez, T; Molina, J; Keymer, J; Romero-Dapueto, C

    2015-01-01

    Physiotherapist in Chile and Respiratory Therapist worldwide are the professionals who are experts in respiratory care, in mechanical ventilation (MV), pathophysiology and connection and disconnection criteria. They should be experts in every aspect of the acute respiratory failure and its management, they and are the ones who in medical units are able to resolve doubts about ventilation and the setting of the ventilator. Noninvasive mechanical ventilation should be the first-line of treatment in acute respiratory failure, and the standard of care in severe exacerbations of chronic obstructive pulmonary disease, acute cardiogenic pulmonary edema, and in immunosuppressed patients with high levels of evidence that support the work of physiotherapist. Exist other considerations where most of the time, physicians and other professionals in the critical units do not take into account when checking the patient ventilator synchrony, such as the appropriate patient selection, ventilator selection, mask selection, mode selection, and the selection of a trained team in NIMV. The physiotherapist needs to evaluate bedside; if patients are properly connected to the ventilator and in a synchronously manner. In Chile, since 2004, the physioterapist are included in the guidelines as a professional resource in the ICU organization, with the same skills and obligations as those described in the literature for respiratory therapists. PMID:26312104

  17. Pathophysiological Basis of Acute Respiratory Failure on Non-Invasive Mechanical Ventilation.

    PubMed

    Romero-Dapueto, C; Budini, H; Cerpa, F; Caceres, D; Hidalgo, V; Gutiérrez, T; Keymer, J; Pérez, R; Molina, J; Giugliano-Jaramillo, C

    2015-01-01

    Noninvasive mechanical ventilation (NIMV) was created for patients who needed noninvasive ventilator support, this procedure decreases the complications associated with the use of endotracheal intubation (ETT). The application of NIMV has acquired major relevance in the last few years in the management of acute respiratory failure (ARF), in patients with hypoxemic and hypercapnic failure. The main advantage of NIMV as compared to invasive mechanical ventilation (IMV) is that it can be used earlier outside intensive care units (ICUs). The evidence strongly supports its use in patients with COPD exacerbation, support in weaning process in chronic obstructive pulmonary disease (COPD) patients, patients with acute cardiogenic pulmonary edema (ACPE), and Immunosuppressed patients. On the other hand, there is poor evidence that supports the use of NIMV in other pathologies such as pneumonia, acute respiratory distress syndrome (ARDS), and during procedures as bronchoscopy, where its use is still controversial because the results of these studies are inconclusive against the decrease in the rate of intubation or mortality.

  18. Noninvasive Mechanical Ventilation in Acute Respiratory Failure Patients: A Respiratory Therapist Perspective.

    PubMed

    Hidalgo, V; Giugliano-Jaramillo, C; Pérez, R; Cerpa, F; Budini, H; Cáceres, D; Gutiérrez, T; Molina, J; Keymer, J; Romero-Dapueto, C

    2015-01-01

    Physiotherapist in Chile and Respiratory Therapist worldwide are the professionals who are experts in respiratory care, in mechanical ventilation (MV), pathophysiology and connection and disconnection criteria. They should be experts in every aspect of the acute respiratory failure and its management, they and are the ones who in medical units are able to resolve doubts about ventilation and the setting of the ventilator. Noninvasive mechanical ventilation should be the first-line of treatment in acute respiratory failure, and the standard of care in severe exacerbations of chronic obstructive pulmonary disease, acute cardiogenic pulmonary edema, and in immunosuppressed patients with high levels of evidence that support the work of physiotherapist. Exist other considerations where most of the time, physicians and other professionals in the critical units do not take into account when checking the patient ventilator synchrony, such as the appropriate patient selection, ventilator selection, mask selection, mode selection, and the selection of a trained team in NIMV. The physiotherapist needs to evaluate bedside; if patients are properly connected to the ventilator and in a synchronously manner. In Chile, since 2004, the physioterapist are included in the guidelines as a professional resource in the ICU organization, with the same skills and obligations as those described in the literature for respiratory therapists.

  19. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure

    PubMed Central

    Torres, Ashley M.; Matheny, Jonathan B.; Keaveny, Tony M.; Taylor, David; Rimnac, Clare M.; Hernandez, Christopher J.

    2016-01-01

    Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure. PMID:26929343

  20. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  1. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2009-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation.

  2. Tensile Properties and Failure Mechanism of a New 3D Nonorthogonal Woven Composite Material

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sun, Jin; Cai, Deng'an; Zhou, Guangming

    2016-12-01

    Tensile properties and failure mechanism of a newly developed three-dimensional (3D) woven composite material named 3D nonorthogonal woven composite are investigated in this paper. The microstructure of the composite is studied and the tensile properties are obtained by quasi-static tensile tests. The failure mechanism of specimen is discussed based on observation of the fracture surfaces via electron microscope. It is found that the specimens always split along the oblique yarns and produce typical v-shaped fracture surfaces. The representative volume cell (RVC) is established based on the microstructure. A finite element analysis is conducted with periodical boundary conditions. The finite element simulation results agree well with the experimental data. By analyzing deformation and stress distribution under different loading conditions, it is demonstrated that finite element model based on RVC is valid in predicting tensile properties of 3D nonorthogonal woven composites. Stress distribution shows that the oblique yarns and warp yarns oriented along the x direction carry primary load under x tension and that warp yarns bear primary load under y tension.

  3. Pathophysiological Basis of Acute Respiratory Failure on Non-Invasive Mechanical Ventilation

    PubMed Central

    Romero-Dapueto, C; Budini, H; Cerpa, F; Caceres, D; Hidalgo, V; Gutiérrez, T; Keymer, J; Pérez, R; Molina, J; Giugliano-Jaramillo, C

    2015-01-01

    Noninvasive mechanical ventilation (NIMV) was created for patients who needed noninvasive ventilator support, this procedure decreases the complications associated with the use of endotracheal intubation (ETT). The application of NIMV has acquired major relevance in the last few years in the management of acute respiratory failure (ARF), in patients with hypoxemic and hypercapnic failure. The main advantage of NIMV as compared to invasive mechanical ventilation (IMV) is that it can be used earlier outside intensive care units (ICUs). The evidence strongly supports its use in patients with COPD exacerbation, support in weaning process in chronic obstructive pulmonary disease (COPD) patients, patients with acute cardiogenic pulmonary edema (ACPE), and Immunosuppressed patients. On the other hand, there is poor evidence that supports the use of NIMV in other pathologies such as pneumonia, acute respiratory distress syndrome (ARDS), and during procedures as bronchoscopy, where its use is still controversial because the results of these studies are inconclusive against the decrease in the rate of intubation or mortality. PMID:26312101

  4. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  5. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2011-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as specific spacecraft orientations in Low Earth Orbit (LEO) and low beta angle Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  6. Mechanical response and failure of High Performance Propellant (HPP) subject to uniaxial tension

    NASA Astrophysics Data System (ADS)

    Liu, C.; Thompson, D. G.

    2015-05-01

    As part of a program to characterize and understand the mechanical response and failure behavior of the High Performance Propellant (HPP), uniaxial tensile tests were conducted. The mechanical properties of the HPP solid propellant subject to tension are investigated as a function of both the loading (strain) rate and the temperature. The nominal strain rate varies from 10-6 to 10-2 s-1 and the temperature varies from -50 to 50 °C. Digital image correlation (DIC) technique was used to obtain the full field deformation measurement over the sample surface, from which both the axial strain and the circumferential strain were determined, and as a result, volume changes during the uniaxial tension were studied. Some of the material parameters, e.g., Young's modulus E, the tensile strength σ max, and uniaxial tensile strain at the maximum tensile stress ɛ max, were found to be extremely sensitive to both the strain rate and the temperature. It was also observed that during the linear portion of the uniaxial tension, the HPP is close to incompressible. But when deformation enters the nonlinear regime, volume change of the sample accelerates and such a significant volume increase during the nonlinear portion of the deformation can be attributed to the formation and extension of damage within the gage section, which lead to the macroscopic tearing failure of the material.

  7. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure.

    PubMed

    Torres, Ashley M; Matheny, Jonathan B; Keaveny, Tony M; Taylor, David; Rimnac, Clare M; Hernandez, Christopher J

    2016-03-15

    Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure.

  8. Mechanisms and clinical consequences of untreated central sleep apnea in heart failure.

    PubMed

    Costanzo, Maria Rosa; Khayat, Rami; Ponikowski, Piotr; Augostini, Ralph; Stellbrink, Christoph; Mianulli, Marcus; Abraham, William T

    2015-01-06

    Central sleep apnea (CSA) is a highly prevalent, though often unrecognized, comorbidity in patients with heart failure (HF). Data from HF population studies suggest that it may present in 30% to 50% of HF patients. CSA is recognized as an important contributor to the progression of HF and to HF-related morbidity and mortality. Over the past 2 decades, an expanding body of research has begun to shed light on the pathophysiologic mechanisms of CSA. Armed with this growing knowledge base, the sleep, respiratory, and cardiovascular research communities have been working to identify ways to treat CSA in HF with the ultimate goal of improving patient quality of life and clinical outcomes. In this paper, we examine the current state of knowledge about the mechanisms of CSA in HF and review emerging therapies for this disorder.

  9. A procedure for combining acoustically induced and mechanically induced loads (first passage failure design criterion)

    NASA Technical Reports Server (NTRS)

    Crowe, D. R.; Henricks, W.

    1983-01-01

    The combined load statistics are developed by taking the acoustically induced load to be a random population, assumed to be stationary. Each element of this ensemble of acoustically induced loads is assumed to have the same power spectral density (PSD), obtained previously from a random response analysis employing the given acoustic field in the STS cargo bay as a stationary random excitation. The mechanically induced load is treated as either (1) a known deterministic transient, or (2) a nonstationary random variable of known first and second statistical moments which vary with time. A method is then shown for determining the probability that the combined load would, at any time, have a value equal to or less than a certain level. Having obtained a statistical representation of how the acoustic and mechanical loads are expected to combine, an analytical approximation for defining design levels for these loads is presented using the First Passage failure criterion.

  10. IMPERMEABLE THIN AL2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2002-08-31

    In order to improve the hot corrosion resistance of conventional YSZ TBC system, the overlay of Al{sub 2}O{sub 3} coating was deposited on the TBC by EB-PVD techniques. Hot corrosion tests were carried out on the TBC with and without Al{sub 2}O{sub 3} coating in molten salts mixtures (Na{sub 2}SO{sub 4} + 5%V{sub 2}O{sub 5}) at 950 C for different time up to 100h. The microstructures of TBC and overlay before and after exposure were examined by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDX) and X-ray diffraction (XRD). It has been found that TBC will react with V{sub 2}O{sub 5} to form YVO{sub 4}. The amount of M-phase, which was formed due to the leaching of Y{sub 2}O{sub 3} from YSZ, was increased with corrosion time. Al{sub 2}O{sub 3} overlay coating deposited by EB-PVD was dense, continues and adherent to the TBC. As a result, overlay Al{sub 2}O{sub 3} coating can prevent the YSZ from the attack by molten salts containing vanadium and decrease the penetration of salts into the YSZ along porous and cracks in the YSZ TBC. The amount of M-phase formed in YSZ covered with an overlay Al{sub 2}O{sub 3} is substantially lower than that formed in conventional YSZ TBC, even after 100h exposure to the molten salts. In the next reporting period, the hot corrosion test of TBC with EB-PVD deposited Al{sub 2}O{sub 3} coating will be again performed. However before hot corrosion tests, the post-annealing will be carried out in vacuum (residual pressure 10 -3 Pa) at 1273K for 1h in order to transform the as-sputtered Al{sub 2}O{sub 3} overlay to crystalline {alpha}-Al{sub 2}O{sub 3} overlay. In addition, the effect of the thickness of overlay Al{sub 2}O{sub 3} on corrosion resistance will also be investigated.

  11. IMPERMEABLE THIN AL2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2003-12-16

    To improve the hot corrosion resistance of YSZ thermal barrier coatings, a 25 {micro}m and a 2 {micro}m thick Al{sub 2}O{sub 3} overlay were deposited by HVOF thermal spray and by sol-gel coating method, respectively, onto to the surface of YSZ coating. Indenter test was employed to investigate the spalling of YSZ with and without Al{sub 2}O{sub 3} overlay after hot corrosion. The results showed that Al{sub 2}O{sub 3} overlay acted as a barrier against the infiltration of the molten salt into the YSZ coating during exposure, thus significantly reduced the amount of M-phase of ZrO{sub 2} in YSZ coating. However, a thick Al{sub 2}O{sub 3} overlay was harmful for TBC by increasing compressive stress which causes crack and spalling of YSZ coating. As a result, a dense and thin Al{sub 2}O{sub 3} overlay is critical for simultaneously preventing YSZ from hot corrosion and spalling. In the next reporting period, we will measure or calculate the residue stress within Al{sub 2}O{sub 3} overlay and YSZ coating to study the mechanism of effect of Al{sub 2}O{sub 3} overlay on spalling of YSZ coating.

  12. Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses

    SciTech Connect

    Dong, Na; Zhu, Yongqun; Lu, Qiuhe; Hu, Liyan; Zheng, Yuqing; Shao, Feng

    2012-10-10

    Rab GTPases are frequent targets of vacuole-living bacterial pathogens for appropriate trafficking of the vacuole. Here we discover that bacterial effectors including VirA from nonvacuole Shigella flexneri and EspG from extracellular Enteropathogenic Escherichia coli (EPEC) harbor TBC-like dual-finger motifs and exhibits potent RabGAP activities. Specific inactivation of Rab1 by VirA/EspG disrupts ER-to-Golgi trafficking. S. flexneri intracellular persistence requires VirA TBC-like GAP activity that mediates bacterial escape from autophagy-mediated host defense. Rab1 inactivation by EspG severely blocks host secretory pathway, resulting in inhibited interleukin-8 secretion from infected cells. Crystal structures of VirA/EspG-Rab1-GDP-aluminum fluoride complexes highlight TBC-like catalytic role for the arginine and glutamine finger residues and reveal a 3D architecture distinct from that of the TBC domain. Structure of Arf6-EspG-Rab1 ternary complex illustrates a pathogenic signaling complex that rewires host Arf signaling to Rab1 inactivation. Structural distinctions of VirA/EspG further predict a possible extensive presence of TBC-like RabGAP effectors in counteracting various host defenses.

  13. A novel intrinsic analgesic mechanism: the enhancement of the conduction failure along polymodal nociceptive C-fibers

    PubMed Central

    Wang, Xiuchao; Wang, Shan; Wang, Wenting; Duan, Jianhong; Zhang, Ming; Lv, Xiaohua; Niu, Chunxiao; Tan, Chao; Wu, Yuanbin; Yang, Jing; Hu, Sanjue; Xing, Junling

    2016-01-01

    Abstract Although conduction failure has been observed in nociceptive C-fibers, little is known regarding its significance or therapeutic potential. In a previous study, we demonstrated that C-fiber conduction failure, which is regarded as an intrinsic self-inhibition mechanism, was reduced in circumstances of painful diabetic neuropathy. In this study, we extend this finding in the complete Freund's adjuvant model of inflammatory pain and validate that the degree of conduction failure decreased and led to a greater amount of pain signals conveyed to the central nervous system. In complete Freund's adjuvant–injected animals, conduction failure occurred in a C-fiber-selective, activity-dependent manner and was associated with an increase in the rising slope of the C-fiber after-hyperpolarization potential. To target conduction failure in a therapeutic modality, we used ZD7288, an antagonist of hyperpolarization-activated, cyclic nucleotide–modulated channels which are activated by hyperpolarization and play a pivotal role in both inflammatory and neuropathic pain. ZD7288 promoted conduction failure by suppressing Ih as a mechanism to reduce the rising slope of the after-hyperpolarization potential. Moreover, perineuronal injection of ZD7288 inhibited abnormal mechanical allodynia and thermal hyperalgesia without affecting motor function or heart rate. Our data highlight the analgesic potential of local ZD7288 application and identify conduction failure as a novel target for analgesic therapeutic development. PMID:27583680

  14. A novel intrinsic analgesic mechanism: the enhancement of the conduction failure along polymodal nociceptive C-fibers.

    PubMed

    Wang, Xiuchao; Wang, Shan; Wang, Wenting; Duan, Jianhong; Zhang, Ming; Lv, Xiaohua; Niu, Chunxiao; Tan, Chao; Wu, Yuanbin; Yang, Jing; Hu, Sanjue; Xing, Junling

    2016-10-01

    Although conduction failure has been observed in nociceptive C-fibers, little is known regarding its significance or therapeutic potential. In a previous study, we demonstrated that C-fiber conduction failure, which is regarded as an intrinsic self-inhibition mechanism, was reduced in circumstances of painful diabetic neuropathy. In this study, we extend this finding in the complete Freund's adjuvant model of inflammatory pain and validate that the degree of conduction failure decreased and led to a greater amount of pain signals conveyed to the central nervous system. In complete Freund's adjuvant-injected animals, conduction failure occurred in a C-fiber-selective, activity-dependent manner and was associated with an increase in the rising slope of the C-fiber after-hyperpolarization potential. To target conduction failure in a therapeutic modality, we used ZD7288, an antagonist of hyperpolarization-activated, cyclic nucleotide-modulated channels which are activated by hyperpolarization and play a pivotal role in both inflammatory and neuropathic pain. ZD7288 promoted conduction failure by suppressing Ih as a mechanism to reduce the rising slope of the after-hyperpolarization potential. Moreover, perineuronal injection of ZD7288 inhibited abnormal mechanical allodynia and thermal hyperalgesia without affecting motor function or heart rate. Our data highlight the analgesic potential of local ZD7288 application and identify conduction failure as a novel target for analgesic therapeutic development.

  15. How can health literacy influence outcomes in heart failure patients? Mechanisms and interventions.

    PubMed

    Westlake, Cheryl; Sethares, Kristen; Davidson, Patricia

    2013-09-01

    Health literacy is discussed in papers from 25 countries where findings suggest that approximately a third up to one half of the people in developed countries have low health literacy. Specifically, health literacy is the mechanism by which individuals obtain and use health information to make health decisions about individual treatments in the home, access care in the community, promote provider-patient interactions, structure self-care, and navigate health care programs both locally and nationally. Further, health literacy is a key determinant of health and a critical dimension for assessing individuals' needs, and, importantly, their capacity for self-care. Poorer health knowledge/status, more medication errors, costs, and higher rates of morbidity, readmissions, emergency room visits, and mortality among patients with health illiteracy have been demonstrated. Individuals at high risk for low health literacy include the elderly, disabled, Blacks, those with a poverty-level income, some or less high school education, either no insurance or Medicare or Medicaid, and those for whom English is a second language. As a consequence, health literacy is a complex, multifaceted, and evolving construct including aspects of social, psychological, cultural and economic circumstances. The purpose of this paper is to describe the mechanisms and consequences of health illiteracy. Specifically, the prevalence, associated demographics, and models of health literacy are described. The mechanism of health illiteracy's influence on outcomes in heart failure is proposed. Tools for health literacy assessment are described and compared. Finally, the health outcomes and general interventions to enhance the health outcomes in heart failure are discussed.

  16. Impact of mechanical- and maintenance-induced failures of main reactor coolant pump seals on plant safety

    SciTech Connect

    Azarm, M A; Boccio, J L; Mitra, S

    1985-12-01

    This document presents an investigation of the safety impact resulting from mechanical- and maintenance-induced reactor coolant pump (RCP) seal failures in nuclear power plants. A data survey of the pump seal failures for existing nuclear power plants in the US from several available sources was performed. The annual frequency of pump seal failures in a nuclear power plant was estimated based on the concept of hazard rate and dependency evaluation. The conditional probability of various sizes of leak rates given seal failures was then evaluated. The safety impact of RCP seal failures, in terms of contribution to plant core-melt frequency, was also evaluated for three nuclear power plants. For leak rates below the normal makeup capacity and the impact of plant safety were discussed qualitatively, whereas for leak rates beyond the normal make up capacity, formal PRA methodologies were applied. 22 refs., 17 figs., 19 tabs.

  17. Probing the intrinsic failure mechanism of fluorinated amorphous carbon film based on the first-principles calculations

    PubMed Central

    Zhang, Ren-hui; Wang, Li-ping; Lu, Zhi-bin

    2015-01-01

    Fluorinated amorphous carbon films exhibit superlow friction under vacuum, but are prone to catastrophic failure. Thus far, the intrinsic failure mechanism remains unclear. A prevailing view is that the failure of amorphous carbon film results from the plastic deformation of substrates or strong adhesion between two contacted surfaces. In this paper, using first-principles and molecular dynamics methodology, combining with compressive stress-strain relation, we firstly demonstrate that the plastic deformation induces graphitization resulting in strong adhesion between two contacted surfaces under vacuum, which directly corresponds to the cause of the failure of the films. In addition, sliding contact experiments are conducted to study tribological properties of iron and fluorinated amorphous carbon surfaces under vacuum. The results show that the failure of the film is directly attributed to strong adhesion resulting from high degree of graphitization of the film, which are consistent with the calculated results. PMID:25803202

  18. Failure mechanisms of air entrainment in drop impact on lubricated surfaces.

    PubMed

    Pack, M; Hu, H; Kim, D; Zheng, Z; Stone, H A; Sun, Y

    2017-03-22

    Lubricated surfaces have recently been introduced and studied due to their potential benefit in various configurations and applications. Combining the techniques of total internal reflection microscopy and reflection interference microscopy, we examine the dynamics of an underlying air film upon drop impact on a lubricated substrate where the thin liquid film is immiscible to the drop. In contrast to drop impact on solid surfaces where even the smallest asperities cause random breakup of the entraining air film, we report two air film failure mechanisms on lubricated surfaces. In particular, using ≈5 μm thick liquid films of high viscosity, which should make the substrate nearly atomically smooth, we show that air film rupture shifts from asperity-driven to a controlled event. At low Weber numbers (We < 2, We = ρlU0(2)R/σ, U0 the impact velocity, R the drop radius, and ρl the density and σ the surface tension of the droplet) the droplet bounces. At intermediate We (2 < We < 10), the air film fails at the center as the top surface of the drop crashes downward owing to impact-induced capillary waves; the resulting liquid-liquid contact time is found to be independent of We. In contrast, at high We (We > 10), the air film failure occurs much earlier in time at the first inflection point of the air film shape away from the drop center, where the liquid-liquid van der Waals interactions become important. The predictable failure modes of the air film upon drop impact sheds light on droplet deposition in applications such as lubricant-infused self-cleaning surfaces.

  19. Failure analysis of porcupine quills under axial compression reveals their mechanical response during buckling.

    PubMed

    Torres, Fernando G; Troncoso, Omar P; Diaz, John; Arce, Diego

    2014-11-01

    Porcupine quills are natural structures formed by a thin walled conical shell and an inner foam core. Axial compression tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR) were all used to compare the characteristics and mechanical properties of porcupine quills with and without core. The failure mechanisms that occur during buckling were analyzed by scanning electron microscopy (SEM), and it was found that delamination buckling is mostly responsible for the decrease in the measured buckling stress of the quills with regard to predicted theoretical values. Our analysis also confirmed that the foam core works as an energy dissipater improving the mechanical response of an empty cylindrical shell, retarding the onset of buckling as well as producing a step wise decrease in force after buckling, instead of an instantaneous decrease in force typical for specimens without core. Cell collapse and cell densification in the inner foam core were identified as the key mechanisms that allow for energy absorption during buckling.

  20. False-negative BD MGIT™ TBc Identification Test results in routine tuberculosis diagnosis: a New Zealand perspective.

    PubMed

    Basu, I; Bower, J E; Henderson, G K; Lowe, O; Newton, S; Vaughan, R; Roberts, S A

    2015-09-01

    >We previously reported on a comparison of the AccuProbe(®) Gen-Probe(®) MTBC assay (AccuProbe) (BioMérieux, Marcy L'Etoile, France) with the Becton Dickinson (BD) MGIT™ TBc Identification (TBc) Test (BD, Franklin Lakes, NJ, USA) in our laboratory. In the period following the shift from the AccuProbe assay to the TBc test, we obtained six false-negative results. On sequencing the mpt64 gene, we found that these false-negative cases had mutations in the mpt64 gene due to deletion, insertion or substitution. Despite the occurrence of false-negative results, we found that the reduced cost and minimal technical expertise, combined with a new testing algorithm, still make this test the preferred option for rapidly identifying Mycobacterium tuberculosis complex in MGIT cultures in a low TB burden country such as New Zealand.

  1. Failure of fluid-saturated granular materials: a unified approach to capture diffuse and localized instability mechanisms

    NASA Astrophysics Data System (ADS)

    Mihalache, Constance; Buscarnera, Giuseppe

    2013-04-01

    Granular materials are susceptible to a wide variety of failure and deformation mechanisms, especially because of their interaction with the pore fluids and the surrounding environment. An adequate modeling of their mechanical response is therefore essential for understanding a number of geological processes, such as the onset of rapid landslides, hillslope denudation and sediment transport, or even the mechanics of fault gauges. Depending on the type of material, the groundwater conditions and the surrounding kinematic constraints, both diffuse and localized mechanisms are possible, and these may occur under either drained or undrained conditions. In the geomechanics literature, failure modes are usually explained and modeled with the tools of continuum mechanics, such as the mathematical theory of plasticity. Due to the complexity of granular material behavior, however, most classical models for frictional strength are unable to capture the variety of instability mechanisms observed for such class of geomaterials (e.g., liquefaction, shear banding, etc.). Sophisticated strain-hardening plasticity models are therefore required for numerical modeling purposes, thus making the evaluation of critical failure conditions less straightforward than in perfect plasticity theories. Here we propose a mathematical strategy that can be adapted to any elastoplastic model and allows the onset of failure in elastoplastic geomaterials to be expressed in a more general manner. More specifically, our theory expresses the failure conditions as a function of local kinematics and solid-fluid interactions. The stability criterion used in this study is based on the so-called stability modulus, a scalar index of failure that was formulated by linking the physical concept controllability to the mathematical notion of plastic admissibility upon an incremental loading path [Buscarnera et al, 2011]. In this contribution, different loading constraints are considered, accounting for the

  2. Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors.

    PubMed

    Bazant, Zdenĕk P; Pang, Sze-Dai

    2006-06-20

    In mechanical design as well as protection from various natural hazards, one must ensure an extremely low failure probability such as 10(-6). How to achieve that goal is adequately understood only for the limiting cases of brittle or ductile structures. Here we present a theory to do that for the transitional class of quasibrittle structures, having brittle constituents and characterized by nonnegligible size of material inhomogeneities. We show that the probability distribution of strength of the representative volume element of material is governed by the Maxwell-Boltzmann distribution of atomic energies and the stress dependence of activation energy barriers; that it is statistically modeled by a hierarchy of series and parallel couplings; and that it consists of a broad Gaussian core having a grafted far-left power-law tail with zero threshold and amplitude depending on temperature and load duration. With increasing structure size, the Gaussian core shrinks and Weibull tail expands according to the weakest-link model for a finite chain of representative volume elements. The model captures experimentally observed deviations of the strength distribution from Weibull distribution and of the mean strength scaling law from a power law. These deviations can be exploited for verification and calibration. The proposed theory will increase the safety of concrete structures, composite parts of aircraft or ships, microelectronic components, microelectromechanical systems, prosthetic devices, etc. It also will improve protection against hazards such as landslides, avalanches, ice breaks, and rock or soil failures.

  3. Failure mechanics in low-velocity impacts on thin composite plates

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1983-01-01

    Eight-ply quasi-isotropic composite plates of Thornel 300 graphite in Narmco 5208 epoxy resin (T300/5208) were tested to establish the degree of equivalence between low-velocity impact and static testing. Both the deformation and failure mechanics under impact were representable by static indentation tests. Under low-velocity impacts such as tool drops, the dominant deformation mode of the plates was the first, or static, mode. Higher modes are excited on contact, but they decay significantly by the time the first-mode load reaches a maximum. The delamination patterns were observed by X-ray analysis. The areas of maximum delamination patterns were observed by X-ray analysis. The areas of maximum delamination coincided with the areas of highest peel stresses. The extent of delamination was similar for static and impact tests. Fiber failure damage was established by tensile tests on small fiber bundles obtained by deplying test specimens. The onset of fiber damage was in internal plies near the lower surface of the plates. The distribution and amount of fiber damage was similar fo impact and static tests.

  4. Bypass balloon pumping: a newly developed device for mechanical circulatory support in heart failure.

    PubMed

    Hoshino, M; Asakura, T; Yasuura, K; Ogawa, Y; Okamoto, H; Matsuura, A

    2003-02-01

    Various types of assist devices have been developed for severe heart failures. Among them, intra-aortic balloon pumping (IABP) has achieved popularity, mainly in the treatment of patients with either severe cardiac infarction or low cardiac output syndrome (LOS) after open-heart surgery. However, IABP has a limitation in that although it acts as a pressure support, it cannot directly support flow volume. In cases of severe pump failure, stronger pump support would be required. However, there is a limit in the clinical use of temporary mechanical support using a pump because of the costs of the expensive equipment. With this in mind, we came up with a new idea in which the motion of a balloon in IABP system is converted into a power source for creating a one-way stream. In order to realize our idea, we made a J-shaped sample model of pulsating chamber incorporating two ball valves. In the hydrodynamic experiment using our new device, flows over 2500 ml/min (Max. 3475 ml/min) were obtained. The percent changes in parameters such as TTI, DPTI and bypass flows obtained by the experiment of left ventricular bypass have demonstrated that our assist system is effective for reducing cardiac work.

  5. Graphene coating for anti-corrosion and the investigation of failure mechanism

    NASA Astrophysics Data System (ADS)

    Zhu, Y. X.; Duan, C. Y.; Liu, H. Y.; Chen, Y. F.; Wang, Y.

    2017-03-01

    Graphene produced by chemical vapor deposition (CVD) methods has been considered as a promising corrosion prevention layer because of its exceptional structure and impermeability. However, the anti-corrosion performance and the failure mechanism are still controversial. In this study, graphene layers with different quality levels, crystallite sizes, and layer numbers were prepared on the surface of Cu by a CVD process. The effects of grain boundaries (GBs) on the failure of graphene layers to provide adequate protection were investigated in detail by combining graphene transfer techniques, computation, and anti-corrosion measurements. Our results reveal that corrosion rates decrease marginally upon the increase of graphene layer number, and this rather weak dependence on thickness likely arises from the aligned nature of the GBs in CVD-grown few-layer graphene. This problem can potentially be overcome by layer-by-layer graphene transfer technique, in which corrosion is found to be arrested locally when transferred graphene is present on top of the as-grown graphene. However, this advantage is not reflected in corrosion studies performed on large-scale samples, where cracks or imperfect interfaces could offset the advantages of GB misalignment. With improvements in technology, the layer-by-layer assembly technique could be used to develop an effective anti-corrosion barrier.

  6. Linking Seismicity at Depth to the Mechanics of a Lava Dome Failure - a Forecasting Approach

    NASA Astrophysics Data System (ADS)

    Salvage, R. O.; Neuberg, J. W.; Murphy, W.

