Sample records for tbhp allylic oxidation

  1. Hepatoprotective properties of kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis.

    PubMed

    Bhattacharya, Semantee; Gachhui, Ratan; Sil, Parames C

    2011-06-01

    Kombucha, a fermented tea (KT) is claimed to possess many beneficial properties. Recent studies have suggested that KT prevents paracetamol and carbon tetrachloride-induced hepatotoxicity. We investigated the beneficial role of KT was against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity and cell death in murine hepatocytes. TBHP is a well known reactive oxygen species (ROS) inducer, and it induces oxidative stress in organ pathophysiology. In our experiments, TBHP caused a reduction in cell viability, enhanced the membrane leakage and disturbed the intra-cellular antioxidant machineries while simultaneous treatment of the cells with KT and this ROS inducer maintained membrane integrity and prevented the alterations in the cellular antioxidant status. These findings led us to explore the detailed molecular mechanisms involved in the protective effect of KT. TBHP introduced apoptosis as the primary phenomena of cell death as evidenced by flow cytometric analyses. In addition, ROS generation, changes in the mitochondrial membrane potential, cytochrome c release, activation of caspases (3 and 9) and Apaf-1 were detected confirming involvement of mitochondrial pathway in this pathophysiology. Simultaneous treatment of KT with TBHP, on the other hand, protected the cells against oxidative injury and maintained their normal physiology. In conclusion, KT was found to modulate the oxidative stress induced apoptosis in murine hepatocytes probably due to its antioxidant activity and functioning via mitochondria dependent pathways and could be beneficial against liver diseases, where oxidative stress is known to play a crucial role. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Silicon-directed rhenium-catalyzed allylic carbaminations and oxidative fragmentations of γ-silyl allylic alcohols.

    PubMed

    Chavhan, Sanjay W; Cook, Matthew J

    2014-04-22

    A highly regioselective allylic substitution of β-silyl allylic alcohols has been achieved that provides the branched isomer as a single product. This high level of regiocontrol is achieved through the use of a vinyl silane group that can perform a Hiyama coupling providing 1,3-disubstituted allylic amines. An unusual oxidative fragmentation product was also observed at elevated temperature that appears to proceed by a Fleming-Tamao-type oxidation-elimination pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Asymmetric allylation of ketones and subsequent tandem reactions catalyzed by a novel polymer-supported titanium-BINOLate complex.

    PubMed

    Yadav, Jagjit; Stanton, Gretchen R; Fan, Xinyuan; Robinson, Jerome R; Schelter, Eric J; Walsh, Patrick J; Pericas, Miquel A

    2014-06-02

    By using a novel, simple, and convenient synthetic route, enantiopure 6-ethynyl-BINOL (BINOL = 1,1-binaphthol) was synthesized and anchored to an azidomethylpolystyrene resin through a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The polystyrene (PS)-supported BINOL ligand was converted into its diisopropoxytitanium derivative in situ and used as a heterogeneous catalyst in the asymmetric allylation of ketones. The catalyst showed good activity and excellent enantioselectivity, typically matching the results obtained in the corresponding homogeneous reaction. The allylation reaction mixture could be submitted to epoxidation by simple treatment with tert-butyl hydroperoxide (TBHP), and the tandem asymmetric allylation epoxidation process led to a highly enantioenriched epoxy alcohol with two adjacent quaternary centers as a single diastereomer. A tandem asymmetric allylation/Pauson-Khand reaction was also performed, involving simple treatment of the allylation reaction mixture with Co2(CO)8/N-methyl morpholine N-oxide. This cascade process resulted in the formation of two diastereomeric tricyclic enones in high yields and enantioselectivities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Scalable and sustainable electrochemical allylic C-H oxidation

    NASA Astrophysics Data System (ADS)

    Horn, Evan J.; Rosen, Brandon R.; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-05-01

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”. Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  5. Scalable and Sustainable Electrochemical Allylic C–H Oxidation

    PubMed Central

    Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-01-01

    New methods and strategies for the direct functionalization of C–H bonds are beginning to reshape the fabric of retrosynthetic analysis, impacting the synthesis of natural products, medicines, and even materials1. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C–H functionalization due to the utility of enones and allylic alcohols as versatile intermediates, along with their prevalence in natural and unnatural materials2. Allylic oxidations have been featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”3. Despite many attempts to improve the efficiency and practicality of this powerful transformation, the vast majority of conditions still employ highly toxic reagents (based around toxic elements such as chromium, selenium, etc.) or expensive catalysts (palladium, rhodium, etc.)2. These requirements are highly problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. As such, this oxidation strategy is rarely embraced for large-scale synthetic applications, limiting the adoption of this important retrosynthetic strategy by industrial scientists. In this manuscript, we describe an electrochemical solution to this problem that exhibits broad substrate scope, operational simplicity, and high chemoselectivity. This method employs inexpensive and readily available materials, representing the first example of a scalable allylic C–H oxidation (demonstrated on 100 grams), finally opening the door for the adoption of this C–H oxidation strategy in large-scale industrial settings without significant environmental impact. PMID:27096371

  6. Interaction of water, alkyl hydroperoxide, and allylic alcohol with a single-site homogeneous Ti-Si epoxidation catalyst: A spectroscopic and computational study.

    PubMed

    Urakawa, Atsushi; Bürgi, Thomas; Skrabal, Peter; Bangerter, Felix; Baiker, Alfons

    2005-02-17

    Tetrakis(trimethylsiloxy)titanium (TTMST, Ti(OSiMe3)4) possesses an isolated Ti center and is a highly active homogeneous catalyst in epoxidation of various olefins. The structure of TTMST resembles that of the active sites in some heterogeneous Ti-Si epoxidation catalysts, especially silylated titania-silica mixed oxides. Water cleaves the Ti-O-Si bond and deactivates the catalyst. An alkyl hydroperoxide, TBHP (tert-butyl hydroperoxide), does not cleave the Ti-O-Si bond, but interacts via weak hydrogen-bonding as supported by NMR, DOSY, IR, and computational studies. ATR-IR spectroscopy combined with computational investigations shows that more than one, that is, up to four, TBHP can undergo hydrogen-bonding with TTMST, leading to the activation of the O-O bond of TBHP. The greater the number of TBHP molecules that form hydrogen bonds to TTMST, the more electrophilic the O-O bond becomes, and the more active the complex is for epoxidation. An allylic alcohol, 2-cyclohexen-1-ol, does not interact strongly with TTMST, but the interaction is prominent when it interacts with the TTMST-TBHP complex. On the basis of the experimental and theoretical findings, a hydrogen-bond-assisted epoxidation mechanism of TTMST is suggested.

  7. Selective oxidation of steroidal allylic alcohols using pyrazole and pyridinium chlorochoromate.

    PubMed

    Parish, E J; Chitrakorn, S; Lowery, S

    1984-07-01

    ABASTRACT: This paper presents a modified method for the selective oxidation of allylic alchols. Pyrazole, when used with pyridinium chlorochromate, is a mild and useful reagent system for the rapid and selective oxidation of steroidal allylic alcohols to the corresponding α, β-unsaturated ketones. The reaction of each substrate was carried out by adding the oxidant to a dry methylene chloride solution containing pyrazole and an allylic alchol. This report is the first on the use of pyrazole to augment selective oxidation by a chronium (VI) reagent.

  8. Clotrimazole enhances lysis of human erythrocytes induced by t-BHP.

    PubMed

    Lisovskaya, Irene L; Shcherbachenko, Irina M; Volkova, Rimma I; Ataullakhanov, Fazoil I

    2009-08-14

    Clotrimazole (CLT) is an antifungal and antimalarial agent also effective as a Gardos channel inhibitor. In addition, CLT possesses antitumor properties. Recent data provide evidence that CLT forms a complex with heme (hemin), which produces a more potent lytic effect than heme alone. This study addressed the effect of CLT on the lysis of normal human erythrocytes induced by tert-butyl hydroperoxide (t-BHP). For the first time, it was shown that 10 microM CLT significantly enhanced the lytic effect of t-BHP on erythrocytes in both Ca(2+)-containing and Ca(2+)-free media, suggesting that the effect is not related to Gardos channels. CLT did not affect the rate of free radical generation, the kinetics of GSH degradation, methemoglobin formation and TBARS generation; therefore, we concluded that CLT does not cause additional oxidative damage to erythrocytes treated with t-BHP. It is tempted to speculate that CLT enhances t-BHP-induced changes in erythrocyte volume and lysis largely by forming a complex with hemin released during hemoglobin oxidation in erythrocytes: the CLT-hemin complex destabilizes the cell membrane more potently than hemin alone. If so, the effect of CLT on cell membrane damage during free-radical oxidation may be used to increase the efficacy of antitumor therapy.

  9. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    NASA Astrophysics Data System (ADS)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  10. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  11. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  12. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  13. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  14. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  15. The Wacker oxidation of allyl alcohol along cyclic-intermediate routes: An ab initio molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Imandi, Venkataramana; Nair, Nisanth N.

    2016-09-01

    The absence of isotope scrambling observed by Henry and coworkers in the Wacker oxidation of deuterated allylic alcohol was used by them as support for the inner-sphere mechanism hydroxypalladation mechanism. One of the assumptions used to interpret their experimental data was that allyl alcohol oxidation takes place through non-cyclic intermediate routes as in the case of ethene. Here we verify this assumption through ab initio metadynamics simulations of the Wacker oxidation of allyl alcohol in explicit solvent. Importance of our results in interpreting the isotope scrambling experiments is discussed.

  16. Oxidative addition of allylic halides to ruthenium(II) compounds. Preparation, reactions, and X-ray crystallographic structure of ruthenium(IV)-allyl complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagashima, Hideo; Mukai, Katsunori; Shiota, Yusuke

    1990-03-01

    The oxidative addition of allylic halides to (C{sub 5}R{sub 5})RuL{sub 2}X (R = H, Me; L = CO, PPh{sub 3}) gave new Ru(IV)-{eta}{sup 3}-allyl complexes, (C{sub 5}R{sub 5})RuX{sub 2}({eta}{sup 3}-allyl). An X-ray structure determination was carried out on (C{sub 5}Me{sub 5})RuBr{sub 2}({eta}{sup 3}-C{sub 3}H{sub 5}), indicating a pseudo-piano-stool structure having two Br atoms and two terminal carbons of the endo-{eta}{sup 3}-allyl ligand located at the basal positions. There is a crystal mirror plane bisecting the pentamethylcyclopentadienyl and the {pi}-allyl ligands. Crystal data: orthorhombic, space group P2{sub 1}2{sub 1}2{sub 1}, a = 22.738 (1) {angstrom}, b = 13.367 (7) {angstrom}, cmore » = 9.383 (1) {angstrom}, Z = 4., data refined to R = 0.0695. Its {sup 1}H and {sup 13}C NMR spectra showed symmetric allyl signals, supporting that the above-described piano-stool structure is maintained even in solution.« less

  17. Oxidation catalysis of Nb(salan) complexes: asymmetric epoxidation of allylic alcohols using aqueous hydrogen peroxide as an oxidant.

    PubMed

    Egami, Hiromichi; Oguma, Takuya; Katsuki, Tsutomu

    2010-04-28

    Several optically active Nb(salan) complexes were synthesized, and their oxidation catalysis was examined. A dimeric mu-oxo Nb(salan) complex that was prepared from Nb(OiPr)(5) and a salan ligand was found to catalyze the asymmetric epoxidation of allylic alcohols using a urea-hydrogen peroxide adduct as an oxidant with good enantioselectivity. However, subsequent studies of the time course of this epoxidation and of the relationship between the ee of the ligand and the ee of the product indicated that the mu-oxo dimer dissociates into a monomeric species prior to epoxidation. Moreover, monomeric Nb(salan) complexes prepared in situ from Nb(OiPr)(5) and salan ligands followed by water treatment were found to catalyze the epoxidation of allylic alcohols better using aqueous hydrogen peroxide in CHCl(3)/brine or toluene/brine solution with high enantioselectivity ranging from 83 to 95% ee, except for the reaction of cinnamyl alcohol that showed a moderate ee of 74%. This is the first example of the highly enantioselective epoxidation of allylic alcohols using aqueous hydrogen peroxide as an oxidant.

  18. Palladium-Catalyzed Anti-Markovnikov Oxidation of Allylic Amides to Protected β-Amino Aldehydes.

    PubMed

    Dong, Jia Jia; Harvey, Emma C; Fañanás-Mastral, Martín; Browne, Wesley R; Feringa, Ben L

    2014-12-10

    A general method for the preparation of N-protected β-amino aldehydes from allylic amines or linear allylic alcohols is described. Here the Pd(II)-catalyzed oxidation of N-protected allylic amines with benzoquinone is achieved in tBuOH under ambient conditions with excellent selectivity toward the anti-Markovnikov aldehyde products and full retention of configuration at the allylic carbon. The method shows a wide substrate scope and is tolerant of a range of protecting groups. Furthermore, β-amino aldehydes can be obtained directly from protected allylic alcohols via palladium-catalyzed autotandem reactions, and the application of this method to the synthesis of β-peptide aldehydes is described. From a mechanistic perspective, we demonstrate that tBuOH acts as a nucleophile in the reaction and that the initially formed tert-butyl ether undergoes spontaneous loss of isobutene to yield the aldehyde product. Furthermore, tBuOH can be used stoichiometrically, thereby broadening the solvent scope of the reaction. Primary and secondary alcohols do not undergo elimination, allowing the isolation of acetals, which subsequently can be hydrolyzed to their corresponding aldehyde products.

  19. Attenuation of cytotoxicity induced by tBHP in H9C2 cells by Bacopa monniera and Bacoside A.

    PubMed

    T, Mohan Manu; Anand, T; Khanum, Farhath

    2018-06-01

    Cardiovascular diseases are one of the major global health issues leading to morbidity and mortality across the world. In the present study Bacopa monniera and its major bioactive component, Bacoside A (Bac-A) was used to evaluate its cytoprotective property in H9C2 cardiomyocytes against tBHP (150 μM) induced ROS-mediated oxidative stress and apoptosis. Our results implicate that pre-treatment with hydroalcoholic extract of Bacopa monniera (BME) and Bac-A (125 μg/ml and 6 μg/ml respectively) significantly restored oxidative stress by scavenging the free radicals and also elevated phase II antioxidant defensive enzymes such as (SOD, CAT, GR, GPx and GSH). Membrane integrity was estimated by MMP and LDH assays and found 89 and 72% of the protective effect. Further immunoblotting studies confirmed anti-apoptotic effects by regulating protein expression like Bcl2 was up-regulated to 99 and 85% and Bax was down-regulated to 122 and 181%, iNOS by 154.38 and 183.45% compared to tBHP (277.48%) by BME and Bac-A. BME and Bac-A exerts cytoprotective efficacy by attenuation of ROS generated through oxidative stress by an increase in the concentration of antioxidant enzymes and sustain membrane integrity which leads to restoring the damage caused by tBHP. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Solar photochemical oxidations of benzylic and allylic alcohols using catalytic organo-oxidation with DDQ: application to lignin models.

    PubMed

    Walsh, Katie; Sneddon, Helen F; Moody, Christopher J

    2014-10-03

    Visible light has a dramatic effect on the oxidation of benzylic and allylic alcohols, including those deactivated by electron-withdrawing groups, and β-O-4 lignin models, using catalytic amounts of the organo-oxidant 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Sodium nitrite or tert-butyl nitrite is used as cocatalyst, and oxygen is employed as the terminal oxidant.

  1. N-Boc amines to oxazolidinones via Pd(II)/bis-sulfoxide/Brønsted acid co-catalyzed allylic C-H oxidation.

    PubMed

    Osberger, Thomas J; White, M Christina

    2014-08-06

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C-H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C-H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C-H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration.

  2. N-Boc Amines to Oxazolidinones via Pd(II)/Bis-sulfoxide/Brønsted Acid Co-Catalyzed Allylic C–H Oxidation

    PubMed Central

    2015-01-01

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C–H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C–H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C–H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration. PMID:24999765

  3. Allylation of Nitrosobenzene with Pinacol Allylboronates. A Regioselective Complement to Peroxide Oxidation

    PubMed Central

    Kyne, Robert E.; Ryan, Michael C.; Kliman, Laura T.; Morken, James P.

    2010-01-01

    Addition of nitrosobenzene to pinacol allylboronates leads to oxidation of the organoboron with concomitant rearrangement of the substrate alkene. This reaction appears to proceed by allylboration of the nitroso group in analogy to carbonyl and imine allylation reactions. Remarkably, the N-O bond is cleaved during the reaction such that simple alcohols are the final reaction product. PMID:20687578

  4. Biosynthesis of mercapturic acids from allyl alcohol, allyl esters and acrolein

    PubMed Central

    Kaye, Clive M.

    1973-01-01

    1. 3-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(3-hydroxypropyl)-l-cysteine, was isolated, as its dicyclohexylammonium salt, from the urine of rats after the subcutaneous injection of each of the following compounds: allyl alcohol, allyl formate, allyl propionate, allyl nitrate, acrolein and S-(3-hydroxypropyl)-l-cysteine. 2. Allylmercapturic acid, i.e. N-acetyl-S-allyl-l-cysteine, was isolated from the urine of rats after the subcutaneous injection of each of the following compounds: triallyl phosphate, sodium allyl sulphate and allyl nitrate. The sulphoxide of allylmercapturic acid was detected in the urine excreted by these rats. 3. 3-Hydroxypropylmercapturic acid was identified by g.l.c. as a metabolite of allyl acetate, allyl stearate, allyl benzoate, diallyl phthalate, allyl nitrite, triallyl phosphate and sodium allyl sulphate. 4. S-(3-Hydroxypropyl)-l-cysteine was detected in the bile of a rat dosed with allyl acetate. PMID:4762754

  5. Asymmetric allylation of α-ketoester-derived N-benzoylhydrazones promoted by chiral sulfoxides/N-oxides Lewis bases: highly enantioselective synthesis of quaternary α-substituted α-allyl-α-amino acids.

    PubMed

    Reyes-Rangel, Gloria; Bandala, Yamir; García-Flores, Fred; Juaristi, Eusebio

    2013-09-01

    Chiral sulfoxides/N-oxides (R)-1 and (R,R)-2 are effective chiral promoters in the enantioselective allylation of α-keto ester N-benzoylhydrazone derivatives 3a-g to generate the corresponding N-benzoylhydrazine derivatives 4a-g, with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a-b were subsequently treated with SmI2, and the resulting amino esters 5a-b with LiOH to obtain quaternary α-substituted α-allyl α-amino acids 6a-b, whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. © 2013 Wiley Periodicals, Inc.

  6. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    PubMed

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  7. An oxidative cross-coupling reaction of 4-hydroxydithiocoumarin and amines/thiols using a combination of I2 and TBHP: access to lead molecules for biomedical applications.

    PubMed

    Mahato, Karuna; Arora, Neha; Ray Bagdi, Prasanta; Gattu, Radhakrishna; Ghosh, Siddhartha Sankar; Khan, Abu T

    2018-02-06

    A metal-free I 2 /TBHP induced highly atom economic and operationally simple oxidative cross-coupling reaction has been developed for the direct synthesis of sulfenamides/sulfanes/disulfides from the reaction of 4-hydroxydithiocoumarin and amines/thiols. The novelties of the present protocol are unprecedented S-C bond formation in addition to S-N and S-S bonds, shorter reaction time, mild and environmentally benign reaction conditions, functional group tolerance and moderate to excellent yields. Moreover, the four newly synthesized compounds namely 4q, 6d, 6e and 7a exhibit anti-proliferative activity against the breast cancer cell line MCF7, and may be lead molecules for future drug development.

  8. Novel Allylic Oxidation of α-Cedrene to sec-Cedrenol by a Rhodococcus Strain

    PubMed Central

    Takigawa, Hirofumi; Kubota, Hiromi; Sonohara, Hiroshi; Okuda, Mitsuyoshi; Tanaka, Shigeyoshi; Fujikura, Yoshiaki; Ito, Susumu

    1993-01-01

    A bacterial strain, designated KSM-7358, that can use α-cedrene for growth was isolated. The strain was identified as a member of the genus Rhodococcus and catalyzed the novel allylic oxidation of α-cedrene regiospecifically to produce (R)-10-hydroxycedrene (sec-cedrenol) with a very high yield. α-Curcumene was also produced as a possible metabolite of sec-cedrenol. A possible pathway for the microbial conversion of α-cedrene to sec-cedrenol and α-curcumene is proposed. PMID:16348930

  9. Allyl isothiocyanate increases carbohydrate oxidation through enhancing insulin secretion by TRPV1.

    PubMed

    Mori, Noriyuki; Kurata, Manami; Yamazaki, Hanae; Matsumura, Shigenobu; Hashimoto, Takashi; Kanazawa, Kazuki; Nadamoto, Tomonori; Inoue, Kazuo; Fushiki, Tohru

    2018-04-01

    The transient receptor potential (TRP) V1 is a cation channel belonging to the TRP channel family and it has been reported to be involved in energy metabolism, especially glucose metabolism. While, we have previously shown that intragastric administration of allyl isothiocyanate (AITC) enhanced glucose metabolism via TRPV1, the underlying mechanism has not been elucidated. In this study, we examined the relationship between insulin secretion and the increase in carbohydrate oxidation due to AITC. Intragastric administration of AITC elevated blood insulin levels in mice and AITC directly enhanced insulin secretion from isolated islets. These observations were not reproduced in TRPV1 knockout mice. Furthermore, AITC did not increase carbohydrate oxidation in streptozotocin-treated mice. These results suggest that intragastric administration of AITC could induce insulin secretion from islets via TRPV1 and that enhancement of insulin secretion was related to the increased carbohydrate oxidation due to AITC.

  10. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    PubMed Central

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  11. Tsuji-Trost N-allylation with allylic acetates using cellulose-Pd catalyst

    EPA Science Inventory

    Allylic amines are synthesized using heterogeneous cellulose-Pd catalyst via N-allylation of amines; aliphatic and benzyl amines undergo facile reaction with substituted and unsubstituted allyl acetates in high yields.

  12. Nickel-Catalyzed Reductive Allylation of Tertiary Alkyl Halides with Allylic Carbonates.

    PubMed

    Chen, Haifeng; Jia, Xiao; Yu, Yingying; Qian, Qun; Gong, Hegui

    2017-10-09

    The construction of all C(sp 3 ) quaternary centers has been successfully achieved under Ni-catalyzed cross-electrophile coupling of allylic carbonates with unactivated tertiary alkyl halides. For allylic carbonates bearing C1 or C3 substituents, the reaction affords excellent regioselectivity through the addition of alkyl groups to the unsubstituted allylic carbon terminus. The allylic alkylation method also exhibits excellent functional-group compatibility, and delivers the products with high E selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Methoxyflurane enhances allyl alcohol hepatotoxicity in rats. Possible involvement of increased acrolein formation.

    PubMed

    Kershaw, W C; Barsotti, D A; Leonard, T B; Dent, J G; Lage, G L

    1989-01-01

    The effect of methoxyflurane anesthesia on allyl alcohol-induced hepatotoxicity and the metabolism of allyl alcohol was studied in male rats. Hepatotoxicity was assessed by the measurement of serum alanine aminotransferase activity and histopathological examination. Allyl alcohol-induced hepatotoxicity was enhanced when allyl alcohol (32 mg/kg) was administered 4 hr before or up to 8 days after a single 10-min exposure to methoxyflurane vapors. The possibility that methoxyflurane increases alcohol dehydrogenase-dependent oxidation of allyl alcohol to acrolein, the proposed toxic metabolite, was evaluated by measuring the rate of acrolein formation in the presence of allyl alcohol and liver cytosol. The effect of methoxyflurane on alcohol dehydrogenase activity in liver cytosol was also assessed by measuring the rate of NAD+ utilization in the presence of ethyl alcohol or allyl alcohol. Alcohol dehydrogenase activity and rate of acrolein formation were elevated in methoxyflurane-pretreated rats. The results suggest that a modest increase in alcohol dehydrogenase activity and rate of acrolein formation markedly enhances allyl alcohol-induced hepatotoxicity.

  14. A Catalytic, Brønsted Base Strategy for Intermolecular Allylic C—H Amination

    PubMed Central

    Reed, Sean A.; Mazzotti, Anthony R.; White, M. Christina

    2009-01-01

    A Brønsted base activation mode for oxidative, Pd(II)/sulfoxide catalyzed, intermolecular C—H allylic amination is reported. N,N-diisopropylethylamine was found to promote amination of unactivated terminal olefins, forming the corresponding linear allylic amine products with high levels of stereo-, regio-, and chemoselectivity. The predictable and high selectivity of this C—H oxidation method enables late-stage incorporation of nitrogen into advanced synthetic intermediates and natural products. PMID:19645492

  15. O2-Promoted Allylic Acetoxylation of Alkenes: Assessment of "Push" vs. "Pull" Mechanisms and Comparison between O2 and Benzoquinone.

    PubMed

    Diao, Tianning; Stahl, Shannon S

    2014-12-14

    Palladium-catalyzed acetoxylation of allylic C-H bonds has been the subject of extensive study. These reactions proceed via allyl-palladium(II) intermediates that react with acetate to afford the allyl acetate product. Benzoquinone and molecular oxygen are two common oxidants for these reactions. Benzoquinone has been shown to promote allyl acetate formation from well-defined π-allyl palladium(II) complexes. Here, we assess the ability of O 2 to promote similar reactions with a series of "unligated" π-allyl palladium(II) complexes (i.e., in the absence of ancillary phosphorus, nitrogen or related donor ligands). Stoichiometric and catalytic allyl acetate formation is observed under aerobic conditions with several different alkenes. Mechanistic studies are most consistent with a "pull" mechanism in which O 2 traps the Pd 0 intermediate following reversible C-O bond-formation from an allyl-palladium(II) species. A "push" mechanism, involving oxidatively induced C-O bond formation, does not appear to participate. These results and conclusions are compared with benzoquinone-promoted allylic acetoxylation, in which a "push" mechanism seems to be operative.

  16. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters.

    PubMed

    Thomas, Bryce N; Moon, Patrick J; Yin, Shengkang; Brown, Alex; Lundgren, Rylan J

    2018-01-07

    A well-defined Ir-allyl complex catalyzes the Z -selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E -products typically observed in metal-mediated coupling reactions to enable the synthesis of Z , E -dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir-carbene and Ir-allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E-H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt 3 .

  17. Tandem SN2' nucleophilic substitution/oxidative radical cyclization of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds.

    PubMed

    Zhang, Zhen; Li, Cheng; Wang, Shao-Hua; Zhang, Fu-Min; Han, Xue; Tu, Yong-Qiang; Zhang, Xiao-Ming

    2017-04-11

    A novel and efficient tandem S N 2' nucleophilic substitution/oxidative radical cyclization reaction of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds has been developed by using Mn(OAc) 3 as an oxidant, which enables the expeditious synthesis of polysubstituted dihydrofuran (DHF) derivatives in moderate to high yields. The use of weakly acidic hexafluoroisopropanol (HFIP) as the solvent rather than AcOH has successfully improved the yields and expanded the substrate scope of this type of radical cyclization reactions. Mechanistic studies confirmed the cascade reaction process involving a final radical cyclization.

  18. Aged garlic extract and S-allyl cysteine prevent formation of advanced glycation endproducts.

    PubMed

    Ahmad, Muhammad Saeed; Pischetsrieder, Monika; Ahmed, Nessar

    2007-04-30

    Hyperglycaemia causes increased protein glycation and the formation of advanced glycation endproducts which underlie the complications of diabetes and ageing. Glycation is accompanied by metal-catalysed oxidation of glucose and Amadori products to form free radicals capable of protein fragmentation. Aged garlic extract is a potent antioxidant with established lipid-lowering effects attributed largely to a key ingredient called S-allyl cysteine. This study investigated the ability of aged garlic extract and S-allyl cysteine to inhibit advanced glycation in vitro. Bovine serum albumin (BSA) was glycated in the presence of Cu(2+) ions and different concentrations of aged garlic extract and protein fragmentation was examined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Lysozyme was glycated by glucose or methylglyoxal in the presence of different concentrations of aged garlic extract or S-allyl cysteine with subsequent analysis of glycation-derived crosslinking using SDS-PAGE. Amadori-rich protein was prepared by dialysing lysozyme that had been glycated by ribose for 24 h. This ribated lysozyme was reincubated and the effects of aged garlic extract, S-allyl cysteine and pyridoxamine on glycation-induced crosslinking was monitored. Aged garlic extract inhibited metal-catalysed protein fragmentation. Both aged garlic extract and S-allyl cysteine inhibited formation of glucose and methylglyoxal derived advanced glycation endproducts and showed potent Amadorin activity when compared to pyridoxamine. S-allyl cysteine inhibited formation of carboxymethyllysine (CML), a non-crosslinked advanced glycation endproduct derived from oxidative processes. Further studies are required to assess whether aged garlic extract and S-allyl cysteine can protect against the harmful effects of glycation and free radicals in diabetes and ageing.

  19. O2-Promoted Allylic Acetoxylation of Alkenes: Assessment of “Push” vs. “Pull” Mechanisms and Comparison between O2 and Benzoquinone

    PubMed Central

    Diao, Tianning

    2014-01-01

    Palladium-catalyzed acetoxylation of allylic C–H bonds has been the subject of extensive study. These reactions proceed via allyl-palladium(II) intermediates that react with acetate to afford the allyl acetate product. Benzoquinone and molecular oxygen are two common oxidants for these reactions. Benzoquinone has been shown to promote allyl acetate formation from well-defined π-allyl palladium(II) complexes. Here, we assess the ability of O2 to promote similar reactions with a series of “unligated” π-allyl palladium(II) complexes (i.e., in the absence of ancillary phosphorus, nitrogen or related donor ligands). Stoichiometric and catalytic allyl acetate formation is observed under aerobic conditions with several different alkenes. Mechanistic studies are most consistent with a “pull” mechanism in which O2 traps the Pd0 intermediate following reversible C–O bond-formation from an allyl-palladium(II) species. A “push” mechanism, involving oxidatively induced C–O bond formation, does not appear to participate. These results and conclusions are compared with benzoquinone-promoted allylic acetoxylation, in which a “push” mechanism seems to be operative. PMID:25435646

  20. Intramolecular allyl transfer reaction from allyl ether to aldehyde groups: experimental and theoretical studies.

    PubMed

    Franco, Delphine; Wenger, Karine; Antonczak, Serge; Cabrol-Bass, Daniel; Duñach, Elisabet; Rocamora, Mercè; Gomez, Montserrat; Muller, Guillermo

    2002-02-02

    The intramolecular transfer of the allyl group of functionalized allyl aryl ethers to an aldehyde group in the presence of Ni0 complexes was studied from chemical, electrochemical and theoretical points of view. The chemical reaction involves the addition of Ni0 to the allyl ether followed by stoichiometric allylation. The electrochemical process is catalytic in nickel and involves the reduction of intermediate eta3-allylnickel(II) complexes.

  1. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines

    PubMed Central

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  2. Regio- and Stereospecific Formation of Protected Allylic Alcohols via Zirconium-Mediated SN2' Substitution of Allylic Chlorides

    PubMed Central

    Fox, Richard J.; Lalic, Gojko; Bergman, Robert G.

    2008-01-01

    A new, highly regio- and stereospecific SN2' substitution reaction between a zirconium oxo complex and allylic chloride has been achieved. The resulting allylic alcohol or TBS-protected allylic ether products were isolated in good to excellent yields with a wide range of E-allylic chlorides. A mechanism for the SN2' allylic substitution consistent with kinetic, stereochemical and secondary isotope effect studies was proposed. PMID:17973391

  3. Dual palladium- and proline-catalyzed allylic alkylation of enolizable ketones and aldehydes with allylic alcohols.

    PubMed

    Usui, Ippei; Schmidt, Stefan; Breit, Bernhard

    2009-03-19

    The dual Pd/proline-catalyzed alpha-allylation reaction of a variety of enolizable ketones and aldehydes with allylic alcohols is described. In this reaction, the choice of a large-bite angle ligand Xantphos and proline as the organocatalyst was essential for generation of the crucial pi-allyl Pd intermediate from allylic alcohol, followed by nucleophilic attack of the enamine formed in situ from the corresponding enolizable carbonyl substrate and proline.

  4. N-Allylation of amines with allyl acetates using chitosan-immobilized palladium

    EPA Science Inventory

    A simple procedure for N-Allylation of allyl Acetates has been developed using a biodegradable and easily recyclable heterogeneous chitosan-supported palladium catalyst. The general methodology, applicable to wide range of substrates, has sustainable features that include a ligan...

  5. Development of Asymmetric Deacylative Allylation

    PubMed Central

    Grenning, Alexander J.; Van Allen, Christie K.; Maji, Tapan; Lang, Simon B.

    2013-01-01

    Herein we present the development of asymmetric deacylative allylation of ketone enolates. The reaction directly couples readily available ketone pronucleophiles with allylic alcohols using facile retro-Claisen cleavage to form reactive intermediates in situ. The simplicity and robustness of the reaction conditions is demonstrated by the preparation of > 6 grams of an allylated tetralone from commercially available materials. Furthermore, use of non-racemic PHOX ligands allows intermolecular formation of quaternary stereocenters directly from allylic alcohols. PMID:23734611

  6. Infrared laser spectroscopy of the helium-solvated allyl and allyl peroxy radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavitt, Christopher M.; Moradi, Christopher P.; Acrey, Bradley W.

    2013-12-16

    Infrared spectra in the C–H stretch region are reported for the allyl (CH 2CHCH 2) and allyl peroxy (CH 2=CH–CH 2OO·) radicals solvated in superfluid helium nanodroplets. Nine bands in the spectrum of the allyl radical have resolved rotational substructure. We have assigned three of these to the ν 1 (a 1), ν 3 (a 1), and ν 13 (b 2) C–H stretch bands and four others to the ν 14/(ν 15+2ν 11) (b 2) and ν 2/(ν 4+2ν 11) (a 1) Fermi dyads, and an unassigned resonant polyad is observed in the vicinity of the ν 1 band. Experimentalmore » coupling constants associated with Fermi dyads are consistent with quartic force constants obtained from density functional theory computations. The peroxy radical was formed within the He droplet via the reaction between allyl and O 2 following the sequential pick-up of the reactants. Five stable conformers are predicted for the allyl peroxy radical, and a computed two-dimensional potential surface for rotation about the CC–OO and CC–CO bonds reveals multiple isomerization barriers greater than ≈300 cm –1. Furthermore, the C–H stretch infrared spectrum is consistent with the presence of a single conformer following the allyl + O 2 reaction within helium droplets.« less

  7. Salvianic acid A sodium protects HUVEC cells against tert-butyl hydroperoxide induced oxidative injury via mitochondria-dependent pathway.

    PubMed

    Jia, Dan; Li, Tian; Chen, Xiaofei; Ding, Xuan; Chai, Yifeng; Chen, Alex F; Zhu, Zhenyu; Zhang, Chuan

    2018-01-05

    Salvianic acid A (Danshensu) is a major water-soluble component extracted from Salvia miltiorrhiza (Danshen), which has been widely used in clinic in China for treatment of cardiovascular diseases (CVDs). This study aimed to investigate the protective effects of salvianic acid A sodium (SAAS) against tert-butyl hydroperoxide (t-BHP) induced human umbilical vein endothelial cell (HUVEC) oxidative injury and the underlying molecular mechanisms. In the antioxidant activity-assessing model, SAAS pretreatment significantly ameliorated the cell growth inhibition and apoptosis induced by t-BHP. An ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) based-metabolic profiling was developed to investigate the metabolic changes of HUVEC cells in response to t-BHP and SAAS. The results revealed that t-BHP injury upregulated 13 metabolites mainly involved in tryptophan metabolism and phenylalanine metabolism which were highly correlated with mitochondrial function and oxidative stress, and 50 μM SAAS pretreatment effectively reversed these metabolic changes. Further biomedical research indicated that SAAS pretreatment reduced the t-BHP induced increase of lactate dehydrogenase (LDH), intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and mitochondrial membrane potential (MMP), and the decrease of key antioxidant enzymes through mitochondria antioxidative pathways via JAK2/STAT3 and PI3K/Akt/GSK-3β signalings. Taken together, our results suggested that SAAS may protect HUVEC cells against t-BHP induced oxidative injury via mitochondrial antioxidative defense system. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system

    EPA Science Inventory

    Allylic ethers were synthesized in water using magnetically recoverable heterogeneous Pd catalyst via O-allylation of phenols with allylic acetates under ambient conditions. Aqueous reaction medium, easy recovery of the catalyst using an external magnet, efficient recycling, and ...

  9. Catalytic Carbonyl Allylation, Propargylation and Vinylation from the Alcohol or Aldehyde Oxidation Level via C-C Bond Forming Hydrogenation and Transfer Hydrogenation: A Departure from Preformed Organometallic Reagents**

    PubMed Central

    Bower, John F.; Kim, In Su; Patman, Ryan L.; Krische, Michael J.

    2009-01-01

    Classical protocols for carbonyl allylation, propargylation and vinylation typically rely upon the use of preformed allyl metal, allenyl metal and vinyl metal reagents, respectively, mandating stoichiometric generation of metallic byproducts. Through transfer hydrogenative C-C coupling, carbonyl addition may be achieved from the aldehyde or alcohol oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. Here, we review transfer hydrogenative methods for carbonyl addition, which encompass the first cataltyic protocols enabling direct C–H functionalization of alcohols. PMID:19040235

  10. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways.

    PubMed

    Saha, Sukanya; Sadhukhan, Pritam; Sinha, Krishnendu; Agarwal, Namrata; Sil, Parames C

    2016-03-01

    Mangiferin is a polyphenolic xanthonoid with remarkable antioxidant activity. Oxidative stress plays the key role in tert-butyl hydroperoxide (tBHP) induced renal cell damage. In this scenario, we consider mangiferin, as a safe agent in tBHP induced renal cell death and rationalize its action systematically, in normal human kidney epithelial cells (NKE). NKE cells were exposed to 20 µM mangiferin for 2 h followed by 50 µM tBHP for 18 h. The effect on endogenous ROS production, antioxidant status (antioxidant enzymes and thiols), mitochondrial membrane potential, apoptotic signaling molecules, PI3K mediated signaling cascades and cell cycle progression were examined using various biochemical assays, FACS and immunoblot analyses. tBHP exposure damaged the NKE cells and decreased its viability. It also elevated the intracellular ROS and other oxidative stress-related biomarkers within the cells. However, mangiferin dose dependently, exhibited significant protection against this oxidative cellular damage. Mangiferin inhibited tBHP induced activation of different pro-apoptotic signals and thus protected the renal cells against mitochondrial permeabilization. Further, mangiferin enhanced the expression of cell proliferative signaling cascade molecules, Cyclin d1, NFκB and antioxidant molecules HO-1, SOD2, by PI3K/Akt dependent pathway. However, the inhibitor of PI3K abolished mangiferin's protective activity. Results show Mangiferin maintains the intracellular anti-oxidant status, induces the expression of PI3K and its downstream molecules and shields NKE cells against the tBHP induced cytotoxicity. Mangiferin can be indicated as a therapeutic agent in oxidative stress-mediated renal toxicity. This protective action of mangiferin primarily attributes to its potent antioxidant and antiapoptotic nature.

  11. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content.

    PubMed

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-04-15

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical-lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)-MS/MS (tandem MS), four E,Z-linoleate allyl radical-CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical-CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content.

  12. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content

    PubMed Central

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-01-01

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical–lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)–MS/MS (tandem MS), four E,Z-linoleate allyl radical–CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical–CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content. PMID:16396633

  13. Efficient epoxidation of a terminal alkene containing allylic hydrogen atoms: trans-methylstyrene on Cu{111}.

    PubMed

    Cropley, Rachael L; Williams, Federico J; Urquhart, Andrew J; Vaughan, Owain P H; Tikhov, Mintcho S; Lambert, Richard M

    2005-04-27

    The selective oxidation of trans-methylstyrene, a phenyl-substituted propene that contains labile allylic hydrogen atoms, has been studied on Cu{111}. Mass spectrometry and synchrotron fast XPS were used to detect, respectively, desorbing gaseous products and the evolution of surface species as a function of temperature and time. Efficient partial oxidation occurs yielding principally the epoxide, and the behavior of the system is sensitive to the order in which reactants are adsorbed. The latter is understandable in terms of differences in the spatial distribution of oxygen adatoms; isolated adatoms lead to epoxidation, while islands of "oxidic" oxygen do not. NEXAFS data taken over a range of coverages and in the presence and absence of coadsorbed oxygen indicate that the adsorbed alkene lies essentially flat with the allylic hydrogen atoms close to the surface. The photoemission results and comparison with the corresponding behavior of styrene on Cu{111} strongly suggest that allylic hydrogen abstraction is indeed a critical factor that limits epoxidation selectivity. An overall mechanism consistent with the structural and reactive properties is proposed.

  14. The effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide

    NASA Astrophysics Data System (ADS)

    Genshuan, Wei; Guanghui, Wang; Ruipu, Yang; Jilan, Wu

    1996-02-01

    A study of the effects of γ-radiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide and disulfide was carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant when stored for 10 months. The main components of garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3CHOH radical into acetaldehyde, which means that the formation of 2,3-butanediol is extensively inhibited.

  15. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimetoxiphenol and cathecol as biodiesel additives on oxidation stability

    NASA Astrophysics Data System (ADS)

    Botella, Lucía; Bimbela, Fernando; Martín, Lorena; Arauzo, Jesús; Sanchez, Jose Luis

    2014-07-01

    In the present work, several fatty acid methyl esters (FAME) have been synthesized from various fatty acid feedstocks: used frying olive oil, pork fat, soybean, rapeseed, sunflower and coconut. The oxidation stabilities of the biodiesel samples and of several blends have been measured simultaneously by both the Rancimat method, accepted by EN14112 standard, and the PetroOXY method, prEN16091 standard, with the aim of finding a correlation between both methodologies. Other biodiesel properties such as composition, cold filter plugging point (CFPP), flash point (FP) and kinematic viscosity have also been analyzed using standard methods in order to further characterize the biodiesel produced. In addition, the effect on the biodiesel properties of using 4-allyl-2,6-dimetoxiphenol and cathecol as additives in biodiesel blends with rapeseed and with soybean has also been analyzed. The use of both antioxidants results in a considerable improvement in the oxidation stability of both types of biodiesel, especially using cathecol. Adding cathecol loads as low as 0.05 % (m/m) in blends with soybean biodiesel and as low as 0.10 % (m/m) in blends with rapeseed biodiesel is sufficient for the oxidation stabilities to comply with the restrictions established by the European EN14214 standard.An empirical linear equation is proposed to correlate the oxidation stability by the two methods, PetroOXY and Rancimat. It has been found that the presence of either cathecol or 4-allyl-2,6-dimetoxiphenol as additives affects the correlation observed.

  16. Black rice extract protected HepG2 cells from oxidative stress-induced cell death via ERK1/2 and Akt activation

    PubMed Central

    Yoon, Jaemin; Ham, Hyeonmi; Sung, Jeehye; Kim, Younghwa; Choi, Youngmin; Lee, Jeom-Sig; Jeong, Heon-Sang; Lee, Junsoo

    2014-01-01

    BACKGROUND/OBJECTIVES The objective of this study was to evaluate the protective effect of black rice extract (BRE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. MATERIALS/METHODS Methanolic extract from black rice was evaluated for the protective effect on TBHP-induced oxidative injury in HepG2 cells. Several biomarkers that modulate cell survival and death including reactive oxygen species (ROS), caspase-3 activity, and related cellular kinases were determined. RESULTS TBHP induced cell death and apoptosis by a rapid increase in ROS generation and caspase-3 activity. Moreover, TBHP-induced oxidative stress resulted in a transient ERK1/2 activation and a sustained increase of JNK1/2 activation. While, BRE pretreatment protects the cells against oxidative stress by reducing cell death, caspase-3 activity, and ROS generation and also by preventing ERKs deactivation and the prolonged JNKs activation. Moreover, pretreatment of BRE increased the activation of ERKs and Akt which are pro-survival signal proteins. However, this effect was blunted in the presence of ERKs and Akt inhibitors. CONCLUSIONS These results suggest that activation of ERKs and Akt pathway might be involved in the cytoprotective effect of BRE against oxidative stress. Our findings provide new insights into the cytoprotective effects and its possible mechanism of black rice against oxidative stress. PMID:24741394

  17. Characterization of an allylic/benzyl alcohol dehydrogenase from Yokenella sp. strain WZY002, an organism potentially useful for the synthesis of α,β-unsaturated alcohols from allylic aldehydes and ketones.

    PubMed

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan; Wang, Zhao

    2014-04-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg(-1) for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg(-1) using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP(+), suggesting the nature of being an aldehyde reductase.

  18. Characterization of an Allylic/Benzyl Alcohol Dehydrogenase from Yokenella sp. Strain WZY002, an Organism Potentially Useful for the Synthesis of α,β-Unsaturated Alcohols from Allylic Aldehydes and Ketones

    PubMed Central

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan

    2014-01-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg−1 for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg−1 using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP+, suggesting the nature of being an aldehyde reductase. PMID:24509923

  19. Metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine in rats and dogs.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji; Kodera, Yukihiro

    2015-05-01

    The metabolism, excretion, and pharmacokinetics of S-allyl-l-cysteine (SAC), an active key component of garlic supplements, were examined in rats and dogs. A single dose of SAC was administered orally or i.v. to rats (5 mg/kg) and dogs (2 mg/kg). SAC was well absorbed (bioavailability >90%) and its four metabolites-N-acetyl-S-allyl-l-cysteine (NAc-SAC), N-acetyl-S-allyl-l-cysteine sulfoxide (NAc-SACS), S-allyl-l-cysteine sulfoxide (SACS), and l-γ-glutamyl-S-allyl-l-cysteine-were identified in the plasma and/or urine. Renal clearance values (<0.01 l/h/kg) of SAC indicated its extensive renal reabsorption, which contributed to the long elimination half-life of SAC, especially in dogs (12 hours). The metabolism of SAC to NAc-SAC, principal metabolite of SAC, was studied in vitro and in vivo. Liver and kidney S9 fractions of rats and dogs catalyzed both N-acetylation of SAC and deacetylation of NAc-SAC. After i.v. administration of NAc-SAC, SAC appeared in the plasma and its concentration declined in parallel with that of NAc-SAC. These results suggest that the rate and extent of the formation of NAc-SAC are determined by the N-acetylation and deacetylation activities of liver and kidney. Also, NAc-SACS was detected in the plasma after i.v. administration of either NAc-SAC or SACS, suggesting that NAc-SACS could be formed via both N-acetylation of SACS and S-oxidation of NAc-SAC. In conclusion, this study demonstrated that the pharmacokinetics of SAC in rats and dogs is characterized by its high oral bioavailability, N-acetylation and S-oxidation metabolism, and extensive renal reabsorption, indicating the critical roles of liver and kidney in the elimination of SAC. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Iridium-Catalyzed Kinetic Asymmetric Transformations of Racemic Allylic Benzoates

    PubMed Central

    Stanley, Levi M.; Bai, Chen; Ueda, Mitsuhiro; Hartwig, John F.

    2010-01-01

    Versatile methods for iridium-catalyzed, kinetic asymmetric substitution of racemic, branched allylic esters are reported. These reactions occur with a variety of aliphatic, aryl, and heteroaryl allylic benzoates to form the corresponding allylic substitution products in high yields (74–96%) with good to excellent enantioselectivity (84–98% ee) with a scope that encompasses a range of anionic carbon and heteroatom nucleophiles. These kinetic asymmetric processes occur with distinct stereochemical courses for racemic aliphatic and aromatic allylic benzoates, and the high reactivity of branched allylic benzoates enables enantioselective allylic substitutions that are slow or poorly selective with linear allylic electrophiles. PMID:20552969

  1. Synthesis of the active form of loxoprofen by using allylic substitutions in two steps.

    PubMed

    Hyodo, Tomonori; Kiyotsuka, Yohei; Kobayashi, Yuichi

    2009-03-05

    High regioselectivity for allylic substitution of the cyclopentenyl picolinate 5 with benzylcopper reagent was attained with ZnBr(2), and the finding was applied to the p-BrC(6)H(4)CH(2) reagent. The cyclopentene moiety in the product was reduced to the cyclopentane, and the p-BrC(6)H(4) was converted to the "Cu"C(6)H(4) for the second allylic substitution with picolinate 8 to furnish the title compound after oxidative cleavage of the resulting olefin moiety.

  2. Intramolecular Tsuji-Trost-type Allylation of Carboxylic Acids: Asymmetric Synthesis of Highly π-Allyl Donative Lactones.

    PubMed

    Suzuki, Yusuke; Seki, Tomoaki; Tanaka, Shinji; Kitamura, Masato

    2015-08-05

    Tsuji-Trost-type asymmetric allylation of carboxylic acids has been realized by using a cationic CpRu complex with an axially chiral picolinic acid-type ligand (Cl-Naph-PyCOOH: naph = naphthyl, py = pyridine). The carboxylic acid and allylic alcohol intramolecularly condense by the liberation of water without stoichiometric activation of either nucleophile or electrophile part, thereby attaining high atom- and step-economy, and low E factor. This success can be ascribed to the higher reactivity of allylic alcohols as compared with the allyl ester products in soft Ru/hard Brønstead acid combined catalysis, which can function under slightly acidic conditions unlike the traditional Pd-catalyzed system. Detailed analysis of the stereochemical outcome of the reaction using an enantiomerically enriched D-labeled substrate provides an intriguing view of enantioselection.

  3. Ultrasound-assisted oxidative desulfurization of bunker-C oil using tert-butyl hydroperoxide.

    PubMed

    Tang, Qiong; Lin, Song; Cheng, Ying; Liu, Sujun; Xiong, Jun-Ru

    2013-09-01

    This work investigated the ultrasonic assisted oxidative desulfurization of bunker-C oil with TBHP/MoO3 system. The operational parameters for the desulfurization procedure such as ultrasonic irradiation time, ultrasonic wave amplitude, catalyst initial concentration and oxidation agent initial concentration were studied. The experimental results show that the present oxidation system was very efficient for the desulfurization of bunker-C oil and ~35% sulfur was removed which was dependent on operational parameters. The application of ultrasonic irradiation allowed sulfur removal in a shorter time. The stronger the solvent polarity is, the higher the sulfur removal rate, but the recovery rate of oil is lower. The sulfur compounds in bunker-C oil reacted with TBHP to produce corresponding sulfoxide, and further oxidation produced the corresponding sulfone. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Carbocyclization cascades of allyl ketenimines via aza-Claisen rearrangements of N-phosphoryl-N-allyl-ynamides.

    PubMed

    DeKorver, Kyle A; Wang, Xiao-Na; Walton, Mary C; Hsung, Richard P

    2012-04-06

    A series of carbocyclization cascades of allyl ketenimines initiated through a thermal aza-Claisen rearrangement of N-phosphoryl-N-allyl ynamides is described. Interceptions of the cationic intermediate via Meerwein-Wagner rearrangements and polyene-type cyclizations en route to fused bi- and tricyclic frameworks are featured.

  5. Peroxotantalate-Based Ionic Liquid Catalyzed Epoxidation of Allylic Alcohols with Hydrogen Peroxide.

    PubMed

    Ma, Wenbao; Chen, Chen; Kong, Kang; Dong, Qifeng; Li, Kun; Yuan, Mingming; Li, Difan; Hou, Zhenshan

    2017-05-29

    The efficient and environmentally benign epoxidation of allylic alcohols has been attained by using new kinds of monomeric peroxotantalate anion-functionalized ionic liquids (ILs=[P 4,4,4,n ] 3 [Ta(O) 3 (η-O 2 )], P 4,4,4,n =quaternary phosphonium cation, n=4, 8, and 14), which have been developed and their structures determined accordingly. This work revealed the parent anions of the ILs underwent structural transformation in the presence of H 2 O 2 . The formed active species exhibited excellent catalytic activity, with a turnover frequency for [P 4,4,4,4 ] 3 [Ta(O) 3 (η-O 2 )] of up to 285 h -1 , and satisfactory recyclability in the epoxidation of various allylic alcohols under very mild conditions by using only one equivalent of hydrogen peroxide as an oxidant. NMR studies showed the reaction was facilitated through a hydrogen-bonding mechanism, in which the peroxo group (O-O) of the peroxotantalate anion served as the hydrogen-bond acceptor and hydroxyl group in the allylic alcohols served as the hydrogen-bond donor. This work demonstrates that simple monomeric peroxotantalates can catalyze epoxidation of allylic alcohols efficiently. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Carbocyclization Cascades of Allyl Ketenimines via Aza-Claisen Rearrangements of N-Phosphoryl-N-Allyl-Ynamides

    PubMed Central

    DeKorver, Kyle A.; Wang, Xiao-Na; Walton, Mary C.; Hsung, Richard P.

    2012-01-01

    A series of carbocyclization cascades of allyl ketenimines initiated through a thermal aza-Claisen rearrangement of N-phosphoryl-N-allyl ynamides is described. Interceptions of the cationic intermediate via Meerwein-Wagner rearrangements and polyene-type cyclizations en route to fused bi- and tricyclic frameworks are featured. PMID:22414252

  7. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis.

    PubMed

    Qu, Jianping; Helmchen, Günter

    2017-10-17

    substitution are discussed first. Some fairly complex targets, for example, the potent nitric oxide inhibitor (-)-nyasol and the drug (-)-protrifenbute, have been synthesized via less than five steps from simple starting materials. Most targets discussed are cyclic compounds. Intermolecular allylic substitution with subsequent ring closing metathesis is a powerful strategy for their synthesis. Highlights are stereodivergent syntheses of Δ 9 -tetrahydrocannabinols (THC), wherein iridium- and organocatalysis are combined (dual catalysis). The combination of allylic alkylation with a Diels-Alder reaction was utilized to synthesize the ketide apiosporic acid and the drug fesoterodine (Toviaz). Sequential allylic amination, hydroboration and Suzuki-Miyaura coupling generates enones suitable for conjugate addition reactions; this strategy was employed in syntheses of a variety of alkaloids, for example, the poison frog alkaloid (+)-cis-195A (pumiliotoxin C). Intramolecular substitutions offer interesting possibilities to build up stereochemical complexity via short synthetic routes. For example, in diastereoselective cyclizations of chiral compounds, substrate control can be overruled by catalyst control in order to generate cis- and trans-isomers selectively from a given precursor. This approach was used to prepare a variety of piperidine and pyrrolidine alkaloids. Finally, complex polycyclic structures, including the structurally unusual indolosesquiterpenoid mycoleptodiscin A, have been generated diastereo- and enantioselectively from olefins by polyene cyclizations and from electron-rich arenes, such as indoles, in dearomatization reactions.

  8. Novel synthesis of manganese and vanadium mixed oxide (V{sub 2}O{sub 5}/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdavi, Vahid, E-mail: v-mahdavi@araku.ac.ir; Soleimani, Shima

    2014-03-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V{sub 2}O{sub 5}/OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V{sub 2}O{sub 5}/OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V{sub 2}O{sub 5}/K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V{sub 2}O{sub 5}/K-OMS-2 catalyst. • V{sub 2}O{sub 5}/K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidationmore » using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V{sub 2}O{sub 5}/K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V{sub 2}O{sub 5} species. Oxidation of various alcohols was studied in the liquid phase over the V{sub 2}O{sub 5}/K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H{sub 2}O{sub 2} as the oxidant. Activity of the V{sub 2}O{sub 5}/K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V{sub 2}O{sub 5}. The kinetic of benzyl alcohol oxidation using excess TBHP over V{sub 2}O{sub 5}/K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential

  9. Aqueous reactions of triplet excited states with allylic compounds

    NASA Astrophysics Data System (ADS)

    Kaur, R.; Anastasio, C.; Hudson, B. M.; Tantillo, D. J.

    2016-12-01

    Triplet excited states of dissolved organic matter react with several classes of aromatic organics such as phenols, anilines, sulfonamide antibiotics and phenylurea herbicides. Aqueous triplets appear to be among the most important oxidants for atmospheric phenols in regions with biomass burning, with phenol lifetimes on the order of a few hours to a day. However, little is known of the reactions of triplets with other classes of organic compounds. Recent work from our group shows that triplets react rapidly with several biogenic volatile organic compounds (BVOCs), such as methyl jasmonate, cis-3-hexenyl acetate, and cis-3-hexen-1-ol. However, there are only a few rate constants for aqueous reactions between alkenes such as these and triplet excited states. For our work, we refer to these and similar alkenes which have hydrogen(s) attached to a carbon adjacent to the double bond, as allylic compounds. To better assess the importance of triplets as aqueous oxidants, we measured second-order rate constants (kAC+3BP*) for a number of allylic compounds (ACs) with the triplet state of benzophenone; then established a quantitative structure-activity relationship (QSAR) between kAC+3BP* and computed oxidation potential of the ACs (R2 =0.65). Using the QSAR, we estimated the rate constants for triplets with some allylic isoprene and limonene oxidation products that have high Henry's law constants (KH>103 M atm-1). Hydroxylated limonene products and the delta-isomers of isoprene hydroxyhydroperoxides (δ4ISOPOOH) and hydroxynitrates (δ4ISONO2) were faster with predicted kAC+3BP* values ranging between (0.5-3.5) x 109 M-1-s-1 whereas the beta-isomers of ISOPOOH and ISONO2 were slower (kAC+3BP* < 0.5 x 109 M-1s-1). We scaled the predicted kAC+3BP* to represent less reactive atmospheric triplets that have been measured in fog drops, and compared to gas and aqueous hydroxyl radical and ozone, triplets in fog could account for up to 20 % of the measured loss of these compounds

  10. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by 3O2; Implications for Combustion Modeling and Simulation.

    PubMed

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J

    2017-03-09

    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O 2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants

  11. Reactivity, chemoselectivity, and diastereoselectivity of the oxyfunctionalization of chiral allylic alcohols and derivatives in microemulsions: comparison of the chemical oxidation by the hydrogen peroxide/sodium molybdate system with the photooxygenation.

    PubMed

    Nardello, Véronique; Caron, Laurent; Aubry, Jean-Marie; Bouttemy, Sabine; Wirth, Thomas; Saha-Möller Chantu, R; Adam, Waldemar

    2004-09-01

    The chiral allylic alcohols 1a-d and their acetate (1e) and silyl ether (1f) derivatives have been oxidized by the H2O2/MoO4(2)- system, a convenient and efficient chemical source of singlet oxygen. This chemical peroxidation (formation of the allylic hydroperoxides 2) has been conducted in various media, which include aqueous solutions, organic solvents, and microemulsions. The reactivity, chemoselectivity, and diastereoselectivity of this chemical oxidation are compared to those of the sensitized photooxygenation, with the emphasis on preparative applications in microemulsion media. While a similar threo diastereoselectivity is observed for both modes of peroxidation, the chemoselectivity differs significantly, since in the chemical oxidation with the H2O2/MoO4(2)- system the undesirable epoxidation by the intermediary peroxomolybdate competes efficiently with the desirable peroxidation by the in situ generated singlet oxygen. A proper choice of the type of microemulsion and the reaction conditions furnishes a high chemoselectivity (up to 97%) in favor of threo-diastereoselective (up to 92%) peroxidation. Copyright 2004 American Chemical Society

  12. Enantioselective synthesis of allylic esters via asymmetric allylic substitution with metal carboxylates using planar-chiral cyclopentadienyl ruthenium catalysts.