    2014-12-01

    Soufriere Hills volcano (SHV), Montserrat has been in a state of ongoing unrest since 1995. Prior to eruptions, an increase in the number of seismic events has been observed. We use the Material Failure Law (MFL) (Voight, 1988) to investigate how an accelerating number of low frequency seismic events are related to the timing of a large scale dome collapse in June 1997. We show that although the forecasted timing of a dome collapse may coincide with the known timing, the accuracy of the application of the MFL to the data is poor. Using a cross correlation technique we show how characterising seismicity into similar waveform "families'' allows us to focus on a single process at depth and improve the reliability of our forecast. A number of families are investigated to assess their relative importance. We show that despite the timing of a forecasted dome collapse ranging between several hours of the known timing of collapse, each of the families produces a better forecast in terms of fit to the seismic acceleration data than when using all low frequency seismicity. In addition, we investigate the stability of such families between major dome collapses (1997 and 2003), assessing their potential for use in real-time forecasting. Initial application of Grey's Incidence Analysis suggests that a key parameter influencing the potential for a large scale slumping on the dome of SHV is the rate of low frequency seismicity associated with magma movement and dome growth. We undertook numerical modelling of an andesitic dome with a hydrothermally altered layer down to 800m. The geometry of the dome is based on SHV prior to the collapse of 2003. We show that a critical instability is reached once slope angles exceed 25°, corresponding to a summit height of just over 1100m a.s.l.. The geometry of failure is in close agreement with the identified failure plane suggesting that the input mechanical properties are broadly consistent with reality. We are therefore able to compare

  7. Failure Mechanisms and Life Prediction of Thermal and Environmental Barrier Coatings under Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zju, Dongming; Ghosn, Louis J.; Miller, Robert A.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux conditions is not well understood. In this paper, a laser heat flux technique is used to investigate the coating delamination crack propagation under realistic temperature-stress gradients and thermal cyclic conditions. The coating delamination mechanisms are investigated under various thermal loading conditions, and are correlated with coating dynamic fatigue, sintering and interfacial adhesion test results. A coating life prediction framework may be realized by examining the crack initiation and propagation driving forces for coating failure under high-heat-flux test conditions.

  8. Investigation of Bonded Jacket Cable Insulation Failure Mechanisms: HELB Environment Results

    SciTech Connect

    L. Duncan

    2002-11-01

    When overaged from thermal or radiation environments, composite insulation composed of a layer of ethylene propylene rubber (EPR) covered with a bonded layer of chlorosulfonated polyethylene (CSPE[Hypalon]) can crack if subjected to steam environments associated with loss-of-coolant accidents (LOCAs). The work described in this report evaluated the effects of a lesser accident, a high-energy line break (HELB), on the aged insulating materials. The object of the test was to determine if the same cracking concerns exist for the less severe HELB environment. The work is based on the use of aged specimens that were prepared under the test program described in EPRI report Investigation of Bonded Jacket Cable Insulation Failure Mechanisms (1001002).

  9. The effect of obesity on mechanical failure after total knee arthroplasty

    PubMed Central

    Fessy, Michel-Henri

    2015-01-01

    “Increased aseptic tibial failures in patients with a BMI ≥35 and well-aligned total knee arthroplasties” published in The Journal of Arthroplasty on July 2, 2015 draws the conclusion that the risk of revision total knee arthroplasties (TKA) due to aseptic tibial component loosening is two times greater in patients with a BMI ≥35 kg/m2, independent of age or limb alignment. This result confirms that obese patients are at a higher risk of mechanical complications after performing TKA, independently from the risk of infection. This study suggests that the management of obese patients for TKA must be meticulous, careful, and should inspire from great bone deformations in valgus of varus when choosing implants. PMID:26697470

  10. An experimental study of the mechanism of failure of rocks under borehole jack loading

    NASA Technical Reports Server (NTRS)

    Van, T. K.; Goodman, R. E.

    1971-01-01

    Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.

  11. Acute respiratory failure and mechanical ventilation in pregnant patient: A narrative review of literature

    PubMed Central

    Bhatia, Pradeep Kumar; Biyani, Ghansham; Mohammed, Sadik; Sethi, Priyanka; Bihani, Pooja

    2016-01-01

    Physiological changes of pregnancy imposes higher risk of acute respiratory failure (ARF) with even a slight insult and remains an important cause of maternal and fetal morbidity and mortality. Although pregnant women have different respiratory physiology and different causes of ARF, guidelines specific to ventilatory settings, goals of oxygenation and weaning process could not be framed due to lack of large-scale randomized controlled trials. During the 2009 H1N1 pandemic, pregnant women had higher morbidity and mortality compared to nonpregnant women. During this period, alternative strategies of ventilation such as high-frequency oscillatory ventilation, inhalational of nitric oxide, prone positioning, and extra corporeal membrane oxygenation were increasingly used as a desperate measure to rescue pregnant patients with severe hypoxemia who were not improving with conventional mechanical ventilation. This article highlights the causes of ARF and recent advances in invasive, noninvasive and alternative strategies of ventilation used during pregnancy. PMID:28096571

  12. Assessing cell fusion and cytokinesis failure as mechanisms of clone 9 hepatocyte multinucleation in vitro.

    PubMed

    Simic, Damir; Euler, Catherine; Thurby, Christina; Peden, Mike; Tannehill-Gregg, Sarah; Bunch, Todd; Sanderson, Thomas; Van Vleet, Terry

    2012-08-01

    In this in vitro model of hepatocyte multinucleation, separate cultures of rat Clone 9 cells are labeled with either red or green cell tracker dyes (Red Cell Tracker CMPTX or Vybrant CFDA SE Cell Tracer), plated together in mixed-color colonies, and treated with positive or negative control agents for 4 days. The fluorescent dyes become cell-impermeant after entering cells and are not transferred to adjacent cells in a population, but are inherited by daughter cells after fusion. The mixed-color cultures are then evaluated microscopically for multinucleation and analysis of the underlying mechanism (cell fusion/cytokinesis). Multinucleated cells containing only one dye have undergone cytokinesis failure, whereas dual-labeled multinucleated cells have resulted from fusion.

  13. Cognitive Mechanisms in Chronic Tinnitus: Psychological Markers of a Failure to Switch Attention

    PubMed Central

    Trevis, Krysta J.; McLachlan, Neil M.; Wilson, Sarah J.

    2016-01-01

    The cognitive mechanisms underpinning chronic tinnitus (CT; phantom auditory perceptions) are underexplored but may reflect a failure to switch attention away from a tinnitus sound. Here, we investigated a range of components that influence the ability to switch attention, including cognitive control, inhibition, working memory and mood, on the presence and severity of CT. Our participants with tinnitus showed significant impairments in cognitive control and inhibition as well as lower levels of emotional well-being, compared to healthy-hearing participants. Moreover, the subjective cognitive complaints of tinnitus participants correlated with their emotional well-being whereas complaints in healthy participants correlated with objective cognitive functioning. Combined, cognitive control and depressive symptoms correctly classified 67% of participants. These results demonstrate the core role of cognition in CT. They also provide the foundations for a neurocognitive account of the maintenance of tinnitus, involving impaired interactions between the neurocognitive networks underpinning attention-switching and mood. PMID:27605920

  14. Comparative Role of Disc Degeneration and Ligament Failure on Functional Mechanics of the Lumbar Spine

    PubMed Central

    Ellingson, Arin M.; Shaw, Miranda N.; Giambini, Hugo; An, Kai-Nan

    2015-01-01

    Understanding spinal kinematics is essential for distinguishing between pathological conditions of spine disorders, which ultimately lead to low back pain. It’s of high importance to understand how changes in mechanical properties affect the response of the lumbar spine, specifically in an effort to differentiate those associated with disc degeneration from ligamentous changes, allowing for more precise treatment strategies. To do this the goals of this study were twofold: 1) develop and validate a finite element (FE) model of the lumbar spine and 2) systematically alter the properties of the intervertebral disc and ligaments to define respective roles in functional mechanics. A three-dimensional non-linear FE model of the lumbar spine (L3-Sacrum) was developed and validated for pure moment bending. Disc degeneration and sequential ligament failure was modeled. Intersegmental range of motion (ROM) and bending stiffness was measured. The prediction of the FE model to moment loading in all three planes of bending showed very good agreement, where global and intersegmental ROM and bending stiffness of the model fell within one standard deviation of the in vitro results. Degeneration decreased ROM for all directions. Stiffness increased for all directions except axial rotation, where it initially increased then decreased for moderate and severe degeneration, respectively. Incremental ligament failure produced increased ROM and decreased stiffness. This effect was much more pronounced for all directions except lateral bending, which is minimally impacted by ligaments. These results indicate that lateral bending may be more apt to detect the subtle changes associated with degeneration, without being masked by associated changes of surrounding stabilizing structures. PMID:26404463

  15. Deglacial temperature patterns in the Arabian Sea and mechanisms for Indian monsoon failure

    NASA Astrophysics Data System (ADS)

    Tierney, J. E.; Pausata, F. S. R.; deMenocal, P. B.

    2015-12-01

    Both paleoclimate data and climate model simulations demonstrate that the Indian monsoon system responds to remote coolings in the North Atlantic. The textbook examples are the stadial events associated with the last deglaciation — the Younger Dryas and Heinrich Stadial 1 — when the monsoon weakened dramatically and caused drying throughout the Indian Ocean rim. The mechanism by which the North Atlantic influences the monsoon system is not completely clear: locally cool SSTs, increases in continental albedo, and southward migration of the intertropical convergence zone have all been raised as possibilities. Here we synthesize biomarker and foraminiferal estimates of temperature to study the evolution of the Arabian Sea water column during the deglaciation and test hypotheses of monsoon failure during stadials. Alkenone and Mg/Ca data clearly indicate that the Arabian Sea cools during the YD and H1, although H1 cooling is partly obscured by the overall warming trend associated with orbital forcing and rising greenhouse gases. In contrast, TEX86 data record warmings during the YD and H1. The stark difference between the TEX86 response and the alkenone and foraminiferal data, as well as comparison with climate model simulations, indicates that TEX86 is most likely acting as a subsurface temperature proxy in the Arabian Sea over these timescales. Taken together, the paleoclimate data describe a pattern of surface cooling and subsurface warming in response to North Atlantic cooling. This oceanographic response is in excellent agreement with both timeslice and transient model simulations spanning the last deglaciation, and strongly supports the hypothesis that locally cool SSTs are a requisite for monsoon failure. Furthermore, subsurface warming causes a destratification of the Arabian Sea water column and provides a mechanism for previously observed reductions in productivity during stadial events.

  16. Mechanisms of improvement of respiratory failure in patients with COPD treated with NIV

    PubMed Central

    Nickol, Annabel H; Hart, Nicholas; Hopkinson, Nicholas S; Hamnegård, Carl-Hugo; Moxham, John; Simonds, Anita; Polkey, Michael I

    2008-01-01

    Background Noninvasive ventilation (NIV) improves gas-exchange and symptoms in selected chronic obstructive pulmonary disease (COPD) patients with hypercapnic respiratory failure. We hypothesized NIV reverses respiratory failure by one or all of increased ventilatory response to carbon-dioxide, reduced respiratory muscle fatigue, or improved pulmonary mechanics. Methods Nineteen stable COPD patients (forced expiratory volume in one second 35% predicted) were studied at baseline (D0), 5–8 days (D5) and 3 months (3M) after starting NIV. Results Ventilator use was 6.2 (3.7) hours per night at D5 and 3.4 (1.6) at 3M (p = 0.12). Mean (SD) daytime arterial carbon-dioxide tension (PaCO2) was reduced from 7.4 (1.2) kPa to 7.0 (1.1) kPa at D5 and 6.5 (1.1) kPa at 3M (p = 0.001). Total lung capacity decreased from 107 (28) % predicted to 103 (28) at D5 and 103 (27) % predicted at 3M (p = 0.035). At D5 there was an increase in the hypercapnic ventilatory response and some volitional measures of inspiratory and expiratory muscle strength, but not isolated diaphragmatic strength whether assessed by volitional or nonvolitional methods. Conclusion These findings suggest decreased gas trapping and increased ventilatory sensitivity to CO2 are the principal mechanism underlying improvements in gas-exchange in patients with COPD following NIV. Changes in some volitional but not nonvolitional muscle strength measures may reflect improved patient effort. PMID:18990974

  17. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries.

    PubMed

    Shi, Feifei; Song, Zhichao; Ross, Philip N; Somorjai, Gabor A; Ritchie, Robert O; Komvopoulos, Kyriakos

    2016-06-14

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  18. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  19. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    NASA Astrophysics Data System (ADS)

    Xia, Kang; Zhan, Haifei; Hu, De’An; Gu, Yuantong

    2016-09-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.

  20. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile.

    PubMed

    Xia, Kang; Zhan, Haifei; Hu, De'an; Gu, Yuantong

    2016-09-13

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.

  1. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    PubMed Central

    Xia, Kang; Zhan, Haifei; Hu, De’an; Gu, Yuantong

    2016-01-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft. PMID:27618989

  2. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    PubMed Central

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  3. Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets

    PubMed Central

    Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2016-01-01

    Hybrid graphene/h-BN sheet has been fabricated recently and verified to possess unusual physical properties. During the growth process, defects such as vacancies are unavoidably present at the interface between graphene and h-BN. In the present work, typical vacancy defects, which were located at the interface between graphene and h-BN, were studied by density functional theory. The interface structure, mechanical and electronic properties, and failure behavior of the hybrid graphene/h-BN sheet were investigated and compared. The results showed that the formation energy of the defective graphene/h-BN interface basically increased with increasing inflection angles. However, Young’s modulus for all graphene/h-BN systems studied decreased with the increase in inflection angles. The intrinsic strength of the hybrid graphene/h-BN sheets was affected not only by the inflection angles, but also by the type of interface connection and the type of defects. The energy band structure of the hybrid interface could be tuned by applying mechanical strain to the systems. These results demonstrated that vacancies introduced significant effects on the mechanical and electronic properties of the hybrid graphene/h-BN sheet. PMID:27527371

  4. Edema mechanisms in the patient with heart failure and treatment options.

    PubMed

    Sica, Domenic A

    2008-10-01

    Volume overload is a common accompanying feature of heart failure. The mechanistic basis for volume overload in heart failure is incompletely worked out. An important component of heart failure treatment remains diuretic therapy. Diuretic dosing remains as much an art as a science with multiple environmental and disease state-related factors influencing the efficiency with which a diuretic works. In heart failure, diuretics should always be given in the lowest possible dose with careful attention to reducing dietary sodium intake.

  5. Failure of Polyethelene Insert Locking Mechanism after a Posterior Stabilised Total Knee Arthroplasty- A Case Report

    PubMed Central

    Reddy, AY Gurava; Rajan, D Soundar; Chiranjeevi, T; Karthik, C; Kiran, E Krishna

    2016-01-01

    Introduction: Disengagement of polyethylene insert used in total knee arthroplasty is a rare but serious complication. Still rarer is disengagement because of failure of tibial insert locking mechanism. We report a previously unpublished complication of polyethylene insert locking mechanism failure in a 10-months-old posterior stabilized total knee arthroplasty in a 70-year-old woman with osteoarthritis for whom Attune (Depuy) knee implant was used. Case Presentation: A 70-year-old female underwent (Attune, Depuy) primary bilateral posterior stabilised total knee arthroplasty in a private hospital. The patient did not have any complaints and had had been functioning well post her arthroplasty. After five months of surgery she had a fall and sustained injury over right hip which was treated with Cemented Bipolar Hemiarthroplasty. Ten months after index surgery, she sustained trivial fall and presented to the same hospital with knee pain and swelling, where the right knee prosthesis was found to be dislocated. An attempted closed reduction under anaesthesia failed, after which she was referred to our centre with an unstable, painful, swollen right knee in a long knee brace. The physical examination at the time of admission showed posterior sag of the tibia, fullness in the postero-lateral corner, quadriceps muscle atrophy without any neurovascular deficit oflower leg. Postero-lateral dislocation was confirmed with radiographs. Surgical error as a possible causative factor was excluded because patient had been functioning well after surgery. Her comorbidities included hypertension and hyponatremia. ESR and CRP were within normal limits. An open reduction surgery was planned. On exposure, polyethylene was found in the postero-lateral corner of the knee. We were not sure that revising the polyethylene alone would suffice as the poly and locking mechanism was of a relatively new design and hence it was decided to proceed with revision of the components. Revision was done

  6. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research.

    PubMed

    Murphy, M M

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.

  7. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    PubMed Central

    2015-01-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926

  8. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    NASA Astrophysics Data System (ADS)

    Murphy, M. M.

    2016-02-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.

  9. Changes of Respiratory Mechanics in COPD Patients from Stable State to Acute Exacerbations with Respiratory Failure.

    PubMed

    Ceriana, Piero; Vitacca, Michele; Carlucci, Annalisa; Paneroni, Mara; Pisani, Lara; Nava, Stefano

    2017-04-01

    Symptoms, clinical course, functional and biological data during an exacerbation of chronic obstructive pulmonary disease (EXCOPD) have been investigated, but data on physiological changes of respiratory mechanics during a severe exacerbation with respiratory acidosis requiring noninvasive mechanical ventilation (NIMV) are scant. The aim of this study was to evaluate changes of respiratory mechanics in COPD patients comparing data observed during EXCOPD with those observed during stable state in the recovery phase. In 18 COPD patients having severe EXCOPD requiring NIMV for global respiratory failure, we measured respiratory mechanics during both EXCOPD (T0) and once the patients achieved a stable state (T1). The diaphragm and inspiratory muscles effort was significantly increased under relapse, as well as the pressure-time product of the diaphragm and the inspiratory muscle (PTPdi and PTPes). The resistive loads to breathe (i.e., PEEPi,dyn, compliance and inspiratory resistances) were also markedly increased, while the maximal pressures generated by the diaphragm and the inspiratory muscles, together with forced expired volumes were decreased. All these indices statistically improved but with a great intrasubject variability in stable condition. Moreover, tension-time index (TTdi) significantly improved from the EXCOPD state to the condition of clinical stability (0.156 ± 0.04 at T0 vs. 0.082 ± 0.02 at T1 p < 0.001). During an EXCOPD, the load/capacity of the respiratory pump is impaired, and although the patients exhibit a rapid shallow breathing pattern, this does not necessarily correlate with a TTdi ≥ 0.15. These changes are reverted once they recover from the EXCOPD, despite a large variability between patients.

  10. Interferometry of AlN-based microcantilevers to determine the material properties and failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gorecki, Christophe; Krupa, Katarzyna; Józwik, Michał

    2012-04-01

    Micro-electro-mechanical systems are exposed to a variety of environmental stimuli, making a prediction of operational reliability difficult. Here, we investigate environmental effects on properties of piezoelectrically actuated microcantilevers, where AlN is used as actuation material. The environmental effects to be considered include thermal and humid cycling, as well as harsh electrical loading performed under normal conditions. Investigated properties are defined for the static and dynamic behavior of microcantilevers. A Twyman-Green interferometer, operating in both stroboscopic regime and time-average interferometry mode, is used as a metrology tool. The initial deflection and frequency changes of the first resonance mode of the microcantilevers are monitored during accelerated thermal aging tests, humidity tests, as well as harsh electrical loading and fatigue tests. Finally, the resonant fatigue tests accelerated by application of a high voltage are accomplished to evaluate a lifetime of microcantilevers. Monitoring the micromechanical behaviors of devices driven by AlN during the lifetime tests assists monitoring of their long-term stability. FEM calculation is used to identify critical areas of stress concentration in the cantilever structure and to further explain various failure mechanisms.

  11. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis.

    PubMed

    Bernardi, Mauro; Moreau, Richard; Angeli, Paolo; Schnabl, Bernd; Arroyo, Vicente

    2015-11-01

    The peripheral arterial vasodilation hypothesis has been most influential in the field of cirrhosis and its complications. It has given rise to hundreds of pathophysiological studies in experimental and human cirrhosis and is the theoretical basis of life-saving treatments. It is undisputed that splanchnic arterial vasodilation contributes to portal hypertension and is the basis for manifestations such as ascites and hepatorenal syndrome, but the body of research generated by the hypothesis has revealed gaps in the original pathophysiological interpretation of these complications. The expansion of our knowledge on the mechanisms regulating vascular tone, inflammation and the host-microbiota interaction require a broader approach to advanced cirrhosis encompassing the whole spectrum of its manifestations. Indeed, multiorgan dysfunction and failure likely result from a complex interplay where the systemic spread of bacterial products represents the primary event. The consequent activation of the host innate immune response triggers endothelial molecular mechanisms responsible for arterial vasodilation, and also jeopardizes organ integrity with a storm of pro-inflammatory cytokines and reactive oxygen and nitrogen species. Thus, the picture of advanced cirrhosis could be seen as the result of an inflammatory syndrome in contradiction with a simple hemodynamic disturbance.

  12. Numerical modeling of the failure mechanisms in silicon thin film anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Patel, Siddharth H.

    2011-12-01

    In recent times, the demand for the storage of electrical energy has grown rapidly for both static applications and the portable electronics enforcing the substantial improvement in battery systems, and Li-ion batteries have been proven to have maximum energy storage density in all rechargeable batteries. However, major breakthroughs are required to consummate the requirement of higher energy density with lower cost to penetrate new markets. Graphite anode having limited capacity has become a bottle neck in the process of developing next generation batteries and can be replaced by higher capacity metals such as Silicon. In the present study we are focusing on the mechanical behavior of the Si-thin film anode under various operating conditions. A numerical model is developed to simulate the intercalation induced stress and the failure mechanism of the complex anode structure. Effect of the various physical phenomena such as diffusion induced stress, plasticity and the crack propagation are investigated to predict better performance parameters for improved design.

  13. Enhanced dielectric standoff and mechanical failure in field-structured composites

    NASA Astrophysics Data System (ADS)

    Martin, James E.; Tigges, Chris P.; Anderson, Robert A.; Odinek, Judy

    1999-09-01

    We report dielectric breakdown experiments on electric-field-structured composites of high-dielectric-constant BaTiO3 particles in an epoxy resin. These experiments show a significant increase in the dielectric standoff strength perpendicular to the field structuring direction, relative to control samples consisting of randomly dispersed particles. To understand the relation of this observation to microstructure, we apply a simple resistor-short breakdown model to three-dimensional composite structures generated from a dynamical simulation. In this breakdown model the composite material is assumed to conduct primarily through particle contacts, so the simulated structures are mapped onto a resistor network where the center of mass of each particle is a node that is connected to neighboring nodes by resistors of fixed resistance that irreversibly short to perfect conductors when the current reaches a threshold value. This model gives relative breakdown voltages that are in good agreement with experimental results. Finally, we consider a primitive model of the mechanical strength of a field-structured composite material, which is a current-driven, conductor-insulator fuse model. This model leads to a macroscopic fusing behavior and can be related to mechanical failure of the composite.

  14. Enhanced dielectric standoff and mechanical failure in field-structured composites

    SciTech Connect

    Martin, J.E.; Tigges, C.P.; Anderson, R.A.; Odinek, J.

    1999-09-01

    We report dielectric breakdown experiments on electric-field-structured composites of high-dielectric-constant BaTiO{sub 3} particles in an epoxy resin. These experiments show a significant increase in the dielectric standoff strength perpendicular to the field structuring direction, relative to control samples consisting of randomly dispersed particles. To understand the relation of this observation to microstructure, we apply a simple {ital resistor-short breakdown model} to three-dimensional composite structures generated from a dynamical simulation. In this breakdown model the composite material is assumed to conduct primarily through particle contacts, so the simulated structures are mapped onto a resistor network where the center of mass of each particle is a node that is connected to neighboring nodes by resistors of fixed resistance that irreversibly short to perfect conductors when the current reaches a threshold value. This model gives relative breakdown voltages that are in good agreement with experimental results. Finally, we consider a primitive model of the mechanical strength of a field-structured composite material, which is a current-driven, {ital conductor-insulator fuse model}. This model leads to a macroscopic fusing behavior and can be related to mechanical failure of the composite. {copyright} {ital 1999} {ital The American Physical Society}

  15. The renal nerves in chronic heart failure: efferent and afferent mechanisms.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF.

  16. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  17. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism.

    PubMed

    Kitzman, D W; Higginbotham, M B; Cobb, F R; Sheikh, K H; Sullivan, M J

    1991-04-01

    Invasive cardiopulmonary exercise testing was performed in 7 patients who presented with congestive heart failure, normal left ventricular ejection fraction and no significant coronary or valvular heart disease and in 10 age-matched normal subjects. Compared with the normal subjects, patients demonstrates severe exercise intolerance with a 48% reduction in peak oxygen consumption (11.6 +/- 4.0 versus 22.7 +/- 6.1 ml/kg per min; p less than 0.001), primarily due to a 41% reduction in peak cardiac index (4.2 +/- 1.4 versus 7.1 +/- 1.1 liters/min per m2; p less than 0.001). In patients compared with normal subjects, peak left ventricular stroke volume index (34 +/- 9 versus 46 +/- 7 ml/min per m2; p less than 0.01) and end-diastolic volume index (56 +/- 14 versus 68 +/- 12 ml/min per m2; p less than 0.08) were reduced, whereas peak ejection fraction and end-systolic volume index were not different. In patients, the change in end-diastolic volume index during exercise correlated strongly with the change in stroke volume index (r = 0.97; p less than 0.0001) and cardiac index (r = 0.80; p less than 0.03). Pulmonary wedge pressure was markedly increased at peak exercise in patients compared with normal subjects (25.7 +/- 9.1 versus 7.1 +/- 4.4 mm Hg; p less than 0.0001). Patients demonstrated a shift of the left ventricular end-diastolic pressure-volume relation upward and to the left at rest. Increases in left ventricular filling pressure during exercise were not accompanied by increases in end-diastolic volume, indicating a limitation to left ventricular filling.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Damage and failure mechanisms of a 3-directional carbon/carbon composite under uniaxial tensile and shear loads

    SciTech Connect

    Siron, O.; Lamon, J.

    1998-11-20

    The mechanical behavior of a three-directional carbon/carbon (C/C) composite under tensile and shear loads is investigated in relation with the failure mechanisms and, the fiber architecture. This three-directional C/C composite was produced by Chemical Vapor Infiltration of a needled fiber preform of multiple layers of satin woven tows. The C/C composite exhibited several interesting features including an essentially non-linear stress-strain behavior and permanent deformations. Three families of matrix cracks were identified under tensile and shear loads, including microcracks in the tows, intertow delamination and cracks across the longitudinal tows. It was found that the delamination cracks affect preponderantly the stress-strain behavior and the mechanical properties. Similar features in the mechanical behavior and the failure mechanisms were highlighted under tension and under shear loading.

  19. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.

    PubMed

    Bevill, Grant; Eswaran, Senthil K; Gupta, Atul; Papadopoulos, Panayiotis; Keaveny, Tony M

    2006-12-01

    Large-deformation bending and buckling have long been proposed as failure mechanisms by which the strength of trabecular bone can be affected disproportionately to changes in bone density, and thus may represent an important aspect of bone quality. We sought here to quantify the contribution of large-deformation failure mechanisms on strength, to determine the dependence of these effects on bone volume fraction and architecture, and to confirm that the inclusion of large-deformation effects in high-resolution finite element models improves predictions of strength versus experiment. Micro-CT-based finite element models having uniform hard tissue material properties were created from 54 cores of human trabecular bone taken from four anatomic sites (age = 70+/-11; 24 male, 27 female donors), which were subsequently biomechanically tested to failure. Strength predictions were made from the models first including, then excluding, large-deformation failure mechanisms, both for compressive and tensile load cases. As expected, strength predictions versus experimental data for the large-deformation finite element models were significantly improved (p < 0.001) relative to the small deformation models in both tension and compression. Below a volume fraction of about 0.20, large-deformation failure mechanisms decreased trabecular strength from 5-80% for compressive loading, while effects were negligible above this volume fraction. Step-wise nonlinear multiple regression revealed that structure model index (SMI) and volume fraction (BV/TV) were significant predictors of these reductions in strength (R2 = 0.83, p < 0.03). Even so, some low-density specimens having nearly identical volume fraction and SMI exhibited up to fivefold differences in strength reduction. We conclude that within very low-density bone, the potentially important biomechanical effect of large-deformation failure mechanisms on trabecular bone strength is highly heterogeneous and is not well explained by

  20. Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure.

    PubMed

    Garo, Anaïs; Arnoux, Pierre Jean; Wagnac, Eric; Aubin, Carl Eric

    2011-12-01

    Finite element models (FEM) dedicated to vertebral fracture simulations rarely take into account the rate dependency of the bone material properties due to limited available data. This study aims to calibrate the mechanical properties of a vertebral body FEM using an inverse method based on experiments performed at slow and fast dynamic loading conditions. A detailed FEM of a human lumbar vertebral body (23,394 elements) was developed and tested under compression at 2,500 and 10 mm s⁻¹. A central composite design was used to adjust the mechanical properties (Young modulus, yield stress, and yield strain) while optimizing four criteria (ultimate strain and stress of cortical and trabecular bone) until the failure load and energy at failure reached experimental results from the literature. At 2,500 mm s⁻¹, results from the calibrated simulation were in good agreement with the average experimental data (1.5% difference for the failure load and 0.1% for the energy). At 10 mm s⁻¹, they were in good agreement with the average experimental failure load (0.6% difference), and within one standard deviation of the reported range of energy to failure. The proposed method provides a relevant mean to identify the mechanical properties of the vertebral body in dynamic loadings.

  1. Metaiodobenzylguanidine (/sup 131/I) scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure

    SciTech Connect

    Rabinovitch, M.A.; Rose, C.P.; Rouleau, J.L.; Chartrand, C.; Wieland, D.M.; Lepanto, L.; Legault, F.; Suissa, S.; Rosenthall, L.; Burgess, J.H.

    1987-12-01

    In heart failure secondary to chronic mechanical overload, cardiac sympathetic neurons demonstrate depressed catecholamine synthetic and transport function. To assess the potential of sympathetic neuronal imaging for detection of depressed transport function, serial scintigrams were acquired after the intravenous administration of metaiodobenzylguanidine (/sup 131/I) to 13 normal dogs, 3 autotransplanted (denervated) dogs, 5 dogs with left ventricular failure, and 5 dogs with compensated left ventricular hypertrophy due to a surgical arteriovenous shunt. Nine dogs were killed at 14 hours postinjection for determination of metaiodobenzylguanidine (/sup 131/I) and endogenous norepinephrine content in left atrium, left ventricle, liver, and spleen. By 4 hours postinjection, autotransplanted dogs had a 39% reduction in mean left ventricular tracer accumulation, reflecting an absent intraneuronal tracer pool. Failure dogs demonstrated an accelerated early mean left ventricular tracer efflux rate (26.0%/hour versus 13.7%/hour in normals), reflecting a disproportionately increased extraneuronal tracer pool. They also showed reduced late left ventricular and left atrial concentrations of tracer, consistent with a reduced intraneuronal tracer pool. By contrast, compensated hypertrophy dogs demonstrated a normal early mean left ventricular tracer efflux rate (16.4%/hour) and essentially normal late left ventricular and left atrial concentrations of tracer. Metaiodobenzylguanidine (/sup 131/I) scintigraphic findings reflect the integrity of the cardiac sympathetic neuronal transport system in canine mechanical-overload heart failure. Metaiodobenzylguanidine (/sup 123/I) scintigraphy should be explored as a means of early detection of mechanical-overload heart failure in patients.