    PubMed

    Kanbayashi, Naoya; Onitsuka, Kiyotaka

    2010-02-03

    An asymmetric allylic substitution with sodium carboxylate using a planar-chiral cyclopentadienyl ruthenium complex has been developed. Optically active allylic esters were prepared in good yields with high regio- and enantioselectivities.

  13. Tungsten-catalyzed asymmetric epoxidation of allylic and homoallylic alcohols with hydrogen peroxide.

    PubMed

    Wang, Chuan; Yamamoto, Hisashi

    2014-01-29

    A simple, efficient, and environmentally friendly asymmetric epoxidation of primary, secondary, tertiary allylic, and homoallylic alcohols has been accomplished. This process was promoted by a tungsten-bishydroxamic acid complex at room temperature with the use of aqueous 30% H2O2 as oxidant, yielding the products in 84-98% ee.

  14. Allyl alcohol

    Integrated Risk Information System (IRIS)

    Allyl alcohol ; CASRN 107 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  15. Allyl chloride

    Integrated Risk Information System (IRIS)

    Allyl chloride ; CASRN 107 - 05 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  16. The direct arylation of allylic sp3 C–H bonds via organocatalysis and photoredox catalysis

    PubMed Central

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-01-01

    The direct functionalization of unactivated sp3 C–H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts,1 the establishment of general and mild strategies for the engagement of sp3 C–H bonds in carbon–carbon bond forming reactions has proven difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene, and methine carbons in a catalytic manner is a priority. While protocols for direct allylic C–H oxidation and amination have become widely established,2,3 the engagement of allylic substrates in carbon–carbon bond-forming reactions has thus far required the use of pre-functionalized coupling partners.4 In particular, the direct arylation of non-functionalized allylic systems would enable chemists to rapidly access a series of known pharmacophores, though a general solution to this longstanding challenge remains elusive. We describe herein the use of both photoredox and organic catalysis to accomplish the first mild, broadly effective direct allylic C–H arylation. This new C–C bond-forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants and has been used in the direct arylation of benzylic C–H bonds. PMID:25739630

  17. Enantioselective epoxidation with chiral MN(III)(salen) catalysts: kinetic resolution of aryl-substituted allylic alcohols.

    PubMed

    Adam, W; Humpf, H U; Roschmann, K J; Saha-Möller, C R

    2001-08-24

    A set of aryl-substituted allylic alcohols rac-2 has been epoxidized by chiral Mn(salen*) complexes 1 as the catalyst and iodosyl benzene (PhIO) as the oxygen source. Whereas one enantiomer of the allylic alcohol 2 is preferentially epoxidized to give the threo- or cis-epoxy alcohol 3 (up to 80% ee) as the main product (dr up to >95:5), the other enantiomer of 2 is enriched (up to 53% ee). In the case of 1,1-dimethyl-1,2-dihydronaphthalen-2-ol (2c), the CH oxidation to the enone 4c proceeds enantioselectively and competes with the epoxidation. The absolute configurations of the allylic alcohols 2 and their epoxides 3 have been determined by chemical correlation or CD spectroscopy. The observed diastereo- and enantioselectivities in the epoxidation reactions are rationalized in terms of a beneficial interplay between the hydroxy-directing effect and the attack along the Katsuki trajectory.

  18. Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins

    NASA Astrophysics Data System (ADS)

    Liu, Guosheng; Wu, Yichen

    Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.

  19. Copper-Mediated SN2' Allyl-Alkyl and Allyl-Boryl Couplings of Vinyl Cyclic Carbonates.

    PubMed

    Miralles, Núria; Gómez, José Enrique; Kleij, Arjan W; Fernández, Elena

    2017-11-17

    A method for the copper-catalyzed borylmethylation and borylation of vinyl cyclic carbonates through an S N 2' mechanism is reported. These singular reactions involve selective S N 2' allylic substitutions with concomitant ring opening of the cyclic carbonate and with extrusion of CO 2 and formation of a useful hydroxyl functionality in a single step. The stereoselectivity of the homoallylic borylation and allylic borylation processes can be controlled, and synthetically useful unsaturated (E)-pent-2-ene-1,5-diols and (E)-but-2-ene-1,4-diols are accessed.

  20. Allyl Ligand Reactivity in Tantalum(V) Compounds: Experimental and Computational Evidence for Allyl Transfer to the Formamidinate Ligand in fac-Ta(NMe2)3( 1-allyl)[iPrNC(H)NHiPr] via a Metallo-Claisen Rearrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shih-Huang Huang; Wang, Xiaoping; Nesterov, Vladimir

    2011-01-01

    Treatment of TaCl(NMe{sub 2})4 (1) with allyl MgCl furnishes the allyl-substituted compound Ta(NMe{sub 2})4({eta}{sup 1}-allyl) (2) in moderate yield. The X-ray structure of 2 reveals a trigonal-bipyramidal geometry at the tantalum center with an equatorially situated {eta}{sup 1}-allyl moiety. VT {sup 1}H NMR measurements confirm that the molecule is fluxional in solution over the temperature range 298-193 K, and DFT calculations indicate that the time-averaged environment exhibited by the allyl moiety in fluid solution derives from a rapid {eta}{sup 1}-to-{eta}{sup 3} equilibration, with Ta(NMe{sub 2})4({eta}{sup 3}-allyl) serving as the transition state for this process. 1 reacts rapidly with the formamidinemore » {sup i}PrNC(H)N{sup i}Pr to yield fac-TaCl(NMe{sub 2}){sub 3}[{sup i}PrNC(H)N{sup i}Pr] (5) and Me{sub 2}NH, and the tantalum product has been characterized by NMR spectroscopy and X-ray diffraction analysis. The five-coordinate compound Ta(NMe{sub 2}){sub 3}[{sup i}PrNCH(allyl)N{sup i}Pr] (7), whose origin is traced to the putative octahedral species fac-Ta(NMe{sub 2}){sub 3}({eta}{sup 1}-allyl)[{sup i}PrNC(H)N{sup i}Pr] (6), has been obtained from the reaction of 2 with {sup i}PrNC(H)N{sup i}Pr; 7 may also be prepared from the reaction of 5 with allylMgCl. The rearrangement of the allyl moiety in fac-Ta(NMe{sub 2}){sub 3}({eta}{sup 1}-allyl)[{sup i}PrNC(H)N{sup i}Pr] to the formamidinate carbon atom in 7 has been investigated by DFT calculations. Here the DFT calculations have provided crucial insight into the reaction mechanism and the composition of those transient species that do not lend themselves to direct spectroscopic observation. The computed barrier for this metallo-Claisen rearrangement is sensitive to the nature of the density functional employed, and the barrier computed using the meta-GGA TPSS functional provides the best agreement with the experimental conditions. The related alkenyl derivatives Ta(NMe{sub 2})4({eta}{sup 1}-3-butenyl

  1. Involvement of bilitranslocase and beta-glucuronidase in the vascular protection by hydroxytyrosol and its glucuronide metabolites in oxidative stress conditions.

    PubMed

    Peyrol, Julien; Meyer, Grégory; Obert, Philippe; Dangles, Olivier; Pechère, Laurent; Amiot, Marie-Josèphe; Riva, Catherine

    2018-01-01

    Olive oil vascular benefits have been attributed to hydroxytyrosol (HT). However, HT biological actions are still debated because it is extensively metabolized into glucuronides (GCs). The aim of this study was to test HT and GC vasculoprotective effects and the underlying mechanisms using aorta rings from 8-week-old male Wistar rats. In the absence of oxidative stress, incubation with 100 μM HT or GC for 5 min did not exert any vasorelaxing effect and did not influence the vascular function. Conversely, in condition of oxidative stress [upon incubation with 500 μM tert-butylhydroperoxide (t-BHP) for 30 min], preincubation with HT or GC improved acetylcholine-induced vasorelaxation compared with untreated samples (no t-BHP). This protective effect was lost for GC, but not for HT, when a washing step (15 min) was introduced between preincubation with HT or GC and t-BHP addition, suggesting that only HT enters the cells. In agreement, bilitranslocase inhibition with 100 μM phenylmethanesulfonyl fluoride for 20 min reduced significantly HT, but not GC, effect on the vascular function upon stress induction. Moreover, GC protective effect (improvement of endothelium-dependent relaxation in response to acetylcholine) in oxidative stress conditions was reduced by preincubation of aorta rings with 300 μM D-saccharolactone to inhibit β-glucuronidase, which can deconjugate polyphenols. Finally, only HT was detected by high-pressure liquid chromatography in aorta rings incubated with GC and t-BHP. These results suggest that, in conditions of oxidative stress, GC can be deconjugated into HT that is transported through the cell membrane by bilitranslocase to protect vascular function. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.

    PubMed

    Cuthbertson, James D; MacMillan, David W C

    2015-03-05

    The direct functionalization of unactivated sp(3) C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp(3) C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  3. The direct arylation of allylic sp3 C-H bonds via organic and photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-03-01

    The direct functionalization of unactivated sp3 C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp3 C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  4. Diastereoselective Allylation of "N"-"Tert"-Butanesulfinyl Imines: An Asymmetric Synthesis Experiment for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Chen, Xiao-Yang; Sun, Li-Sen; Gao, Xiang; Sun, Xing-Wen

    2015-01-01

    An asymmetric synthetic experiment that encompasses both diastereoselectivity and enantioselectivity is described. In this experiment, Zn-mediated allylation of an ("R")-"N"-"tert"-butanesulfinyl imine is first performed to obtain either diastereomer using two different solvent systems, followed by oxidation of the…

  5. Application of confocal Raman micro-spectroscopy for label-free monitoring of oxidative stress in living bronchial cells

    NASA Astrophysics Data System (ADS)

    Surmacki, Jakub M.; Quirós Gonzalez, Isabel; Bohndiek, Sarah E.

    2018-02-01

    Oxidative stress in cancer is implicated in tumor progression, being associated with increased therapy resistance and metastasis. Conventional approaches for monitoring oxidative stress in tissue such as high-performance liquid chromatography and immunohistochemistry are bulk measurements and destroy the sample, meaning that longitudinal monitoring of cancer cell heterogeneity remains elusive. Raman spectroscopy has the potential to overcome this challenge, providing a chemically specific, label free readout from single living cells. Here, we applied a standardized protocol for label-free confocal Raman micro-spectroscopy in living cells to monitor oxidative stress in bronchial cells. We used a quartz substrate in a commercial cell chamber contained within a microscope incubator providing culture media for cell maintenance. We studied the effect of a potent reactive oxygen species inducer, tert-butyl hydroperoxide (TBHP), and antioxidant, N-acetyl-L-cysteine (NAC) on living cells from a human bronchial epithelial cells (HBEC). We found that the Raman bands corresponding to nucleic acids, proteins and lipids were significantly different (p<0.05) for control, TBHP, and NAC. Encouragingly, partial least squares discriminant analysis applied to our data showed high sensitivity and specificity for identification of control (87.3%, 71.7%), NAC (92.3%, 85.1%) and TBHP (86.9%, 92.9%). These results suggest that confocal Raman micro-spectroscopy may be able to monitor the biological impact of oxidative and reductive processes in cells, hence enabling longitudinal studies of oxidative stress in therapy resistance and metastasis at the single cell level.

  6. Regio- and enantioselective palladium-catalyzed allylic alkylation of nitromethane with monosubstituted allyl substrates: synthesis of (R)-rolipram and (R)-baclofen.

    PubMed

    Yang, Xiao-Fei; Ding, Chang-Hua; Li, Xiao-Hui; Huang, Jian-Qiang; Hou, Xue-Long; Dai, Li-Xin; Wang, Pin-Jie

    2012-10-19

    The Pd-catalyzed asymmetric allylic alkylation (AAA) reaction of nitromethane with monosubstituted allyl substrates was realized for the first time to provide corresponding products in high yields with excellent regio- and enantioselectivities. The protocol was applied to the enantioselective synthesis of (R)-baclofen and (R)-rolipram.

  7. Catalyst-free synthesis of skipped dienes from phosphorus ylides, allylic carbonates, and aldehydes via a one-pot SN2' allylation-Wittig strategy.

    PubMed

    Xu, Silong; Zhu, Shaoying; Shang, Jian; Zhang, Junjie; Tang, Yuhai; Dou, Jianwei

    2014-04-18

    A catalyst-free allylic alkylation of stabilized phosphorus ylides with allylic carbonates via a regioselective SN2' process is presented. Subsequent one-pot Wittig reaction with both aliphatic and aromatic aldehydes as well as ketenes provides structurally diverse skipped dienes (1,4-dienes) in generally high yields and moderate to excellent stereoselectivity with flexible substituent patterns. This one-pot SN2' allylation-Wittig strategy constitutes a convenient and efficient synthetic method for highly functionalized skipped dienes from readily available starting materials.

  8. Pentamethylcyclopentadienyl-ruthenium catalysts for regio- and enantioselective allylation of nucleophiles.

    PubMed

    Bruneau, Christian; Renaud, Jean-Luc; Demerseman, Bernard

    2006-07-05

    Ruthenium(II) complexes containing the pentamethylcyclopentadienyl ligand efficiently perform the activation of allylic carbonates and halides to generate cationic and dicationic ruthenium(IV) complexes. This activation has been transferred as a key step to the catalytic allylation of nucleophiles. The structural and electronic properties of the allylic moieties lead to the regioselective formation of chiral products resulting from nucleophilic addition to their most substituted terminus. The catalytic activity of various Ru(Cp*) precatalysts in several allylic substitutions by C and O nucleophiles will be presented. The enantioselective version that has been demonstrated by using optically pure bisoxazoline ligands will also be discussed.

  9. Metal-free one-pot oxidative amination of aldehydes to amides.

    PubMed

    Ekoue-Kovi, Kekeli; Wolf, Christian

    2007-08-16

    Metal-free oxidative amination of aromatic aldehydes in the presence of TBHP provides convenient access to amides in 85-99% under mild reaction conditions within 5 h. This method avoids free carboxylic acid intermediates and integrates aldehyde oxidation and amide bond formation, which are usually accomplished separately, into a single operation. Proline-derived amides can be prepared in excellent yields without noticeable racemization.

  10. Effect of Allylic Groups on SN2 Reactivity

    PubMed Central

    2015-01-01

    The activating effects of the benzyl and allyl groups on SN2 reactivity are well-known. 6-Chloromethyl-6-methylfulvene, also a primary, allylic halide, reacts 30 times faster with KI/acetone than does benzyl chloride at room temperature. The latter result, as well as new experimental observations, suggests that the fulvenyl group is a particularly activating allylic group in SN2 reactions. Computational work on identity SN2 reactions, e.g., chloride– displacing chloride– and ammonia displacing ammonia, shows that negatively charged SN2 transition states (tss) are activated by allylic groups according to the Galabov–Allen–Wu electrostatic model but with the fulvenyl group especially effective at helping to delocalize negative charge due to some cyclopentadienide character in the transition state (ts). In contrast, the triafulvenyl group is deactivating. However, the positively charged SN2 transition states of the ammonia reactions are dramatically stabilized by the triafulvenyl group, which directly conjugates with a reaction center having SN1 character in the ts. Experiments and calculations on the acidities of a variety of allylic alcohols and carboxylic acids support the special nature of the fulvenyl group in stabilizing nearby negative charge and highlight the ability of fulvene species to dramatically alter the energetics of processes even in the absence of direct conjugation. PMID:24977317

  11. COMPARISON OF IN VIVO AND IN VITRO METHODS FOR ASSESSING EFFECTS OF ALLYL ALCOHOL ON THE LIVER

    EPA Science Inventory

    Allyl alcohol was administered to female Fischer 344 rats at doses of 0, 3, 10 and 30 mg/kg daily for 7 days. Plasma sorbitol dehydrogenase was minimally elevated. No dose related changes were observed in hexobarbital oxidation, aniline hydroxylation, or ethylmorphine demethylati...

  12. Comparative analysis of allyl isothiocyanate (AITC)-induced carbohydrate oxidation changes via TRPV1 between mice and chickens.

    PubMed

    Kawabata, Fuminori; Kawabata, Yuko; Liang, Ruojun; Nishimura, Shotaro; Tabata, Shoji

    2017-01-01

    Postprandial hyperglycemia is a risk factor for cardiovascular diseases. It has been reported that intragastric administration of allyl isothiocyanate (AITC), which is one of the pungent ingredients of wasabi and horseradish but it is not included in hot chili pepper, increased carbohydrate oxidation and reduced postprandial increase of blood glucose via transient receptor potential vanilloid 1 (TRPV1)in mice. However, the action site of AITC on TRPV1 for increasing carbohydrate oxidation is unclear. Both mammalian and chicken TRPV1 (cTRPV1) are activated by heat and acid, but unlike its mammalian counterpart, cTRPV1 is only faintly activated by capsaicin. This difference is due to the 8 chicken-specific amino acid residues around transmembrane 3, which is the main site of capsaicin-binding in rat TRPV1. Moreover, AITC-induced activation of mouse TRPV1 (mTRPV1) is largely dependent on S513, a residue that is involved in capsaicin-binding. Thus, we hypothesized that the increase of carbohydrate oxidation by AITC in mammals is induced by the binding of AITC to the capsaicin-binding site of TRPV1. In this study, we performed a comparative study using chickens and mice, since chickens are thought to partly lack the capsaicin-binding site of TRPV1. We examined the effects of AITC on the respiratory quotient (RQ), the index of carbohydrate oxidation and fat oxidation, in chickens and mice. Respiratory gas analysis revealed that AITC does not increase the RQ in chickens, and Ca 2+ imaging methods and a whole cell-patch clamp analysis showed that AITC does not activate cTRPV1. These results implied that the capsaicin-binding site is an important region for increasing carbohydrate oxidation by AITC administration in animals.

  13. Toxicity of allyl esters in insect cell lines and in Spodoptera littoralis larvae.

    PubMed

    Giner, Marta; Avilla, Jesús; Balcells, Mercè; Caccia, Silvia; Smagghe, Guy

    2012-01-01

    We investigated the effects of five allyl esters, two aromatic (allyl cinnamate and allyl 2-furoate) and three aliphatic (allyl hexanoate, allyl heptanoate, and allyl octanoate) in established insect cell lines derived from different species and tissues. We studied embryonic cells of the fruit fly Drosophila melanogaster (S2) (Diptera) and the beet armyworm Spodoptera exigua (Se4) (Lepidoptera), fat body cells of the Colorado potato beetle Leptinotarsa decemlineata (CPB) (Coleoptera), ovarian cells of the silkmoth Bombyx mori (Bm5), and midgut cells of the spruce budworm Choristoneura fumiferana (CF203) (Lepidoptera). Cytotoxicity was determined with use of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and trypan blue. In addition, we tested the entomotoxic action of allyl cinnamate against the cotton leafworm Spodoptera littoralis .The median (50%) cytotoxic concentrations (EC₅₀s) of the five allyl esters in the MTT bioassays ranged between 0.25 and 27 mM with significant differences among allyl esters (P = 0.0012), cell lines (P < 0.0001), and the allyl ester-cell line interaction (P < 0.0001). Allyl cinnamate was the most active product, and CF203 the most sensitive cell line. In the trypan blue bioassays, cytotoxicity was produced rapidly and followed the same trend observed in the MTT bioassay. In first instars of S. littoralis, allyl cinnamate killed all larvae at 0.25% in the diet after 1 day, while this happened in third instars after 5 days. The LC₅₀ in first instars was 0.08%. In addition, larval weight gain was reduced (P < 0.05) after 1 day of feeding on diet with 0.05%. In conclusion, the data provide evidence of the significant but differential cytotoxicity among allyl esters in insect cells of different species and tissues. Midgut cells show high sensitivity, indicating the insect midgut as a primary target tissue. Allyl cinnamate caused rapid toxic effects in S. littoralis larvae at low concentrations, suggesting

  14. Palladium-Catalyzed Direct C-H Allylation of Electron-Deficient Polyfluoroarenes with Alkynes.

    PubMed

    Zheng, Jun; Breit, Bernhard

    2018-04-06

    A palladium-catalyzed intermolecular direct C-H allylation of polyfluoroarenes with alkynes is reported. Unlike classic hydroarylation reactions, alkynes are used as allylic electrophile surrogates in this direct aromatic C-H allylation. As an atom-economic and efficient method, various linear allylated fluoroarenes were synthesized from two simple and easy-to-access feedstocks in good to excellent yields, as well as regio- and stereoselectivity.

  15. Protective Effects of Black Rice Extracts on Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells

    PubMed Central

    Lee, Seon-Mi; Choi, Youngmin; Sung, Jeehye; Kim, Younghwa; Jeong, Heon-Sang; Lee, Junsoo

    2014-01-01

    Black rice contains many biologically active compounds. The aim of this study was to investigate the protective effects of black rice extracts (whole grain extract, WGE and rice bran extract, RBE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. Cellular reactive oxygen species (ROS), antioxidant enzyme activities, malondialdehyde (MDA) and glutathione (GSH) concentrations were evaluated as biomarkers of cellular oxidative status. Cells pretreated with 50 and 100 μg/mL of WGE or RBE were more resistant to oxidative stress in a dose-dependent manner. The highest WGE and BRE concentrations enhanced GSH concentrations and modulated antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase) compared to TBHP-treated cells. Cells treated with RBE showed higher protective effect compared to cells treated with WGE against oxidative insult. Black rice extracts attenuated oxidative insult by inhibiting cellular ROS and MDA increase and by modulating antioxidant enzyme activities in HepG2 cells. PMID:25580401

  16. Protective effect of Pterostilbene against free radical mediated oxidative damage

    PubMed Central

    2013-01-01

    Background Pterostilbene, a methoxylated analog of Resveratrol, is gradually gaining more importance as a therapeutic drug owing to its higher lipophilicity, bioavailability and biological activity than Resveratrol. This study was undertaken to characterize its ability to scavenge free radicals such as superoxide, hydroxyl and hydrogen peroxide and to protect bio-molecules within a cell against oxidative insult. Methods Anti-oxidant activity of Pterostilbene was evaluated extensively by employing several in vitro radical scavenging/inhibiting assays and pulse radiolysis study. In addition, its ability to protect rat liver mitochondria against tertiary-butyl hydroperoxide (TBHP) and hydroxyl radical generated oxidative damage was determined by measuring the damage markers such as protein carbonyls, protein sulphydryls, lipid hydroperoxides, lipid peroxides and 8-hydroxy-2'-deoxyguanosine. Pterostilbene was also evaluated for its ability to inhibit •OH radical induced single strand breaks in pBR322 DNA. Result Pterostilbene exhibited strong anti-oxidant activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide in a concentration dependent manner. Pterostilbene conferred protection to proteins, lipids and DNA in isolated mitochondrial fractions against TBHP and hydroxyl radical induced oxidative damage. It also protected pBR322 DNA against oxidative assault. Conclusions Thus, present study provides an evidence for the strong anti-oxidant property of Pterostilbene, methoxylated analog of Resveratrol, thereby potentiating its role as an anti-oxidant. PMID:24070177

  17. Enantioselective construction of C-chiral allylic sulfilimines via the iridium-catalyzed allylic amination with S,S-diphenylsulfilimine: asymmetric synthesis of primary allylic amines† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc01317d Click here for additional data file.

    PubMed Central

    Grange, Rebecca L.; Clizbe, Elizabeth A.; Counsell, Emma J.

    2015-01-01

    We have devised a highly regio- and enantioselective iridium-catalyzed allylic amination reaction with the sulfur-stabilized aza-ylide, S,S-diphenylsulfilimine. This process provides a robust and scalable method for the construction of aryl-, alkyl- and alkenyl-substituted C-chiral allylic sulfilimines, which are important functional groups for organic synthesis. Additionally, the combination of the allylic amination with an in situ deprotection of the sulfilimine constitutes a convenient one-pot protocol for the construction of chiral nonracemic primary allylic amines. PMID:28936319

  18. Effect of additives on chemoselectivity and diastereoselectivity in the catalytic epoxidation of chiral allylic alcohols with hydrogen peroxide and binuclear manganese complexes.

    PubMed

    Kilic, Hamdullah; Adam, Waldemar; Alsters, Paul L

    2009-02-06

    The catalytic oxidations of chiral allylic alcohols 2 by manganese complexes of the cyclic triamine 1,4,7-trimethyl-1,4,7-triazacyclononane (tmtacn) 1 and hydrogen peroxide as oxygen donor in the presence of co-catalyst are investigated to understand the factors that affect the catalyst selectivity. Chemoselectivity and diastereoselectivity of catalyst 1 are significantly affected by the structure of the allylic alcohol and the nature and amount of co-catalyst. More pronounced is the influence of the amount of added molar equivalents of H(2)O(2) (20-110 mol % with respect to the substrate). Our present results reflect the complex redox chemistry of the Mn catalyst 1/H(2)O(2)/co-catalyst system in the early phase of the alkene oxidation.

  19. Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca2+ Ion Interactions with Mitochondria and Effects of Oxidative Agents.

    PubMed

    Golovach, Nina G; Cheshchevik, Vitali T; Lapshina, Elena A; Ilyich, Tatsiana V; Zavodnik, Ilya B

    2017-04-01

    We evaluated the parameters of Ca 2+ -induced mitochondrial permeability transition (MPT) pore formations, Ca 2+ binding constants, stoichiometry, energy of activation, and the effect of oxidative agents, tert-butyl hydroperoxide (tBHP), and hypochlorous acid (HOCl), on Ca 2+ -mediated process in rat liver mitochondria. From the Hill plot of the dependence of MPT rate on Ca 2+ concentration, we determined the order of interaction of Ca 2+ ions with the mitochondrial sites, n = 3, and the apparent K d = 60 ± 12 µM. We also found the apparent Michaelis-Menten constant, K m , for Ca 2+ interactions with mitochondria to be equal to 75 ± 20 µM, whereas that in the presence of 300 µM tBHP was 120 ± 20 µM. Using the Arrhenius plots of the temperature dependences of apparent mitochondrial swelling rate at various Ca 2+ concentrations, we calculated the activation energy of the MPT process. ΔE a was 130 ± 20 kJ/mol at temperatures below the break point of the Arrhenius plot (30-34 °C) and 50 ± 9 kJ/mol at higher temperatures. Ca 2+ ions induced rapid mitochondrial NADH depletion and membrane depolarization. Prevention of the pore formation by cyclosporin A inhibited Ca 2+ -dependent mitochondrial depolarization and Mg 2+ ions attenuated the potential dissipation. tBHP (10-150 µM) dose-dependently enhanced the rate of MPT opening, whereas the effect of HOCl on MPT depended on the ratio of HOCl/Ca 2+ . The apparent K m of tBHP interaction with mitochondria in the swelling reaction was found to be K m = 11 ± 3 µM. The present study provides evidence that three calcium ions interact with mitochondrial site with high affinity during MPT. Ca 2+ -induced MPT pore formations due to mitochondrial membrane protein denaturation resulted in membrane potential dissipation. Oxidants with different mechanisms, tBHP and HOCl, reduced mitochondrial membrane potential and oxidized mitochondrial NADH in EDTA-free medium and had an effect on

  20. Effects of solution conditions on methionine oxidation in albinterferon alfa-2b and the role of oxidation in its conformation and aggregation.

    PubMed

    Chou, Danny K; Krishnamurthy, Rajesh; Manning, Mark Cornell; Randolph, Theodore W; Carpenter, John F

    2013-02-01

    Physical and chemical degradation of therapeutic proteins can occur simultaneously. In this study, our first objective was to investigate how solution conditions that impact conformational stability of albinterferon alfa-2b, a recombinant fusion protein, modulate rates of methionine (Met) oxidation. Another objective of this work was to determine whether oxidation affects conformation and rate of aggregation of the protein. The protein was subjected to oxidation in solutions of varying pH, ionic strength, and excipients by the addition of 0.02% tertiary-butyl hydroperoxide (TBHP). The rate of formation of Met-sulfoxide species was monitored by reversed-phase high-performance liquid chromatography and compared across solution conditions. Albinterferon alfa-2b exhibited susceptibility to Met oxidation during exposure to TBHP that was highly dependent on solution parameters, but there was not a clear correlation between oxidation rate and protein conformational stability. Met oxidation resulted in significant perturbation of both secondary and tertiary structure of albinterferon alfa-2b as shown by both far-ultraviolet (UV) and near-UV circular dichroism. Moreover, oxidation of the protein caused a noticeable reduction in the protein's resistance to thermal denaturation. Surprisingly, despite its negative effect on solution structure and conformational stability, oxidation actually reduced the protein's aggregation rate during agitation at room temperature as well as during quiescent incubation at 40°C. Oxidation of the protein resulted in improved colloidal stability of the protein, which is manifested by a more positive B(22) value in the oxidized protein. Thus, the reduced aggregation rate after oxidation suggests that increased colloidal stability of oxidized albinterferon alfa-2b counteracted oxidation-induced decreases in conformational stability. Copyright © 2012 Wiley Periodicals, Inc.

  1. Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde.

    PubMed

    Han, Hongling; Ding, Guodong; Wu, Tianbin; Yang, Dexin; Jiang, Tao; Han, Buxing

    2015-07-13

    A novel Cu and boron doped graphitic carbon nitride catalyst (Cu-CNB) was synthesized using cheap precursors and systematically characterized. The selective oxidation of toluene proceeded very smoothly over the catalyst at 70 °C using tert-butyl hydroperoxide (TBHP) as the oxidant to exclusively afford benzaldehyde. The catalyst can be used for at least five cycles without decrease in activity and selectivity.

  2. Allyl transfer to aldehydes and ketones by Brønsted acid activation of allyl and crotyl 1,3,2-dioxazaborolidines.

    PubMed

    Reilly, Maureen K; Rychnovsky, Scott D

    2010-11-05

    Alkyl dioxazaborolidines are air-stable and often crystalline organoboranes. A variety of Brønsted acids activate allyl dioxazaborolidines to generate reactive allyl-transfer reagents in situ. These reagents add to aldehydes and ketones to generate the corresponding alcohols in good yields under mild conditions. The E- and Z-crotyl reagents react diastereoselectively with aldehydes and ketones to produce anti and syn adducts, respectively, a result consistent with a cyclic transition state (type I mechanism).

  3. Beta-carotene and lutein protect HepG2 human liver cells against oxidant-induced damage.

    PubMed

    Martin, K R; Failla, M L; Smith, J C

    1996-09-01

    Numerous epidemiological studies support a strong inverse relationship between consumption of carotenoid-rich fruits and vegetables and the incidence of some degenerative diseases. One proposed mechanism of protection by carotenoids centers on their putative antioxidant activity, although direct evidence in support of this contention is limited at the cellular level. The antioxidant potential of beta-carotene (BC) and lutein (LUT), carotenoids with or without provitamin A activity, respectively, was evaluated using the human liver cell line HepG2. Pilot studies showed that a 90-min exposure of confluent cultures to 500 mumol/L tert-butylhydroperoxide (TBHP) at 37 degrees C significantly (P < 0.05) increased lipid peroxidation and cellular leakage of lactate dehydrogenase (LDH), and decreased the uptake of 3H-alpha-aminoisobutyric acid and 3H-2-deoxyglucose. Protein synthesis, mitochondrial activity and glucose oxidation were not affected by TBHP treatment, suggesting that the plasma membrane was the primary site of TBHP-induced damage. Overnight incubation of cultures with > or = 1 mumol/L dl-alpha-tocopherol protected cells against oxidant-induced changes. In parallel studies, overnight incubation of HepG2 in medium containing micelles with either BC or LUT (final concentrations of 1.1 and 10.9 mumol/L, respectively), the cell content of the carotenoids increased from < 0.04 to 0.32 and 3.39 nmol/mg protein, respectively. Carotenoid-loaded cells were partially or completely protected against oxidant-induced changes in lipid peroxidation, LDH release and amino acid and deoxyglucose transport. These data demonstrate that BC and LUT or their metabolites protect HepG2 cells against oxidant-induced damage and that the protective effect is independent of provitamin A activity.

  4. Allyl Transfer to Aldehydes and Ketones by Brønsted Acid Activation of Allyl and Crotyl 1,3,2-Dioxazaborolidines

    PubMed Central

    Reilly, Maureen K.; Rychnovsky, Scott D.

    2010-01-01

    Alkyl dioxazaborolidines are air-stable and often crystalline organoboranes. A variety of Brønsted acids activate allyl dioxazaborolidines to generate reactive allyl-transfer reagents in situ. These reagents add to aldehydes and ketones to generate the corresponding alcohols in good yields under mild conditions. The E- and Z-crotyl reagents react diastereoselectively with aldehydes and ketones to produce anti and syn adducts, respectively, a result consistent with a cyclic transition state (Type I mechanism). PMID:20942379

  5. Allyl isothiocyanate that induces GST and UGT expression confers oxidative stress resistance on C. elegans, as demonstrated by nematode biosensor.

    PubMed

    Hasegawa, Koichi; Miwa, Satsuki; Tsutsumiuchi, Kaname; Miwa, Johji

    2010-02-17

    Electrophilic xenobiotics and endogenous products from oxidative stresses induce the glutathione S-transferases (GSTs), which form a large family within the phase II enzymes over both animal and plant kingdoms. The GSTs thus induced in turn detoxify these external as well as internal stresses. Because these stresses are often linked to ageing and damage to health, the induction of phase II enzymes without causing adverse effects would be beneficial in slowing down ageing and keeping healthy conditions. We have tested this hypothesis by choosing allyl isothiocyanate (AITC), a functional ingredient in wasabi, as a candidate food ingredient that induces GSTs without causing adverse effects on animals' lives. To monitor the GST induction, we constructed a gst::gfp fusion gene and used it to transform Caenorhabditis elegans for use as a nematode biosensor. With the nematode biosensor, we found that AITC induced GST expression and conferred tolerance on the nematode against various oxidative stresses. We also present evidence that the transcription factor SKN-1 is involved in regulating the GST expression induced by AITC. We show the applicability of the nematode biosensor for discovering and evaluating functional food substances and chemicals that would provide anti-ageing or healthful benefits.

  6. Practical Stannylation of Allyl Acetates Catalyzed by Nickel with Bu3 SnOMe.

    PubMed

    Komeyama, Kimihiro; Itai, Yuuhei; Takaki, Ken

    2016-06-27

    A practical and scalable nickel-catalyzed allylic stannylation of allyl acetates with Bu3 SnOMe is described. A variety of acyclic and cyclic allyl acetates, even with base-sensitive moieties, undergoes the stannylation by using NiBr2 /4,4'-di-tert-butylbipyridine (dtbpy)/Mn catalyst system to afford highly functionalized allyl stannanes with excellent regioselectivity and yields. Furthermore, the scope of protocol is also extended by the reaction of propargyl acetates, giving rise to propargyl or allenyl stannanes. Additionally, a unique diastereoselectivity using the nickel catalyst different from the palladium was demonstrated for the stannylation of cyclic allyl acetates. In the reaction, inexpensive and stable nickel complexes, abundant reductant (Mn), and atom-economical stannyl source were used. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Oral Administration of (S)-Allyl-l-Cysteine and Aged Garlic Extract to Rats: Determination of Metabolites and Their Pharmacokinetics.

    PubMed

    Park, Taehoon; Oh, Ju-Hee; Lee, Joo Hyun; Park, Sang Cheol; Jang, Young Pyo; Lee, Young-Joo

    2017-11-01

    ( S )-Allyl-l-cysteine is the major bioactive compound in garlic. ( S )-Allyl-l-cysteine is metabolized to ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide after oral administration. An accurate LC-MS/MS method was developed and validated for the simultaneous quantification of ( S )-allyl-l-cysteine and its metabolites in rat plasma, and the feasibility of using it in pharmacokinetic studies was tested. The analytes were quantified by multiple reaction monitoring using an atmospheric pressure ionization mass spectrometer. Because significant quantitative interference was observed between ( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine as a result of the decomposition of N -acetyl-( S )-allyl-l-cysteine at the detector source, chromatographic separation was required to discriminate ( S )-allyl-l-cysteine and its metabolites on a reversed-phase C 18 analytical column with a gradient mobile phase consisting of 0.1% formic acid and acetonitrile. The calibration curves of ( S )-allyl-l-cysteine, ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide were linear over each concentration range, and the lower limits of quantification were 0.1 µg/mL [( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine] and 0.25 µg/mL [( S )-allyl-l-cysteine sulfoxide and N -acetyl-( S )-allyl-l-cysteine sulfoxide]. Acceptable intraday and inter-day precisions and accuracies were obtained at three concentration levels. The method satisfied the regulatory requirements for matrix effects, recovery, and stability. The validated LC-MS/MS method was successfully used to determine the concentration of ( S )-allyl-l-cysteine and its metabolites in rat plasma samples after the administration of ( S )-allyl-l-cysteine or aged garlic extract. Georg Thieme Verlag KG Stuttgart · New York.

  8. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters† †Electronic supplementary information (ESI) available: Full procedures, computational details and characterization data. See DOI: 10.1039/c7sc04283c

    PubMed Central

    Thomas, Bryce N.; Moon, Patrick J.; Yin, Shengkang; Brown, Alex

    2017-01-01

    A well-defined Ir–allyl complex catalyzes the Z-selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E-products typically observed in metal-mediated coupling reactions to enable the synthesis of Z,E-dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir–carbene and Ir–allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E–H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt3. PMID:29629093

  9. Nucleophilic Influences and Origin of the SN2 Allylic Effect.

    PubMed

    Galabov, Boris; Koleva, Gergana; Schaefer, Henry F; Allen, Wesley D

    2018-05-27

    The potential energy surfaces for the SN2 reactions of allyl and propyl chlorides with 21 anionic and neutral nucleophiles have been studied using ωB97X-D/6-311++G(3df,2pd) computations. The "allylic effect" on SN2 barriers is well manifested for all reactions and ranges between -0.2 and -4.5 kcal mol-1 in the gas phase. Strong correlations of the SN2 net activation barriers with cation affinities, proton affinities, and electrostatic potentials at nuclei (EPN) demonstrate the powerful influence of electrostatics on these reactions. For the reactions of anionic (but not neutral) nucleophiles with allyl chloride, some of the incoming negative charge (0.2% - 18%) migrates into the carbon chains, which may provide some secondary stabilization of the SN2 transition states. Activation strain analysis provides additional insight into the allylic effect by showing that the energy of geometric distortion for the reactants to reach the SN2 transition state (ΔEstrain) is smaller for each allylic reaction in comparison to its propyl analogue. In many cases the interaction energies (ΔEint) between the substrate and nucleophile in this analysis are more favorable for propyl chloride reactions, but this compensation does not overcome the predominant strain energy effect. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ruthenium-catalyzed regioselective allylic amination of 2,3,3-trifluoroallylic carbonates.

    PubMed

    Isobe, Shin-Ichi; Terasaki, Shou; Hanakawa, Taisyun; Mizuno, Shota; Kawatsura, Motoi

    2017-04-05

    We demonstrated the ruthenium-catalyzed allylic amination of 2,3,3-trifluoroallylic carbonates with several types of amines. The reactions proceeded with several types of amines, and succeeded in obtaining polyfluorinated terminal alkenes possessing branched allylic amines as a single regioisomer.

  11. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development.

    PubMed

    Tang, Qian; Zheng, Gang; Feng, Zhenhua; Chen, Yu; Lou, Yiting; Wang, Chenggui; Zhang, Xiaolei; Zhang, Yu; Xu, Huazi; Shang, Ping; Liu, Haixiao

    2017-10-05

    Oxidative stress-related apoptosis and autophagy play crucial roles in the development of osteoarthritis (OA), a progressive cartilage degenerative disease with multifactorial etiologies. Here, we determined autophagic flux changes and apoptosis in human OA and tert-Butyl hydroperoxide (TBHP)-treated chondrocytes. In addition, we explored the potential protective effects of trehalose, a novel Mammalian Target of Rapamycin (mTOR)-independent autophagic inducer, in TBHP-treated mouse chondrocytes and a destabilized medial meniscus (DMM) mouse OA model. We found aberrant p62 accumulation and increased apoptosis in human OA cartilage and chondrocytes. Consistently, p62 and cleaved caspase-3 levels increased in mouse chondrocytes under oxidative stress. Furthermore, trehalose restored oxidative stress-induced autophagic flux disruption and targeted autophagy selectively by activating BCL2 interacting protein 3 (BNIP3) and Phosphoglycerate mutase family member 5 (PGAM5). Trehalose could ameliorate oxidative stress-mediated mitochondrial membrane potential collapse, ATP level decrease, dynamin-related protein 1 (drp-1) translocation into the mitochondria, and the upregulation of proteins involved in mitochondria and endoplasmic reticulum (ER) stress-related apoptosis pathway. In addition, trehalose suppressed the cleavage of caspase 3 and poly(ADP-ribose) polymerase (PARP) and prevented DNA damage under oxidative stress. However, the anti-apoptotic effects of trehalose in TBHP-treated chondrocytes were partially abolished by autophagic flux inhibitor chloroquine and BNIP3- siRNA. The protective effect of trehalose was also found in mouse OA model. Taken together, these results indicate that trehalose has anti-apoptotic effects through the suppression of oxidative stress-induced mitochondrial injury and ER stress which is dependent on the promotion of autophagic flux and the induction of selective autophagy. Thus, trehalose is a promising therapeutic agent for OA.

  12. Synthesis of 1-[bis(trifluoromethyl)phosphine]-1'-oxazolinylferrocene ligands and their application in regio- and enantioselective Pd-catalyzed allylic alkylation of monosubstituted allyl substrates.

    PubMed

    Lai, Zeng-Wei; Yang, Rong-Fei; Ye, Ke-Yin; Sun, Hongbin; You, Shu-Li

    2014-01-01

    A class of novel, easily accessible and air-stable 1-[bis(trifluoromethyl)phosphine]-1'-oxazolinylferrocene ligands has been synthesized from ferrocene. It became apparent that these ligands can be used in the regio- and enantioselective Pd-catalyzed allylic alkylation of monosubstituted allyl substrates in a highly efficient manner. Excellent regio- and enantioselectivity could be obtained for a wide range of substrates.

  13. N-Allyl-N-Sulfonyl Ynamides as Synthetic Precursors to Amidines and Vinylogous Amidines. An Unexpected N-to-C 1,3-Sulfonyl Shift in Nitrile Synthesis

    PubMed Central

    DeKorver, Kyle A.; Johnson, Whitney L.; Zhang, Yu; Hsung, Richard P.; Dai, Huifang; Deng, Jun; Lohse, Andrew G.; Zhang, Yan-Shi

    2011-01-01

    A detailed study of amidine synthesis from N-allyl-N-sulfonyl ynamides is described here. Mechanistically, this is a fascinating reaction consisting of diverging pathways that could lead to deallylation or allyl transfer depending upon the oxidation state of palladium catalysts, the nucleophilicity of amines, and the nature of the ligands. It essentially constitutes a Pd(0)-catalyzed aza-Claisen rearrangement of N-allyl ynamides, which can also be accomplished thermally. An observation of N-to-C 1,3-sulfonyl shift was made when examining these aza-Claisen rearrangements thermally. This represents a useful approach to nitrile synthesis. While attempts to render this 1,3-sulfonyl shift stereoselective failed, we uncovered another set of tandem sigmatropic rearrangements, leading to vinyl imidate formation. Collectively, this work showcases the rich array of chemistry one can discover using these ynamides. PMID:21563776

  14. Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution

    PubMed Central

    Hartwig, John F.; Stanley, Levi M.

    2010-01-01

    Conspectus Enantioselective allylic substitution reactions comprise some of the most versatile methods for preparing enantiomerically enriched materials. These reactions form products that contain multiple functionalities by creating carbon–nitrogen, carbon–oxygen, carbon–carbon, and carbon–sulfur bonds. For many years, the development of catalysts for allylic substitution focused on palladium complexes. However, studies of complexes of other metals have revealed selectivities that often complement those of palladium systems. Most striking is the observation that reactions with unsymmetrical allylic electrophiles that typically occur with palladium catalysts at the less hindered site of an allylic electrophile occur at the more hindered site with catalysts based on other metals. In this Account, we describe an iridium precursor and a phosphoramidite ligand that catalyze reactions with a particularly broad scope of nucleophiles. The active form of this iridium catalyst is not generated by the simple binding of the phosphoramidite ligand to the metal precursor. Instead, the initial phosphoramidite and iridium precursor react in the presence of base to form a metallacyclic species that is the active catalyst. This species is generated either in situ or separately in isolated form by reactions with added base. The identification of the structure of the active catalyst led to the development of simplified catalysts as well as the most active form of the catalyst now available, which is stabilized by a loosely bound ethylene. Most recently, this structure was used to prepare intermediates containing allyl ligands, the structures of which provide a model for the enantioselectivities discussed here. Initial studies from our laboratory on the scope of iridium-catalyzed allylic substitution showed that reactions of primary and secondary amines, including alkylamines, benzylamines, and allylamines, and reactions of phenoxides and alkoxides occurred in high yields

  15. Allylic aminations with hindered secondary amine nucleophiles catalyzed by heterobimetallic Pd-Ti complexes.

    PubMed

    Walker, Whitney K; Anderson, Diana L; Stokes, Ryjul W; Smith, Stacey J; Michaelis, David J

    2015-02-06

    Phosphinoamide-scaffolded heterobimetallic palladium-titanium complexes are highly effective catalysts for allylic aminations of allylic chlorides with hindered secondary amine nucleophiles. Three titanium-containing ligands are shown to assemble active catalysts in situ and enable catalysis at room temperature. A variety of sterically bulky secondary amines are efficiently allylated in high yields with as little as 1 mol % palladium catalyst. Piperidine and pyrrolidine products are also efficiently generated via intramolecular aminations with hindered amine nucleophiles.

  16. Highly Stereoselective Intermolecular Haloetherification and Haloesterification of Allyl Amides

    PubMed Central

    Soltanzadeh, Bardia; Jaganathan, Arvind; Staples, Richard J.

    2016-01-01

    An organocatalytic and highly regio-, diastereo-, and enantioselective intermolecular haloetherification and haloesterification reaction of allyl amides is reported. A variety of alkene substituents and substitution patterns are compatible with this chemistry. Notably, electronically unbiased alkene substrates exhibit exquisite regio- and diastereoselectivity for the title transformation. We also demonstrate that the same catalytic system can be used in both chlorination and bromination reactions of allyl amides with a variety of nucleophiles with little or no modification. PMID:26110812

  17. Allergic contact dermatitis from allyl isothiocyanate in a Danish cohort of 259 selected patients.

    PubMed

    Lerbaek, Anne; Rastogi, Suresh Chandra; Menné, Torkil

    2004-08-01

    Allyl isothiocyanate is present in many plants. Allergic contact dermatitis from allyl isothiocyanate is well known but infrequently reported. The aim of this study was to investigate the prevalence of contact allergy to allyl isothiocyanate in patients with suspected contact dermatitis from vegetables and food. 259 such patients were tested at the Department of Dermatology, Gentofte Hospital, Denmark, from 1994 to 2003. Only 2 patients (0.8%) had a positive reaction (+) to allyl isothiocyanate and 43 patients (16.6%) had a ?+ reaction. One of the patients with a positive reaction provided samples of margarine, salad cream, oil and mayonnaise. These were analysed with high-performance liquid chromatography, and a moderate concentration of allyl isothiocyanate (2.5 ppm) was detected in the sample of margarine. This patient was a professional sandwich maker presenting with fingertip dermatitis mimicking 'tulip fingers' or allergic contact dermatitis from garlic and onions. In conclusion, allergic contact dermatitis from allyl isothiocyanate occurs in only a limited number of cases, despite frequent exposure. The large number of ?+ reactions raises the question as to whether the recommended patch test concentration is too low.

  18. A simple, broad-scope nickel(0) precatalyst system for direct amination of allyl alcohols.

    PubMed

    Sweeney, Joseph B; Ball, Anthony; Lawrence, Philippa; Sinclair, Mackenzie; Smith, Luke

    2018-06-25

    The preparation of allylic amines is traditionally accomplished by reaction of amines with reactive electrophiles, such as allylic halides, sulfonates or oxyphosphonium species; such methods involve hazardous reagents, generate stoichiometric waste streams, and often suffer from side-reactions (such as over-alkylation). We report here the first nickel-catalysed direct amination of allyl alcohols which enables allylation of primary, secondary and electron-deficient amines, using an inexpensive Ni(II)-Zn couple, without need for glove-box techniques. Under mild conditions, primary and secondary aliphatic amines react smoothly with a range of allyl alcohols, giving secondary and tertiary amines efficiently. This 'totally catalytic' method can be also applied to electron-deficient nitrogen nucleophiles with effective results; the practicality of the process has been demonstrated in an efficient, gram-scale preparation of the calcium antagonist drug substance flunarizine (Sibelium®). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water

    EPA Science Inventory

    A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...

  20. Synthesis of 1-[bis(trifluoromethyl)phosphine]-1’-oxazolinylferrocene ligands and their application in regio- and enantioselective Pd-catalyzed allylic alkylation of monosubstituted allyl substrates

    PubMed Central

    Lai, Zeng-Wei; Yang, Rong-Fei; Ye, Ke-Yin

    2014-01-01

    Summary A class of novel, easily accessible and air-stable 1-[bis(trifluoromethyl)phosphine]-1’-oxazolinylferrocene ligands has been synthesized from ferrocene. It became apparent that these ligands can be used in the regio- and enantioselective Pd-catalyzed allylic alkylation of monosubstituted allyl substrates in a highly efficient manner. Excellent regio- and enantioselectivity could be obtained for a wide range of substrates. PMID:24991277

  1. Protective effect of kombucha tea against tertiary butyl hydroperoxide induced cytotoxicity and cell death in murine hepatocytes.

    PubMed

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C

    2011-07-01

    Kombucha (KT), a fermented black tea (BT), is known to have many beneficial properties. In the present study, antioxidant property of KT has been investigated against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity using murine hepatocytes. TBHP, a reactive oxygen species inducer, causes oxidative stress resulting in organ pathophysiology. Exposure to TBHP caused a reduction in cell viability, increased membrane leakage and disturbed the intra-cellular antioxidant machineries in hepatocytes. TBHP exposure disrupted mitochondrial membrane potential and induced apoptosis as evidenced by flow cytometric analyses. KT treatment, however, counteracted the changes in mitochondrial membrane potential and prevented apoptotic cell death of the hepatocytes. BT treatment also reverted TBHP induced hepatotoxicity, however KT was found to be more efficient. This may be due to the formation of antioxidant molecules like D-saccharic acid-1,4-lactone (DSL) during fermentation process and are absent in BT. Moreover, the radical scavenging activities of KT were found to be higher than BT. Results of the study showed that KT has the potential to ameliorate TBHP induced oxidative insult and cell death in murine hepatocytes more effectively than BT.

  2. Copper-Catalyzed SN2'-Selective Allylic Substitution Reaction of gem-Diborylalkanes.

    PubMed

    Zhang, Zhen-Qi; Zhang, Ben; Lu, Xi; Liu, Jing-Hui; Lu, Xiao-Yu; Xiao, Bin; Fu, Yao

    2016-03-04

    A Cu/(NHC)-catalyzed SN2'-selective substitution reaction of allylic electrophiles with gem-diborylalkanes is reported. Different substituted gem-diborylalkanes and allylic electrophiles can be employed in this reaction, and various synthetic valuable functional groups can be tolerated. The asymmetric version of this reaction was initially researched with chiral N-heterocyclic carbene (NHC) ligands.

  3. Difunctionalization of alkenes with iodine and tert-butyl hydroperoxide (TBHP) at room temperature for the synthesis of 1-(tert-butylperoxy)-2-iodoethanes.

    PubMed

    Wang, Hao; Chen, Cui; Liu, Weibing; Zhu, Zhibo

    2017-01-01

    We developed a direct vicinal difunctionalization of alkenes with iodine and TBHP at room temperature. This iodination and peroxidation in a one-pot synthesis produces 1-( tert -butylperoxy)-2-iodoethanes, which are inaccessible through conventional synthetic methods. This method generates multiple radical intermediates in situ and has excellent regioselectivity, a broad substrate scope and mild conditions. The iodine and peroxide groups of 1-( tert -butylperoxy)-2-iodoethanes have several potential applications and allow further chemical modifications, enabling the preparation of synthetically valuable molecules.

  4. Transcriptomic profiling of chemical exposure reveals roles of Yap1 in protecting yeast cells from oxidative and other types of stresses.

    PubMed

    Zhang, Chao; Li, Zhouquan; Zhang, Xiaohua; Yuan, Li; Dai, Heping; Xiao, Wei

    2016-01-01

    Transcriptomic profiles are generated by comparing wild-type and the yeast yap1 mutant to various chemicals in an attempt to establish a correlation between this gene mutation and chemical exposure. Test chemicals include ClonNAT as a non-genotoxic agent, methyl methanesulphonate (MMS) as an alkylating agent, tert-butyl hydroperoxide (t-BHP) as an oxidative agent and the mixture of t-BHP and MMS to reflect complex natural exposure. Differentially expressed genes (DEGs) were identified and specific DEGs were obtained by excluding overlapping DEGs with the control group. In the MMS exposure group, deoxyribonucleotide biosynthetic processes were upregulated, while oxidation-reduction processes were downregulated. In the t-BHP exposure group, metabolic processes were upregulated while peroxisome and ion transport pathways were downregulated. In the mixture exposure group, the proteasome pathway was upregulated, while the aerobic respiration was downregulated. Homologue analysis of DEGs related to human diseases showed that many of DEGs were linked to cancer, ageing and neuronal degeneration. These observations confirm that the yap1 mutant is more sensitive to chemicals than wild-type cells and that the susceptible individuals carrying the YAP1-like gene defect may enhance risk to chemical exposure. Hence, this study offers a novel approach to environmental risk assessment, based on the genetic backgrounds of susceptible individuals. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Transient Overexpression of adh8a Increases Allyl Alcohol Toxicity in Zebrafish Embryos

    PubMed Central

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P.; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  6. Ketenimines from Isocyanides and Allyl Carbonates: Palladium-Catalyzed Synthesis of β,γ-Unsaturated Amides and Tetrazoles.

    PubMed

    Qiu, Guanyinsheng; Mamboury, Mathias; Wang, Qian; Zhu, Jieping

    2016-12-05

    The reaction of allyl ethyl carbonates with isocyanides in the presence of a catalytic amount of Pd(OAc) 2 provided ketenimines through β-hydride elimination of the allyl imidoylpalladium intermediates. The insertion of the isocyanide into the π-allyl Pd complex proceeded via an unusual η 1 -allyl Pd species. The resulting ketenimines were hydrolyzed to β,γ-unsaturated carboxamides during purification by flash column chromatography on silica gel or converted in situ into 1,5-disubstituted tetrazoles by [3+2] cycloaddition with hydrazoic acid or trimethylsilyl azide. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Allylic and Allenic Halide Synthesis via NbCl5- and NbBr5-Mediated Alkoxide Rearrangements

    PubMed Central

    Ravikumar, P. C.; Yao, Lihua; Fleming, Fraser F.

    2009-01-01

    Addition of NbCl5, or NbBr5, to a series of magnesium, lithium, or potassium allylic or propargylic alkoxides directly provides allylic or allenic halides. Halogenation formally occurs through a metalla-halo-[3,3] rearrangement although concerted, ionic, and direct displacement mechanisms appear to operate competitively. Transposition of the olefin is equally effective for allylic alkoxides prepared by nucleophilic addition, deprotonation, or reduction. Experimentally, the niobium pentahalide halogenations are rapid, afford essentially pure E-allylic or allenic halides after extraction, and are applicable to a range of aliphatic and aromatic alcohols, aldehydes, and ketones. PMID:19739606

  8. Decarboxylative aldol reactions of allyl beta-keto esters via heterobimetallic catalysis.

    PubMed

    Lou, Sha; Westbrook, John A; Schaus, Scott E

    2004-09-22

    Mild and selective heterobimetallic-catalyzed decarboxylative aldol reactions involving allyl beta-keto esters have been developed. The reaction is promoted by Pd(0)- and Yb(III)-DIOP complexes at room temperature and involves the in situ formation of a ketone enolate from allyl beta-keto esters followed by addition of the enolate to aldehydes. The reaction is a new example of heterobimetallic catalysis in which the optimized reaction conditions require the addition of both metals.

  9. Indole synthesis by palladium-catalyzed tandem allylic isomerization - furan Diels-Alder reaction.

    PubMed

    Xu, Jie; Wipf, Peter

    2017-08-30

    A Pd(0)-catalyzed elimination of an allylic acetate generates a π-allyl complex that is postulated to initiate a novel intramolecular Diels-Alder cycloaddition to a tethered furan (IMDAF). Under the reaction conditions, this convergent, microwave-accelerated cascade process provides substituted indoles in moderate to good yields after Pd-hydride elimination, aromatization by dehydration, and in situ N-Boc cleavage.

  10. Rotational Spectroscopy of Isocyanic Molecules: Allyl Isocyanide and Diisocyanomethane

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Margules, L.; Haykal, I.; Huet, T. R.; Cocinero, E. J.; Ecija, P.; Fernandez, J. A.; Castano, F.; Lesarri, A.; Guillemin, J.-C.

    2012-06-01

    Isocyanides are less stable isomers of nitriles and some of them have already been observed in the interstellar medium (HNC, CH_3NC, HCCNC). But still there exists a lack of experimental spectroscopic data on simple isocyanic molecules that can represent potential astrophysical interest. In this view we have performed high resolution studies of rotational spectra of allyl isocyanide (CH_2=CH--CH_2--NC) and diisocyanomethane (CN--CH_2--NC). The rotational spectra of allyl isocyanide have been measured in the frequency range 6 -- 18 GHz by means of FTMW spectrometer in Bilbao and in the frequency range 150 -- 945 GHz by means of classic absorption spectroscopy in Lille. Two stable confomers of allyl isocyanide have been observed in both series of measurements. In addition, all 13C-monosubstituted isotopologues and 15N isotopologues were detected in natural abundance. Due to much lower kinetic stability the rotational spectrum of diisocyanomethane has been measured only in absorption using the Lille spectrometer. The spectral assignments have been supported by high-level quantum chemical calculations. For both molecules accurate sets of rotational and centrifugal distortion constants (up to the octics) have been produced. As a result, reliable predictions of transitions frequencies suitable for astrophysical detection have been obtained for both molecules. Finally, the effective and substitution structures were determined for the two conformers of allyl isocyanide, comparing the result with ab initio data. This work is supported by Centre Nationale d'Etudes Spatiales (CNES), Action sur Projet Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) and by the contract ANR-08-BLAN-0054. Spanish part acknowledges funding from the MICINN and the MINECO.

  11. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    PubMed Central

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  12. Copper-Catalyzed γ-Selective and Stereospecific Allylic Cross-Coupling with Secondary Alkylboranes.