  2. Mechanical failure, stress redistribution, elastase activity and binding site availability on elastin during the progression of emphysema.

    PubMed

    Suki, Béla; Jesudason, Rajiv; Sato, Susumu; Parameswaran, Harikrishnan; Araujo, Ascanio D; Majumdar, Arnab; Allen, Philip G; Bartolák-Suki, Erzsébet

    2012-08-01

    Emphysema is a disease of the lung parenchyma with progressive alveolar tissue destruction that leads to peripheral airspace enlargement. In this review, we discuss how mechanical forces can contribute to disease progression at various length scales. Airspace enlargement requires mechanical failure of alveolar walls. Because the lung tissue is under a pre-existing tensile stress, called prestress, the failure of a single wall results in a redistribution of the local prestress. During this process, the prestress increases on neighboring alveolar walls which in turn increases the probability that these walls also undergo mechanical failure. There are several mechanisms that can contribute to this increased probability: exceeding the failure threshold of the ECM, triggering local mechanotransduction to release enzymes, altering enzymatic reactions on ECM molecules. Next, we specifically discuss recent findings that stretching of elastin induces an increase in the binding off rate of elastase to elastin as well as unfolds hidden binding sites along the fiber. We argue that these events can initiate a positive feedback loop which generates slow avalanches of breakdown that eventually give rise to the relentless progression of emphysema. We propose that combining modeling at various length scales with corresponding biological assays, imaging and mechanics data will provide new insight into the progressive nature of emphysema. Such approaches will have the potential to contribute to resolving many of the outstanding issues which in turn may lead to the amelioration or perhaps the treatment of emphysema in the future.

  3. Development of a new code to solve hydro-mechanical coupling, shear failure and tensile failure due to hydraulic fracturing operations.

    NASA Astrophysics Data System (ADS)

    María Gómez Castro, Berta; De Simone, Silvia; Carrera, Jesús

    2016-04-01

    Nowadays, there are still some unsolved relevant questions which must be faced if we want to proceed to the hydraulic fracturing in a safe way. How much will the fracture propagate? This is one of the most important questions that have to be solved in order to avoid the formation of pathways leading to aquifer targets and atmospheric release. Will the fracture failure provoke a microseismic event? Probably this is the biggest fear that people have in fracking. The aim of this work (developed as a part of the EU - FracRisk project) is to understand the hydro-mechanical coupling that controls the shear of existing fractures and their propagation during a hydraulic fracturing operation, in order to identify the key parameters that dominate these processes and answer the mentioned questions. This investigation focuses on the development of a new C++ code which simulates hydro-mechanical coupling, shear movement and propagation of a fracture. The framework employed, called Kratos, uses the Finite Element Method and the fractures are represented with an interface element which is zero thickness. This means that both sides of the element lie together in the initial configuration (it seems a 1D element in a 2D domain, and a 2D element in a 3D domain) and separate as the adjacent matrix elements deform. Since we are working in hard, fragile rocks, we can assume an elastic matrix and impose irreversible displacements in fractures when rock failure occurs. The formulation used to simulate shear and tensile failures is based on the analytical solution proposed by Okada, 1992 and it is part of an iterative process. In conclusion, the objective of this work is to employ the new code developed to analyze the main uncertainties related with the hydro-mechanical behavior of fractures derived from the hydraulic fracturing operations.

  4. Chronic heart failure modifies respiratory mechanics in rats: a randomized controlled trial

    PubMed Central

    Pacheco, Deise M.; Silveira, Viviane D.; Thomaz, Alex; Nunes, Ramiro B.; Elsner, Viviane R.; Dal Lago, Pedro

    2016-01-01

    ABSTRACT Objective To analyze respiratory mechanics and hemodynamic alterations in an experimental model of chronic heart failure (CHF) following myocardial infarction. Method Twenty-seven male adult Wistar rats were randomized to CHF group (n=12) or Sham group (n=15). Ten weeks after coronary ligation or sham surgery, the animals were anesthetized and submitted to respiratory mechanics and hemodynamic measurements. Pulmonary edema as well as cardiac remodeling were measured. Results The CHF rats showed pulmonary edema 26% higher than the Sham group. The respiratory system compliance (Crs) and the total lung capacity (TLC) were lower (40% and 27%, respectively) in the CHF rats when compared to the Sham group (P<0.01). There was also an increase in tissue resistance (Gti) and elastance (Hti) (28% and 45%, respectively) in the CHF group. Moreover, left ventricular end-diastolic pressure was higher (32 mmHg vs 4 mmHg, P<0.01), while the left ventricular systolic pressure was lower (118 mmHg vs 130 mmHg, P=0.02) in the CHF group when compared to the control. Pearson’s correlation coefficient showed a negative association between pulmonary edema and Crs (r=–0.70, P=0.0001) and between pulmonary edema and TLC (r=–0.67, P=0.0034). Pulmonary edema correlated positively with Gti (r=0.68, P=0.001) and Hti (r=0.68, P=0.001). Finally, there was a strong positive relationship between pulmonary edema and heart weight (r=0.80, P=0.001). Conclusion Rats with CHF present important changes in hemodynamic and respiratory mechanics, which may be associated with alterations in cardiopulmonary interactions. PMID:27556388

  5. Enigmatic Moisture Effects on Al2O3 Scale and TBC Adhesion

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    Alumina scale adhesion to high temperature alloys is known to be affected primarily by sulfur segregation and reactive element additions. However, adherent scales can become partially compromised by excessive strain energy and cyclic cracking. With time, exposure of such scales to moisture can lead to spontaneous interfacial decohesion, occurring while the samples are maintained at ambient conditions. Examples of this Moisture-Induced Delayed Spallation (MIDS) are presented for NiCrAl and single crystal superalloys, becoming more severe with sulfur level and cyclic exposure conditions. Similarly, delayed failure or Desk Top Spallation (DTS) results are reviewed for thermal barrier coatings (TBCs), culminating in the water drop failure test. Both phenomena are discussed in terms of moisture effects on bulk alumina and bulk aluminides. A mechanism is proposed based on hydrogen embrittlement and is supported by a cathodic hydrogen charging experiment. Hydroxylation of aluminum from the alloy interface appears to be the relevant basic reaction.

  6. A Study of Pull-Through Failures of Mechanically Fastened Joints.

    DTIC Science & Technology

    1977-09-01

    are available and a great deal is known about the behavior of metals at failure. Theories of failure have been tested time and again and failure...assumptions were made. First, the dynamic effects of the hydraulic ram were not addressed, although it is known that they are of great importance in...as suggested by Figure 5C, a devide was constructed in the Naval Postgraduate School Machine Shop. The simple support condition was provided by

  7. Advanced composites: Design and application. Proceedings of the meeting of the Mechanical Failures Prevention Group

    NASA Technical Reports Server (NTRS)

    Shives, T. R.; Willard, W. A.

    1979-01-01

    The design and application of advanced composites is discussed with emphasis on aerospace, aircraft, automotive, marine, and industrial applications. Failure modes in advanced composites are also discussed.

  8. Embryo malposition as a potential mechanism for mercury-induced hatching failure in bird eggs

    USGS Publications Warehouse

    Herring, G.; Ackerman, J.T.; Eagles-Smith, C. A.

    2010-01-01

    We examined the prevalence of embryo malpositions and deformities in relation to total mercury (THg) and selenium (Se) concentrations in American avocet (Recurvirostra americana), black-necked stilt (Himantopus mexicanus), and Forster's tern (Sterna forsteri) eggs in San Francisco Bay (CA, USA) during 2005 to 2007. Overall, 11% of embryos were malpositioned in eggs ???18 d of age (n=282) and 2% of embryos were deformed in eggs ???13 d of age (n=470). Considering only those eggs that failed to hatch (n=62), malpositions occurred in 24% of eggs ???18 d of age and deformities occurred in 7% of eggs ???13 d of age. The probability of an embryo being malpositioned increased with egg THg concentrations in Forster's terns, but not in avocets or stilts. The probability of embryo deformity was not related to egg THg concentrations in any species. Using a reduced dataset with both Se and THg concentrations measured in eggs (n=87), we found no interaction between Se and THg on the probability of an embryo being malpositioned or deformed. Results of the present study indicate that embryo malpositions were prevalent in waterbird eggs that failed to hatch and the likelihood of an embryo being malpositioned increased with egg THg concentrations in Forster's terns. We hypothesize that malpositioning of avian embryos may be one reason for mercury-related hatching failure that occurs late in incubation, but further research is needed to elucidate this potential mechanism. ?? 2010 SETAC.

  9. Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design.

    PubMed

    An, Yonghao; Wood, Brandon C; Ye, Jianchao; Chiang, Yet-Ming; Wang, Y Morris; Tang, Ming; Jiang, Hanqing

    2015-07-21

    Although crystalline silicon (c-Si) anodes promise very high energy densities in Li-ion batteries, their practical use is complicated by amorphization, large volume expansion and severe plastic deformation upon lithium insertion. Recent experiments have revealed the existence of a sharp interface between crystalline Si (c-Si) and the amorphous LixSi alloy during lithiation, which propagates with a velocity that is orientation dependent; the resulting anisotropic swelling generates substantial strain concentrations that initiate cracks even in nanostructured Si. Here we describe a novel strategy to mitigate lithiation-induced fracture by using pristine c-Si structures with engineered anisometric morphologies that are deliberately designed to counteract the anisotropy in the crystalline/amorphous interface velocity. This produces a much more uniform volume expansion, significantly reducing strain concentration. Based on a new, validated methodology that improves previous models of anisotropic swelling of c-Si, we propose optimal morphological designs for c-Si pillars and particles. The advantages of the new morphologies are clearly demonstrated by mesoscale simulations and verified by experiments on engineered c-Si micropillars. The results of this study illustrate that morphological design is effective in improving the fracture resistance of micron-sized Si electrodes, which will facilitate their practical application in next-generation Li-ion batteries. The model and design approach present in this paper also have general implications for the study and mitigation of mechanical failure of electrode materials that undergo large anisotropic volume change upon ion insertion and extraction.

  10. Mechanical Failure of Fine Root Cortical Cells Initiates Plant Hydraulic Decline during Drought1[OPEN

    PubMed Central

    McElrone, Andrew J.

    2016-01-01

    Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction in roots remain elusive. Using in vivo x-ray computed microtomography, we found that drought-induced mechanical failure (i.e. lacunae formation) in fine root cortical cells is the initial and primary driver of reduced fine root hydraulic conductivity (Lpr) under mild to moderate drought stress. Cortical lacunae started forming under mild drought stress (−0.6 MPa Ψstem), coincided with a dramatic reduction in Lpr, and preceded root shrinkage or significant xylem embolism. Only under increased drought stress was embolism formation observed in the root xylem, and it appeared first in the fine roots (50% loss of hydraulic conductivity [P50] reached at −1.8 MPa) and then in older, coarse roots (P50 = −3.5 MPa). These results suggest that cortical cells in fine roots function like hydraulic fuses that decouple plants from drying soil, thus preserving the hydraulic integrity of the plant’s vascular system under early stages of drought stress. Cortical lacunae formation led to permanent structural damage of the root cortex and nonrecoverable Lpr, pointing to a role in fine root mortality and turnover under drought stress. PMID:27621427

  11. Mechanical Failure of Fine Root Cortical Cells Initiates Plant Hydraulic Decline during Drought.

    PubMed

    Cuneo, Italo F; Knipfer, Thorsten; Brodersen, Craig R; McElrone, Andrew J

    2016-11-01

    Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction in roots remain elusive. Using in vivo x-ray computed microtomography, we found that drought-induced mechanical failure (i.e. lacunae formation) in fine root cortical cells is the initial and primary driver of reduced fine root hydraulic conductivity (Lpr) under mild to moderate drought stress. Cortical lacunae started forming under mild drought stress (-0.6 MPa Ψstem), coincided with a dramatic reduction in Lpr, and preceded root shrinkage or significant xylem embolism. Only under increased drought stress was embolism formation observed in the root xylem, and it appeared first in the fine roots (50% loss of hydraulic conductivity [P50] reached at -1.8 MPa) and then in older, coarse roots (P50 = -3.5 MPa). These results suggest that cortical cells in fine roots function like hydraulic fuses that decouple plants from drying soil, thus preserving the hydraulic integrity of the plant's vascular system under early stages of drought stress. Cortical lacunae formation led to permanent structural damage of the root cortex and nonrecoverable Lpr, pointing to a role in fine root mortality and turnover under drought stress.

  12. Exhaustion of the Frank-Starling mechanism in conscious dogs with heart failure induced by chronic coronary microembolization.

    PubMed

    Gill, Robert M; Jones, Bonita D; Corbly, Angela K; Ohad, Dan G; Smith, Gerald D; Sandusky, George E; Christe, Michael E; Wang, Jie; Shen, Weiqun

    2006-07-04

    The role of the Frank-Starling mechanism in the regulation of cardiac systolic function in the ischemic failing heart was examined in conscious dogs. Left ventricular (LV) dimension, pressure and systolic function were assessed using surgically implanted instrumentations and non-invasive echocardiogram. Heart failure was induced by daily intra-coronary injections of microspheres for 3-4 weeks via implanted coronary catheters. Chronic coronary embolization resulted in a progressive dilation of the left ventricle (12+/-3%), increase in LV end-diastolic pressure (118+/-19%), depression of LV dP/dt(max) (-19+/-4%), fractional shortening (-36+/-7%), and cardiac work (-60+/-9%), and development of heart failure, while the LV contractile response to dobutamine was depressed. A brief inferior vena caval occlusion in dogs with heart failure decreased LV preload to match the levels attained in their control state and caused a further reduction of LV dP/dt(max), fractional shortening, stroke work and cardiac work. Moreover, in response to acute volume loading, the change in the LV end-diastolic dimension-pressure (DeltaLVEDD-DeltaLVEDP) curve in the failing heart became steeper and shifted significantly to the left, while the increases in LV stroke work and cardiac work were blunted. Thus, our results suggest that the Frank-Starling mechanism is exhausted in heart failure and unable to further respond to increasing volume while it plays an important compensatory role in adaptation to LV dysfunction in heart failure.

  13. Probing the Failure Mechanism of SnO2 Nanowires for Sodium-ion Batteries

    SciTech Connect

    Gu, Meng; Kushima, Akihiro; Shao, Yuyan; Zhang, Jiguang; Liu, Jun; Browning, Nigel D.; Li, Ju; Wang, Chong M.

    2013-09-30

    Non-lithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries, performing the same role as lithium in lithium- ion batteries. As sodium and lithium have the same +1 charge, it is assumed that what has been learnt about the operation of lithium ion batteries can be transferred directly to sodium batteries. Using in-situ TEM, in combination with DFT calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries [Science 330 (2010) 1515]. Upon Na insertion into SnO2, a displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles covered by crystalline Na2O shell. With further Na insertion, the NaxSn core crystallized into Na15Sn4 (x=3.75). Upon extraction of Na (desodiation), the NaxSn core transforms to Sn nanoparticles. Associated with a volume shrinkage, nanopores appear and metallic Sn particles are confined in hollow shells of Na2O, mimicking a peapod structure. These pores greatly increase electrical impedance, therefore naturally accounting for the poor cyclability of SnO2. DFT calculations indicate that Na+ diffuses 30 times slower than Li+ in SnO2, in agreement with in-situ TEM measurement. Insertion of Na can chemo-mechanically soften the reaction product to greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2, no dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.

  14. Application of a Fracture Methodology for Studying the Mechanics that Govern Failure of Aluminum Structures

    NASA Astrophysics Data System (ADS)

    Galanis, Konstantinos Panagiotis; Wierzbicki, Tomasz; Papazoglou, Vassilios John

    The existence of cracks besides the effect of structural degradation can cause partial or total failure of a structure. Usually, structures are designed to resist yielding, buckling and fatigue, but not fracture due to limited existing data on large scalemodels. As a result, robust methods and procedures to design structures against fracture have not been developed, although the industry is seeking to achieve more efficient concepts and designs with advanced safety and performance using optimized structural design. The rapidly increasing application of lightweight materials and thin-walled structures in several industries requires fundamental understanding of the mechanisms and mechanics of fracture that govern stiffened panels. A methodology consisting of the application of advanced fracture models, material calibration, and validation through component testing is provided that will increase the survivability envelope of new structures. This paper presents its application that will enable designers to evaluate critical areas within a structure with respect to crack initiation, propagation, optimum material usage, and computational cost. It is based on the effect of stiffening configurations on fracture of aluminum marine structures by studying the structural response of various stiffened plates, represented by small-scale compact tension (CT) and intermediate-scale specimens, which are compared with unstiffened plates. It is shown that mapping of crack patterns in stiffened plates is feasible. Numerical modeling and analyses of ductile fracture initiation and propagation on a precracked geometry using a commercial finite element code (ABAQUS), taking into account the behavior of simple uncracked material, has been performed showing a very good agreement with small and intermediate scale tests.

  15. Mechanism of augmented exercise hyperpnea in chronic heart failure and dead space loading

    PubMed Central

    Poon, Chi-Sang; Tin, Chung

    2013-01-01

    Patients with chronic heart failure (CHF) suffer increased alveolar VD/VT (dead-space-to-tidal-volume ratio), yet they demonstrate augmented pulmonary ventilation such that arterial PCO2 (PaCO2) remains remarkably normal from rest to moderate exercise. This paradoxical effect suggests that the control law governing exercise hyperpnea is not merely determined by metabolic CO2 production (V̇CO2) per se but is responsive to an apparent (real-feel) metabolic CO2 load (V˙CO2o) that also incorporates the adverse effect of physiological VD/VT on pulmonary CO2 elimination. By contrast, healthy individuals subjected to dead space loading also experience augmented ventilation at rest and during exercise as with increased alveolar VD/VT in CHF, but the resultant response is hypercapnic instead of eucapnic, as with CO2 breathing. The ventilatory effects of dead space loading are therefore similar to those of increased alveolar VD/VT and CO2 breathing combined. These observations are consistent with the hypothesis that the increased series VD/VT in dead space loading adds to V˙CO2o as with increased alveolar VD/VT in CHF, but this is through rebreathing of CO2 in dead space gas thus creating a virtual (illusory) airway CO2 load within each inspiration, as opposed to a true airway CO2 load during CO2 breathing that clogs the mechanism for CO2 elimination through pulmonary ventilation. Thus, the chemosensing mechanism at the respiratory controller may be responsive to putative drive signals mediated by within-breath PaCO2 oscillations independent of breath-to-breath fluctuations of the mean PaCO2 level. Skeletal muscle afferents feedback, while important for early-phase exercise cardioventilatory dynamics, appears inconsequential for late-phase exercise hyperpnea. PMID:23274121

  16. Advances in Quantification of Meniscus Tensile Mechanics Including Nonlinearity, Yield, and Failure.

    PubMed

    Peloquin, John M; Santare, Michael H; Elliott, Dawn M

    2016-02-01

    The meniscus provides crucial knee function and damage to it leads to osteoarthritis of the articular cartilage. Accurate measurement of its mechanical properties is therefore important, but there is uncertainty about how the test procedure affects the results, and some key mechanical properties are reported using ad hoc criteria (modulus) or not reported at all (yield). This study quantifies the meniscus' stress-strain curve in circumferential and radial uniaxial tension. A fiber recruitment model was used to represent the toe region of the stress-strain curve, and new reproducible and objective procedures were implemented for identifying the yield point and measuring the elastic modulus. Patterns of strain heterogeneity were identified using strain field measurements. To resolve uncertainty regarding whether rupture location (i.e., midsubstance rupture versus at-grip rupture) influences the measured mechanical properties, types of rupture were classified in detail and compared. Dogbone (DB)-shaped specimens are often used to promote midsubstance rupture; to determine if this is effective, we compared DB and rectangle (R) specimens in both the radial and circumferential directions. In circumferential testing, we also compared expanded tab (ET) specimens under the hypothesis that this shape would more effectively secure the meniscus' curved fibers and thus produce a stiffer response. The fiber recruitment model produced excellent fits to the data. Full fiber recruitment occurred approximately at the yield point, strongly supporting the model's physical interpretation. The strain fields, especially shear and transverse strain, were extremely heterogeneous. The shear strain field was arranged in pronounced bands of alternating positive and negative strain in a pattern similar to the fascicle structure. The site and extent of failure showed great variation, but did not affect the measured mechanical properties. In circumferential tension, ET specimens underwent

  17. Advances in Quantification of Meniscus Tensile Mechanics Including Nonlinearity, Yield, and Failure

    PubMed Central

    Peloquin, John M.; Santare, Michael H.; Elliott, Dawn M.

    2016-01-01

    The meniscus provides crucial knee function and damage to it leads to osteoarthritis of the articular cartilage. Accurate measurement of its mechanical properties is therefore important, but there is uncertainty about how the test procedure affects the results, and some key mechanical properties are reported using ad hoc criteria (modulus) or not reported at all (yield). This study quantifies the meniscus' stress–strain curve in circumferential and radial uniaxial tension. A fiber recruitment model was used to represent the toe region of the stress–strain curve, and new reproducible and objective procedures were implemented for identifying the yield point and measuring the elastic modulus. Patterns of strain heterogeneity were identified using strain field measurements. To resolve uncertainty regarding whether rupture location (i.e., midsubstance rupture versus at-grip rupture) influences the measured mechanical properties, types of rupture were classified in detail and compared. Dogbone (DB)-shaped specimens are often used to promote midsubstance rupture; to determine if this is effective, we compared DB and rectangle (R) specimens in both the radial and circumferential directions. In circumferential testing, we also compared expanded tab (ET) specimens under the hypothesis that this shape would more effectively secure the meniscus' curved fibers and thus produce a stiffer response. The fiber recruitment model produced excellent fits to the data. Full fiber recruitment occurred approximately at the yield point, strongly supporting the model's physical interpretation. The strain fields, especially shear and transverse strain, were extremely heterogeneous. The shear strain field was arranged in pronounced bands of alternating positive and negative strain in a pattern similar to the fascicle structure. The site and extent of failure showed great variation, but did not affect the measured mechanical properties. In circumferential tension, ET specimens underwent

  18. Differing susceptibility to autophagic degradation of two LC3-binding proteins: SQSTM1/p62 and TBC1D25/OATL1

    PubMed Central

    Hirano, Satoshi; Uemura, Takefumi; Annoh, Hiromichi; Fujita, Naonobu; Waguri, Satoshi; Itoh, Takashi; Fukuda, Mitsunori

    2016-01-01

    ABSTRACT MAP1LC3/LC3 (a mammalian ortholog family of yeast Atg8) is a ubiquitin-like protein that is essential for autophagosome formation. LC3 is conjugated to phosphatidylethanolamine on phagophores and ends up distributed both inside and outside the autophagosome membrane. One of the well-known functions of LC3 is as a binding partner for receptor proteins, which target polyubiquitinated organelles and proteins to the phagophore through direct interaction with LC3 in selective autophagy, and their LC3-binding ability is essential for degradation of the polyubiquitinated substances. Although a number of LC3-binding proteins have been identified, it is unknown whether they are substrates of autophagy or how their interaction with LC3 is regulated. We previously showed that one LC3-binding protein, TBC1D25/OATL1, plays an inhibitory role in the maturation step of autophagosomes and that this function depends on its binding to LC3. Interestingly, TBC1D25 seems not to be a substrate of autophagy, despite being present on the phagophore. In this study we investigated the molecular basis for the escape of TBC1D25 from autophagic degradation by performing a chimeric analysis between TBC1D25 and SQSTM1/p62 (sequestosome 1), and the results showed that mutant TBC1D25 with an intact LC3-binding site can become an autophagic substrate when TBC1D25 is forcibly oligomerized. In addition, an ultrastructural analysis showed that TBC1D25 is mainly localized outside autophagosomes, whereas an oligomerized TBC1D25 mutant rather uniformly resides both inside and outside the autophagosomes. Our findings indicate that oligomerization is a key factor in the degradation of LC3-binding proteins and suggest that lack of oligomerization ability of TBC1D25 results in its asymmetric localization at the outer autophagosome membrane. PMID:26902585

  19. Mechanical behavior and localized failure modes in a porous basalt from the Azores

    NASA Astrophysics Data System (ADS)

    Loaiza, S.; Fortin, J.; Schubnel, A.; Guéguen, Y.; Moreira, M.; Vinciguerra, S.

    2012-04-01

    Basaltic rocks are the main component of the oceanic upper crust. This is of potential interest for water and geothermal resources, or for storage of CO2. The aim of our work is to investigate experimentally the mechanical behavior and the failure modes of porous basalt as well as the permeability evolution during deformation. Cylindrical basalt samples, from the Azores, of 30 mm in diameter and 60 mm in length were deformed the triaxial cell of the Laboratoire de Geologie at the Ecole Normale Supérieure (Paris) at room temperature and at a constant axial strain rate of 10-5 s-1. The initial porosity of the sample was 18%. The Geodesign triaxial cell can reach 300MPa confining pressure; axial load is performed through a piston and can reach 900 MPa (for a 30mm diameter sample); maximum pore pressure is 100MPa (applied using two precision volumetric pumps). In our study, a set of experiments were performed at confining pressure in the range of 25-290 MPa. The samples were deformed under saturated conditions at a constant pore pressure of 5MPa. Two volumetric pumps kept the pore pressure constant, and the pore volume variations were recorded. The evolution of the porosity was calculated from the total volume variation inside the volumetric pumps. Permeability measurements were performed using the steady-state technique. Our result shows that two modes of deformation can be highlighted in this basalt. At low confining pressure (Pc < 50 MPa), the differential stress attains a peak before the sample undergoes strain softening; the failure of sample occurs by shear localization. Yet, the brittle regime is commonly observed in this low Pc range, the experiments performed at confining pressure higher than 50 MPa, show a totally different mode of deformation. In this second mode of deformation, an appreciable inelastic porosity reduction is observed. Comparing to the hydrostatic loading, the rock sample started to compact beyond a critical stress state; and from then

  20. Failure Morphologies of Cyclically Oxidized ZrO2-Based Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Zhu, Dongming; Miller, Robert A.; Barrett, Charles A.

    2002-01-01

    Advanced and baseline thermal barrier coatings (TBCs) were thermal cycle tested in air at 1163 C until delamination or spallation of the ceramic top coat. The top coat of the advanced TBC s consisted of ZrO2 with various amounts of Y2O3, Yb2O3, Gd2O3, or Nd2O3 dopants. The composition of the top coat of the baseline TBC was ZrO2-8wt.%Y2O3. All top coats were deposited by air plasma spraying. A NiCrAlY or NiCoCrAlY bond coat was deposited by low pressure plasma spraying onto a single-crystal, Ni-base superalloy. The TBC lifetime for the baseline coatings was approximately 190 cycles (45 minutes at 1163 C per cycle) while the lifetime for the advanced coatings was as high as 425 cycles. The fracture surfaces and sample cross sections were examined after TBC failure by SEM and optical microscopy, and the top coats were further examined by X-ray diffraction. These post-test studies revealed that the fracture path largely followed splat boundaries with some trans-splat fracture. However, there were no obvious distinguishing features which explained the difference in TBC lifetimes between some of the advanced and baseline coatings.

  1. Non-invasive mechanical ventilation in the treatment of acute respiratory failure in chronic obstructive pulmonary disease.

    PubMed

    Ambrosino, N; Nava, S; Rubini, F

    1993-01-01

    Acute respiratory failure is usually managed by means of mechanical ventilation via an endotracheal tube or tracheostomy, when conservative treatment fails. Invasive mechanical ventilation is associated with several complications. The recent development of non-invasive methods of ventilation, has led to an attempt to avoid the complications of invasive mechanical ventilation during episodes of acute respiratory failure, ensuring at the same time a similar degree of efficacy. Both intermittent negative pressure ventilation and positive pressure ventilation by face or nasal mask have recently been used for this purpose. Negative pressure ventilation by means of iron lung, cuirass or poncho-wrap ventilators, has never been used in place of endotracheal intubation, and studies of this kind of ventilation are inconclusive: as a consequence, there is, at the moment, no indication for the generalized use of negative pressure ventilation in acute respiratory failure. Intermittent positive pressure ventilation by facial or nasal masks, has recently been used in the treatment of respiratory failure in place of endotracheal intubation. The results are promising, but remain controversial. It may be attempted in selected patients with obstructive respiratory disorders, but the procedure is very time-consuming for nurses.

  2. Exhaustion of Frank-Starling mechanism in conscious dogs with heart failure.

    PubMed

    Komamura, K; Shannon, R P; Ihara, T; Shen, Y T; Mirsky, I; Bishop, S P; Vatner, S F

    1993-10-01

    The goal of this study was to elucidate the ability of the left ventricle to accommodate an increase in preload (Frank-Starling mechanism) in the presence of congestive heart failure (CHF) but in the absence of the complicating effects of hypertrophy and fibrosis. To accomplish this, the effects of volume loading were examined in eight conscious dogs during the control state and after 3 wk of right ventricular pacing (240 beats/min). CHF increased heart rate (by 16 +/- 5 from 92 +/- 5 beats/min), left ventricular (LV) end-diastolic pressure (by 17 +/- 2 from 10 +/- 1 mmHg), and LV end-diastolic volume (EDV; by 23 +/- 4 from 57 +/- 3 ml). Despite reduced LV ejection fraction (from 54 +/- 3 to 31 +/- 3%), there was no significant change in cardiac output (2.5 +/- 0.3 l/min) compared with control (2.7 +/- 0.2 l/min). Stroke volume was preserved (control 19 +/- 2 ml; CHF 18 +/- 2 ml) at a constant heart rate by a shift to the right in the relationship between LV stroke volume and EDV, indicating the importance of chronic ventricular dilatation in maintaining pump performance. In the control state, acute volume load increased LV EDV (by 17 +/- 2 ml) and stroke volume (by 11 +/- 2 ml), whereas in CHF it did not increase LV EDV or stroke volume. Scanning electron microscopy revealed areas of reduced collagen weave pattern surrounding myofibers. Myocyte cross-sectional area by transmission electron microscopy was significantly reduced, and there were multiple electron-dense expansions of the Z lines with disruption of the normal lateral sarcomere alignment. These morphological findings suggest that chronic ventricular dilatation utilized in CHF results from myocyte stretch and morphological intracellular rearrangement. Furthermore, the failing heart cannot further augment stroke volume by acutely increasing EDV in CHF, suggesting that the Frank-Starling reserve is essentially exhausted.

  3. Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement

    NASA Astrophysics Data System (ADS)

    Vandre, Eric

    2014-11-01

    Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of

  4. The impact of stylolites on brittle failure of carbonates: mechanical data and numerical simulations

    NASA Astrophysics Data System (ADS)

    Baud, Patrick; Heap, Michael; Xu, Tao; Rolland, Alexandra; Ferrand, Thomas; Nicolé, Marion; Reuschlé, Thierry; Conil, Nathalie

    2015-04-01

    orthogonal to the loading, microcracks clearly appeared to nucleate from the stylolite. Whatever the stylolite orientation, the macroscopic fracture appeared to follow only small parts of the tortuous stylolite path. Numerical simulations were performed using stochastic modelling and the Failure and Process Analysis Code (RPFA). Two dimensional numerical samples (40 mm x 20 mm) consisted of 51200 (320 x 120) square elements were deformed uniaxially. To reflect material heterogeneity on the microscale, each square was assigned a value of strength (tensile and compressive) and Young's modulus using a Weibull probability density function. The model parameters were first set to reproduce the mechanical behavior of the stylolite-free material. Guided by our microstructural analysis we then introduced a weaker layer in several orientations in the numerical samples. The simulations showed good qualitative agreement with the experiments performed on samples with stylolites. Our study showed that stylolites have more impact of the mechanical properties than on fluid flow in the limestone from Bure.