    PubMed

    Yasuda, Yuto; Nagao, Kazunori; Shido, Yoshinori; Mori, Seiji; Ohmiya, Hirohisa; Sawamura, Masaya

    2015-06-26

    The scope of the copper-catalyzed coupling reactions between organoboron compounds and allylic phosphates is expanded significantly by employing triphenylphosphine as a ligand for copper, allowing the use of secondary alkylboron compounds. The reaction proceeds with complete γ-E-selectivity and preferential 1,3-syn stereoselectivity. The reaction of γ-silicon-substituted allylic phosphates affords enantioenriched α-stereogenic allylsilanes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mechanism of Air Oxidation of the Fragrance Terpene Geraniol.

    PubMed

    Bäcktorp, Carina; Hagvall, Lina; Börje, Anna; Karlberg, Ann-Therese; Norrby, Per-Ola; Nyman, Gunnar

    2008-01-01

    The fragrance terpene geraniol autoxidizes upon air exposure and forms a mixture of oxidation products, some of which are skin sensitizers. Reactions of geraniol with O2 have been studied with DFT (B3LYP) and the computational results compared to experimentally observed product ratios. The oxidation is initiated by hydrogen abstraction, forming an allylic radical which combines with an O2 molecule to yield an intermediate peroxyl radical. In the subsequent step, geraniol differs from previously studied cases, in which the radical chain reaction is propagated through intermolecular hydrogen abstraction. The hydroxy-substituted allylic peroxyl radical prefers an intramolecular rearrangement, producing observable aldehydes and the hydroperoxyl radical, which in turn can propagate the radical reaction. Secondary oxidation products like epoxides and formates were also considered, and plausible reaction pathways for formation are proposed.

  14. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids

    NASA Astrophysics Data System (ADS)

    Sidera, Mireia; Fletcher, Stephen P.

    2015-11-01

    Csp2-Csp2 cross-coupling reactions between arylboronic acid and aryl halides are widely used in both academia and industry and are strategically important in the development of new agrochemicals and pharmaceuticals. Csp2-Csp3 cross-coupling reactions have been developed, but enantioselective variations are rare and simply retaining the stereochemistry is a problem. Here we report a highly enantioselective Csp2-Csp3 bond-forming method that couples arylboronic acids to racemic allyl chlorides. Both enantiomers of a cyclic chloride are converted into a single enantiomer of product via a dynamic kinetic asymmetric transformation. This Rh-catalysed method uses readily available and inexpensive building blocks and is mild and broadly applicable. For electron-deficient, electron-rich or ortho-substituted boronic acids better results are obtained with racemic allyl bromides. Oxygen substitution in the allyl halide is tolerated and the products can be functionalized to provide diverse building blocks. The approach fills a significant gap in the methods for catalytic asymmetric synthesis.

  15. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOEpatents

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  16. An Efficient Synthesis of de novo Imidates via Aza-Claisen Rearrangements of N-Allyl Ynamides

    PubMed Central

    DeKorver, Kyle A.; North, Troy D.; Hsung, Richard P.

    2010-01-01

    A novel thermal 3-aza-Claisen rearrangement of N-allyl ynamides for the synthesis of α-allyl imidates is described. Also, a sequential aza-Claisen, Pd-catalyzed Overman rearrangement is described for the synthesis of azapine-2-ones. PMID:21278848

  17. Effect of L-cysteine on the oxidation of cyclohexane catalyzed by manganeseporphyrin.

    PubMed

    Zhou, Wei-You; Tian, Peng; Chen, Yong; He, Ming-Yang; Chen, Qun; Chen, Zai Xin

    2015-06-01

    Effect of L-cysteine as the cocatalyst on the oxidation of cyclohexane by tert-butylhydroperoxide (TBHP) catalyzed by manganese tetraphenylporphyrin (MnTPP) has been investigated. The results showed that L-cysteine could moderately improve the catalytic activity of MnTPP and significantly increase the selectivity of cyclohexanol. Different from imidazole and pyridine, the L-cysteine may perform dual roles in the catalytic oxidation of cyclohexane. Besides as the axial ligand for MnTPP, the L-cysteine could also react with cyclohexyl peroxide formed as the intermediate to produce alcohol as the main product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weixin; Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang; Wu, Mingchai

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies.more » The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia

  19. Catalyst–Controlled C–O versus C–N Allylic Functionalization of Terminal Olefins

    PubMed Central

    Strambeanu, Iulia I.; White, M. Christina

    2014-01-01

    The divergent synthesis of syn-1, 2-aminoalcohol or syn-1,2-diamine precursors from a common terminal olefin has been accomplished using a combination of palladium(II) catalysis with Lewis acid co-catalysis. Palladium(II)/bis-sulfoxide catalysis with a silver triflate co-catalyst leads for the first time to anti-2-aminooxazolines (C—O) in good to excellent yields. Simple removal of the bis-sulfoxide ligand from this reaction results in a complete switch in reactivity to afford anti-imidazolidinone products (C—N) in good yields and excellent diastereoselectivities. Mechanistic studies suggest the divergent C—O versus C—N reactivity from a common ambident nucleophile arises due to a switch in mechanism from allylic C—H cleavage/functionalization to olefin isomerization/oxidative amination. PMID:23855956

  20. Regioselective Ni-Catalyzed Carboxylation of Allylic and Propargylic Alcohols with Carbon Dioxide.

    PubMed

    Chen, Yue-Gang; Shuai, Bin; Ma, Cong; Zhang, Xiu-Jie; Fang, Ping; Mei, Tian-Sheng

    2017-06-02

    An efficient Ni-catalyzed reductive carboxylation of allylic alcohols with CO 2 has been successfully developed, providing linear β,γ-unsaturated carboxylic acids as the sole regioisomer with generally high E/Z stereoselectivity. In addition, the carboxylic acids can be generated from propargylic alcohols via hydrogenation to give allylic alcohol intermediates, followed by carboxylation. A preliminary mechanistic investigation suggests that the hydrogenation step is made possible by a Ni hydride intermediate produced by a hydrogen atom transfer from water.

  1. An X-ray study of the effect of the bite angle of chelating ligands on the geometry of palladium(allyl) complexes: implications for the regioselectivity in the allylic alkylation.

    PubMed

    van Haaren, R J; Goubitz, K; Fraanje, J; van Strijdonck, G P; Oevering, H; Coussens, B; Reek, J N; Kamer, P C; van Leeuwen, P W

    2001-07-02

    X-ray crystal structures of a series of cationic (P-P)palladium(1,1-(CH(3))(2)C(3)H(3)) complexes (P-P = dppe (1,2-bis(diphenylphosphino)ethane), dppf (1,1'-bis(diphenylphosphino)ferrocene), and DPEphos (2,2'-bis(diphenylphosphino)diphenyl ether)) and the (Xantphos)Pd(C(3)H(5))BF(4) (Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) complex have been determined. In the solid state structure, the phenyl rings of the ligand are oriented in the direction of the nonsymmetrically bound [1,1-(CH(3))(2)C(3)H(3)] moiety. An increase of the bite angle of the chelating ligand results in an increase of the cone angle. In complexes containing ligands having a large cone angle, the distances between the phenyl rings and the allyl moiety become small, resulting in a distortion of the symmetry of the palladium-allyl bond. In solution, two types of dynamic exchange have been observed, the pi-sigma rearrangement and the apparent rotation of the allyl moiety. At the same time, the folded structure of the ligand changes from an endo to an exo orientation or vice versa. The regioselectivity in the palladium-catalyzed allylic alkylation of 3-methyl-but-2-enyl acetate is determined by the cone angle of the bidentate phosphine ligand. Nucleophilic attack by a malonate anion takes place preferentially at the allylic carbon atom having the largest distance to palladium. Ligands with a larger cone angle direct the regioselectivity to the formation of the branched product, from 8% for dppe (1) to 61% found for Xantphos (6). The influence of the cone angle on the regioselectivity has been assigned to a sterically induced electronic effect.

  2. Synthesis and application of selective adsorbent for pirimicarb pesticides in aqueous media using allyl-β-cyclodextrin based binary functional monomers.

    PubMed

    He, Chengzijing; Lay, Sovichea; Yu, Haining; Shen, Shengrong

    2018-04-01

    Binary functional monomers, allyl-β-cyclodextrin (allyl-β-CD) and methacrylic acid (MAA) or allyl-β-CD and acrylonitrile (AN), were exploited in a fabrication of molecularly imprinted polymers (MIPs) for selective recognition and large enrichment of pirimicarb from aqueous media. Special attention was paid to the computational simulation of the imprinting molecular and functional monomers. The morphological characteristics of MIPs made of allyl-β-CD and MAA (M-MAA) were characterised by scanning electron microscopy. The effect of binding capacity of MAA-linked allyl-β-CD MIPs (M-MAA) demonstrated higher efficiency than that of AN-linked allyl-β-CD MIPs (M-AN) when tested in binding specificity. Finally, M-MAA was chosen to run through molecularly imprinted solid-phase extraction (MISPE) to analyse the spiked fresh leafy vegetables of pirimicarb. The present proposed technique is a promising tool for the preparation of the receptors which could recognise pirimicarb pesticide in aqueous media. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. An intramolecular [2 + 2] cycloaddition of ketenimines via palladium-catalyzed rearrangements of N-allyl-ynamides.

    PubMed

    DeKorver, Kyle A; Hsung, Richard P; Song, Wang-Ze; Wang, Xiao-Na; Walton, Mary C

    2012-06-15

    A cascade of Pd-catalyzed N-to-C allyl transfer-intramolecular ketenimine-[2 + 2] cycloadditions of N-allyl ynamides is described. This tandem sequence is highly stereoselective and the [2 + 2] cycloaddition could be rendered in a crossed or fused manner depending on alkene substitutions, leading to bridged and fused bicycloimines.

  4. Iridium-Catalyzed Diastereoselective and Enantioselective Allylic Substitutions with Acyclic α-Alkoxy Ketones

    DOE PAGES

    Jiang, Xingyu; Chen, Wenyong; Hartwig, John F.

    2016-04-01

    The asymmetric alkylation of acyclic ketones is a longstanding challenge in organic synthesis. Here, are the diastereoselective and enantioselective allylic substitutions with acyclic α-alkoxy ketones catalyzed by a metallacyclic iridium complex to form products with contiguous stereogenic centers derived from the nucleophile and electrophile. These reactions occur between allyl methyl carbonates and unstabilized copper(I) enolates generated in situ from acyclic α-alkoxy ketones. The resulting products can be readily converted into enantioenriched tertiary alcohols and tetrahydrofuran derivatives without erosion of enantiomeric purity.

  5. Iridium-Catalyzed Diastereoselective and Enantioselective Allylic Substitutions with Acyclic α-Alkoxy Ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xingyu; Chen, Wenyong; Hartwig, John F.

    The asymmetric alkylation of acyclic ketones is a longstanding challenge in organic synthesis. Here, are the diastereoselective and enantioselective allylic substitutions with acyclic α-alkoxy ketones catalyzed by a metallacyclic iridium complex to form products with contiguous stereogenic centers derived from the nucleophile and electrophile. These reactions occur between allyl methyl carbonates and unstabilized copper(I) enolates generated in situ from acyclic α-alkoxy ketones. The resulting products can be readily converted into enantioenriched tertiary alcohols and tetrahydrofuran derivatives without erosion of enantiomeric purity.

  6. Pyridine synthesis by reactions of allyl amines and alkynes proceeding through a Cu(OAc)2 oxidation and Rh(III)-catalyzed N-annulation sequence.

    PubMed

    Kim, Dong-Su; Park, Jung-Woo; Jun, Chul-Ho

    2012-11-28

    A new methodology has been developed for the synthesis of pyridines from allyl amines and alkynes, which involves sequential Cu(II)-promoted dehydrogenation of the allylamine and Rh(III)-catalyzed N-annulation of the resulting α,β-unsaturated imine and alkyne.

  7. An Intramolecular [2 + 2] Cycloaddition of Ketenimines via Palladium-Catalyzed Rearrangements of N-Allyl-Ynamides

    PubMed Central

    DeKorver, Kyle A.; Song, Wang-Ze; Wang, Xiao-Na; Walton, Mary C.

    2012-01-01

    A cascade of Pd-catalyzed N-to-C allyl transfer–intramolecular ketenimine–[2 + 2] cycloadditions of N-allyl ynamides is described. This tandem sequence is highly stereoselective and the [2 + 2] cycloaddition could be rendered in a crossed or fused manner depending on alkene substitutions, leading to bridged and fused bicycloimines. PMID:22667819

  8. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway

    PubMed Central

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A.; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J.

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway. PMID:27313596

  9. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway.

  10. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst.

    PubMed

    de Souza, Viviane P; Oliveira, Cristiane K; de Souza, Thiago M; Menezes, Paulo H; Alves, Severino; Longo, Ricardo L; Malvestiti, Ivani

    2016-11-16

    Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  11. Tandem catalytic allylic amination and [2,3]-Stevens rearrangement of tertiary amines.

    PubMed

    Soheili, Arash; Tambar, Uttam K

    2011-08-24

    We have developed a catalytic allylic amination involving tertiary aminoesters and allylcarbonates, which is the first example of the use of tertiary amines as intermolecular nucleophiles in metal-catalyzed allylic substitution chemistry. This process is employed in a tandem ammonium ylide generation/[2,3]-rearrangement reaction, which formally represents a palladium-catalyzed Stevens rearrangement. Low catalyst loadings and mild reaction conditions are compatible with an unprecedented substrate scope for the ammonium ylide functionality, and products are generated in high yields and diastereoselectivities. Mechanistic studies suggested the reversible formation of an ammonium intermediate.

  12. On the stereochemical course of palladium-catalyzed cross-coupling of allylic silanolate salts with aromatic bromides.

    PubMed

    Denmark, Scott E; Werner, Nathan S

    2010-03-17

    The stereochemical course of palladium-catalyzed cross-coupling reactions of an enantioenriched, alpha-substituted, allylic silanolate salt with aromatic bromides has been investigated. The allylic silanolate salt was prepared in high geometrical (Z/E, 94:6) and high enantiomeric (94:6 er) purity by a copper-catalyzed S(N)2' reaction of a resolved allylic carbamate. Eight different aromatic bromides underwent cross-coupling with excellent constitutional site-selectivity and excellent stereospecificity. Stereochemical correlation established that the transmetalation event proceeds through a syn S(E)' mechanism which is interpreted in terms of an intramolecular delivery of the arylpalladium electrophile through a key intermediate that contains a discrete Si-O-Pd linkage.

  13. Expanding the Chemistry of the Class C Radical SAM Methyltransferase NosN by Using an Allyl Analogue of SAM.

    PubMed

    Ji, Xinjian; Mandalapu, Dhanaraju; Cheng, Jinduo; Ding, Wei; Zhang, Qi

    2018-03-30

    The radical S-adenosylmethionine (SAM) superfamily enzymes cleave SAM reductively to generate a highly reactive 5'-deoxyadenosyl (dAdo) radical, which initiates remarkably diverse reactions. Unlike most radical SAM enzymes, the class C radical SAM methyltransferase NosN binds two SAMs in the active site, using one SAM to produce a dAdo radical and the second as a methyl donor. Here, we report a mechanistic investigation of NosN in which an allyl analogue of SAM (allyl-SAM) was used. We show that NosN cleaves allyl-SAM efficiently and the resulting dAdo radical can be captured by the olefin moieties of allyl-SAM or 5'-allylthioadenosine (ATA), the latter being a derivative of allyl-SAM. Remarkably, we found that NosN produced two distinct sets of products in the presence and absence of the methyl acceptor substrate, thus suggesting substrate-triggered production of ATA from allyl-SAM. We also show that NosN produces S-adenosylhomocysteine from 5'-thioadenosine and homoserine lactone. These results support the idea that 5'-methylthioadenosine is the direct methyl donor in NosN reactions, and demonstrate great potential to modulate radical SAM enzymes for novel catalytic activities. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. One-Pot Multicomponent Coupling Methods for the Synthesis of Diastereo- and Enantioenriched (Z)-Trisubstituted Allylic Alcohols

    PubMed Central

    Kerrigan, Michael H.; Jeon, Sang-Jin; Chen, Young K.; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.

    2009-01-01

    (Z)-Trisubstituted allylic alcohols are widespread structural motifs in natural products and biologically active compounds but are difficult to directly prepare. Introduced herein is a general one-pot multicomponent coupling method for the synthesis of (Z)-α,α,β-trisubstituted allylic alcohols. (Z)-Trisubstituted vinylzinc reagents are formed in situ by initial hydroboration of 1-bromo-1-alkynes. Addition of dialkylzinc reagents induces a 1,2-metallate rearrangement that is followed by a boron-to-zinc transmetallation. The resulting vinylzinc reagents add to a variety of prochiral aldehydes to produce racemic (Z)-trisubstituted allylic alcohols. When enantioenriched aldehyde substrates are employed (Z)-trisubstituted allylic alcohols are isolated with high dr (>20:1 in many cases). For example, vinylation of enantioenriched benzyl protected α- and β-hydroxy propanal derivatives furnished the expected anti-Felkin addition products via chelation control. Surprisingly, silyl protected α-hydroxy aldehydes also afford anti-Felkin addition products. A protocol for the catalytic asymmetric addition of (Z)-trisubstituted vinylzinc reagents to prochiral aldehydes with a (−)-MIB-based catalyst has also been developed. Several additives were investigated as inhibitors of the Lewis acidic alkylzinc halide byproducts, which promote the background reaction to form the racemate. α-Ethyl and α-cyclohexyl (Z)-trisubstituted allylic alcohols can now be synthesized with excellent levels of enantioselectivity in the presence of diamine inhibitors. PMID:19476375

  15. From the tunneling dimer to the onset of microsolvation: Infrared spectroscopy of allyl radical water aggregates in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Leicht, Daniel; Kaufmann, Matin; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina

    2017-03-01

    The infrared spectrum of allyl:water clusters embedded in helium nanodroplets was recorded. Allyl radicals were produced by flash vacuum pyrolysis and trapped in helium droplets. Deuterated water was added to the doped droplets, and the infrared spectrum of the radical water aggregates was recorded in the frequency range 2570-2820 cm-1. Several absorption bands are observed and assigned to 1:1 and 1:2 allyl:D2O clusters, based on pressure dependent measurements and accompanying quantum chemical calculations. The analysis of the 1:1 cluster spectrum revealed a tunneling splitting as well as a combination band. For the 1:2 cluster, we observe a water dimer-like motif that is bound by one π-hydrogen bond to the allyl radical.

  16. Thiol surface functionalization via continuous phase plasma polymerization of allyl mercaptan, with subsequent maleimide-linked conjugation of collagen.

    PubMed

    Stynes, Gil D; Gengenbach, Thomas R; Kiroff, George K; Morrison, Wayne A; Kirkland, Mark A

    2017-07-01

    Thiol groups can undergo a large variety of chemical reactions and are used in solution phase to conjugate many bioactive molecules. Previous research on solid substrates with continuous phase glow discharge polymerization of thiol-containing monomers may have been compromised by oxidation. Thiol surface functionalization via glow discharge polymerization has been reported as requiring pulsing. Herein, continuous phase glow discharge polymerization of allyl mercaptan (2-propene-1-thiol) was used to generate significant densities of thiol groups on a mixed macrodiol polyurethane and tantalum. Three general classes of chemistry are used to conjugate proteins to thiol groups, with maleimide linkers being used most commonly. Here the pH specificity of maleimide reactions was used effectively to conjugate surface-bound thiol groups to amine groups in collagen. XPS demonstrated surface-bound thiol groups without evidence of oxidation, along with the subsequent presence of maleimide and collagen. Glow discharge reactor parameters were optimized by testing the resistance of bound collagen to degradation by 8 M urea. The nature of the chemical bonding of collagen to surface thiol groups was effectively assessed by colorimetric assay (ELISA) of residual collagen after incubation in 8 M urea over 8 days and after incubation with keratinocytes over 15 days. The facile creation of useable solid-supported thiol groups via continuous phase glow discharge polymerization of allyl mercaptan opens a route for attaching a vast array of bioactive molecules. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1940-1948, 2017. © 2017 Wiley Periodicals, Inc.

  17. Dual nickel and Lewis acid catalysis for cross-electrophile coupling: the allylation of aryl halides with allylic alcohols† †Electronic supplementary information (ESI) available. CCDC 1515176. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03140h

    PubMed Central

    Jia, Xue-Gong; Guo, Peng; Duan, Jicheng

    2017-01-01

    Controlling the selectivity in cross-electrophile coupling reactions is a significant challenge, particularly when one electrophile is much more reactive. We report a general and practical strategy to address this problem in the reaction between reactive and unreactive electrophiles by a combination of nickel and Lewis acid catalysis. This strategy is used for the coupling of aryl halides with allylic alcohols to form linear allylarenes selectively. The reaction tolerates a wide range of functional groups (e.g. silanes, boronates, anilines, esters, alcohols, and various heterocycles) and works with various allylic alcohols. Complementary to most current routes for the C3 allylation of an unprotected indole, this method provides access to C2 and C4–C7 allylated indoles. Preliminary mechanistic experiments reveal that the reaction might start with an aryl nickel intermediate, which then reacts with Lewis acid activated allylic alcohols in the presence of Mn. PMID:29629130

  18. Synthesis, Characterization, and Some Properties of Cp*W(NO)(H)(η(3)-allyl) Complexes.

    PubMed

    Baillie, Rhett A; Holmes, Aaron S; Lefèvre, Guillaume P; Patrick, Brian O; Shree, Monica V; Wakeham, Russell J; Legzdins, Peter; Rosenfeld, Devon C

    2015-06-15

    Sequential treatment at low temperatures of Cp*W(NO)Cl2 in THF with 1 equiv of a binary magnesium allyl reagent, followed by an excess of LiBH4, affords three new Cp*W(NO)(H)(η(3)-allyl) complexes, namely, Cp*W(NO)(H)(η(3)-CH2CHCMe2) (1), Cp*W(NO)(H)(η(3)-CH2CHCHPh) (2), and Cp*W(NO)(H)(η(3)-CH2CHCHMe) (3). Complexes 1-3 are isolable as air-stable, analytically pure yellow solids in good to moderate yields by chromatography or fractional crystallization. In solutions, complex 1 exists as two coordination isomers in an 83:17 ratio differing with respect to the endo/exo orientation of the allyl ligand. In contrast, complexes 2 and 3 each exist as four coordination isomers, all differing by the orientation of their allyl ligands which can have either an endo or an exo orientation with the phenyl or methyl groups being either proximal or distal to the nitrosyl ligand. A DFT computational analysis using the major isomer of Cp*W(NO)(H)(η(3)-CH2CHCHMe) (3a) as the model complex has revealed that its lowest-energy thermal-decomposition pathway involves the intramolecular isomerization of 3a to the 16e η(2)-alkene complex, Cp*W(NO)(η(2)-CH2═CHCH2Me). Such η(2)-alkene complexes are isolable as their 18e PMe3 adducts when compounds 1-3 are thermolyzed in neat PMe3, the other organometallic products formed during these thermolyses being Cp*W(NO)(PMe3)2 (5) and, occasionally, Cp*W(NO)(H)(η(1)-allyl)(PMe3). All new complexes have been characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them have been established by single-crystal X-ray crystallographic analyses.

  19. Gold(I)-Catalysed Direct Thioetherifications Using Allylic Alcohols: an Experimental and Computational Study

    PubMed Central

    Herkert, Lorena; Green, Samantha L J; Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2014-01-01

    A gold(I)-catalysed direct thioetherification reaction between allylic alcohols and thiols is presented. The reaction is generally highly regioselective (SN2′). This dehydrative allylation procedure is very mild and atom economical, producing only water as the by-product and avoiding any unnecessary waste/steps associated with installing a leaving or activating group on the substrate. Computational studies are presented to gain insight into the mechanism of the reaction. Calculations indicate that the regioselectivity is under equilibrium control and is ultimately dictated by the thermodynamic stability of the products. PMID:25080400

  20. Regioselective and enantiospecific rhodium-catalyzed allylic alkylation reactions using copper(I) enolates: synthesis of (-)-sugiresinol dimethyl ether.

    PubMed

    Evans, P Andrew; Leahy, David K

    2003-07-30

    The transition metal-catalyzed allylic alkylation represents a fundamentally important cross-coupling reaction for the construction of ternary carbon stereogenic centers. We have developed a regioselective and enantiospecific rhodium-catalyzed allylic alkylation of acyclic unsymmetrical allylic alcohol derivatives using copper(I) enolates to prepare beta-substituted ketones. This protocol represents a convenient asymmetric Claisen rearrangement surrogate in which alpha-substituted enolates permit the introduction of an additional stereogenic center. The synthetic utility of this transformation was highlighted in the construction of a trans-1,2-disubstituted cyclohexene and the total synthesis of (-)-sugiresinol dimethyl ether. Finally, we anticipate that copper(I) enolates may prove useful nucleophiles in related metal-catalyzed reactions.

  1. A novel synthesis of acyclonucleosides via allylation of 3-[1-(phenylhydrazono)-L-threo-2,3,4-trihydroxybut-1-yl]quinoxalin-2(1H)one.

    PubMed

    Hamid, Hamida Mohamed Abdel

    2003-10-31

    The allylation of 3-[1-(phenylhydrazono)-L-threo-2,3,4-trihydroxybut-1-yl]quinoxalin-2(1H)one (1) gave, in addition to the anticipated 1-N-allyl derivative (2), a dehydrative cyclized product, 1-N-allyl-3-[5-(hydroxymethyl)-1-phenylpyrazol-3-yl]quinoxalin-2-one (4) and its isomeric O-allyl derivative 3. The O-allyl group in 3 underwent acetolysis under acetylation conditions, in addition to the acetylation of the hydroxyl group, to afford 2-acetoxy-3-[5-(acetoxymethyl)-1-phenylpyrazol-3-yl]quinoxaline (8) instead of the O-acetyl derivative of 3. Allylation of the tri-O-acetyl derivative of 1 caused the elimination of a molecule of acetic acid in addition to N-allylation to give 1-N-allyl-3-[3,4-di-O-acetyl-2-deoxy-1-(phenylhydrazono)but-2-en-1-yl]quinoxalin-2-one (11). Hydroxylation of the allyl group gave a glycerol-1-yl acyclonucleoside which can be alternatively obtained by a displacement reaction of the tosyloxy group in 2,3-O-isopropylidene-1-O-(p-tolylsulfonyl)glycerol (14), followed by deisopropylidenation. 1-N-(2,3-Dibromopropyl)-3-[5-(hydroxymethyl)-1-(4-bromophenyl)pyrazol-3-yl]quinoxalin-2-one (15) underwent azidolysis to give a 2,3-diazido derivative. The assigned structures were based on spectral analysis. The activity of compounds 2, 4, 6, and 15 against hepatitis B virus was studied.

  2. Antimicrobial activity of allylic thiocyanates derived from the Morita-Baylis-Hillman reaction

    PubMed Central

    Sá, Marcus Mandolesi; Ferreira, Misael; Lima, Emerson Silva; dos Santos, Ivanildes; Orlandi, Patrícia Puccinelli; Fernandes, Luciano

    2014-01-01

    Bacterial resistance to commonly used antibiotics has been recognized as a significant global health issue. In this study, we carried out the screening of a family of allylic thiocyanates for their action against a diversity of bacteria and fungi with a view to developing new antimicrobial agents. Allylic thiocyanates bearing halogenated aryl groups, which were readily obtained in two steps from the Morita-Baylis-Hillman adducts, showed moderate-to-high activity against selective pathogens, including a methicillin-resistant S. aureus (MRSA) strain. In particular cases, methyl (Z)-3-(2,4-dichlorophenyl)-2-(thiocyanomethyl)-2-propenoate exhibited antimicrobial activity comparable to the reference antibiotic Imipenem. PMID:25477911

  3. Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters

    PubMed Central

    D’Souza, Malcolm J.; Givens, Aaron F.; Lorchak, Peter A.; Greenwood, Abigail E.; Gottschall, Stacey L.; Carter, Shannon E.; Kevill, Dennis N.

    2013-01-01

    At 25.0 °C the specific rates of solvolysis for allyl and vinyl chloroformates have been determined in a wide mix of pure and aqueous organic mixtures. In all the solvents studied, vinyl chloroformate was found to react significantly faster than allyl chloroformate. Multiple correlation analyses of these rates are completed using the extended (two-term) Grunwald-Winstein equation with incorporation of literature values for solvent nucleophilicity (NT) and solvent ionizing power (YCl). Both substrates were found to solvolyze by similar dual bimolecular carbonyl-addition and unimolecular ionization channels, each heavily dependent upon the solvents nucleophilicity and ionizing ability. PMID:23549265

  4. Catalytic enantioselective 1,6-conjugate additions of propargyl and allyl groups

    NASA Astrophysics Data System (ADS)

    Meng, Fanke; Li, Xiben; Torker, Sebastian; Shi, Ying; Shen, Xiao; Hoveyda, Amir H.

    2016-09-01

    Conjugate (or 1,4-) additions of carbanionic species to α,β-unsaturated carbonyl compounds are vital to research in organic and medicinal chemistry, and there are several chiral catalysts that facilitate the catalytic enantioselective additions of nucleophiles to enoates. Nonetheless, catalytic enantioselective 1,6-conjugate additions are uncommon, and ones that incorporate readily functionalizable moieties, such as propargyl or allyl groups, into acyclic α,β,γ,δ-doubly unsaturated acceptors are unknown. Chemical transformations that could generate a new bond at the C6 position of a dienoate are particularly desirable because the resulting products could then be subjected to further modifications. However, such reactions, especially when dienoates contain two equally substituted olefins, are scarce and are confined to reactions promoted by a phosphine-copper catalyst (with an alkyl Grignard reagent, dialkylzinc or trialkylaluminium compounds), a diene-iridium catalyst (with arylboroxines), or a bisphosphine-cobalt catalyst (with monosilyl-acetylenes). 1,6-Conjugate additions are otherwise limited to substrates where there is full substitution at the C4 position. It is unclear why certain catalysts favour bond formation at C6, and—although there are a small number of catalytic enantioselective conjugate allyl additions—related 1,6-additions and processes involving a propargyl unit are non-existent. Here we show that an easily accessible organocopper catalyst can promote 1,6-conjugate additions of propargyl and 2-boryl-substituted allyl groups to acyclic dienoates with high selectivity. A commercially available allenyl-boron compound or a monosubstituted allene may be used. Products can be obtained in up to 83 per cent yield, >98:2 diastereomeric ratio (for allyl additions) and 99:1 enantiomeric ratio. We elucidate the mechanistic details, including the origins of high site selectivity (1,6- versus 1,4-) and enantioselectivity as a function of the catalyst

  5. Pendant Allyl Crosslinking as a Tunable Shape Memory Actuator for Vascular Applications

    PubMed Central

    Zachman, Angela L.; Lee, Sue Hyun; Balikov, Daniel A.; Kim, Kwangho; Bellan, Leon M.; Sung, Hak-Joon

    2015-01-01

    Thermo-responsive shape memory polymers (SMPs) can be fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly( -caprolactone)-co-y%( -allyl carboxylate -caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit high elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. PMID:26072363

  6. Biomimetic Oxidation Studies. 11. Alkane Functionalization in Aqueous Solution Utilizing in Situ Formed [Fe(2)O(eta(1)-H(2)O)(eta(1)-OAc)(TPA)(2)](3+), as an MMO Model Precatalyst, Embedded in Surface-Derivatized Silica and Contained in Micelles.

    PubMed

    Neimann, Karine; Neumann, Ronny; Rabion, Alain; Buchanan, Robert M.; Fish, Richard H.

    1999-07-26

    The biomimetic, methane monooxygenase enzyme (MMO) precatalyst, [Fe(2)O(eta(1)-H(2)O)(eta(1)-OAc)(TPA)(2)](3+) (TPA = tris[(2-pyridyl)methyl]amine), 1, formed in situ at pH 4.2 from [Fe(2)O(&mgr;-OAc)(TPA)(2)](3+), 2, was embedded in an amorphous silicate surface modified by a combination of hydrophilic poly(ethylene oxide) and hydrophobic poly(propylene oxide). The resulting catalytic assembly was found to be a biomimetic model for the MMO active site within a hydrophobic macroenvironment, allowing alkane functionalization with tert-butyl hydroperoxide (TBHP)/O(2) in an aqueous reaction medium (pH 4.2). For example, cyclohexane was oxidized to a mixture of cyclohexanone, cyclohexanol, and cyclohexyl-tert-butyl peroxide, in a ratio of approximately 3:1:2. The balance between poly(ethylene oxide) and poly(propylene oxide), tethered on the silica surface, was crucial for maximizing the catalytic activity. The silica-based catalytic assembly showed reactivity somewhat higher in comparison to an aqueous micelle system utilizing the surfactant, cetyltrimethylammonium hydrogen sulfate at its critical micelle concentration, in which functionalization of cyclohexane with TBHP/O(2) in the presence of 1 was also studied at pH 4.2 and was found to provide similar products: cyclohexanol, cyclohexanone, and cyclohexyl-tert-butyl peroxide, in a ratio of approximately 2:3:1. Moreover, the mechanism for both the silica-based catalytic assembly and the aqueous micelle system was found to occur via the Haber-Weiss process, in which redox chemistry between 1 and TBHP provides both the t-BuO(*)() and t-BuOO(*)()( )()radicals. The t-BuO(*)()( )()radical initiates the C-H functionalization reaction to form the carbon radical, followed by O(2) trapping, to provide cyclohexyl hydroperoxide, which produces the cyclohexanol and cyclohexanone in the presence of 1, whereas the coupling product emanates from t-BuOO(*)() and cyclohexyl radicals. A discussion concerning both approaches for

  7. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.

    PubMed

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2015-07-11

    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  8. Copper-catalyzed decarboxylative trifluoromethylation of allylic bromodifluoroacetates.

    PubMed

    Ambler, Brett R; Altman, Ryan A

    2013-11-01

    The development of new synthetic fluorination reactions has important implications in medicinal, agricultural, and materials chemistries. Given the prevalence and accessibility of alcohols, methods to convert alcohols to trifluoromethanes are desirable. However, this transformation typically requires four-step processes, specialty chemicals, and/or stoichiometric metals to access the trifluoromethyl-containing product. A two-step copper-catalyzed decarboxylative protocol for converting allylic alcohols to trifluoromethanes is reported. Preliminary mechanistic studies distinguish this reaction from previously reported Cu-mediated reactions.

  9. GALLIUM-MEDIATED ALLYLATION OF CARBONYL COMPOUNDS IN WATER. (R828129)

    EPA Science Inventory

    Ga-mediated allylation of aldehydes or ketones in distilled or tap water generated the corresponding homoallyl alcohols in high yields without the assistance of either acidic media or sonication.


    Grap...

  10. Bacopa monnieri protects SH-SY5Y cells against tert-Butyl hydroperoxide-induced cell death via the ERK and PI3K pathways

    PubMed Central

    Petcharat, Kanoktip; Singh, Meharvan; Ingkaninan, Kornkanok; Attarat, Jongrak; Yasothornsrikul, Sukkid

    2017-01-01

    Objective Oxidative stress plays an important role in the pathological processes of various neurodegenerative diseases. Bacopa monnieri (BM) has a potent antioxidant property. Therefore, the purpose of this study was to evaluate the neuroprotective potential of BM against SH-SY5Y neuroblastoma cell death induced by the pro-oxidant insult, tert-Butyl hydroperoxide (TBHP), and to identify possible mechanisms related to its neuroprotective action. Methods The neuroprotective effect of BM was evaluated by the degree of protection against TBHP-induced cell death in human SH-SY5Y cells that was measured by calcein-AM assay. ERK1/2 and Akt phosphorylation was evaluated by immunoblotting. Results We found that BM exhibited protection against TBHP-mediated cytotoxicity. The neuroprotective effect of BM was abolished in the presence of either ERK1/2 or PI3K inhibitors. In addition, western blotting with anti-phospho-ERK1/2 and anti-phospho-Akt antibodies showed that BM increased both ERK1/2 and Akt phosphorylation. Conclusion These results suggest that BM by activation of ERK/MAPK and PI3K/Akt signaling pathways protects SH-SY5Y cells from TBHP-induced cell death. PMID:29152617

  11. Bacopa monnieri protects SH-SY5Y cells against tert-Butyl hydroperoxide-induced cell death via the ERK and PI3K pathways.

    PubMed

    Petcharat, Kanoktip; Singh, Meharvan; Ingkaninan, Kornkanok; Attarat, Jongrak; Yasothornsrikul, Sukkid

    2015-01-01

    Oxidative stress plays an important role in the pathological processes of various neurodegenerative diseases. Bacopa monnieri (BM) has a potent antioxidant property. Therefore, the purpose of this study was to evaluate the neuroprotective potential of BM against SH-SY5Y neuroblastoma cell death induced by the pro-oxidant insult, tert -Butyl hydroperoxide (TBHP), and to identify possible mechanisms related to its neuroprotective action. The neuroprotective effect of BM was evaluated by the degree of protection against TBHP-induced cell death in human SH-SY5Y cells that was measured by calcein-AM assay. ERK1/2 and Akt phosphorylation was evaluated by immunoblotting. We found that BM exhibited protection against TBHP-mediated cytotoxicity. The neuroprotective effect of BM was abolished in the presence of either ERK1/2 or PI3K inhibitors. In addition, western blotting with anti-phospho-ERK1/2 and anti-phospho-Akt antibodies showed that BM increased both ERK1/2 and Akt phosphorylation. These results suggest that BM by activation of ERK/MAPK and PI3K/Akt signaling pathways protects SH-SY5Y cells from TBHP-induced cell death.

  12. Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study

    PubMed Central

    Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2015-01-01

    Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au–allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive. PMID:26248980

  13. Et3B-mediated and palladium-catalyzed direct allylation of β-dicarbonyl compounds with Morita–Baylis–Hillman alcohols

    PubMed Central

    Abidi, Ahlem; Oueslati, Yosra

    2016-01-01

    A practical and efficient palladium-catalyzed direct allylation of β-dicarbonyl compounds with both cyclic and acyclic Morita–Baylis–Hillman (MBH) alcohols, using Et3B as a Lewis acid promoter, is described herein. A wide range of the corresponding functionalized allylated derivatives have been obtained in good yields and with high selectivity. PMID:28144308

  14. Ilex paraguariensis crude extract acts on protection and reversion from damage induced by t-butyl hydroperoxide in human erythrocytes: a comparative study with isolated caffeic and/or chlorogenic acids.

    PubMed

    Portela, José Luiz; Soares, Deividi; Rosa, Hemerson; Roos, Daniel Henrique; Pinton, Simone; Ávila, Daiana Silva; Puntel, Robson L

    2017-05-01

    Studies comparing the effects of phytochemicals under different regimens of exposure are necessary to give a better indication about their mechanism(s) of protection. Hence, in the present study, we investigated the preventive (pre-incubation), protective (co-incubation) and/or remediative (post-incubation) activity of chlorogenic acid and caffeic acids, in comparison with Ilex paraguariensis crude extract, against t-butyl hydroperoxide (t-BHP)-induced damage to human erythrocytes. We found that both caffeic and chlorogenic acids were able to prevent and revert the hemolysis associated with t-BHP exposure. By contrast, isolated compounds (alone or in combination) presented no effect on basal and/or t-BHP-induced non-protein thiol (NPSH) oxidation or production of thiobarbituric acid reactive substances (TBBARS). In turn, I. paraguariensis extract was effective to prevent, protect and revert the hemolysis associated with t-BHP exposure. Moreover, I. paraguariensis significantly protects and reverts t-BHP-induced NPSH oxidation and TBARS production. We have found that I. paraguariensis extract acts better with respect to the protection and reversion of t-BHP-associated changes, whereas isolated compounds are more active in preventing and reverting t-BHP pro-hemolytic action. Moreover, our data suggest that the pro-hemolytic activity of t-BHP may occur via mechanism(s) other(s) than lipid peroxidation and/or NPSH oxidation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity.

    PubMed

    Li, Weixin; Wu, Mingchai; Tang, Longguang; Pan, Yong; Liu, Zhiguo; Zeng, Chunlai; Wang, Jingying; Wei, Tiemin; Liang, Guang

    2015-01-15

    Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. H9c2 cells challenged with H2O2 or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H2O2 and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H2O2-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2-caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100mg/kg). These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Synthesis, characterization and application of a nano-manganese-catalyst as an efficient solid catalyst for solvent free selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol

    NASA Astrophysics Data System (ADS)

    Habibi, Davood; Faraji, Ali Reza

    2013-07-01

    The object of this study is to synthesize the heterogeneous Mn-nano-catalyst (MNC) which has been covalently anchored on a modified nanoscaleSiO2/Al2O3, and characterized by FT-IR, UV-Vis, CHN elemental analysis, EDS, TEM, and EDX. The method is efficient for the highly selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol without the need to any solvents, using tert-butyl hydroperoxide (TBHP) as an oxidant. Oxidation of ethylbenzene, cyclohexene, and benzylalcohol gave acetophenone, 2-cyclohexene-1-one and benzaldehyde, respectively, as major products. Reaction conditions have been optimized by considering the effect of various factors such as reaction time, amounts of substrates and oxidant, Mn-nano-catalyst and application of various solvents.

  17. A new entry to azomethine ylides from allylic amines and glyoxals: shifting the reliance on amino ester precursors.

    PubMed

    Machamer, Natalie K; Liu, Xiaoxi; Waters, Stephen P

    2014-10-03

    The first examples of azomethine ylides derived from allylic amine and glyoxal precursors are reported. The condensation of primary allylic and α-aryl amines with glyoxylates or α-aryl glyoxals affords conjugated azomethine ylides that undergo facile [3 + 2] cycloaddition, providing 5-alkenyl pyrrolidine cycloadducts that cannot be accessed through the classical use of amino esters as ylide precursors.

  18. TiO2 supported gold nanoparticles: An efficient photocatalyst for oxidation of alcohol to aldehyde and ketone in presence of visible light irradiation

    NASA Astrophysics Data System (ADS)

    Gogoi, Nibedita; Borah, Geetika; Gogoi, Pradip K.; Chetia, Tridip Ranjan

    2018-01-01

    An efficient heterogeneous photocatalyst composed of Au nanoparticle supported on TiO2 (anatase) is prepared by sol-gel method. This prepared nanocomposite showed good catalytic activity in the oxidation of various alcohols to aldehyde and ketone under irradiation of visible light. Various spectroscopic techniques including UV-Visible absorption spectral studies and photoluminescence study are employed to characterize the catalyst. It was also characterized by XRD, TEM, BET, XPS and ICP-AES analysis. In contrast to air and H2O2, use of TBHP as oxidant gave good yield. The reaction conditions with respect to solvent and amount of catalyst are optimized.

  19. A new polyester based on allyl α-hydroxy glutarate as shell for magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Feher, Ioana Coralia

    2017-12-01

    Allyl side-chain-functionalized lactide was synthesized from commercially available glutamic acid and polymerized by ring opening polymerization using 4-dimethylaminopyridine as an organocatalyst in the presence of magnetic nanoparticles. The resulting magnetic nanostructures coated with the allyl-containing polyester were then functionalized with cysteine by thiol-ene click reaction leading to highly functionalized magnetic nano-platforms of practical interest. The polyester precursors were characterized by nuclear magnetic resonance and mass spectrometry. The morphology of magnetic nanostructures based on the functionalized polyester was determined by transmission electron microscopy TEM, while the chemical structure was investigated by FT-IR. TGA investigations and the magnetic properties of the magnetic nanostructures are also described.

  20. Rhodium-catalyzed sequential allylic amination and olefin hydroacylation reactions: enantioselective synthesis of seven-membered nitrogen heterocycles.

    PubMed

    Arnold, Jeffrey S; Mwenda, Edward T; Nguyen, Hien M

    2014-04-01

    Dynamic kinetic asymmetric amination of branched allylic acetimidates has been applied to the synthesis of 2-alkyl-dihydrobenzoazepin-5-ones. These seven-membered-ring aza ketones are prepared in good yield with high enantiomeric excess by rhodium-catalyzed allylic substitution with 2-amino aryl aldehydes followed by intramolecular olefin hydroacylation of the resulting alkenals. This two-step procedure is amenable to varied functionality and proves useful for the enantioselective preparation of these ring systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel E; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  2. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    PubMed

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  3. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: Synergetic effect of ligands and barium enolates

    DOE PAGES

    Chen, Wenyong; Chen, Ming; Hartwig, John F.

    2014-10-22

    Here, we report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from ( R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  4. Synthesis of γ-hydroxypropyl P-chirogenic (±)-phosphorus oxide derivatives by regioselective ring-opening of oxaphospholane 2-oxide precursors

    PubMed Central

    Binyamin, Iris; Meidan-Shani, Shoval

    2015-01-01

    Summary The synthesis of P-chirogenic (±)-phosphine oxides and phosphinates via selective nucleophilic ring opening of the corresponding oxaphospholanes is described. Two representative substrates: the phosphonate 2-ethoxy-1,2-oxaphospholane 2-oxide and the phosphinate 2-phenyl-1,2-oxaphospholane 2-oxide were reacted with various Grignard reagents to produce a single alkyl/aryl product. These products may possess further functionalities in addition to the phosphorus center such as the γ-hydroxypropyl group which results from the ring opening and π-donor moieties such as aryl, allyl, propargyl and allene which originates from the Grignard reagent. PMID:26425187

  5. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans.

    PubMed

    Puentes-Cala, Edinson; Liebeke, Manuel; Markert, Stephanie; Harder, Jens

    2018-05-01

    The enzymatic functionalization of hydrocarbons is a central step in the global carbon cycle initiating the mineralization of methane, isoprene and monoterpenes, the most abundant biologically produced hydrocarbons. Also, terpene-modifying enzymes have found many applications in the energy-economic biotechnological production of fine chemicals. Here we describe a limonene dehydrogenase that was purified from the facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen grown on monoterpenes under denitrifying conditions in the absence of molecular oxygen. The purified limonene:ferrocenium oxidoreductase activity hydroxylated the methyl group of limonene (1-methyl-4-(1-methylethenyl)-cyclohex-1-ene) yielding perillyl alcohol ([4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol). The enzyme had a dithiothreitol:perillyl alcohol oxidoreductase activity yielding limonene. Mass spectrometry and molecular size determinations revealed a heterodimeric enzyme comprising CtmA and CtmB. Recently the two proteins had been identified by transposon mutagenesis and proteomics as part of the cyclic terpene metabolism ( ctm ) in Castellaniella defragrans and were annotated as FAD-dependent oxidoreductases of the protein domain family phytoene dehydrogenases and related proteins (COG1233). CtmAB is the first heterodimeric enzyme in this protein superfamily. Flavins in the purified CtmAB are oxidized by ferrocenium and are reduced by limonene. Heterologous expression of CtmA, CtmB and CtmAB in E. coli demonstrated that limonene dehydrogenase activity required both subunits carrying each a flavin cofactor. Native CtmAB oxidized a wide range of monocyclic monoterpenes containing the allylic methyl group motif (1-methyl-cyclohex-1-ene). In conclusion, we have identified CtmAB as a hydroxylating limonene dehydrogenase and the first heteromer in a family of FAD-dependent dehydrogenases acting on allylic methylene or methyl CH-bonds. We suggest a placement in EC 1

  6. Origin of fast catalysis in allylic amination reactions catalyzed by Pd-Ti heterobimetallic complexes.

    PubMed

    Walker, Whitney K; Kay, Benjamin M; Michaelis, Scott A; Anderson, Diana L; Smith, Stacey J; Ess, Daniel H; Michaelis, David J

    2015-06-17

    Experiments and density functional calculations were used to quantify the impact of the Pd-Ti interaction in the cationic heterobimetallic Cl2Ti(N(t)BuPPh2)2Pd(η(3)-methallyl) catalyst 1 used for allylic aminations. The catalytic significance of the Pd-Ti interaction was evaluated computationally by examining the catalytic cycle for catalyst 1 with a conformation where the Pd-Ti interaction is intact versus one where the Pd-Ti interaction is severed. Studies were also performed on the relative reactivity of the cationic monometallic (CH2)2(N(t)BuPPh2)2Pd(η(3)-methallyl) catalyst 2 where the Ti from catalyst 1 was replaced by an ethylene group. These computational and experimental studies revealed that the Pd-Ti interaction lowers the activation barrier for turnover-limiting amine reductive addition and accelerates catalysis up to 10(5). The Pd-Ti distance in 1 is the result of the N(t)Bu groups enforcing a boat conformation that brings the two metals into close proximity, especially in the transition state. The turnover frequency of classic Pd π allyl complexes was compared to that of 1 to determine the impact of P-Pd-P coordination angle and ligand electronic properties on catalysis. These experiments identified that cationic (PPh3)2Pd(η(3)-CH2C(CH3)CH2) catalyst 3 performs similarly to 1 for allylic aminations with diethylamine. However, computations and experiment reveal that the apparent similarity in reactivity is due to very fast reaction kinetics. The higher reactivity of 1 versus 3 was confirmed in the reaction of methallyl chloride and 2,2,6,6-tetramethylpiperidine (TMP). Overall, experiments and calculations demonstrate that the Pd-Ti interaction induces and is responsible for significantly lower barriers and faster catalysis for allylic aminations.

  7. Indium-mediated asymmetric barbier-type allylations: additions to aldehydes and ketones and mechanistic investigation of the organoindium reagents.

    PubMed

    Haddad, Terra D; Hirayama, Lacie C; Singaram, Bakthan

    2010-02-05

    We report a simple, efficient, and general method for the indium-mediated enantioselective allylation of aromatic and aliphatic aldehydes and ketones under Barbier-type conditions in a one-pot synthesis affording the corresponding chiral alcohol products in very good yield (up to 99%) and enantiomeric excess (up to 93%). Our method is able to tolerate various functional groups, such as esters, nitriles, and phenols. Additionally, more substituted allyl bromides, such as crotyl and cinnamyl bromide, can be used providing moderate enantioselectivity (72% and 56%, respectively) and excellent diastereoselectivity when employing cinnamyl bromide (>95/5 anti/syn). However, the distereoselectivity when using crotyl bromide was poor and other functionalized allyl bromides under our method afforded low enantioselectivities for the alcohol products. In these types of indium-mediated additions, solvent plays a major role in determining the nature of the organoindium intermediate and we observed the susceptibility of some allylindium intermediates to hydrolysis in protic solvents. Under our reaction conditions using a polar aprotic solvent, we suggest that an allylindium(III) species is the active allylating intermediate. In addition, we have observed the presence of a shiny, indium(0) nugget throughout the reaction, irrespective of the stoichiometry, indicating disproportionation of indium halide byproduct formed during the reaction.

  8. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    PubMed Central

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism—nucleophilic attack of enolate oxygen on Palladium followed by C–C bond-forming [3,3']-reductive elimination. PMID:27283477

  9. A Spectroscopic and Theoretical Study of Weak Intramolecular OH\\cdots π Interactions in Allyl Carbinol and Methallyl Carbinol

    NASA Astrophysics Data System (ADS)

    Schroeder, Sidsel D.; Mackeprang, Kasper; Kjaergaard, Henrik G.

    2013-06-01

    The weak intramolecular OH\\cdots π interactions in allyl carbinol and methallyl carbinol have been studied using a combination of NIR spectroscopy and theory. The third OH-stretching overtone region of vapor phase allyl carbinol and methallyl carbinol have been recorded with intracavity laser photoacoustic spectroscopy to study the effect of an enhanced OH\\cdots π interaction in methallyl carbinol arising from the electron donating methyl group. Local mode calculations were employed to assign the observed bands. The OH-stretching transition frequency of methallyl carbinol was observed to be red shifted relative to the OH-stretching transition frequency of allyl carbinol. A red shift of the transition frequency is in this context normally interpreted as a signature of hydrogen bonding. Whether the OH\\cdots π interaction can be categorized as a hydrogen bond will be discussed in this talk.

  10. First example of a heterobimetallic 'Pd-Sn' catalyst for direct activation of alcohol: efficient allylation, benzylation and propargylation of arenes, heteroarenes, active methylenes and allyl-Si nucleophiles.

    PubMed

    Das, Debjit; Pratihar, Sanjay; Roy, Ujjal Kanti; Mal, Dipakranjan; Roy, Sujit

    2012-06-21

    Arenes, heteroarenes, 1,3-dicarbonyls and organosilicon nucleophiles undergo highly efficient alkylation with allylic, propargylic and benzylic alcohols in the presence of a new 'Pd-Sn' bimetallic catalyst in nitromethane; water being the sole byproduct. The plausible mechanism of alkylation and the intermediacy of ether has been enumerated.

  11. Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study.

    PubMed

    Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2015-09-21

    Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au-allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  12. One-Pot Synthesis of Allylic Sulfones, Ketosulfones, and Trifylallylic Alcohols from Domino Reactions of Allylic Alcohols with Sulfinic Acid under Metal-Free Conditions.

    PubMed

    Chu, Xue-Qiang; Meng, Hua; Xu, Xiao-Ping; Ji, Shun-Jun

    2015-08-03

    Invited for the cover of this issue is the group of Shun-Jun Ji and co-workers at Soochow University, (China). The image depicts a cheaper, low-toxic, eco-friendly benign and metal-free methodology incorporating the both aryl and trifyl sulfonyl functionality from allylic alcohols. Read the full text of the article at 10.1002/chem.201500469. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic, and alkenyl alcohols.

    PubMed

    Larionov, Evgeny; Lin, Luqing; Guénée, Laure; Mazet, Clément

    2014-12-03

    Herein we report the palladium-catalyzed isomerization of highly substituted allylic alcohols and alkenyl alcohols by means of a single catalytic system. The operationally simple reaction protocol is applicable to a broad range of substrates and displays a wide functional group tolerance, and the products are usually isolated in high chemical yield. Experimental and computational mechanistic investigations provide complementary and converging evidence for a chain-walking process consisting of repeated migratory insertion/β-H elimination sequences. Interestingly, the catalyst does not dissociate from the substrate in the isomerization of allylic alcohols, whereas it disengages during the isomerization of alkenyl alcohols when additional substituents are present on the alkyl chain.

  14. N-(1-Allyl-1H-indazol-5-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Abderrafia, Hafid; Saadi, Mohamed; El Ammari, Lahcen

    2013-11-30

    The asymmetric unit of the title compound, C17H17N3O2S, contains two independent mol-ecules linked by an N-H⋯O hydrogen bond. The mol-ecules show different conformations. In the first mol-ecule, the fused five- and six-membered ring system is almost perpendicular to the plane through the atoms forming the allyl group, as indicated by the dihedral angle of 85.1 (4)°. The dihedral angle with the methyl-benzene-sulfonamide group is 78.8 (1)°. On the other hand, in the second mol-ecule, the dihedral angles between the indazole plane and the allyl and methyl-benzene-sulfonamide groups are 80.3 (3) and 41.5 (1)°, respectively. In the crystal, mol-ecules are further linked by N-H⋯N and C-H⋯O hydrogen bonds, forming a three-dimensional network.

  15. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  16. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE PAGES

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying; ...

    2016-06-10

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  17. Ene reaction of singlet oxygen, triazolinedione, and nitrosoarene with chiral deuterium-labeled allylic alcohols: the interdependence of diastereoselectivity and regioselectivity discloses mechanistic insights into the hydroxy-group directivity.

    PubMed

    Adam, Waldemar; Bottke, Nils; Krebs, Oliver; Lykakis, Ioannis; Orfanopoulos, Michael; Stratakis, Manolis

    2002-12-04

    The ene reaction of singlet oxygen ((1)O(2)), triazolinedione (TAD), and nitrosoarene, specifically 4-nitronitrosobenzene (ArNO), with the tetrasubstituted 1,3-allylically strained, chiral allylic alcohol 3,4-dimethylpent-3-en-2-ol (2) leads to the threo-configured ene products in high diastereoselectivity, a consequence of the hydroxy-group directivity. Hydrogen bonding favors formation of the threo-configured encounter complex threo-EC in the early stage of ene reaction. For the analogous twix deuterium-labeled allylic alcohol Z-2-d(3), a hitherto unrecognized dichotomy between (1)O(2) and the ArNO and TAD enophiles is disclosed in the regioselectivity of the tetrasubstituted alcohol: Whereas for ArNO and TAD, hydrogen bonding with the allylic hydroxy group dictates the regioselectivity (twix selectivity), for (1)O(2), the cis effect dominates (twin/trix selectivity). From the interdependence between the twix/twin regioselectivity and the threo/erythro diastereoselectivity, it has been recognized that the enophile also attacks the allylic alcohol from the erythro pi face without assistance by hydrogen bonding with the allylic hydroxy functionality.

  18. Synthetic Studies on Tricyclic Diterpenoids: Direct Allylic Amination Reaction of Isopimaric Acid Derivatives†

    PubMed Central

    Timoshenko, Mariya A.; Kharitonov, Yurii V.; Shakirov, Makhmut M.; Bagryanskaya, Irina Yu.

    2015-01-01

    Abstract A selective synthesis of 7‐ or 14‐nitrogen containing tricyclic diterpenoids was completed according to a strategy in which the key step was the catalyzed direct allylic amination of methyl 14α‐hydroxy‐15,16‐dihydroisopimarate with a wide variety of nitrogenated nucleophiles. It was revealed that the selectivity of the reaction depends on the nature of nucleophile. The catalyzed reaction of the mentioned diterpenoid allylic alcohol with 3‐nitroaniline, 3‐(trifluoromethyl)aniline, and 4‐(trifluoromethyl)aniline yield the subsequent 7α‐, 7β‐ and 14αnitrogen‐containing diterpenoids. The reaction with 2‐nitroaniline, 4‐nitro‐2‐chloroaniline, 4‐methoxy‐2‐nitroaniline, phenylsulfamide, or tert‐butyl carbamate proceeds with the formation of 7α‐nitrogen‐substituted diterpenoids as the main products. PMID:27308214

  19. Efficient palladium-catalyzed asymmetric allylic alkylation of ketones and aldehydes.

    PubMed

    Zhao, Xiaohu; Liu, Delong; Xie, Fang; Liu, Yangang; Zhang, Wanbin

    2011-03-21

    Palladium-catalyzed asymmetric allylic alkylation of ketones, via enamines generated in situ as nucleophiles, were carried out smoothly with chiral metallocene-based P,N-ligands. Under the same conditions, however, reactions of aldehydes could hardly be observed. Subsequently, this obstacle was resolved by using chiral metallocene-based P,P-ligands. Both ketones and aldehydes afforded excellent enantioselectivities with up to 98% ee and 94% ee, respectively.

  20. Modulation of RBC volume distributions by oxidants (phenazine methosulfate and tert-butyl hydroperoxide): role of Gardos channel activation.