  5. Sustained AS160 and TBC1D1 phosphorylations in human skeletal muscle 30 min after a single bout of exercise

    PubMed Central

    Vendelbo, M. H.; Møller, A. B.; Treebak, J. T.; Gormsen, L. C.; Goodyear, L. J.; Wojtaszewski, J. F. P.; Jørgensen, J. O. L.; Møller, N.

    2014-01-01

    Background: phosphorylation of AS160 and TBC1D1 plays an important role for GLUT4 mobilization to the cell surface. The phosphorylation of AS160 and TBC1D1 in humans in response to acute exercise is not fully characterized. Objective: to study AS160 and TBC1D1 phosphorylation in human skeletal muscle after aerobic exercise followed by a hyperinsulinemic euglycemic clamp. Design: eight healthy men were studied on two occasions: 1) in the resting state and 2) in the hours after a 1-h bout of ergometer cycling. A hyperinsulinemic euglycemic clamp was initiated 240 min after exercise and in a time-matched nonexercised control condition. We obtained muscle biopsies 30 min after exercise and in a time-matched nonexercised control condition (t = 30) and after 30 min of insulin stimulation (t = 270) and investigated site-specific phosphorylation of AS160 and TBC1D1. Results: phosphorylation on AS160 and TBC1D1 was increased 30 min after the exercise bout, whereas phosphorylation of the putative upstream kinases, Akt and AMPK, was unchanged compared with resting control condition. Exercise augmented insulin-stimulated phosphorylation on AS160 at Ser341 and Ser704 270 min after exercise. No additional exercise effects were observed on insulin-stimulated phosphorylation of Thr642 and Ser588 on AS160 or Ser237 and Thr596 on TBC1D1. Conclusions: AS160 and TBC1D1 phosphorylations were evident 30 min after exercise without simultaneously increased Akt and AMPK phosphorylation. Unlike TBC1D1, insulin-stimulated site-specific AS160 phosphorylation is modified by prior exercise, but these sites do not include Thr642 and Ser588. Together, these data provide new insights into phosphorylation of key regulators of glucose transport in human skeletal muscle. PMID:24876356

  6. On the mechanisms underlying poisoning-induced rhabdomyolysis and acute renal failure.

    PubMed

    Talaie, Haleh; Emam-Hadi, Mohammad; Panahandeh, Reyhaneh; Hassanian-Moghaddam, Hosein; Abdollahi, Mohammad

    2008-01-01

    ABSTRACT The clinical syndrome of rhabdomyolysis is caused by injury of skeletal muscles resulting in release of intracellular muscle constituents. Drug poisoning is one of the causes of severe rhabdomyolysis. Severe electrolyte disorders and acute renal failure may occur in rhabdomyolysis, leading to life-threatening situations. Early initiation of renal replacement therapy can help improve outcome. In the present retrospective study, medical records of 181 patients suspected of rhabdomyolysis from Loghman-Hakim Hospital in the period of 2004 to 2005 were reviewed. A creatinine phosphokinase (CPK) value of greater than five times normal (>/=975 IU/L) was the basis for confirmation of a rhabdomyolysis diagnosis. An increased serum creatinine level of more than 30% was the basis for acute renal failure diagnosis. Out of 156 patients, 100 were male with an age range of 13 to 78 years. One hundred and two (92%) patients had CPK >975 U/L, and 36 patients (28.6%) had a 30% or more increase in their creatinine level during their admission days. Mean fluid intake was the same in patients with renal failure and those without renal failure. In 8.3% of the cases, multiple drug poisoning was observed. The most common compound overdose associated with rhabdomyolysis was opium. It is concluded that fluid therapy alone is not adequate in the management of acute renal failure in rhabdomyolysis. Therefore, other etiological factors are involved that remain to be elucidated by further studies.

  7. Detection of SNPs in the TBC1D1 gene and their association with carcass traits in chicken.

    PubMed

    Wang, Yan; Xu, Heng-Yong; Gilbert, Elizabeth R; Peng, Xing; Zhao, Xiao-Ling; Liu, Yi-Ping; Zhu, Qing

    2014-09-01

    TBC1D1 plays an important role in numerous fundamental physiological processes including muscle metabolism, regulation of whole body energy homeostasis and lipid metabolism. The objective of the present study was to identify single nucleotide polymorphisms (SNPs) in chicken TBC1D1 using 128 Erlang mountainous chickens and to determine if these SNPs are associated with carcass traits. The approach consisted of sequencing TBC1D1 using a panel of DNA from different individuals, revealing twenty-two SNPs. Among these SNPs, two polymorphisms (g.69307744C>T and g.69307608T>G) of block 1, four polymorphisms (g.69322320C>T, g.69322314G>A, g.69317290A>G and g.69317276T>C) of block 2 and four polymorphisms of block 3 (g.69349746G>A, g.69349736C>G, g.69349727C>T and g.69349694C>T) exhibited a high degree of linkage disequilibrium in all test populations. An association analysis was performed between the twenty-two SNPs and seven performance traits. SNPs g.69307744C>T, g.69340192G>A and g.69355665T>C were demonstrated to have a strong effect on liveweight (BW), carcass weight (CW), semi-eviscerated weight (SEW) and eviscerated weight (EW) and g.69340070C>T polymorphism was related to BW, SEW and BMW in chicken populations. However, for the other SNPs, there were no significant correlations between different genotypes and carcass traits. Meanwhile, haplotype CT-TG of block 1 and combined genotype AG-TT-AC-CT of block 3 were significantly associated with BW, CW, SEW and EW. Overall, our results provide evidence that polymorphisms in TBC1D1 are associated with carcass traits and would be a useful candidate gene in selection programs for improving carcass traits.

  8. Ballistic-Failure Mechanisms in Gas Metal Arc Welds of MIL A46100 Armor-Grade Steel: A Computational Investigation

    DTIC Science & Technology

    2014-06-12

    distribution is unlimited. Ballistic-Failure Mechanisms in Gas Metal Arc Welds of Mil A46100 Armor- Grade Steel : A Computational Investigation The views...Welds of Mil A46100 Armor- Grade Steel : A Computational Investigation Report Title In our recent work, a multi-physics computational model for the...utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor- grade martensitic steel

  9. Recognition during recall failure: Semantic feature matching as a mechanism for recognition of semantic cues when recall fails.

    PubMed

    Cleary, Anne M; Ryals, Anthony J; Wagner, Samantha R

    2016-01-01

    Research suggests that a feature-matching process underlies cue familiarity-detection when cued recall with graphemic cues fails. When a test cue (e.g., potchbork) overlaps in graphemic features with multiple unrecalled studied items (e.g., patchwork, pitchfork, pocketbook, pullcork), higher cue familiarity ratings are given during recall failure of all of the targets than when the cue overlaps in graphemic features with only one studied target and that target fails to be recalled (e.g., patchwork). The present study used semantic feature production norms (McRae et al., Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005) to examine whether the same holds true when the cues are semantic in nature (e.g., jaguar is used to cue cheetah). Indeed, test cues (e.g., cedar) that overlapped in semantic features (e.g., a_tree, has_bark, etc.) with four unretrieved studied items (e.g., birch, oak, pine, willow) received higher cue familiarity ratings during recall failure than test cues that overlapped in semantic features with only two (also unretrieved) studied items (e.g., birch, oak), which in turn received higher familiarity ratings during recall failure than cues that did not overlap in semantic features with any studied items. These findings suggest that the feature-matching theory of recognition during recall failure can accommodate recognition of semantic cues during recall failure, providing a potential mechanism for conceptually-based forms of cue recognition during target retrieval failure. They also provide converging evidence for the existence of the semantic features envisaged in feature-based models of semantic knowledge representation and for those more concretely specified by the production norms of McRae et al. (Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005).

  10. Bactericidal Immunity to Salmonella in Africans and Mechanisms Causing Its Failure in HIV Infection

    PubMed Central

    Goh, Yun Shan; Necchi, Francesca; O’Shaughnessy, Colette M.; Micoli, Francesca; Gavini, Massimiliano; Young, Stephen P.; Msefula, Chisomo L.; Gondwe, Esther N.; Mandala, Wilson L.; Gordon, Melita A.; Saul, Allan J.; MacLennan, Calman A.

    2016-01-01

    Background Nontyphoidal strains of Salmonella are a leading cause of death among HIV-infected Africans. Antibody-induced complement-mediated killing protects healthy Africans against Salmonella, but increased levels of anti-lipopolysaccharide (LPS) antibodies in some HIV-infected African adults block this killing. The objective was to understand how these high levels of anti-LPS antibodies interfere with the killing of Salmonella. Methodology/Principal Findings Sera and affinity-purified antibodies from African HIV-infected adults that failed to kill invasive S. Typhimurium D23580 were compared to sera from HIV-uninfected and HIV-infected subjects with bactericidal activity. The failure of sera from certain HIV-infected subjects to kill Salmonella was found to be due to an inherent inhibitory effect of anti-LPS antibodies. This inhibition was concentration-dependent and strongly associated with IgA and IgG2 anti-LPS antibodies (p<0.0001 for both). IgG anti-LPS antibodies, from sera of HIV-infected individuals that inhibit killing at high concentration, induced killing when diluted. Conversely, IgG, from sera of HIV-uninfected adults that induce killing, inhibited killing when concentrated. IgM anti-LPS antibodies from all subjects also induced Salmonella killing. Finally, the inhibitory effect of high concentrations of anti-LPS antibodies is seen with IgM as well as IgG and IgA. No correlation was found between affinity or avidity, or complement deposition or consumption, and inhibition of killing. Conclusion/Significance IgG and IgM classes of anti-S. Typhimurium LPS antibodies from HIV-infected and HIV-uninfected individuals are bactericidal, while at very high concentrations, anti-LPS antibodies of all classes inhibit in vitro killing of Salmonella. This could be due to a variety of mechanisms relating to the poor ability of IgA and IgG2 to activate complement, and deposition of complement at sites where it cannot insert in the bacterial membrane. Vaccine trials

  11. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    NASA Astrophysics Data System (ADS)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  12. Mechanical Circulatory Support and the Role of LVADs in Heart Failure Therapy

    PubMed Central

    McLarty, Allison

    2015-01-01

    Heart failure is epidemic in the United States with a prevalence of over 5 million. The diagnosis carries a mortality risk of 50% at 5 years rivaling many diagnoses of cancer. Heart transplantation, long the “gold standard” treatment for end stage heart failure unresponsive to maximal medical therapy falls way short of meeting the need with only about 2,000 transplants performed annually in the United States due to donor limitation. Left ventricular devices have emerged as a viable option for patients as both a “bridge to transplantation” and as a final “destination therapy”. PMID:25983564

  13. [Failure mechanisms in the transfusion process. Importance of anticipatory operational safety analysis].

    PubMed

    Hergon, E; Crespeau, H; Rouger, P

    1994-01-01

    The methods used for the safety previsional analysis of operations represent an interesting set of tools to follow the so-called transfusion process, defined as all the steps from donors sensitization to recipients follow-up. FMECA (Failure Mode Effects and Criticality Analysis) can be used as a prevention tool, independently of any dysfunction in the process. Of course, it can also be used following a failure, in order to analyse its causes and to apply specific corrections. Operation safety, quality insurance, epidemiologic surveillance and safety monitoring act in synergy. These three aspects of transfusion safety constitute a dynamic system.

  14. Numerical investigations of failure in EB-PVD thermal barrier coating systems

    NASA Astrophysics Data System (ADS)

    Glynn, Michael L.

    Thermal barrier coating (TBC) systems are used in high temperature applications in turbine engines. TBCs are applied on superalloy substrates and are multilayered coatings comprised of a metallic bond coat, a thermally grown oxide (TGO) and a ceramic top coat. They provide thermal protection for the superalloy substrate and are considered to hold the greatest potential for increased operating temperatures. Failure of the TBC system most commonly occurs as a result of large scale buckling and spallation. The buckling is a consequence of many small-scale delaminations that arise in the top coat above local imperfections in the TGO, and durability of the TBC system is governed by a sequence of crack nucleation, propagation and coalescence. The numerical investigations that are employed in this dissertation are used to determine the stress development near the imperfections and are based on microstructural observations and measured material properties of TBC test buttons supplied by GE Aircraft Engines. The test buttons were subject to thermal cycling at GE and cycled to different percentages of TBC life. Numerical simulations of two different types of TBC tests are used to show that the top coat out-of-plane stress increases with a decrease of the substrate radius of curvature and a decrease in the heating rate. An inherent scaling parameter in the TBC system is identified and used to demonstrate that the stress developed in the top coat is governed by the evolution of an imperfection in the TGO. The effect of a martensitic phase transformation in the bond coat, related to a change in bond coat chemistry, is shown to significantly increase the top coat out-of-plane tensile stress. Finally, a subsurface crack is simulated in the top coat and used to determine the influence of the bond coat on failure of the TBC system. While the bond coat inelastic properties are the most important factors in determining the extent of the crack opening displacement, the bond coat

  15. Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.

  16. Seepage and piping: Solitary and integrated mechanisms of streambank erosion and failure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent work has shown that a majority of the sediment entering streams and rivers now comes from streambanks. We lack the understanding of the processes controlling streambank failure to be able to predict how erosion control methods will work for all conditions. Research underway at Oklahoma State...

  17. Evaluation of the hyplex® TBC PCR test for detection of Mycobacterium tuberculosis complex in clinical samples

    PubMed Central

    2010-01-01

    Background Tuberculosis (TB) is one of the major public health concerns worldwide. The detection of the pathogen Mycobacterium tuberculosis complex (MTBC) as early as possible has a great impact on the effective control of the spread of the disease. In our study, we evaluated the hyplex® TBC PCR test (BAG Health Care GmbH), a novel assay using a nucleic acid amplification technique (NAAT) with reverse hybridisation and ELISA read out for the rapid detection of M. tuberculosis directly in clinical samples. Results A total of 581 respiratory and non-respiratory specimens from our pneumological hospital and the National TB Institute of Uzbekistan were used for the evaluation of the PCR assay. Of these, 292 were classified as TB samples and 289 as non-TB samples based on the results of the TB cultures as reference method. The PCR results were initially used to optimise the cut-off value of the hyplex® TBC test system by means of a ROC analysis. The overall sensitivity of the assay was determined to be 83.1%. In smear-positive TB samples, the sensitivity of the hyplex® TBC PCR test was estimated to 93.4% versus 45.1% in smear-negative samples. The specificity of the test was 99.25%. Of the two specimens (0.75%) with false-positive PCR results, one yielded a culture positive for non-tuberculous mycobacteria. Based on the assumption of a prevalence of 8% TB positives among the samples in our diagnostic TB laboratory, the positive and negative predictive values were estimated to 90.4% and 98.5%, respectively. Conclusions The hyplex® TBC PCR test is an accurate NAAT assay for a rapid and reliable detection of M. tuberculosis in various respiratory and non-respiratory specimens. Compared to many other conventional NAAT assays, the hyplex® TBC PCR test is in a low price segment which makes it an attractive option for developing and emerging countries with high TB burdens. PMID:20356361

  18. Failure Mechanisms and Color Stability in Light-Emitting Diodes during Operation in High- Temperature Environments in Presence of Contamination

    SciTech Connect

    Lall, Pradeep; Zhang, Hao; Davis, J Lynn

    2015-05-26

    The energy efficiency of light-emitting diode (LED) technology compared to incandescent light bulbs has triggered an increased focus on solid state luminaries for a variety of lighting applications. Solid-state lighting (SSL) utilizes LEDs, for illumination through the process of electroluminescence instead of heating a wire filament as seen with traditional lighting. The fundamental differences in the construction of LED and the incandescent lamp results in different failure modes including lumen degradation, chromaticity shift and drift in the correlated color temperature. The use of LED-based products for safety-critical and harsh environment applications necessitates the characterization of the failure mechanisms and modes. In this paper, failure mechanisms and color stability has been studied for commercially available vertical structured thin film LED (VLED) under harsh environment conditions with and without the presence of contaminants. The VLED used for the study was mounted on a ceramic starboard in order to connect it to the current source. Contamination sources studied include operation in the vicinity of vulcanized rubber and adhesive epoxies in the presence of temperature and humidity. Performance of the VLEDs has been quantified using the measured luminous flux and color shift of the VLEDs subjected to both thermal and humidity stresses under a forward current bias of 350 mA. Results indicate that contamination can result in pre-mature luminous flux degradation and color shift in LEDs.

  19. A method for intermediate strain rate compression testing and study of compressive failure mechanism of Mg-Al-Zn alloy

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Luong, Dung D.; Rohatgi, Pradeep K.

    2011-05-01

    Obtaining meaningful information from the test results is a challenge in the split-Hopkinson pressure bar (SHPB) test method if the specimen does not fail during the test. Although SHPB method is now widely used for high strain rate testing, this limitation has made it difficult to use it for characterization of materials in the intermediate strain rate range (typically 10-1000 s-1). In the present work, a method is developed to characterize materials in the intermediate strain rate range using SHPB setup. In this method, the specimen is repeatedly tested under compression at a given strain rate until failure is achieved. The stress-strain graphs obtained from each test cycle are used to plot the master stress-strain graph for that strain rate. This method is used to study the strain rate dependence of compressive response of a Mg-Al-Zn alloy in the intermediate strain rate range. A remarkable difference is observed in the failure mechanism of the alloy under quasi-static and intermediate strain rate compression. Matrix cracking is the main failure mechanism under quasi-static compression, whereas shattering of intermetallic precipitates, along with plastic deformation of the matrix, is discovered to become prominent as the strain rate is increased.

  20. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    SciTech Connect

    Dennis H. LeMieux

    2004-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.

  1. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    SciTech Connect

    Dennis H. LeMieux

    2002-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  2. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    SciTech Connect

    Dennis H. LeMieux

    2005-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  3. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    SciTech Connect

    Dennis H. LeMieux

    2003-07-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  4. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    SciTech Connect

    Dennis H. LeMieux

    2003-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  5. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    SciTech Connect

    Dennis H. LeMieux

    2005-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  6. A possible mechanism for the progression of chronic renal disease and congestive heart failure.

    PubMed

    Re, Richard N

    2015-01-01

    Chronic neurologic diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as various forms of chronic renal disease and systolic congestive heart failure, are among the most common progressive degenerative disorders encountered in medicine. Each disease follows a nearly relentless course, albeit at varying rates, driven by progressive cell dysfunction and drop-out. The neurologic diseases are characterized by the progressive spread of disease-causing proteins (prion-like proteins) from cell to cell. Recent evidence indicates that cell autonomous renin angiotensin systems operate in heart and kidney, and it is known that functional intracrine proteins can also spread between cells. This then suggests that certain progressive degenerative cardiovascular disorders such as forms of chronic renal insufficiency and systolic congestive heart failure result from dysfunctional renin angiotensin system intracrine action spreading in kidney or myocardium.

  7. Availability and Failure Effects of NLC Main Linac Mechanical Movers(LCC-0141)

    SciTech Connect

    Himel, T

    2004-05-24

    We analyze the probability of failure and the failure effects of the quadrupole and RF girder translation stages (''movers'') in the 500 GeV CM NLC Main Linac. In order to achieve its alignment tolerances, the NLC main linac will require a large installation of remote controlled translation stages with multiple degrees of freedom. In particular, each of the 591 quads in each 250 GeV main linac will be mounted on a magnet mover with 3 degrees of freedom (x, y, roll); each of the 2304 RF structure girders in each linac will be mounted on a girder mover with 5 degrees of freedom (x, y, roll, pitch, yaw). Simulation studies of main linac operation typically assume that all movers are operational at all times, in order to limit the complexity of the simulation. This is obviously not a realistic expectation for a system with so many components, especially when the number of sub-elements of each mover (stepper motors, rotary encoders, position transducers, cabling, control electronics, database, operator) are considered. The unavailability risk of the mover system is of particular concern for the NLC, since very few accelerators have ever been built with such a large fraction of its beamline hardware on remote-controlled translation stages. In order to predict the availability of the movers, it is necessary to estimate a few quantities, specifically: how often will a mover break (mean time between failures, or MTBF); how long will it take to repair a mover (mean time to repair, or MTTR); what is the performance ''hit'' which accrues when movers are broken? To answer the first two questions we used historical failure data from the two large mover systems at SLAC, in the arcs of the Stanford Linear Collider (SLC) and in the Final Focus Test Beam (FFTB). For the final question, we can get some estimate from simulation studies of the NLC main linac in normal operation.

  8. Mechanism of valve failure and efficacy of reintervention through catheterization in patients with bioprosthetic valves in the pulmonary position

    PubMed Central

    Callahan, Ryan; Bergersen, Lisa; Baird, Christopher W; Porras, Diego; Esch, Jesse J; Lock, James E; Marshall, Audrey C

    2017-01-01

    Background: Surgical and transcatheter bioprosthetic valves (BPVs) in the pulmonary position in patients with congenital heart disease may ultimately fail and undergo transcatheter reintervention. Angiographic assessment of the mechanism of BPV failure has not been previously described. Aims: The aim of this study was to determine the mode of BPV failure (stenosis/regurgitation) requiring transcatheter reintervention and to describe the angiographic characteristics of the failed BPVs and report the types and efficacy of reinterventions. Materials and Methods: This is a retrospective single-center review of consecutive patients who previously underwent pulmonary BPV placement (surgical or transcatheter) and subsequently underwent percutaneous reintervention from 2005 to 2014. Results: Fifty-five patients with surgical (41) and transcutaneous pulmonary valve (TPV) (14) implantation of BPVs underwent 66 catheter reinterventions. The surgically implanted valves underwent fifty reinterventions for indications including 16 for stenosis, seven for regurgitation, and 27 for both, predominantly associated with leaflet immobility, calcification, and thickening. Among TPVs, pulmonary stenosis (PS) was the exclusive failure mode, mainly due to loss of stent integrity (10) and endocarditis (4). Following reintervention, there was a reduction of right ventricular outflow tract gradient from 43 ± 16 mmHg to 16 ± 10 mmHg (P < 0.001) and RVp/AO ratio from 0.8 ± 0.2 to 0.5 ± 0.2 (P < 0.001). Reintervention with TPV placement was performed in 45 (82%) patients (34 surgical, 11 transcatheter) with no significant postintervention regurgitation or paravalvular leak. Conclusion: Failing surgically implanted BPVs demonstrate leaflet calcification, thickness, and immobility leading to PS and/or regurgitation while the mechanism of TPV failure in the short- to mid-term is stenosis, mainly from loss of stent integrity. This can be effectively treated with a catheter-based approach

  9. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    NASA Astrophysics Data System (ADS)

    Jin, Liu; Yongguang, Chen; Zhiliang, Tan; Jie, Yang; Xijun, Zhang; Zhenxing, Wang

    2011-10-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

  10. Proportional and scale change models to project failures of mechanical components with applications to space station

    NASA Technical Reports Server (NTRS)

    Taneja, Vidya S.

    1996-01-01

    In this paper we develop the mathematical theory of proportional and scale change models to perform reliability analysis. The results obtained will be applied for the Reaction Control System (RCS) thruster valves on an orbiter. With the advent of extended EVA's associated with PROX OPS (ISSA & MIR), and docking, the loss of a thruster valve now takes on an expanded safety significance. Previous studies assume a homogeneous population of components with each component having the same failure rate. However, as various components experience different stresses and are exposed to different environments, their failure rates change with time. In this paper we model the reliability of a thruster valves by treating these valves as a censored repairable system. The model for each valve will take the form of a nonhomogeneous process with the intensity function that is either treated as a proportional hazard model, or a scale change random effects hazard model. Each component has an associated z, an independent realization of the random variable Z from a distribution G(z). This unobserved quantity z can be used to describe heterogeneity systematically. For various models methods for estimating the model parameters using censored data will be developed. Available field data (from previously flown flights) is from non-renewable systems. The estimated failure rate using such data will need to be modified for renewable systems such as thruster valve.

  11. Full-field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Composite materials made with triaxial braid architecture and large tow size carbon fibers are beginning to be used in many applications, including composite aircraft and engine structures. Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape. Although the large unit cell size of these materials is an advantage for manufacturing efficiency, the fiber architecture presents some challenges for materials characterization, design, and analysis. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A potential problem with using standard tests methods for these materials is that the unit cell size can be an unacceptably large fraction of the specimen dimensions. More detailed investigation of deformation and failure processes in large unit cell size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. In recent years, commercial equipment has become available that enables digital image correlation to be used on a more routine basis for investigation of full field 3D deformation in materials and structures. In this paper, some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques are presented. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12 and 24 k yarns and a 0/+60/-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed, and this local failure had a significant effect on global stiffness and strength. The matrix material had a large effect on local damage initiation for the two matrix materials used in this investigation

  12. Failure in glass

    NASA Technical Reports Server (NTRS)

    Keeton, S. C.

    1972-01-01

    Review of state of the art concerning glass failure mechanisms and fatigue theories discusses brittle fracture in glass, fatigue mechanisms, fatigue behavior, environmental effects on failure rate, and aging.

  13. Interpretation of Simultaneous Mechanical-Electrical-Thermal Failure in a Lithium-Ion Battery Module: Preprint

    SciTech Connect

    Zhang, Chao; Santhanagopalan, Shriram; Stock, Mark J.; Brunhart-Lupo, Nicholas; Gruchalla, Kenny

    2016-12-01

    Lithium-ion batteries are currently the state-of- the-art power sources for electric vehicles, and their safety behavior when subjected to abuse, such as a mechanical impact, is of critical concern. A coupled mechanical-electrical-thermal model for simulating the behavior of a lithium-ion battery under a mechanical crush has been developed. We present a series of production-quality visualizations to illustrate the complex mechanical and electrical interactions in this model.

  14. Extracorporeal membrane oxygenation treatment of a H7N9-caused respiratory failure patient with mechanical valves replacement history

    PubMed Central

    Qian, Linfeng; Zheng, Junnan; Xu, Hongfei; Shi, Liping; Li, Lanjuan

    2016-01-01

    Abstract Background: Patients with respiratory failure caused by H7N9 may benefit from veno-venous, veno-arterial, and veno-veno-arterial extracorporeal membrane oxygenation (ECMO) support. Case summary: A 55-year-old male patient was suffering from H7N9-caused acute respiratory distress syndrome (ARDS). He had a mechanical mitral and aortic valve replacement surgery and was using warfarin for anticoagulation. After prolonged mechanical ventilation, oxygen saturation was not improved. Veno-veno ECMO was then applied. After 16 days of extracorporeal life support, the patient successfully weaned from ECMO, with relatively good pulmonary recovery. Conclusion: This report demonstrates that ECMO support can help treating life-threatening diseases such as H7N9-associated ARDS. Because of his special mitral and aortic valve replacement surgery history and long duration of mechanical ventilation before ECMO, we report it as a separate case, hoping to provide some reference for ECMO treatment. PMID:27749569

  15. Role of folded anisotropic fabric in the failure mode of gneiss: new insights from mechanical, microseismic and microstructural laboratory data

    NASA Astrophysics Data System (ADS)

    Agliardi, Federico; Vinciguerra, Sergio; Dobbs, Marcus R.; Zanchetta, Stefano

    2015-04-01

    Fabric anisotropy is a key control of the mechanical behaviour of rocks in a variety of geological settings and on different timescales. However, the effects of inherited, tectonically folded anisotropic fabrics on the brittle strength and failure mode of foliated metamorphic rocks is yet to be fully understood. Data from laboratory uniaxial compression tests on folded gneiss (Agliardi et al., 2014, Tectonophysics) recently showed that the brittle failure mode of this rock type depends on the arrangement of two distinct anisotropies (i.e. foliation and fold axial plane anisotropy), and that rock strength correlates with failure mode. Here we investigate the effects of confining pressure on this behaviour by performing triaxial compression experiments with acoustic emission (AE) monitoring, and analyse resulting fracture mechanisms and their microfabric controls using high resolution microanalysis techniques. We tested the Monte Canale Gneiss (Austroalpine Bernina nappe, Central Italian Alps), characterized by low phyllosilicate content, compositional layering folded at the cm-scale, and absence of a well-developed axial plane foliation. We used a servo-controlled hydraulic loading system to test 19 air-dry cylindrical specimens (diameter: 54 mm) that were characterized both in terms of fold geometry and orientation of foliation and fold axial planes to the axial load direction. We instrumented the specimens with direct contact axial and circumferential strain gauges. We performed tests at confining pressures of 40 MPa and constant axial strain rates of 5*10-6 s-1, measuring acoustic emissions and P- and S-wave velocities by three wideband (350-1000 kHz) piezoelectric transceivers with 40 dB preamps, mounted in the compression platens. We carried out post-failure microscale observation of fracture mechanisms, microcrack patterns and related fabric controls on resin-impregnated samples, using X-ray MicroCT (resolution: 9 μm), optical microscopy and SEM. Samples

  16. Neural mechanisms underlying catastrophic failure in human-machine interaction during aerial navigation

    NASA Astrophysics Data System (ADS)

    Saproo, Sameer; Shih, Victor; Jangraw, David C.; Sajda, Paul

    2016-12-01

    Objective. We investigated the neural correlates of workload buildup in a fine visuomotor task called the boundary avoidance task (BAT). The BAT has been known to induce naturally occurring failures of human-machine coupling in high performance aircraft that can potentially lead to a crash—these failures are termed pilot induced oscillations (PIOs). Approach. We recorded EEG and pupillometry data from human subjects engaged in a flight BAT simulated within a virtual 3D environment. Main results. We find that workload buildup in a BAT can be successfully decoded from oscillatory features in the electroencephalogram (EEG). Information in delta, theta, alpha, beta, and gamma spectral bands of the EEG all contribute to successful decoding, however gamma band activity with a lateralized somatosensory topography has the highest contribution, while theta band activity with a fronto-central topography has the most robust contribution in terms of real-world usability. We show that the output of the spectral decoder can be used to predict PIO susceptibility. We also find that workload buildup in the task induces pupil dilation, the magnitude of which is significantly correlated with the magnitude of the decoded EEG signals. These results suggest that PIOs may result from the dysregulation of cortical networks such as the locus coeruleus (LC)—anterior cingulate cortex (ACC) circuit. Significance. Our findings may generalize to similar control failures in other cases of tight man-machine coupling where gains and latencies in the control system must be inferred and compensated for by the human operators. A closed-loop intervention using neurophysiological decoding of workload buildup that targets the LC-ACC circuit may positively impact operator performance in such situations.

  17. Protein kinase C epsilon induces systolic cardiac failure marked by exhausted inotropic reserve and intact Frank-Starling mechanism.

    PubMed

    Montgomery, David E; Rundell, Veronica L M; Goldspink, Paul H; Urboniene, Dalia; Geenen, David L; de Tombe, Pieter P; Buttrick, Peter M

    2005-11-01

    Myofilament dysfunction is a common point of convergence for many forms of heart failure. Recently, we showed that cardiac overexpression of PKC epsilon initially depresses myofilament activity and then leads to a progression of changes characteristic of human heart failure. Here, we examined the effects of PKC epsilon on contractile reserve, Starling mechanism, and myofilament activation in this model of end-stage dilated cardiomyopathy. Pressure-volume loop analysis and echocardiography showed that the PKC epsilon mice have markedly compromised systolic function and increased end-diastolic volumes. Dobutamine challenge resulted in a small increase in contractility in PKC epsilon mice but failed to enhance cardiac output. The PKC epsilon mice showed a normal length-dependent tension development in skinned cardiac muscle preparations, although Frank-Starling mechanism appeared to be compromised in the intact animal. Simultaneous measurement of tension and ATPase demonstrated that the maximum tension and ATPase were markedly lower in the PKC epsilon mice at any length or Ca2+ concentration. However, the tension cost was also lower indicating less energy expenditure. We conclude 1) that prolonged overexpression of PKC epsilon ultimately leads to a dilated cardiomyopathy marked by exhausted contractile reserve, 2) that PKC epsilon does not compromise the Frank-Starling mechanism at the myofilament level, and 3) that the Starling curve excursion is limited by the inotropic state of the heart. These results reflect the significance of the primary myofilament contractilopathy induced by phosphorylation and imply a role for PKC epsilon-mediated phosphorylation in myofilament physiology and the pathophysiology of decompensated cardiac failure.

  18. Coaching behaviors associated with changes in fear of failure: changes in self-talk and need satisfaction as potential mechanisms.

    PubMed

    Conroy, David E; Coatsworth, J Douglas

    2007-04-01

    Cognitive-interpersonal and motivational mechanisms may regulate relations between youth perceptions of interpersonal aspects of the social ecology and their fear-of-failure (FF) levels. Youth (N=165) registered for a summer swim league rated their fear of failure at the beginning, middle, and end of the season. Extensive model comparisons indicated that youths' end-of-season ratings of coach behaviors could be reduced to three factors (affiliation, control, blame). Perceived control and blame from coaches predicted residualized change in corresponding aspects of youths' self-talk, but only changes in self-blame positively predicted changes in FF levels during the season. Perceived affiliation from coaches predicted autonomy need satisfaction which, in turn, negatively predicted the rate of change in FF levels during the season. These findings indicate that (a) youth perceptions of coaches were directly and indirectly related to acute socialization of FF and (b) both cognitive-interpersonal and motivational mechanisms contributed to this socialization process. Further research is needed to test for developmental differences in these mechanisms to determine whether findings generalize to more heterogeneous and at-risk populations and to investigate other potential social-ecological influences on socialization.

  19. Mechanism of microstructural deterioration preceding type IV failure in weldment of Mod.9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; Maruyama, K.

    2015-07-01

    The objective of the present study was to elucidate the cavity formation mechanism of Type IV failure in weldment of advanced high-Cr ferritic steels. A welded joint of Mod.9Cr-1Mo steel was creep tested at 650 °C under 83 MPa. The creep fracture mode was Type IV failure in the heat affect zone (HAZ). Microstructural characterization of the HAZ and the fracture location, were performed before and after the creep test. The Type IV cracking started in the inter-critical HAZ at a location having fine grain size and coarse M23C6 precipitates. Moreover, the grain structure of the inter-critical HAZ, which is a mixture of soft α and hard α' grains, plays an important role in the stage of cavity evolution into a crack along the grain boundary. This is due to the heterogeneity of local strain between the two kinds of grains. By a synergistic effect of the strain concentration, the coarse precipitates and heterogeneous strain distribution among grains in the inter critical HAZ, facilitates the nucleation and growth of creep cavities, resulting in premature failure of welded joints.

  20. Failure mechanism of layered lithium-rich oxide/graphite cell and its solution by using electrolyte additive

    NASA Astrophysics Data System (ADS)

    Zhu, Yunmin; Luo, Xueyi; Xu, Mengqing; Zhang, Liping; Yu, Le; Fan, Weizhen; Li, Weishan

    2016-06-01

    We report a failure mechanism of layered lithium-rich oxide/graphite cell and a solution to this failure. Charge/discharge tests demonstrate that Li1.2Mn0.54Ni0.13Co0.13O2/graphite full cell fails when it is performed with cycling and this issue can be solved effectively by using an electrolyte additive, tris (trimethylsilyl) phosphite (TMSPi). Further cycling tests on Li/Li1.2Mn0.54Ni0.13Co0.13O2 and Li/graphite half-cells and physical characterizations on the cycled cathode indicate that this failure involves the increased HF concentration and the subsequent corrosion for aluminum current collector of cathode due to the electrolyte decomposition during cycling. TMSPi contributes to the formation of a protective interphase on cathode due to its preferential oxidation compared with the base electrolyte, which suppresses the electrolyte decomposition and the HF formation, preventing aluminum current collector from corrosion.

  1. Analyses of Failure Mechanisms and Residual Stresses in Graphite/Polyimide Composites Subjected to Shear Dominated Biaxial Loads

    NASA Technical Reports Server (NTRS)

    Kumosa, M.; Predecki, P. K.; Armentrout, D.; Benedikt, B.; Rupnowski, P.; Gentz, M.; Kumosa, L.; Sutter, J. K.

    2002-01-01

    This research contributes to the understanding of macro- and micro-failure mechanisms in woven fabric polyimide matrix composites based on medium and high modulus graphite fibers tested under biaxial, shear dominated stress conditions over a temperature range of -50 C to 315 C. The goal of this research is also to provide a testing methodology for determining residual stress distributions in unidirectional, cross/ply and fabric graphite/polyimide composites using the concept of embedded metallic inclusions and X-ray diffraction (XRD) measurements.

  2. Mechanics of brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2013-12-01

    The Menan Volcanic Complex consists of phreatomagmatic tuff cones that were emplaced as part of the regional volcanic activity in the Snake River Plain during the late Pleistocene. These tuff cones, the ';Menan Buttes', resulted from the eruption of basaltic magma through water-saturated alluvium and older basalts along the Snake River. The tuffs are composed primarily of basaltic glass with occasional plagioclase and olivine phenocrysts. The tuff is hydrothermally altered to a massive palagonitic tuff at depth but is otherwise poorly welded. Mass movements along the flanks of the cones were contemporaneous with tuff deposition. These slope failures are manifest as cm- to meter-scale pure folds, faults and fault-related folds, as well as larger slumps that are tens to a few hundred meters wide. Previous investigations classified the structural discontinuities at North Menan Butte based on orientation and sense of displacement, and all were recognized as opening-mode or shear fractures (Russell and Brisbin, 1990). This earlier work also used a generalized model of static (i.e., aseismic) gravity-driven shear failure within cohesionless soils to infer a possible origin for these fractures through slope failure. Recent work at North Menan Butte has provided novel insight into the styles of brittle deformation present, the effect of this deformation on the circulation of subsurface fluids within the tuff cone, as well as the mechanisms of the observed slope failures. Field observations reveal that the brittle deformation, previously classified as fractures, is manifest as deformation bands within the non-altered, poorly welded portions of the tuff. Both dilational and compactional bands, with shear, are observed. Slumps are bounded by normal faults, which are found to have developed within clusters of deformation bands. Deformation bands along the down-slope ends of these failure surfaces are predominantly compactional in nature. These bands have a ~3800 millidarcy

  3. Observations, models, and mechanisms of failure of surface rocks surrounding planetary surface loads

    NASA Technical Reports Server (NTRS)

    Schultz, R. A.; Zuber, M. T.

    1994-01-01

    Geophysical models of flexural stresses in an elastic lithosphere due to an axisymmetric surface load typically predict a transition with increased distance from the center of the load of radial thrust faults to strike-slip faults to concentric normal faults. These model predictions are in conflict with the absence of annular zones of strike-slip faults around prominent loads such as lunar maria, Martian volcanoes, and the Martian Tharsis rise. We suggest that this paradox arises from difficulties in relating failure criteria for brittle rocks to the stress models. Indications that model stresses are inappropriate for use in fault-type prediction include (1) tensile principal stresses larger than realistic values of rock tensile strength, and/or (2) stress differences significantly larger than those allowed by rock-strength criteria. Predictions of surface faulting that are consistent with observations can be obtained instead by using tensile and shear failure criteria, along with calculated stress differences and trajectories, with model stress states not greatly in excess of the maximum allowed by rock fracture criteria.

  4. Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Lyons, F.; Christiansen, E. L.; Lear, D. M.

    2017-01-01

    Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar ar-rays meet their sunlit power demands and supply excess power to battery packs for power de-livery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are ex-posed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.

  5. Mechanical failure of metal-polyethylene sandwich liner in metal-on-metal total hip replacement.

    PubMed

    Oshima, Yasushi; Fetto, Joseph F

    2015-01-01

    Metal-on-metal had been proposed as an optimal articulation in THRs, however, many monoblock prostheses have been recalled in the USA because of significant high rates of early failure. Metal-on-metal prostheses had been implanted in our institution, and this is a case history of a single patient, in whom metal-on-metal THRs with different femoral sizes of heads were implanted. A 57-year-old female patient underwent bilateral total hip replacements with metal-on-metal prostheses using metal-polyethylene "sandwich" liners 9 years ago on the right side and 7 years ago on the left side respectively. The only difference in both sides was the femoral head diameter of 28 mm in right and 34 mm in left. Seven years after the left surgery, the acetabular liner was dissociated, however, metallosis was not detected. Although the larger femoral head was thought to increase hip joint stability, it dictated a reduction in polyethylene thickness in this prosthesis design, and it was 4 mm in the left hip. Recently, metal-on-metal articulations are thought not to be optimal for hip joint bearing surface, however, this clinical failure was due to the polyethylene thickness and quality.

  6. Distribution of coastal cliffs in Kerala, India: their mechanisms of failure and related human engineering response

    NASA Astrophysics Data System (ADS)

    Kumar, Avinash; Seralathan, P.; Jayappa, K. S.

    2009-08-01

    The 560-km-long Kerala coast is characterised by long barriers with narrow beaches and steep cliffs. Distribution of cliffs from nine sections measuring a cumulative length of 63.5 km is evaluated in ArcGIS Software using topomaps and field survey data. The cliff sections in the southern coast comprise both permeable and impermeable rocks, whereas those along northern coast are comprised of either Precambrian crystalline and/or Tertiary formations. Notches, caves and even small arches are developed in Cannanore, Dharmadam and Kadalundi cliffs, where only primary laterites are exposed to wave attack. Stacks composed of laterite and Precambrian crystallines found in nearshore of cliffed coast indicate recession of shoreline. Mass wasting, mudslide and mudflow type of cliff failures are common in permeable to semi-permeable rocks, whereas rotational sliding, rockfall and toppling failure are found in hard rock cliffs. Retreat of cliff sections are induced by natural or anthropogenic activities or both. Rate of recession vary from a few centimetres to one metre/year depending upon the nature of lithology, structures and recession agents acting upon the cliffs. Various methods of cliff protection for e.g. hard structures—revetments, groins, seawalls, breakwater and jetties—and soft measures—artificial reefs/marsh creation, floating breakwaters, beach nourishment, beach scraping and vegetation planting—are suggested.

  7. Formation Mechanism of Type IV Failure in High Cr Ferritic Heat-Resistant Steel-Welded Joint

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Tsukamoto, S.; Shirane, T.; Abe, F.

    2013-10-01

    The mechanism of type IV failure has been investigated by using a conventional 9Cr ferritic heat-resistant steel Gr.92. In order to clarify the main cause of type IV failure, different heat treatments were performed on the base metal in order to change the prior austenite grain (PAG) size and precipitate distribution after applying the heat-affected zone (HAZ) simulated thermal cycle at the peak temperature of around A c3 ( A c3 HAZ thermal cycle) and postweld heat treatment (PWHT). The microstructural evolution during the A c3 HAZ thermal cycle and PWHT was investigated by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), electron probe microanalysis (EPMA), and transmission electron microscope (TEM). It was found that M23C6 carbides were scarcely precipitated at the newly formed fine PAG, block, and lath boundaries in A c3 HAZ-simulated Gr.92, because the carbide forming elements such as Cr and C were segregated at the former PAG and block boundaries of the base metal. On the other hand, if all the boundaries were covered by sufficient M23C6 carbides by homogenization of the alloying elements prior to applying the HAZ thermal cycle, the creep strength was much improved even if the fine PAG was formed. From these results, it is concluded that fine-grained microstructure cannot account for the occurrence of type IV failure, and it only has a small effect during long-term creep. The most important factor is the precipitate formation behavior at various boundaries. Without sufficient boundary strengthening by precipitates, the microstructure of A c3 HAZ undergoes severe changes even during PWHT and causes premature failure during creep.

  8. Applicability of failure criteria and empirical relations of mechanical rock properties from outcrop analogue samples for wellbore stability analyses

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2013-12-01

    Knowledge of failure criteria, Young's modulus and uniaxial and tensile strengths, are important to avoid borehole instabilities and adapt the drilling plan on rock mechanical conditions. By this means, a considerable reduction of the total drilling costs can be achieved. This is desirable to enlarge the profit margin of geothermal projects which is rather small compared with hydrocarbon projects. Because core material is rare we aim at predicting in situ rock properties from outcrop analogue samples which are easy and cheap to provide. The comparability of properties determined from analogue samples with samples from depths is analysed by performing conventional triaxial tests, uniaxial compressive strength tests and Brazilian tests of both quarry and equivalent core samples. Equivalent means that the quarry sample is of the same stratigraphic age and of comparable sedimentary facies and composition as the associated core sample. We determined the parameters uniaxial compressive strength (UCS), Young's modulus, and tensile strength for 35 rock samples from quarries and 14 equivalent core samples from the North German Basin. A subgroup of these samples, consisting of one volcanic rock sample, three sandstone and three carbonate samples, was used for triaxial tests. In all cases, comparability of core samples with quarry samples is evaluated using thin section analyses. For UCS versus Young's modulus and tensile strengths, linear- and non-linear regression analyses were performed. We repeat regression separately for clastic rock samples or carbonate rock samples only as well as for quarry samples or core samples only. Empirical relations have high statistical significance and properties of core samples lie within 90% prediction bands of developed regression functions of quarry samples. With triaxial tests we determined linearized Mohr-Coulomb failure criteria, expressed in both principal stresses and shear and normal stresses, for quarry samples. Comparison with

  9. IMPERMEABLE THIN Al{sub 2}O{sub 3} OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2003-12-16

    To improve the hot corrosion resistance of YSZ thermal barrier coatings, a 25 {micro}m and a 2 {micro}m thick Al{sub 2}O{sub 3} overlay were deposited by HVOF thermal spray and by sol-gel coating method, respectively, onto to the surface of YSZ coating. Indenter test was employed to investigate the spalling of YSZ with and without Al{sub 2}O{sub 3} overlay after hot corrosion. The results showed that Al{sub 2}O{sub 3} overlay acted as a barrier against the infiltration of the molten salt into the YSZ coating during exposure, thus significantly reduced the amount of M-phase of ZrO{sub 2} in YSZ coating. However, a thick Al{sub 2}O{sub 3} overlay was harmful for TBC by increasing compressive stress which causes crack and spalling of YSZ coating. As a result, a dense and thin Al{sub 2}O{sub 3} overlay is critical for simultaneously preventing YSZ from hot corrosion and spalling. In the next reporting period, we will measure or calculate the residue stress within Al{sub 2}O{sub 3} overlay and YSZ coating to study the mechanism of effect of Al{sub 2}O{sub 3} overlay on spalling of YSZ coating.

  10. Levels of flame retardants HBCD, TBBPA and TBC in surface soils from an industrialized region of East China.

    PubMed

    Tang, Jianfeng; Feng, Jiayong; Li, Xinhu; Li, Gang

    2014-05-01

    Hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA) are of increasing concern because of their potential environmental persistence, bioaccumulation and toxicity. Tris-(2,3-dibromopropyl)isocyanurate (TBC) is another brominated flame retardant (BFR) which has recently been found in the environment and begun to attract attention. The objective of this study is to determine the concentration of these three BFRs in surface soil samples collected from a heavily industrialized and urbanized region in East China. Levels of ∑HBCDs ranged from below detection limits (0.020 ng g(-1)) to 102.6 ng g(-1) on a dry weight basis (dw) with a median level of 15.8 ng g(-1) dw. For TBBPA, the concentration ranged from below detection limits (0.025 ng g(-1)) to 78.6 ng g(-1) dw with a median level of 9.17 ng g(-1) dw. TBC was found at relatively lower concentrations ranging from below detection limits (0.024 ng g(-1)) to 16.4 ng g(-1) dw with a median level of 0.95 ng g(-1) dw. The concentrations of these three BFRs are significantly positively correlated, indicating a common source. Variable BFRs levels were found in different types of soils, with significantly higher concentrations observed at waste dumping sites and industrial areas. The diastereoisomer profiles of HBCDs in most of the soil samples differed from those of the commercial products. The mass inventories of HBCDs, TBBPA and TBC in this region gave preliminarily estimates of 6.68, 2.67 and 0.85 kg, respectively. Therefore, the ubiquitous contamination of soils by these BFRs may well reflect their widespread usage in the study area.

  11. AN INVESTIGATION OF THE MECHANICS OF FAILURE IN GLASS FIBER REINFORCED PLASTICS.

    DTIC Science & Technology

    COMPOSITE MATERIALS, *PLASTICS, FILAMENT WOUND CONSTRUCTION, GLASS TEXTILES, REINFORCING MATERIALS, FRACTURE(MECHANICS), FILAMENTS, GLASS , SURFACE PROPERTIES, EPOXY RESINS, TOUGHNESS, MOISTURE, TENSILE PROPERTIES.

  12. Acoustic emission and acousto-ultrasonic signature analysis of failure mechanisms in carbon fiber reinforced polymer materials

    NASA Astrophysics Data System (ADS)

    Carey, Shawn Allen

    Fiber reinforced polymer composite materials, particularly carbon (CFRPs), are being used for primary structural applications, particularly in the aerospace and naval industries. Advantages of CFRP materials, compared to traditional materials such as steel and aluminum, include: light weight, high strength to weight ratio, corrosion resistance, and long life expectancy. A concern with CFRPs is that despite quality control during fabrication, the material can contain many hidden internal flaws. These flaws in combination with unseen damage due to fatigue and low velocity impact have led to catastrophic failure of structures and components. Therefore a large amount of research has been conducted regarding nondestructive testing (NDT) and structural health monitoring (SHM) of CFRP materials. The principal objective of this research program was to develop methods to characterize failure mechanisms in CFRP materials used by the U.S. Army using acoustic emission (AE) and/or acousto-ultrasonic (AU) data. Failure mechanisms addressed include fiber breakage, matrix cracking, and delamination due to shear between layers. CFRP specimens were fabricated and tested in uniaxial tension to obtain AE and AU data. The specimens were designed with carbon fibers in different orientations to produce the different failure mechanisms. Some specimens were impacted with a blunt indenter prior to testing to simulate low-velocity impact. A signature analysis program was developed to characterize the AE data based on data examination using visual pattern recognition techniques. It was determined that it was important to characterize the AE event , using the location of the event as a parameter, rather than just the AE hit (signal recorded by an AE sensor). A back propagation neural network was also trained based on the results of the signature analysis program. Damage observed on the specimens visually with the aid of a scanning electron microscope agreed with the damage type assigned by the

  13. Biofilms: An Underappreciated Mechanism of Treatment Failure and Recurrence in Vaginal Infections.

    PubMed

    Muzny, Christina A; Schwebke, Jane R

    2015-08-15

    Biofilms are microbial communities of surface-attached cells embedded in a self-produced extracellular matrix. They are of major medical significance because they decrease susceptibility to antimicrobial agents and enhance the spread of antimicrobial resistance. Biofilm-associated bacterial and fungal microorganisms have increasingly been recognized to play a role in multiple infectious diseases, particularly in their persistence and recurrence. More recently, biofilms have also been implicated in vaginal infections, notably bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC), particularly in the setting of treatment failure and recurrence. The purpose of this review is to discuss the impact of biofilms on the management and treatment of BV and recurrent VVC and highlight the need for additional research and development of novel therapeutics targeting pathogenic vaginal biofilms.

  14. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1984-01-01

    Research on the reliability of terrestrial solar cells was performed to identify failure/degradation modes affecting solar cells and to relate these to basic physical, chemical, and metallurgical phenomena. Particular concerns addressed were the reliability attributes of individual single crystalline, polycrystalline, and amorphous thin film silicon cells. Results of subjecting different types of crystalline cells to the Clemson accelerated test schedule are given. Preliminary step stress results on one type of thin film amorphous silicon (a:Si) cell indicated that extraneous degradation modes were introduced above 140 C. Also described is development of measurement procedures which are applicable to the reliability testing of a:Si solar cells as well as an approach to achieving the necessary repeatability of fabricating a simulated a:Si reference cell from crystalline silicon photodiodes.

  15. The increasing importance of percutaneous mechanical circulatory assist device therapy in heart failure management

    PubMed Central

    Weis, Ricardo A.; Devaleria, Patrick A.; Koushik, Sarang; Ramakrishna, Harish

    2015-01-01

    Introduction: Advances in medical and surgical care have made it possible for an increasing number of patients with Congenital Heart disease (CHD) to live into adulthood. Transposition of the great vessels (TGV) is the most common cyanotic congenital cardiac disease where the right ventricle serves as systemic ventricle. It is not uncommon for these patients to have systemic ventricular failure requiring transplantation. Study Design: Hemodynamic decompensation in these patients can be swift and difficult to manage. Increasingly percutaneous LVAD's such as the Impella (Abiomed, Mass, USA) are gaining popularity in these situations owing to their relative ease of placement, both in and outside of the operating room. Conclusion: In this paper we demonstrate that Impella (IMP) CP placement through the axillary artery approach shows to be suitable option for short term cardiac support and improvement of end organ perfusion in anticipation of cardiac transplantation. PMID:26440230

  16. Barrier properties and failure mechanism of Ta-Si-N thin films for Cu interconnection

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Jik; Suh, Bong-Seok; Kwon, Myoung Seok; Park, Chong-Ook

    1999-02-01

    Cosputtered Ta-Si-N amorphous films of ten different compositions were investigated as a barrier material for Cu interconnection. The films of relatively low nitrogen content (<47 at. %) undergo an abrupt failure with the formation of tantalum silicides and copper silicide between Si and Cu during annealing. Ta43Si4N53 thin film is readily crystallized into TaNx in spite of a remarkable chemical stability with Cu. The films containing nitrogen more than 51 at. % are sacrificial barriers which show the formation of Cu3Si phase at Ta-Si-N/Cu interface even before the films crystallize to form tantalum silicide. According to electrical tests, the barriers which show the sacrificial characteristics are most effective and show no electrical degradation even after annealing at 500 °C for an hour in Si/Cu and 525 °C for an hour in SiO2/Cu metallization.

  17. Additive Manufacturing of Advanced High Temperature Masking Fixtures for EBPVD TBC Coating

    SciTech Connect

    List, III, Frederick Alyious; Feuerstein, Albert; Dehoff, Ryan; Kirka, Michael; Carver, Keith

    2016-03-30

    The purpose of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Praxair Surface Technologies, Inc. (PST) and Oak Ridge National Laboratory (ORNL) was to develop an additive manufacturing process to fabricate next generation high temperature masking fixtures for coating of turbine airfoils with ceramic Thermal Barrier Coatings (TBC) by the Electron Beam Physical Vapor Deposition (EBPVD) process. Typical masking fixtures are sophisticated designs and require complex part manipulation in order to achieve the desired coating distribution. Fixtures are typically fabricated from high temperature nickel (Ni) based superalloys. The fixtures are fabricated from conventional processes by welding of thin sheet material into a complex geometry, to decrease the weight load for the manipulator and to reduce the thermal mass of the fixture. Recent attempts have been made in order to fabricate the fixtures through casting, but thin walled sections are difficult to cast and have high scrap rates. This project focused on understanding the potential for fabricating high temperature Ni based superalloy fixtures through additive manufacturing. Two different deposition processes; electron beam melting (EBM) and laser powder bed fusion were evaluated to determine the ideal processing route of these materials. Two different high temperature materials were evaluated. The high temperature materials evaluated were Inconel 718 and another Ni base alloy, designated throughout the remainder of this document as Alloy X, as the alloy composition is sensitive. Inconel 718 is a more widely utilized material for additive manufacturing although it is not currently the material utilized for current fixtures. Alloy X is the alloy currently used for the fixtures, but is not a commercially available alloy for additive manufacturing. Praxair determined it was possible to build the fixture using laser powder bed technology from Inconel 718. ORNL fabricated the fixture

  18. Heart Failure

    MedlinePlus

    ... version of this page please turn Javascript on. Heart Failure What is Heart Failure? In heart failure, the heart cannot pump enough ... failure often experience tiredness and shortness of breath. Heart Failure is Serious Heart failure is a serious and ...

  19. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content.

    PubMed

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J; Buehler, Markus J

    2016-02-01

    Mineralized collagen fibrils are composed of tropocollagen molecules and mineral crystals derived from hydroxyapatite to form a composite material that combines optimal properties of both constituents and exhibits incredible strength and toughness. Their complex hierarchical structure allows collagen fibrils to sustain large deformation without breaking. In this study, we report a mesoscale model of a single mineralized collagen fibril using a bottom-up approach. By conserving the three-dimensional structure and the entanglement of the molecules, we were able to construct finite-size fibril models that allowed us to explore the deformation mechanisms which govern their mechanical behavior under large deformation. We investigated the tensile behavior of a single collagen fibril with various intrafibrillar mineral content and found that a mineralized collagen fibril can present up to five different deformation mechanisms to dissipate energy. These mechanisms include molecular uncoiling, molecular stretching, mineral/collagen sliding, molecular slippage, and crystal dissociation. By multiplying its sources of energy dissipation and deformation mechanisms, a collagen fibril can reach impressive strength and toughness. Adding mineral into the collagen fibril can increase its strength up to 10 times and its toughness up to 35 times. Combining crosslinks with mineral makes the fibril stiffer but more brittle. We also found that a mineralized fibril reaches its maximum toughness to density and strength to density ratios for a mineral density of around 30%. This result, in good agreement with experimental observations, attests that bone tissue is optimized mechanically to remain lightweight but maintain strength and toughness.

  20. Exercise alleviates lipid-induced insulin resistance in human skeletal muscle-signaling interaction at the level of TBC1 domain family member 4.

    PubMed

    Pehmøller, Christian; Brandt, Nina; Birk, Jesper B; Høeg, Louise D; Sjøberg, Kim A; Goodyear, Laurie J; Kiens, Bente; Richter, Erik A; Wojtaszewski, Jørgen F P

    2012-11-01

    Excess lipid availability causes insulin resistance. We examined the effect of acute exercise on lipid-induced insulin resistance and TBC1 domain family member 1/4 (TBCD1/4)-related signaling in skeletal muscle. In eight healthy young male subjects, 1 h of one-legged knee-extensor exercise was followed by 7 h of saline or intralipid infusion. During the last 2 h, a hyperinsulinemic-euglycemic clamp was performed. Femoral catheterization and analysis of biopsy specimens enabled measurements of leg substrate balance and muscle signaling. Each subject underwent two experimental trials, differing only by saline or intralipid infusion. Glucose infusion rate and leg glucose uptake was decreased by intralipid. Insulin-stimulated glucose uptake was higher in the prior exercised leg in the saline and the lipid trials. In the lipid trial, prior exercise normalized insulin-stimulated glucose uptake to the level observed in the resting control leg in the saline trial. Insulin increased phosphorylation of TBC1D1/4. Whereas prior exercise enhanced TBC1D4 phosphorylation on all investigated sites compared with the rested leg, intralipid impaired TBC1D4 S341 phosphorylation compared with the control trial. Intralipid enhanced pyruvate dehydrogenase (PDH) phosphorylation and lactate release. Prior exercise led to higher PDH phosphorylation and activation of glycogen synthase compared with resting control. In conclusion, lipid-induced insulin resistance in skeletal muscle was associated with impaired TBC1D4 S341 and elevated PDH phosphorylation. The prophylactic effect of exercise on lipid-induced insulin resistance may involve augmented TBC1D4 signaling and glycogen synthase activation.

  1. Mechanisms of blunted muscle vasodilation during peripheral chemoreceptor stimulation in heart failure patients.

    PubMed

    Nazaré Nunes Alves, Maria Janieire; Alves, M J N N; dos Santos, Marcelo Rodrigues; Nobre, Thais Simões; Martinez, Daniel Godoy; Martinez, D G; Pereira Barretto, Antonio Carlos; Brum, Patricia Chakur; Rondon, Maria Urbana P B; Middlekauff, Holly R; Negrão, Carlos Eduardo

    2012-09-01

    We described recently that systemic hypoxia provokes vasoconstriction in heart failure (HF) patients. We hypothesized that either the exaggerated muscle sympathetic nerve activity and/or endothelial dysfunction mediate the blunted vasodilatation during hypoxia in HF patients. Twenty-seven HF patients and 23 age-matched controls were studied. Muscle sympathetic nerve activity was assessed by microneurography and forearm blood flow (FBF) by venous occlusion plethysmography. Peripheral chemoreflex control was evaluated through the inhaling of a hypoxic gas mixture (10% O(2) and 90% N(2)). Basal muscle sympathetic nerve activity was greater and basal FBF was lower in HF patients versus controls. During hypoxia, muscle sympathetic nerve activity responses were greater in HF patients, and forearm vasodilatation in HF was blunted versus controls. Phentolamine increased FBF responses in both groups, but the increase was lower in HF patients. Phentolamine and N(G)-monomethyl-l-arginine infusion did not change FBF responses in HF but markedly blunted the vasodilatation in controls. FBF responses to hypoxia in the presence of vitamin C were unchanged and remained lower in HF patients versus controls. In conclusion, muscle vasoconstriction in response to hypoxia in HF patients is attributed to exaggerated reflex sympathetic nerve activation and blunted endothelial function (NO activity). We were unable to identify a role for oxidative stress in these studies.

  2. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Astrophysics Data System (ADS)

    Lathrop, J. W.

    1986-09-01

    This is the final report of a reliability research program to study the response of amorphous silicon colar cells to accelerated temperature testing. The goal of the research was to utilize accelerated testing to identify failure/degradation modes and to relate them to basic physical, chemical, and metallurgical phenomena. Four types of single junction commercial modules were subjected to 140 C testing, both in the dark and under illuminated conditions. The before and after electrical characteristics of individual cells were measured and compared and correlated with physical evidence. A fifth module type could not be tested because of poor adherence of the films to the glass superstrate. A short term effect of stressing was noted which dramatically improved cells with low Voc on one type of construction. All cells eventually showed long term irreversible degradation, but the time to 50% Pm reduction varied by as much as two orders of magnitude depending on construction. No basic difference could be detected between degradation under illuminated or non-illuminated conditions, when cells were either open or short circuited. Comparison with one type of tendem cell and with published results of Japanese cell testing indicated the marked superiority of the tandem cell to all other types. Cells were examined physically by optical, IR, and scanning electron microscopy and by Auger spectroscopy, spectroscopy, secondary ion mass spectroscopy, and energy dispersive x-ray analysis. The long term degradation was felt to be due to localized penetration of aluminum through the amorphous film.