    PubMed

    Lisovskaya, Irina L; Shcherbachenko, Irina M; Volkova, Rimma I; Tikhonov, Vladimir P

    2008-06-01

    A study was made comparing the effects of two oxidants--phenazine methosulfate (50-1500 microM)+10 mM ascorbate and t-butyl hydroperoxide (1-3 mM)--on the volume-related parameters of normal human red blood cells. Incubation with either oxidative system for 20-30 min resulted in red blood cell density and osmotic resistance distribution shifts. Treatment with the phenazine methosulfate+ascorbate system in the presence of Ca(2+) led to cell shrinking, with the maximum effect being more than 20%. In contrast, under the same conditions, t-BHP caused cell swelling by up to 15%. Modification of the suspending medium (Ca(2+) removing, clotrimazole addition, or enrichment with K(+)) modulated the redistribution effects, suggesting that they were mediated to some extent by Gardos channel activation. These findings are important for understanding how oxidants modulate RBC cation channels.

  1. A direct conversion of benzylic and allylic alcohols to phosphonates

    PubMed Central

    Barney, Rocky J.; Richardson, Rebekah M.; Wiemer, David F.

    2011-01-01

    Benzyl phosphonate esters often serve as reagents in Horner-Wadsworth-Emmons reactions. In most cases, they can be prepared from benzylic alcohols via formation of the corresponding halide followed by an Arbuzov reaction. To identify a more direct synthesis of phosphonate esters, we have developed a one-flask procedure for conversion of benzylic and allylic alcohols to the corresponding phosphonates through treatment with triethyl phosphite and ZnI2. PMID:21405073

  2. 1-Allyl-3-chloro-5-nitro-1H-indazole.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Spinelli, Domenico; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C10H8ClN3O2, the indazole ring system makes a dihedral angle of 7.9 (3)° with the plane through the nitro group. The allyl group is rotated out of the plane of the indazole ring system [N-N-C-C torsion angle = 104.28 (19)°]. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds, forming zigzag chains propagating along the b-axis direction.

  3. Copper-free asymmetric allylic alkylation with a Grignard reagent: design of the ligand and mechanistic studies.

    PubMed

    Grassi, David; Dolka, Chrysanthi; Jackowski, Olivier; Alexakis, Alexandre

    2013-01-21

    The Cu-free asymmetric allylic alkylation, catalysed by NHC, with Grignard reagents is reported on allyl bromide derivatives with good results. The enantioselectivity was quite homogeneous (around 85% ee) on large and various substrates, regardless of the nature of the Grignard reagent. The formation of stereogenic quaternary centres was highly regioselective for both aliphatic and aromatic derivatives with good enantiomeric excess (up to 92% ee). The methodology developed was found to be complementary with the Cu-catalysed version. Several new NHCs were tested with improved efficiency. In addition, mechanistic studies, using NMR spectroscopy, led to the discovery of the catalytically active species. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Role of 6-shogaol in tert -butyl hydroperoxide-induced apoptosis of HepG2 cells.

    PubMed

    Kim, Sang Chan; Lee, Jong Rok; Park, Sook Jahr

    2014-01-01

    The aim of this study was to investigate the protective effects of 6-shogaol on tert-butyl hydroperoxide (tBHP)-induced oxidative stress leading to apoptosis in human hepatoma cell line HepG2. The cells were exposed to tBHP (100 μmol/l) after pretreatment with 6-shogaol (2.5 and 5 μmol/l), and then cell viability was measured. 6-Shogaol fully prevented HepG2 cell death caused by tBHP. Treatment of tBHP resulted in apoptotic cell death as assessed by TUNEL assay and the expression of apoptosis regulator proteins, Bcl-2 family, caspases and cytochrome c. Cells treated with 6-shogaol showed rapid reduction of apoptosis by restoring these markers of apoptotic cells. In addition, 6-shogaol significantly recovered disruption of mitochondrial membrane potential as a start sign of hepatic apoptosis induced by oxidative stress. In line with this observation, antioxidative 6-shogaol inhibited generation of reactive oxygen species and depletion of reduced glutathione in tBHP-stimulated HepG2 cells. Taken together, these results for the first time showed antioxidative and antiapoptotic activities of 6-shogaol in tBHP-treated hepatoma HepG2 cells, suggesting that 6-shogaol could be beneficial in hepatic disorders caused by oxidative stress. © 2014 S. Karger AG, Basel.

  5. 1-Allyl-3-chloro-5-nitro-1H-indazole

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Spinelli, Domenico; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C10H8ClN3O2, the indazole ring system makes a dihedral angle of 7.9 (3)° with the plane through the nitro group. The allyl group is rotated out of the plane of the indazole ring system [N—N—C—C torsion angle = 104.28 (19)°]. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains propagating along the b-axis direction. PMID:24427047

  6. Atmospheric degradation of 2-chloroethyl vinyl ether, allyl ether and allyl ethyl ether: Kinetics with OH radicals and UV photochemistry.

    PubMed

    Antiñolo, M; Ocaña, A J; Aranguren, J P; Lane, S I; Albaladejo, J; Jiménez, E

    2017-08-01

    Unsaturated ethers are oxygenated volatile organic compounds (OVOCs) emitted by anthropogenic sources. Potential removal processes in the troposphere are initiated by hydroxyl (OH) radicals and photochemistry. In this work, we report for the first time the rate coefficients of the gas-phase reaction with OH radicals (k OH ) of 2-chloroethyl vinyl ether (2ClEVE), allyl ether (AE), and allyl ethyl ether (AEE) as a function of temperature in the 263-358 K range, measured by the pulsed laser photolysis-laser induced fluorescence technique. No pressure dependence of k OH was observed in the 50-500 Torr range in He as bath gas, while a slightly negative T-dependence was observed. The temperature dependent expressions for the rate coefficients determined in this work are: The estimated atmospheric lifetimes (τ OH ) assuming k OH at 288 K were 3, 2, and 4 h for 2ClEVE, AE and AEE, respectively. The kinetic results are discussed in terms of the chemical structure of the unsaturated ethers by comparison with similar compounds. We also report ultraviolet (UV) and infrared (IR) absorption cross sections (σ λ and σ(ν˜), respectively). We estimate the photolysis rate coefficients in the solar UV actinic region to be less than 10 -7 s -1 , implying that these compounds are not removed from the atmosphere by this process. In addition, from σ(ν˜) and τ OH , the global warming potential of each unsaturated ether was calculated to be almost zero. A discussion on the atmospheric implications of the titled compounds is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Palladium-Catalyzed Asymmetric Allylic Alkylation of Electron-Deficient Pyrroles with Meso Electrophiles

    PubMed Central

    Osipov, Maksim; Dong, Guangbin

    2012-01-01

    Pyrroles can serve as competent nucleophiles with meso electrophiles in the Pd-catalyzed asymmetric allylic alkylation. The products from this transformation were obtained as a single regio- and diastereomer in high yield and enantiopurity. A nitropyrrole-containing nucleoside analogue was synthesized in 7 steps to demonstrate the synthetic utility of this transformation. PMID:22506671

  8. Steric and electronic ligand perturbations in catalysis: asymmetric allylic substitution reactions using C2-symmetrical phosphorus-chiral (bi)ferrocenyl donors.

    PubMed

    Nettekoven, U; Widhalm, M; Kalchhauser, H; Kamer, P C; van Leeuwen, P W; Lutz, M; Spek, A L

    2001-02-09

    Three series of P-chiral diphosphines based on ferrocene (1a-f, 2a-c) and biferrocenyl skeletons (3a-c), including novel ligands 1f and 3c, were employed in palladium-catalyzed allylic substitution reactions. Steric effects imposed by the phosphine residues were studied using C2-symmetrical donors 1 (1 = 1,1'-bis(arylphenylphosphino)ferrocene with aryl groups a = 1-naphthyl, b = 2-naphthyl, c = 2-anisyl, d = 2-biphenylyl, e = 9-phenanthryl, and f = ferrocenyl), whereas para-methoxy- and/or para-trifluoromethyl substitution of the phenyl moieties in 1a enabled investigation of ligand electronic effects applying ferrocenyl diphosphines 2a-c. Ligands 3 (3 = 2,2'-bis- (arylphenylphosphino)-1,1'-biferrocenyls with aryl substituents a,c = 1-naphthyl (diastereomers) and b = 2-biphenylyl) allowed for comparison of backbone structure effects (bite angle variation) in catalysis. Linear and cyclic allylic acetates served as substrates in typical test reactions; upon attack of soft carbon and nitrogen nucleophiles on (E)-1,3-diphenylprop-2-ene-1-yl acetate the respective malonate, amine, or imide products were obtained in enantioselectivities of up to 99% ee. A crystal structure analysis of a palladium 1,3-diphenyl-eta 3-allyl complex incorporating ligand (S,S)-1a revealed a marked distortion of the allyl fragment, herewith defining the regioselectivity of nucleophile addition.

  9. Pt(ii) coordination complexes as visible light photocatalysts for the oxidation of sulfides using batch and flow processes.

    PubMed

    Casado-Sánchez, Antonio; Gómez-Ballesteros, Rocío; Tato, Francisco; Soriano, Francisco J; Pascual-Coca, Gustavo; Cabrera, Silvia; Alemán, José

    2016-07-12

    A new catalytic system for the photooxidation of sulfides based on Pt(ii) complexes is presented. The catalyst is capable of oxidizing a large number of sulfides containing aryl, alkyl, allyl, benzyl, as well as more complex structures such as heterocycles and methionine amino acid, with complete chemoselectivity. In addition, the first sulfur oxidation in a continuous flow process has been developed.

  10. Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate

    USDA-ARS?s Scientific Manuscript database

    This research investigated the technical feasibility of metal-organic frameworks (MOFs) as novel delivery systems for encapsulation and controlled release of volatile allyl isothiocyanate (AITC) molecules. We hypothesized that water vapor molecules could act as an external stimulus to trigger the re...

  11. Effect of Fresh Garlic on Lipid Oxidation and Microbiological Changes of Pork Patties during Refrigerated Storage

    PubMed Central

    2014-01-01

    The effects of two levels (1.4 vs 2.8%) of fresh garlic on lipid oxidation and microbial growth in pork patties were evaluated. Hunter color (L, a, b), pH, thiobarbituric acid reactive substances (TBARS), oxidative volatile compounds, total bacteria and Enterobacteriaceae in the pork patties with or without fresh garlic were measured during storage at 4℃. Addition of fresh garlic decreased redness (a), while increased pH and yellowness (b) values of the fresh pork patties were observed, regardless of the levels added. The TBARS values of the pork patties were increased with the addition of fresh garlic (p<0.05). Similar results were observed in oxidative volatile compounds. A total of 13 volatile compounds were detected in the patties (5 sulfur-containing compounds, including allyl mercaptan, allyl methyl sulfide, diallyl sulfide, methyl-(E)-propenyl-disulfide, and diallyl disulfide, and the 8 other oxidative compounds, including 1-pentanol, hexanal, 1-hexanol, heptanal, (E)-2-heptenal, 1-octen-3-ol, (E)-2-octenal and nonanal). Fresh garlic accelerated development of oxidative products in the pork patties, especially hexanal and the total oxidative volatile compounds. However, the addition of 1.4 and 2.8% of fresh garlic inhibited the growth of total bacteria and Enterobacteriaceae, indicating low total bacterial counts and Enterobacteriaceae than the controls. PMID:26761498

  12. Synthetic mucin fragments: synthesis of O-sulfo and O-methyl derivatives of allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-alpha-D- galactopyranoside as potential compounds for sulfotransferases.

    PubMed

    Jain, R K; Piskorz, C F; Matta, K L

    1995-10-02

    Allyl 2-acetamido-4,6-O-(4-methoxybenzylidene)-2-deoxy-alpha-D-galact opy ranoside (1) was condensed with either 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide (2) or 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl bromide (14) in the presence of mercuric cyanide. Selective substitution with methyl, sulfo or both at desired positions, followed by the removal of protecting groups, afforded allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-6-O-methyl-alpha -D- galactopyranoside (5), allyl O-(6-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy-6- O-methyl-alpha-D-galactopyranoside (10), allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-6-O-sulfo-alpha- D- galactopyranoside sodium salt (13), allyl O-(6-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy- alpha-D-galactopyranoside (17) and allyl O-(3-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy- alpha-D-galactopyranoside (22). The structures of compounds 5, 10, 13, 17 and 22 were established by 13C NMR and FAB mass spectroscopy.

  13. Mechanism of phytoestrogen puerarin-mediated cytoprotection following oxidative injury: Estrogen receptor-dependent up-regulation of PI3K/Akt and HO-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yong Pil; Jeong, Hye Gwang

    2008-12-15

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. The phytoestrogen puerarin, the main isoflavone glycoside found in the root of Pueraria lobata, has been used for various medicinal purposes in traditional Chinese medicines for thousands of years. Recent studies have indicated that the estrogen receptor (ER), through interaction with p85, regulates phosphoinositide 3-kinase (PI3K) activity, revealing a physiologic, non-nuclear function of ER that may be relevant in cytoprotection. In this study, we demonstrate that the phytoestrogen puerarin inhibits tert-butyl hydroperoxide (t-BHP)-induced oxidative injury via an ER-dependent G{beta}1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of Hepa1c1c7 and HepG2 cellsmore » with puerarin significantly reduced t-BHP-induced caspase-3 activation and subsequent cell death. Also, puerarin up-regulated HO-1 expression and this expression conferred cytoprotection against oxidative injury induced by t-BHP. Moreover, puerarin induced Nrf2 nuclear translocation, which is upstream of puerarin-induced HO-1 expression, and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Puerarin-induced up-regulation of HO-1 and cytoprotection against t-BHP were abolished by silencing Nrf2 expression with specific siRNA. Also, puerarin-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that puerarin augments cellular antioxidant defense capacity through ER-dependent HO-1 induction via the G{beta}1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress.« less

  14. Iodide-catalyzed synthesis of N-nitrosamines via C-N cleavage of nitromethane.

    PubMed

    Zhang, Jie; Jiang, Jiewen; Li, Yuling; Wan, Xiaobing

    2013-11-15

    An iodide-catalyzed process to synthesize N-nitrosamines has been developed using TBHP as the oxidant. The mild catalytic system succeeded in cleaving the carbon-nitrogen bond in nitromethane. This methodology uses commercially available, inexpensive catalysts and oxidants and has a wide substrate scope and operational simplicity.

  15. Oxidative Carbocation Formation in Macrocycles: Synthesis of the Neopeltolide Macrocycle**

    PubMed Central

    Tu, Wangyang

    2009-01-01

    Processes for the functionalization of carbon–hydrogen bonds are the focus of significant attention in organic synthesis[1] in response to the need to streamline molecular assembly. As a continuation of our efforts to generate carbocations through single-electron oxidation reactions,[2] we recently reported[3] DDQ-mediated cyclization reactions of benzylic and allylic ethers (Scheme 1; DDQ =2,3-dichloro-4,5-dicyanoquinone). PMID:19455526

  16. Exploring the Steric and Electronic Factors Governing the Regio- and Enantioselectivity of the Pd-Catalyzed Decarboxylative Generation and Allylation of 2-Azaallyl Anions.

    PubMed

    Wang, Shuaifei; Qian, Xiaoyan; Chang, Yuanyu; Sun, Jiayue; Xing, Xiujing; Ballard, Wendy F; Chruma, Jason J

    2018-04-06

    The impact of the steric and electronic factors in both the para-substituted benzaldimine and 2,2-diarylglycine components on the regioselectivity and enantioselectivity of the palladium-catalyzed decarboxylative allylation of allyl 2,2-diarylglycinate aryl imines was explored. These studies revealed that using 2,2-di(2-methoxyphenyl)glycine as the amino acid linchpin allowed for the exclusive synthesis of the desired homoallylic benzophenone imine regioisomers, independent of the nature of the imine moiety, in typically high yields. The resulting enantiomeric ratios, however, are slightly decreased in comparison to the transformations involving the corresponding allyl 2,2-diphenylglycinate imines, but this is more than balanced out by the increases in yield and regioselectivity. Overall, these studies suggest a general strategy for the highly regioselective functionalization of 2-azaallyl anions.

  17. N-(1-Allyl-1H-indazol-5-yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Abderrafia, Hafid; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    The asymmetric unit of the title compound, C17H17N3O2S, contains two independent mol­ecules linked by an N—H⋯O hydrogen bond. The mol­ecules show different conformations. In the first mol­ecule, the fused five- and six-membered ring system is almost perpendicular to the plane through the atoms forming the allyl group, as indicated by the dihedral angle of 85.1 (4)°. The dihedral angle with the methyl­benzene­sulfonamide group is 78.8 (1)°. On the other hand, in the second mol­ecule, the dihedral angles between the indazole plane and the allyl and methyl­benzene­sulfonamide groups are 80.3 (3) and 41.5 (1)°, respectively. In the crystal, mol­ecules are further linked by N—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:24454264

  18. Origin of the Allyl Group in FK506 Biosynthesis*

    PubMed Central

    Goranovič, Dušan; Kosec, Gregor; Mrak, Peter; Fujs, Štefan; Horvat, Jaka; Kuščer, Enej; Kopitar, Gregor; Petković, Hrvoje

    2010-01-01

    FK506 (tacrolimus) is a secondary metabolite with a potent immunosuppressive activity, currently registered for use as immunosuppressant after organ transplantation. FK506 and FK520 are biogenetically related natural products that are synthesized by combined polyketide synthase/nonribosomal peptide synthetase systems. The entire gene cluster for biosynthesis of FK520 from Streptomyces hygroscopicus var. ascomyceticus has been cloned and sequenced. On the other hand, the FK506 gene cluster from Streptomyces sp. MA6548 (ATCC55098) was sequenced only partially, and it was reasonable to expect that additional genes would be required for the provision of substrate supply. Here we report the identification of a previously unknown region of the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 containing genes encoding the provision of unusual building blocks for FK506 biosynthesis as well as a regulatory gene. Among others, we identified a group of genes encoding biosynthesis of the extender unit that forms the allyl group at carbon 21 of FK506. Interestingly, we have identified a small independent diketide synthase system involved in the biosynthesis of the allyl group. Inactivation of one of these genes, encoding an unusual ketosynthase domain, resulted in an FK506 nonproducing strain, and the production was restored when a synthetic analog of the allylmalonyl-CoA extender unit was added to the cultivation medium. Based on our results, we propose a biosynthetic pathway for the provision of an unusual five-carbon extender unit, which is carried out by a novel diketide synthase complex. PMID:20194504

  19. Photosensitized oxidation of unsaturated polymers

    NASA Technical Reports Server (NTRS)

    Golub, M. A.

    1979-01-01

    The photosensitized oxidation or singlet oxygenation of unsaturated hydrocarbon polymers and of their model compounds was reviewed. Emphasis was on cis and trans forms of 1,4-polyisoprene, 1,4-polybutadiene and 1,2-poly(1,4-hexadiene), and on 1,4-poly(2,3-dimethyl-1,3-butadiene). The microstructural changes which occur in these polymers on reaction with O2-1 in solution were investigated by infrared H-1 and C-13 NMR spectroscopy. The polymers were shown to yield allylic hydroperoxides with shifted double bonds according to the ene mechanism established for simple olefins. The photosensitized oxidation of the above unsaturated polymer exhibited zero order kinetics, the relative rates paralleling the reactivities of the corresponding simple olefins towards O2-1.

  20. Pd-catalyzed allylic alkylation of dienyl carbonates with nitromethane with high C-5 regioselectivity.

    PubMed

    Yang, Xiao-Fei; Li, Xiao-Hui; Ding, Chang-Hua; Xu, Chao-Fan; Dai, Li-Xin; Hou, Xue-Long

    2014-01-14

    A highly regioselective palladium-catalyzed allylic alkylation of dienyl esters with nitromethane has been developed, providing selective access to the C-5 attacked products. The structures of the ligands as well as the steric effect of the substrates are important factors in determining the regiochemical outcome of the reaction.

  1. An iron/amine-catalyzed cascade process for the enantioselective functionalization of allylic alcohols.

    PubMed

    Quintard, Adrien; Constantieux, Thierry; Rodriguez, Jean

    2013-12-02

    Three is a lucky number: An enantioselective transformation of allylic alcohols into β-chiral saturated alcohols has been developed by combining two distinct metal- and organocatalyzed catalytic cycles. This waste-free triple cascade process merges an iron-catalyzed borrowing-hydrogen step with an aminocatalyzed nucleophilic addition reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dynamic Kinetic Resolution of Allylic Sulfoxides by Rh-Catalyzed Hydrogenation: A Combined Theoretical and Experimental Mechanistic Study

    PubMed Central

    Dornan, Peter K.; Kou, Kevin G. M.; Houk, K. N.; Dong, Vy M.

    2014-01-01

    A dynamic kinetic resolution (DKR) of allylic sulfoxides has been demonstrated by combining the Mislow [2,3]-sigmatropic rearrangement with catalytic asymmetric hydrogenation. The efficiency of our DKR was optimized by using low pressures of hydrogen gas to decrease the rate of hydrogenation relative to the rate of sigmatropic rearrangement. Kinetic studies reveal that the rhodium complex acts as a dual-role catalyst and accelerates the substrate racemization while catalyzing olefin hydrogenation. Scrambling experiments and theoretical modeling support a novel mode of sulfoxide racemization which occurs via a rhodium π-allyl intermediate in polar solvents. In non-polar solvents, however, the substrate racemization is primarily uncatalyzed. Computational studies suggest that the sulfoxide binds to rhodium via O–coordination throughout the catalytic cycle for hydrogenation. PMID:24350903

  3. Nucleophilic ortho-Allylation of Pyrroles and Pyrazoles: An Accelerated Pummerer/Thio-Claisen Rearrangement Sequence

    PubMed Central

    2013-01-01

    Arylsulfinyl groups direct the metal-free, regiospecific, nucleophilic ortho-allylation of pyrroles and pyrazoles. Mechanistic studies support the intermediacy of allylsulfonium salts that undergo facile thio-Claisen rearrangement onto the heterocyclic ring, giving products of coupling. The strategy has been adapted to allow regiospecific propargylation of the heterocyclic substrates. PMID:23855635

  4. Mild rhodium(iii)-catalyzed intramolecular annulation of benzamides with allylic alcohols to access azepinone derivatives.

    PubMed

    Peneau, Augustin; Tricart, Quentin; Guillou, Catherine; Chabaud, Laurent

    2018-05-23

    Azepinone derivatives are important frameworks of several natural products and bioactive compounds. They are synthetized using a Rh(iii)-catalyzed intramolecular annulation of benzamide-tethered allylic alcohols. The reaction requires mild conditions at room temperature and affords diversely substituted azepinones bearing a quaternary carbon.

  5. Reliability of ^1^H NMR analysis for assessment of lipid oxidation at frying temperatures

    USDA-ARS?s Scientific Manuscript database

    The reliability of a method using ^1^H NMR analysis for assessment of oil oxidation at a frying temperature was examined. During heating and frying at 180 °C, changes of soybean oil signals in the ^1^H NMR spectrum including olefinic (5.16-5.30 ppm), bisallylic (2.70-2.88 ppm), and allylic (1.94-2.1...

  6. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature.

    PubMed

    Kim, Jinho; Stahl, Shannon S

    2013-07-05

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4'- t Bu 2 bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N -oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction.

  7. A C–H oxidation approach for streamlining synthesis of chiral polyoxygenated motifs

    PubMed Central

    Covell, Dustin J.; White, M. Christina

    2013-01-01

    Chiral oxygenated molecules are pervasive in natural products and medicinal agents; however, their chemical syntheses often necessitate numerous, wasteful steps involving functional group and oxidation state manipulations. Herein a strategy for synthesizing a readily diversifiable class of chiral building blocks, allylic alcohols, through sequential asymmetric C—H activation/resolution is evaluated against the state-of-the-art. The C—H oxidation routes’ capacity to strategically introduce oxygen into a sequence and thereby minimize non-productive manipulations is demonstrated to effect significant decreases in overall step-count and increases in yield and synthetic flexibility. PMID:25013239

  8. Evaluation of the Effects of S-Allyl-L-cysteine, S-Methyl-L-cysteine, trans-S-1-Propenyl-L-cysteine, and Their N-Acetylated and S-Oxidized Metabolites on Human CYP Activities.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-01-01

    Three major organosulfur compounds of aged garlic extract, S-allyl-L-cysteine (SAC), S-methyl-L-cysteine (SMC), and trans-S-1-propenyl-L-cysteine (S1PC), were examined for their effects on the activities of five major isoforms of human CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, and 3A4. The metabolite formation from probe substrates for the CYP isoforms was examined in human liver microsomes in the presence of organosulfur compounds at 0.01-1 mM by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Allicin, a major component of garlic, inhibited CYP1A2 and CYP3A4 activity by 21-45% at 0.03 mM. In contrast, a CYP2C9-catalyzed reaction was enhanced by up to 1.9 times in the presence of allicin at 0.003-0.3 mM. SAC, SMC, and S1PC had no effect on the activities of the five isoforms, except that S1PC inhibited CYP3A4-catalyzed midazolam 1'-hydroxylation by 31% at 1 mM. The N-acetylated metabolites of the three compounds inhibited the activities of several isoforms to a varying degree at 1 mM. N-Acetyl-S-allyl-L-cysteine and N-acetyl-S-methyl-L-cysteine inhibited the reactions catalyzed by CYP2D6 and CYP1A2, by 19 and 26%, respectively, whereas trans-N-acetyl-S-1-propenyl-L-cysteine showed weak to moderate inhibition (19-49%) of CYP1A2, 2C19, 2D6, and 3A4 activities. On the other hand, both the N-acetylated and S-oxidized metabolites of SAC, SMC, and S1PC had little effect on the reactions catalyzed by the five isoforms. These results indicated that SAC, SMC, and S1PC have little potential to cause drug-drug interaction due to CYP inhibition or activation in vivo, as judged by their minimal effects (IC 50 >1 mM) on the activities of five major isoforms of human CYP in vitro.

  9. Crystal structure of N-(1-allyl-3-chloro-1H-indazol-5-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Chigr, Mohamed; Saadi, Mohamed; El Ammari, Lahcen

    2014-09-01

    The 3-chloro-1H-indazole system in the title mol-ecule, C17H16ClN3O2S, is almost planar, with the largest deviation from the mean plane being 0.029 (2) Å for one of the N atoms. This system is nearly perpendicular to the allyl chain, as indicated by the C-C-N-N torsion angle of -90.1 (6)° between them. The allyl group is split into two fragments, the major component has a site occupancy of 0.579 (7). The indazole system makes a dihedral angle of 47.53 (10)° with the plane through the benzene ring. In the crystal, mol-ecules are connected by N-H⋯O and C-H⋯O hydrogen bonds, forming a three-dimensional network.

  10. Allyl Fluorescein Ethers as Promising Fluorescent Probes for Carbon Monoxide Imaging in Living Cells.

    PubMed

    Feng, Shumin; Liu, Dandan; Feng, Weiyong; Feng, Guoqiang

    2017-03-21

    Recently, the fluorescent detection of carbon monoxide (CO) in living cells has attracted great attention. However, due to the lack of effective ways to construct fluorescent CO probes, fluorescent detection of CO in living cells is still in its infancy. In this paper, we report for the first time the use of allyl ether as a reaction site for construction of fluorescent CO probes. By this way, two readily available allyl fluorescein ethers were prepared, which were found to be highly selective and sensitive probes for CO in the presence of PdCl 2 . These probes have the merits of good stability, good water-solubility, and rapid and distinct colorimetric and remarkable fluorescent turn-on signal changes. Moreover, a very low dose of these two probes can be used to detect and track CO in living cells, indicating that these two probes could be very promising biological tools for CO detection in living systems. Overall, this work provided not only two new promising fluorescent CO probes but also a new way to devise fluorescent CO probes.

  11. Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids.

    PubMed

    Castro, María Julia; Richmond, Victoria; Faraoni, María Belén; Murray, Ana Paula

    2018-05-17

    A set of triterpenoids with different grades of oxidation in the lupane skeleton were prepared and evaluated as cholinesterase inhibitors. Allylic oxidation with selenium oxide and Jones's oxidation were employed to obtain mono-, di- and tri-oxolupanes, starting from calenduladiol (1) and lupeol (3). All the derivatives showed a selective inhibition of butyrylcholinesterase over acetylcholinesterase (BChE vs. AChE). A kinetic study proved that compounds 2 and 9, the more potent inhibitors of the series, act as competitive inhibitors. Molecular modeling was used to understand their interaction with BChE, the role of carbonyl at C-16 and the selectivity towards this enzyme over AChE. These results indicate that oxidation at C-16 of the lupane skeleton is a key transformation in order to improve the cholinesterase inhibition of these compounds. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature

    PubMed Central

    Kim, Jinho; Stahl, Shannon S.

    2013-01-01

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4′-tBu2bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N-oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction. PMID:24015373

  13. The allylation reactions of aromatic aldehydes and ketones with tin dichloride in water.

    PubMed

    Bian, Yan-Jiang; Xue, Wei-Li; Yu, Xu-Guang

    2010-01-01

    The allylation reactions of aromatic aldehydes and ketones were carried out in 31-86% yield using SnCl(2)-H(2)O system under ultrasound irradiation at r.t. for 5h. The reactions in the same system gave homoallyl alcohols in 21-84% yield with stirring at r.t. for 24h. Compared with traditional stirring methods, ultrasonic irradiation is more convenient and efficient.

  14. Distinctive activation and functionalization of hydrocarbon C-H bonds initiated by Cp*W(NO)(η(3)-allyl)(CH2CMe3) complexes.

    PubMed

    Baillie, Rhett A; Legzdins, Peter

    2014-02-18

    Converting hydrocarbon feedstocks into value-added chemicals continues to offer challenges to contemporary preparative chemists. A particularly important remaining challenge is the selective activation and functionalization of the C(sp(3))-H linkages of alkanes, which are relatively abundant but chemically inert. This Account outlines the discovery and development of C-H bond functionalization mediated by a family of tungsten organometallic nitrosyl complexes. Specifically, it describes how gentle thermolyses of any of four 18-electron Cp*W(NO)(η(3)-allyl)(CH2CMe3) complexes (Cp* = η(5)-C5Me5; η(3)-allyl = η(3)-H2CCHCHMe, η(3)-H2CCHCHSiMe3, η(3)-H2CCHCHPh, or η(3)-H2CCHCMe2) results in the loss of neopentane and the transient formation of a 16-electron intermediate species, Cp*W(NO)(η(2)-allene) and/or Cp*W(NO)(η(2)-diene). We have never detected any of these species spectroscopically, but we infer their existence based on trapping experiments with trimethylphosphine (PMe3) and labeling experiments using deuterated hydrocarbon substrates. This Account first summarizes the syntheses and properties of the four chiral Cp*W(NO)(η(3)-allyl)(CH2CMe3) complexes. It then outlines the various types of C-H activations we have effected with each of the 16-electron (η(2)-allene) or (η(2)-diene) intermediate nitrosyl complexes, and presents the results of mechanistic investigations of some of these processes. It next describes the characteristic chemical properties of the Cp*W(NO)(η(3)-allyl)(η(1)-hydrocarbyl) compounds formed by the single activations of C(sp(3))-H bonds, with particular emphasis on those reactions that result in the selective functionalization of the original hydrocarbon substrate. We are continuing development of methods to release the acyl ligands from the metal centers while keeping the Cp*W(NO)(η(3)-allyl) fragments intact, with the ultimate aim of achieving these distinctive conversions of alkanes into functionalized organics in a

  15. Inactivation of Salmonella in tomato stem scars by organic acid wash and chitosan-allyl isothiocyanate coating

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate inactivation of inoculated Salmonella enterica on tomato stem scars exploiting integrated treatment of organic acid wash (AW) followed by chitosan-allyl isothiocyanate (CT-AIT) coating. The treatment effect on microbial loads and fruit quality during 21 d...

  16. Enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase.

    PubMed

    Chen, Yi-Yu; Lo, Huei-Fen; Wang, Tzu-Fan; Lin, Min-Guan; Lin, Long-Liu; Chi, Meng-Chun

    2015-01-01

    In the practical application of Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT), we describe a straightforward enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine (GSAC), a naturally occurring organosulfur compound found in garlic, based on a transpeptidation reaction involving glutamine as the γ-glutamyl donor and S-allyl-L-cysteine as the acceptor. With the help of thin layer chromatography technique and computer-assisted image analysis, we performed the quantitative determination of GSAC. The optimum conditions for a biocatalyzed synthesis of GSAC were 200 mM glutamine, 200 mM S-allyl-L-cysteine, 50 mM Tris-HCl buffer (pH 9.0), and BlGGT at a final concentration of 1.0 U/mL. After a 15-h incubation of the reaction mixture at 60 °C, the GSAC yield for the free and immobilized enzymes was 19.3% and 18.3%, respectively. The enzymatic synthesis of GSAC was repeated under optimal conditions at 1-mmol preparative level. The reaction products together with the commercially available GSAC were further subjected to an ESI-MS/MS analysis. A significant signal with m/z of 291.1 and the protonated fragments at m/z of 73.0, 130.1, 145.0, and 162.1 were observed in the positive ESI-MS/MS spectrum, which is consistent with those of the standard compound. These results confirm the successful synthesis of GSAC from glutamine and S-allyl-L-cysteine by BlGGT. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Biological interaction of newly synthesized astaxanthin-s-allyl cysteine biconjugate with Saccharomyces cerevisiae and mammalian α-glucosidase: In vitro kinetics and in silico docking analysis.

    PubMed

    Penislusshiyan, Sakayanathan; Chitra, Loganathan; Ancy, Iruthayaraj; Premkumar, Periyasamy; Kumaradhas, Poomani; Viswanathamurthi, Periasamy; Palvannan, Thayumanavan

    2018-06-06

    In humans, alpha-glucosidase activity is present in sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM). α-glucosidase is involved in the hydrolyses of disaccharide into monosaccharides and results in hyperglycemia. Subsequently chronic hyperglycemia induces oxidative stress and ultimately leads to the secondary complications of diabetes. Hence, identifying compounds with dual beneficial activity such as efficient antioxidant and α-glucosidase inhibition property has attracted the attention in recent years. Keeping these views, in the present study astaxanthin (AST; a natural antioxidant present in marine microalgae) was biconjugated with allyl sulfur amino acid such as s-allyl cysteine (SAC). The synthesized AST-SAC (with molecular weight of 883.28) was characterized using UV-visible spectrophotometer, ESI-MS, and NMR analysis. AST-SAC showed potent antioxidant property in vitro. AST-SAC inhibited Saccharomyces cerevisiae α-glucosidase (IC 50  = 3.98 μM; Ki = 1 μM) and mammalian α-glucosidase [rat intestinal maltase (IC 50  = 6.4 μM; Ki = 1.3 μM) and sucrase (IC 50  = 1.6 μM; Ki = 0.18 μM)] enzyme activity in a dose-dependent manner. Kinetic analysis revealed that AST-SAC inhibited all the α-glucosidases in a competitive mode. In silico analysis determined the interaction of AST-SAC with the amino acids present in the active site of S. cerevisiae and human (MGAM and SI) α-glucosidases. Copyright © 2017. Published by Elsevier B.V.

  18. Preparation of pyrrolizinone derivatives via sequential transformations of cyclic allyl imides: synthesis of quinolactacide and marinamide.

    PubMed

    Simic, Milena; Tasic, Gordana; Jovanovic, Predrag; Petkovic, Milos; Savic, Vladimir

    2018-03-28

    A facile synthetic route has been developed for the preparation of pyrrolizinone derivatives employing N-allyl imides as starting materials. The nucleophilic addition of a vinyl Grignard reagent/RCM/elimination sequence afforded pyrrolizinones in good yields and has been applied for the preparation of naturally occurring quinolactacide and marinamide.

  19. Synchrotron Photoionization Mass Spectrometry Measurements of Kinetics and Product Formation in the Allyl Radical (H2CCHCH2)Self Reaction

    NASA Technical Reports Server (NTRS)

    Selby, Talitha M.; Melini, giovanni; Goulay, Fabien; Leone, Stephen R.; Fahr, Askar; Taatjes, Craig A.; Osborn, David L.

    2008-01-01

    Product channels for the self-reaction of the resonance-stabilized allyl radical, C3H5 + C3H5, have been studied with isomeric specificity at temperatures from 300-600 K and pressures from 1-6 Torr using time-resolved multiplexed photoionization mass spectrometry. Under these conditions 1,5-hexadiene was the only C6H10 product isomer detected. The lack of isomerization of the C6H10 product is in marked contrast to the C6H6 product in the related C3H3 + C3H3 reaction, and is due to the more saturated electronic structure of the C6H10 system. The disproportionation product channel, yielding allene + propene, was also detected, with an upper limit on the branching fraction relative to recombination of 0.03. Analysis of the allyl radical decay at 298 K yielded a total rate coefficient of (2.7 +/- 0.8) x 10(exp -11) cu cm/molecule/s, in good agreement with pre.vious experimental measurements using ultraviolet kinetic absorption spectroscopy and a recent theoretical determination using variable reaction coordinate transition state theory. This result provides independent indirect support for the literature value of the allyl radical ultraviolet absorption cross-section near 223 nm.

  20. A Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols

    PubMed Central

    Hoover, Jessica M.; Stahl, Shannon S.

    2011-01-01

    Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O2 as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)CuI/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups. PMID:21861488

  1. Cu-catalyzed C(sp³)-H bond activation reaction for direct preparation of cycloallyl esters from cycloalkanes and aromatic aldehydes.

    PubMed

    Zhao, Jincan; Fang, Hong; Han, Jianlin; Pan, Yi

    2014-05-02

    Cu-catalyzed dehydrogenation-olefination and esterification of C(sp(3))-H bonds of cycloalkanes with TBHP as an oxidant has been developed. The reaction involves four C-H bond activations and gives cycloallyl ester products directly from cycloalkanes and aromatic aldehydes.

  2. Regioselective synthesis of novel 3-allyl-2-(substituted imino)-4-phenyl-3H-thiazole and 2,2‧-(1,3-phenylene)bis(3-substituted-2-imino-4-phenyl-3H-thiazole) derivatives as antibacterial agents

    NASA Astrophysics Data System (ADS)

    Abbasi Shiran, Jafar; Yahyazadeh, Asieh; Mamaghani, Manouchehr; Rassa, Mehdi

    2013-05-01

    Several novel 3-allyl-2-(substituted imino)-4-phenyl-3H-thiazole derivatives were synthesized by the reaction of allyl-thioureas and 2-bromoacetophenone. We also report the synthesis of bis-allyl-3H thiazoles using the reaction of various isothiocyanates and 1,3-phenylenediamine. The structures of all compounds were characterized by spectral and elemental analysis. Most of the synthesized compounds exhibited efficient antibacterial activities against Salmonella enterica, Micrococcus luteus, Bacillus subtilis and Pseudomonas aeruginosa.

  3. Efficient peptide ligation between allyl-protected Asp and Cys followed by palladium-mediated deprotection.

    PubMed

    Kamo, Naoki; Hayashi, Gosuke; Okamoto, Akimitsu

    2018-04-24

    An efficient method for peptide ligation between C-terminal Asp(OAllyl) and N-terminal Cys has been developed. Peptide ligation and removal of the allyl group at the Asp carboxylate side chain proceeded in one pot by adding a small amount of Pd/TPPTS complex. Based on this efficient synthetic method, PEP-19 (61 amino acids), which is highly expressed in Purkinje cells, was synthesized.

  4. Neuroprotective and Anti-Inflammatory Activities of Allyl Isothiocyanate through Attenuation of JNK/NF-κB/TNF-α Signaling.

    PubMed

    Subedi, Lalita; Venkatesan, Ramu; Kim, Sun Yeou

    2017-07-03

    Allyl isothiocyanate (AITC), present in Wasabia japonica (wasabi), is an aliphatic isothiocyanate derived from the precursor sinigrin, which is a glucosinolate present in vegetables of the Brassica family. Traditionally, it has been used to treat rheumatic arthralgia, blood circulation, and pain. This study focuses on its anti-apoptotic activity through the regulation of lipopolysaccharide (LPS)-induced neuroinflammation. Furthermore, we assessed its neuroprotective efficacy, which it achieves through the upregulation of nerve growth factor (NGF) production. Pretreatment with AITC significantly inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) production in activated microglia, and increased the nerve growth factor (NGF) and neurite outgrowth in neuroblastoma cells. AITC inhibited the nuclear factor (NF-κB-mediated transcription by modulating mitogen activated protein kinase (MAPK) signaling, particularly downregulating c-Jun N-terminal kinase (JNK) phosphorylation, which was followed by a reduction in the TNF-α expression in activated microglia. This promising effect of AITC in controlling JNK/NF-κB/TNF-α cross-linking maintains the Bcl-2 gene family and protects neuroblastoma cells from activated microglia-induced toxicity. These findings provide novel insights into the anti-neuroinflammatory effects of AITC on microglial cells, which may have clinical significance in neurodegeneration.

  5. Neuroprotective and Anti-Inflammatory Activities of Allyl Isothiocyanate through Attenuation of JNK/NF-κB/TNF-α Signaling

    PubMed Central

    Subedi, Lalita

    2017-01-01

    Allyl isothiocyanate (AITC), present in Wasabia japonica (wasabi), is an aliphatic isothiocyanate derived from the precursor sinigrin, which is a glucosinolate present in vegetables of the Brassica family. Traditionally, it has been used to treat rheumatic arthralgia, blood circulation, and pain. This study focuses on its anti-apoptotic activity through the regulation of lipopolysaccharide (LPS)-induced neuroinflammation. Furthermore, we assessed its neuroprotective efficacy, which it achieves through the upregulation of nerve growth factor (NGF) production. Pretreatment with AITC significantly inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) production in activated microglia, and increased the nerve growth factor (NGF) and neurite outgrowth in neuroblastoma cells. AITC inhibited the nuclear factor (NF-κB-mediated transcription by modulating mitogen activated protein kinase (MAPK) signaling, particularly downregulating c-Jun N-terminal kinase (JNK) phosphorylation, which was followed by a reduction in the TNF-α expression in activated microglia. This promising effect of AITC in controlling JNK/NF-κB/TNF-α cross-linking maintains the Bcl-2 gene family and protects neuroblastoma cells from activated microglia-induced toxicity. These findings provide novel insights into the anti-neuroinflammatory effects of AITC on microglial cells, which may have clinical significance in neurodegeneration. PMID:28671636

  6. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: preventative effect of hydroxytyrosol acetate.

    PubMed

    Wang, X; Li, H; Zheng, A; Yang, L; Liu, J; Chen, C; Tang, Y; Zou, X; Li, Y; Long, J; Liu, J; Zhang, Y; Feng, Z

    2014-11-13

    Mitochondrial dysfunction contributes to the development of muscle disorders, including muscle wasting, muscle atrophy and degeneration. Despite the knowledge that oxidative stress closely interacts with mitochondrial dysfunction, the detailed mechanisms remain obscure. In this study, tert-butylhydroperoxide (t-BHP) was used to induce oxidative stress on differentiated C2C12 myotubes. t-BHP induced significant mitochondrial dysfunction in a time-dependent manner, accompanied by decreased myosin heavy chain (MyHC) expression at both the mRNA and protein levels. Consistently, endogenous reactive oxygen species (ROS) overproduction triggered by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), a mitochondrial oxidative phosphorylation inhibitor, was accompanied by decreased membrane potential and decreased MyHC protein content. However, the free radical scavenger N-acetyl-L-cysteine (NAC) efficiently reduced the ROS level and restored MyHC content, suggesting a close association between ROS and MyHC expression. Meanwhile, we found that both t-BHP and FCCP promoted the cleavage of optic atrophy 1 (OPA1) from the long form into short form during the early stages. In addition, the ATPase family gene 3-like 2, a mitochondrial inner membrane protease, was also markedly increased. Moreover, OPA1 knockdown in myotubes was accompanied by decreased MyHC content, whereas NAC failed to prevent FCCP-induced MyHC decrease with OPA1 knockdown, suggesting that ROS might affect MyHC content by modulating OPA1 cleavage. In addition, hydroxytyrosol acetate (HT-AC), an important compound in virgin olive oil, could significantly prevent t-BHP-induced mitochondrial membrane potential and cell viability loss in myotubes. Specifically, HT-AC inhibited t-BHP-induced OPA1 cleavage and mitochondrial morphology changes, accompanied by improvement on mitochondrial oxygen consumption capacity, ATP productive potential and activities of mitochondrial complex I, II and V. Moreover, both

  7. An enantioselective route to alpha-methyl carboxylic acids via metal and enzyme catalysis.

    PubMed

    Norinder, Jakob; Bogár, Krisztián; Kanupp, Lisa; Bäckvall, Jan-E

    2007-11-22

    Dynamic kinetic resolution of allylic alcohols to allylic acetates followed by copper-catalyzed allylic substitution gave alkenes in high yields and high optical purity. Subsequent oxidative C-C double bond cleavage afforded pharmaceutically important alpha-methyl substituted carboxylic acids in high ee.

  8. The Chirped-Pulse Fourier Transform Microwave Cp-Ftmw Spectrum and Potential Energy Calculations for AN Aromatic Claisen Rearrangement Molecule, Allyl Phenyl Ether

    NASA Astrophysics Data System (ADS)

    Grubbs, G. S. Grubbs, Ii; Cooke, S. A.; Novick, Stewart E.

    2012-06-01

    Claisen rearrangement ethers are a fundamental organic, pericyclic rearrangement reaction reagent. In the mechanism of a Claisen rearrangement, a vinyl allyl ether is needed to provide the necessary Lewis acid/base sites on the molecule for the rearrangement and are simply heated. This rearrangement was first discovered by heating up the title molecule, allyl phenyl ether. However, much like the Diels-Alder, Cope, and other pericyclic reactions, conformation and coordination of chemical groups is key to the Claisen mechanism. In this study, the authors present some structural characteristics of allyl phenyl ether from an analysis of the microwave spectra in the 8-14 GHz region using a CP-FTMW spectrometer. This is, to the authors knowledge, the first known microwave region study of the title molecule. Three conformers have been observed and assigned to date and will be discussed. Along with the rotational spectra, geometry calculations and potential energy surfaces performed at the MP2/6-311G++(3d,2p) level will be discussed and compared to the experimental results. Modeling the Claisen aromatic rearrangement mechanism using CP-FTMW spectroscopy will also be discussed. L. Claisen Chemische Berichte 45, 3157, October 1912.

  9. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract.

    PubMed

    Bruns, Merissa M; Kakarla, Prathusha; Floyd, Jared T; Mukherjee, Mun Mun; Ponce, Robert C; Garcia, John A; Ranaweera, Indrika; Sanford, Leslie M; Hernandez, Alberto J; Willmon, T Mark; Tolson, Grace L; Varela, Manuel F

    2017-10-01

    The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.

  10. Protective effect of Hibiscus anthocyanins against tert-butyl hydroperoxide-induced hepatic toxicity in rats.

    PubMed

    Wang, C J; Wang, J M; Lin, W L; Chu, C Y; Chou, F P; Tseng, T H

    2000-05-01

    Hibiscus anthocyanins (HAs), a group of natural pigments occurring in the dried flowers of Hibiscus sabdariffa L., which is a local soft drink material and medical herb, were studied for antioxidant bioactivity. The preliminary study showed that HAs were able to quench the free radicals of 1,1-diphenyl-2-picrylhydrazyl. This antioxidant bioactivitiy was further evaluated using the model of tert-butyl hydroperoxide (t-BHP)-induced cytotoxicity in rat primary hepatocytes and hepatotoxicity in rats. The results demonstrated that HAs, at the concentrations of 0.10 and 0.20 mg/ml, significantly decreased the leakage of lactate dehydrogenase and the formation of malondialdehyde induced by a 30-min treatment of t-BHP (1.5 mM). The in vivo investigation showed that the oral pretreatment of HAs (100 and 200 mg/kg) for 5 days before a single dose of t-BHP (0.2 mmol/kg, ip) significantly lowered the serum levels of hepatic enzyme markers (alanine and aspartate aminotransferase) and reduced oxidative liver damage. The histopathological evaluation of the liver revealed that Hibiscus pigments reduced the incidence of liver lesions including inflammatory, leucocyte infiltration, and necrosis induced by t-BHP in rats. Based on the results described above, we speculate that Hibiscus pigments may play a role in the prevention of oxidative damage in living systems.

  11. Inhibition of Oxidative Stress and Lipid Peroxidation by Anthocyanins from Defatted Canarium odontophyllum Pericarp and Peel Using In Vitro Bioassays

    PubMed Central

    Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah; Hamid, Muhajir

    2014-01-01

    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection. PMID:24416130

  12. Crystal structure of N-(1-allyl-3-chloro-1H-indazol-5-yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Chigr, Mohamed; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    The 3-chloro-1H-indazole system in the title mol­ecule, C17H16ClN3O2S, is almost planar, with the largest deviation from the mean plane being 0.029 (2) Å for one of the N atoms. This system is nearly perpendicular to the allyl chain, as indicated by the C—C—N—N torsion angle of −90.1 (6)° between them. The allyl group is split into two fragments, the major component has a site occupancy of 0.579 (7). The indazole system makes a dihedral angle of 47.53 (10)° with the plane through the benzene ring. In the crystal, mol­ecules are connected by N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:25309215

  13. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  14. Bacterial oxidation of methyl bromide in Mono Lake, California

    USGS Publications Warehouse

    Connell, T.L.; Joye, S.B.; Miller, L.G.; Oremland, R.S.

    1997-01-01

    The oxidation of methyl bromide (MeBr) in the water column of Mono Lake, CA, was studied by measuring the formation of H14CO3 from [14C]MeBr. Potential oxidation was detected throughout the water column, with highest rates occurring in the epilimnion (5-12 m depth). The oxidation of MeBr was eliminated by filter-sterilization, thereby demonstrating the involvement of bacteria. Vertical profiles of MeBr activity differed from those obtained for nitrification and methane oxidation, indicating that MeBr oxidation is not simply a co-oxidation process by either nitrifiers or methanotrophs. Furthermore, specific inhibitors of methane oxidation and/or nitrification (e.g., methyl fluoride, acetylene, allyl sulfide) had no effect upon the rate of MeBr oxidation in live samples. Of a variety of potential electron donors added to Mono Lake water, only trimethylamine resulted in the stimulation of MeBr oxidation. Cumulatively, these results suggest that the oxidation of MeBr in Mono Lake waters is attributable to trimethylamine-degrading methylotrophs. Neither methyl chloride nor methanol inhibited the oxidation of [14C]MeBr in live samples, indicating that these bacteria directly oxidized MeBr rather than the products of MeBr nucleophilic substitution reactions.

  15. Formation of Ketenimines via the Palladium-Catalyzed Decarboxylative π-Allylic Rearrangement of N-Alloc Ynamides.

    PubMed

    Alexander, Juliana R; Cook, Matthew J

    2017-11-03

    A new approach for the formation of ketenimines via a decarboxylative allylic rearrangement pathway that does not require strong stabilizing or protecting groups has been developed. The products can be readily hydrolyzed into their corresponding secondary amides or reacted with sulfur ylides to perform an additional [2,3]-Wittig process. Mechanistic studies suggest an outer-sphere process in which reductive alkylation is rate-limiting.

  16. Isovanillin derived N-(un)substituted hydroxylamines possessing an ortho-allylic group: valuable precursors to bioactive N-heterocycles.

    PubMed

    Dulla, Balakrishna; Tangellamudi, Neelima D; Balasubramanian, Sridhar; Yellanki, Swapna; Medishetti, Raghavender; Kumar Banote, Rakesh; Hari Chaudhari, Girish; Kulkarni, Pushkar; Iqbal, Javed; Reiser, Oliver; Pal, Manojit

    2014-04-28

    The intramolecular 1,3-dipolar cycloaddition of isovanillin derived N-aryl hydroxylamines possessing ortho-allylic dipolarophiles affords novel benzo analogues of tricyclic isoxazolidines that can be readily transformed into functionalized lactams, γ-aminoalcohols and oxazepines. The corresponding N-unsubstituted hydroxylamines give rise to tetrahydroisoquinolines. Anxiogenic properties of these compounds are tested in zebra fish.

  17. γ-Tocotrienol Protects against Mitochondrial Dysfunction and Renal Cell Death

    PubMed Central

    Bakajsova, Diana; Hayes, Corey; Hauer-Jensen, Martin; Compadre, Cesar M.

    2012-01-01

    Oxidative stress is a major mechanism of a variety of renal diseases. Tocopherols and tocotrienols are well known antioxidants. This study aimed to determine whether γ-tocotrienol (GT3) protects against mitochondrial dysfunction and renal proximal tubular cell (RPTC) injury caused by oxidants. Primary cultures of RPTCs were injured by using tert-butyl hydroperoxide (TBHP) in the absence and presence of GT3 or α-tocopherol (AT). Reactive oxygen species (ROS) production increased 300% in TBHP-injured RPTCs. State 3 respiration, oligomycin-sensitive respiration, and respiratory control ratio (RCR) decreased 50, 63, and 47%, respectively. The number of RPTCs with polarized mitochondria decreased 54%. F0F1-ATPase activity and ATP content decreased 31 and 65%, respectively. Cell lysis increased from 3% in controls to 26 and 52% at 4 and 24 h, respectively, after TBHP exposure. GT3 blocked ROS production, ameliorated decreases in state 3 and oligomycin-sensitive respirations and F0F1-ATPase activity, and maintained RCR and mitochondrial membrane potential (ΔΨm) in injured RPTCs. GT3 maintained ATP content, blocked RPTC lysis at 4 h, and reduced it to 13% at 24 h after injury. Treatment with equivalent concentrations of AT did not block ROS production and cell lysis and moderately improved mitochondrial respiration and coupling. This is the first report demonstrating the protective effects of GT3 against RPTC injury by: 1) decreasing production of ROS, 2) improving mitochondrial respiration, coupling, ΔΨm, and F0F1-ATPase function, 3) maintaining ATP levels, and 4) preventing RPTC lysis. Our data suggest that GT3 is superior to AT in protecting RPTCs against oxidant injury and may prove therapeutically valuable for preventing renal injury associated with oxidative stress. PMID:22040679

  18. Cobalt-catalyzed cross-coupling reactions of alkyl halides with allylic and benzylic Grignard reagents and their application to tandem radical cyclization/cross-coupling reactions.

    PubMed

    Ohmiya, Hirohisa; Tsuji, Takashi; Yorimitsu, Hideki; Oshima, Koichiro

    2004-11-05

    Details of cobalt-catalyzed cross-coupling reactions of alkyl halides with allylic Grignard reagents are disclosed. A combination of cobalt(II) chloride and 1,2-bis(diphenylphosphino)ethane (DPPE) or 1,3-bis(diphenylphosphino)propane (DPPP) is suitable as a precatalyst and allows secondary and tertiary alkyl halides--as well as primary ones--to be employed as coupling partners for allyl Grignard reagents. The reaction offers a facile synthesis of quaternary carbon centers, which has practically never been possible with palladium, nickel, and copper catalysts. Benzyl, methallyl, and crotyl Grignard reagents can all couple with alkyl halides. The benzylation definitely requires DPPE or DPPP as a ligand. The reaction mechanism should include the generation of an alkyl radical from the parent alkyl halide. The mechanism can be interpreted in terms of a tandem radical cyclization/cross-coupling reaction. In addition, serendipitous tandem radical cyclization/cyclopropanation/carbonyl allylation of 5-alkoxy-6-halo-4-oxa-1-hexene derivatives is also described. The intermediacy of a carbon-centered radical results in the loss of the original stereochemistry of the parent alkyl halides, creating the potential for asymmetric cross-coupling of racemic alkyl halides.

  19. Synergistic N-Heterocyclic Carbene/Palladium-Catalyzed Reactions of Aldehyde Acyl Anions with either Diarylmethyl or Allylic Carbonates.

    PubMed

    Yasuda, Shigeo; Ishii, Takuya; Takemoto, Shunsuke; Haruki, Hiroki; Ohmiya, Hirohisa

    2018-03-05

    Benzylation and allylation of aldehyde acyl anions were enabled by the merger of a thiazolium N-heterocyclic carbene (NHC) catalyst and a palladium/bisphosphine catalyst in a synergistic manner. Owing to the mildness of the reaction conditions, various functional groups were tolerated in the substrates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reply to "Pericyclic or Pseudopericyclic? The Case of an Allylic Transposition in The Synthesis of a Saccharin Derivative"

    ERIC Educational Resources Information Center

    Fonseca, Custódia S. C.

    2017-01-01

    Sigmatropic rearrangement is one of the main classes of pericyclic reactions, which does not necessarily mean that these rearrangements have a pericyclic mechanism. The allylic saccharin derivative O-cinnamylsaccharin can isomerize into N-cinnamylsaccharin in the polar solvent system toluene/triethylamine in a reaction time of 2 h at 110°C. The…

  1. The NBS Reaction: A Simple Explanation for the Predominance of Allylic Substitution over Olefin Addition by Bromine at Low Concentrations.

    ERIC Educational Resources Information Center

    Wamser, Carl C.; Scott, Lawrence T.

    1985-01-01

    Examines mechanisms related to use of N-bromosuccinimide (NBS) for bromination at an allylic position. Also presents derived rate laws for three possible reactions of molecular bromine with an alkene: (1) free radical substitution; (2) free radical addition; and (3) electrophilic addition. (JN)

  2. Organoselenium-catalyzed, hydroxy-controlled regio- and stereoselective amination of terminal alkenes: efficient synthesis of 3-amino allylic alcohols.

    PubMed

    Deng, Zhimin; Wei, Jialiang; Liao, Lihao; Huang, Haiyan; Zhao, Xiaodan

    2015-04-17

    An efficient route to prepare 3-amino allylic alcohols in excellent regio- and stereoselectivity in the presence of bases by orangoselenium catalysis has been developed. In the absence of bases α,β-unsaturated aldehydes were formed in up to 97% yield. Control experiments reveal that the hydroxy group is crucial for the direct amination.

  3. Anti-Wrinkle and Anti-Inflammatory Effects of Active Garlic Components and the Inhibition of MMPs via NF-κB Signaling

    PubMed Central

    Kim, So Ra; Jung, Yu Ri; An, Hye Jin; Kim, Dae Hyun; Jang, Eun Ji; Choi, Yeon Ja; Moon, Kyoung Mi; Park, Min Hi; Park, Chan Hum; Chung, Ki Wung; Bae, Ha Ram; Choi, Yung Whan; Kim, Nam Deuk; Chung, Hae Young

    2013-01-01

    Skin aging is a multisystem degenerative process caused by several factors, such as, UV irradiation, stress, and smoke. Furthermore, wrinkle formation is a striking feature of photoaging and is associated with oxidative stress and inflammatory response. In the present study, we investigated whether caffeic acid, S-allyl cysteine, and uracil, which were isolated from garlic, modulate UVB-induced wrinkle formation and effect the expression of matrix-metalloproteinase (MMP) and NF-κB signaling. The results obtained showed that all three compounds significantly inhibited the degradation of type І procollagen and the expressions of MMPs in vivo and attenuated the histological collagen fiber disorder and oxidative stress in vivo. Furthermore, caffeic acid and S-allyl cysteine were found to decrease oxidative stress and inflammation by modulating the activities of NF-κB and AP-1, and uracil exhibited an indirect anti-oxidant effect by suppressing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions levels and downregulating transcriptional factors. These results suggest that the anti-wrinkle effects of caffeic acid, S-allyl cysteine, and uracil are due to anti-oxidant and/or anti-inflammatory effects. Summarizing, caffeic acid, S-allyl cysteine, and uracil inhibited UVB-induced wrinkle formation by modulating MMP via NF-κB signaling. PMID:24066081

  4. Remarkable rate acceleration of SmI3-mediated iodination of acetates of Baylis-Hillman adducts in ionic liquid: facile synthesis of (Z)-allyl iodides*

    PubMed Central

    Liu, Yun-Kui; Zheng, Hui; Xu, Dan-Qian; Xu, Zhen-Yuan; Zhang, Yong-Min

    2006-01-01

    Stereoselective transformation of Baylis-Hillman acetates 1 into corresponding (Z)-allyl iodides 2 has been achieved by treatment of 1 with samarium triiodide in THF. Remarkable rate acceleration of samarium triiodide-mediated iodination of 1 was found when ionic liquid 1-n-butyl-3-methyl-imidazolium tetrafluroborate ([bmim]BF4) was used as reaction media in stead of THF. This novel approach proceeds readily at 50 °C within a few minutes to afford (Z)-allyl iodides 2 in excellent yields. A mechanism involving stereoselective iodination of the acetates of Baylis-Hillman adducts by samarium triiodide is described, in which a six-membered ring transition state played a key role in the stereoselective formation of 2. PMID:16502505

  5. Editing the stereochemical elements in an iridium catalyst for enantioselective allylic amination

    PubMed Central

    Leitner, Andreas; Shu, Chutian; Hartwig, John F.