  3. Anemia and iron deficiency in heart failure: mechanisms and therapeutic approaches.

    PubMed

    van Veldhuisen, Dirk J; Anker, Stefan D; Ponikowski, Piotr; Macdougall, Iain C

    2011-05-31

    Anemia and iron deficiency are common in patients with heart failure (HF), and are associated with worse symptoms and adverse outcomes in this population. Although the two can occur together, anemia in HF is often not caused by iron deficiency, and iron deficiency can be present without causing anemia. Erythropoiesis-stimulating agents have been investigated extensively in the past few years and might be of benefit in patients with HF and anemia. However, concerns have arisen regarding the safety of erythropoiesis-stimulating agents in patients with chronic kidney disease and so the results of a large mortality trial are eagerly awaited to provide information on safety in patients with HF. Iron supplementation or replacement is a much older treatment option for patients with HF and anemia, but questions about the safety of intravenous iron, and absorption problems with oral formulations have prevented its widespread use to date. In the past few years, however, new data on the importance of iron deficiency in HF have become available, and a number of studies with intravenous iron have shown promising results. Therefore, this treatment approach is likely to become an attractive option for patients with HF and iron deficiency, both with and without anemia.

  4. APS TBC performance on directionally-solidified superalloy substrates with HVOF NiCoCrAlYHfSi bond coatings

    DOE PAGES

    Lance, Michael J.; Unocic, Kinga A.; Haynes, James A.; ...

    2015-09-04

    Directionally-solidified (DS) superalloy components with advanced thermal barrier coatings (TBC) to lower the metal operating temperature have the potential to replace more expensive single crystal superalloys for large land-based turbines. In order to assess relative TBC performance, furnace cyclic testing was used with superalloys 1483, X4 and Hf-rich DS 247 substrates and high velocity oxygen fuel (HVOF)-NiCoCrAlYHfSi bond coatings at 1100 °C with 1-h cycles in air with 10% H2O. With these coating and test conditions, there was no statistically-significant effect of substrate alloy on the average lifetime of the air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) top coatings onmore » small coupons. Using photo-stimulated luminescence piezospectroscopy maps at regular cycling intervals, the residual compressive stress in the α-Al2O3 scale underneath the YSZ top coating and on a bare bond coating was similar for all three substrates and delaminations occurred at roughly the same rate and frequency. As a result, x-ray fluorescence (XRF) measurements collected from the bare bond coating surface revealed higher Ti interdiffusion occurring with the 1483 substrate, which contained the highest Ti content.« less

  5. APS TBC performance on directionally-solidified superalloy substrates with HVOF NiCoCrAlYHfSi bond coatings

    SciTech Connect

    Lance, Michael J.; Unocic, Kinga A.; Haynes, James A.; Pint, Bruce A.

    2015-09-04

    Directionally-solidified (DS) superalloy components with advanced thermal barrier coatings (TBC) to lower the metal operating temperature have the potential to replace more expensive single crystal superalloys for large land-based turbines. In order to assess relative TBC performance, furnace cyclic testing was used with superalloys 1483, X4 and Hf-rich DS 247 substrates and high velocity oxygen fuel (HVOF)-NiCoCrAlYHfSi bond coatings at 1100 °C with 1-h cycles in air with 10% H2O. With these coating and test conditions, there was no statistically-significant effect of substrate alloy on the average lifetime of the air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) top coatings on small coupons. Using photo-stimulated luminescence piezospectroscopy maps at regular cycling intervals, the residual compressive stress in the α-Al2O3 scale underneath the YSZ top coating and on a bare bond coating was similar for all three substrates and delaminations occurred at roughly the same rate and frequency. As a result, x-ray fluorescence (XRF) measurements collected from the bare bond coating surface revealed higher Ti interdiffusion occurring with the 1483 substrate, which contained the highest Ti content.

  6. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content

    PubMed Central

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J

    2016-01-01

    ABSTRACT Mineralized collagen fibrils are composed of tropocollagen molecules and mineral crystals derived from hydroxyapatite to form a composite material that combines optimal properties of both constituents and exhibits incredible strength and toughness. Their complex hierarchical structure allows collagen fibrils to sustain large deformation without breaking. In this study, we report a mesoscale model of a single mineralized collagen fibril using a bottom‐up approach. By conserving the three‐dimensional structure and the entanglement of the molecules, we were able to construct finite‐size fibril models that allowed us to explore the deformation mechanisms which govern their mechanical behavior under large deformation. We investigated the tensile behavior of a single collagen fibril with various intrafibrillar mineral content and found that a mineralized collagen fibril can present up to five different deformation mechanisms to dissipate energy. These mechanisms include molecular uncoiling, molecular stretching, mineral/collagen sliding, molecular slippage, and crystal dissociation. By multiplying its sources of energy dissipation and deformation mechanisms, a collagen fibril can reach impressive strength and toughness. Adding mineral into the collagen fibril can increase its strength up to 10 times and its toughness up to 35 times. Combining crosslinks with mineral makes the fibril stiffer but more brittle. We also found that a mineralized fibril reaches its maximum toughness to density and strength to density ratios for a mineral density of around 30%. This result, in good agreement with experimental observations, attests that bone tissue is optimized mechanically to remain lightweight but maintain strength and toughness. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR). PMID:26866939

  7. Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model

    NASA Astrophysics Data System (ADS)

    Dou, Jianhong; Xia, Ling; Zhang, Yu; Shou, Guofa; Wei, Qing; Liu, Feng; Crozier, Stuart

    2009-01-01

    understanding of the mechanical implications of congestive heart failure (CHF) caused by BBB.

  8. Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model.

    PubMed

    Dou, Jianhong; Xia, Ling; Zhang, Yu; Shou, Guofa; Wei, Qing; Liu, Feng; Crozier, Stuart

    2009-01-21

    understanding of the mechanical implications of congestive heart failure (CHF) caused by BBB.

  9. Risk Analysis and Prediction of Floor Failure Mechanisms at Longwall Face in Parvadeh-I Coal Mine using Rock Engineering System (RES)

    NASA Astrophysics Data System (ADS)

    Aghababaei, Sajjad; Saeedi, Gholamreza; Jalalifar, Hossein

    2016-05-01

    The floor failure at longwall face decreases productivity and safety, increases operation costs, and causes other serious problems. In Parvadeh-I coal mine, the timber is used to prevent the puncture of powered support base into the floor. In this paper, a rock engineering system (RES)-based model is presented to evaluate the risk of floor failure mechanisms at the longwall face of E 2 and W 1 panels. The presented model is used to determine the most probable floor failure mechanism, effective factors, damaged regions and remedial actions. From the analyzed results, it is found that soft floor failure is dominant in the floor failure mechanism at Parvadeh-I coal mine. The average of vulnerability index (VI) for soft, buckling and compressive floor failure mechanisms was estimated equal to 52, 43 and 30 for both panels, respectively. By determining the critical VI for soft floor failure mechanism equal to 54, the percentage of regions with VIs beyond the critical VI in E 2 and W 1 panels is equal to 65.5 and 30, respectively. The percentage of damaged regions showed that the excess amount of used timber to prevent the puncture of weak floor below the powered support base is equal to 4,180,739 kg. RES outputs and analyzed results showed that setting and yielding load of powered supports, length of face, existent water at face, geometry of powered supports, changing the cutting pattern at longwall face and limiting the panels to damaged regions with supercritical VIs could be considered to control the soft floor failure in this mine. The results of this research could be used as a useful tool to identify the damaged regions prior to mining operation at longwall panel for the same conditions.

  10. Acoustic Emission Determination of Deformation Mechanisms Leading to Failure of Naval Alloys. Volume 2

    DTIC Science & Technology

    1983-05-01

    Emission Laser Beam Interferometer HY80 , 100, 130 Steels Mechanical Deformation Nondestructive Evaluation 2. ABSTRACT (Conetnue an rovere eli if necoo y...publication, J. Applied Phys.). 43. A. Peterlin, B.B. Djordjvic, J.C. Murphy, R.E. Green, "Acoustic Emission During Craze Forma- tion in Polymers

  11. When Public Acts Like Private: The Failure of Estonia's School Choice Mechanism

    ERIC Educational Resources Information Center

    Poder, Kaire; Lauri, Triin

    2014-01-01

    This article aims to show the segregating effect of the market-like matching of students and schools at the basic school level. The natural experiment case is Tallinn, the capital of Estonia. The current school choice mechanism applied in this case is based on entrance tests. There are increasingly over-subscribed intra-catchment area public…

  12. Microstructure and hydrogen induced failure mechanisms in iron-nickel weldments

    NASA Astrophysics Data System (ADS)

    Fenske, Jamey Alan

    A recent series of inexplicable catastrophic failures of specific subsea dissimilar metal Fe-Ni butter welds has illuminated a fundamental lack of understanding of both the microstructure created along the fusion line as well as its impact on the hydrogen susceptibility of these interfaces. In order to remedy this, the present work compares and contrasts the microstructure and hydrogen-induced fracture morphology of AISI 8630-IN 625 and F22-IN 625 dissimilar metal weld interfaces as a function of post-weld heat treatment duration. A variety of techniques were used to study details of both the microstructure and fracture morphology including optical microscopy, scanning electron microscopy, secondary ion mass spectrometry, transmission electron microscopy, electron backscatter diffraction, and energy dispersive x-ray spectroscopy. For both systems, the microstructure along the weld interface consisted of a coarse grain heat-affected zone in the Fe-base metal followed by discontinuous martensitic partially-mixed zones and a continuous partially-mixed zone on the Ni-side of the fusion line. Within the partially mixed zone on the Ni-side there exists a 200 nm-wide transition zone within a 20 mum-wide planar solidification region followed by a cellular dendritic region with Nb-Mo rich carbides decorating the dendrite boundaries. The size, area fraction and composition of the discontinuous PMZ were determined to be controlled by uneven mixing in the liquid weld pool influenced by convection currents produced from the welding procedure. The virgin martensitic microstructure produced in these regions is formed as consequence of a both the local composition and the post-weld heat treatment. The local higher Ni content results in these regions being retransformed into austenite during the post-weld heat treatment and then virgin martensite while cooling to room temperature. Although there were differences in the volume of the discontinuous partially mixed-zones, the major

  13. Exercise training enhances baroreflex sensitivity by an angiotensin II-dependent mechanism in chronic heart failure.

    PubMed

    Mousa, Tarek M; Liu, Dongmei; Cornish, Kurtis G; Zucker, Irving H

    2008-03-01

    Exercise training (EX) has become an important modality capable of enhancing the quality of life and survival of patients with chronic heart failure (CHF). Although 4 wk of EX in animals with CHF evoked a reduction in renal sympathetic nerve activity and ANG II plasma levels and an enhancement in baroreflex sensitivity at rest (Liu JL, Irvine S, Reid IA, Patel KP, Zucker IH, Circulation 102: 1854-1862, 2000; Liu JL, Kulakofsky J, Zucker IH, J Appl Physiol 92: 2403-2408, 2002), it is unclear whether these phenomena are causally related. CHF was induced in rabbits by ventricular pacing (360-380 beats/min) for 3 wk. CHF rabbits were EX for 4 wk at 15-18 m/min, 6 days/wk, 30-40 min/day. Three groups of rabbits were studied: CHF (with no EX), CHF-EX, and CHF-EX + ANG II infusion [in which ANG II levels were kept at or near levels observed in CHF (non-EX) rabbits by subcutaneous osmotic minipump infusion]. EX prevented the increase in plasma ANG II levels shown in CHF rabbits. CHF and CHF-EX + ANG II infusion rabbits had significantly depressed baroreflex sensitivity slopes (P < 0.01 for sodium nitroprusside and P < 0.001 for phenylephrine) and higher baseline renal sympathetic nerve activities than CHF-EX animals. EX downregulated mRNA and protein expression of ANG II type 1 receptors in the rostral ventrolateral medulla in CHF rabbits. This was prevented by ANG II infusion. These data are consistent with the view that the reduction in sympathetic nerve activity and the improvement in baroreflex function in CHF after EX are due to the concomitant reduction in ANG II and angiotensin receptors in the central nervous system.

  14. Weld Growth Mechanisms and Failure Behavior of Three-Sheet Resistance Spot Welds Made of 5052 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yan, Fuyu; Luo, Zhen; Chao, Y. J.; Ao, Sansan; Cui, Xuetuan

    2015-06-01

    This paper investigates the weld nugget formation in three-sheet aluminum alloy resistance spot welding. The nugget formation process in three equal thickness sheets and three unequal thickness sheets of 5052 aluminum alloy were studied. The results showed that the nugget was initially formed at the workpiece/workpiece interfaces (i.e., both upper interface and lower interface). The two small nuggets then grew along the radial direction and axial direction (welding direction) as the welding time increased. Eventually, the two nuggets fused into one large nugget. During the welding process, the Peltier effect between the Cu-Al caused the shift of the nugget in the welding direction. In addition, the mechanical strength and fracture mode of the weld nuggets at the upper and lower interfaces were also studied using tensile shear specimen configuration. Three failure modes were identified, namely interfacial, mixed, and pullout. The critical welding time and critical nugget diameter corresponding to the transitions of these modes were investigated. Finally, an empirical failure load formula for three-sheet weld similar to two-sheet spot weld was developed.

  15. Nuclear factor κB–inducing kinase activation as a mechanism of pancreatic β cell failure in obesity

    PubMed Central

    Malle, Elisabeth K.; Zammit, Nathan W.; Walters, Stacey N.; Koay, Yen Chin; Wu, Jianmin; Tan, Bernice M.; Villanueva, Jeanette E.; Brink, Robert; Loudovaris, Tom; Cantley, James; McAlpine, Shelli R.; Hesselson, Daniel

    2015-01-01

    The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB–inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell–intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity. PMID:26122662

  16. Procalcitonin Impairs Liver Cell Viability and Function In Vitro: A Potential New Mechanism of Liver Dysfunction and Failure during Sepsis?

    PubMed Central

    Ehler, Johannes; Wagner, Nana-Maria

    2017-01-01

    Purpose. Liver dysfunction and failure are severe complications of sepsis and result in poor outcome and increased mortality. The underlying pathologic mechanisms of hepatocyte dysfunction and necrosis during sepsis are only incompletely understood. Here, we investigated whether procalcitonin, a biomarker of sepsis, modulates liver cell function and viability. Materials and Methods. Employing a previously characterized and patented biosensor system evaluating hepatocyte toxicity in vitro, human hepatocellular carcinoma cells (HepG2/C3A) were exposed to 0.01–50 ng/mL procalcitonin for 2 × 72 h and evaluated for proliferation, necrosis, metabolic activity, cellular integrity, microalbumin synthesis, and detoxification capacity. Acetaminophen served as positive control. For further standardization, procalcitonin effects were confirmed in a cellular toxicology assay panel employing L929 fibroblasts. Data were analyzed using ANOVA/Tukey's test. Results. Already at concentrations as low as 0.25 ng/mL, procalcitonin induced HepG2/C3A necrosis (P < 0.05) and reduced metabolic activity, cellular integrity, synthesis, and detoxification capacity (all P < 0.001). Comparable effects were obtained employing L929 fibroblasts. Conclusion. We provide evidence for procalcitonin to directly impair function and viability of human hepatocytes and exert general cytotoxicity in vitro. Therapeutical targeting of procalcitonin could thus display a novel approach to reduce incidence of liver dysfunction and failure during sepsis and lower morbidity and mortality of septic patients. PMID:28255555

  17. Procalcitonin Impairs Liver Cell Viability and Function In Vitro: A Potential New Mechanism of Liver Dysfunction and Failure during Sepsis?

    PubMed

    Sauer, Martin; Doß, Sandra; Ehler, Johannes; Mencke, Thomas; Wagner, Nana-Maria

    2017-01-01

    Purpose. Liver dysfunction and failure are severe complications of sepsis and result in poor outcome and increased mortality. The underlying pathologic mechanisms of hepatocyte dysfunction and necrosis during sepsis are only incompletely understood. Here, we investigated whether procalcitonin, a biomarker of sepsis, modulates liver cell function and viability. Materials and Methods. Employing a previously characterized and patented biosensor system evaluating hepatocyte toxicity in vitro, human hepatocellular carcinoma cells (HepG2/C3A) were exposed to 0.01-50 ng/mL procalcitonin for 2 × 72 h and evaluated for proliferation, necrosis, metabolic activity, cellular integrity, microalbumin synthesis, and detoxification capacity. Acetaminophen served as positive control. For further standardization, procalcitonin effects were confirmed in a cellular toxicology assay panel employing L929 fibroblasts. Data were analyzed using ANOVA/Tukey's test. Results. Already at concentrations as low as 0.25 ng/mL, procalcitonin induced HepG2/C3A necrosis (P < 0.05) and reduced metabolic activity, cellular integrity, synthesis, and detoxification capacity (all P < 0.001). Comparable effects were obtained employing L929 fibroblasts. Conclusion. We provide evidence for procalcitonin to directly impair function and viability of human hepatocytes and exert general cytotoxicity in vitro. Therapeutical targeting of procalcitonin could thus display a novel approach to reduce incidence of liver dysfunction and failure during sepsis and lower morbidity and mortality of septic patients.

  18. Ultrastructural and cellular basis for the development of abnormal myocardial mechanics during the transition from hypertension to heart failure.

    PubMed

    Shah, Sanjiv J; Aistrup, Gary L; Gupta, Deepak K; O'Toole, Matthew J; Nahhas, Amanda F; Schuster, Daniel; Chirayil, Nimi; Bassi, Nikhil; Ramakrishna, Satvik; Beussink, Lauren; Misener, Sol; Kane, Bonnie; Wang, David; Randolph, Blake; Ito, Aiko; Wu, Megan; Akintilo, Lisa; Mongkolrattanothai, Thitipong; Reddy, Mahendra; Kumar, Manvinder; Arora, Rishi; Ng, Jason; Wasserstrom, J Andrew

    2014-01-01

    Although the development of abnormal myocardial mechanics represents a key step during the transition from hypertension to overt heart failure (HF), the underlying ultrastructural and cellular basis of abnormal myocardial mechanics remains unclear. We therefore investigated how changes in transverse (T)-tubule organization and the resulting altered intracellular Ca(2+) cycling in large cell populations underlie the development of abnormal myocardial mechanics in a model of chronic hypertension. Hearts from spontaneously hypertensive rats (SHRs; n = 72) were studied at different ages and stages of hypertensive heart disease and early HF and were compared with age-matched control (Wistar-Kyoto) rats (n = 34). Echocardiography, including tissue Doppler and speckle-tracking analysis, was performed just before euthanization, after which T-tubule organization and Ca(2+) transients were studied using confocal microscopy. In SHRs, abnormalities in myocardial mechanics occurred early in response to hypertension, before the development of overt systolic dysfunction and HF. Reduced longitudinal, circumferential, and radial strain as well as reduced tissue Doppler early diastolic tissue velocities occurred in concert with T-tubule disorganization and impaired Ca(2+) cycling, all of which preceded the development of cardiac fibrosis. The time to peak of intracellular Ca(2+) transients was slowed due to T-tubule disruption, providing a link between declining cell ultrastructure and abnormal myocardial mechanics. In conclusion, subclinical abnormalities in myocardial mechanics occur early in response to hypertension and coincide with the development of T-tubule disorganization and impaired intracellular Ca(2+) cycling. These changes occur before the development of significant cardiac fibrosis and precede the development of overt cardiac dysfunction and HF.

  19. Prospective observational cohort study of patients with weaning failure admitted to a specialist weaning, rehabilitation and home mechanical ventilation centre

    PubMed Central

    Mifsud Bonnici, Denise; Sanctuary, Thomas; Murphy, Patrick B; Steier, Joerg; Marino, Philip; Pattani, Hina; Creagh-Brown, Ben C; Hart, Nicholas

    2016-01-01

    Objectives According to National Health Service England (NHSE) specialist respiratory commissioning specification for complex home ventilation, patients with weaning failure should be referred to a specialist centre. However, there are limited data reporting the clinical outcomes from such centres. Setting Prospective observational cohort study of patients admitted to a UK specialist weaning, rehabilitation and home mechanical ventilation centre between February 2005 and July 2013. Participants 262 patients admitted with a median age of 64.2 years (IQR 52.6–73.2 years). 59.9% were male. Results 39.7% of patients had neuromuscular and/or chest wall disease, 21% were postsurgical, 19.5% had chronic obstructive pulmonary disease (COPD), 5.3% had obesity-related respiratory failure and 14.5% had other diagnoses. 64.1% of patients were successfully weaned, with 38.2% weaned fully from ventilation, 24% weaned to nocturnal non-invasive ventilation (NIV), 1.9% weaned to nocturnal NIV with intermittent NIV during the daytime. 21.4% of patients were discharged on long-term tracheostomy ventilation. The obesity-related respiratory failure group were most likely to wean (relative risk (RR) for weaning success=1.48, 95% CI 1.35 to 1.77; p<0.001), but otherwise weaning success rates did not significantly vary by diagnostic group. The median time-to-wean was 19 days (IQR 9–33) and the median duration of stay was 31 days (IQR 16–50), with no difference observed between the groups. Weaning centre mortality was 14.5%, highest in the COPD group (RR=2.15, 95% CI 1.19 to 3.91, p=0.012) and lowest in the neuromuscular and/or chest wall disease group (RR=0.34, 95% CI 0.16 to 0.75, p=0.007). Of all patients discharged alive, survival was 71.7% at 6 months and 61.8% at 12 months postdischarge. Conclusions Following NHSE guidance, patients with weaning delay and failure should be considered for transfer to a specialist centre where available, which can demonstrate

  20. Electronics Reliability Fracture Mechanics, Volume 1. Causes of Failures of Shop Replaceable Units and Hybrid Microcircuits

    DTIC Science & Technology

    1992-05-01

    mechanics based models are not yet available for PTHs, a Coffin - Manson strain-life approach was utilized for the CERT prediction. The calculated fatigue lives...found adhering to the edge of the die that were large enough to bridge the gap between the underside of the pin 8 bond wire and the adjacent...between the two points. The decade resistor was then switched until various amounts of current flowed through the parallel path to simulate a leakage

  1. Topical Report ''Corrosion Evaluation of LLW2 Skid-B Weld Failure Mechanisms (44139-92)

    SciTech Connect

    JI Young Chang

    2001-05-31

    An independent investigation of pipe welding leaks from the Low-Level Waste 2 (LLW2) Skid-B System for the possibilities of improper welding (IW), microbiologically influenced corrosion (MIC), sensitization, chloride pitting corrosion (CPC), and intergranular stress corrosion cracking (IGSCC) was conducted. The results show the prevailing mechanisms that caused the leaks are identified as IW, CPC, and the improper selection of weld filler material for the base metals in an environment of the North Plateau underground water. These is no evidence of MIC, sensitization, or IGSCC. The chloride pitting corrosion mechanism that took place at all the welds are also described. All the pipelines were replaced with polyvinyl chloride (PVC) for cost saving and the LLW2 Skid B System has been successfully operating since 1999. This report summarizes the findings and recommendations associated with preventive measures for future operations. The LLW2 Facility is a replacement for an existing waste treatment system. The Facility processes two different waste streams through two different ''skids.'' After seven months of operation, one of the two skids began to leak. Extensive evaluation of the corrosion mechanisms and the contributing factors are documented in this report. This report principally evaluates the physical and chemical configurations that led to the corrosion and leaks. Chloride pitting corrosion, exacerbated by weld defects, is the corrosion mechanism. The report also discusses fabrication and Quality Assurance (QA)/Quality Control (QC) actions that would have prevented their occurrence. It is believed that in the absence of either the defects or the chloride concentrations, corrosion would not have occurred. In developing the specification for processing skids to be used in the Facility, high chloride was not identified as a parameter of concern. As such, piping fabrication and inspection standards for the system did not identify more rigorous welding standards

  2. Lengthscale Issues in the Mechanical Behavior and Failure of Composite Structures

    DTIC Science & Technology

    2011-05-01

    forcing lengthscales and may include damage mechanisms and interactions associated with different lengthscales. The open-hole tension ( OHT ) specimens...detectable initiation of damage. All OHT specimens were to be tested at CRC-ACS. The ply-drop (PD) specimens were made with two different laminate stacking...project. An offset of 0.01 inches was used for the OHT specimens that were "virtually joined" during this work. For these cases, this offset achieved a

  3. Fatigue failure kinetics and structural changes in lead-free interconnects due to mechanical and thermal cycling

    NASA Astrophysics Data System (ADS)

    Fiedler, Brent Alan

    Environmental and human health concerns drove European parliament to mandate the Reduction of Hazardous Substances (RoHS) for electronics. This was enacted in July 2006 and has practically eliminated lead in solder interconnects. There is concern in the electronics packaging community because modern lead-free solder is rich in tin. Presently, near-eutectic tin-silver-copper solders are favored by industry. These solders are stiffer than the lead-tin near-eutectic alloys, have a higher melting temperature, fewer slip systems, and form intermetallic compounds (IMC) with Cu, Ni and Ag, each of which tend to have a negative effect on lifetime. In order to design more reliable interconnects, the experimental observation of cracking mechanisms is necessary for the correct application of existing theories. The goal of this research is to observe the failure modes resulting from mode II strain and to determine the damage mechanisms which describe fatigue failures in 95.5 Sn- 4.0 Ag - 0.5 Cu wt% (SAC405) lead-free solder interconnects. In this work the initiation sites and crack paths were characterized for SAC405 ball-grid array (BGA) interconnects with electroless-nickel immersion-gold (ENIG) pad-finish. The interconnects were arranged in a perimeter array and tested in fully assembled packages. Evaluation methods included monotonic and displacement controlled mechanical shear fatigue tests, and temperature cycling. The specimens were characterized using metallogaphy, including optical and electron microscopy as well as energy dispersive spectroscopy (EDS) and precise real-time electrical resistance structural health monitoring (SHM). In mechanical shear fatigue tests, strain was applied by the substrates, simulating dissimilar coefficients of thermal expansion (CTE) between the board and chip-carrier. This type of strain caused cracks to initiate in the soft Sn-rich solder and grow near the interface between the solder and intermetallic compounds (IMC). The growth near

  4. Mechanical approach in the management of advanced acute and chronic heart failure: the state of the art.

    PubMed

    El-Menyar, Ayman; Carr, Cornelia; AlKhulaifi, Abdulaziz

    2015-02-01

    Despite the progress in medical therapy, advanced heart failure (AHF) remains a global epidemic with high morbidity and mortality. Novel cardiac support strategies such as pharmacologic agents, mechanical circulatory support (MCS), and cell- or matrix-based therapies are promising for these patients. The indications, types, and timing of MCS implantation depend to a large extent on the presentation, clinical status of the patient, underlying etiology, and long-term prospects. The presence or absence of end-organ damage has a significant impact on prognosis following MCS initiation. Although many patients with acute AHF may have end-organ damage, their prospect of recovery, once appropriate therapy is instituted, is better than for patients who had AHF for longer periods of time. We consider the multidisciplinary approaches used for the management of AHF and the novel cardiac support strategies (eg, MCS). Appropriate selection of patient, device, time, and end point is essential for better outcomes.

  5. Determination of failure mechanisms for AlN-based microcantilevers with use of Twyman-Green interferometry

    NASA Astrophysics Data System (ADS)

    Gorecki, Christophe

    MEMS devices are exposed to a variety of environmental effects, making a prediction of operational reliability difficult. Here, we investigate environmental effects on properties of piezoelectrically actuated microcantilevers, where AlN is used as actuation material. The environmental effects to be considered include thermal and humid cycling, as well as harsh electrical loading performed under normal conditions. Investigated properties are defined for the static and dynamic behavior of microcantilevers. A Twyman-Green interferometer, operating in both stroboscopic regime and time-average interferometry mode, is used as a metrology tool. Monitoring the micromechanical behaviors of devices driven by AlN during the lifetime tests assists monitoring of their long-term stability. FEM calculation is also used to further explain various failure mechanisms.

  6. Physiologic benefits of pulsatile perfusion during mechanical circulatory support for the treatment of acute and chronic heart failure in adults.

    PubMed

    Guan, Yulong; Karkhanis, Tushar; Wang, Shigang; Rider, Alan; Koenig, Steven C; Slaughter, Mark S; El Banayosy, Aly; Undar, Akif

    2010-07-01

    A growing population experiencing heart failure (100,000 patients/year), combined with a shortage of donor organs (less than 2200 hearts/year), has led to increased and expanded use of mechanical circulatory support (MCS) devices. MCS devices have successfully improved clinical outcomes, which are comparable with heart transplantation and result in better 1-year survival than optimal medical management therapies. The quality of perfusion provided during MCS therapy may play an important role in patient outcomes. Despite demonstrated physiologic benefits of pulsatile perfusion, continued use or development of pulsatile MCS devices has been widely abandoned in favor of continuous flow pumps owing to the large size and adverse risks events in the former class, which pose issues of thrombogenic surfaces, percutaneous lead infection, and durability. Next-generation MCS device development should ideally implement designs that offer the benefits of rotary pump technology while providing the physiologic benefits of pulsatile end-organ perfusion.

  7. Effect of inclusion size on failure mechanism and mechanical properties of polymeric composites containing micro and nano particles

    NASA Astrophysics Data System (ADS)

    Cho, Jeong-Min

    The effect of particle size on the mechanical properties of polymeric composites was investigated experimentally and numerically. It was found from experiments that particle sizes at micro scale have little influence on the Young's modulus of the composite and that Young's modulus increases as the size of particles decreases at nano scale. It was also observed that tensile strength of the composite is significantly dependent on particle size. At 1 vol.% loading, the tensile strength increased as the particle size decreased. However, the trend for the composite with alumina nanoparticles of 3% volume fraction was found to be opposite. TEM and SEM micrographs showed higher likelihood of poor dispersions in the composite with 3 vol.% nanoparticles than that with 1 vol.%. Finite element analyses showed that total strain energy release rate for particle/matrix debonding growth decreases as particle size decreases and that sliding fracture mode becomes dominant as the debonding grows. It was found that interfacial fracture toughness does not depend on particle size in micron scale but increases substantially when the sliding fracture mode prevails. It was analyzed with molecular dynamics simulations that the Young's modulus enhancement by decrease of nanoparticle size may be attributed to stiff polymer layers around nanoparticles. It was also found that the stiff polymer layers around nanoparticle are more effective on improving the elastic modulus with smaller nanoparticles and stronger polymer-nanoparticle interactions.

  8. Function and failure of the fetal membrane: Modelling the mechanics of the chorion and amnion

    PubMed Central

    Oyen, Michelle L.; Phillips, Andrew T. M.; Nowlan, Niamh C.

    2017-01-01

    The fetal membrane surrounds the fetus during pregnancy and is a thin tissue composed of two layers, the chorion and the amnion. While rupture of this membrane normally occurs at term, preterm rupture can result in increased risk of fetal mortality and morbidity, as well as danger of infection in the mother. Although structural changes have been observed in the membrane in such cases, the mechanical behaviour of the human fetal membrane in vivo remains poorly understood and is challenging to investigate experimentally. Therefore, the objective of this study was to develop simplified finite element models to investigate the mechanical behaviour and rupture of the fetal membrane, particularly its constituent layers, under various physiological conditions. It was found that modelling the chorion and amnion as a single layer predicts remarkably different behaviour compared with a more anatomically-accurate bilayer, significantly underestimating stress in the amnion and under-predicting the risk of membrane rupture. Additionally, reductions in chorion-amnion interface lubrication and chorion thickness (reported in cases of preterm rupture) both resulted in increased membrane stress. Interestingly, the inclusion of a weak zone in the fetal membrane that has been observed to develop overlying the cervix would likely cause it to fail at term, during labour. Finally, these findings support the theory that the amnion is the dominant structural component of the fetal membrane and is required to maintain its integrity. The results provide a novel insight into the mechanical effect of structural changes in the chorion and amnion, in cases of both normal and preterm rupture. PMID:28350838

  9. Failure mode analysis and a mechanism for hot-ductility improvement in the Nb-microalloyed steel

    NASA Astrophysics Data System (ADS)

    Zarandi, Faramarz; Yue, Steven

    2004-12-01

    Loss of hot ductility at the straightening stage of the continuous casting of high-strength low-alloy steel is attributed to different microalloying elements, in particular, Nb. However, such elements are essential for the desired mechanical characteristics of the final product. Since the chemistry cannot be altered to alleviate the problem, thermomechanical processing was studied in order to improve the hot ductility. Two Nb-microalloyed steels, one also containing B, were examined. The thermal history occurring in the continuous casting process was taken into account as well. First, it was noticed that the steel with B has a higher hot ductility than the other after being subjected to in-situ melting followed by the thermal schedule. Grain boundary sliding was recognized as the failure mechanism. Then, the effect of deformation applied in the vicinity of the δ→ γ transformation, while the thermal schedule was being executed, was investigated. Such deformation appeared to improve the hot ductility remarkably. Finally, the mechanism of such improvement in the hot ductility was elaborated.

  10. Monitoring of temperature fatigue failure mechanism for polyvinyl alcohol fiber concrete using acoustic emission sensors.

    PubMed

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed.

  11. TBCs for Gas Turbines under Thermomechanical Loadings: Failure Behaviour and Life Prediction

    NASA Astrophysics Data System (ADS)

    Beck, T.; Trunova, O.; Herzog, R.; Singheiser, L.

    2012-10-01

    The present contribution gives an overview about recent research on a thermal barrier coating (TBC) system consisted of (i) an intermetallic MCrAlY-alloy Bondcoat (BC) applied by vacuum plasma spraying (VPS) and (ii) an Yttria Stabilised Zirconia (YSZ) top coat air plasma sprayed (APS) at Forschungszentrum Juelich, Institute of Energy and Climate Research (IEK-1). The influence of high temperature dwell time, maximum and minimum temperature on crack growth kinetics during thermal cycling of such plasma sprayed TBCs is investigated using infrared pulse thermography (IT), acoustic emission (AE) analysis and scanning electron microscopy. Thermocyclic life in terms of accumulated time at maximum temperature decreases with increasing high temperature dwell time and increases with increasing minimum temperature. AE analysis proves that crack growth mainly occurs during cooling at temperatures below the ductile-to-brittle transition temperature of the BC. Superimposed mechanical load cycles accelerate delamination crack growth and, in case of sufficiently high mechanical loadings, result in premature fatigue failure of the substrate. A life prediction model based on TGO growth kinetics and a fracture mechanics approach has been developed which accounts for the influence of maximum and minimum temperature as well as of high temperature dwell time with good accuracy in an extremely wide parameter range.

  12. Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.; Schneider, Felix M.; Schöll, Eckehard

    2008-06-01

    The stability of cortical function depends critically on proper regulation. Under conditions of migraine and stroke a breakdown of transmembrane chemical gradients can spread through cortical tissue. A concomitant component of this emergent spatio-temporal pattern is a depolarization of cells detected as slow voltage variations. The propagation velocity of ˜3mm/min indicates a contribution of diffusion. We propose a mechanism for spreading depolarizations (SD) that rests upon a nonlocal or noninstantaneous feedback in a reaction-diffusion system. Depending upon the characteristic space and time scales of the feedback, the propagation of cortical SD can be suppressed by shifting the bifurcation line, which separates the parameter regime of pulse propagation from the regime where a local disturbance dies out. The optimization of this feedback is elaborated for different control schemes and ranges of control parameters.

  13. Compression strength failure mechanisms in unidirectional composite laminates containing a hole

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.

    1993-01-01

    Experiments on graphite-epoxy laminated plates containing unloaded small holes show that these laminates are notch insensitive. That is, the uniaxial strength of these laminates with small holes exceeds the strength predicted by a point stress criterion using the stress concentration factor for the in-plane stress field. Laminates containing large holes exhibit notch sensitive behavior and consequently their strength is reasonably well predicted by the stress concentration effect. This hole size effect is manifested both in tension and in compression. Apparently, some mechanism must cause in-plane stress relief for laminates containing small holes. The purpose of this research was to study the influence of geometric nonlinearity on the micromechanical response of a filamentary composite material in the presence of a strain gradient caused by a discontinuity such as a hole. A mathematical model was developed at the micromechanical level to investigate this geometrically nonlinear effect.

  14. Post-instability in continuous systems. I - Failure of differentiability of solutions in continuum mechanics

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1982-01-01

    It is pointed out that mathematical models of continua are based on certain assumptions regarding functions which must be at least piece-wise differentiable. The assumption about smoothness of the functions makes it possible to use the mathematical technique of differentiable equations. However, this artificial mathematical limitation follows neither from the principles of mechanics nor from the definition of a continuum. The price paid for such a mathematical convenience is instability (in the class of smooth functions) of the solutions to the corresponding governing equations in some regions of the parameters. A new mathematical technique should, therefore, be developed to describe the solutions which are not necessarily differentiable. The present investigation is concerned with the criteria of applicability of the classical models of continua from the view point of stability of the corresponding solutions, postinstability models derived by reformulation of the original models, and postinstability models in enlarged classes of functions.

  15. A Reduced Order Model of Force Displacement Curves for the Failure of Mechanical Bolts in Tension.

    SciTech Connect

    Moore, Keegan J.; Brake, Matthew Robert

    2015-12-01

    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry causes issues when generating a mesh of the model. This report will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  16. Probing the failure mechanism of nanoscale LiFePO₄ for Li-ion batteries

    SciTech Connect

    Gu, Meng; Shi, Wei; Zheng, Jianming; Yan, Pengfei; Zhang, Ji-guang; Wang, Chongmin

    2015-05-18

    LiFePO4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) to study the gradual capacity fading mechanism of LiFePO4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding is of great importance for the design and improvement of new LiFePO4 cathode for high-energy and high-power rechargeable battery for electric transportation.

  17. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  18. Stability and mechanism of failure of The Barrier, southwest British Columbia

    NASA Astrophysics Data System (ADS)

    Schon, Peter

    The Barrier is a steep, 250 m-high escarpment of dacite in Garibaldi Provincial Park, British Columbia. The lava flow comprises four lobes, two of which (Lobes 3 and 4) came into contact with the late Pleistocene Cordilleran ice sheet. Lobe 3 was the source of a major landslide in 1855-1856 and a smaller event in 1977. This thesis investigates potential mechanisms responsible for landslides from The Barrier. Methods that I applied include magnetic surveys to determine the three-dimensional character of lava flows forming The Barrier, long-range photogrammetry to map the structure of the escarpment in digital terrain models, field mapping, distinct element modelling, and passive seismic landslide monitoring. Of particular importance to the stability of The Barrier are ice-contact structures in the volcanic rocks, which provide clues about emplacement environments. Results show that The Barrier should be considered potentially unstable and that past instability is intimately linked to structures produced by emplacement of the lavas against glacier ice. My work also provides new geophysical and geomechanical data for The Barrier. Keywords: The Barrier; landslide; rock fall; Garibaldi Provincial Park; Pleistocene; magnetic survey; photogrammetry; survey; UDEC; geophysics; modelling; distinct element code; Voronoi; tessellation; ice-contact volcanism.

  19. Mechanism Underlying Linezolid-induced Thrombocytopenia in a Chronic Kidney Failure Mouse Model

    PubMed Central

    Nishijo, Nao; Tsuji, Yasuhiro; Matsunaga, Kazuhisa; Kutsukake, Masahiko; Okazaki, Fumiyasu; Fukumori, Shiro; Kasai, Hidefumi; Hiraki, Yoichi; Sakamaki, Ippei; Yamamoto, Yoshihiro; Karube, Yoshiharu; To, Hideto

    2017-01-01

    Objective: To investigate the relationship between renal function and linezolid (LZD)-induced thrombocytopenia and elucidate the underlying mechanism using a chronic renal disease (CRD) mouse model. Materials and Methods: CRD was induced in 5-week-old male Institute of Cancer Research (ICR) mice by 5/6 nephrectomy. After this procedure, LZD (25 and 100 mg/kg) was administered intraperitoneally once every day for 28 days. Platelet counts, white blood cell (WBC) counts, and hematocrit (HCT) levels were measured every 7 days. 2-14C-thymidine (0.185 MBq) was administrated intravenously to LZD-administered mice to evaluate the thymidine uptake ability of bone marrow. Results: Platelet counts were significantly lower in the LZD-administered CRD group than in the LZD-nonadministered groups at 14, 21, and 28 days (P < 0.05); however, these changes were not observed in LZD-administered mice with normal renal function, regardless of the duration of LZD administration. No significant changes were observed in WBC counts or HCT levels in any LZD-administered CRD mouse. Moreover, radioactive levels in bone marrow were not significantly different in each group. Conclusions: These results indicate that LZD-induced decreases in platelet counts were enhanced by renal impairment in vivo, suggesting that LZD-induced thrombocytopenia is not caused by nonimmune-mediated bone marrow suppression.

  20. Damage and failure mechanisms of continuous glass fiber reinforced polyphenylene sulfide

    NASA Technical Reports Server (NTRS)

    Chen, F.; Hiltner, A.; Baer, E.

    1992-01-01

    The damage that accompanies flexural deformation of a unidirectional glass fiber composite of polyphenylene sulfide was examined by AE and SEM. These complementary techniques were used to identify damage mechanisms at the microscale and correlate them with the macroscopic stress state in four-point bending. The flexural stress-strain curve was nominally linear to about 1.0 percent strain, but the onset of damage detectable by AE occurred at 0.3 percent strain. Two peaks in the AE amplitude distribution were observed at 35 dB and 60 dB. Low-amplitude events were detected along the entire length of the specimen, and correlation with direct observations of damage made by deforming the composite on the SEM stage suggested that these events arose from matrix cracking and fiber debonding concentrated at flaws on the composite. High amplitude events occurred primarily in the region of highest flexural stress between the inner loading points. They were attributed to fracture of glass fibers on the tension side and surface damage on the compressive side.

  1. Stone orientation affects the mechanism of failure in artificial kidney stones subject to shock waves

    NASA Astrophysics Data System (ADS)

    van Cauwelaert, Javier; Cleveland, Robin O.

    2003-10-01

    Micro computed tomography (CT) imaging was used to follow the progressive development of cracks in artificial kidney stones. The artificial stones were made from U30 cement with a cylindrical shape (6.5 mm diameter and 8.5 mm long). The stones were held within a polypropylene vial in one of three orientations: vertical, horizontal, and angled at 45 deg. The stones were treated with an electromagnetic lithotripter and the initiation and growth of cracks was observed using microCT. The images show that the orientation of the stones with respect to the shock changes the dominant mechanism for fragmentation. Vertical stones developed a spall-like crack near the distal surface, which propagated from the surface to the interior of the stone. Initiation of a secondary spall-like crack was observed proximal to the first crack. Little surface damage was observed. Horizontal stones presented pitting in the proximal surface and erosion in lateral faces, indicating the action of cavitation. Angled stones presented both spall-like fracture in either the leading or the distal corners and surface damage (pitting) in the proximal surface. Experiments are being performed to follow the development of cracks in human kidney stones. [Work supported by the Whitaker Foundation.

  2. Physiological Correlation of Airway Pressure and Transpulmonary Pressure Stress Index on Respiratory Mechanics in Acute Respiratory Failure

    PubMed Central

    Pan, Chun; Chen, Lu; Zhang, Yun-Hang; Liu, Wei; Urbino, Rosario; Ranieri, V Marco; Qiu, Hai-Bo; Yang, Yi

    2016-01-01

    Background: Stress index at post-recruitment maneuvers could be a method of positive end-expiratory pressure (PEEP) titration in acute respiratory distress syndrome (ARDS) patients. However, airway pressure (Paw) stress index may not reflect lung mechanics in the patients with high chest wall elastance. This study was to evaluate the Paw stress index on lung mechanics and the correlation between Paw stress index and transpulmonary pressure (PL) stress index in acute respiratory failure (ARF) patients. Methods: Twenty-four ARF patients with mechanical ventilation (MV) were consecutively recruited from July 2011 to April 2013 in Zhongda Hospital, Nanjing, China and Ospedale S. Giovanni Battista-Molinette Hospital, Turin, Italy. All patients underwent MV with volume control (tidal volume 6 ml/kg) for 20 min. PEEP was set according to the ARDSnet study protocol. The patients were divided into two groups according to the chest wall elastance/respiratory system elastance ratio. The high elastance group (H group, n = 14) had a ratio ≥30%, and the low elastance group (L group, n = 10) had a ratio <30%. Respiratory elastance, gas-exchange, Paw stress index, and PL stress index were measured. Student's t-test, regression analysis, and Bland–Altman analysis were used for statistical analysis. Results: Pneumonia was the major cause of respiratory failure (71.0%). Compared with the L group, PEEP was lower in the H group (5.7 ± 1.7 cmH2O vs. 9.0 ± 2.3 cmH2O, P < 0.01). Compared with the H group, lung elastance was higher (20.0 ± 7.8 cmH2O/L vs. 11.6 ± 3.6 cmH2O/L, P < 0.01), and stress was higher in the L group (7.0 ± 1.9 vs. 4.9 ± 1.9, P = 0.02). A linear relationship was observed between the Paw stress index and the PL stress index in H group (R2= 0.56, P < 0.01) and L group (R2= 0.85, P < 0.01). Conclusion: In the ARF patients with MV, Paw stress index can substitute for PL to guide ventilator settings. Trial Registration: ClinicalTrials.gov NCT02196870 (https

  3. On the failure mechanism of chemically embrittled Cu3Au single crystals

    NASA Astrophysics Data System (ADS)

    Cassagne, T. B.; Flanagan, W. F.; Lichter, B. D.

    1986-04-01

    In order to distinguish between “true” transgranular stress-corrosion cracking (T-SCC) and the “chemical embrittlement” previously described for Cu3Au single crystals (Bakish, AIME Trans., 1957), copper-25 atomic percent gold single crystals were subject to constant deflection (a) while immersed in aqueous ferric chloride or (b) in air after undergoing stress-free corrosion for 10 and 30 days in aqueous ferric chloride. In the conventional stress-corrosion testing mode carried out at the corrosion potential and at applied anodic and cathodic overpotentials, SEM observation and microprobe analysis revealed that characteristic T-SCC fracture surfaces were produced without the occurrence of massive dealloying, at least over a 0.1 micrometer depth. For bending tests in air following stress-free corrosion at the corrosion potential, a 30-day sample was completely converted into a brittle, virtually pure gold “sponge” while retaining the external shape and orientation of the original alloy single crystal. The fracture surface of this sample revealed relatively flat facets separated by irregularly serrated steps, as are seen in conventional cleavage. However, the surface is porous with a mean pore size of ˜0.1 micrometer. For the 10-day sample, bending produced multiple cracks in a massively dealloyed layer (gold-rich sponge). Several of these cracks propagated into the unattacked, normally ductile alloy for distances up to ˜20 micrometers. Interpretation of these results leads to an alternative explanation for the “chemical embrittlement” previously observed and offers significant new insights on the mechanisms of T-SCC.

  4. Mechanical properties and shear failure surfaces of two alumina powders in triaxial compression

    SciTech Connect

    ZEUCH,DAVID H.; GRAZIER,J. MARK; ARGUELLO JR.,JOSE G.; EWSUK,KEVIN G.

    2000-04-24

    In the manufacture of ceramic components, near-net-shape parts are commonly formed by uniaxially pressing granulated powders in rigid dies. Density gradients that are introduced into a powder compact during press-forming often increase the cost of manufacturing, and can degrade the performance and reliability of the finished part. Finite element method (FEM) modeling can be used to predict powder compaction response, and can provide insight into the causes of density gradients in green powder compacts; however, accurate numerical simulations require accurate material properties and realistic constitutive laws. To support an effort to implement an advanced cap plasticity model within the finite element framework to realistically simulate powder compaction, the authors have undertaken a project to directly measure as many of the requisite powder properties for modeling as possible. A soil mechanics approach has been refined and used to measure the pressure dependent properties of ceramic powders up to 68.9 MPa (10,000 psi). Due to the large strains associated with compacting low bulk density ceramic powders, a two-stage process was developed to accurately determine the pressure-density relationship of a ceramic powder in hydrostatic compression, and the properties of that same powder compact under deviatoric loading at the same specific pressures. Using this approach, the seven parameters that are required for application of a modified Drucker-Prager cap plasticity model were determined directly. The details of the experimental techniques used to obtain the modeling parameters and the results for two different granulated alumina powders are presented.

  5. Mechanisms of High-Temperature Fatigue Failure in Alloy 800H

    NASA Technical Reports Server (NTRS)

    BhanuSankaraRao, K.; Schuster, H.; Halford, G. R.

    1996-01-01

    The damage mechanisms influencing the axial strain-controlled Low-Cycle Fatigue (LCF) behavior of alloy 800H at 850 C have been evaluated under conditions of equal tension/compression ramp rates (Fast-Fast (F-F): 4 X 10(sup -3)/s and Slow-Slow (S-S): 4 X 10(sup -5)/s) and asymmetrical ramp rates (Fast-Slow (F-S): 4 x 10(sup -3)/s / 4 X 10(sup -5/s and Slow-Fast (S-F): 4 X 10(sup -5) / 4 X 10(sup -3)/s) in tension and compression. The fatigue life, cyclic stress response, and fracture modes were significantly influenced by the waveform shape. The fatigue lives displayed by different loading conditions were in the following order: F-F greater than S-S greater than F-S greater than S-F. The fracture mode was dictated by the ramp rate adopted in the tensile direction. The fast ramp rate in the tensile direction led to the occurrence of transgranular crack initiation and propagation, whereas the slow ramp rate caused intergranular initiation and propagation. The time-dependent processes and their synergistic interactions, which were at the basis of observed changes in cyclic stress response and fatigue life, were identified. Oxidation, creep damage, dynamic strain aging, massive carbide precipitation, time-dependent creep deformation, and deformation ratcheting were among the several factors influencing cyclic life. Irrespective of the loading condition, the largest effect on life was exerted by oxidation processes. Deformation ratcheting had its greatest influence on life under asymmetrical loading conditions. Creep damage accumulated the greatest amount during the slow tensile ramp under S-F conditions.

  6. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    SciTech Connect

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in

  7. Evaluation of seawater exposure on mechanical properties and failure behavior of E-Glass/BMI composite for marine use

    NASA Astrophysics Data System (ADS)

    Zhao, Yian; Wang, Zhiying; Seah, Leong Keey; Chai, Gin Boay

    2015-03-01

    Since composite material is playing an increasingly important role in the marine and offshore drilling industry, it is essential to have a good understanding on degradation of the material in the seawater environment. This study investigates the influence of seawater exposure on the mechanical and failure behavior of E-Glass/BMI composite. The water diffusion behavior in the composite has been studied through immersing the specimens in seawater under different conditions. The diffusion rate accelerates with increase of temperature, and the material shows irreversible damage due to seawater absorption at the temperature of 80°C. It is also found that external stress would significantly increase the water absorption. The water uptake in the specimen at 50°C showed a two stage behavior dominated by Fickian law and polymeric relaxation respectively, and saturation was not achieved in 8 months. After diffusion, the Tg of the material is considerably lowered due to plasticization effect. However the effect was found to be reversible after drying the specimen. Based on the testing results of tensile, flexure and fatigue properties of the composites, it is concluded that seawater exposure especially at elevated temperature leads to significant degradation on mechanical properties of the composite. However, the flexural strength of BMI composite with seawater absorption becomes less susceptible to temperature change. It is also found that the seawater absorption doesn't show significant effect on the stiffness of the material.

  8. The gene expression signature of relapse in paediatric acute lymphoblastic leukaemia: implications for mechanisms of therapy failure.

    PubMed

    Beesley, Alex H; Cummings, Aaron J; Freitas, Joseph R; Hoffmann, Katrin; Firth, Martin J; Ford, Jette; de Klerk, Nicolas H; Kees, Ursula R

    2005-11-01

    Despite significant improvements in the treatment of childhood acute lymphoblastic leukaemia (ALL), the prognosis for relapsing patients remains poor. The aim of this study was to generate a transcriptional profile of relapsed ALL to increase our understanding of the mechanisms involved in therapy failure. RNA was extracted from 11 pairs of cryopreserved pre-B ALL bone marrow specimens taken from the same patients at diagnosis and relapse, and analysed using HG-U133A microarrays. Relapse specimens overexpressed genes that are involved with cell growth and proliferation, in keeping with their aggressive phenotype. When tested in 72 independent specimens of pre-B ALL and T-ALL, the identified genes could successfully differentiate between diagnosis and relapse in either lineage, indicating the existence of relapse mechanisms common to both. These genes have functions relevant for oncogenesis, drug resistance and metastasis, but are not related to classical multidrug-resistance pathways. Increased expression of the top-ranked gene (BSG) at diagnosis was significantly associated with adverse outcome. Several chromosomal loci, including 19p13, were identified as potential hotspots for aberrant gene expression in relapsed ALL. Our results provide evidence for a link between drug resistance and the microenvironment that has previously only been considered in the context of solid tumour biology.

  9. Mechanics, nonlinearity, and failure strength of lung tissue in a mouse model of emphysema: possible role of collagen remodeling.

    PubMed

    Ito, Satoru; Ingenito, Edward P; Brewer, Kelly K; Black, Lauren D; Parameswaran, Harikrishnan; Lutchen, Kenneth R; Suki, Béla

    2005-02-01

    Enlargement of the respiratory air spaces is associated with the breakdown and reorganization of the connective tissue fiber network during the development of pulmonary emphysema. In this study, a mouse (C57BL/6) model of emphysema was developed by direct instillation of 1.2 IU of porcine pancreatic elastase (PPE) and compared with control mice treated with saline. The PPE treatment caused 95% alveolar enlargement (P = 0.001) associated with a 29% lower elastance along the quasi-static pressure-volume curves (P < 0.001). Respiratory mechanics were measured at several positive end-expiratory pressures in the closed-chest condition. The dynamic tissue elastance was 19% lower (P < 0.001), hysteresivity was 9% higher (P < 0.05), and harmonic distortion, a measure of collagen-related dynamic nonlinearity, was 33% higher in the PPE-treated group (P < 0.001). Whole lung hydroxyproline content, which represents the total collagen content, was 48% higher (P < 0.01), and alpha-elastin content was 13% lower (P = 0.16) in the PPE-treated group. There was no significant difference in airway resistance (P = 0.7). The failure stress at which isolated parenchymal tissues break during stretching was 40% lower in the PPE-treated mice (P = 0.002). These findings suggest that, after elastolytic injury, abnormal collagen remodeling may play a significant role in all aspects of lung functional changes and mechanical forces, leading to progressive emphysema.

  10. Reliability, failure modes, and degradation mechanisms in high power single- and multi-mode InGaAs-AlGaAs strained quantum well lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Lingley, Zachary; Brodie, Miles; Foran, Brendan; Moss, Steven C.

    2016-03-01

    High power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and potential space satellite communications systems. However, little has been reported on failure modes of state-of-the-art SM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life tests under different test conditions followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. To the best of our knowledge, this is the first report demonstrating that the dominant failure mode of both SM and MM InGaAs-AlGaAs strained QW lasers is the bulk failure. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged SM and MM lasers. Our long-term life test results and FMA results are reported.

  11. Predictive value of daily living score in acute respiratory failure of COPD patients requiring invasive mechanical ventilation pilot study

    PubMed Central

    2012-01-01

    Background Mechanical ventilation (MV) is imperative in many forms of acute respiratory failure (ARF) in COPD patients. Previous studies have shown the difficulty to identify parameters predicting the outcome of COPD patients treated by invasive MV. Our hypothesis was that a non specialized score as the activities daily living (ADL) score may help to predict the outcome of these patients. Methods We studied the outcome of 25 COPD patients admitted to the intensive care unit for ARF requiring invasive MV. The patients were divided into those weaning success (group A n = 17, 68%) or failure (group B n = 8, 32%). We investigated the correlation between the ADL score and the outcome and mortality. Results The ADL score was higher in group A (5.1 ±1.1 vs 3.7 ± 0.7 in group B, p < 0.01). Weaning was achieved in 76.5% of the cases with an ADL score ≥ 4 and in 23.5% of the cases with an ADL score < 4 (p < 0.05). Pulmonary function test, arterial blood gases collected during period of clinical stability and at admission and nutritional status were similar in both groups. The mortality, at six months, was 36%. The ADL score was a significant predictor of 6-month mortality (80 with an ADL score <4, 20 with an ADL score ≥4, p < 0.01). Conclusion Our pilot study demonstrates that the ADL score is predictive of weaning success and mortality at 6 months, suggesting that the assessment of daily activities should be an important component of ARF management in COPD patients. PMID:23078114

  12. Inventory of landslides in southern Illinois near the New Madrid Seismic Zone and the possible failure mechanism at three sites

    SciTech Connect

    Su, Wen June . Engineering Geology Section)

    1992-01-01

    A total of 221 landslides was inventoried along a 200-kilometer reach of the Ohio and the Mississippi Rivers from Olmsted to Chester, IL using Side-Looking Airborne Radar imagery, vertical, stereoscopic, black and white aerial photography at various scales, and low altitude, oblique color and color infrared photography. Features observed on aerial photographs were used to classify landslides into three types (rock/debris fall, block slide, and rotational/translational slide) at three levels of confidence: certain, probable, or possible. Some landslides combined two or more types at a single site. Only a few of the landslides showed evidence of repeated activity; most are ancient landforms. Most of the landslides were developed in the loess, alluvium, colluvium, and weak clay layers of the Chesterian Series or in the Porter's Creek Clay and McNairy Formation. Failure of three representative landslides was modeled under static (aseismic) and dynamic (seismic) situations using three different sliding mechanisms. Both the pseudo-static method and a simplified method of the Newmark displacement analysis were used to determine the stability of the slope under earthquake conditions. The three representative landslides selected for detailed slope stability analysis were the Ford Hill, Jones Ridge, and Olmsted landslides. The Ford Hill and Jones Ridge landslides have similar slope geometries. Their modes of failure were recognized as a translational block slide on a weak clay layer. The Olmsted landslide is a complex of several rotational slides of different ages and a mega block slide on weak clay layers. The stability analyses of these three landslides suggest that they would not have occurred under aseismic conditions. However, under earthquake loadings similar to those generated by the 1811-12 earthquakes, most of the slopes could have experienced large displacements leading to landslide initiation.

  13. Influence of Thermal Cycle Frequency on the TGO Growth and Cracking Behaviors of an APS-TBC

    NASA Astrophysics Data System (ADS)

    Chen, W. R.; Wu, X.; Dudzinski, D.

    2012-12-01

    The durability of thermal barrier coatings (TBCs) is controlled by fracture near the interface between the ceramic topcoat and the metallic bond coat, where a layer of thermally grown oxide (TGO) forms during service exposure. In the present work, the influence of thermal cycle frequency on the oxidation performance, in terms of TGO growth and cracking behavior, of an air-plasma-sprayed (APS) Co-32Ni-21Cr-8Al-0.5Y (wt.%) bond coat was studied. The results show that while TGO growth exhibited an initial parabolic growth behavior followed by an accelerated growth stage, higher cycle frequency resulted in a faster TGO growth and a higher crack propagation rate. It is found that a power-law relationship exists between the maximum crack length and the TGO thickness, which is independent of the cycle frequency. This relationship may warrant a TBC life prediction methodology based on the maximum crack length criterion.

  14. Secretory pathway optimization of CHO producer cells by co-engineering of the mitosRNA-1978 target genes CerS2 and Tbc1D20.

    PubMed

    Pieper, Lisa A; Strotbek, Michaela; Wenger, Till; Gamer, Martin; Olayioye, Monilola A; Hausser, Angelika

    2017-03-01

    Chinese Hamster Ovary (CHO) cells are the most commonly used host for the production of biopharmaceuticals. Although transcription and translation engineering strategies have been employed to generate high-producer cell clones, the secretory pathway still remains a bottleneck in cellular productivity. In this study we show that ectopic expression of a human mitochondrial genome-encoded small RNA (mitosRNA-1978) in an IgG expressing CHO cell line strongly improved specific productivity by functioning in a microRNA-like fashion. By next generation sequencing we identified two endoplasmic reticulum (ER)-localized proteins, Ceramide Synthase 2 (CerS2) and the Rab1 GAP Tbc domain family member 20 (Tbc1D20), as target genes of mitosRNA-1978. Combined transient siRNA-mediated knockdown of CerS2 and Tbc1D20 resulted in increased specific productivity of CHO-IgG cells, thus recapitulating the mitosRNA-1978 phenotype. In support of a function in vesicular trafficking at the level of the ER, we provide evidence for altered cellular ceramide composition upon CerS2 knockdown and increased activity of Rab1 in CHO-IgG cells depleted of Tbc1D20. Importantly, in a fed-batch process, the combined stable knockdown of CerS2 and Tbc1D20 in CHO-IgG cells resulted in dramatically increased antibody production which was accompanied by enhanced cell growth. Thus, by identifying mitosRNA-1978 target genes in combination with an informed shRNA-mediated co-engineering approach we successfully optimized the secretory capacity of CHO producer cells used for the manufacturing of therapeutic proteins.

  15. Spatial distribution and inter-year variation of hexabromocyclododecane (HBCD) and tris-(2,3-dibromopropyl) isocyanurate (TBC) in farm soils at a peri-urban region.

    PubMed

    Wang, Thanh; Han, Shanlong; Ruan, Ting; Wang, Yawei; Feng, Jiayong; Jiang, Guibin

    2013-01-01

    Hexabromocyclododecane (HBCD) is a high production volume brominated flame retardant (BFR) which has been of increasing environmental and public health concern due to its potential environmental persistency, bioaccumulation and toxicity. Tris-(2,3-dibromopropyl) isocyanurate (TBC) is another BFR which has recently been found in environmental matrices near a manufacturing plant, but its production volume and environmental distribution is currently not well known. This study was conducted to investigate the presence and distribution of these two BFRs in farm soils at a region in southeast Beijing. Total HBCD levels ranged from 0.17 to 34.5 ng g(-1) on a dry weight basis (dw) with a median level of 2.97 ng g(-1)dw. The composition profile of HBCD diastereoisomers was, on average, 28%, 13% and 59% for α-, β- and γ-HBCD, respectively. Detection frequency of TBC was only 25% in 2010 but was detected in all soil samples in 2011, and the median level was 0.19 ng g(-1)dw with the range between below detection limit to 1.62 ng g(-1) dw. There were no significant differences of HBCD and TBC levels among different irrigation sources in the region. The soil HBCD and TBC levels in samples collected in 2011 were significantly higher than in 2010. The increasing short-term temporal levels in farm soil might be due to the rapid urbanization in this region or could also reflect the increasing usage of HBCD and TBC after the phase out of other BFRs.