    2004-01-01

    Individual diastereomeric phosphoramidites and mixtures of diastereomeric phosphoramidites were evaluated in the iridium-catalyzed amination of allylic carbonates. The original process was conducted with a phosphoramidite ligand containing a resolved 2,2-dihydroxy-1,1-binaphthyl (BINOL) group and a diastereomerically and enantiomerically pure bis(phenethyl)amino group. Evaluation of the structure of the active catalyst and relative rates for reactions in the presence of catalysts containing diastereomeric ligands led to the identification of a phosphoramidite that provided the amination product with enantiomeric excess similar to the original, more structurally and stereochemically complex ligand and that contains a racemic BINOLate and an N-benzylphenethylamino group on phosphorus. PMID:15067140

  6. An In Situ Directing Group Strategy for Chiral Anion Phase-Transfer Fluorination of Allylic Alcohols

    PubMed Central

    2015-01-01

    An enantioselective fluorination of allylic alcohols under chiral anion phase-transfer conditions is reported. The in situ generation of a directing group proved crucial for achieving effective enantiocontrol. In the presence of such a directing group, a range of acyclic substrates underwent fluorination to afford highly enantioenriched α-fluoro homoallylic alcohols. Mechanistic studies suggest that this transformation proceeds through a concerted enantiodetermining transition state involving both C–F bond formation and C–H bond cleavage. PMID:25203796

  7. 40 CFR 180.1167 - Allyl isothiocyanate as a component of food grade oil of mustard; exemption from the requirement...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... used as a component of food grade oil of mustard, in or on all raw agricultural commodities, when... food grade oil of mustard; exemption from the requirement of a tolerance. 180.1167 Section 180.1167... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1167 Allyl isothiocyanate...

  8. Accessing heavy allyl-analogous [(TerN)2E](-) (E = Sb, Bi) ions and their reactivity towards ECl3.

    PubMed

    Hinz, Alexander; Schulz, Axel; Villinger, Alexander

    2015-07-21

    The attempted preparation of the biradicaloid [E(μ-NTer)]2 (E = Sb, Bi) yielded salts of the anion [(TerN)2E](-). These heteroatom allyl analogues could be further utilized in the reaction with pnictogen(III) chlorides to form the first 1,3-dichloro-1-bisma-3-stiba-2,4-diazane [ClSb(μ-NTer)2BiCl].

  9. Asymmetric allylation/Pauson-Khand reaction: a simple entry to polycyclic amines. Application to the synthesis of aminosteroid analogues.

    PubMed

    Fustero, Santos; Lázaro, Rubén; Aiguabella, Nuria; Riera, Antoni; Simón-Fuentes, Antonio; Barrio, Pablo

    2014-02-21

    Asymmetric allylation of o-iodoarylsulfinylimines has been achieved in high diastereoselectivities. The thus-obtained o-iodoarylhomoallylic sulfinamides participate in a subsequent Sonogashira coupling followed by a diastereoselective intramolecular Pauson-Khand reaction. In this way, tricyclic amines showing a unique benzo-fused indenyl backbone were obtained. The methodology has been applied to the synthesis of amino steroid analogues.

  10. 40 CFR 180.1167 - Allyl isothiocyanate as a component of food grade oil of mustard; exemption from the requirement...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Allyl isothiocyanate as a component of food grade oil of mustard; exemption from the requirement of a tolerance. 180.1167 Section 180.1167 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES I...

  11. Evidence for an Ionic Intermediate in the Transformation of Fatty Acid Hydroperoxide by a Catalase-related Allene Oxide Synthase from the Cyanobacterium Acaryochloris marina*

    PubMed Central

    Gao, Benlian; Boeglin, William E.; Zheng, Yuxiang; Schneider, Claus; Brash, Alan R.

    2009-01-01

    Allene oxides are reactive epoxides biosynthesized from fatty acid hydroperoxides by specialized cytochrome P450s or by catalase-related hemoproteins. Here we cloned, expressed, and characterized a gene encoding a lipoxygenase-catalase/peroxidase fusion protein from Acaryochloris marina. We identified novel allene oxide synthase (AOS) activity and a by-product that provides evidence of the reaction mechanism. The fatty acids 18.4ω3 and 18.3ω3 are oxygenated to the 12R-hydroperoxide by the lipoxygenase domain and converted to the corresponding 12R,13-epoxy allene oxide by the catalase-related domain. Linoleic acid is oxygenated to its 9R-hydroperoxide and then, surprisingly, converted ∼70% to an epoxyalcohol identified spectroscopically and by chemical synthesis as 9R,10S-epoxy-13S-hydroxyoctadeca-11E-enoic acid and only ∼30% to the 9R,10-epoxy allene oxide. Experiments using oxygen-18-labeled 9R-hydroperoxide substrate and enzyme incubations conducted in H218O indicated that ∼72% of the oxygen in the epoxyalcohol 13S-hydroxyl arises from water, a finding that points to an ionic intermediate (epoxy allylic carbocation) during catalysis. AOS and epoxyalcohol synthase activities are mechanistically related, with a reacting intermediate undergoing a net hydrogen abstraction or hydroxylation, respectively. The existence of epoxy allylic carbocations in fatty acid transformations is widely implicated although for AOS reactions, without direct experimental support. Our findings place together in strong association the reactions of allene oxide synthesis and an ionic reaction intermediate in the AOS-catalyzed transformation. PMID:19531485

  12. Copper-based 2D-coordination polymer as catalyst for allylation of aldehydes

    NASA Astrophysics Data System (ADS)

    da Silva, Gilson B.; Menezes, Paulo H.; Malvestiti, Ivani; Falcão, Eduardo H. L.; Alves, Severino, Jr.; Chojnacki, Jarosław; da Silva, Fausthon F.

    2018-03-01

    A copper-tartrate, [Cu2(Tart)2(H2O)2]·4H2O, was synthesized at room temperature in aqueous media using copper chloride and D-tartaric acid. The compound crystallizes in the monoclinic system P21 space group and was characterized by infrared spectroscopy, thermogravimetry, X-ray powder diffraction and the results are in good agreement with the single crystal structure. Catalytic properties for allylation of aldehydes were investigated at different solvents, and the best conditions obtained were using a mixture of CH2Cl2:H2O. The copper-tartrate obtained showed good performance as catalyst for different substrates and yields were between 62% and 95%.

  13. Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans.

    PubMed

    An, MaoMao; Shen, Hui; Cao, YongBing; Zhang, JunDong; Cai, Yun; Wang, Rui; Jiang, YuanYing

    2009-03-01

    Amphotericin B (AmB) is the gold standard of antifungal treatment for the most severe invasive mycoses. In addition to the interaction of AmB with ergosterol in the fungi cell membrane, several studies have demonstrated oxidative damage involved in the fungicidal activity of AmB. In this study, allicin, an allyl sulphur compound from garlic, was shown to enhance significantly the effect of AmB against Candida albicans in vitro and in vivo, although allicin did not exert a fungicidal effect. Further study first demonstrated that allicin-mediated oxidative damage, such as phospholipid peroxidation in the plasma membrane, via influencing the defence of C. albicans against oxidative damage may be the cause of the synergistic interaction between allicin and AmB. We envision that a combination of AmB with allicin may prove to be a promising strategy for the therapy of disseminated candidiasis.

  14. Palladium-Catalyzed Asymmetric Allylic Alkylation of 4-Substituted Isoxazolidin-5-ones: Straightforward Access to β2,2 -Amino Acids.

    PubMed

    Nascimento de Oliveira, Marllon; Arseniyadis, Stellios; Cossy, Janine

    2018-04-03

    We report here an unprecedented and highly enantioselective palladium-catalyzed allylic alkylation applied to 4-substituted isoxazolidin-5-ones. Ultimately, the process provides a straightforward access to β 2,2 -amino acids bearing an all-carbon quaternary stereogenic center in great yields and a high degree of enantioselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. N-(2-Allyl-4-eth-oxy-2H-indazol-5-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Viale, Maurizio; Saadi, Mohamed; El Ammari, Lahcen

    2014-05-01

    The indazole ring system of the title compound, C19H21N3O3S, is almost planar (r.m.s. deviation = 0.0192 Å) and forms dihedral angles of 77.99 (15) and 83.9 (3)° with the benzene ring and allyl group, respectively. In the crystal, centrosymmetrically related mol-ecules are connected by pairs of N-H⋯O hydrogen bonds into dimers, which are further linked by C-H⋯O hydrogen bonds, forming columns parallel to the b axis.

  16. Asymmetric Benzylic Allylic Alkylation Reaction of 3-Furfural Derivatives by Dearomatizative Dienamine Activation.

    PubMed

    He, Xiao-Long; Zhao, Hui-Ru; Duan, Chuan-Qi; Han, Xu; Du, Wei; Chen, Ying-Chun

    2018-04-20

    The dearomatizative dienamine-type ortho-quinodimethane species are smoothly generated between 2-alkyl-3-furfurals and chiral secondary amine catalysts, which undergo asymmetric benzylic allylic alkylation reactions with 2-nitroallylic acetates efficiently. A spectrum of densely functionalized 3-furfural derivatives are delivered in moderate to high yields with good to excellent diastereo- and enantioselectivity (up to 98 % yield, >19:1 d.r., >99 % ee). The latent transformations allow the facile production of some enantioenriched architectures, such as 1,1,2,2-tetraarylethanes and triarylmethanes, which are not easily available from other protocols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    NASA Astrophysics Data System (ADS)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  18. Molecular detection and in vitro antioxidant activity of S-allyl-L-cysteine (SAC) extracted from Allium sativum.

    PubMed

    Sun, Y-E; Wang, W-D

    2016-06-30

    It is well known that Allium sativum has potential applications to clinical treatment of various cancers due to its remarkable ability in eliminating free radicals and increasing metabolism. An allyl-substituted cysteine derivative - S-allyl-L-cysteine (SAC) was separated and identified from Allium sativum. The extracted SAC was reacted with 1-pyrenemethanol to obtain pyrene-labelled SAC (Py-SAC) to give SAC fluorescence properties. Molecular detection of Py-SAC was conducted by steady-state fluorescence spectroscopy and time-resolved fluorescence method to quantitatively measure concentrations of Py-SAC solutions. The ability of removing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical using Py-SAC was determined through oxygen radical absorbance capacity (ORAC). Results showed the activity of Py-SAC and Vitamin C (VC) with ORAC as index, the concentrations of Py-SAC and VC were 58.43 mg/L and 5.72 mg/L respectively to scavenge DPPH, and 8.16 mg/L and 1.67 mg/L to scavenge •OH respectively. Compared with VC, the clearance rates of Py-SAC to scavenge DPPH were much higher, Py-SAC could inhibit hydroxyl radical. The ability of removing radical showed a dose-dependent relationship within the scope of the drug concentration.

  19. Sequential allylic substitution/Pauson-Khand reaction: a strategy to bicyclic fused cyclopentenones from MBH-acetates of acetylenic aldehydes.

    PubMed

    Raji Reddy, Chada; Kumaraswamy, Paridala; Singarapu, Kiran K

    2014-09-05

    An efficient approach for the construction of novel bicyclic fused cyclopentenones starting from Morita-Baylis-Hillman (MBH) acetates of acetylenic aldehydes with flexible scaffold diversity has been achieved using a two-step reaction sequence involving allylic substitution and the Pauson-Khand reaction. This strategy provided a facile access to various bicyclic cyclopentenones fused with either a carbocyclic or a heterocyclic ring system in good yield.

  20. Synthesis of Quaternary Carbon Stereogenic Centers through Enantioselective Cu-Catalyzed Allylic Substitutions with Vinylaluminum Reagents

    PubMed Central

    Gao, Fang; McGrath, Kevin P.; Lee, Yunmi; Hoveyda, Amir H.

    2010-01-01

    Catalytic enantioselective allylic substitution (EAS) reactions, which involve the use of alkyl- or aryl-substituted vinylaluminum reagents and afford 1,4-dienes containing a quaternary carbon stereogenic center at their C-3 site, are disclosed. The C–C bond forming transformations are promoted by 0.5–2.5 mol % of sulfonate bearing chiral bidentate N-heterocyclic carbene (NHC) complexes, furnishing the desired products efficiently (66–97% yield of isolated products) and in high site- (>98% SN2′) and enantioselectivity [up to 99:1 enantiomer ratio (er)]. To the best of our knowledge, the present report puts forward the first cases of allylic substitution reactions that result in the generation of all-carbon quaternary stereogenic centers through the addition of a vinyl unit. The aryl- and vinyl-substituted vinylaluminum reagents, which cannot be prepared in high efficiency through direct reaction with diisobutylaluminum hydride, are accessed through a recently introduced Ni-catalyzed reaction of the corresponding terminal alkynes with the same inexpensive metal-hydride agent. Sequential Ni-catalyzed hydrometallations and Cu-catalyzed C–C bond forming reactions allow for efficient and selective synthesis of a range of enantiomerically enriched EAS products, which cannot cannot be accessed by previously disclosed strategies (due to inefficient vinylmetal synthesis or low reactivity and/or selectivity with Si-substituted derivatives). The utility of the protocols developed is demonstrated through a concise enantioselective synthesis of natural product bakuchiol. PMID:20860365

  1. Secondary ion mass spectrometric investigation on ruthenium oxide systems: a comparison between poly- and nanocrystalline deposits

    PubMed

    Barison; Barreca; Daolio; Fabrizio; Piccirillo

    2000-01-01

    The influence of different RuO(2) crystallite sizes was investigated by secondary ion mass spectrometry (SIMS) on the oxide deposited on various support materials (Ni, Ti, Al(2)O(3), oxidized Si(100)). In order to examine the effect of an oxidic environment on the film structure, RuO(2) 20%-TiO(2) 80% at. mixed oxide was deposited on Ti. The polycrystalline coatings were prepared by heating the Ru (and Ti)-containing solution dropped on the supports.1 RuO(2) nanocrystalline coatings were grown by chemical vapor deposition (CVD) from Ru(COD)(eta(3)-allyl)(2).2 The identification of mixed oxide clusters showed the higher reactivity of Ni and Al(2)O(3) over the other substrates. Diffusion and migration characteristics were observed to be influenced by the nature of the support. The results are complementary to those of a previous SIMS investigation.3 Copyright 2000 John Wiley & Sons, Ltd.

  2. Adsorption of acrolein, propanal, and allyl alcohol on Pd(111): a combined infrared reflection–absorption spectroscopy and temperature programmed desorption study

    PubMed Central

    Dostert, Karl-Heinz; O'Brien, Casey P.; Mirabella, Francesca; Ivars-Barceló, Francisco

    2016-01-01

    Atomistic-level understanding of the interaction of α,β-unsaturated aldehydes and their derivatives with late transition metals is of fundamental importance for the rational design of new catalytic materials with the desired selectivity towards C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 C vs. CO bond partial hydrogenation. In this study, we investigate the interaction of acrolein, and its partial hydrogenation products propanal and allyl alcohol, with Pd(111) as a prototypical system. A combination of infrared reflection–absorption spectroscopy (IRAS) and temperature programmed desorption (TPD) experiments was applied under well-defined ultrahigh vacuum (UHV) conditions to obtain detailed information on the adsorption geometries of acrolein, propanal, and allyl alcohol as a function of coverage. We compare the IR spectra obtained for

  3. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    NASA Astrophysics Data System (ADS)

    Tian, Binghui; Luan, Zhaokun; Li, Mingming

    2005-08-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC.

  4. Mechanistic Analysis of Oxidative C–H Cleavages Using Inter- and Intramolecular Kinetic Isotope Effects

    PubMed Central

    Jung, Hyung Hoon; Floreancig, Paul E.

    2009-01-01

    A series of monodeuterated benzylic and allylic ethers were subjected to oxidative carbon–hydrogen bond cleavage to determine the impact of structural variation on intramolecular kinetic isotope effects in DDQ-mediated cyclization reactions. These values are compared to the corresponding intermolecular kinetic isotope effects that were accessed through subjecting mixtures of non-deuterated and dideuterated substrates to the reaction conditions. The results indicate that carbon–hydrogen bond cleavage is rate determining and that a radical cation is most likely a key intermediate in the reaction mechanism. PMID:20640173

  5. Functionalized mesoporous silica supported copper(II) and nickel(II) catalysts for liquid phase oxidation of olefins.

    PubMed

    Nandi, Mahasweta; Roy, Partha; Uyama, Hiroshi; Bhaumik, Asim

    2011-12-14

    Highly ordered 2D-hexagonal mesoporous silica has been functionalized with 3-aminopropyltriethoxysilane (3-APTES). This is followed by its condensation with a dialdehyde, 4-methyl-2,6-diformylphenol to produce an immobilized Schiff-base ligand (I). This material is separately treated with methanolic solution of copper(II) chloride and nickel(II) chloride to obtain copper and nickel anchored mesoporous materials, designated as Cu-AMM and Ni-AMM, respectively. The materials have been characterized by Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance (DRS) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N(2) adsorption-desorption studies and (13)C CP MAS NMR spectroscopy. The metal-grafted mesoporous materials have been used as catalysts for the efficient and selective epoxidation of alkenes, viz. cyclohexene, trans-stilbene, styrene, α-methyl styrene, cyclooctene and norbornene to their corresponding epoxides in the presence of tert-butyl hydroperoxide (TBHP) as the oxidant under mild liquid phase conditions.

  6. Allyl isothiocyanate enhances shelf life of minimally processed shredded cabbage.

    PubMed

    Banerjee, Aparajita; Penna, Suprasanna; Variyar, Prasad S

    2015-09-15

    The effect of allyl isothiocyanate (AITC), in combination with low temperature (10°C) storage on post harvest quality of minimally processed shredded cabbage was investigated. An optimum concentration of 0.05μL/mL AITC was found to be effective in maintaining the microbial and sensory quality of the product for a period of 12days. Inhibition of browning was shown to result from a down-regulation (1.4-fold) of phenylalanine ammonia lyase (PAL) gene expression and a consequent decrease in PAL enzyme activity and o-quinone content. In the untreated control samples, PAL activity increased following up-regulation in PAL gene expression that could be linearly correlated with enhanced o-quinone formation and browning. The efficacy of AITC in extending the shelf life of minimally processed shredded cabbage and its role in down-regulation of PAL gene expression resulting in browning inhibition in the product is reported here for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Communication: Infrared spectroscopy of protonated allyl-trimethylsilane: Evidence for the β-silyl effect

    NASA Astrophysics Data System (ADS)

    Chiavarino, Barbara; Crestoni, Maria Elisa; Lemaire, Joel; Maitre, Philippe; Fornarini, Simonetta

    2013-08-01

    β-trimethylsilyl-2-propyl cation has been formed by the gas phase protonation of allyl-trimethylsilane and characterized by infrared multiple photon dissociation spectroscopy. The experimental Cβ-Cα+ stretching feature at 1586 cm-1, remarkably blue-shifted with respect to a C-C single bond stretching mode, is indicative of high double bond character, a signature of β-stabilizing effect due to hyperconjugation of the trimethylsilyl group in the β-position with respect to the positively charged carbon. Density functional theory calculations at the B3LYP/6-311++G(2df,2p) level yield the optimized geometries and IR spectra for candidate isomeric cations and for neutral and charged reference species.

  8. Aminative umpolung of aldehydes to α-amino anion equivalents for Pd-catalyzed allylation: an efficient synthesis of homoallylic amines.

    PubMed

    Ding, Lei; Chen, Jing; Hu, Yifan; Xu, Juan; Gong, Xing; Xu, Dongfang; Zhao, Baoguo; Li, Hexing

    2014-02-07

    An attractive strategy for generation of α-amino anions from aldehydes with applications in synthesis of homoallylic amines is described. Aromatic aldehydes can be converted to α-amino anion equivalents via amination with 2,2-diphenylglycine and subsequent decarboxylation. The in situ generated α-imino anions are highly reactive for Pd-catalyzed allylation, forming the corresponding homoallylic amines in high yields with excellent regioselectivity.

  9. Protection of Grain Products from Sitophilus oryzae (L.) Contamination by Anti-Insect Pest Repellent Sachet Containing Allyl Mercaptan Microcapsule.

    PubMed

    Chang, Yoonjee; Lee, Soo-Hyun; Na, Ja Hyun; Chang, Pahn-Shick; Han, Jaejoon

    2017-11-01

    The purpose of this study was to develop an anti-insect pest repellent sachet to prevent Sitophilus oryzae (L.) (Coleoptera: Curculionidae) contamination in grain packaging. The anti-insect pest activities of essential oils (EOs) from garlic (Allium Sativum), ginger (Zingiber Officinalis), black pepper (Piper nigrum), onion (Allium cepa), and fennel (Foeniculum vulgare) as well as major compounds (allyl disulfide, AD; allyl mercaptan, AM) isolated from of garlic and onion (AD and AM) were measured against S. oryzae. The results revealed that garlic EO, onion EO, AD, and AM showed strong fumigant insecticidal activities. Among these, AM showed the highest acetylcholinesterase (AChE) inhibition rate, indicating that the fumigation insecticidal efficacy of AM is related with its AChE inhibition ability. Subsequently, the microcapsules were produced with a high efficiency (80.02%) by using AM as a core material and rice flour as a wall material. Finally, sachet composed of rice flour microcapsule containing 2% AM (RAM) was produced. Repellent assay was performed to measure anti-insect pest ability of the RAM sachet, showed remarkable repelling effect within 48 h both in the presence or absence of attractant. In a release profile of RAM sachet, it was expected to last over 20 mo during the distribution period of brown rice. Moreover, RAM sachet showed no undesirable changes to the sensory properties of the rice both before and after cooking. Taken together, these results suggest that the newly developed RAM sachet could be used as a packaging material to protect grain products from S. oryzae contamination. The rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), causes damages to stored products and its contamination in grain products has become a major problem in cereal market. To preserve brown rice, an anti-insect pest repellent sachet containing 2% allyl mercaptan was newly developed and it showed remarkable repellent abilities against S. oryzae. It

  10. Garlic and associated allyl sulfur components inhibit N-methyl-N-nitrosourea induced rat mammary carcinogenesis.

    PubMed

    Schaffer, E M; Liu, J Z; Green, J; Dangler, C A; Milner, J A

    1996-04-19

    Our previous studies demonstrated that dietary garlic powder supplementation inhibits N-nitrosamine induced DNA alkylation in liver and mammary tissue. The present studies compared the impact of dietary supplementation with garlic powder or two garlic constituents, water-soluble S-allyl cysteine (SAC) and oil-soluble diallyl disulfide (DADS), on the incidence of mammary tumorigenesis induced by N-methyl-N-nitrosourea (MNU). Female Sprague-Dawley rats were fed semi-purified casein based diets with or without supplements of garlic powder(20g/kg), SAC (57 micromol/kg) or DADS (57 micromol/kg) for 2 weeks prior to treatment with MNU (15 mg/kg body wt). Garlic powder, SAC and DADS supplementation significantly delayed the onset of mammary tumors compared to rats receiving the unsupplemented diet. Tumor incidence 23 weeks after MNU treatment was reduced by 76, 41 and 53% in rats fed garlic, SAC and DADS, respectively, compared to controls (P<0.05). Total tumor number was reduced 81, 35 and 65% by these supplements, respectively (P<0.05). In a separate study the quantity of mammary DNA alkylation occurring 3 h after MNU treatment was reduced in rats fed garlic, SAC or DADS (P<0.05). Specifically, O(6)-methylguanine adducts were reduced by 27, 18 and 23% in rats fed supplemental garlic, SAC and DADS, respectively, compared to controls. N(7)-Methylguanine adducts decreased by 48, 22 and 21% respectively, compared to rats fed the control diet. These studies demonstrate that garlic and associated allyl sulfur components, SAC and DADS, are effective inhibitors of MNU-induced mammary carcinogenesis.

  11. S-allyl cysteine in combination with clotrimazole downregulates Fas induced apoptotic events in erythrocytes of mice exposed to lead.

    PubMed

    Mandal, Samir; Mukherjee, Sudip; Chowdhury, Kaustav Dutta; Sarkar, Avik; Basu, Kankana; Paul, Soumosish; Karmakar, Debasish; Chatterjee, Mahasweta; Biswas, Tuli; Sadhukhan, Gobinda Chandra; Sen, Gargi

    2012-01-01

    Chronic lead (Pb(2+)) exposure leads to the reduced lifespan of erythrocytes. Oxidative stress and K(+) loss accelerate Fas translocation into lipid raft microdomains inducing Fas mediated death signaling in these erythrocytes. Pathophysiological-based therapeutic strategies to combat against erythrocyte death were evaluated using garlic-derived organosulfur compounds like diallyl disulfide (DADS), S allyl cysteine (SAC) and imidazole based Gardos channel inhibitor clotrimazole (CLT). Morphological alterations in erythrocytes were evaluated using scanning electron microscopy. Events associated with erythrocyte death were evaluated using radio labeled probes, flow cytometry and activity gel assay. Mass spectrometry was used for detection of GSH-4-hydroxy-trans-2-nonenal (HNE) adducts. Fas redistribution into the lipid rafts was studied using immunoblotting technique and confocal microscopy. Combination of SAC and CLT was better than DADS and CLT combination and monotherapy with these agents in prolonging the survival of erythrocytes during chronic Pb(2+) exposure. Combination therapy with SAC and CLT prevented redistribution of Fas into the lipid rafts of the plasma membrane and downregulated Fas-dependent death events in erythrocytes of mice exposed to Pb(2+). Ceramide generation was a critical component of Fas receptor-induced apoptosis, since inhibition of acid sphingomyelinase (aSMase) interfered with Fas-induced apoptosis during Pb(2+) exposure. Combination therapy with SAC and CLT downregulated apoptotic events in erythrocytes by antagonizing oxidative stress and Gardos channel that led to suppression of ceramide-initiated Fas aggregation in lipid rafts. Hence, combination therapy with SAC and CLT may be a potential therapeutic option for enhancing the lifespan of erythrocytes during Pb(2+) toxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Gold(I)-assisted catalysis - a comprehensive view on the [3,3]-sigmatropic rearrangement of allyl acetate

    NASA Astrophysics Data System (ADS)

    Freindorf, Marek; Cremer, Dieter; Kraka, Elfi

    2018-03-01

    The unified reaction valley approach (URVA) combined with the local mode, ring puckering and electron density analysis is applied to elucidate the mechanistic differences of the non-catalysed and the Au[I]-N-heterocyclic carbene (NHC)-catalysed [3,3]-sigmatropic rearrangement of allyl acetate. Using a dual-level approach (DFT and DLPNO-CCSD(T)), the influence of solvation, counter-ions, bulky and electron withdrawing/donating substituents as well as the exchange of the Au[I]-NHC with a Au[I]-phosphine catalyst is investigated. The catalyst breaks up the rearrangement into two steps by switching between Au[I]-π and Au[I]-σ complexation, thus avoiding the energy-consuming CO cleavage in the first step. Based on local stretching force constants ka(C=C), we derive for the first time a quantitative measure of the π-acidity of the Au[I] catalyst; in all catalysed reactions, the bond order n(C=C) drops from 2 to 1.65. The ring puckering analysis clarifies that all reactions start and end via a six-membered ring with a boat form. All Au[I]-σ-complex intermediates show a considerable admixture of the chair form. The non-catalysed [3,3]-sigmatropic rearrangement goes through a maximum of charge separation between the allyl and acetate units at the transition state, while all catalysed reactions proceed via a minimum of charge separation reached in the region of the Au[I]-σ-complex.

  13. A Divergent Mechanistic Course of Pd(0)-Catalyzed Aza-Claisen Rearrangement and Aza-Rautenstrauch-Type Cyclization of N-Allyl-Ynamides

    PubMed Central

    DeKorver, Kyle A.; Hsung, Richard P.; Lohse, Andrew G.; Zhang, Yu

    2010-01-01

    A fascinating mechanistic study of ynamido-palladium-π-allyl complexes is described that features isolation of a unique silyl-ketenimine via aza-Claisen rearrangement, which can be accompanied by an unusual thermal N-to-C 1,3-Ts shift in the formation of tertiary nitriles, and a novel cyclopentenimine formation via a palladium catalyzed aza-Rautenstrauch-type cyclization pathway. PMID:20337418

  14. A targeted gene expression platform allows for rapid analysis of chemical-induced antioxidant mRNA expression in zebrafish larvae.

    PubMed

    Mills, Margaret G; Gallagher, Evan P

    2017-01-01

    Chemical-induced oxidative stress and the biochemical pathways that protect against oxidative damage are of particular interest in the field of toxicology. To rapidly identify oxidative stress-responsive gene expression changes in zebrafish, we developed a targeted panel of antioxidant genes using the Affymetrix QuantiGene Plex (QGP) platform. The genes contained in our panel include eight putative Nrf2 (Nfe2l2a)-dependent antioxidant genes (hmox1a, gstp1, gclc, nqo1, prdx1, gpx1a, sod1, sod2), a stress response gene (hsp70), an inducible DNA damage repair gene (gadd45bb), and three reference genes (actb1, gapdh, hprt1). We tested this platform on larval zebrafish exposed to tert-butyl hydroperoxide (tBHP) and cadmium (Cd), two model oxidative stressors with different modes of action, and compared our results with those obtained using the more common quantitative PCR (qPCR) method. Both methods showed that exposure to tBHP and Cd induced expression of prdx1, gstp1, and hmox1a (2- to 12-fold increase via QGP), indicative of an activated Nrf2 response in larval zebrafish. Both compounds also elicited a general stress response as reflected by elevation of hsp70 and gadd45bb, with Cd being the more potent inducer. Transient changes were observed in sod2 and gpx1a expression, whereas nqo1, an Nrf2-responsive gene in mammalian cells, was minimally affected by either tBHP or Cd chemical exposures. Developmental expression analysis of the target genes by QGP revealed marked upregulation of sod2 between 0-96hpf, and to a lesser extent, of sod1 and gstp1. Once optimized, QGP analysis of these experiments was accomplished more rapidly, using far less tissue, and at lower total costs than qPCR analysis. In summary, the QGP platform as applied to higher-throughput zebrafish studies provides a reasonable cost-effective alternative to qPCR or more comprehensive transcriptomics approaches to rapidly assess the potential for chemicals to elicit oxidative stress as a mechanism of

  15. S-glutathionylation of an auxiliary subunit confers redox sensitivity to Kv4 channel inactivation.

    PubMed

    Jerng, Henry H; Pfaffinger, Paul J

    2014-01-01

    Reactive oxygen species (ROS) regulate ion channels, modulate neuronal excitability, and contribute to the etiology of neurodegenerative disorders. ROS differentially suppress fast "ball-and-chain" N-type inactivation of cloned Kv1 and Kv3 potassium channels but not of Kv4 channels, likely due to a lack of reactive cysteines in Kv4 N-termini. Recently, we discovered that N-type inactivation of Kv4 channel complexes can be independently conferred by certain N-terminal variants of Kv4 auxiliary subunits (DPP6a, DPP10a). Here, we report that both DPP6a and DPP10a, like Kv subunits with redox-sensitive N-type inactivation, contain a highly conserved cysteine in their N-termini (Cys-13). To test if N-type inactivation mediated by DPP6a or DPP10a is redox sensitive, Xenopus oocyte recordings were performed to examine the effects of two common oxidants, tert-butyl hydroperoxide (tBHP) and diamide. Both oxidants markedly modulate DPP6a- or DPP10a-conferred N-type inactivation of Kv4 channels, slowing the overall inactivation and increasing the peak current. These functional effects are fully reversed by the reducing agent dithiothreitol (DTT) and appear to be due to a selective modulation of the N-type inactivation mediated by these auxiliary subunits. Mutation of DPP6a Cys-13 to serine eliminated the tBHP or diamide effects, confirming the importance of Cys-13 to the oxidative regulation. Biochemical studies designed to elucidate the underlying molecular mechanism show no evidence of protein-protein disulfide linkage formation following cysteine oxidation. Instead, using a biotinylated glutathione (BioGEE) reagent, we discovered that oxidation by tBHP or diamide leads to S-glutathionylation of Cys-13, suggesting that S-glutathionylation underlies the regulation of fast N-type inactivation by redox. In conclusion, our studies suggest that Kv4-based A-type current in neurons may show differential redox sensitivity depending on whether DPP6a or DPP10a is highly expressed

  16. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    PubMed

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development and Comparison of the Substrate Scope of Pd-Catalysts for the Aerobic Oxidation of Alcohols

    PubMed Central

    Schultz, Mitchell J.; Hamilton, Steven S.; Jensen, David R.; Sigman, Matthew S.

    2009-01-01

    Three catalysts for aerobic oxidation of alcohols are discussed and the effectiveness of each is evaluated for allylic, benzylic, aliphatic, and functionalized alcohols. Additionally, chiral nonracemic substrates as well as chemoselective and diastereoselective oxidations are investigated. In this study, the most convenient system for the Pd-catalyzed aerobic oxidation of alcohols is Pd(OAc)2 in combination with triethylamine. This system functions effectively for the majority of alcohols tested and uses mild conditions (3 to 5 mol % of catalyst, room temperature). Pd(IiPr)(OAc)2(H2O) (1) also successfully oxidizes the majority of alcohols evaluated. This system has the advantage of significantly lowering catalyst loadings but requires higher temperatures (0.1 to 1 mol % of catalyst, 60 °C). A new catalyst is also disclosed, Pd(IiPr)(OPiv)2 (2). This catalyst operates under very mild conditions (1 mol %, room temperature, and air as the O2 source) but with a more limited substrate scope. PMID:15844968

  18. N-(1-Allyl-3-chloro-4-eth-oxy-1H-indazol-5-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2014-06-01

    In the title compound, C19H20ClN3O3S, the benzene ring is inclined to the indazole ring system by 51.23 (8)°. In the crystal, mol-ecules are linked by pairs of N-H⋯O hydrogen bonds, forming inversion dimers which stack in columns parallel to [011]. The atoms in the allyl group are disordered over two sets of sites with an occupancy ratio of 0.624 (8):0.376 (8).

  19. Poly(allyl methacrylate) functionalized hydroxyapatite nanocrystals via the combination of surface-initiated RAFT polymerization and thiol-ene protocol: a potential anticancer drug nanocarrier.

    PubMed

    Bach, Long Giang; Islam, Md Rafiqul; Vo, Thanh-Sang; Kim, Se-Kwon; Lim, Kwon Taek

    2013-03-15

    Hydroxyapatite nanocrystals (HAP NCs) were encapsulated by poly(allyl methacrylate) (PolyAMA) employing controlled surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization of allyl methacrylate to afford HAP-PolyAMA nanohybrids. The subsequent thiol-ene coupling of nanohybrids with 2-mercaptosuccinic acid resulted HAP-Poly(AMA-COOH) possessing multicarboxyl group. The formation of the nanohybrids was confirmed by FT-IR and EDS analyses. The TGA and FE-SEM investigation were further suggested the grafting of PolyAMA onto HAP NCs. The utility of the HAP-PolyAMA nanohybrid as drug carrier was also explored. The pendant carboxyl groups on the external layers of nanohybrids were conjugated with anticancer drug cisplatin to afford HAP-Poly(AMA-COOH)/Pt complex. The formation of the complex was confirmed by FT-IR, XPS, and FE-SEM. In vitro evaluation of the synthesized complex as nanomedicine revealed its potential chemotherapeutic efficacy against cancer cell lines. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The novel micro-opioid receptor antagonist, [N-allyl-Dmt(1)]endomorphin-2, attenuates the enhancement of GABAergic neurotransmission by ethanol.

    PubMed

    Li, Qiang; Okada, Yoshio; Marczak, Ewa; Wilson, Wilkie A; Lazarus, Lawrence H; Swartzwelder, H S

    2009-01-01

    We investigated the effects of [N-allyl-Dmt(1)]endomorphin-2 (TL-319), a novel and highly potent micro-opioid receptor antagonist, on ethanol (EtOH)-induced enhancement of GABA(A) receptor-mediated synaptic activity in the hippocampus. Evoked and spontaneous inhibitory postsynaptic currents (eIPSCs and sIPSCs) were isolated from CA1 pyramidal cells from brain slices of male rats using whole-cell patch-clamp techniques. TL-319 had no effect on the baseline amplitude of eIPSCs or the frequency of sIPSCs. However, it induced a dose-dependent suppression of an ethanol-induced increase of sIPSC frequency with full reversal at concentrations of 500 nM and higher. The non-specific competitive opioid receptor antagonist naltrexone also suppressed EtOH-induced increases in sIPSC frequency but only at a concentration of 60 microM. These data indicate that blockade of micro-opioid receptors by low concentrations of [N-allyl-Dmt(1)]endomorphin-2 can reverse ethanol-induced increases in GABAergic neurotransmission and possibly alter its anxiolytic or sedative effects. This suggests the possibility that high potency opioid antagonists may emerge as possible candidate compounds for the treatment of ethanol addiction.

  1. SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts.

    PubMed

    Xie, Xiaoxian; Wang, Liangliang; Zhao, Binggong; Chen, Yangyang; Li, Jiaqi

    2017-05-15

    Sirtuin 3 (SIRT3) is a mitochondria-specific protein required for the deacetylation of metabolic enzymes and the action of oxidative phosphorylation by acting as a nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase. SIRT3 increases oxidative stress resistance and prevents mitochondrial decay associated with ageing in response to caloric restriction. However, the effects of SIRT3 on oxidative damage and ageing are not well understood. We investigated the physiological functions of porcine SIRT3 on the damage and ageing in porcine fetal fibroblasts (PFFs). Overexpression and knockdown of SIRT3 were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. All cells were treated with three different stress reagents 12-o-tetradecanoylphorbol-13-acetate (TPA), methanesulfonic acid methylester (MMS), and tert-butylhydroperoxide (t-BHP), respectively, and then examined by flow cytometry following JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol-carbocyanine iodide) staining. SIRT3 overexpression enhanced the ability of superoxide dismutase 2 (SOD2) to reduce cellular reactive oxygen species (ROS), which further decreased the damage to the membranes and the organelles of the cells, especially to mitochondria. It inhibited the initial decrease of mitochondrial membrane potential, and prevented the decrease of adenosine triphosphate (ATP) production and activity of Nampt. In contrast, SIRT3 knockdown reduced the ability of SOD2 to increase cellular ROS which was directly correlated with stress-induced oxidative damage and ageing in PFFs. Our findings identify one function of SIRT3 in PFFs was to dampen cytotoxicity, and, therefore, to decrease oxidative damage and attenuate ageing possibly by enhancing the activity of SOD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. THE CM-, MM-, AND SUB-MM-WAVE SPECTRUM OF ALLYL ISOCYANIDE AND RADIOASTRONOMICAL OBSERVATIONS IN ORION KL AND THE SgrB2 LINE SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haykal, I.; Margulès, L.; Huet, T. R.

    2013-11-10

    Organic isocyanides have an interesting astrochemistry and some of these molecules have been detected in the interstellar medium (ISM). However, rotational spectral data for this class of compounds are still scarce. We provide laboratory spectra of the four-carbon allyl isocyanide covering the full microwave region, thus allowing a potential astrophysical identification in the ISM. We assigned the rotational spectrum of the two cis (synperiplanar) and gauche (anticlinal) conformations of allyl isocyanide in the centimeter-wave region (4-18 GHz), resolved its {sup 14}N nuclear quadrupole coupling (NQC) hyperfine structure, and extended the measurements into the millimeter and submillimeter-wave (150-900 GHz) ranges formore » the title compound. Rotational constants for all the monosubstituted {sup 13}C and {sup 15}N isotopologues are additionally provided. Laboratory observations are supplemented with initial radioastronomical observations. Following analysis of an extensive dataset (>11000 rotational transitions), accurate ground-state molecular parameters are reported for the cis and gauche conformations of the molecule, including rotational constants, NQC parameters, and centrifugal distortion terms up to octic contributions. Molecular parameters have also been obtained for the two first excited states of the cis conformation, with a dataset of more than 3300 lines. The isotopic data allowed determining substitution and effective structures for the title compound. We did not detect allyl isocyanide either in the IRAM 30 m line survey of Orion KL or in the PRIMOS survey toward SgrB2. Nevertheless, we provided an upper limit to its column density in Orion KL.« less

  3. Structural analysis by reductive cleavage with LiAlH4 of an allyl ether choline-phospholipid, archaetidylcholine, from the hyperthermophilic methanoarchaeon Methanopyrus kandleri

    PubMed Central

    Nishihara, Masateru; Morii, Hiroyuki; Matsuno, Koji; Ohga, Mami; Stetter, Karl O.; Koga, Yosuke

    2002-01-01

    A choline-containing phospholipid (PL-4) in Methanopyrus kandleri cells was identified as archaetidylcholine, which has been described by Sprott et al. (1997). The PL-4 consisted of a variety of molecular species differing in hydrocarbon composition. Most of the PL-4 was acid-labile because of its allyl ether bond. The identity of PL-4 was confirmed by thin-layer chromatography (TLC) followed by positive staining with Dragendorff-reagent and fast-atom bombardment–mass spectrometry. A new method of LiAlH4 hydrogenolysis was developed to cleave allyl ether bonds and recover the corresponding hydrocarbons. We confirmed the validity of the LiAlH4 method in a study of the model compound synthetic unsaturated archaetidic acid (2,3-di-O-geranylgeranyl-sn-glycerol-1-phosphate). Saturated ether bonds were not cleaved by the LiAlH4 method. The hydrocarbons formed following LiAlH4 hydrogenolysis of PL-4 were identified by gas–liquid chromatography and mass spectrometry. Four kinds of hydrocarbons with one to four double bonds were detected: 47% of the hydrocarbons had four double bonds; 11% had three double bonds; 14% had two double bonds; 7% had one double bond; and 6% were saturated species. The molecular species composition of PL-4 was also estimated based on acid lability: 77% of the molecular species had two acid-labile hydrocarbons; 11% had one acid-labile and one acid-stable hydrocarbon; and 11% had two acid-stable hydrocarbons. To our knowledge, this is the first report of a specific chemical degradation method for the structural analysis of allyl ether phospholipid in archaea. PMID:15803650

  4. Chemical and Cellular Antioxidant Activities of Chicken Breast Muscle Subjected to Various Thermal Treatments Followed by Simulated Gastrointestinal Digestion.

    PubMed

    Sangsawad, Papungkorn; Kiatsongchai, Ratana; Chitsomboon, Benjamart; Yongsawatdigul, Jirawat

    2016-10-01

    The effect of thermal treatments on chemical and cellular antioxidant activities of chicken breasts subjected to in vitro gastrointestinal digestion was investigated. Breast of Korat crossbred chicken (KC) and commercial broiler (BR) were cooked under various conditions, namely heating at 70 °C for 30 min (H-0.5) and 24 h (H-24), autoclaving (AC) at 121°C for 15 min (AC-15) and 60 min (AC-60). Protein digestibility decreased upon the extreme thermal treatment of AC-60. The H-0.5 improved metal chelating activity of KC digesta, FRAP, and anti-liposome oxidation of BR digesta. Digesta of BR/H-0.5 and KC/AC-15 at 50 μg/mL exhibited the highest cytoprotective effect against tert-butyl hydroperoxide (TBHP)-induced oxidative damage of HepG2 cells. In addition, the KC/AC-15 digesta at a concentration as low as 12.5 μg/mL inhibited intracellular TBHP-induced reactive oxyfen species (ROS) production (P < 0.05). Thus, the digesta of KC breasts subjected to AC-15 provides not only nutritional value but also antioxidant activity at the cellular level. © 2016 Institute of Food Technologists®.

  5. A computational study of the catalytic aerobic epoxidation of propylene over the coordinatively unsaturated metal-organic framework Fe3(btc)2: formation of propylene oxide and competing reactions.

    PubMed

    Maihom, Thana; Sawangphruk, Montree; Probst, Michael; Limtrakul, Jumras

    2018-02-28

    The aerobic epoxidation of propylene over the metal-organic framework Fe 3 (btc) 2 (btc = 1,3,5-benzentricarboxylate) as catalyst has been investigated by means of density functional calculations. The mechanisms of the reaction towards propylene oxide, carbonylic products (acetone and propanal) and a pi-allyl radical were investigated to assess the efficiency of Fe 3 (btc) 2 for the selective formation of propylene oxide. Propylene oxide and carbonylic products are formed on Fe 3 (btc) 2 by proceeding via propyleneoxy intermediates in the first step. Subsequently, the intermediates can then either be transformed to propylene oxide by way of ring closure of the intermediate or to the carbonylic compounds of propanal and acetone via 1,2-hydride shift. The results show that the formation of propylene oxide is favored over the formation of carbonylic products mainly due to the activation barriers being 2-3 times smaller. The activation barriers for the formation of the propyleneoxy intermediates on the Fe 3 (btc) 2 catalyst for the first and second reaction cycle are also lower than the barriers obtained for the formation of the pi-allyl radical that acts as the precursor to combustion products. On the basis of these computational results, we therefore expect a high catalytic selectivity of the Fe 3 (btc) 2 catalyst with respect to the formation of propylene oxide. We also compared the catalytic activities of Fe 3 (btc) 2 and Cu 3 (btc) 2 . The activation energy of the rate-determining step is almost 2 times lower for Fe 3 (btc) 2 than that for Cu 3 (btc) 2 , due to a larger charge transfer from the catalytic site to the O 2 molecule in the case of Fe 3 (btc) 2 .

  6. Contact and fumigant toxicity of Armoracia rusticana essential oil, allyl isothiocyanate and related compounds to Dermatophagoides farinae.

    PubMed

    Yun, Yeon-Kyeong; Kim, Hyun-Kyung; Kim, Jun-Ran; Hwang, Kumnara; Ahn, Young-Joon

    2012-05-01

    The toxicity to adult Dermatophagoides farinae of allyl isothiocyanate identified in horseradish, Armoracia rusticana, oil and another 27 organic isothiocyanates was evaluated using contact + fumigant and vapour-phase mortality bioassays. Results were compared with those of two conventional acaricides, benzyl benzoate and dibutyl phthalate. Horseradish oil (24 h LC(50), 1.54 µg cm(-2)) and allyl isothiocyanate (2.52 µg cm(-2)) were highly toxic. Benzyl isothiocyanate (LC(50) , 0.62 µg cm(-2)) was the most toxic compound, followed by 4-chlorophenyl, 3-bromophenyl, 3,5-bis(trifluoromethyl)phenyl, cyclohexyl, 2-chlorophenyl, 4-bromophenyl and 2-bromophenyl isothiocyanates (0.93-1.41 µg cm(-2)). All were more effective than either benzyl benzoate (LC(50) , 4.58 µg cm(-2)) or dibutyl phthalate (24.49 µg cm(-2)). The structure-activity relationship indicates that types of functional group and chemical structure appear to play a role in determining the isothiocyanate toxicities to adult D. farinae. In the vapour-phase mortality bioassay, these isothiocyanates were consistently more toxic in closed versus open containers, indicating that their mode of delivery was, in part, a result of vapour action. In the light of global efforts to reduce the level of highly toxic synthetic acaricides in indoor environments, the horseradish oil-derived compounds and the isothiocyanates described herein merit further study as potential acaricides for the control of house dust mite populations as fumigants with contact action. Copyright © 2011 Society of Chemical Industry.

  7. Effect of allyl isothiocyanate on ultra-structure and the activities of four enzymes in adult Sitophilus zeamais.

    PubMed

    Wu, Hua; Liu, Xue-ru; Yu, Dong-dong; Zhang, Xing; Feng, Jun-tao

    2014-02-01

    Rarefaction and vacuolization of the mitochondrial matrix of AITC-treated (allyl isothiocyanate-treated) adult Sitophilus zeamais were evident according to the ultra-structural by TEM. Four important enzymes in adult S. zeamais were further studied after fumigation treatment with allyl isothiocyanate (AITC) extracted from Armoracia rusticana roots and shoots. The enzymes were glutathione S-transferase (GST), catalase (CAT), cytochrome c oxidase, and acetylcholinesterase (AChE). The results indicated that the activities of the four enzymes were strongly time and dose depended. With prolonged exposure time, treatment with 0.74μg/mL AITC inhibited the activities of cytochrome c oxidase, AChE, and CAT, but induced the activity of GST. The activities of cytochrome c oxidase, AChE, and CAT were remarkably induced at a low AITC dosage (0.25μg/mL), but were restrained with increased AITC dosage. The activity of GST was inhibited at a low AITC dosage (0.5μg/mL), but was induced at a high AITC dosage (1.5μg/mL). According to the results of TEM, toxic symptoms and enzymes activities, it suggested that mitochondrial maybe the one site of action of AITC against the adult S. zeamais and it also suggested that cytochrome c oxidase maybe one target protein of AITC against the adult S. zeamais, which need to further confirmed by protein function tested. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Syntheses of the hexahydroindene cores of indanomycin and stawamycin by combinations of iridium-catalyzed asymmetric allylic alkylations and intramolecular Diels-Alder reactions.

    PubMed

    Gärtner, Martin; Satyanarayana, Gedu; Förster, Sebastian; Helmchen, Günter

    2013-01-02

    Short and concise syntheses of the hexahydroindene cores of the antibiotics indanomycin (X-14547 A) and stawamycin are presented. Key methods used are an asymmetric iridium-catalyzed allylic alkylation, a modified Julia olefination, a Suzuki-Miyaura coupling, and an intramolecular Diels-Alder reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation.

    PubMed

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-09

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  10. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    NASA Astrophysics Data System (ADS)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  11. Catalytic SN2'- and Enantioselective Allylic Substitution with a Diborylmethane Reagent and Application in Synthesis.

    PubMed

    Shi, Ying; Hoveyda, Amir H

    2016-03-01

    A catalytic method for the site- and enantioselective addition of commercially available di-B(pin)-methane to allylic phosphates is introduced (pin=pinacolato). Transformations may be facilitated by an NHC-Cu complex (NHC=N-heterocyclic carbene) and products obtained in 63-95 % yield, 88:12 to >98:2 S(N)2'/S(N)2 selectivity, and 85:15-99:1 enantiomeric ratio. The utility of the approach, entailing the involvement of different catalytic cross-coupling processes, is highlighted by its application to the formal synthesis of the cytotoxic natural product rhopaloic acid A. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enantioselective Allylation of (2E,4E)-2,4-Dimethylhexadienal: Synthesis of (5R,6S)-(+)-Pteroenone.

    PubMed

    Koukal, Petr; Kotora, Martin

    2015-05-11

    Allylation, trans- and cis-crotylation of (2E,4E)-2,4-dimethylhexadienal, a representative α,β,γ,δ-unsaturated aldehyde, was carried out under different catalytic and stoichiometric conditions. The reactions catalyzed by organocatalysts TRIP-PA and N,N'-dioxides gave the best results with respect to yields, asymmetric induction, and catalyst load in comparison to other procedures. The developed methodology was applied in the enantioselective synthesis of (5R,6S)-(+)-pteroenone, a defensive metabolite (ichthyodeterrent) of the Antarctic pteropod Clione antarctica. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Picolinoxy group, a new leaving group for anti SN2' selective allylic substitution with aryl anions based on Grignard reagents.

    PubMed

    Kiyotsuka, Yohei; Acharya, Hukum P; Katayama, Yuji; Hyodo, Tomonori; Kobayashi, Yuichi

    2008-05-01

    The picolinoxy group was found to be an extremely powerful leaving group for allylic substitution with aryl nucleophiles derived from ArMgBr and CuBr*Me2S. The substitution proceeds with anti SN2' pathway and with high chirality transfer. The electron-withdrawing effect of the pyridyl group and chelation to MgBr2 are likely the origin of success. Results suggesting these effects were obtained.

  14. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-03-01

    Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al2O3 supported copper and gold nanoparticles. Li2O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of catalyst and oxidant amounts was investigated, with the apparent rate constant, kapp being proportional to the amount of nano catalyst and oxygen present in the system.

  15. N-Allyl- N, N-Bis(trimethylsilyl)amine as a Novel Electrolyte Additive To Enhance the Interfacial Stability of a Ni-Rich Electrode for Lithium-Ion Batteries.

    PubMed

    Zheng, Qinfeng; Xing, Lidan; Yang, Xuerui; Li, Xiangfeng; Ye, Changchun; Wang, Kang; Huang, Qiming; Li, Weishan

    2018-05-16

    Enhancing the electrode/electrolyte interface stability of high-capacity LiNi 0.8 Co 0.15 Al 0.05 O 2 (LNCA) cathode material is urgently required for its application in next-generation lithium-ion battery. Herein, we demonstrate that enhanced interfacial stability of LNCA can be achieved by simply introducing 2 wt % N-allyl- N, N-bis(trimethylsilyl)amine (NNB) electrolyte additive. Electrolyte oxidation reactions and electrode structural destruction are greatly suppressed in the electrolyte with NNB additive, leading to improved cyclic stability of LNCA from 72.8 to 86.2% after 300 cycles. The mechanism of NNB on improving the cyclic stability of LNCA has been verified to its excellent solid electrolyte interface (SEI) film-forming capability. Moreover, the X-ray diffraction and X-ray photoelectron spectroscopy results indicate that the NNB-derived Si-containing SEI film restrains the Li/Ni disorder of LNCA during cycling, which further improves the cyclic stability of Ni-rich LNCA. Importantly, the charging/discharging test reveals that the NNB additive effectively improves the cyclic stability of the LNCA/graphite full cell.

  16. In vitro cytotoxicity and differential cellular sensitivity of derivatives of diamino acids. II. N1-methyl, N1-allyl, N1-(2-chloroethyl) and N1-propargyl nitrosoureas.

    PubMed

    Dulude, H; Salvador, R; Gallant, G

    1995-01-01

    The in vitro cytotoxicity and differential cellular sensitivity of a series of new N1-methyl, N1-allyl, N1-2-chloroethyl and N1-propargyl nitrosourea derivatives of diamino acids were determined in the National Cancer Institute's primary antitumor drug screen. The compounds tested showed an in vitro anticancer activity similar to commercialized nitrosoureas such as CCNU, BCNU, MeCCNU, chlorozotocin, streptozotocin and PCNU. The alkylating moiety of the nitrosoureas seems to play a role in the general selectivity of our compounds. The N1-methyl and N1-2-chloroethyl nitrosourea derivatives are more selective for central nervous system cell lines, the N1-allyl nitrosourea derivatives are more selective for lung cancer cell lines and the N1-propargyl nitrosoureas are more selective for leukemia cell lines.

  17. Diastereoselective synthesis of enantiopure morpholines by electrophilic selenium-induced 6-exo cyclizations on chiral 3-allyl-2-hydroxymethylperhydro-1,3-benzoxazine derivatives.

    PubMed

    Pedrosa, Rafael; Andrés, Celia; Mendiguchía, Pilar; Nieto, Javier

    2006-11-10

    Enantiopure morpholine derivatives have been prepared by selenocyclofunctionalization of chiral 3-allyl-2-hydroxymethyl-substituted perhydro-1,3-benzoxazine derivatives. The cyclization occurs in high yields and diastereoselection, although the temperature of the reaction and the structure of the substituent at C-2 and the substitution pattern of the double bond can modify the regio- and stereochemistry of the final products.

  18. The effect of alpha-tocopherol on the oxidation and free radical decay in irradiated UHMWPE.

    PubMed

    Oral, Ebru; Rowell, Shannon L; Muratoglu, Orhun K

    2006-11-01

    We developed a radiation cross-linked ultra-high molecular weight polyethylene (UHMWPE) stabilized with alpha-tocopherol (Vitamin E) as a bearing material in total joint replacements. The stabilizing effect of alpha-tocopherol on free radical reactions in UHMWPE is not well understood. We investigated the effect of alpha-tocopherol on the oxidation and transformation of residual free radicals during real-time aging of alpha-tocopherol-doped, irradiated UHMWPE (alphaTPE) and irradiated UHMWPE (control). Samples were aged at 22 degrees C (room temperature) in air, at 40 degrees C in air and at 40 degrees C in water for 7 months. During the first month, alphaTPE showed some oxidation at the surface, which stayed constant thereafter. Control exhibited substantial oxidation in the subsurface region, which increased with time. The alkyl/allyl free radicals transformed to oxygen centered ones in both materials; this transformation occurred faster in alpha-TPE. In summary, the real-time oxidation behavior of alpha-TPE was consistent with that observed using accelerated aging methods. This new UHMWPE is oxidation resistant and is expected to maintain its properties in the long term.

  19. Aerobic and Electrochemical Oxidations with N-Oxyl Reagents

    NASA Astrophysics Data System (ADS)

    Miles, Kelsey C.

    Selective oxidation of organic compounds represents a significant challenge for chemical transformations. Oxidation methods that utilize nitroxyl catalysts have become increasingly attractive and include Cu/nitroxyl and nitroxyl/NO x co-catalyst systems. Electrochemical activation of nitroxyls is also well known and offers an appealing alternative to the use of chemical co-oxidants. However, academic and industrial organic synthetic communities have not widely adopted electrochemical methods. Nitroxyl catalysts facilitate effective and selective oxidation of alcohols and aldehydes to ketones and carboxylic acids. Selective benzylic, allylic, and alpha-heteroatom C-H abstraction can also be achieved with nitroxyls and provides access to oxygenated products when used in combination with molecular oxygen as a radical trap. This thesis reports various chemical and electrochemical oxidation methods that were developed using nitroxyl mediators. Chapter 1 provides a short review on practical aerobic alcohol oxidation with Cu/nitroxyl and nitroxyl/NO x systems and emphasizes the utility of bicyclic nitroxyls as co-catalysts. In Chapter 2, the combination of these bicyclic nitroxyls with NOx is explored for development of a mild oxidation of alpha-chiral aryl aldehydes and showcases a sequential asymmetric hydroformylation/oxidation method. Chapter 3 reports the synthesis and characterization of two novel Cu/bicyclic nitroxyl complexes and the electronic structure analysis of these complexes. Chapter 4 highlights the electrochemical activation of various nitroxyls and reports an in-depth study on electrochemical alcohol oxidation and compares the reactivity of nitroxyls under electrochemical or chemical activation. N-oxyls can also participate in selective C-H abstraction, and Chapter 5 reports the chemical and electrochemical activation of N-oxyls for radical-mediated C-H oxygenation of (hetero)arylmethanes. For these electrochemical transformations, the development of

  20. Catalyst-Directed Diastereoselective Isomerization of Allylic Alcohols for the Stereoselective Construction of C(20) in Steroid Side Chains: Scope and Topological Diversification.