  16. Adrenal GRK2 lowering is an underlying mechanism for the beneficial sympathetic effects of exercise training in heart failure.

    PubMed

    Rengo, Giuseppe; Leosco, Dario; Zincarelli, Carmela; Marchese, Massimo; Corbi, Graziamaria; Liccardo, Daniela; Filippelli, Amelia; Ferrara, Nicola; Lisanti, Michael P; Koch, Walter J; Lymperopoulos, Anastasios

    2010-06-01

    Exercise training has been reported to exert beneficial effects on cardiac function and to reduce morbidity and mortality of chronic heart failure (HF). Augmented sympathetic nervous system (SNS) activity, leading to elevated circulating catecholamine (CA) levels, is a hallmark of chronic HF that significantly aggravates this disease. Exercise training has been shown to also reduce SNS overactivity in HF, but the underlying molecular mechanism(s) remain unidentified. We recently reported that adrenal G protein-coupled receptor kinase-2 (GRK2), an enzyme that regulates the sympathoinhibitory alpha(2)-adrenoceptors (alpha(2)-ARs) present in the CA-producing adrenal medulla, is upregulated in HF, contributing to the chronically elevated CA levels and SNS activity of the disease. In the present study, we tested whether exercise training can affect the adrenal GRK2-alpha(2)-AR-CA production system in the context of HF. For this purpose, a 10-wk-long exercise training regimen of adult male Sprague-Dawley rats starting at 4 wk postmyocardial infarction (post-MI) was employed, and examination at the end of this treatment period revealed significant amelioration of beta-AR-stimulated contractility in response to exercise training, accompanied by cardiac GRK2 reduction and restoration of circulating plasma CA levels. Importantly, adrenal GRK2 expression (72 + or - 5% reduction vs. post-MI untrained) and alpha(2)-AR number were also restored after exercise training in post-MI animals. These results suggest that exercise training restores the adrenal GRK2-alpha(2)-AR-CA production axis, and this might be part of the mechanism whereby this therapeutic modality normalizes sympathetic overdrive and impedes worsening of the failing heart.

  17. Active wear and failure mechanisms of TiN-coated high speed steel and TiN-coated cemented carbide tools when machining powder metallurgically made stainless steels

    SciTech Connect

    Jiang, L.; Haenninen, H.; Paro, J.; Kauppinen, V.

    1996-09-01

    In this study, active wear and failure mechanisms of both TiN-coated high speed steel and TiN-coated cemented carbide tools when machining stainless steels made by powder metallurgy in low and high cutting speed ranges, respectively, have been investigated. Abrasive wear mechanisms, fatigue-induced failure, and adhesive and diffusion wear mechanisms mainly affected the tool life of TiN-coated high speed steel tools at cutting speeds below 35 m/min, between 35 and 45 m/min, and over 45 m/min, respectively. Additionally, fatigue-induced failure was active at cutting speeds over 45 m/min in the low cutting speed range when machining powder metallurgically made duplex stainless steel 2205 and austenitic stainless steel 316L. In the high cutting speed range, from 100 to 250 m/min, fatigue-induced failure together with diffusion wear mechanism, affected the tool life of TiN-coated cemented carbide tools when machining both 316L and 2205 stainless steels. It was noticed that the tool life of TiN-coated high speed steel tools used in the low cutting speed range when machining 2205 steel was longer than that when machining 316L steel, whereas the tool life of TiN-coated cemented carbide tools used in the high cutting speed range when machining 316L steel was longer than that when machining 2205 steel.

  18. Active wear and failure mechanisms of TiN-Coated high speed steel and tin-coated cemented carbide tools when machining powder metallurgically made stainless steels

    NASA Astrophysics Data System (ADS)

    Jiang, Laizhu; Hänninen, Hannu; Paro, Jukka; Kauppinen, Veijo

    1996-09-01

    In this study, active wear and failure mechanisms of both TiN-coated high speed steel and TiN-coated cemented carbide tools when machining stainless steels made by powder metallurgy in low and high cutting speed ranges, respectively, have been investigated. Abrasive wear mechanisms, fatigue-induced failure, and adhesive and diffusion wear mechanisms mainly affected the tool life of TiN-coated high speed steel tools at cutting speeds below 35 m/min, between 35 and 45 m/min, and over 45 m/min, respectively. Additionally, fatigue-induced failure was active at cutting speeds over 45 m/min in the low cutting speed range when machining powder metallurgically made duplex stainless steel 2205 and austenitic stainless steel 316L. In the high cutting speed range, from 100 to 250 m/min, fatigue-induced failure together with diffusion wear mechanism, affected the tool life of TiN-coated cemented carbide tools when machining both 316L and 2205 stainless steels. It was noticed that the tool life of TiN-coated high speed steel tools used in the low cutting speed range when machining 2205 steel was longer than that when machining 316L steel, whereas the tool life of TiN-coated cemented carbide tools used in the high cutting speed range when machining 316L steel was longer than that when machining 2205 steel.

  19. Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs

    SciTech Connect

    Kelkar, Sharad

    2011-01-01

    The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.

  20. Mechanisms of Chinese Medicine Xinmailong’s protection against heart failure in pressure-overloaded mice and cultured cardiomyocytes

    PubMed Central

    Qi, Jianyong; Yu, Juan; Tan, Yafang; Chen, Renshan; Xu, Wen; Chen, Yanfen; Lu, Jun; Liu, Qin; Wu, Jiashin; Gu, Weiwang; Zhang, Minzhou

    2017-01-01

    Patients with heart failure (HF) have high mortality and mobility. Xinmailong (XML) injection, a Chinese Medicine, is clinically effective in treating HF. However, the mechanism of XML’s effectiveness on HF was unclear, and thus, was the target of the present study. We created a mouse model of pressure-overload-induced HF with transverse aortic constriction (TAC) surgery and compared among 4 study groups: SHAM (n = 10), TAC (n = 12), MET (metoprolol, positive drug treatment, n = 7) and XML (XML treatment, n = 14). Dynamic changes in cardiac structure and function were evaluated with echocardiography in vivo. In addition, H9C2 rat cardiomyocytes were cultured in vitro and the phosphorylation of ERK1/2, AKT, GSK3β and protein expression of GATA4 in nucleus were detected with Western blot experiment. The results showed that XML reduced diastolic thickness of left ventricular posterior wall, increased ejection fraction and fraction shortening, so as to inhibit HF at 2 weeks after TAC. Moreover, XML inhibited the phosphorylation of ERK1/2, AKT and GSK3β, subsequently inhibiting protein expression of GATA4 in nucleus (P < 0.001). Together, our data demonstrated that XML inhibited the TAC-induced HF via inactivating the ERK1/2, AKT/GSK3β, and GATA4 signaling pathway. PMID:28205629

  1. Key condenser failure mechanisms

    SciTech Connect

    Buecker, B.

    2009-04-15

    Eight practical lessons highlight many of the factors that can influence condenser tube corrosion at coal-fired utilities and the effects contaminant in-leakage can have on steam generating units. 1 ref., 4 figs.

  2. Analysis on mechanism of ATP-sensitive K+ channel opener natakalim improving congestive heart failure after myocardial infarction

    PubMed Central

    Jin, Feng

    2016-01-01

    The action mechanism of natakalim, a novel ATP-sensitive potassium channel opener, was studied in ameliorating the congestive heart failure (CHF) after myocardial infarction. A total of 25 healthy Wistar male rats (age, 10 weeks; average weight, 300 g) were selected, and the CHF models after acute myocardial infarction (AMI) were prepared by ligation of left anterior descending branch. They were randomly divided into the sham operation group, the model group and the groups of 1, 3 and 9 mg/kg/day natakalims. Each group had 5 mice that were sacrificed after 8 weeks. We compared left ventricular end-diastolic diameter (LVEDD), left ventricular ejection fraction (LVEF), N-terminal prohormone of brain natriuretic peptide (NT-proBNP), left ventricular mass index, myocardial cell cross-sectional area, myocardial collagen content, plasma endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) levels. Compared with the sham operation, the LVEDD and NT-proBNP in the model group and each natakalim group were elevated. LVEF decreased significantly, while the left ventricular mass index, myocardial cell cross-sectional area, myocardial collagen content, plasma ET-1 and eNOS levels increased. Natakalim intervention improved the above changes and the improvement effect of 3 mg/kg/day group was the highest. The mechanism of natakalim against the endothelin system can be explained by the fact that inhibiting ET-1 synthesis can reduce the ET-1 levels in circulation leading to the release of NO and PGI2. Inhibition of the vasoconstriction effect of ET-1 can improve the hemodynamics of high-load status and ameliorate the cardiac systolic and diastolic functions. In conclusion, natakalim can improve the ventricular remodeling of CHF after AMI, and 3 mg/kg/day was the most effective dose. PMID:28101177

  3. Instantaneous responses to high-frequency chest wall oscillation in patients with acute pneumonic respiratory failure receiving mechanical ventilation

    PubMed Central

    Chuang, Ming-Lung; Chou, Yi-Ling; Lee, Chai-Yuan; Huang, Shih-Feng

    2017-01-01

    Abstract Background: Endotracheal intubation and prolonged immobilization of patients receiving mechanical ventilation may reduce expectoration function. High-frequency chest wall oscillation (HFCWO) may ameliorate airway secretion movement; however, the instantaneous changes in patients’ cardiopulmonary responses are unknown. Moreover, HFCWO may influence ventilator settings by the vigorous oscillation. The aim of this study was to investigate these issues. Methods: Seventy-three patients (52 men) aged 71.5 ± 13.4 years who were intubated with mechanical ventilation for pneumonic respiratory failure were recruited and randomly classified into 2 groups (HFCWO group, n = 36; and control group who received conventional chest physical therapy (CCPT, n = 37). HFCWO was applied with a fixed protocol, whereas CCPT was conducted using standard protocols. Both groups received sputum suction after the procedure. Changes in ventilator settings and the subjects’ responses were measured at preset intervals and compared within groups and between groups. Results: Oscillation did not affect the ventilator settings (all P > 0.05). The mean airway pressure, breathing frequency, and rapid shallow breathing index increased, and the tidal volume and SpO2 decreased (all P < 0.05). After sputum suction, the peak airway pressure (Ppeak) and minute ventilation decreased (all P < 0.05). The HFCWO group had a lower tidal volume and SpO2 at the end of oscillation, and lower Ppeak and tidal volume after sputum suction than the CCPT group. Conclusions: HFCWO affects breathing pattern and SpO2 but not ventilator settings, whereas CCPT maintains a steadier condition. After sputum suction, HFCWO slightly improved Ppeak compared to CCPT, suggesting that the study extends the indications of HFCWO for these patients in intensive care unit. (ClinicalTrials.gov number NCT02758106, retrospectively registered.) PMID:28248854

  4. Respiratory muscle training improves hemodynamics, autonomic function, baroreceptor sensitivity, and respiratory mechanics in rats with heart failure.

    PubMed

    Jaenisch, Rodrigo B; Hentschke, Vítor S; Quagliotto, Edson; Cavinato, Paulo R; Schmeing, Letiane A; Xavier, Léder L; Dal Lago, Pedro

    2011-12-01

    Respiratory muscle training (RMT) improves functional capacity in chronic heart-failure (HF) patients, but the basis for this improvement remains unclear. We evaluate the effects of RMT on the hemodynamic and autonomic function, arterial baroreflex sensitivity (BRS), and respiratory mechanics in rats with HF. Rats were assigned to one of four groups: sedentary sham (n = 8), trained sham (n = 8), sedentary HF (n = 8), or trained HF (n = 8). Trained animals underwent a RMT protocol (30 min/day, 5 day/wk, 6 wk of breathing through a resistor), whereas sedentary animals did not. In HF rats, RMT had significant effects on several parameters. It reduced left ventricular (LV) end-diastolic pressure (P < 0.01), increased LV systolic pressure (P < 0.01), and reduced right ventricular hypertrophy (P < 0.01) and pulmonary (P < 0.001) and hepatic (P < 0.001) congestion. It also decreased resting heart rate (HR; P < 0.05), indicating a decrease in the sympathetic and an increase in the vagal modulation of HR. There was also an increase in baroreflex gain (P < 0.05). The respiratory system resistance was reduced (P < 0.001), which was associated with the reduction in tissue resistance after RMT (P < 0.01). The respiratory system and tissue elastance (Est) were also reduced by RMT (P < 0.01 and P < 0.05, respectively). Additionally, the quasistatic Est was reduced after RMT (P < 0.01). These findings show that a 6-wk RMT protocol in HF rats promotes an improvement in hemodynamic function, sympathetic and vagal heart modulation, arterial BRS, and respiratory mechanics, all of which are benefits associated with improvements in cardiopulmonary interaction.

  5. On mechanics and material length scales of failure in heterogeneous interfaces using a finite strain high performance solver

    NASA Astrophysics Data System (ADS)

    Mosby, Matthew; Matouš, Karel

    2015-12-01

    Three-dimensional simulations capable of resolving the large range of spatial scales, from the failure-zone thickness up to the size of the representative unit cell, in damage mechanics problems of particle reinforced adhesives are presented. We show that resolving this wide range of scales in complex three-dimensional heterogeneous morphologies is essential in order to apprehend fracture characteristics, such as strength, fracture toughness and shape of the softening profile. Moreover, we show that computations that resolve essential physical length scales capture the particle size-effect in fracture toughness, for example. In the vein of image-based computational materials science, we construct statistically optimal unit cells containing hundreds to thousands of particles. We show that these statistically representative unit cells are capable of capturing the first- and second-order probability functions of a given data-source with better accuracy than traditional inclusion packing techniques. In order to accomplish these large computations, we use a parallel multiscale cohesive formulation and extend it to finite strains including damage mechanics. The high-performance parallel computational framework is executed on up to 1024 processing cores. A mesh convergence and a representative unit cell study are performed. Quantifying the complex damage patterns in simulations consisting of tens of millions of computational cells and millions of highly nonlinear equations requires data-mining the parallel simulations, and we propose two damage metrics to quantify the damage patterns. A detailed study of volume fraction and filler size on the macroscopic traction-separation response of heterogeneous adhesives is presented.

  6. Local anesthetic failure associated with inflammation: verification of the acidosis mechanism and the hypothetic participation of inflammatory peroxynitrite

    PubMed Central

    Ueno, Takahiro; Tsuchiya, Hironori; Mizogami, Maki; Takakura, Ko

    2008-01-01

    The presence of inflammation decreases local anesthetic efficacy, especially in dental anesthesia. Although inflammatory acidosis is most frequently cited as the cause of such clinical phenomena, this has not been experimentally proved. We verified the acidosis mechanism by studying the drug and membrane lipid interaction under acidic conditions together with proposing an alternative hypothesis. Liposomes and nerve cell model membranes consisting of phospholipids and cholesterol were treated at different pH with lidocaine, prilocaine and bupivacaine (0.05%–0.2%, w/v). Their membrane-interactive potencies were compared by the induced-changes in membrane fluidity. Local anesthetics fluidized phosphatidylcholine membranes with the potency being significantly lower at pH 6.4 than at pH 7.4 (p < 0.01), supporting the acidosis theory. However, they greatly fluidized nerve cell model membranes even at pH 6.4 corresponding to inflamed tissues, challenging the conventional mechanism. Local anesthetics acted on phosphatidylserine liposomes, as well as nerve cell model membranes, at pH 6.4 with almost the same potency as that at pH 7.4, but not on phosphatidylcholine, phosphatidylethanolamine and sphingomyelin liposomes. Since the positively charged anesthetic molecules are able to interact with nerve cell membranes by ion-paring with anionic components like phosphatidylserine, tissue acidosis is not essentially responsible for the local anesthetic failure associated with inflammation. The effects of local anesthetics on nerve cell model membranes were inhibited by treating with peroxynitrite (50 μM), suggesting that inflammatory cells producing peroxynitrite may affect local anesthesia. PMID:22096346

  7. Extensive risk analysis of mechanical failure for an epiphyseal hip prothesis: a combined numerical-experimental approach.

    PubMed

    Martelli, S; Taddei, F; Cristofolini, L; Gill, H S; Viceconti, M

    2011-02-01

    There has been recent renewed interest in proximal femur epiphyseal replacement as an alternative to conventional total hip replacement. In many branches of engineering, risk analysis has proved to be an efficient tool for avoiding premature failures of innovative devices. An extensive risk analysis procedure has been developed for epiphyseal hip prostheses and the predictions of this method have been compared to the known clinical outcomes of a well-established contemporary design, namely hip resurfacing devices. Clinical scenarios leading to revision (i.e. loosening, neck fracture and failure of the prosthetic component) were associated with potential failure modes (i.e. overload, fatigue, wear, fibrotic tissue differentiation and bone remodelling). Driving parameters of the corresponding failure mode were identified together with their safe thresholds. For each failure mode, a failure criterion was identified and studied under the most relevant physiological loading conditions. All failure modes were investigated with the most suitable investigation tool, either numerical or experimental. Results showed a low risk for each failure scenario either in the immediate postoperative period or in the long term. These findings are in agreement with those reported by the majority of clinical studies for correctly implanted devices. Although further work is needed to confirm the predictions of this method, it was concluded that the proposed risk analysis procedure has the potential to increase the efficacy of preclinical validation protocols for new epiphyseal replacement devices.

  8. Detection, Diagnosis and Prognosis: Contribution to the energy challenge: Proceedings of the Meeting of the Mechanical Failures Prevention Group

    NASA Technical Reports Server (NTRS)

    Shives, T. R. (Editor); Willard, W. A. (Editor)

    1981-01-01

    The contribution of failure detection, diagnosis and prognosis to the energy challenge is discussed. Areas of special emphasis included energy management, techniques for failure detection in energy related systems, improved prognostic techniques for energy related systems and opportunities for detection, diagnosis and prognosis in the energy field.

  9. Towards a mechanical failure model for degrading permafrost rock slopes representing changes in rock toughness and infill

    NASA Astrophysics Data System (ADS)

    Mamot, Philipp; Krautblatter, Michael; Scandroglio, Riccardo

    2016-04-01

    The climate-induced degradation of permafrost in mountain areas can reduce the stability of rock slopes. An increasing number of rockfalls and rockslides originate from permafrost-affected rock faces. Discontinuity patterns and their geometrical and mechanical properties play a decisive role in controlling rock slope stability. Under thawing conditions the shear resistance of rock reduces due to lower friction along rock-rock contacts, decreasing fracture toughness of rock-ice contacts, diminishing fracture toughness of cohesive rock bridges and altered creep or fracture of the ice itself. Compressive strength is reduced by 20 to 50 % and tensile strength decreases by 15 to 70 % when intact saturated rock thaws (KRAUTBLATTER ET AL. 2013). Elevated water pressures in fractures can lead to reduced effective normal stresses and thus to lower shear strengths of fractures. However, the impact of degrading permafrost on the mechanical properties of intact or fractured rock still remains poorly understood. In this study, we develop a new approach for modeling the influence of degrading permafrost on the stability of high mountain rock slopes. Hereby, we focus on the effect of rock- and ice-mechanical changes along striking discontinuities onto the whole rock slope. We aim at contributing to a better rock-ice mechanical process understanding of degrading permafrost rocks. For parametrisation and subsequent calibration of our model, we chose a test site (2885 m a.s.l.) close by the Zugspitze summit in Germany. It reveals i) a potential rockslide at the south face involving 10E4m³ of rock and ii) permafrost occurrence due to ice-filled caves and fractures. Here we combine kinematic, geotechnical and thermal monitoring in the field with rock-mechanical laboratory tests and a 2D numerical failure modeling. Up to date, the following results underline the potential effects of thawing rock and fracture infill on the stability of steep rock slopes in theory and praxis: i. ERT and

  10. Study on the Failure Mechanism of Basalts with Columnar Joints in the Unloading Process on the Basis of an Experimental Cavity

    NASA Astrophysics Data System (ADS)

    Jin, Changyu; Yang, Chengxiang; Fang, Dan; Xu, Shuai

    2015-05-01

    Basalt with columnar joints is a kind of jointed rock body cut by both original joints and aphanitic microcracks. After unloading during excavation, such rock bodies manifest obvious mechanical phenomena such as discontinuities, anisotropy, and liability to fracture. In this work, the failure modes of basalts with columnar joints are studied based on monitoring of test tunnels on the one hand, and also through the mechanical properties of the original joints and those of microfissures of aphanitic microcracks in the unloading process analyzed by a discrete element method using a strain-softening constitutive model. Through comprehensive analysis of the numerical simulation results and the monitored behaviors of the basalts with columnar joints, their failure mechanisms are revealed, which may provide a basis for choosing suitable support plans for this kind of rock mass.

  11. [Understanding heart failure].

    PubMed

    Boo, José Fernando Guadalajara

    2006-01-01

    Heart failure is a disease with several definitions. The term "heart failure" is used by has brougth about confusion in the terminology. For this reason, the value of the ejection fraction (< 0.40 or < 0.35) is used in most meganalyses on the treatment of heart failure, avoiding the term "heart failure" that is a confounding concept. In this paper we carefully analyze the meaning of contractility, ventricular function or performance, preload, afterload, heart failure, compensation mechanisms in heart failure, myocardial oxygen consumption, inadequate, adequate and inappropriate hypertrophy, systole, diastole, compliance, problems of relaxation, and diastolic dysfunction. Their definitions are supported by the original scientific descriptions in an attempt to clarify the concepts about ventricular function and heart failure and, in this way, use the same scientific language about the meaning of ventricular function, heart failure, and diastolic dysfunction.

  12. Failure Mechanisms and Interphase Chemistry of Gold Films on Ti6Al4V. Part I. Surface Chemistry of Failure Surfaces.

    DTIC Science & Technology

    1980-01-01

    removed initially. This improvement of peel strength with exposure to high temperature and humidity has the opposite affect normally obtained with...adhesive bond on treated titanium specimens. Longer exposures to high temperatures and humidity did show degradation of bonding in other specimens...Exposure to high temperatures (dry) showed enhancement of bond strength probably due to diffusion mechanisms. Perhaps in this series we are observing an

  13. The dual role of fission yeast Tbc1/cofactor C orchestrates microtubule homeostasis in tubulin folding and acts as a GAP for GTPase Alp41/Arl2

    PubMed Central

    Mori, Risa; Toda, Takashi

    2013-01-01

    Supplying the appropriate amount of correctly folded α/β-tubulin heterodimers is critical for microtubule dynamics. Formation of assembly-competent heterodimers is remarkably elaborate at the molecular level, in which the α- and β-tubulins are separately processed in a chaperone-dependent manner. This sequential step is performed by the tubulin-folding cofactor pathway, comprising a specific set of regulatory proteins: cofactors A–E. We identified the fission yeast cofactor: the orthologue of cofactor C, Tbc1. In addition to its roles in tubulin folding, Tbc1 acts as a GAP in regulating Alp41/Arl2, a highly conserved small GTPase. Of interest, the expression of GDP- or GTP-bound Alp41 showed the identical microtubule loss phenotype, suggesting that continuous cycling between these forms is important for its functions. In addition, we found that Alp41 interacts with Alp1D, the orthologue of cofactor D, specifically when in the GDP-bound form. Intriguingly, Alp1D colocalizes with microtubules when in excess, eventually leading to depolymerization, which is sequestered by co-overproducing GDP-bound Alp41. We present a model of the final stages of the tubulin cofactor pathway that includes a dual role for both Tbc1 and Alp1D in opposing regulation of the microtubule. PMID:23576550

  14. α-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK

    PubMed Central

    Enriori, Pablo J.; Jensen, Thomas Elbenhardt; Garcia-Rudaz, Cecilia; Litwak, Sara A.; Raun, Kirsten; Wojtaszewski, Jørgen; Wulff, Birgitte Schjellerup; Cowley, Michael A.

    2016-01-01

    The melanocortin system includes five G-protein coupled receptors (family A) defined as MC1R-MC5R, which are stimulated by endogenous agonists derived from proopiomelanocortin (POMC). The melanocortin system has been intensely studied for its central actions in body weight and energy expenditure regulation, which are mainly mediated by MC4R. The pituitary gland is the source of various POMC-derived hormones released to the circulation, which raises the possibility that there may be actions of the melanocortins on peripheral energy homeostasis. In this study, we examined the molecular signaling pathway involved in α-MSH-stimulated glucose uptake in differentiated L6 myotubes and mouse muscle explants. In order to examine the involvement of AMPK, we investigate α-MSH stimulation in both wild type and AMPK deficient mice. We found that α-MSH significantly induces phosphorylation of TBC1 domain (TBC1D) family member 1 (S237 and T596), which is independent of upstream PKA and AMPK. We find no evidence to support that α-MSH-stimulated glucose uptake involves TBC1D4 phosphorylation (T642 and S704) or GLUT4 translocation. PMID:27467141

  15. Effects of vacuum treatment on the formation of TGO in YSZ-TBC on IN738LC — An interpretation of EDX line-scan data

    NASA Astrophysics Data System (ADS)

    Kim, Min Tae; Jung, Yong Chan; Lee, Tae Hee

    2014-09-01

    This study examined the effects of vacuum heat-treatment on the growth of oxide (thermally grown oxide, TGO) between the ceramic top coat (yttria-stabilized zirconia, YSZ) and the metallic bond coat (NiCrAlY) of a thermal barrier coating (TBC). For the investigation, IN738LC coupons coated with a TBC were heat-treated in vacuum and/or isothermally oxidized at 1200 °C and then microscopically analyzed using SEM and EDX. The introduction of heat treatment in vacuum before isothermal oxidation resulted in a reduction of the TGO thickness and the number of interface cracks around the TGO layers. These TGO layers were further analyzed using EDX line scan data in terms of the dependence of the EDX Al intensity on the O intensity. The analysis showed that the TGO layers in the coupons only oxidized in air were divided into two sub-layers with respect to the gradient of the Al intensity on the O intensity. The pre-treatment in vacuum nullified this division and reduced cracks at the interfaces. The effects of the treatment in vacuum on the behavior of TGO and TBCs were analyzed and compared with the data obtained for a TBC-coated turbine blade serviced for a land-based heavy duty gas turbine.

  16. Heart Failure: A Primer.

    PubMed

    Lee, Christopher S; Auld, Jonathan

    2015-12-01

    Heart failure is a complex and multisystem clinical syndrome that results from impaired ventricular contractility and/or relaxation. Hypertension, diabetes mellitus, and coronary artery disease are common antecedents to heart failure. The main pathogenic mechanisms involved in heart failure include sympathetic nervous and renin-angiotensin-aldosterone system activation, as well as inflammation. A detailed history and physical examination and additional diagnostic tests may be needed to diagnose heart failure. Most treatment strategies target neurohormonal systems. Nonpharmacologic interventions and effective engagement in self-care are also important in overall heart failure management. Therapeutic strategies are geared toward prolonging life and optimizing quality of life.

  17. Mutations in TBCK, Encoding TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia

    PubMed Central

    Bhoj, Elizabeth J.; Li, Dong; Harr, Margaret; Edvardson, Shimon; Elpeleg, Orly; Chisholm, Elizabeth; Juusola, Jane; Douglas, Ganka; Guillen Sacoto, Maria J.; Siquier-Pernet, Karine; Saadi, Abdelkrim; Bole-Feysot, Christine; Nitschke, Patrick; Narravula, Alekhya; Walke, Maria; Horner, Michele B.; Day-Salvatore, Debra-Lynn; Jayakar, Parul; Vergano, Samantha A. Schrier; Tarnopolsky, Mark A.; Hegde, Madhuri; Colleaux, Laurence; Crino, Peter; Hakonarson, Hakon

    2016-01-01

    Through an international multi-center collaboration, 13 individuals from nine unrelated families and affected by likely pathogenic biallelic variants in TBC1-domain-containing kinase (TBCK) were identified through whole-exome sequencing. All affected individuals were found to share a core phenotype of intellectual disability and hypotonia, and many had seizures and showed brain atrophy and white-matter changes on neuroimaging. Minor non-specific facial dysmorphism was also noted in some individuals, including multiple older children who developed coarse features similar to those of storage disorders. TBCK has been shown to regulate the mammalian target of rapamycin (mTOR) signaling pathway, which is also stimulated by exogenous leucine supplementation. TBCK was absent in cells from affected individuals, and decreased phosphorylation of phospho-ribosomal protein S6 was also observed, a finding suggestive of downregulation of mTOR signaling. Lastly, we demonstrated that activation of the mTOR pathway in response to L-leucine supplementation was retained, suggesting a possible avenue for directed therapies for this condition. PMID:27040691

  18. Tensile Creep and Fatigue of Sylramic-iBN Melt-Infiltrated SiC Matrix Composites: Retained Properties, Damage Development, and Failure Mechanisms (Preprint)

    DTIC Science & Technology

    2007-10-01

    DEVELOPMENT, AND FAILURE MECHANISMS (PREPRINT) Gregory N. Morscher, Greg Ojard, Robert Miller, Yasser Gowayed, Unni Santhosh , Jalees...Yasser Gowayed (Auburn University) Unni Santhosh and Jalees Ahmed (Research Applications, Inc.) 5d. PROJECT NUMBER 4347 5e. TASK NUMBER 53 5f...Academic; NY, NY: 2005) 9. G. Ojard, Y. Gowayed, J. Chen., U. Santhosh , J. Ahmad, R. Miller, and R. John, “Time-Dependent Response of MI SiC/SiC

  19. Failure of cap-rock seals as determined from mechanical stratigraphy, stress history, and tensile-failure analysis of exhumed analogs

    DOE PAGES

    Petrie, E. S.; Evans, J. P.; Bauer, S. J.

    2014-11-01

    In this study, the sedimentologic and tectonic histories of clastic cap rocks and their inherent mechanical properties control the nature of permeable fractures within them. The migration of fluid through mm- to cm-scale fracture networks can result in focused fluid flow allowing hydrocarbon production from unconventional reservoirs or compromising the seal integrity of fluid traps. To understand the nature and distribution of subsurface fluid-flow pathways through fracture networks in cap-rock seals we examine four exhumed Paleozoic and Mesozoic seal analogs in Utah. We combine these outcrop analyses with subsidence analysis, paleoloading histories, and rock-strength testing data in modified Mohr–Coulomb–Griffith analysesmore » to evaluate the effects of differential stress and rock type on fracture mode.« less

  20. Failure of cap-rock seals as determined from mechanical stratigraphy, stress history, and tensile-failure analysis of exhumed analogs

    SciTech Connect

    Petrie, E. S.; Evans, J. P.; Bauer, S. J.

    2014-11-01

    In this study, the sedimentologic and tectonic histories of clastic cap rocks and their inherent mechanical properties control the nature of permeable fractures within them. The migration of fluid through mm- to cm-scale fracture networks can result in focused fluid flow allowing hydrocarbon production from unconventional reservoirs or compromising the seal integrity of fluid traps. To understand the nature and distribution of subsurface fluid-flow pathways through fracture networks in cap-rock seals we examine four exhumed Paleozoic and Mesozoic seal analogs in Utah. We combine these outcrop analyses with subsidence analysis, paleoloading histories, and rock-strength testing data in modified Mohr–Coulomb–Griffith analyses to evaluate the effects of differential stress and rock type on fracture mode.