    PubMed

    Li, Houhua; Mazet, Clément

    2015-08-26

    The stereoselective construction of C20 in steroidal derivatives by a highly diastereoselective Ir-catalyzed isomerization of primary allylic alcohols is reported. A key aspect of this strategy is a straightforward access to geometrically pure steroidal enol tosylate and enol triflate intermediates for subsequent high yielding stereoretentive Negishi cross-coupling reactions to allow structural diversity to be introduced. A range of allylic alcohols participates in the diastereoselective isomerization under the optimized reaction conditions. Electron-rich and electron-poor aryl or heteroaryl substituents are particularly well-tolerated, and the stereospecific nature of the reaction provides indifferently access to the natural C20-(R) and unnatural C20-(S) configurations. Alkyl containing substrates are more challenging as they affect regioselectivity of iridium-hydride insertion. A rationale for the high diastereoselectivities observed is proposed for aryl containing precursors. The scope of our method is further highlighted through topological diversification in the side chain and within the polycyclic domain of advanced and complex steroidal architectures. These findings have the potential to greatly simplify access to epimeric structural analogues of important steroid scaffolds for applications in biological, pharmaceutical, and medical sciences.

  1. N-(2-Allyl-4-eth­oxy-2H-indazol-5-yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Viale, Maurizio; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    The indazole ring system of the title compound, C19H21N3O3S, is almost planar (r.m.s. deviation = 0.0192 Å) and forms dihedral angles of 77.99 (15) and 83.9 (3)° with the benzene ring and allyl group, respectively. In the crystal, centrosymmetrically related mol­ecules are connected by pairs of N—H⋯O hydrogen bonds into dimers, which are further linked by C—H⋯O hydrogen bonds, forming columns parallel to the b axis. PMID:24860413

  2. Synthesis of (+)-Didemniserinolipid B: Application of a 2-Allyl-4-fluorophenyl Auxiliary for Relay Ring-Closing Metathesis

    PubMed Central

    Marvin, Christopher C.; Voight, Eric A.; Suh, Judy M.; Paradise, Christopher L.; Burke, Steven D.

    2009-01-01

    The synthesis of didemniserinolipid B utilizing a ketalization/ring-closing metathesis (K/RCM) strategy is described. In the course of this work, a novel 2-allyl-4-fluorophenyl auxiliary for relay ring-closing metathesis (RRCM) was developed which increased the yield of the RCM. The resulting 6,8-dioxabicyclo[3.2.1]octene core was selectively functionalized by complimentary dihydroxylation and epoxidation routes to install the C10 axial alcohol. This bicyclic ketal core was further functionalized by etherification and an alkene cross metathesis with an unsaturated α-phenylselenyl ester en route to completing the total synthesis. PMID:18811201

  3. Purinoceptor-mediated, capsaicin-resistant excitatory effect of allyl isothiocyanate on neurons of the guinea-pig small intestine.

    PubMed

    Bartho, Lorand; Nordtveit, Elin; Szombati, Veronika; Benko, Rita

    2013-08-01

    Allyl isothiocyanate (AITC; 200 μM) caused atropine- and tetrodotoxin-sensitive longitudinal muscle contraction on the guinea-pig small intestine. The response was not influenced by hexamethonium, a functional blockade of capsaicin-sensitive neurons or by antagonists acting at TRPV1 or TRPA1, but was abolished by the P2 purinoceptor antagonist PPADS (50 μM). It is concluded that cholinergic motoneurons are activated by a purinergic mechanism in the course of the AITC response, independently of capsaicin-sensitive processes or even TRPA1. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.

  4. Intramolecular carbolithiation of N-allyl-ynamides: an efficient entry to 1,4-dihydropyridines and pyridines - application to a formal synthesis of sarizotan.

    PubMed

    Gati, Wafa; Rammah, Mohamed M; Rammah, Mohamed B; Evano, Gwilherm

    2012-01-01

    We have developed a general synthesis of polysubstituted 1,4-dihydropyridines and pyridines based on a highly regioselective lithiation/6-endo-dig intramolecular carbolithiation from readily available N-allyl-ynamides. This reaction, which has been successfully applied to the formal synthesis of the anti-dyskinesia agent sarizotan, further extends the use of ynamides in organic synthesis and further demonstrates the synthetic efficiency of carbometallation reactions.

  5. Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species

    PubMed Central

    Duprat, F; Girard, C; Jarretou, G; Lazdunski, M

    2005-01-01

    This study firstly shows with in situ hybridization on human pancreas that TALK-1 and TALK-2, two members of the 2P domain potassium channel (K2P) family, are highly and specifically expressed in the exocrine pancreas and absent in Langherans islets. On the contrary, expression of TASK-2 in mouse pancreas is found both in the exocrine pancreas and in the Langherans islets. This study also shows that TALK-1 and TALK-2 channels, expressed in Xenopus oocytes, are strongly and specifically activated by nitric oxide (obtained with a mixture of sodium nitroprussate (SNP) and dithiothreitol (DTT)), superoxide anion (obtained with xanthine and xanthine oxidase) and singlet oxygen (obtained upon photoactivation of rose bengal, and with chloramine T). Other nitric oxide and reactive oxygen species (NOS and ROS) donors, as well as reducing conditions were found to be ineffective on TALK-1, TALK-2 and TASK-2 (sin-1, angeli's salt, SNP alone, tBHP, H2O2, and DTT). These results suggest that, in the exocrine pancreas, specific members of the NOS and ROS families could act as endogenous modulators of TALK channels with a role in normal secretion as well as in disease states such as acute pancreatitis and apoptosis. PMID:15513946

  6. The - - and Submm-Wave Spectrum of Allyl Isocyanide and Radioastronomical Observations in Orion KL and the Primos Line Survey

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Motiyenko, R. A.; Margules, L.; Huet, T. R.; Ecija, P.; Cocinero, E. J.; Basterretxea, F.; Fernandez, J. A.; Castano, F.; Tercero, B.; Cernicharo, J.; Lesarri, A.; Guillemin, J. C.

    2013-06-01

    Last year we presented the first rotational analysis of the ground state of the two conformers of allyl isocyanide from 4 GHz to 905 GHz. The analysis of the rotational spectrum of the cis conformer of allyl isocyanide was extended. We resolved Coriolis interactions of a and b types between the excited vibrational states ν_1=1 and ν_2=1, calculated to be at 156 cm^{-1} (A^{'}) and 167 cm^{-1} (A^{''}) respectively (MP2/aug-cc-pvtz), from 150 GHz to 600 GHz. Strong perturbations were observed in the 150-310 GHz range for low values of the quantum number K_a starting from K_a = 0, 1. The anharmonicities appeared as well at higher frequencies for larger quantum numbers. The two modes were fitted together with the SPFIT/SPCAT suite of programs and a set of Coriolis parameters was accurately determined. The fit contains more than 3000 lines up to J = 99 and K_a = 12 for both modes. We did not detect these species neither in the IRAM 30-m line survey of Orion KL nor in the PRIMOS survey towards SgrB2. Nevertheless, we provided upper limits to their column density in Orion KL. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. I. Haykal et al. manuscript in preparation H. Pickett J. Mol. Spec.{148}, 371-377, 1991.

  7. Practical synthesis, anticonvulsant, and antimicrobial activity of N-allyl and N-propargyl di(indolyl)indolin-2-ones.

    PubMed

    Praveen, Chandrasekaran; Ayyanar, Asairajan; Perumal, Paramasivan Thirumalai

    2011-07-01

    An operation friendly protocol for the synthesis of novel di(indolyl)indolin-2-ones via Cu(OTf)(2) catalyzed bis-addition of N-allyl and N-propargyl indole with isatin was developed. This methodology allowed us to achieve the products in excellent yields without requiring purification technique like column chromatography. All the synthesized compounds were evaluated for their in vivo anticonvulsant activity against maximal electroshock test. Six compounds showed maximum activity compared to the standard drug phenytoin. The scope of the new molecules as antimicrobial agents were tested against two bacterial strains (Staphylococcus aureus and Escherichia coli) and one fungal strain (Candida albicans). Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Rhodium-catalyzed asymmetric tandem cyclization for efficient and rapid access to underexplored heterocyclic tertiary allylic alcohols containing a tetrasubstituted olefin.

    PubMed

    Li, Yi; Xu, Ming-Hua

    2014-05-16

    The first Rh-catalyzed asymmetric tandem cyclization of nitrogen- or oxygen-bridged 5-alkynones with arylboronic acids was achieved. The simple catalytic system involving a rhodium(I) complex with readily available chiral BINAP ligand promotes the reaction to proceed in a highly stereocontrolled manner. This protocol provides a very reliable and practical access to a variety of chiral heterocyclic tertiary allylic alcohols possessing a tetrasubstituted carbon stereocenter and an all-carbon tetrasubstituted olefin functionality in good yields with great enantioselectivities up to 99% ee.

  9. N-(1-Allyl-3-chloro-4-eth­oxy-1H-indazol-5-yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    In the title compound, C19H20ClN3O3S, the benzene ring is inclined to the indazole ring system by 51.23 (8)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers which stack in columns parallel to [011]. The atoms in the allyl group are disordered over two sets of sites with an occupancy ratio of 0.624 (8):0.376 (8). PMID:24940237

  10. Intramolecular carbolithiation of N-allyl-ynamides: an efficient entry to 1,4-dihydropyridines and pyridines – application to a formal synthesis of sarizotan

    PubMed Central

    Gati, Wafa; Rammah, Mohamed M; Rammah, Mohamed B

    2012-01-01

    Summary We have developed a general synthesis of polysubstituted 1,4-dihydropyridines and pyridines based on a highly regioselective lithiation/6-endo-dig intramolecular carbolithiation from readily available N-allyl-ynamides. This reaction, which has been successfully applied to the formal synthesis of the anti-dyskinesia agent sarizotan, further extends the use of ynamides in organic synthesis and further demonstrates the synthetic efficiency of carbometallation reactions. PMID:23365632

  11. Synthesis of Cyclopentenimines from N-Allyl Ynamides via a Tandem Aza-Claisen Rearrangement–Carbocyclization Sequence

    PubMed Central

    Wang, Xiao-Na; Winston-McPherson, Gabrielle N.; Walton, Mary C.; Zhang, Yu

    2013-01-01

    We describe here details of our investigations into Pd-catalyzed and thermal aza-Claisen–carbocyclizations of N-allyl ynamides to prepare a variety of α,β-unsaturated cyclopentenimines. The nature of the ynamide electron withdrawing group and β-substituent plays critical roles in the success of this tandem cascade. With N-sulfonyl ynamides, the use of palladium catalysis is required, as facile 1,3-sulfonyl shifts dominate under thermal conditions. However, since no analogous 1,3-phosphoryl shift is operational, N-phosphoryl ynamides could be used to prepare similar cyclopentenimines under thermal conditions through zwitter ionic intermediates that undergo N-promoted H-shifts. Alternatively, by employing ynamides bearing tethered carbon nucleophiles, the zwitter ionic intermediates could be intercepted giving rise rapidly to more complex fused bi- and tricyclic scaffolds. PMID:23718841

  12. Sugar-Annulated Oxazoline Ligands: A Novel Pd(II) Complex and Its Application in Allylic Substitution.

    PubMed

    Kraft, Jochen; Mill, Katharina; Ziegler, Thomas

    2016-12-10

    Two novel carbohydrate-derived pyridyl (PYOX)- and cyclopropyl (CYBOX)-substituted oxazoline ligands were prepared from d-glucosamine hydrochloride and 1,3,4,6-tetra- O -acetyl-2-amino-2-deoxy-β-d-glucopyranose hydrochloride in two steps, respectively. The sugar-annulated PYOX ligand formed a stable metal complex with Pd(II), which was fully characterized by NMR spectroscopy and X-ray crystallography. NMR and X-ray analysis revealed a change of the conformation in the sugar moiety upon complexation with the palladium(II) species. Both glycosylated ligands resulted in high asymmetric induction (up to 98% ee ) upon application as chiral ligands in the Pd-catalyzed allylic alkylation of rac -1,3-diphenylallyl acetate with dimethyl malonate (Tsuji-Trost reaction). Both ligands provided mainly the ( R )-enantiomer of the alkylation product.

  13. The Novel μ-Opioid Receptor Antagonist, [N-Allyl-Dmt1]Endomorphin-2, Attenuates the Enhancement of GABAergic Neurotransmission by Ethanol

    PubMed Central

    Li, Qiang; Okada, Yoshio; Marczak, Ewa; Wilson, Wilkie A.; Lazarus, Lawrence H.; Swartzwelder, H. S.

    2009-01-01

    Aims: We investigated the effects of [N-allyl-Dmt1]endomorphin-2 (TL-319), a novel and highly potent μ-opioid receptor antagonist, on ethanol (EtOH)-induced enhancement of GABAA receptor-mediated synaptic activity in the hippocampus. Methods: Evoked and spontaneous inhibitory postsynaptic currents (eIPSCs and sIPSCs) were isolated from CA1 pyramidal cells from brain slices of male rats using whole-cell patch-clamp techniques. Results: TL-319 had no effect on the baseline amplitude of eIPSCs or the frequency of sIPSCs. However, it induced a dose-dependent suppression of an ethanol-induced increase of sIPSC frequency with full reversal at concentrations of 500 nM and higher. The non-specific competitive opioid receptor antagonist naltrexone also suppressed EtOH-induced increases in sIPSC frequency but only at a concentration of 60 μM. Conclusion: These data indicate that blockade of μ-opioid receptors by low concentrations of [N-allyl-Dmt1]endomorphin-2 can reverse ethanol-induced increases in GABAergic neurotransmission and possibly alter its anxiolytic or sedative effects. This suggests the possibility that high potency opioid antagonists may emerge as possible candidate compounds for the treatment of ethanol addiction. PMID:18971291

  14. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air

    DOEpatents

    Hanson, Susan Kloek; Silks, Louis A; Wu, Ruilian

    2013-08-27

    The invention concerns processes for oxidizing an alcohol to produce a carbonyl compound. The processes comprise contacting the alcohol with (i) a gaseous mixture comprising oxygen; and (ii) an amine compound in the presence of a catalyst, having the formula: ##STR00001## where each of R.sup.1-R.sup.12 are independently H, alkyl, aryl, CF.sub.3, halogen, OR.sup.13, SO.sub.3R.sup.14, C(O)R.sup.15, CONR.sup.16R.sup.17 or CO.sub.2R.sup.18; each of R.sup.13-R.sup.18 is independently alkyl or aryl; and Z is alkl or aryl.

  15. Catalytic Enantioselective and Diastereoselective Allylic Alkylation with Fluoroenolates: Efficient Access to C3-Fluorinated and All-Carbon Quaternary Oxindoles

    PubMed Central

    Balaraman, Kaluvu; Wolf, Christian

    2017-01-01

    Synthetically versatile 3,3-disubstituted fluorooxindoles exhibiting vicinal chirality centers were obtained in high yields and with excellent enantio-, diastereo- and regioselectivity by catalytic asymmetric fluoroenolate alkylation with allylic acetates. The reaction proceeds under mild conditions and can be upscaled without compromising the asymmetric induction. The unique synthetic usefulness of the products is highlighted with the incorporation of additional functionalities and the formation of 3-fluorinated oxindoles exhibiting an array of four adjacent chirality centers. A new C-F bond functionalization path that provides unprecedented means for stereoselective generation of a chiral quaternary carbon center in the alkaloid scaffold is introduced. PMID:28026079

  16. Structure determination of a key intermediate of the enantioselective Pd complex catalyzed allylic substitution reaction

    PubMed

    Junker; Reif; Steinhagen; Junker; Felli; Reggelin; Griesinger

    2000-09-01

    The structure of a catalytic intermediate with important implications for the interpretation of the stereochemical outcome of the palladium complex catalyzed allylic substitution with phosphino-oxazoline (PHOX) ligands is determined by liquid state NMR. The complex displays a novel structure that is highly distorted compared with other palladium eta2-olefin complexes known so far. The structure has been determined from nuclear overhauser data (NOE), scalar coupling constants, and long range projection angle restraints derived from dipole dipole cross-correlated relaxation of multiple quantum coherence. The latter restraints have been implemented into a distance geometry protocol. The projection angle restraints yield a higher precision in the determination of the relative orientation of the two molecular moieties and are essential to provide an exact structural definition of the olefinic part of the catalytic intermediate with respect to the ligand.

  17. Rhodium-Catalyzed Asymmetric N-H Functionalization of Quinazolinones with Allenes and Allylic Carbonates: The First Enantioselective Formal Total Synthesis of (-)-Chaetominine.

    PubMed

    Zhou, Yirong; Breit, Bernhard

    2017-12-22

    An unprecedented asymmetric N-H functionalization of quinazolinones with allenes and allylic carbonates was successfully achieved by rhodium catalysis with the assistance of chiral bidentate diphosphine ligands. The high efficiency and practicality of this method was demonstrated by a low catalyst loading of 1 mol % as well as excellent chemo-, regio-, and enantioselectivities with broad functional group compatibility. Furthermore, this newly developed strategy was applied as key step in the first enantioselective formal total synthesis of (-)-chaetominine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrolysis of cellulose catalyzed by quaternary ammonium perrhenates in 1-allyl-3-methylimidazolium chloride.

    PubMed

    Wang, Jingyun; Zhou, Mingdong; Yuan, Yuguo; Zhang, Quan; Fang, Xiangchen; Zang, Shuliang

    2015-12-01

    Quaternary ammonium perrhenates were applied as catalyst to promote the hydrolysis of cellulose in 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The quaternary ammonium perrhenates displayed good catalytic performance for cellulose hydrolysis. Water was also proven to be effective to promote cellulose hydrolysis. Accordingly, 97% of total reduced sugar (TRS) and 42% of glucose yields could be obtained under the condition of using 5mol% of tetramethyl ammonium perrhenate as catalyst, 70μL of water, ca. 0.6mmol of microcrystalline cellulose (MCC) and 2.0g of [Amim]Cl as solvent under microwave irradiation for 30min at 150°C (optimal conditions). The influence of quaternary ammonium cation on the efficiency of cellulose hydrolysis was examined based on different cation structures of perrhenates. The mechanism on perrhenate catalyzed cellulose hydrolysis is also discussed, whereas hydrogen bonding between ReO4 anion and hydroxyl groups of cellulose is assumed to be the key step for depolymerization of cellulose. Copyright © 2015. Published by Elsevier Ltd.

  19. Alleviative effects of s-allyl cysteine and s-ethyl cysteine on MCD diet-induced hepatotoxicity in mice.

    PubMed

    Lin, Chun-che; Yin, Mei-chin; Liu, Wen-hu

    2008-11-01

    Alleviative effects of s-allyl cysteine (SAC) and s-ethyl cysteine (SEC) upon methionine and choline deficient (MCD) diet-induced hepatotoxicity in mice were examined. SAC or SEC at 1g/L was added into drinking water for 7 weeks with MCD diet. MCD feeding significantly increased hepatic triglyceride and cholesterol levels, and elevated the activity of glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme, fatty acid synthase (FAS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (P < 0.05). However, the intake of SAC or SEC significantly decreased hepatic triglyceride accumulation, and reduced G6PDH and FAS activities (P < 0.05). MCD feeding significantly lowered serum and hepatic glutathione (GSH) levels, increased malondialdehyde (MDA) and oxidized glutathione (GSSG) formation, and suppressed the activity and mRNA expression of glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (P < 0.05). The intake of SAC or SEC significantly increased serum and hepatic GSH levels, decreased MDA and GSSG formation, restored the activity and mRNA expression of GPX, SOD and catalase (P < 0.05). MCD feeding significantly enhanced the mRNA expression of interleukin (IL)-1beta, IL-6, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta1, matrix metalloproteinases-9 (MMP-9) and collagen-alpha1 (P < 0.05). The intake of SAC and SEC significantly blunted the mRNA expression of IL-1beta, IL-6, TNF-alpha, TGF-beta1 and collagen-alpha1 (P < 0.05). SEC was greater than SAC in suppressing IL-6 and TNF-alpha expression (P < 0.05), but SAC was greater than SEC in suppressing collagen-alpha1 and TGF-beta1 expression (P < 0.05). These data suggest that SAC and SEC are potent agents against MCD-induced hepatotoxicity.

  20. Allylic Amination and N-Arylation-Based Domino Reactions Providing Rapid Three-Component Strategies to Fused Pyrroles with Different Substituted Patterns

    PubMed Central

    Jiang, Bo; Li, Ying; Tu, Man-Su; Wang, Shu-Liang; Tu, Shu-Jiang; Li, Guigen

    2012-01-01

    New three-component domino reaction providing divergent approaches to multi-functionalized fused pyrroles with different substituted patterns have been established (40 examples). The direct C(sp3)–N bond formation was achieved through intermolecular allylic amination in a one-pot operation; and N-arylation of amines was realized by varying N-amino acid enaminones. The reaction is easy to perform simply by mixing three common reactants in acetic acid under microwave heating. The reaction proceeds at fast rates and can be finished within 30 min, which makes workup convenient to give good chemical yields. PMID:22852549

  1. Neuroprotective effect of S-allyl-l-cysteine derivatives against endoplasmic reticulum stress-induced cytotoxicity is independent of calpain inhibition.

    PubMed

    Imai, Toru; Kosuge, Yasuhiro; Saito, Hiroaki; Uchiyama, Taketo; Wada, Taira; Shimba, Shigeki; Ishige, Kumiko; Miyairi, Shinichi; Makishima, Makoto; Ito, Yoshihisa

    2016-03-01

    S-allyl-l-cysteine (SAC) is known to have neuroprotective properties. We synthesized various SAC derivatives and tested their effects on endoplasmic reticulum stress-induced neurotoxicity in cultured hippocampal neurons (HPNs). Among the compounds tested, S-propyl-l-cysteine (SPC) exhibited the strongest neuroprotective activity in HPNs, followed by S-ethyl-l-cysteine (SEC) and S-methyl-l-cysteine (SMC). Unlike SAC and SMC, SPC and SEC did not have inhibitory activity on μ-calpain, suggesting that the mechanism underlying the protective activity of SPC and SEC differs from that of SAC. Copyright © 2016 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  2. Allylic amination reactivity of Ni, Pd, and Pt heterobimetallic and monometallic complexes.

    PubMed

    Carlsen, Ryan W; Ess, Daniel H

    2016-06-14

    Transition metal heterobimetallic complexes with dative metal-metal interactions have the potential for novel fast reactivity. There are few studies that both compare the reactivity of different metal centers in heterobimetallic complexes and compare bimetallic reactivity to monometallic reactivity. Here we report density-functional calculations that show the reactivity of [Cl2Ti(N(t)BuPPh2)2M(II)(η(3)-methallyl)] heterobimetallic complexes for allylic amination follows M = Ni > Pd > Pt. This reactivity trend was not anticipated since the amine addition transition state involves M(II) to M(0) reduction and this could disadvantage Ni. Comparison of heterobimetallic complexes to the corresponding monometallic (CH2)2(N(t)BuPPh2)2M(II)(η(3)-methallyl) complexes reveals that this reactivity trend is due to the bimetallic interaction and that the bimetallic interaction significantly lowers the barrier height for amine addition by >10 kcal mol(-1). The impact of the early transition metal center on the amination addition barrier height depends on the late transition metal center. The lowest barrier heights for this reaction occur when late and early transition metal centers are from the same periodic table row.

  3. Effects of Allyl Isothiocyanate, Acetaminophen, and Dipyrone in the Guinea-Pig Ileum.

    PubMed

    Donnerer, Josef; Liebmann, Ingrid

    2017-01-01

    Allyl isothiocyanate (AITC, mustard oil, 50-200 µmol/l), depending on specific dosages, inhibited the cholinergic twitch response in the longitudinal muscle-myenteric plexus (LMMP) strip of the guinea-pig ileum. AITC also induced short-lasting contractile responses, and decreases of the basal tone of the LMMP strip at low concentrations and increases at high concentrations. Hexamethonium, a blocker of nicotinic ganglionic transmission, was able to prevent the AITC-evoked inhibitory effect, an effect that was also observed with the opioid antagonist naloxone. The P2 purinoceptor antagonist pyridoxalphosphate-6-azophenyl-2'-4'-disulphonic acid and guanethidine had no significant influence on the inhibitory effect of AITC. Since AITC also reduced the electrical stimulation-induced myogenic smooth muscle contractions in the LMMP preparation, its contractile and relaxant actions can be regarded as neurogenic and myogenic in nature. The analgesics, acetaminophen (paracetamol, 100-500 µmol/l) and dipyrone (metamizole, 100-500 µmol/l), reduced both the cholinergic twitch and the myogenic contractions in the LMMP strip to the same extent; therefore, their action in the intestinal smooth muscle can be regarded as myogenic spasmolytic in nature. © 2016 S. Karger AG, Basel.

  4. Quantification of allyl hexanoate in pineapple beverages and yogurts as a case study to characterise a source of uncertainty in dietary exposure assessment to flavouring substances.

    PubMed

    Raffo, A; D'Aloise, A; Magrì, A D; Leclercq, C

    2012-01-01

    One source of uncertainty in the estimation of dietary exposure to flavouring substances is the uncertainty in the occurrence and concentration levels of these substances naturally present or added to foodstuffs. The aim of this study was to assess the variability of concentration levels of allyl hexanoate, considered as a case study, in two main food categories to which it is often added: pineapple juice-based beverages and yogurts containing pineapple. Thirty-four beverages and 29 yogurts, with pineapple fruit or juice and added flavourings declared as ingredients on the package, were purchased from the local market (in Rome) and analysed. Analytical methods based on the stir bar sorptive extraction (SBSE) technique for the isolation of the target analyte, and on GC-MS analysis for final determination, were developed for the two food categories. In beverages, allyl hexanoate concentrations ranged from less than 0.01 to 16.71 mg l(-1), whereas in yogurts they ranged from 0.02 to 89.41 mg kg(-1). Average concentrations in beverages and yogurts with pineapple as the main fruit ingredient (1.91 mg l(-1) for beverages, 9.61 mg kg(-1) for yogurts) were in fair agreement with average use level data reported from industry surveys for the relevant food categories (4.5 and 6.0 mg kg(-1), respectively). Within the group of yogurts a single product was found to contain a level of allyl hexanoate more than 10-fold higher than the average reported use level. The screening techniques developed by the European Food Safety Authority (EFSA) using use level data provided by industry gave estimates of exposure that were of the same order of magnitude as the estimates obtained for regular consumers who would be loyal to the pineapple yogurt and beverage products containing the highest observed concentration of the substance of interest. In this specific case the uncertainty in the results obtained with the use of standard screening techniques for exposure assessment based on industry

  5. Multicomponent kinetic analysis and theoretical studies on the phenolic intermediates in the oxidation of eugenol and isoeugenol catalyzed by laccase.

    PubMed

    Qi, Yan-Bing; Wang, Xiao-Lei; Shi, Ting; Liu, Shuchang; Xu, Zhen-Hao; Li, Xiqing; Shi, Xuling; Xu, Ping; Zhao, Yi-Lei

    2015-11-28

    Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is

  6. Nitroethylation of Vinyl Triflates and Bromides

    PubMed Central

    Padilla–Salinas, Rosaura; Walvoord, Ryan R.; Tcyrulnikov, Sergei

    2013-01-01

    A two-carbon homologation of vinyl triflates and bromides for the synthesis of homoallylic nitro products is described. This palladium-catalyzed double coupling of nitromethane exploits the anion stabilizing and leaving group properties of nitromethane, generating the homo allyl nitro products via a tandem cross-coupling/π-allylation sequence. The resultant process provides a mild and convenient entry of nitroethylated products, which are versatile precursors to β,γ-unsaturated carbonyls, homoallylic amines, and nitrile oxides. PMID:23885976

  7. Photodissociation dynamics of allyl chloride at 200 and 266 nm studied by time-resolved mass spectrometry and photoelectron imaging.

    PubMed

    Shen, Huan; Chen, Jianjun; Hua, Linqiang; Zhang, Bing

    2014-06-26

    The photodissociation dynamics of allyl chloride at 200 and 266 nm has been studied by femtosecond time-resolved mass spectrometry coupled with photoelectron imaging. The molecule was prepared to different excited states by selectively pumping with 400 or 266 nm pulse. The dissociated products were then probed by multiphoton ionization with 800 nm pulse. After absorbing two photons at 400 nm, several dissociation channels were directly observed from the mass spectrum. The two important channels, C-Cl fission and HCl elimination, were found to decay with multiexponential functions. For C-Cl fission, two time constants, 48 ± 1 fs and 85 ± 40 ps, were observed. The first one was due to the fast predissociation process on the repulsive nσ*/πσ* state. The second one could be ascribed to dissociation on the vibrationally excited ground state which is generated after internal conversion from the initially prepared ππ* state. HCl elimination, which is a typical example of a molecular elimination reaction, was found to proceed with two time constants, 600 ± 135 fs and 14 ± 2 ps. We assigned the first one to dissociation on the excited state and the second one to the internal conversion from the ππ* state to the ground state and then dissociation on the ground state. As we excited the molecule with 266 nm light, the transient signals decayed exponentially with a time constant of ∼48 fs, which is coincident with the time scale of C-halogen direct dissociation. Photoelectron images, which provided translational and angular distributions of the generated electron, were also recorded. Detailed analysis of the kinetic energy distribution strongly suggested that C3H4(+) and C3H5(+) were generated from ionization of the neutral radical. The present study reveals the dissociation dynamics of allyl chloride in a time-resolved way.

  8. Effect of nanoparticle metal composition: mono- and bimetallic gold/copper dendrimer stabilized nanoparticles as solvent-free styrene oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Blanckenberg, A.; Kotze, G.; Swarts, A. J.; Malgas-Enus, R.

    2018-02-01

    A range of mono- and bimetallic AumCun nanoparticles (NPs), with varying metal compositions, was prepared by using a third-generation diaminobutane poly(propylene imine) (G3 DAB-PPI) dendrimer, modified with alkyl chains, as a stabilizer. It was found that the length of the peripheral alkyl chain, ( M1 (C15), M2 (C11), and M3 (C5)), had a direct influence on the average nanoparticle size obtained, confirming the importance of the nanoparticle stabilizer during synthesis. The Au NPs showed the highest degree of agglomeration and polydispersity, whereas the Cu NPs were the smallest and most monodisperse of the NPs. The bimetallic NPs sizes were found to vary between those of the monometallic NPs, depending on the metal composition. Interestingly, the bimetallic NPs were found to be the most stable, showing very little variation in size over time, even up to 9 months. The DSNs were evaluated in the catalytic oxidation of styrene, using either H2O2 or TBHP as oxidant. Here, we show that the bimetallic DSNs are indeed the superior catalysts when compared to their monometallic analogues, under the same reaction conditions, since a good compromise between stability and activity can be achieved where the Au provides catalytic activity and the Cu serves as a stabilizer. These AumCun bimetallic DSNs present a less expensive and more stable catalyst with negligible loss of activity, opening the door to green catalysis.

  9. Asymmetric conjugate addition of Grignard reagents to 3-silyl unsaturated esters for the facile preparation of enantioenriched β-silylcarbonyl compounds and allylic silanes.

    PubMed

    Zhao, Kai; Loh, Teck-Peng

    2014-12-08

    A highly enantioselective conjugate addition of Grignard reagents to 3-silyl unsaturated esters to deliver synthetically useful chiral β-silylcarbonyl compounds was developed. The synthetic value of this methodology was further illustrated by the synthesis of enantioenriched β-hydroxyl esters and the facile access granted to various α-chiral allylic silanes. A plethora of diastereoselective transformations of β-silylenolates were also investigated and afforded manifold organosilanes that contained contiguous stereogenic centers with excellent enantioselectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Crystal structure of N-(1-allyl-3-chloro-4-eth-oxy-1H-indazol-5-yl)-4-meth-oxybenzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2014-09-01

    In the title compound, C19H20ClN3O4S, the benzene ring is inclined to the indazole ring system (r.m.s. deviation = 0.014 Å) by 65.07 (8)°. The allyl and eth-oxy groups are almost normal to the indazole ring, as indicated by the respective torsion angles [N-N-C-C = 111.6 (2) and C-C-O-C = -88.1 (2)°]. In the crystal, mol-ecules are connected by N-H⋯N hydrogen bonds, forming helical chains propagating along [010]. The chains are linked by C-H⋯O hydrogen bonds, forming a three-dimensional network.

  11. Imparting Catalyst-Control upon Classical Palladium-Catalyzed Alkenyl C–H Bond Functionalization Reactions

    PubMed Central

    Sigman, Matthew S.; Werner, Erik W.

    2011-01-01

    Conspectus The functional group transformations carried out by the palladium-catalyzed Wacker and Heck reactions are radically different, but they are both alkenyl C-H bond functionalization reactions that have found extensive use in organic synthesis. The synthetic community depends heavily on these important reactions, but selectivity issues arising from control by the substrate, rather than control by the catalyst, have prevented the realization of their full potential. Because of important similarities in the respective selectivity-determining nucleopalladation and β-hydride elimination steps of these processes, we posit that the mechanistic insight garnered through the development of one of these catalytic reactions may be applied to the other. In this Account, we detail our efforts to develop catalyst-controlled variants of both the Wacker oxidation and the Heck reaction to address synthetic limitations and provide mechanistic insight into the underlying organometallic processes of these reactions. In contrast to previous reports, we discovered that electrophilic palladium catalysts with non-coordinating counterions allowed for the use of a Lewis basic ligand to efficiently promote TBHP-mediated Wacker oxidation reactions of styrenes. This discovery led to the mechanistically guided development of a Wacker reaction catalyzed by a palladium complex with a bidentate ligand. This ligation may prohibit coordination of allylic heteroatoms, thereby allowing for the application of the Wacker oxidation to substrates that were poorly behaved under classical conditions. Likewise, we unexpectedly discovered that electrophilic Pd-σ-alkyl intermediates are capable of distinguishing between electronically inequivalent C–H bonds during β-hydride elimination. As a result, we have developed E-styrenyl selective oxidative Heck reactions of previously unsuccessful electronically non-biased alkene substrates using arylboronic acid derivatives. The mechanistic insight gained

  12. N-(1-Allyl-1H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide hemihydrate.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Geffken, Detlef; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C17H17N3O3 (.)0.5H2O, the indazole system makes a dihedral angle of 46.19 (8)° with the plane through the benzene ring and is nearly perpendicular to the allyl group, as indicated by the dihedral angle of 81.2 (3)°. In the crystal, the water mol-ecule, disordered over two sites related by an inversion center, forms O-H⋯N bridges between indazole N atoms of two sulfonamide mol-ecules. It is also connected via N-H⋯O inter-action to the third sulfonamide mol-ecule; however, due to the water mol-ecule disorder, only every second mol-ecule of sulfonamide participates in this inter-action. This missing inter-action results in a slight disorder of the sulfonamide S,O and N atoms which are split over two sites with half occupancy. With the help of C-H⋯O hydrogen bonds, the mol-ecules are further connected into a three-dimensional network.

  13. Crystal structure of allyl­ammonium hydrogen succinate at 100 K

    PubMed Central

    Dziuk, Błażej; Zarychta, Bartosz; Ejsmont, Krzysztof

    2014-01-01

    The asymmetric unit of the title compound, C2H8N+·C4H5O4 −, consists of two allyl­ammonium cations and two hydrogen succinate anions (Z′ = 2). One of the cations has a near-perfect syn-periplanar (cis) conformation with an N—C—C—C torsion angle of 0.4 (3)°, while the other is characterized by a gauche conformation and a torsion angle of 102.5 (3)°. Regarding the anions, three out of four carboxilic groups are twisted with respect to the central C–CH2–CH2–C group [dihedral angles = 24.4 (2), 31.2 (2) and 40.4 (2)°], the remaining one being instead almost coplanar, with a dihedral angle of 4.0 (2)°. In the crystal, there are two very short, near linear O—H⋯O hydrogen bonds between anions, with the H atoms shifted notably from the donor O towards the O⋯O midpoint. These O—H⋯O hydrogen bonds form helical chains along the [011] which are further linked to each other through N—H⋯O hydrogen bonds (involving all the available NH groups), forming layers lying parallel to (100). PMID:25309251

  14. Allyl m-Trifluoromethyldiazirine Mephobarbital: An Unusually Potent Enantioselective and Photoreactive Barbiturate General Anesthetic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savechenkov, Pavel Y.; Zhang, Xi; Chiara, David C.

    2012-12-10

    We synthesized 5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (14), a trifluoromethyldiazirine-containing derivative of general anesthetic mephobarbital, separated the racemic mixture into enantiomers by chiral chromatography, and determined the configuration of the (+)-enantiomer as S by X-ray crystallography. Additionally, we obtained the {sup 3}H-labeled ligand with high specific radioactivity. R-(-)-14 is an order of magnitude more potent than the most potent clinically used barbiturate, thiopental, and its general anesthetic EC{sub 50} approaches those for propofol and etomidate, whereas S-(+)-14 is 10-fold less potent. Furthermore, at concentrations close to its anesthetic potency, R-(-)-14 both potentiated GABA-induced currents and increased the affinity for the agonist muscimol inmore » human {alpha}1{beta}2/3{gamma}2L GABA{sub A} receptors. Finally, R-(-)-14 was found to be an exceptionally efficient photolabeling reagent, incorporating into both {alpha}1 and {beta}3 subunits of human {alpha}1{beta}3 GABAA receptors. These results indicate R-(-)-14 is a functional general anesthetic that is well-suited for identifying barbiturate binding sites on Cys-loop receptors.« less

  15. Activity of Allyl Isothiocyanate and Its Synergy with Fluconazole against Candida albicans Biofilms.

    PubMed

    Raut, Jayant Shankar; Bansode, Bhagyashree Shridhar; Jadhav, Ashwini Khanderao; Karuppayil, Sankunny Mohan

    2017-04-28

    Candidiasis involving the biofilms of Candida albicans is a threat to immunocompromised patients. Candida biofilms are intrinsically resistant to the antifungal drugs and hence novel treatment strategies are desired. The study intended to evaluate the anti- Candida activity of allyl isothiocyanate (AITC) alone and with fluconazole (FLC), particularly against the biofilms. Results revealed the concentration-dependent activity of AITC against the planktonic growth and virulence factors of C. albicans . Significant ( p <0.05) inhibition of the biofilms was evident at < or =1 mg/ml concentrations of AITC. Notably, a combination of 0.004 mg/ml of FLC and 0.125 mg/ml of AITC prevented the biofilm formation. Similarly, the preformed biofilms were significantly ( p <0.05) inhibited by the AITC-FLC combination. The fractional inhibitory concentration indices ranging from 0.132 to 0.312 indicated the synergistic activity of AITC and FLC against the biofilm formation and the preformed biofilms. No hemolytic activity at the biofilm inhibitory concentrations of AITC and the AITC-FLC combination suggested the absence of cytotoxic effects. The recognizable synergy between AITC and FLC offers a potential therapeutic strategy against biofilm-associated Candida infections.

  16. DNA Protecting Activities of Nymphaea nouchali (Burm. f) Flower Extract Attenuate t-BHP-Induced Oxidative Stress Cell Death through Nrf2-Mediated Induction of Heme Oxygenase-1 Expression by Activating MAP-Kinases

    PubMed Central

    Ju, Mi-Kyoung

    2017-01-01

    This study was performed to investigate the antioxidant activities of Nymphaea nouchali flower (NNF) extract and the underlying mechanism using RAW 264.7 cells. The presence of gallic acid, catechin, epicatechin, epigallocatechin, epicatechin gallate, caffeic acid, quercetin, and apigenin in the NNF was confirmed by high-performance liquid chromatography (HPLC). The extract had a very potent capacity to scavenge numerous free radicals. NNF extract was also able to prevent DNA damage and quench cellular reactive oxygen species (ROS) generation induced by tert-Butyl hydroperoxide (t-BHP) with no signs of toxicity. The NNF extract was able to augment the expression of both primary and phase II detoxifying enzyme, resulting in combat the oxidative stress. This is accomplished by phosphorylation of mitogen-activated protein kinase (MAP kinase) (p38 kinase and extracellular signal-regulated kinase (ERK)) followed by enhancing the nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2). This attenuates cellular ROS generation and confers protection from cell death. Altogether, the results of current study revealed that Nymphaea nouchali flower could be a source of natural phytochemicals that could lead to the development of new therapeutic agents for preventing oxidative stress associated diseases and attenuating disease progression. PMID:28956831

  17. Comparison of effects of Wasabia japonica and allyl isothiocyanate on the growth of four strains of Vibrio parahaemolyticus in lean and fatty tuna meat suspensions.

    PubMed

    Hasegawa, N; Matsumoto, Y; Hoshino, A; Iwashita, K

    1999-08-01

    Lean tuna meat suspensions (LEAN), with a fat content of 0.006%, and fatty tuna meat suspension (FATTY), with a fat content of 3.0% were inoculated with four strains of Vibrio parahaemolyticus and wasabi (Wasabia japonica Matsumura) or allyl isothiocyanate (AIT) was added before incubation at 37 degrees C. During the incubation, viable Vibrio counts were determined on TCBS agar plates. Both LEAN and FATTY suspensions were inoculated with V. parahaemolyticus AOTO-81, (1.28+/-0.20) x 10(2) CFU/ml, followed by addition of 20 mg wasabi/ml, and incubation for 8 h. The viable Vibrio counts were (7.76+/-5.93) x 10(5) CFU/ml in LEAN and (3.50+/-2.65) x 10(1) CFU/ml in FATTY. When the same strain, at (1.18+/-0.22) x 10(2) CFU/ml, was incubated for 8 h with 50.9 microg AIT/ml, viable Vibrio counts were (4.79+/-1.78) x 10(4) CFU/ml in LEAN and (1.80+/-1.30) x 10(1) CFU/ml in FATTY. Growth of the other three strains with wasabi or AIT was shown to be less in FATTY than in LEAN. These results indicate that growth of V. parahaemolyticus is inhibited more in FATTY than in LEAN by wasabi and allyl isothiocyanate.

  18. Protective effect of black garlic extracts on tert-Butyl hydroperoxide-induced injury in hepatocytes via a c-Jun N-terminal kinase-dependent mechanism

    PubMed Central

    Lee, Ko-Chao; Teng, Chih-Chuan; Shen, Chien-Heng; Huang, Wen-Shih; Lu, Chien-Chang; Kuo, Hsing-Chun; Tung, Shui-Yi

    2018-01-01

    Black garlic has been reported to show multiple bioactivities against the development of different diseases. In the present study, the hepatoprotective effect of black garlic on injured liver cells was investigated. Rat clone-9 hepatocytes were used for all experiments; tert-Butyl hydroperoxide (tBHP) was used to induce injury of rat clone-9 hepatocytes. The contents of malondialdehyde (MDA) and glutathione (GSH); anti-oxidative enzyme activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx); and mRNA expression levels of interleukin (IL)-6 and IL-8 in rat clone-9 hepatocytes were determined to evaluate the level of cell damage. Black garlic extracts were demonstrated to significantly attenuate tBHP-induced cell death of rat clone-9 hepatocytes (P<0.05). Pretreatment with black garlic extracts antagonized GSH depletion, tBHP-increased MDA accumulation and the mRNA expression level of IL-6/IL-8, and tBHP-decreased antioxidative enzyme activities (all P<0.05). Moreover, the present study revealed that c-Jun N-terminal kinase signaling regulated black garlic-inhibited tBHP effects in rat clone-9 hepatocytes. Our findings demonstrate that black garlic has the hepatoprotective potential to block tBHP-damaged effects on cell death, lipid peroxidation, oxidative stress, and inflammation in rat clone-9 hepatocytes. Thus, the present study indicates that black garlic may be an excellent natural candidate in the development of adjuvant therapy and healthy foods for liver protection. PMID:29456651

  19. Synthesis and biological evaluation of allylated and prenylated mono-carbonyl analogs of curcumin as anti-inflammatory agents.

    PubMed

    Liu, Zhiguo; Tang, Longguang; Zou, Peng; Zhang, Yali; Wang, Zhe; Fang, Qilu; Jiang, Lili; Chen, Gaozhi; Xu, Zheng; Zhang, Huajie; Liang, Guang

    2014-03-03

    Curcumin has been shown to possess anti-inflammatory activities but has been limited for its low stability and poor bioavailability. We have previously reported four series of 5-carbon linker-containing mono-carbonyl analogs of curcumin (MACs). In continuation of our ongoing research, we designed and synthesized 33 novel allylated or prenylated MACs here, and evaluated their anti-inflammatory effects in RAW 264.7 macrophages. A majority of them effectively inhibited the LPS-induced expression of TNF-α and IL-6, especially IL-6. The preliminary SAR and quantitative SAR analysis were conducted. Compound 14q is the most potent analog among them, and exhibits significant protection against LPS-induced death in septic mice. Together, these data present a series of new analogs of curcumin as promising anti-inflammatory agents. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. N-(2-Allyl-4-chloro-2H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide hemi-hydrate.

    PubMed

    Chicha, Hakima; Kouakou, Assoman; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    The fused five- and six-membered rings in the title compound, C17H16ClN3O3S·0.5H2O, are practically coplanar, with the maximum deviation from the mean plane being 0.057 (3) Å for the C atom bound to the exocyclic N atom. The indazole system makes a dihedral angle of 66.18 (12)° with the plane through the benzene ring, and it is nearly perpendicular to the allyl group, as indicated by the N-N-C-C torsion angle of 79.2 (3)°. In the crystal, the water mol-ecule, lying on a twofold axis, forms O-H⋯N and accepts N-H⋯O hydrogen bonds. Additional C-H⋯O hydrogen bonds contribute to the formation of a chain along the b-axis direction.

  1. Comparative studies on mitochondrial electron transport chain complexes of Sitophilus zeamais treated with allyl isothiocyanate and calcium phosphide.

    PubMed

    Zhang, Chao; Wu, Hua; Zhao, Yuan; Ma, Zhiqing; Zhang, Xing

    2016-01-01

    With Sitophilus zeamais as the target organism, the present study for the first time attempted to elucidate the comparative effects between allyl isothiocyanate (AITC) and calcium phosphide (Ca3P2), exposure on mitochondrial electron transport chain (ETC.) complex I & IV and their downstream effects on enzymes relevant to reactive oxygen species (ROS). In vivo, both AITC and Ca3P2 inhibited complex I and IV with similar downstream effects. In contrast with Ca3P2, the inhibition of complex I caused by AITC was dependent on time and dose. In vitro, AITC inhibited complex IV more significantly than complex I. These results indicate that mitochondrial complex IV is the primary target of AITC, and that complex I is another potential target. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Chemical kinetic modeling of propene oxidation at low and intermediate temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilk, R.D.; Cernansky, N.P.; Pitz, W.J.

    1986-01-13

    A detailed chemical kinetic mechanism for propene oxidation is developed and used to model reactions in a static reactor at temperatures of 590 to 740/sup 0/K, equivalence ratios of 0.8 to 2.0, and a pressure of 600 torr. Modeling of hydrocarbon oxidation in this temperature range is important for the validation of detailed models to be used for performing calculations related to automotive engine knock. The model predicted induction periods and species concentrations for all the species measured experimentally in a static reactor by Wilk, Cernansky, and Cohen. The detailed model predicted a temperature region of approximately constant induction periodmore » which corresponded very closely to the region of negative temperature coefficient behavior found in the experiment. Overall, the calculated concentrations of acetaldehyde, ethene, and methane were somewhat low compared to the experimental measurements, and the calculated concentrations of formaldehyde and methanol were high. The characteristic s-shape of the fuel concentration history was well predicted. The importance of OH+C/sub 3/H/sub 6/ and related rections in determining product distributions and the importance of consumption reactions for allyl radicals was demonstrated by the modeling calculations. 18 refs., 4 figs., 1 tab.« less

  3. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation

    NASA Astrophysics Data System (ADS)

    You, Hengzhi; Rideau, Emeline; Sidera, Mireia; Fletcher, Stephen P.

    2015-01-01

    The development of new reactions forming asymmetric carbon-carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy--dynamic kinetic asymmetric transformation--involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield. The use of stabilized nucleophiles (pKa < 25, where Ka is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes. Conversely, the use of non-stabilized nucleophiles in such reactions is difficult and remains a key challenge. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nucleophiles. These nucleophiles have a pKa of >=50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.

  4. Stereoselective Vinylation of Aryl N-(2-Pyridylsulfonyl) Aldimines with 1-Alkenyl-1,1-Heterobimetallic Reagents

    PubMed Central

    Hussain, Nusrah; Hussain, Mahmud M.; Ziauddin, Muhammed; Triyawatanyu, Plengchat; Walsh, Patrick J.

    2011-01-01

    Vinylation of aryl N-(2-pyridylsulfonyl) aldimines with versatile 1-alkenyl-1,1-borozinc heterobimetallic reagents is disclosed. In situ hydroboration of air-stable B(pin)-alkynes followed by chemoselective transmetallation with dimethylzinc and addition to aldimines provides B(pin)-substituted allylic amines in 60–93% yield in a one-pot procedure. The addition step can be followed by either B–C bond oxidation to provide α-amino ketones (71–98% yield) or Suzuki cross-coupling to furnish trisubstituted 2-arylated (E)-allylic amines (51–73% yield). PMID:22085226

  5. Protective effects of flavonoids isolated from Korean milk thistle Cirsium japonicum var. maackii (Maxim.) Matsum on tert-butyl hydroperoxide-induced hepatotoxicity in HepG2 cells.

    PubMed

    Jung, Hyun Ah; Abdul, Qudeer Ahmed; Byun, Jeong Su; Joung, Eun-Ji; Gwon, Wi-Gyeong; Lee, Min-Sup; Kim, Hyeung-Rak; Choi, Jae Sue

    2017-09-14

    Milk thistle leaves and flowers have been traditionally used as herbal remedy to alleviate liver diseases for decades. Korean milk thistle, Cirsium japonicum var. maackii (Maxim.) Matsum has been employed in traditional folk medicine as diuretic, antiphlogistic, hemostatic, and detoxifying agents. The aim of current investigation was to evaluate hepatoprotective properties of the MeOH extract of the roots, stems, leaves and flowers of Korean milk thistle as well as four isolated flavonoids, luteolin, luteolin 5-O-glucoside, apigenin and apigenin 7-O-glucuronide during t-BHP-induced oxidative stress in HepG2 cells. Hepatoprotective potential of the MeOH extracts and flavonoids derived from Korean milk thistle against t-BHP-induced oxidative stress in HepG2 cells were evaluated following MTT method. Incubating HepG2 cells with t-BHP markedly decreased the cell viability and increased the intracellular ROS generation accompanied by depleted GSH levels. Protein expression of heme oxygenase (HO-1) and nuclear factor-E2-related factor 2 (Nrf-2) was determined by Western blot. Our findings revealed that pretreating HepG2 cells with MeOH extracts and bioactive flavonoids significantly attenuated the t-BHP-induced oxidative damage, followed by increased cell viability in a dose-dependent manner. The results illustrate that excess ROS generation was reduced and GSH levels increased dose-dependently when HepG2 cells were pretreated with four flavonoids. Moreover, Western blotting analysis demonstrated that protein expressions of Nrf-2 and HO-1 were also up-regulated by flavonoids treatment. These results clearly demonstrate that the MeOH extracts and flavonoids from Korean milk thistle protected HepG2 cells against oxidative damage triggered by t-BHP principally by modulating ROS generation and restoring depleted GSH levels in addition to the increased Nrf-2/HO-1 signaling cascade. These flavonoids are potential natural antioxidative biomarkers against oxidative stress

  6. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls

    PubMed Central

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D.; Krische, Michael J.

    2015-01-01

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo- and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k and 6m, respectively. Primary alcohols 2a, 2l and 2p were converted to the siloxy-crotylation products 3a, 3l and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes. PMID:26418572

  7. Pharmacokinetics, Tissue Distribution, and Anti-Lipogenic/Adipogenic Effects of Allyl-Isothiocyanate Metabolites

    PubMed Central

    Ahn, Jiyun; Chung, Woo-Jae; Jang, Young Jin; Seong, Ki-Seung; Moon, Jae-Hak; Ha, Tae Youl; Jung, Chang Hwa

    2015-01-01

    Allyl-isothiocyanate (AITC) is an organosulfur phytochemical found in abundance in common cruciferous vegetables such as mustard, wasabi, and cabbage. Although AITC is metabolized primarily through the mercapturic acid pathway, its exact pharmacokinetics remains undefined and the biological function of AITC metabolites is still largely unknown. In this study, we evaluated the inhibitory effects of AITC metabolites on lipid accumulation in vitro and elucidated the pharmacokinetics and tissue distribution of AITC metabolites in rats. We found that AITC metabolites generally conjugate with glutathione (GSH) or N-acetylcysteine (NAC) and are distributed in most organs and tissues. Pharmacokinetic analysis showed a rapid uptake and complete metabolism of AITC following oral administration to rats. Although AITC has been reported to exhibit anti-tumor activity in bladder cancer, the potential bioactivity of its metabolites has not been explored. We found that GSH-AITC and NAC-AITC effectively inhibit adipogenic differentiation of 3T3-L1 preadipocytes and suppress expression of PPAR-γ, C/EBPα, and FAS, which are up-regulated during adipogenesis. GSH-AITC and NAC-AITC also suppressed oleic acid-induced lipid accumulation and lipogenesis in hepatocytes. Our findings suggest that AITC is almost completely metabolized in the liver and rapidly excreted in urine through the mercapturic acid pathway following administration in rats. AITC metabolites may exert anti-obesity effects through suppression of adipogenesis or lipogenesis. PMID:26317351

  8. Pharmacokinetics, Tissue Distribution, and Anti-Lipogenic/Adipogenic Effects of Allyl-Isothiocyanate Metabolites.

    PubMed

    Kim, Yang-Ji; Lee, Da-Hye; Ahn, Jiyun; Chung, Woo-Jae; Jang, Young Jin; Seong, Ki-Seung; Moon, Jae-Hak; Ha, Tae Youl; Jung, Chang Hwa

    2015-01-01

    Allyl-isothiocyanate (AITC) is an organosulfur phytochemical found in abundance in common cruciferous vegetables such as mustard, wasabi, and cabbage. Although AITC is metabolized primarily through the mercapturic acid pathway, its exact pharmacokinetics remains undefined and the biological function of AITC metabolites is still largely unknown. In this study, we evaluated the inhibitory effects of AITC metabolites on lipid accumulation in vitro and elucidated the pharmacokinetics and tissue distribution of AITC metabolites in rats. We found that AITC metabolites generally conjugate with glutathione (GSH) or N-acetylcysteine (NAC) and are distributed in most organs and tissues. Pharmacokinetic analysis showed a rapid uptake and complete metabolism of AITC following oral administration to rats. Although AITC has been reported to exhibit anti-tumor activity in bladder cancer, the potential bioactivity of its metabolites has not been explored. We found that GSH-AITC and NAC-AITC effectively inhibit adipogenic differentiation of 3T3-L1 preadipocytes and suppress expression of PPAR-γ, C/EBPα, and FAS, which are up-regulated during adipogenesis. GSH-AITC and NAC-AITC also suppressed oleic acid-induced lipid accumulation and lipogenesis in hepatocytes. Our findings suggest that AITC is almost completely metabolized in the liver and rapidly excreted in urine through the mercapturic acid pathway following administration in rats. AITC metabolites may exert anti-obesity effects through suppression of adipogenesis or lipogenesis.

  9. Products from the Oxidation of Linear Isomers of Hexene

    PubMed Central

    Battin-Leclerc, Frédérique; Rodriguez, Anne; Husson, Benoit; Herbinet, Olivier; Glaude, Pierre-Alexandre; Wang, Zhandong; Cheng, Zhanjun; Qi, Fei

    2014-01-01

    The experimental study of the oxidation of the three linear isomers of hexene was performed in a quartz isothermal jet-stirred reactor (JSR) at temperatures ranging from 500 to 1100 K including the negative temperature coefficient (NTC) zone, at quasi-atmospheric pressure (1.07 bar), at a residence time of 2 s and with dilute stoichiometric mixtures. The fuel and reaction product mole fractions were measured using online gas chromatography. In the case of 1-hexene, the JSR has also been coupled through a molecular-beam sampling system to a reflectron time-of-flight mass spectrometer combined with tunable synchrotron vacuum ultraviolet photoionization. A difference of reactivity between the three fuels which varies with the temperature range has been observed and is discussed according to the changes in the possible reaction pathways when the double bond is displaced. An enhanced importance of the reactions via the Waddington mechanism and of those of allylic radicals with HO2 radicals can be noted for 2- and 3-hexenes compared to 1-hexene. PMID:24400665

  10. Ternary copper(II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties.

    PubMed

    Ma, Tieliang; Xu, Jun; Wang, Yuan; Yu, Hao; Yang, Yong; Liu, Yang; Ding, Weiliang; Zhu, Wenjiao; Chen, Ruhua; Ge, Zhijun; Tan, Yongfei; Jia, Lei; Zhu, Taofeng

    2015-03-01

    Nowadays, chemotherapy is a common means of oncology. However, it is difficult to find excellent chemotherapy drugs. Here we reported three new ternary copper(II) complexes which have potential chemotherapy characteristics with reduced Schiff base ligand and heterocyclic bases (TBHP), [Cu(phen)(TBHP)]H2O (1), [Cu(dpz)(TBHP)]H2O (2) and [Cu(dppz)(TBHP)]H2O (3) (phen=1,10-phenanthroline, dpz=dipyrido [3,2:2',3'-f]quinoxaline, dppz=dipyrido [3,2-a:2',3'-c]phenazine, H2TBHP=2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-2-benzyl-acetic acid). The DNA-binding properties of the complexes were investigated by spectrometric titrations, ethidium bromide displacement experiments and viscosity measurements. The results indicated that the three complexes, especially the complex 13, can strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants Kb of the ternary copper(II) complexes with CT-DNA were 1.37×10(5), 1.81×10(5) and 3.21×10(5) for 1, 2 and 3 respectively. Comparative cytotoxic activities of the copper(II) complexes were also determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the ternary copper(II) complexes had significant cytotoxic activity against the human lung cancer (A549), human esophageal cancer (Eca109) and human gastric cancer (SGC7901) cell lines. Cell apoptosis were detected by AnnexinV/PI flow cytometry and by Western blotting with the protein expression of p53, Bax and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Investigation of total phenolic, total flavonoid, antioxidant and allyl isothiocyanate content in the different organs of Wasabi japonica grown in an organic system.

    PubMed

    Shin, Seong Woo; Ghimeray, Amal Kumar; Park, Cheol Ho

    2014-01-01

    This study was carried out to investigate the total polyphenol (TP), total flavonoid (TF), antioxidative effect and allyl isothyocyanate (ITC) content in different organs of wasabi plant grown in an organic system. Invitro study of methanol and boiled water extracts of wasabi were conducted by analyzing the 1-1-diphenyl-2-picryl hydrozyl (DPPH) radial scavenging activity, metal chelating activity and total antioxidant capacity in a comparative manner. The result revealed that methanol extract showed higher TP in flower (3644 mg TAE/100 g dw), leaf (3201 mg TAE/100 g dw) and fruit (3025 mg TAE/100 g dw) as compared to the boiled water extract. Similarly, TF content was also higher in methanol extracts of flower (1152 mg QE/100 g dw) and leaf (325 mg QE/100 g dw), however, the other parts showed ignorable value. Results of antioxidant activity were found at different magnitude of potency. The methanol extract of different parts of wasabi exhibited higher activity in total antioxidant capacity and DPPH radical scavenging assay as compared to water extract. In metal chelating assay, the boiled water extracts of leaf showed higher (76.9%) activity, followed by fruit (68.8%) and flower (62.8%). Ally ITC detected by gas chromatography was present in all of the tissues of wasabi plant but the content was found to be varied in different tissues. Overall, this study will allow consumers and processors to understand the possibility for medical application of wasabi plant by knowing the level of total polyphenol distribution, Ally ITC content and antioxidant property distributed in different parts and tissues.Key words: Allyl ITC, antioxidant, flavonoid, polyphenol, Wasabi japonica.

  12. Correlation of quinone reductase activity and allyl isothiocyanate formation among different genotypes and grades of horseradish roots.

    PubMed

    Ku, Kang-Mo; Jeffery, Elizabeth H; Juvik, John A; Kushad, Mosbah M

    2015-03-25

    Horseradish (Armoracia rusticana) is a perennial crop and its ground root tissue is used in condiments because of the pungency of the glucosinolate (GS)-hydrolysis products allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC) derived from sinigrin and gluconasturtiin, respectively. Horseradish roots are sold in three grades: U.S. Fancy, U.S. No. 1, and U.S. No. 2 according to the USDA standards. These grading standards are primarily based on root diameter and length. There is little information on whether root grades vary in their phytochemical content or potential health promoting properties. This study measured GS, GS-hydrolysis products, potential anticancer activity (as quinone reductase inducing activity), total phenolic content, and antioxidant activities from different grades of horseradish accessions. U.S. Fancy showed significantly higher sinigrin and AITC concentrations than U.S. No. 1 ,whereas U.S. No. 1 showed significantly higher concentrations of 1-cyano 2,3-epithiopropane, the epithionitrile hydrolysis product of sinigrin, and significantly higher total phenolic concentrations than U.S. Fancy.

  13. Isolation and recovery of cellulose from waste nylon/cotton blended fabrics by 1-allyl-3-methylimidazolium chloride.

    PubMed

    Lv, Fangbing; Wang, Chaoxia; Zhu, Ping; Zhang, Chuanjie

    2015-06-05

    Development of a simple process for separating cellulose and nylon 6 from their blended fabrics is indispensable for recycling of waste mixed fabrics. An efficient procedure of dissolution of the fabrics in an ionic liquid 1-allyl-3-methylimidazolium chloride ([AMIM]Cl) and subsequent filtration separation has been demonstrated. Effects of treatment temperature, time and waste fabrics ratio on the recovery rates were investigated. SEM images showed that the cotton cellulose dissolved in [AMIM]Cl while the nylon 6 fibers remained. The FTIR spectrum of regenerated cellulose (RC) was similar with that of virgin cotton fibers, which verified that no other chemical reaction occurred besides breakage of hydrogen bonds during the processes of dissolution and separation. TGA curves indicated that the regenerated cellulose possessed a reduced thermal stability and was effectively removed from waste nylon/cotton blended fabrics (WNCFs). WNCFs were sufficiently reclaimed with high recovery rate of both regenerated cellulose films and nylon 6 fibers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Tandem Reactions for Streamlining Synthesis

    PubMed Central

    HUSSAIN, MAHMUD M.; WALSH, PATRICK J.

    2009-01-01

    CONSPECTUS In 1980 Sharpless and Katsuki introduced the asymmetric epoxidation of prochiral allylic alcohols (the Sharpless-Katsuki Asymmetric Epoxidation), which enabled the rapid synthesis of highly enantioenriched epoxy alcohols. This reaction was a milestone in the development of asymmetric catalysis because it was the first highly enantioselective oxidation reaction. Furthermore, it provided access to enantioenriched allylic alcohols that are now standard starting materials in natural product synthesis. In 1981 Sharpless and coworkers made another seminal contribution by describing the kinetic resolution (KR) of racemic allylic alcohols. This work demonstrated that small-molecule catalysts could compete with enzymatic catalysts in KRs. For these pioneering works, Sharpless was awarded the 2001 Nobel Prize with Knowles and Noyori. Despite these achievements, the Sharpless KR is not an efficient method to prepare epoxy alcohols with high enantiomeric excess (ee). First, the racemic allylic alcohol must be prepared and purified. KR of the racemic allylic alcohol must be stopped at low conversion, because the ee of the product epoxy alcohol decreases as the KR progresses. Thus, better methods to prepare epoxy alcohols containing stereogenic carbinol carbons are needed. This Account summarizes our efforts to develop one-pot methods for the synthesis of various epoxy alcohols and allylic epoxy alcohols with high enantio-, diastereo-, and chemoselectivity. Our laboratory developed titanium-based catalysts for use in the synthesis of epoxy alcohols with tertiary carbinols. The catalysts are involved in the first step, which is an asymmetric alkyl or allyl addition to enones. The resulting intermediates are then subjected to a titanium-directed diastereoselective epoxidation to provide tertiary epoxy alcohols. Similarly, the synthesis of acyclic epoxy alcohols begins with asymmetric additions to enals and subsequent epoxidation. The methods described here enable the

  15. Allyl triphenyl phosphonium bromide based DES-functionalized carbon nanotubes for the removal of mercury from water.

    PubMed

    AlOmar, Mohamed Khalid; Alsaadi, Mohammed Abdulhakim; Hayyan, Maan; Akib, Shatirah; Ibrahim, Muhammad; Hashim, Mohd Ali

    2017-01-01

    Recently, deep eutectic solvents (DESs) have shown their new and interesting ability for chemistry through their involvement in variety of applications. This study introduces carbon nanotubes (CNTs) functionalized with DES as a novel adsorbent for Hg 2+ from water. Allyl triphenyl phosphonium bromide (ATPB) was combined with glycerol as the hydrogen bond donor (HBD) to form DES, which can act as a novel CNTs functionalization agent. The novel adsorbent was characterized using Raman, FTIR, XRD, FESEM, EDX, BET surface area, TGA, TEM and Zeta potential. Response surface methodology was used to optimize the removal conditions for Hg 2+ . The optimum removal conditions were found to be pH 5.5, contact time 28 min, and an adsorbent dosage of 5 mg. Freundlich isotherm model described the adsorption isotherm of the novel adsorbent, and the maximum adsorption capacity obtained from the experimental data was 186.97 mg g -1 . Pseudo-second order kinetics describes the adsorption rate order. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Palladium-Catalyzed Asymmetric Allylic Alkylation of 3-Substituted 1 H-Indoles and Tryptophan Derivatives with Vinylcyclopropanes.

    PubMed

    Trost, Barry M; Bai, Wen-Ju; Hohn, Christoph; Bai, Yu; Cregg, James J

    2018-05-30

    Vinylcyclopropanes (VCPs) are known to generate 1,3-dipoles with a palladium catalyst that initially serve as nucleophiles to undergo [3 + 2] cycloadditions with electron-deficient olefins. In this report, we reverse this reactivity and drive the 1,3-dipoles to serve as electrophiles by employing 3-alkylated indoles as nucleophiles. This represents the first use of VCPs for the completely atom-economic functionalization of 3-substituted 1 H-indoles and tryptophan derivatives via a Pd-catalyzed asymmetric allylic alkylation (Pd-AAA). Excellent yields and high chemo-, regio-, and enantioselectivities have been realized, providing various indolenine and indoline products. The method is amenable to gram scale and works efficiently with tryptophan derivatives that contain a diketopiperazine or diketomorpholine ring, allowing us to synthesize mollenine A in a rapid and ligand-controlled fashion. The obtained indolenine products bear an imine, an internal olefin, and a malonate motif, giving multiple sites with diverse reactivities for product diversification. Complicated polycyclic skeletons can be conveniently constructed by leveraging this unique juxtaposition of functional groups.

  17. Reactive oxygen species alters the electrophysiological properties and raises [Ca2+]i in intracardiac ganglion neurons

    PubMed Central

    Dyavanapalli, Jhansi; Rimmer, Katrina

    2010-01-01

    We have investigated the effects of the reactive oxygen species (ROS) donors hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) on the intrinsic electrophysiological characteristics: ganglionic transmission and resting [Ca2+]i in neonate and adult rat intracardiac ganglion (ICG) neurons. Intracellular recordings were made using sharp microelectrodes filled with either 0.5 M KCl or Oregon Green 488 BAPTA-1, allowing recording of electrical properties and measurement of [Ca2+]i. H2O2 and t-BHP both hyperpolarized the resting membrane potential and reduced membrane resistance. In adult ICG neurons, the hyperpolarizing action of H2O2 was reversed fully by Ba2+ and partially by tetraethylammonium, muscarine, and linopirdine. H2O2 and t-BHP reduced the action potential afterhyperpolarization (AHP) amplitude but had no impact on either overshoot or AHP duration. ROS donors evoked an increase in discharge adaptation to long depolarizing current pulses. H2O2 blocked ganglionic transmission in most ICG neurons but did not alter nicotine-evoked depolarizations. By contrast, t-BHP had no significant action on ganglionic transmission. H2O2 and t-BHP increased resting intracellular Ca2+ levels to 1.6 ( ± 0.6, n = 11, P < 0.01) and 1.6 ( ± 0.3, n = 8, P < 0.001), respectively, of control value (1.0, ∼60 nM). The ROS scavenger catalase prevented the actions of H2O2, and this protection extended beyond the period of application. Superoxide dismutase partially shielded against the action of H2O2, but this was limited to the period of application. These data demonstrate that ROS decreases the excitability and ganglionic transmission of ICG neurons, attenuating parasympathetic control of the heart. PMID:20445155

  18. A facile synthesis and carbon-13 nuclear magnetic resonance spectral properties of 7-ketocholesteryl benzoate.

    PubMed

    Parish, E J; Wei, T Y; Livant, P

    1987-10-01

    This paper presents a modified method of the selective allylic oxidation of cholesteryl benzoate. Pyridinium chlorochromate, in refluxing benzene, has been found to be an effective and convenient reagent for the efficient oxidation of cholesteryl benzoate to 7-ketocholesteryl benzoate in high yield. Also included herein are the carbon-13 nuclear magnetic resonance spectral properties of 7-ketocholesteryl benzoate and cholesteryl benzoate.

  19. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun

    2012-08-15

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed thatmore » 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.« less

  20. Crystal structure of N-(1-allyl-3-chloro-4-eth­oxy-1H-indazol-5-yl)-4-meth­oxybenzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    In the title compound, C19H20ClN3O4S, the benzene ring is inclined to the indazole ring system (r.m.s. deviation = 0.014 Å) by 65.07 (8)°. The allyl and eth­oxy groups are almost normal to the indazole ring, as indicated by the respective torsion angles [N—N—C—C = 111.6 (2) and C—C—O—C = −88.1 (2)°]. In the crystal, mol­ecules are connected by N—H⋯N hydrogen bonds, forming helical chains propagating along [010]. The chains are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:25309208

  1. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries.

    PubMed

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M

    2014-08-29

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.

  2. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-08-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.

  3. A broadly applicable NHC-Cu-catalyzed approach for efficient, site-, and enantioselective coupling of readily accessible (pinacolato)alkenylboron compounds to allylic phosphates and applications to natural product synthesis.

    PubMed

    Gao, Fang; Carr, James L; Hoveyda, Amir H

    2014-02-05

    A set of protocols for catalytic enantioselective allylic substitution (EAS) reactions that allow for additions of alkenyl units to readily accessible allylic electrophiles is disclosed. Transformations afford 1,4-dienes that contain a tertiary carbon stereogenic site and are promoted by 1.0-5.0 mol % of a copper complex of an N-heterocyclic carbene (NHC). Aryl- as well as alkyl-substituted electrophiles bearing a di- or trisubstituted alkene may be employed. Reactions can involve a variety of robust alkenyl-(pinacolatoboron) [alkenyl-B(pin)] compounds that can be either purchased or prepared by various efficient, site-, and/or stereoselective catalytic reactions, such as cross-metathesis or proto-boryl additions to terminal alkynes. Vinyl-, E-, or Z-disubstituted alkenyl-, 1,1-disubstituted alkenyl-, acyclic, or heterocyclic trisubstituted alkenyl groups may be added in up to >98% yield, >98:2 SN2':SN2, and 99:1 enantiomeric ratio (er). NHC-Cu-catalyzed EAS with alkenyl-B(pin) reagents containing a conjugated carboxylic ester or aldehyde group proceed to provide the desired 1,4-diene products in good yield and with high enantioselectivity despite the presence of a sensitive stereogenic tertiary carbon center that could be considered prone to epimerization. In most instances, the alternative approach of utilizing an alkenylmetal reagent (e.g., an Al-based species) represents an incompatible option. The utility of the approach is illustrated through applications to enantioselective synthesis of natural products such as santolina alcohol, semburin, nyasol, heliespirone A, and heliannuol E.

  4. (1)H NMR-based DS determination of barley starch sulfates prepared in 1-allyl-3-methylimidazolium chloride.

    PubMed

    Kärkkäinen, Johanna; Wik, Tiia-Riikka; Niemelä, Matti; Lappalainen, Katja; Joensuu, Päivi; Lajunen, Marja

    2016-01-20

    The use of natural resources in a development of products and materials is currently increasing. Starch is one of the investigated resources due to its bioavailability, biodegradability, safety and affordability. In this study, native barley starch was sulfated using a SO3-pyridine complex. The reaction was carried out for the first time using 1-allyl-3-methylimidazolium chloride ionic liquid, an excellent solvent for the starch modification. Reaction conditions (temperature, time and amount of the reagent) were studied using an experimental design. Starch sulfates with the degree of substitution (DS) 1.37 were obtained when the reaction was carried out at 40 °C for 75 min with 4:1 molar ratio of SO3-pyridine complex:anhydroglucose unit. The determination of DS was based on (1)H NMR instead of elemental analysis, which showed overestimated DS values in this study. Starch sulfates were analyzed with FTIR and HPLC, which showed that products contained small and large sulfated molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. N-(1-Allyl-1H-indazol-5-yl)-4-meth­oxy­benzene­sulfonamide hemihydrate

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Geffken, Detlef; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C17H17N3O3 .0.5H2O, the indazole system makes a dihedral angle of 46.19 (8)° with the plane through the benzene ring and is nearly perpendicular to the allyl group, as indicated by the dihedral angle of 81.2 (3)°. In the crystal, the water mol­ecule, disordered over two sites related by an inversion center, forms O—H⋯N bridges between indazole N atoms of two sulfonamide mol­ecules. It is also connected via N—H⋯O inter­action to the third sulfonamide mol­ecule; however, due to the water mol­ecule disorder, only every second mol­ecule of sulfonamide participates in this inter­action. This missing inter­action results in a slight disorder of the sulfonamide S,O and N atoms which are split over two sites with half occupancy. With the help of C–H⋯O hydrogen bonds, the mol­ecules are further connected into a three-dimensional network. PMID:24098264

  6. Brown seaweed (Saccharina japonica) as an edible natural delivery matrix for allyl isothiocyanate inhibiting food-borne bacteria.

    PubMed

    Siahaan, Evi Amelia; Pendleton, Phillip; Woo, Hee-Chul; Chun, Byung-Soo

    2014-01-01

    The edible, brown seaweed Saccharina japonica was prepared as powder in the size range 500-900 μm for the desorption release of allyl isothiocyanate (AITC). Powders were used as raw (containing lipids) and as de-oiled, where the lipid was removed. In general, de-oiled powders adsorbed larger masses of AITC after vapour or solution contact. Mass adsorbed due to solution contact exceeded vapour contact. Larger particles adsorbed more than smaller particles. No chemical bonding between AITC and the powder surface occurred. Release from vapour deposited particles reached 70-85% available within 72 h; solution deposited reached 70-90% available at 192 h. The larger amounts of AITC adsorbed via solution deposition resulted in greater vapour-phase concentrations at 72 h for antimicrobial activity studies. No loss of activity was detected against Escherichia coli, Salmonella Typhimurium or Bacillus cereus. Only a nominal activity against Staphylococcus aureus was demonstrated. S. japonica powder could be used as an edible, natural vehicle for AITC delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Oxidation of a new Biogenic VOC: Chamber Studies of the Atmospheric Chemistry of Methyl Chavicol

    NASA Astrophysics Data System (ADS)

    Bloss, William; Alam, Mohammed; Adbul Raheem, Modinah; Rickard, Andrew; Hamilton, Jacqui; Pereira, Kelly; Camredon, Marie; Munoz, Amalia; Vazquez, Monica; Vera, Teresa; Rodenas, Mila

    2013-04-01

    The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and SOA, with consequences for air quality, health, crop yields, atmospheric chemistry and radiative transfer. Recent observations have identified Methyl Chavicol ("MC": Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA, and oil palm plantations in Malaysian Borneo. Palm oil cultivation, and hence MC emissions, may be expected to increase with societal food and bio fuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE facility, monitoring stable product species, radical intermediates, and aerosol production and composition. We determine rate constants for reaction of MC with OH and O3, and ozonolysis radical yields. Stable product measurements (FTIR, PTRMS, GC-SPME) are used to determine the yields of stable products formed from OH- and O3- initiated oxidation, and to develop an understanding of the initial stages of the MC degradation chemistry. A surrogate mechanism approach is used to simulate MC degradation within the MCM, evaluated in terms of ozone production measured in the chamber experiments, and applied to quantify the role of MC in the real atmosphere.

  8. Allium discoloration: precursors involved in onion pinking and garlic greening.

    PubMed

    Kubec, Roman; Hrbácová, Marcela; Musah, Rabi A; Velísek, Jan

    2004-08-11

    Precursors involved in the formation of pink and green-blue pigments generated during onion and garlic processing, respectively, have been studied. It has been confirmed that the formations of both pigments are of very similar natures, with (E)-S-(1-propenyl)cysteine sulfoxide (isoalliin) serving as the primary precursor. Upon disruption of the tissue, isoalliin and other S-alk(en)ylcysteine sulfoxides are enzymatically cleaved, yielding 1-propenyl-containing thiosulfinates [CH3CH=CHS(O)SR; R = methyl, allyl, propyl, 1-propenyl] among others. The latter compounds have been shown to subsequently react with amino acids to produce the pigments. Whereas the propyl, 1-propenyl, and methyl derivatives form pink, pink-red, and magenta compounds, those containing the allyl group give rise to blue products after reacting with glycine at pH 5.0. The role of other thiosulfinates [RS(O)SR'] (R, R' = methyl, allyl, propyl) and (Z)-thiopropanal S-oxide (the onion lachrymatory principle) in the formation of the pigments is also discussed.

  9. Combination of garlic essential oil, allyl isothiocyanate, and nisin Z as bio-preservatives in fresh sausage.

    PubMed

    Araújo, Monyque Kais; Gumiela, Aline Marzaleck; Bordin, Keliani; Luciano, Fernando Bittencourt; Macedo, Renata Ernlund Freitas de

    2018-09-01

    The effects of natural antimicrobial compounds (garlic essential oil [GO], allyl isothiocyanate [AITC], and nisin Z [NI]) on microbiological, physicochemical and sensory characteristics of fresh sausage were assessed. The minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) towards Escherichia coli O157:H7 and Lactobacillus plantarum were determined in vitro. Sausages inoculated with E. coli O157:H7, were treated with different combinations of antimicrobials and assessed for microbiological and physicochemical parameters during storage (6C for 20 d). Treatments that presented the greatest antimicrobial effects were subjected to sensory evaluation. Combinations of 20 mg/kg NI + 125 μL/kg GO + 62.5 μL/kg AITC or 20 mg/kg NI + 62.5 μL/kg GO + 125 μL/kg AITC were effective in reducing E. coli O157H7 and spoilage lactic acid bacteria, and maintained the physicochemical characteristics of fresh sausage. Combinations of NI, GO and AITC were effective to improve the safety and the shelf life of fresh sausage, with no impact on its sensory acceptance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2',7'-dichlorofluorescin diacetate (DCFDA) assay.

    PubMed

    Figueroa, Daniela; Asaduzzaman, Mohammad; Young, Fiona

    2018-04-07

    The detection of reactive oxygen species (ROS) using 2',7'-dichlorofluorescin diacetate (DCFDA) is commonly performed by a single measurement of fluorescence but this fails to capture a profile of ROS generation over time. This study aimed to develop a real-time monitoring method to increase the utility of the assay, to incorporate cytotoxicity screening and to describe the combined effects of DCFDA and the ROS generator, Ter-butyl hydrogen peroxide (TBHP). Breast cancer MCF-7 cells were loaded with DCFDA (0-50 μM) for 45 min, and then exposed to TBHP (0-50 μM). Fluorescence was recorded according to three different schedules: every hour for 6 h, or once after 6 h or 24 h. Viability was assessed in a crystal violet assay and cell morphology was examined by microscopy. TBHP caused a time and dose-dependent increase in ROS and the magnitude of the fluorescent signal was affected by the loading concentration of DCFDA. Reading the fluorescence every hour for 6 h did not diminish the emission signal. The most sensitive and reliable combination for this ROS assay was 10 μM DCFDA with 25 μM TBHP; since higher concentrations of DCFDA compromised cell viability. In conclusion we adapted a single point ROS assay to enable production of a profile of ROS generation over an extended 6 h period, and related this to cell viability and morphology. Published by Elsevier Inc.

  11. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    PubMed Central

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  12. Membrane lipids protected from oxidation by red wine tannins: a proton NMR study.

    PubMed

    Furlan, Aurélien L; Jobin, Marie-Lise; Buchoux, Sébastien; Grélard, Axelle; Dufourc, Erick J; Géan, Julie

    2014-12-01

    Dietary polyphenols widespread in vegetables and beverages like red wine and tea have been reported to possess antioxidant properties that could have positive effects on human health. In this study, we propose a new in situ and non-invasive method based on proton liquid-state nuclear magnetic resonance (NMR) to determine the antioxidant efficiency of red wine tannins on a twice-unsaturated phospholipid, 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC), embedded in a membrane model. Four tannins were studied: (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG). The lipid degradation kinetics was determined by measuring the loss of the bis-allylic protons during oxidation induced by a radical initiator, 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). The antioxidant efficiency, i.e. the ability of tannins to slow down the lipid oxidation rate, was shown to be higher for galloylated tannins, ECG and EGCG. Furthermore, the mixture of four tannins was more efficient than the most effective tannin, EGCG, demonstrating a synergistic effect. To better understand the antioxidant action mechanism of polyphenols on lipid membranes, the tannin location was investigated by NMR and molecular dynamics. A correlation between antioxidant action of tannins and their location at the membrane interface (inserted at the glycerol backbone level) could thus be established. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Time-resolved fluorescence sensing of pesticides chlorpyrifos, crotoxyphos and endosulfan by the luminescent Eu(III)-8-allyl-3-carboxycoumarin probe

    NASA Astrophysics Data System (ADS)

    Azab, Hassan A.; Khairy, Gasser M.; Kamel, Rasha M.

    2015-09-01

    This work describes the application of time resolved fluorescence in microtiter plates for investigating the interactions of europium-allyl-3-carboxycoumarin with pesticides chlorpyrifos, endosulfan and crotoxyphos. Stern-Volmer studies at different temperatures for chlorpyrifos and crotoxyphos shows dynamic and static quenching mechanisms respectively. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence variations of the probe in solution. The detection limits are 6.53, 0.004, 3.72 μmol/L for chlorpyrifos, endosulfan, and crotoxyphos, respectively. The binding constants and thermodynamic parameters of the pesticides with probe were evaluated. A thermodynamic analysis showed that the reaction is spontaneous with negative ΔG. Effect of some relevant interferents on the detection of pesticides has been investigated. The new method was applied to the determination of the pesticides in different types of water samples (tap, mineral, and waste water).

  14. Elastomeric nanoparticle composites covalently bound to Al2O3/GaAs surfaces.

    PubMed

    Song, Hyon Min; Ye, Peide D; Ivanisevic, Albena

    2007-08-28

    This article reports the modification of Al2O3/GaAs surfaces with multifunctional soft materials. Siloxane elastomers were covalently bound to dopamine-modified Al2O3/GaAs semiconductor surfaces using MPt (M = Fe, Ni) nanoparticles. The sizes of the monodisperse FePt and NiPt nanoparticles were less than 5 nm. The surfaces of the nanoparticles as well as the Al2O3/GaAs substrates were modified with allyl-functionalized dopamine that utilized a dihydroxy group as a strong ligand. The immobilization of the elastomers was performed via a hydrosilation reaction of the allyl-functionalized dopamines with the siloxane backbones. X-ray photoelectron spectroscopy (XPS) experiments confirmed the covalent bonding of the siloxane elastomers to the oxide layer on the semiconductor surface. Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS) measurements revealed that the allyl functional groups are bonded to the siloxane backbones. The FT-IRRAS data also showed that the density of the allyl groups on the surface was lower than that of the siloxane backbones. The mechanical properties of the surface-bound nanocomposites were tested using nanoindentation experiments. The nanoindentation data showed that the soft matrix composed of the elastomeric coating on the surfaces behaves differently from the inner, hard Al2O3/GaAs substrate.

  15. Asymmetric epoxidation of unsaturated ketones catalyzed by heterobimetallic rare earth-lithium complexes bearing phenoxy-functionalized chiral diphenylprolinolate ligand.

    PubMed

    Qian, Qinqin; Tan, Yufang; Zhao, Bei; Feng, Tao; Shen, Qi; Yao, Yingming

    2014-09-05

    Four novel heterobimetallic complexes [REL2]{[(THF)3Li]2(μ-Cl)} stabilized by chiral phenoxy-functionalized prolinolate (RE = Yb (1), Y (2), Sm (3), Nd (4), H2L = (S)-2,4-di-tert-butyl-6-[[2-(hydroxydiphenylmethyl)pyrrolidin-1-yl]methyl]phenol have been synthesized and characterized. These readily available complexes are highly active in catalyzing the epoxidation of α,β-unsaturated ketones, while the enantioselectivity varies according to the ionic radii of the rare earth center. A series of chalcone derivatives were converted to chiral epoxides in 80 → 99% ee at 0 °C using TBHP as the oxidant in the presence of 10 mol % of 1.

  16. N-(2-Allyl-4-chloro-2H-indazol-5-yl)-4-meth­oxy­benzene­sulfonamide hemi­hydrate

    PubMed Central

    Chicha, Hakima; Kouakou, Assoman; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    The fused five- and six-membered rings in the title compound, C17H16ClN3O3S·0.5H2O, are practically coplanar, with the maximum deviation from the mean plane being 0.057 (3) Å for the C atom bound to the exocyclic N atom. The indazole system makes a dihedral angle of 66.18 (12)° with the plane through the benzene ring, and it is nearly perpendicular to the allyl group, as indicated by the N—N—C—C torsion angle of 79.2 (3)°. In the crystal, the water mol­ecule, lying on a twofold axis, forms O—H⋯N and accepts N—H⋯O hydrogen bonds. Additional C—H⋯O hydrogen bonds contribute to the formation of a chain along the b-axis direction. PMID:24109418

  17. Açaí (Euterpe oleraceae Mart.) berry extract exerts neuroprotective effects against β-amyloid exposure in vitro.

    PubMed

    Wong, Daphne Yiu San; Musgrave, Ian Francis; Harvey, Benjamin Scott; Smid, Scott Darryl

    2013-11-27

    The native South American palm açaí berry (Euterpe oleraceae Mart.) has high polyphenolic and antioxidant levels. This study examined whether açaí berry extract afforded protection against β-amyloid (Aβ)-mediated loss of cell viability and oxidative stress associated with anti-fibrillar effects. PC12 cells were exposed to either Aβ1-42, Aβ25-35 or tert butyl hydroperoxide (t-BHP), alone or in the presence of açaí extract (0.5-50μg/ml). Thioflavin T (ThT) binding assay and transmission electron microscopy were used to determine effects of açaí extract on Aβ1-42 fibril morphology and compared to açaí phenolics gallic acid, cyanidin rutinoside and cyanidin glucoside. Exposure to Aβ1-42, Aβ25-35 or t-BHP decreased PC12 cell viability. Pretreatment with açaí extract significantly improved cell viability following Aβ1-42 exposure, however Aβ25-35 or t-BHP-mediated viability loss was unaltered. Açaí extract inhibited ThT fluorescence and disrupted Aβ1-42 fibril and aggregate morphology. In comparison with other phenolics, açaí was most effective at inhibiting Aβ1-42 aggregation. Inhibition of β-amyloid aggregation may underlie a neuroprotective effect of açaí. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Deodorization of garlic breath volatiles by food and food components.

    PubMed

    Munch, Ryan; Barringer, Sheryl A

    2014-04-01

    The ability of foods and beverages to reduce allyl methyl disulfide, diallyl disulfide, allyl mercaptan, and allyl methyl sulfide on human breath after consumption of raw garlic was examined. The treatments were consumed immediately following raw garlic consumption for breath measurements, or were blended with garlic prior to headspace measurements. Measurements were done using a selected ion flow tube-mass spectrometer. Chlorophyllin treatment demonstrated no deodorization in comparison to the control. Successful treatments may be due to enzymatic, polyphenolic, or acid deodorization. Enzymatic deodorization involved oxidation of polyphenolic compounds by enzymes, with the oxidized polyphenols causing deodorization. This was the probable mechanism in raw apple, parsley, spinach, and mint treatments. Polyphenolic deodorization involved deodorization by polyphenolic compounds without enzymatic activity. This probably occurred for microwaved apple, green tea, and lemon juice treatments. When pH is below 3.6, the enzyme alliinase is inactivated, which causes a reduction in volatile formation. This was demonstrated in pH-adjusted headspace measurements. However, the mechanism for volatile reduction on human breath (after volatile formation) is unclear, and may have occurred in soft drink and lemon juice breath treatments. Whey protein was not an effective garlic breath deodorant and had no enzymatic activity, polyphenolic compounds, or acidity. Headspace concentrations did not correlate well to breath treatments. © 2014 Institute of Food Technologists®

  19. A Broadly Applicable NHC–Cu-Catalyzed Approach for Efficient, Site-, and Enantioselective Coupling of Readily Accessible (Pinacolato)alkenylboron Compounds to Allylic Phosphates and Applications to Natural Product Synthesis

    PubMed Central

    2015-01-01

    A set of protocols for catalytic enantioselective allylic substitution (EAS) reactions that allow for additions of alkenyl units to readily accessible allylic electrophiles is disclosed. Transformations afford 1,4-dienes that contain a tertiary carbon stereogenic site and are promoted by 1.0–5.0 mol % of a copper complex of an N-heterocyclic carbene (NHC). Aryl- as well as alkyl-substituted electrophiles bearing a di- or trisubstituted alkene may be employed. Reactions can involve a variety of robust alkenyl–(pinacolatoboron) [alkenyl–B(pin)] compounds that can be either purchased or prepared by various efficient, site-, and/or stereoselective catalytic reactions, such as cross-metathesis or proto-boryl additions to terminal alkynes. Vinyl-, E-, or Z-disubstituted alkenyl-, 1,1-disubstituted alkenyl-, acyclic, or heterocyclic trisubstituted alkenyl groups may be added in up to >98% yield, >98:2 SN2′:SN2, and 99:1 enantiomeric ratio (er). NHC–Cu-catalyzed EAS with alkenyl–B(pin) reagents containing a conjugated carboxylic ester or aldehyde group proceed to provide the desired 1,4-diene products in good yield and with high enantioselectivity despite the presence of a sensitive stereogenic tertiary carbon center that could be considered prone to epimerization. In most instances, the alternative approach of utilizing an alkenylmetal reagent (e.g., an Al-based species) represents an incompatible option. The utility of the approach is illustrated through applications to enantioselective synthesis of natural products such as santolina alcohol, semburin, nyasol, heliespirone A, and heliannuol E. PMID:24467274

  20. Redox-responsive solid lipid microparticles composed of octadecyl acrylate and allyl disulfide.

    PubMed

    Kim, Tae Hoon; Kim, Jin-Chul

    2018-04-01

    Redox-responsive solid lipid microparticles were prepared by an emulsification photo-polymerization method. Octadecyl acrylate (ODA) and a cross-linker (i.e. allyl disulfide (ADS) and octadiene (ODE)) were dissolved in dichloromethane, it was emulsified in poly(vinyl alcohol) solution, and the resulting O/W emulsion was irradiated with UV light. On the scanning electron microscope micrographs, the microparticles were sphere-like and they were not markedly different from the oil droplets in size. Using the atomic compositions analyzed by energy dispersive X-ray spectroscopy, the ODA to cross-linker molar ratio of ODA/ADS microparticles and ODA/ODE ones were calculated to be 1:0.13 and 1:0.15, respectively. In the FT-IR spectra of the microparticles, the signal of the vinyl group was hardly detected, implying that the monomer and the cross-linkers participated in the photo-polymerization. In differential scanning calorimetry study, ODA/ADS microparticles and ODA/ODE ones exhibited their endothermic peaks around 42.9 and 41.3 °C, respectively, possibly due to the melting of polymeric ODA. Dithiothreitol (DTT, a reducing agent) concentration had little effect on the release degree of dye loaded in ODA/ODE microparticles. Whereas, DTT concentration had a significant effect on the release degree of dye loaded in ODA/ADS microparticles. The release degree at 26 °C was weakly affected by DTT concentration. When the temperature was 37 °C, DTT concentration had a strong effect on the release degree. The disulfide cross-linker (i.e. ADS) can be broken to thiol compounds by the reducing agent, resulting in an increase in the release degree.

  1. Fabrication of Cellulose Film with Enhanced Mechanical Properties in Ionic Liquid 1-Allyl-3-methylimidaxolium Chloride (AmimCl)

    PubMed Central

    Pang, Jinhui; Liu, Xin; Zhang, Xueming; Wu, Yuying; Sun, Runcang

    2013-01-01

    More and more attention has been paid to environmentally friendly bio-based renewable materials as the substitution of fossil-based materials, due to the increasing environmental concerns. In this study, regenerated cellulose films with enhanced mechanical property were prepared via incorporating different plasticizers using ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as the solvent. The characteristics of the cellulose films were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis (TG), X-ray diffraction (XRD), 13C Solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) and tensile testing. The results showed that the cellulose films exhibited a homogeneous and smooth surface structure. It was noted that the thermal stability of the regenerated cellulose film plasticized with glycerol was increased compared with other regenerated cellulose films. Furthermore, the incorporation of plasticizers dramatically strengthened the tensile strength and improved the hydrophobicity of cellulose films, as compared to the control sample. Therefore, these notable results exhibited the potential utilization in producing environmentally friendly cellulose films with high performance properties. PMID:28809209

  2. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGES

    Welz, Oliver; Savee, John D.; Osborn, David L.; ...

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH 3) 2CCHCH 2OH) and isoprenol (3-methyl-3-buten-1-ol, CH 2C(CH 3)CH 2CH 2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant productsmore » arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O 2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O 2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O 2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO 2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  3. Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.

    PubMed

    Terada, Yuko; Masuda, Hideki; Watanabe, Tatsuo

    2015-08-28

    Allyl isothiocyanate (ITC) (4) is the main pungent component in wasabi, and it generates an acrid sensation by activating TRPA1. The flavor and pungency of ITCs vary depending on the compound. However, the differences in activity to activate TRPA1 between ITCs are not known except for a few compounds. To investigate the effect of carbon chain length and substituents of ITCs, the TRPA1-activiting ability of 16 ITCs was measured. Since most of the ITCs showed nearly equal TRPA1-activiting potency, the ITC moiety is likely the predominant contributor to their TRPA1-activating abilities, and contributions of other functional groups to their activities to activate TRPA1 are comparatively small.

  4. Amifostine Pretreatment Attenuates Myocardial Ischemia/Reperfusion Injury by Inhibiting Apoptosis and Oxidative Stress.

    PubMed

    Wu, Shao-Ze; Tao, Lu-Yuan; Wang, Jiao-Ni; Xu, Zhi-Qiang; Wang, Jie; Xue, Yang-Jing; Huang, Kai-Yu; Lin, Jia-Feng; Li, Lei; Ji, Kang-Ting

    2017-01-01

    The present study was aimed at investigating the effect of amifostine on myocardial ischemia/reperfusion (I/R) injury of mice and H9c2 cells cultured with TBHP (tert-butyl hydroperoxide). The results showed that pretreatment with amifostine significantly attenuated cell apoptosis and death, accompanied by decreased reactive oxygen species (ROS) production and lower mitochondrial potential (ΔΨm). In vivo, amifostine pretreatment alleviated I/R injury and decreased myocardial apoptosis and infarct area, which was paralleled by increased superoxide dismutase (SOD) and reduced malondialdehyde (MDA) in myocardial tissues, increased Bcl2 expression, decreased Bax expression, lower cleaved caspase-3 level, fewer TUNEL positive cells, and fewer DHE-positive cells in heart. Our results indicate that amifostine pretreatment has a protective effect against myocardial I/R injury via scavenging ROS.

  5. Quantum Chemical Molecular Dynamics Simulations of 1,3-Dichloropropene Combustion.

    PubMed

    Ahubelem, Nwakamma; Shah, Kalpit; Moghtaderi, Behdad; Page, Alister J

    2015-09-03

    Oxidative decomposition of 1,3-dichloropropene was investigated using quantum chemical molecular dynamics (QM/MD) at 1500 and 3000 K. Thermal oxidation of 1,3-dichloropropene was initiated by (1) abstraction of allylic H/Cl by O2 and (2) intra-annular C-Cl bond scission and elimination of allylic Cl. A kinetic analysis shows that (2) is the more dominant initiation pathway, in agreement with QM/MD results. These QM/MD simulations reveal new routes to the formation of major products (H2O, CO, HCl, CO2), which are propagated primarily by the chloroperoxy (ClO2), OH, and 1,3-dichloropropene derived radicals. In particular, intra-annular C-C/C-H bond dissociation reactions of intermediate aldehydes/ketones are shown to play a dominant role in the formation of CO and CO2. Our simulations demonstrate that both combustion temperature and radical concentration can influence the product yield, however not the combustion mechanism.

  6. Allyl isothiocyanate-induced changes in the distribution of white blood cells in rats.

    PubMed

    Imaizumi, Kazuhiko; Sato, Shogo; Sakakibara, Yuko; Mori, Sayuri; Ohkuma, Masaki; Kawashima, Yu; Ban, Takamasa; Sasaki, Hiromi; Tachiyashiki, Kaoru

    2010-08-01

    The main pungent component of wasabi (Eutrema japonica) is known to be isothiocyanate and its derivatives, volatile substances. Allyl isothiocyanate (AITC) accounts for more than half of isothiocyanate derivatives. However, there is a little information on the effects of AITC on the immune system by analyzing the number of white blood cells (WBCs) over the course of days of AITC administration. In the present study, we studied the effects of AITC (dose=20 mg/kg body weight/day for 10 days, subcutaneous: s.c.) on the number of WBCs (total WBCs, lymphocytes, monocyte, neutrophil, basophil and eosinophil) and plasma corticosterone concentrations in adult male rats. Administration of AITC decreased significantly the number of total WBCs on days 1-4 post s.c. injection by 25-27%. Administration of AITC also decreased the number of lymphocytes on days 1-10 by 21-36% and monocyte on days 1-8 by 28-78%. However, administration of AITC increased the number of neutrophil on days 8-10 by 61-112%. AITC did not change the number of eosinophil and basophil. Plasma corticosterone concentrations during the experimental period were 4.7-8.4 times significantly higher in the AITC group than in the control group, indicating that AITC induced stress-responses. The relative weights of thymus and adrenals per body weight were significantly lower and clearly higher in the AITC group than in the control group, respectively. These results suggest that AITC-mediated stress-responses are at least in part attributable to changes in the number of circulating WBCs.

  7. Mechanisms of transient receptor potential vanilloid 1 activation and sensitization by allyl isothiocyanate.

    PubMed

    Gees, Maarten; Alpizar, Yeranddy A; Boonen, Brett; Sanchez, Alicia; Everaerts, Wouter; Segal, Andrei; Xue, Fenqin; Janssens, Annelies; Owsianik, Grzegorz; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2013-09-01

    Allyl isothiocyanate (AITC; aka, mustard oil) is a powerful irritant produced by Brassica plants as a defensive trait against herbivores and confers pungency to mustard and wasabi. AITC is widely used experimentally as an inducer of acute pain and neurogenic inflammation, which are largely mediated by the activation of nociceptive cation channels transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 (TRPV1). Although it is generally accepted that electrophilic agents activate these channels through covalent modification of cytosolic cysteine residues, the mechanism underlying TRPV1 activation by AITC remains unknown. Here we show that, surprisingly, AITC-induced activation of TRPV1 does not require interaction with cysteine residues, but is largely dependent on S513, a residue that is involved in capsaicin binding. Furthermore, AITC acts in a membrane-delimited manner and induces a shift of the voltage dependence of activation toward negative voltages, which is reminiscent of capsaicin effects. These data indicate that AITC acts through reversible interactions with the capsaicin binding site. In addition, we show that TRPV1 is a locus for cross-sensitization between AITC and acidosis in nociceptive neurons. Furthermore, we show that residue F660, which is known to determine the stimulation by low pH in human TRPV1, is also essential for the cross-sensitization of the effects of AITC and low pH. Taken together, these findings demonstrate that not all reactive electrophiles stimulate TRPV1 via cysteine modification and help understanding the molecular bases underlying the surprisingly large role of this channel as mediator of the algesic properties of AITC.

  8. [Inhibition of Growth of Seed-Borne Fungi and Aflatoxin Production on Stored Peanuts by Allyl Isothiocyanate Vapor].

    PubMed

    Okano, Kiyoshi; Nishioka, Chikako; Iida, Tetsuya; Ozu, Yuzi; Kaneko, Misao; Watanabe, Yuko; Mizukami, Yuichi; Ichinoe, Masakatsu

    2018-01-01

    Aspergillus parasiticus contamination of peanuts results in the production of highly toxic metabolites, such as aflatoxin B 1 , B 2 , G 1 and G 2 , and its incidence in imported peanuts is reported to be increasing. Here, we examined whether the antifungal compound allyl isothiocyanate (AIT), which is present in mustard seed, could inhibit the growth of seed-borne fungi and aflatoxin-producing fungi. Peanuts produced in China and Japan were inoculated with A. parasiticus and exposed to AIT vapor released by a commercial mustard seed extract in closed containers under controlled conditions of temperature and humidity. AIT in the inoculated peanut samples reached its highest concentration of 44.8 ng/mL at 3 hr and decreased to 5.6 ng/mL after 9 weeks. Although AIT decreased the growth of the seed-borne fungi during the test period, the inoculated fungi survived. All tested peanuts samples were analyzed for aflatoxin using the HPLC method. There was a correlation between the number of aflatoxin-producing fungi and the total amount of aflatoxin production in the inoculated peanut samples. Our results indicate that AIT was effective in inhibiting the growth of seed-borne fungi and aflatoxin-producing fungi.

  9. A novel and general synthetic pathway to strychnos indole alkaloids: total syntheses of (-)-tubifoline, (-)-dehydrotubifoline, and (-)-strychnine using palladium-catalyzed asymmetric allylic substitution.

    PubMed

    Mori, Miwako; Nakanishi, Masato; Kajishima, Daisuke; Sato, Yoshihiro

    2003-08-13

    A method of palladium-catalyzed asymmetric allylic substitution for synthesizing 2-substituted cyclohexenylamine derivatives was established. Treatment of a 2-silyloxymethylcyclohexenol derivative with ortho-bromo-N-tosylaniline in the presence of Pd(2)dba(3).CHCl(3) and (S)-BINAPO in THF afforded a cyclohexenylamine derivative with 84% ee in 80% yield. The Heck reaction was carried out to produce an indolenine derivative in good yield. Using this method, we synthesized indolenine derivative 7, which was recrystallized from EtOH to give an optically pure compound. From this compound, tetracyclic ketone 13, which should be a useful intermediate for the synthesis of indole alkaloids, could be synthesized. The total syntheses of (-)-dehydrotubifoline, (-)-tubifoline, and (-)-strychnine were achieved from 13. All ring constructions for the syntheses of these natural products were achieved using a palladium catalyst.

  10. S-allyl derivatives of 6-mercaptopurine are highly potent drugs against human B-CLL through synergism between 6-mercaptopurine and allicin.

    PubMed

    Miron, Talia; Wilchek, Meir; Shvidel, Lev; Berrebi, Alain; Arditti, Fabian D

    2012-12-01

    S-allylthio-6-mercaptopurine and its ribose derivative were tested for anti-leukemic activity, using a human- mouse B-CLL model. The novel prodrugs contain two components, a purine analog, which interferes with DNA synthesis, and an S-allylthio, readily engaging in thiol-disulfide exchange reactions. The latter component targets the redox homeostasis which is more sensitive in leukemic cells, than in normal B-cells. Upon administration, the prodrug permeates cells, instantly reacts with free thiol, forming S-allyl mixed disulfides and releasing purine. Several cycles of thiol-disulfide exchange reactions occur, thus extending the duration of the prodrug effects. The concerted action of 2 components, as compared with purine alone, boosted in vitro apoptotis in B-CLL cells from 10% to 38%, and decreased in vivo engraftment of B-CLL from 30% to 0.7%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Synergistic effect of allyl isothiocyanate (AITC) on cisplatin efficacy in vitro and in vivo

    PubMed Central

    Ling, Xiang; Westover, David; Cao, Felicia; Cao, Shousong; He, Xiang; Kim, Hak-Ryul; Zhang, Yuesheng; Chan, Daniel CF; Li, Fengzhi

    2015-01-01

    Although in vitro studies have shown that isothiocyanates (ITCs) can synergistically sensitize cancer cells to cisplatin treatment, the underlying mechanisms have not been well defined, and there are no in vivo demonstrations of this synergy. Here, we report the in vitro and in vivo data for the combination of allyl isothiocyanate (AITC), one of the most common naturally occurring ITCs, with cisplatin. Our study revealed that cisplatin and AITC combination synergistically inhibits cancer cell growth and colony formation, and enhances apoptosis in association with the downregulation of antiapoptotic proteins Bcl-2 and survivin. Importantly, the in vivo combination treatment suppresses human tumor growth in animal models without observable increases in toxicity (body weight loss) in comparison with single agent treatment. Furthermore, our data revealed that addition of AITC to cisplatin treatment changes the profile of G2/M arrest (e.g. increase in M phase cell number) and significantly extends the duration of G2/M arrest in comparison with cisplatin treatment alone. To explore the underlying mechanism, we found that AITC treatment rapidly depletes b-tubulin. Combination of AITC and cisplatin inhibits the expression of G2/M checkpoint-relevant proteins including CDC2, cyclin B1 and CDC25. Together, our findings reveal a novel mechanism for AITC enhancing cisplatin efficacy and provides the first in vivo evidence to support ITCs as potential candidates for developing new regimens to overcome platinum resistance. PMID:26396928

  12. Protective Effects of Maillard Reaction Products of Whey Protein Concentrate against Oxidative Stress through an Nrf2-Dependent Pathway in HepG2 Cells.

    PubMed

    Pyo, Min Cheol; Yang, Sung-Yong; Chun, Su-Hyun; Oh, Nam Su; Lee, Kwang-Won

    2016-09-01

    Whey protein concentrate (WPC), which contains α-lactalbumin and β-lactoglobulin, is utilized widely in the food industry. The Maillard reaction is a complex reaction that produces Maillard reaction products (MRPs), which are associated with the formation of antioxidant compounds. In this study, the hepatoprotection activity of MRPs of WPC against oxidative stress through the nuclear factor-E2-related factor 2 (Nrf2)-dependent antioxidant pathway in HepG2 cells was examined. Glucose-whey protein concentrate conjugate (Glc-WPC) was obtained from Maillard reaction between WPC and glucose. The fluorescence intensity of Glc-WPC increased after 7 d compared to native WPC, and resulted in loss of 48% of the free amino groups of WPC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns of Glc-WPC showed the presence of a high-molecular-weight portion. Treatment of HepG2 cells with Glc-WPC increased cell viability in the presence of oxidative stress, inhibited the generation of intracellular reactive oxygen species by tert-butyl hydroperoxide (t-BHP), and increased the glutathione level. Nrf2 translocation and Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H)-quinone oxidoreductase 1 (NOQ1), heme oxygenase-1 (HO-1), glutamate-L-cysteine ligase (GCL)M and GCLC mRNA levels were increased by Glc-WPC. Also, Glc-WPC increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK). The results of this study demonstrate that Glc-WPC activates the Nrf2-dependent pathway through the phosphorylation of ERK1/2 and JNK in HepG2 cells, and induces production of antioxidant enzymes and phase II enzymes.

  13. Novel N-allyl/propargyl tetrahydroquinolines: Synthesis via Three-component Cationic Imino Diels-Alder Reaction, Binding Prediction, and Evaluation as Cholinesterase Inhibitors.

    PubMed

    Rodríguez, Yeray A; Gutiérrez, Margarita; Ramírez, David; Alzate-Morales, Jans; Bernal, Cristian C; Güiza, Fausto M; Romero Bohórquez, Arnold R

    2016-10-01

    New N-allyl/propargyl 4-substituted 1,2,3,4-tetrahydroquinolines derivatives were efficiently synthesized using acid-catalyzed three components cationic imino Diels-Alder reaction (70-95%). All compounds were tested in vitro as dual acetylcholinesterase and butyryl-cholinesterase inhibitors and their potential binding modes, and affinity, were predicted by molecular docking and binding free energy calculations (∆G) respectively. The compound 4af (IC50 = 72 μm) presented the most effective inhibition against acetylcholinesterase despite its poor selectivity (SI = 2), while the best inhibitory activity on butyryl-cholinesterase was exhibited by compound 4ae (IC50 = 25.58 μm) with considerable selectivity (SI = 0.15). Molecular docking studies indicated that the most active compounds fit in the reported acetylcholinesterase and butyryl-cholinesterase active sites. Moreover, our computational data indicated a high correlation between the calculated ∆G and the experimental activity values in both targets. © 2016 The Authors Chemical Biology & Drug Design Published by John Wiley & Sons Ltd.

  14. Active packaging of cheese with allyl isothiocyanate, an alternative to modified atmosphere packaging.

    PubMed

    Winther, Mette; Nielsen, Per Vaeggemose

    2006-10-01

    The natural antimicrobial compound allyl isothiocyanate (AITC), found in mustard oil, is effective against cheese-related fungi both on laboratory media and cheese. Penicillium commune, Penicillium roqueforti, and Aspergillus flavus were more sensitive to AITC when it was added just after the spores had completed 100% germination and branching had started on Czapek yeast extract agar than were spores in the dormant phase. The use of 1 AITC label (Wasaouro interior labels, LD30D, 20 by 20 mm) in combination with atmospheric air in the packaging extended the shelf life of Danish Danbo cheese from 4 1/2 to 13 weeks. Two AITC labels extended the shelf life from 4 1/2 to 28 weeks. Both 1 and 2 labels in combination with modified atmosphere packaging extended the shelf life of the cheese from 18 to 28 weeks. This study showed that AITC was absorbed in the cheese, but it was not possible to detect any volatile breakdown products from AITC in the cheese. Cheese stored for up to 12 weeks with an AITC label had an unacceptable mustard flavor. The mustard flavor decreased to an acceptable level between weeks 12 and 28. Cheese stored in atmospheric air had a fresher taste without a CO2 off-flavor than did cheese stored in modified atmosphere packaging. AITC may be a good alternative to modified atmosphere packaging for cheese. The extended shelf life of cheese in the package is very desirable: the cheese can be transported longer distances, and the packaging can be used for the final maturing of the cheese. Furthermore, AITC can address problems such as pinholes and leaking seals in cheese packaging.

  15. Propofol restores TRPV1 sensitivity via a TRPA1-, nitric oxide synthase-dependent activation of PKCε

    PubMed Central

    Sinharoy, Pritam; Zhang, Hongyu; Sinha, Sayantani; Prudner, Bethany C; Bratz, Ian N; Damron, Derek S

    2015-01-01

    We previously demonstrated that the intravenous anesthetic, propofol, restores the sensitivity of transient receptor potential vanilloid channel subtype-1 (TRPV1) receptors via a protein kinase C epsilon (PKCε)-dependent and transient receptor potential ankyrin channel subtype-1 (TRPA1)-dependent pathway in sensory neurons. The extent to which the two pathways are directly linked or operating in parallel has not been determined. Using a molecular approach, our objectives of the current study were to confirm that TRPA1 activation directly results in PKCε activation and to elucidate the cellular mechanism by which this occurs. F-11 cells were transfected with complimentary DNA (cDNA) for TRPV1 only or both TRPV1 and TRPA1. Intracellular Ca2+ concentration was measured in individual cells via fluorescence microscopy. An immunoblot analysis of the total and phosphorylated forms of PKCε, nitric oxide synthase (nNOS), and TRPV1 was also performed. In F-11 cells containing both channels, PKCε inhibition prevented the propofol- and allyl isothiocyanate (AITC)-induced restoration of TRPV1 sensitivity to agonist stimulation as well as increased phosphorylation of PKCε and TRPV1. In cells containing TRPV1 only, neither agonist induced PKCε or TRPV1 phosphorylation. Moreover, NOS inhibition blocked propofol-and AITC-induced restoration of TRPV1 sensitivity and PKCε phosphorylation, and PKCε inhibition prevented the nitric oxide donor, SNAP, from restoring TRPV1 sensitivity. Also, propofol-and AITC-induced phosphorylation of nNOS and nitric oxide (NO) production were blocked with the TRPA1-antagonist, HC-030031. These data indicate that the AITC- and propofol-induced restoration of TRPV1 sensitivity is mediated by a TRPA1-dependent, nitric oxide synthase-dependent activation of PKCε. PMID:26171233

  16. Crystal Structure and Catalytic Behavior in Olefin Epoxidation of a One-Dimensional Tungsten Oxide/Bipyridine Hybrid.

    PubMed

    Amarante, Tatiana R; Antunes, Margarida M; Valente, Anabela A; Paz, Filipe A Almeida; Pillinger, Martyn; Gonçalves, Isabel S

    2015-10-19

    The tungsten oxide/2,2'-bipyridine hybrid material [WO3(2,2'-bpy)]·nH2O (n = 1-2) (1) has been prepared in near quantitative yield by the reaction of H2WO4, 2,2'-bpy, and H2O in the mole ratio of ca. 1:2:700 at 160 °C for 98 h in a rotating Teflon-lined digestion bomb. The solid-state structure of 1 was solved and refined through Rietveld analysis of high-resolution synchrotron X-ray diffraction data collected for the microcrystalline powder. The material, crystallizing in the orthorhombic space group Iba2, is composed of a one-dimensional organic-inorganic hybrid polymer, ∞(1)[WO3(2,2'-bpy)], topologically identical to that found in the previously reported anhydrous phases [MO3(2,2'-bpy)] (M = Mo, W). While in the latter the N,N'-chelated 2,2'-bpy ligands of adjacent corner-shared {MO4N2} octahedra are positioned on the same side of the 1D chain, in 1 the 2,2'-bpy ligands alternate above and below the chain. The catalytic behavior of compound 1 for the epoxidation of cis-cyclooctene was compared with that for several other tungsten- or molybdenum-based (pre)catalysts, including the hybrid polymer [MoO3(2,2'-bpy)]. While the latter exhibits superior performance when tert-butyl hydroperoxide (TBHP) is used as the oxidant, compound 1 is superior when aqueous hydrogen peroxide is used, allowing near-quantitative conversion of the olefin to the epoxide. With H2O2, compounds 1 and [MoO3(2,2'-bpy)] act as sources of soluble active species, namely, the oxodiperoxo complex [MO(O2)2(2,2'-bpy)], which is formed in situ. Compounds 1 and [WO(O2)2(2,2'-bpy)] (2) were further tested in the epoxidation of cyclododecene, trans-2-octene, 1-octene, (R)-limonene, and styrene. The structure of 2 was determined by single-crystal X-ray diffraction and found to be isotypical with the molybdenum analogue.

  17. Intracolonic Administration of the TRPA1 Agonist Allyl Isothiocyanate Stimulates Colonic Motility and Defecation in Conscious Dogs.

    PubMed

    Someya, Soutoku; Nagao, Munenori; Shibata, Chikashi; Tanaka, Naoki; Sasaki, Hiroyuki; Kikuchi, Daisuke; Miyachi, Tomohiro; Naitoh, Takeshi; Unno, Michiaki

    2015-07-01

    The aim of the present study was to investigate the effects of the intracolonic transient receptor potential (TRP) A1 agonist allyl isothiocyanate (AITC) on colonic motility and defecation. The effects of AITC administered into the proximal colonic lumen on colonic motility and defecation were studied in neurally intact dogs equipped with strain-gauge force transducers on the colon, with or without various antagonists. Effects of intracolonic AITC were also studied in dogs with either transection/re-anastomosis (T/R) between the proximal and middle colon and complete extrinsic denervation of an ileocolonic segment. AITC increased colonic motility and induced giant migrating contractions (GMCs) with defecations in 75% of experiments in neurally intact dogs. These effects were inhibited by atropine, hexamethonium, ondansetron, and HC-030031 but unaltered by capsazepine. In dogs with T/R, the increase in colonic motility was inhibited in the middle-distal colon. In dogs with extrinsic denervation, the increase in colonic motility in the distal colon was decreased. Intracolonic AITC stimulates colonic motility and defecation via cholinergic, serotonergic, and TRPA1 pathways. Continuity of colonic enteric neurons plays an essential role in the intracolonic AITC-induced colonic motor response, while extrinsic nerves are important in occurrence and propagation of GMCs.

  18. Novel cytotoxic, polyprenylated heptacyclic xanthonoids from Indonesian Garcinia gaudichaudii (Guttiferae).

    PubMed

    Xu, Y J; Yip, S C; Kosela, S; Fitri, E; Hana, M; Goh, S H; Sim, K Y

    2000-11-30

    [reaction: see text] The structures of novel gaudichaudiic acids F-I (1-4), isolated from the bark of Indonesian Garcinia gaudichaudii, have been elucidated by detailed spectral analysis. Gaudichaudiic acid I (4) is probably derived from 1 as a result of allylic oxidation at C-24 and C-21, followed by aromatization.

  19. Novel 3-hydroxypropyl bonded phase by direct hydrosilylation of allyl alcohol on amorphous hydride silica

    PubMed Central

    Gómez, Jorge E.; Navarro, Fabián H.; Sandoval, Junior E.

    2015-01-01

    A novel 3-hydroxypropyl (propanol) bonded silica phase has been prepared by hydrosilylation of allyl alcohol on a hydride silica intermediate, in the presence of platinum (0)-divinyltetramethyldisiloxane (Karstedt's catalyst). The regio-selectivity of this synthetic approach had been correctly predicted by previous reports involving octakis(dimethylsiloxy)octasilsesquioxane (Q8M8H) and hydrogen silsesquioxane (T8H8), as molecular analogs of hydride amorphous silica. Thus, C-silylation predominated (~ 94%) over O-silylation, and high surface coverages of propanol groups (5±1 µmol/m2) were typically obtained in this work. The propanol-bonded phase was characterized by spectroscopic (IR and solid state NMR on silica microparticles), contact angle (on fused-silica wafers) and CE (on fused-silica tubes) techniques. CE studies of the migration behavior of pyridine, caffeine, tris(2,2’-bipyridine)Ru(II) chloride and lysozyme on propanol-modified capillaries were carried out. The adsorption properties of these select silanol-sensitive solutes were compared to those on the unmodified and hydride-modified tubes. It was found that hydrolysis of the SiH species underlying the immobilized propanol moieties leads mainly to strong ion-exchange based interactions with the basic solutes at pH 4, particularly with lysozyme. Interestingly, and in agreement with water contact angle and electroosmotic mobility figures, the silanol-probe interactions on the buffer-exposed (hydrolyzed) hydride surface are quite different from those of the original unmodified tube. PMID:24934906

  20. Allyl isothiocyanate induces replication-associated DNA damage response in NSCLC cells and sensitizes to ionizing radiation.

    PubMed

    Tripathi, Kaushlendra; Hussein, Usama K; Anupalli, Roja; Barnett, Reagan; Bachaboina, Lavanya; Scalici, Jennifer; Rocconi, Rodney P; Owen, Laurie B; Piazza, Gary A; Palle, Komaraiah

    2015-03-10

    Allyl isothiocyanate (AITC), a constituent of many cruciferous vegetables exhibits significant anticancer activities in many cancer models. Our studies provide novel insights into AITC-induced anticancer mechanisms in human A549 and H1299 non-small cell lung cancer (NSCLC) cells. AITC exposure induced replication stress in NSCLC cells as evidenced by γH2AX and FANCD2 foci, ATM/ATR-mediated checkpoint responses and S and G2/M cell cycle arrest. Furthermore, AITC-induced FANCD2 foci displayed co-localization with BrdU foci, indicating stalled or collapsed replication forks in these cells. Although PITC (phenyl isothiocyanate) exhibited concentration-dependent cytotoxic effects, treatment was less effective compared to AITC. Previously, agents that induce cell cycle arrest in S and G2/M phases were shown to sensitize tumor cells to radiation. Similar to these observations, combination therapy involving AITC followed by radiation treatment exhibited increased DDR and cell killing in NSCLC cells compared to single agent treatment. Combination index (CI) analysis revealed synergistic effects at multiple doses of AITC and radiation, resulting in CI values of less than 0.7 at Fa of 0.5 (50% reduction in survival). Collectively, these studies identify an important anticancer mechanism displayed by AITC, and suggest that the combination of AITC and radiation could be an effective therapy for NSCLC.

  1. Tricothecenes Mycotoxin Studies

    DTIC Science & Technology

    1983-09-01

    selective conditions for croduction of allylic alcohol 6, enone 4, and aldehyde 7 in fair to good yield. in addition, oxidation of 6 with pyridinium ... chlorochromate in C32Cl 2 affords enone 4 in high yield. -L Thus, two different routes to enone 4 are-now available. Studies on the conversion of 4 to

  2. Antinociception by the anti-oxidized phospholipid antibody E06.

    PubMed

    Mohammadi, Milad; Oehler, Beatrice; Kloka, Jan; Martin, Corinna; Brack, Alexander; Blum, Robert; Rittner, Heike L

    2018-04-21

    Reactive oxygen species (ROS) and their downstream molecules such as oxidized phospholipids (OxPL) and 4-hydroxynonenal (4-HNE) activate transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) ion channels in vivo and in vitro shaping thermal and mechanical hypersensitivity in inflammatory pain. E06/T15 is a monoclonal autoantibody against oxidized phosphatidylcholine (OxPC) used in diagnostics in arteriosclerosis. Recently, we provided evidence that E06 also ameliorates inflammatory pain. Here, we studied E06 for local treatment against hypersensitivity evoked by endogenous and exogenous TRPA1 and TRPV1 agonists. We utilized a combination of reflexive and complex behavioural pain measurements, live-cell calcium imaging, and OxPC-binding assays. Lipid peroxidation metabolite 4-HNE, hydrogen peroxide (H 2 O 2 ) as ROS source, allyl isothiocyanate (AITC) and capsaicin were used to activate respective receptors. All irritants induced thermal and mechanical hypersensitivity, spontaneous nocifensive and affective motivational behaviour, as well as calcium influx in HEK TRPA1 - or HEK TRPV1 -cells and dorsal root ganglion (DRG) neurons. E06 prevented prolonged mechanical hypersensitivity induced by all irritants except for H 2 O 2 . E06 did not alter immediate irritant-induced nocifensive or affective motivational behaviour. In vitro, E06 blocked only 4-HNE-induced calcium influx albeit 4-HNE did not bind to E06. After 1-3 h, all tested irritants elicited formation of OxPC in paw tissue. E06 ameliorates not only inflammatory pain but also prolonged hypersensitivity due to formation of OxPC. This supports the view that neutralizing certain OxPL as endogenous TRPA1/V1 activators may be valuable for pain therapy. This article is protected by copyright. All rights reserved.

  3. Synthesis of a highly dispersed CuO catalyst on CoAl-HT for the epoxidation of styrene.

    PubMed

    Hu, Rui; Yang, Pengfei; Pan, Yongning; Li, Yunpeng; He, Yufei; Feng, Junting; Li, Dianqing

    2017-10-10

    A highly dispersed CuO catalyst was prepared by the deposition-precipitation method and evaluated for the catalytic epoxidation of styrene with tert-butyl hydroperoxide (TBHP) as the oxidant under solvent acetonitrile conditions. Compared with MgAl hydrotalcite (MgAl-HT)-, MgO-, TiO 2 -, C-, and MCM-22-supported catalysts, CuO/CoAl-HT exhibited preferable activity and selectivity towards styrene oxide (72% selectivity at 99.5% styrene conversion) due to its high dispersion of CuO and surface area of Cu. The improved dispersion of CuO/CoAl-HT could be ascribed to the nature of HT support, especially the synergistic effect of acidic and basic sites on the surface, which facilitated the formation of highly dispersed CuO species. A structure-performance relationship study indicated that copper(ii) in CuO was the active site for the epoxidation and oxidation of styrene, and that Cu II of rich electronic density favored the improvement of selectivity of styrene oxide. Based on these results, a reaction mechanism was proposed. Moreover, the preferred catalytic performance of CuO/CoAl-HT could be maintained in five reused cycles.

  4. Singlet oxygenation of 1,2-poly/1,4-hexadiene/s

    NASA Technical Reports Server (NTRS)

    Golub, M. A.; Rosenberg, M. L.; Gemmer, R. V.

    1979-01-01

    The microstructural changes that occur in cis and trans forms of 1,2-poly(1,4-hexadiene) during methylene blue-photosensitized oxidation were examined by infrared and (C-13)-NMR spectroscopy. The singlet oxygenation of these polymers yielded the expected allylic hydroperoxides accompanied by double bond shifts to new vinyl and trans-vinylene double bonds. The photosensitized oxidation exhibited zero-order kinetics; the relative rates for the cis- and trans-1,2-poly(1,4-hexadiene)s were approximately 3.8:1.0.

  5. Detection of Volatile Metabolites of Garlic in Human Breast Milk

    PubMed Central

    Scheffler, Laura; Sauermann, Yvonne; Zeh, Gina; Hauf, Katharina; Heinlein, Anja; Sharapa, Constanze; Buettner, Andrea

    2016-01-01

    The odor of human breast milk after ingestion of raw garlic at food-relevant concentrations by breastfeeding mothers was investigated for the first time chemo-analytically using gas chromatography−mass spectrometry/olfactometry (GC-MS/O), as well as sensorially using a trained human sensory panel. Sensory evaluation revealed a clear garlic/cabbage-like odor that appeared in breast milk about 2.5 h after consumption of garlic. GC-MS/O analyses confirmed the occurrence of garlic-derived metabolites in breast milk, namely allyl methyl sulfide (AMS), allyl methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO2). Of these, only AMS had a garlic-like odor whereas the other two metabolites were odorless. This demonstrates that the odor change in human milk is not related to a direct transfer of garlic odorants, as is currently believed, but rather derives from a single metabolite. The formation of these metabolites is not fully understood, but AMSO and AMSO2 are most likely formed by the oxidation of AMS in the human body. The excretion rates of these metabolites into breast milk were strongly time-dependent with large inter-individual differences. PMID:27275838

  6. A novel imidazopyridine derivative, X22, prevents the retinal ischemia-reperfusion injury via inhibition of MAPKs.

    PubMed

    Bian, Yang; Ren, Luqing; Wang, Lei; Xu, Shanmei; Tao, Jianjian; Zhang, Xiuhua; Huang, Yi; Qian, Yuanyuan; Zhang, Xin; Song, Zongming; Wu, Wencan; Wang, Yi; Liang, Guang

    2015-06-01

    Inflammation is a pathological hallmark of ischemia reperfusion (I/R) injury. The present study was conducted to explore the ability of a new anti-inflammatory compound, X22, to attenuate retinal I/R injury via cytokine-inhibitory mechanism. For the in vitro experiment, ARPE-19 cells were pretreated with X22 (5 or 10 μM) or saline for 2 h, followed by stimulation with tert-butyl hydroperoxide (TBHP, 1000 μM) for an indicated amount of time. The expression of inflammatory mediators, cell viability, and cell apoptosis were evaluated. For the in vivo experiment, the rats were randomized to receive treatment with saline or X22 (0.1 μM/kg, 3 μL) before the induction of I/R injury. Histological evaluation, apoptosis of retinal cells, macrophage infiltration, and retina functional changes were further determined. Our data showed that pretreatment with X22 significantly inhibited TBHP-induced inflammatory cytokine expression in ARPE-19 cells. The anti-inflammatory activity of X22 may be associated with its inhibition on MAPKs, rather than NF-κB. Subsequently, our data proved that TBHP induced apoptosis in ARPE-19 cells, while pretreatment of X22 significantly suppressed TBHP-caused ARPE-19 apoptosis. Finally, the in vivo data revealed that X22 administration maintained better inner retinal layer structures, reduced apoptosis of retinal ganglion cell, and improved retinal function in retinal I/R rat models, which were accompanied with a remarkable decrease in retinal macrophage infiltration. These results suggest that the novel compound X22 is a potential agent for the treatment of retinal I/R-related diseases via the MAPKs-targeting anti-inflammatory mechanism and deserves the further development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  8. Vanadium(V) Complexes with Substituted 1,5-bis(2-hydroxybenzaldehyde)carbohydrazones and Their Use As Catalyst Precursors in Oxidation of Cyclohexane.

    PubMed

    Dragancea, Diana; Talmaci, Natalia; Shova, Sergiu; Novitchi, Ghenadie; Darvasiová, Denisa; Rapta, Peter; Breza, Martin; Galanski, Markus; Kožı́šek, Jozef; Martins, Nuno M R; Martins, Luísa M D R S; Pombeiro, Armando J L; Arion, Vladimir B

    2016-09-19

    Six dinuclear vanadium(V) complexes have been synthesized: NH4[(VO2)2((H)LH)] (NH4[1]), NH4[(VO2)2((t-Bu)LH)] (NH4[2]), NH4[(VO2)2((Cl)LH)] (NH4[3]), [(VO2)(VO)((H)LH)(CH3O)] (4), [(VO2)(VO)((t-Bu)LH)(C2H5O)] (5), and [(VO2)(VO)((Cl)LH)(CH3O)(CH3OH/H2O)] (6) (where (H)LH4 = 1,5-bis(2-hydroxybenzaldehyde)carbohydrazone, (t-Bu)LH4 = 1,5-bis(3,5-di-tert-butyl-2-hydroxybenzaldehyde)carbohydrazone, and (Cl)LH4 = 1,5-bis(3,5-dichloro-2-hydroxybenzaldehyde)carbohydrazone). The structures of NH4[1] and 4-6 have been determined by X-ray diffraction (XRD) analysis. In all complexes, the triply deprotonated ligand accommodates two V ions, using two different binding sites ONN and ONO separated by a diazine unit -N-N-. In two pockets of NH4[1], two identical VO2(+) entities are present, whereas, in those of 4-6, two different VO2(+) and VO(3+) are bound. The highest oxidation state of V ions was corroborated by X-ray data, indicating the presence of alkoxido ligand bound to VO(3+) in 4-6, charge density measurements on 4, magnetic susceptibility, NMR spectroscopy, spectroelectrochemistry, and density functional theory (DFT) calculations. All four complexes characterized by XRD form dimeric associates in the solid state, which, however, do not remain intact in solution. Compounds NH4[1], NH4[2], and 4-6 were applied as alternative selective homogeneous catalysts for the industrially significant oxidation of cyclohexane to cyclohexanol and cyclohexanone. The peroxidative (with tert-butyl hydroperoxide, TBHP) oxidation of cyclohexane was performed under solvent-free and additive-free conditions and under low-power microwave (MW) irradiation. Cyclohexanol and cyclohexanone were the only products obtained (high selectivity), after 1.5 h of MW irradiation. Theoretical calculations suggest a key mechanistic role played by the carbohydrazone ligand, which can undergo reduction, instead of the metal itself, to form an active reduced form of the catalyst.

  9. Enhanced Catalytic Activity and Unexpected Products from the Oxidation of Cyclohexene by Organic Nanoparticles of 5,10,15,20-Tetrakis-(2,3,4,5,6-pentafluorophenyl)porphyrinatoiron(III) in Water by Using O2

    PubMed Central

    Smeureanu, Gabriela; Aggarwal, Amit; Soll, Clifford E.; Arijeloye, Julius; Malave, Erik

    2010-01-01

    The catalytic oxidation of alkenes by most iron porphyrins using a variety of oxygen sources, but generally not dioxygen, yields the epoxide with minor quantities of other products. The turnover numbers for these catalysts are modest, ranging from a few hundred to a few thousand depending on the porphyrin structure, axial ligands, and other reaction conditions. Halogenation of substituents increases the activity of the metalloporphyrin catalyst and/or makes it more robust to oxidative degradation. Oxidation of cyclohexene by 5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)porphyrinato iron(III), ([FeIII(tppf20)]) and H2O2 is typical of the latter: the epoxide is 99% of the product and turnover numbers are about 350.[1–4] Herein, we report that dynamic organic nanoparticles (ONPs) of [FeIII(tppf20)] with a diameter of 10 nm, formed by host–guest solvent methods, catalytically oxidize cyclohexene with O2 to yield only 2-cyclohexene-1-one and 2-cyclohexene-1-ol with approximately 10-fold greater turnover numbers compared to the non-aggregated metalloporphyrin in acetonitrile/methanol. These ONPs facilitate a greener reaction because the reaction solvent is 89% water and O2 is the oxidant in place of synthetic oxygen sources. This reactivity is unexpected because the metalloporphyrins are in close proximity and oxidative degradation of the catalyst should be enhanced, thus causing a significant decrease in catalytic turnovers. The allylic products suggest a different oxidative mechanism compared to that of the solvated metalloporphyrins. These results illustrate the unique properties of some ONPs relative to the component molecules or those attached to supports. PMID:19777510

  10. Does 1-Allyl-3-methylimidazolium chloride Act as a Biocompatible Solvent for Stem Bromelain?

    PubMed

    Jha, Indrani; Bisht, Meena; Venkatesu, Pannuru

    2016-06-30

    The broader scope of ILs in chemical sciences particularly in pharmaceutical, bioanalytical and many more applications is increasing day by day. Hitherto, a very less amount of research is available in the depiction of conformational stability, activity, and thermal stability of enzymes in the presence of ILs. In the present study, the perturbation in the structure, stability, and activity of stem bromelain (BM) has been observed in the presence of 1-allyl-3-methylimidazolium chloride ([Amim][Cl]) using various techniques. This is the first report in which the influence of [Amim][Cl] has been studied on the enzyme BM. Fluorescence spectroscopy has been utilized to map out the changes in the environment around tryptophan (Trp) residues of BM and also to discuss the variations in the thermal stability of BM as an outcome of its interaction with the IL at different concentrations. Further, the work delineates the denaturing effect of high concentration of IL on enzyme structure and activity. It dictates the fact that low concentrations (0.01-0.10 M) of [Amim][Cl] are only changing the structural arrangement of the protein without having harsh consequences on its activity and stability. However, high concentrations of IL proved to be totally devastating for both activity and stability of BM. The observed decrease in the stability of BM at high concentration may be due to the combined effect of cation and anion interactions with the protein residues. The present work is successful in dictating the probable mechanism of interaction between BM and [Amim][Cl]. These results can prove to be fruitful in the studies of enzymes in aqueous IL systems since the used IL is thermally stable and nonvolatile in nature thereby providing a pathway of alteration in the activity of enzymes in potentially green systems.

  11. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate. Allyl cinnamate. Allyl...-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl isovalerate. Benzyl mercaptan; α-toluenethiol...

  12. Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release

    PubMed Central

    Wang, Jinpeng; Qiu, Chao; Narsimhan, Ganesan; Jin, Zhengyu

    2017-01-01

    Allyl isothiocyanate (AITC) are natural essential oil components that have outstanding antimicrobial activities. However, low water solubility, high volatility, and easy degradation by heat, restricting their application in food packing industry. Development of the inclusion complex of β-cyclodextrin/AITC (β-CD/AITC) is a promising solution. Furthermore, the incorporation of β-CD/AITC complex into polylactic acid (PLA) films would be an attractive method to develop food antimicrobial materials. The aim of this study was to evaluate the enhancement in physicochemical properties, antimicrobial activities, and controlled release of β-CD/AITC from such films. The addition of β-CD/AITC significantly increased the flexibility and thermal stability of films. The Fourier transform infrared (FTIR) results revealed that the interactions between β-CD/AITC and PLA films occurred. The controlled release of AITC encapsulated in β-CD was significantly affected by relative humidity and temperature. The PLA films containing β-CD/AITC can be applied as an effective antimicrobial packing material for food and non-food applications. PMID:29053573

  13. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions.

    PubMed

    Li, Weili; Liu, Linshu; Jin, Tony Z

    2012-12-01

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid and chitosan were incorporated with AIT and used to coat one side of the film. The films were subjected to different storage conditions (storage time, storage temperature, and packed or unpacked) and handling conditions (washing, abrasion, and air blowing), and the antimicrobial activity of the films against Salmonella Stanley in tryptic soy broth was determined. The films (8.16 μl of AIT per cm(2) of surface area) significantly (P < 0.05) inhibited the growth of Salmonella during 24 h of incubation at 22°C, while the populations of Salmonella in controls increased from ca. 4 to over 8 log CFU/ml, indicating a minimum inactivation of 4 log CFU/ml on films in comparison to the growth on controls. Statistical analyses indicated that storage time, storage temperature, and surface abrasion affected the antimicrobial activity of the films significantly (P < 0.05). However, the differences in microbial reduction between those conditions were less than 0.5 log cycle. The results suggest that the films' antimicrobial properties are stable under practical storage and handling conditions and that these antimicrobial films have potential applications in food packaging.

  14. Enhanced inhibition of urinary bladder cancer growth and muscle invasion by allyl isothiocyanate and celecoxib in combination

    PubMed Central

    Zhang, Yuesheng

    2013-01-01

    Allyl isothiocyanate (AITC) occurs in cruciferous vegetables that are commonly consumed by humans and has been shown to inhibit urinary bladder cancer growth and progression in previous preclinical studies. However, AITC does not significantly modulate cyclooxygenase-2 (Cox-2), whose oncogenic activity has been well documented in bladder cancer and other cancers. Celecoxib is a selective Cox-2 inhibitor and has been widely used for treatment of several diseases. Celecoxib has also been evaluated in bladder cancer patients, but its efficacy against bladder cancer as a single agent remains unclear. In a syngeneic rat model of orthotopic bladder cancer, treatment of the animals with the combination of AITC and celecoxib at low dose levels (AITC at 1mg/kg and celecoxib at 10mg/kg) led to increased or perhaps synergistic inhibition of bladder cancer growth and muscle invasion, compared with each agent used alone. The combination regime was also more effective than each single agent in inhibiting microvessel formation and stimulating microvessel maturation in the tumor tissues. The anticancer efficacy of the combination regime was associated with depletion of prostaglandin E2, a key downstream signaling molecule of Cox-2, caspase activation and downregulation of vascular endothelial growth factor in the tumor tissues. These data show that AITC and celecoxib complement each other for inhibition of bladder cancer and provide a novel combination approach for potential use for prevention or treatment of human bladder cancer. PMID:23946495

  15. Control of Salmonella enterica and Listeria monocytogenes in hummus using allyl isothiocyanate.

    PubMed

    Olaimat, Amin N; Al-Holy, Murad A; Abu Ghoush, Mahmoud; Al-Nabulsi, Anas A; Holley, Richard A

    2018-08-02

    Hummus (chickpea dip) is a ready-to-eat product which has been implicated in several foodborne outbreaks and food recalls. This study aimed to screen the antimicrobial activity of allyl isothiocyanate (AITC) against 5 strains of each of Salmonella enterica and Listeria monocytogenes using a disc diffusion method. Additionally, the antimicrobial activity of 0.1-1.5% (v/w) AITC against both pathogens and aerobic bacteria in hummus was also investigated. The inhibition zones of AITC were 8.5-15 and 7.0-8.5 mm against the S. enterica and L. monocytogenes strains, respectively, at 37 °C. S. enterica numbers were reduced by >6 log 10 CFU/g in hummus containing ≥0.5% AITC by 3 days at both 4 and 10 °C. While 0.1-0.25% AITC reduced S. enterica by 2.5-5.1 log 10 CFU/g at 4 °C or by 4.7-6.0 log 10 CFU/g at 10 °C by 10 days. Similarly, L. monocytogenes numbers decreased by >6 log 10 CFU/g in hummus with ≥0.5% or ≥1.0% AITC at 4 or 10 °C, respectively, by 3 days. Further, 0.25% AITC significantly reduced L. monocytogenes in hummus by 2.7 and 4.3 log 10 CFU/g at 4 and 10 °C, respectively. Moreover, 0.1% AITC reduced L. monocytogenes by 1.8 log 10 CFU/g in hummus at 10 °C and inhibited the growth at 4 °C for up to 10 days. The aerobic bacterial count also significantly decreased in un-inoculated hummus treated with 1.0-1.5% AITC at both 4 and 10 °C, while a concentration of 0.25-0.5% AITC inhibited their growth at 4 °C. AITC can be used to reduce the risk of salmonellosis or listeriosis in hummus and extend its shelf-life. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Synthesis, molecular modeling and biological evaluation of novel 2-allyl amino 4-methyl sulfanyl butyric acid as α-amylase and α-glucosidase inhibitor

    NASA Astrophysics Data System (ADS)

    Balan, Kannan; Perumal, Perumal; Sundarabaalaji, Narayanan; Palvannan, Thayumanavan

    2015-02-01

    In the present study 2-allyl amino 4-methyl sulfanyl butyric acid (AMSB) was synthesized in good yield. AMSB was characterized by Fourier transforms infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR) (1H and 13C) and Liquid chromatography mass spectrometry (LCMS). The radical scavenging activity and reducing power assay of AMSB was assessed using 1-1-diphenyl 2-picryl hydrazyl (DPPH), 2,2‧-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) (ABTS) and ferric ion reducing antioxidant power assay (FRAP) and was found to be 44.1, 34.71 and 41.7 μg/ml respectively. The compound showed effective inhibition against α-amylase and α-glucosidase. AMSB was identified to be a reversible mixed noncompetitive inhibitor of α-amylase and α-glucosidase. The molecular docking study was carried out to evaluate the specific groove binding properties and affords valuable information of AMSB binding mode in the active site of α-glucosidase the study may lead to the which leads to the rational design of new class of antidiabetic drugs targeting α-glucosidase based on AMSB in near future.

  17. Crystal structures and catalytic performance of three new methoxy substituted salen type nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    NASA Astrophysics Data System (ADS)

    Ghaffari, Abolfazl; Behzad, Mahdi; Pooyan, Mahsa; Amiri Rudbari, Hadi; Bruno, Giuseppe

    2014-04-01

    Three new nickel(II) complexes of a series of methoxy substituted salen type Schiff base ligands were synthesized and characterized by IR, UV-Vis and 1H NMR spectroscopy and elemental analysis. The ligands were synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with n-methoxysalicylaldehyde (n = 3, 4 and 5). Crystal structures of these complexes were determined. Electrochemical behavior of the complexes was studied by means of cyclic voltammetry in DMSO solutions. Catalytic performance of the complexes was studied in the epoxidation of cyclooctene using tert-butylhydroperoxide (TBHP) as oxidant under various conditions to find the optimum operating parameters. Low catalytic activity with moderate epoxide selectivity was observed in in-solvent conditions but in the solvent-free conditions, enhanced catalytic activity with high epoxide selectivity was achieved.

  18. High hydrostatic pressure influences the in vitro response to xenobiotics in Dicentrarchus labrax liver.

    PubMed

    Lemaire, Benjamin; Mignolet, Eric; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Rees, Jean François

    2016-04-01

    Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1MPa) and deep-sea (5-15MPa; i.e., 500-1500m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310-10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained viable in all experiments (adenosine triphosphate content). High HP precluded the AhR agonist-mediated increase of CYP1A mRNA expression in D. labrax, as well as that of glutathione peroxidase, and significantly reduced that of heat shock protein 70. High HP (1h) also tended per se to increase the level of oxidative stress in liver cells of the surface fish. Trends to an increased resistance to tBHP were also noted. Whether the latter observation truly

  19. Extraction of allyl isothiocyanate from horseradish (Armoracia rusticana) and its fumigant insecticidal activity on four stored-product pests of paddy.

    PubMed

    Wu, Hua; Zhang, Guo-An; Zeng, Shuiyun; Lin, Kai-chun

    2009-09-01

    Isothiocyanates (ITCs) extracted from Armoracia rusticana Gaertn., May & Scherb. have been shown previously to have insecticidal activity. Allyl isothiocyanate (AITC), a major component of ITCs with high volatility, was therefore extracted using different methods and tested as a fumigant against four major pest species of stored products, maize weevil Sitophilus zeamais (Motsch.), lesser grain borer Rhizopertha dominica (F.), Tribolium ferrugineum (F.) and book louse Liposcelis entomophila (Enderlein). Whereas there was no significant difference between hydrodistillation and supercritical carbon dioxide fluid extraction in extraction rate for AITC from A. rusticana, both methods resulted in higher extraction efficiency than water extraction. AITC fumigation showed strong toxicity to the four species of stored-product pests. Adult mortality of 100% of all four pest species, recorded after 72 h exposure to AITC fumes at an atmospheric concentration of 3 microg mL(-1), showed no significant difference from that of insects exposed to phosphine at 5 microg mL(-1), the recommended dose for phosphine. The results suggest good insecticidal efficacy of AITC against the four stored-product pests, with non-gaseous residuals on stored products. AITC obtained from A. rusticana may be an alternative to phosphine and methyl bromide against the four pest species. Copyright 2009 Society of Chemical Industry.

  20. Allyl Isothiocyanate Arrests Cancer Cells in Mitosis, and Mitotic Arrest in Turn Leads to Apoptosis via Bcl-2 Protein Phosphorylation*

    PubMed Central

    Geng, Feng; Tang, Li; Li, Yun; Yang, Lu; Choi, Kyoung-Soo; Kazim, A. Latif; Zhang, Yuesheng

    2011-01-01

    Allyl isothiocyanate (AITC) occurs in many commonly consumed cruciferous vegetables and exhibits significant anti-cancer activities. Available data suggest that it is particularly promising for bladder cancer prevention and/or treatment. Here, we show that AITC arrests human bladder cancer cells in mitosis and also induces apoptosis. Mitotic arrest by AITC was associated with increased ubiquitination and degradation of α- and β-tubulin. AITC directly binds to multiple cysteine residues of the tubulins. AITC induced mitochondrion-mediated apoptosis, as shown by cytochrome c release from mitochondria to cytoplasm, activation of caspase-9 and caspase-3, and formation of TUNEL-positive cells. Inhibition of caspase-9 blocked AITC-induced apoptosis. Moreover, we found that apoptosis induction by AITC depended entirely on mitotic arrest and was mediated via Bcl-2 phosphorylation at Ser-70. Pre-arresting cells in G1 phase by hydroxyurea abrogated both AITC-induced mitotic arrest and Bcl-2 phosphorylation. Overexpression of a Bcl-2 mutant prevented AITC from inducing apoptosis. We further showed that AITC-induced Bcl-2 phosphorylation was caused by c-Jun N-terminal kinase (JNK), and AITC activates JNK. Taken together, this study has revealed a novel anticancer mechanism of a phytochemical that is commonly present in human diet. PMID:21778226

  1. Characterization of photoluminescence spectra from poly allyl diglycol carbonate (CR-39) upon excitation with the ultraviolet radiation of various wavelengths

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Al-Thomali, Talal A.

    2013-04-01

    The induced photoluminescence (PL) from the π-conjugated polymer poly allyl diglycol carbonate (PADC) (CR-39) upon excitation with the ultraviolet radiation of different wavelengths was investigated. The absorption and attenuation coefficients of PADC (CR-39) were recorded using a UV-visible spectrometer. It was found that the absorption and attenuation coefficients of the PADC (CR-39) exhibit a strong dependence on the wavelength of ultraviolet radiation. The PL spectra were measured with a Flormax-4 spectrofluorometer (Horiba). PADC (CR-39) samples were excited by ultraviolet radiation with wavelengths in the range from 260 to 420 nm and the corresponding PL emission bands were recorded. The obtained results show a strong correlation between the PL and the excitation wavelength of ultraviolet radiation. The position of the fluorescence emission band peak was red shifted starting from 300 nm, which was increased with the increase in the excitation wavelength. The PL yield and its band peak height were increased with the increase in the excitation wavelength till 290 nm, thereafter they decreased exponentially with the increase in the ultraviolet radiation wavelength. These new findings should be considered carefully during the use of the PADC (CR-39) in the scientific applications and in using PADC (CR-39) in eyeglasses.

  2. Serotonin or the Mucosa Do Not Mediate the Motor Effect of Allyl Isothiocyanate in the Guinea-Pig Small Intestine.

    PubMed

    Sandor, Zsolt I; Bencsik, Timea; Dekany, Andras; Bartho, Lorand

    2016-01-01

    Serotonin (5-hydroxytryptamine, 5-HT), originating from the enterochromaffin cells has been reported to mediate the contractile effect of the sensory stimulant and TRPA1 activator allyl isothiocyanate (AITC) in the guinea-pig small intestine [Nozawa et al: Proc Natl Acad Sci U S A 2009;106:3408-3413]. In the present experiments, the nerve-mediated contraction of this preparation due to AITC was not inhibited by a combination of methysergide (broad-spectrum 5-HT antagonist; 0.3 µmol/l), Y 25130 (azasetron, 5-HT3 receptor antagonist; 1 µmol/l) and SB 204070 (5-HT4 receptor antagonist; 2 µmol/l) or by 5-HT receptor desensitization, that is, pretreatments that practically abolished contractions of similar size in response to exogenous 5-HT, without causing nonspecific effects. AITC also contracted longitudinal muscle-myenteric plexus preparations, an effect also fully resistant to the combination of 5-HT receptor antagonists. The pharmacology of AITC in strip preparations matched that in the whole ileum. Key Messages: It is concluded that neither endogenous 5-HT nor the gut mucosa contributes to the excitatory effect of AITC in the guinea-pig small intestine. The combination of 5-HT antagonists elaborated is suitable for studying the possible involvement of 5-HT in motor responses of the guinea-pig intestine. © 2016 S. Karger AG, Basel.

  3. Synthesis and optimization of novel allylated mono-carbonyl analogs of curcumin (MACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI) in rats.

    PubMed

    Zhu, Heping; Xu, Tingting; Qiu, Chenyu; Wu, Beibei; Zhang, Yali; Chen, Lingfeng; Xia, Qinqin; Li, Chenglong; Zhou, Bin; Liu, Zhiguo; Liang, Guang

    2016-10-04

    A series of novel symmetric and asymmetric allylated mono-carbonyl analogs of curcumin (MACs) were synthesized using an appropriate synthetic route and evaluated experimentally thru the LPS-induced expression of TNF-α and IL-6. Most of the obtained compounds exhibited improved water solubility as a hydrochloride salt compared to lead molecule 8f. The most active compound 7a was effective in reducing the Wet/Dry ratio in the lungs and protein concentration in bronchoalveolar lavage fluid. Meanwhile, 7a also inhibited mRNA expression of several inflammatory cytokines, including TNF-α, IL-6, IL-1β, and VCAM-1, in Beas-2B cells after Lipopolysaccharide (LPS) challenge. These results suggest that 7a could be therapeutically beneficial for use as an anti-inflammatory agent in the clinical treatment of acute lung injury (ALI). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. The Use of Nitrone Cycloadditions in the Synthesis of Beta-Amino Aldehydes and Unsaturated Amines.

    DTIC Science & Technology

    1986-01-01

    with alkenes (dipolarophiles) to produce isoxazolidines (2) in a fashion similar to the (4+2] Diels - Alder reaction.’ The cycloaddition results in...structures to study enzyme inhibition, and they serve as useful intermediates in the synthesis of $-lactams. 3 3 Table IV summarizes attempts to oxidize p...84% yield (Table V, entry 3). Due to the mechanistic imperative, acid catalyzed elimination always yielded the allylic amine in which the alkene

  5. A STUDY OF THE MECHANISM OF RADIATION-INDUCED GELATION IN MONOMER-POLYMER MIXTURES. Quarterly Summary Report, August 1, 1961-October 31, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odian, G.; Bernstein, B.S.; Kelly, J.J.

    1961-11-01

    Gel contents can be obtained with polyethylene swollen with inhibitor- free allyl acrylate or inhibitor-free allyl methacrylate at a dose of only 0.05 Mrads Using Co/sup 60/ as the radiation source, allyl methacrylate gives higher gel content than allyl acrylate under similar conditions. icant and continues after Co/sup 60/ irradiation has been completed. Monomer desorption after a dose of 1.2 Mrads is less than after 0.05 Mrads, and does not continue after irradiation is stopped. Gel contents can be obtained without prior equilibrium swelling of polymer--monomer mixtures by irradiating the polymer in the presence of the monomer in a nitrogenmore » atmosphere. By irradiating under these conditions with prior equilibrium swelling, gel fractions appear to be higher than those normally obtained. Gel contents of irradiated equilibrium-swollen polyethylene/ allyl acrylate and polyethylene/allyl methacrylate increase with increasing radiation dose from 0.05 to 1.2 Mrads. Gel contents of 1.2 Mrad irradiated polyethyleneallyl methacrylate systems containing various initial amounts of monomer, increase with increasing monomer content. Polypropylene can be radiation crosslinked to give over 40% gel by prior equilibrium swelling with allyl acrylate or allyl methacrylate. (auth)« less

  6. Reactions of singlet oxygen with pine pollen.

    NASA Technical Reports Server (NTRS)

    Dowty, B.; Laseter, J. L.; Griffin, G. W.; Politzer, I. R.; Walkinshaw, C. H.

    1973-01-01

    A study was initiated to determine whether viable atmospheric particles such as plant pollens and fungal spores containing unsaturated lipids can interact with singlet oxygen to give oxygenated products that are potentially toxic. The results obtained confirm that surface and near surface components of common viable particulate matter in the atmosphere may be subject to rapid oxidation by singlet oxygen, leading to products which are probably allylic hydroperoxides. In connection with increasing atmospheric pollution, it is important to note that materials toxic to mammalian lung tissue may be oxidatively produced on the surfaces of viable particulate matter.

  7. Hydrogen-Atom Transfer Oxidation with H2O2 Catalyzed by [FeII(1,2-bis(2,2'-bipyridyl-6-yl)ethane(H2O)2]2+: Likely Involvement of a (μ-Hydroxo)(μ-1,2-peroxo)diiron(III) Intermediate.

    PubMed

    Khenkin, Alexander M; Vedichi, Madhu; Shimon, Linda J W; Cranswick, Matthew A; Klein, Johannes E M N; Que, Lawrence; Neumann, Ronny

    2017-11-01

    The iron(II) triflate complex ( 1 ) of 1,2-bis(2,2'-bipyridyl-6-yl)ethane, with two bipyridine moieties connected by an ethane bridge, was prepared. Addition of aqueous 30% H 2 O 2 to an acetonitrile solution of 1 yielded 2 , a green compound with λ max =710 nm. Moessbauer measurements on 2 showed a doublet with an isomer shift (δ) of 0.35 mm/s and a quadrupole splitting (Δ E Q ) of 0.86 mm/s, indicative of an antiferromagnetically coupled diferric complex. Resonance Raman spectra showed peaks at 883, 556 and 451 cm -1 that downshifted to 832, 540 and 441 cm -1 when 1 was treated with H 2 18 O 2 . All the spectroscopic data support the initial formation of a (μ-hydroxo)(μ-1,2-peroxo)diiron(III) complex that oxidizes carbon-hydrogen bonds. At 0°C 2 reacted with cyclohexene to yield allylic oxidation products but not epoxide. Weak benzylic C-H bonds of alkylarenes were also oxidized. A plot of the logarithms of the second order rate constants versus the bond dissociation energies of the cleaved C-H bond showed an excellent linear correlation. Along with the observation that oxidation of the probe substrate 2,2-dimethyl-1-phenylpropan-1-ol yielded the corresponding ketone but no benzaldehyde, and the kinetic isotope effect, k H /k D , of 2.8 found for the oxidation of xanthene, the results support the hypothesis for a metal-based H-atom abstraction mechanism. Complex 2 is a rare example of a (μ-hydroxo)(μ-1,2-peroxo)diiron(III) complex that can elicit the oxidation of carbon-hydrogen bonds.

  8. Polymeric micellar pH-sensitive drug delivery system for doxorubicin.

    PubMed

    Hrubý, Martin; Konák, Cestmír; Ulbrich, Karel

    2005-03-02

    A novel polymeric micellar pH-sensitive system for delivery of doxorubicin (DOX) is described. Polymeric micelles were prepared by self-assembly of amphiphilic diblock copolymers in aqueous solutions. The copolymers consist of a biocompatible hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block containing covalently bound anthracycline antibiotic DOX. The starting block copolymers poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PEO-PAGE) with a very narrow molecular weight distribution (Mw/Mn ca. 1.05) were prepared by anionic ring opening polymerization using sodium salt of poly(ethylene oxide) monomethyl ether as macroinitiator and allyl glycidyl ether as functional monomer. The copolymers were covalently modified via reactive double bonds by the addition of methyl sulfanylacetate. The resulting ester subsequently reacted with hydrazine hydrate yielding polymer hydrazide. The hydrazide was coupled with DOX yielding pH-sensitive hydrazone bonds between the drug and carrier. The resulting conjugate containing ca. 3 wt.% DOX forms micelles with Rh(a)=104 nm in phosphate-buffered saline. After incubation in buffers at 37 degrees C DOX was released faster at pH 5.0 (close to pH in endosomes; 43% DOX released within 24 h) than at pH 7.4 (pH of blood plasma; 16% DOX released within 24 h). Cleavage of hydrazone bonds between DOX and carrier continues even after plateau in the DOX release from micelles incubated in aqueous solutions is reached.

  9. Diastereoselective sp2-sp3 coupling of sugar enol ethers with unactivated cycloalkenes: new entries to C-branched sugars.

    PubMed

    Hussain, Nazar; Tatina, Madhu Babu; Rasool, Faheem; Mukherjee, Debaraj

    2016-10-25

    Sugar enol ethers undergo efficient coupling at C-2 with unactivated cycloalkenes under a low Pd loading affording allylic substitution products. High diastereoselectivity was observed at the allylic centre with sterically hindered substrates. Generation of a π-allyl complex by the Pd(ii) catalyst via cleavage of the allylic C-H bond of the cycloalkene may be responsible for the formation of sp 2 -sp 3 coupling products.

  10. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    PubMed

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Modeling interactions between a β-O-4 type lignin model compound and 1-allyl-3-methylimidazolium chloride ionic liquid.

    PubMed

    Zhu, Youtao; Yan, Jing; Liu, Chengbu; Zhang, Dongju

    2017-08-01

    Aiming at understanding the molecular mechanism of the lignin dissolution in imidazolium-based ionic liquids (ILs), this work presents a combined quantum chemistry (QC) calculation and molecular dynamics (MD) simulation study on the interaction of the lignin model compound, veratrylglycerol-β-guaiacyl ether (VG) with 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The monomer of VG is shown to feature a strong intramolecular hydrogen bond, and its dimer is indicated to present important π-π stacking and intermolecular hydrogen bonding interactions. The interactions of both the cation and anion of [Amim]Cl with VG are shown to be stronger than that between the two monomers, indicating that [Amim]Cl is capable of dissolving lignin. While Cl - anion forms a hydrogen-bonded complex with VG, the imidazolium cation interacts with VG via both the π-π stacking and intermolecular hydrogen bonding. The calculated interaction energies between VG and the IL or its components (the cation, anion, and ion pair) indicate the anion plays a more important role than the cation for the dissolution of lignin in the IL. Theoretical results provide help for understanding the molecular mechanism of lignin dissolution in imidazolium-based IL. The theoretical calculations on the interaction between the lignin model compound and [Amim]Cl ionic liquid indicate that the anion of [Amim]Cl plays a more important role for lignin dissolution although the cation also makes a substantial contribution. © 2017 Wiley Periodicals, Inc.

  12. Synthesis of unsymmetrical benzil licoagrodione.

    PubMed

    Worayuthakarn, Rattana; Boonya-udtayan, Sasiwadee; Arom-oon, Eakarat; Ploypradith, Poonsakdi; Ruchirawat, Somsak; Thasana, Nopporn

    2008-09-19

    A synthesis of unsymmetrical 1,2-diarylethane-1,2-dione is reported involving the intramolecular cyclization of anionic benzylic ester of the aryl benzyl ether followed by oxidation employing dioxirane. With the use of microwave irradiation, licoagrodione was prepared from Claisen rearrangement of the corresponding allyl phenyl ether 1,2-diketone readily available from the Lindlar's reduction of the corresponding alkyne derivative. Subsequent removal of protecting groups then furnished the desired product.

  13. Micro-structure, Mechanical Properties and Dielectric Properties of Bisphenol A Allyl Compound-Bismaleimide Modified by Super-Critical Silica and Polyethersulfone Composite

    NASA Astrophysics Data System (ADS)

    Chen, Yufei; Wang, Botao; Li, Fangliang; Teng, Chengjun

    2017-07-01

    Bisphenol A allyl compound-bismaleimide (MBAE) composite modified by SCE-SiO2 and polyethersulfone (PES) resin has been prepared and researched. SCE-SiO2 was modified by super-critical ethanol and PES thermoplastic resin used as modifiers. The composite was prepared via the hot melting method. The FT-IR measurements indicated that ethanol molecular had adsorbed on the nano-SiO2 surface. SEM images showed that the composite had a multiphase structure, PES and SCE-SiO2 existed as a dispersed phase, and the interaction of the three phases affected each other, such that the bending fracture behavior transformed from brittle fracture to ductile fracture, and the modifiers of SCE-SiO2 and PES resin could improve the mechanical properties. The impact and the bending strength of the composite was 16.5 kJ/mm2 and 150.4 MPa, improved by 68.3% and 56.7% compared with those of the MBAE matrix, respectively, when the content of SCE-SiO2 was 2 wt.% and PES 5 wt.%. The dielectric constant ( ɛ) of the composites was less than 3.9 and decreased with increasing frequency, and the dielectric loss was less than 9 × 10-3 for frequencies between 102 Hz and 105 Hz. These properties could meet the requirement of insulating material.

  14. Influence of caffeine on allyl alcohol-induced hepatotoxicity in rats. I. In vivo study.

    PubMed

    Karas, M; Chakrabarti, S K

    2001-01-01

    Cotreatment of rats with a low hepatotoxic dose (30.7 mg/kg, i.p.) of allyl alcohol (AA) and a higher, but nontoxic, dose (150 mg/kg, oral) of caffeine (CF) potentiated the hepatotoxicity of AA. This was verified by significantly higher levels of plasma alanine aminotransferase (ALT) activity and histopathologically greater severity of lesions in the periportal hepatocytes than those due to AA alone. Treatment of rats with 4-methylpyrazole (4-MP) (0.5 mmol/kg, i.p.) (an inhibitor liver alcohol dehydrogenase) for 30 minutes, followed by similar cotreatment with AA and CF, completely prevented the elevation of plasma levels of ALT and histological damage induced by cotreatment with CF and AA 24 hours following their administration. Severe liver damage induced by cotreatment with CF and AA was further, markedly enhanced by phenobarbital pretreatment (80 mg/kg, i.p., 3 days). Thus, extensive necrosis of periportal hepatocytes was noted, as well as edema and accumulation of inflammatory cells in the necrotic foci caused by such pretreatment. The depression of hepatic nonprotein sulfhydryls resulting from CF plus AA was much more severe than that caused by AA or CF alone and appeared as early as 30 minutes after administration. However, much less marked depletion of protein thiols was observed following similar treatments. Significant increase in lipid peroxidation (as measured by melondialdehyde [MDA] formation) was also observed in rat liver but only 24 hours after administration. The production ofMDA in the rat liver was significantly higher after administration of AA plus CF than after administration of AA alone. Pretreatment of rats with phenobarbital further significantly enhanced the formation of 2,4-dinitrophenylhydrazine (DNP)-reactive metabolite(s) (measured as DNP-acrolein adduct equivalents) in rat liver induced by AA (30.7 mg/kg) plus CF (150 mg/kg) within 1 hour following such treatment. Cotreatment with AA and a higher dose of CF resulted in significantly

  15. Exploring the full catalytic cycle of rhodium(i)–BINAP-catalysed isomerisation of allylic amines: a graph theory approach for path optimisation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00401j Click here for additional data file.

    PubMed Central

    Yoshimura, Takayoshi; Taketsugu, Tetsuya; Sawamura, Masaya

    2017-01-01

    We explored the reaction mechanism of the cationic rhodium(i)–BINAP complex catalysed isomerisation of allylic amines using the artificial force induced reaction method with the global reaction route mapping strategy, which enabled us to search for various reaction paths without assumption of transition states. The entire reaction network was reproduced in the form of a graph, and reasonable paths were selected from the complicated network using Prim’s algorithm. As a result, a new dissociative reaction mechanism was proposed. Our comprehensive reaction path search provided rationales for the E/Z and S/R selectivities of the stereoselective reaction. PMID:28970877

  16. Evidence for effective structure-based neuromodulatory effects of new analogues of neurosteroid allopregnanolone.

    PubMed

    Taleb, O; Patte-Mensah, C; Meyer, L; Kemmel, V; Geoffroy, P; Miesch, M; Mensah-Nyagan, A-G

    2018-02-01

    The neurosteroid allopregnanolone (AP) modulates neuroendocrine/neurobiological processes, including hypothalamic-pituitary-adrenocortical activities, pain, anxiety, neurogenesis and neuroprotection. These observations raised the hope of developing AP-based therapies against neuroendocrine and/or neurodegenerative disorders. However, the pleiotropic actions of AP, particularly its cell-proliferation-promoting effects, hamper the development of selective/targeted therapies. For example, although AP-induced neurogenesis may serve to compensate neuronal loss in degenerative brains, AP-evoked cell-proliferation is contraindicated for steroid-sensitive cancer patients. To foster progress, we synthesised 4 novel AP analogues of neurosteroids (ANS) designated BR053 (12-oxo-epi-AP), BR297 (O-allyl-epi-AP), BR351 (O-allyl-AP) and BR338 (12-oxo-AP). First, because AP is well-known as allosteric modulator of GABAA receptors (GABAA-R), we used the electrophysiological patch-clamp technique to determine the structure-activity relationship of our ANS on GABAA-activated current in NCB20 cells expressing functional GABAA-R. We found that the addition of 12-oxo-group did not significantly change the respective positive or negative allosteric effects of 3α-AP or 3β-(epi)-AP analogues. Importantly, substitution of the 3α-hydroxyl-group by 3α-O-allyl highly modified the ANS activities. Unlike AP, BR351 induced a long-lasting desensitisation/inhibition of GABAA-R. Interestingly, replacement of the 3β-hydroxyl by 3β-O-allyl (BR297) completely reversed the activity from negative to positive allosteric action. In a second step, we compared the actions of AP and ANS on SH-SY5Y neuronal cell viability/proliferation using MTT-reduction assays. Different dose-response curves were demonstrated for AP and the ANS. By contrast to AP, BR297 was totally devoid of cell-proliferative effect. Finally, we compared AP and ANS abilities to protect against oxidative stress-induced neuronal death

  17. Polymer complexes. LVII. Supramolecular assemblies of novel polymer complexes of dioxouranium(VI) with some substituted allyl azo dye compounds

    NASA Astrophysics Data System (ADS)

    Diab, M. A.; El-Sonbati, A. Z.; El-Bindary, A. A.; Balboula, M. Z.

    2013-05-01

    A novel method to synthesize some dioxouranium(VI) polymer complexes of the general formula [UO2(Ln)2(OAc)2] (where HLn = azo allyl rhodanine). The structure of the novel mononuclear dioxoutranium(VI) polymer complexes was characterized using elemental analysis, spectral (electronic, infrared, 1H &13C NMR) studies, magnetic susceptibility measurements and thermal analysis. The molar conductivities show that all the polymer complexes are non-electrolytes. The IR showed that the ligand HLn act as bidentate neutral through carbonyl group and imine group nitrogen atom forming thereby a six-membered chelating ring and concomitant formation of an intramolecular hydrogen bond. The υ3 frequency of UO2+2 has been shown to be an excellent molecular probe for studying the coordinating power of the ligands. The values of υ3 of the prepared complexes containing UO2+2 were successfully used to calculate the force constant, FUO (10-8 N/Å) and the bond length RUO (Å) of the Usbnd O bond. A strategy based upon both theoretical and experimental investigations has been adopted. The theoretical aspects are described in terms of the well-known theory of 5d-4f transitions. Wilson's, matrix method, Badger's formula, and Jones and El-Sonbati equations were used to calculate the Usbnd O bond distances from the values of the stretching and interaction force constants. The most probable correlation between Usbnd O force constant to Usbnd O bond distance were satisfactorily discussed in term of Badger's rule and the equations suggested by Jones and El-Sonbati. The effect of Hammet constant is also discussed.

  18. Extension of the bambus[n]uril family: microwave synthesis and reactivity of allylbambus[n]urils.

    PubMed

    Rivollier, Julie; Thuéry, Pierre; Heck, Marie-Pierre

    2013-02-01

    Microwave irradiations allow the preparation of unsaturated bambusurils in 85% yield compared to 20% yield under classical reaction conditions. Five new bambusurils were synthesized including unsaturated derivatives Allyl(8)BU[4] and Allyl(12)BU[6] bearing diallylglycoluril units. The reactivity of Allyl(8)BU[4] was tested in a variety of organic reactions showing that this macrocycle acts as a classical double bond-bearing product. The first monofunctionalized bambusuril Allyl(7)HepBU[4] prepared by a cross metathesis reaction is also reported.

  19. Evaluation of allyl isothiocyanate as a soil fumigant against soil-borne diseases in commercial tomato (Lycopersicon esculentum Mill.) production in China.

    PubMed

    Ren, Zongjie; Li, Yuan; Fang, Wensheng; Yan, Dongdong; Huang, Bin; Zhu, Jiahong; Wang, Xiaoning; Wang, Xianli; Wang, Qiuxia; Guo, Meixia; Cao, Aocheng

    2018-03-12

    Root-knot nematodes (Meloidogyne spp.), soil-borne diseases and weeds seriously reduce the commercial yield of tomatoes grown under protected cultivation in China. Allyl isothiocyanate (AITC), a natural product obtained from damaged Brassica tissues, was evaluated as a potential replacement for the fumigant methyl bromide (MB) for use in the greenhouse production of tomatoes in China. The dose-response assay indicates that AITC has high biological activity against major bacterial and fungal pathogens (EC 50 of 0.225-4.199 mg L -1 ). The bioassay results indicate that AITC has good efficacy against root-knot nematodes (LC 50 of 18.046 mg kg -1 ), and moderate efficacy against fungal pathogens (LC 50 of 27.999-29.497 mg kg -1 ) and weeds (LC 50 of 17.300-47.660 mg kg -1 ). The potting test indicates that AITC significantly improved plant vigor. Field trials indicate that AITC showed good efficacy against Meloidogyne spp. and Fusarium spp. (both ∼ 80%) as well as Phytophthora spp. and Pythium spp. (both ∼ 70%), and improved plant vigor and marketable yield. AITC used as a soil fumigant (30-50 g m -2 ) effectively controlled major bacterial and fungal pathogens, root-knot nematode, weeds and increased plant vigor, yield and farmers' income in tomato cultivated under protected agriculture in China. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. Adsorption induced enzyme denaturation: the role of protein surface in adsorption induced protein denaturation on allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymers.

    PubMed

    Thudi, Lahari; Jasti, Lakshmi S; Swarnalatha, Y; Fadnavis, Nitin W; Mulani, Khudbudin; Deokar, Sarika; Ponrathnam, Surendra

    2012-02-01

    The effects of protein size on adsorption and adsorption-induced denaturation of proteins on copolymers of allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) have been studied. Different responses were observed for the amount of protein adsorbed and denatured on the polymer surface for different proteins (trypsin, alchol dehydrogenase from baker's yeast (YADH), glucose dehydrogenase (GDH) from Gluconobacter cerinus, and alkaline phosphates from calf intestinal mucosa (CIAP). Protein adsorption on the copolymer with 25% crosslink density (AGE-25) was dependent not only on the size of the protein but also on the presence of glycoside residues on the protein surface. Adsorption and denaturation of proteins follows the order YADH>trypsin>GDH>CIAP although the molecular weights of the proteins follow the order YADH>CIAP>GDH>trypsin. The lack of correlation between amount of adsorbed protein and its molecular weight was due to the presence of glycoside residues on CIAP and GDH which protect the enzyme surface from denaturation. Enzyme stabilities in aqueous solutions of 1-cyclohexyl-2-pyrrolidinone (CHP) correlate well with the trend in denaturation by the copolymer, strongly suggesting that hydrophobic interactions play a major role in protein binding and the mechanism of protein denaturation is similar to that for water-miscible organic solvents. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Synthesis of new artemisinin analogues from artemisinic acid modified at C-3 and C-13 and their antimalarial activity.

    PubMed

    Han, J; Lee, J G; Min, S S; Park, S H; Angerhofer, C K; Cordell, G A; Kim, S U

    2001-09-01

    Artemisinic acid (2) was modified through allylic oxidation at C-3 or conjugate addition at C-13 to afford 12 methyl artemisinate derivatives (4-15). Photooxidation of the derivatives yielded eight new artemisinin analogues, including 13-cyanoartemisinin (16), 13-methoxycarbonyl artemisinin (17), 13-methoxyartemisinin (18), 13-ethylsulfonylartemisinin (19), 13-nitromethylartemisinin (20), 13-(1-nitroethyl)artemisinin (21), (3R)-3-hydroxyartemisinin (22), and (3R)-3-acetoxyartemisinin (23). Among the analogues, only compound 20 had antimalarial activity comparable to artemisinin (1).

  2. Complex polarization propagator approach in the restricted open-shell, self-consistent field approximation: the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine.

    PubMed

    Linares, Mathieu; Stafström, Sven; Rinkevicius, Zilvinas; Ågren, Hans; Norman, Patrick

    2011-05-12

    A presentation of the complex polarization propagator in the restricted open-shell self-consistent field approximation is given. It rests on a formulation of a resonant-convergent, first-order polarization propagator approach that makes it possible to directly calculate the X-ray absorption cross section at a particular frequency without explicitly addressing the excited states. The quality of the predicted X-ray spectra relates only to the type of density functional applied without any separate treatment of dynamical relaxation effects. The method is applied to the calculation of the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine. Comparison is made between the spectra of the radicals and those of the corresponding cations and anions to assess the effect of the increase of electron charge in the frontier orbital. The method offers the possibility for unique assignment of symmetry-independent atoms. The overall excellent spectral agreement motivates the application of the method as a routine precise tool for analyzing X-ray absorption of large systems of technological interest.

  3. Tandem rhodium catalysis:Exploiting sulfoxides for asymmetric transition-metal catalysis

    PubMed Central

    Kou, K. G. M.

    2015-01-01

    Sulfoxides are uncommon substrates for transition-metal catalysis due to their propensity to inhibit catalyst turnover. In a collaborative effort with Ken Houk, we developed the first dynamic kinetic resolution (DKR) of allylic sulfoxides using asymmetric rhodium-catalyzed hydrogenation. Detailed mechanistic analysis of this transformation using both experimental and theoretical methods revealed rhodium to be a tandem catalyst that promoted both hydrogenation of the alkene and racemization of the allylic sulfoxide. Using a combination of deuterium labelling and DFT studies, a novel mode of allylic sulfoxide racemization via a Rh(III)-π-allyl intermediate was identified. PMID:25940066

  4. Tandem rhodium catalysis: exploiting sulfoxides for asymmetric transition-metal catalysis.

    PubMed

    Kou, K G M; Dong, V M

    2015-06-07

    Sulfoxides are uncommon substrates for transition-metal catalysis due to their propensity to inhibit catalyst turnover. In a collaborative effort with Ken Houk, we developed the first dynamic kinetic resolution (DKR) of allylic sulfoxides using asymmetric rhodium-catalyzed hydrogenation. A detailed mechanistic analysis of this transformation using both experimental and theoretical methods revealed rhodium to be a tandem catalyst that promoted both hydrogenation of the alkene and racemization of the allylic sulfoxide. Using a combination of deuterium labelling and DFT studies, a novel mode of allylic sulfoxide racemization via a Rh(III)-π-allyl intermediate was identified.

  5. A Series of Robust Copper-Based Triazolyl Isophthalate MOFs: Impact of Linker Functionalization on Gas Sorption and Catalytic Activity †

    PubMed Central

    Junghans, Ulrike; Kobalz, Merten; Erhart, Oliver; Preißler, Hannes; Lincke, Jörg; Möllmer, Jens; Krautscheid, Harald; Gläser, Roger

    2017-01-01

    The synthesis and characterization of an isomorphous series of copper-containing microporous metal-organic frameworks (MOFs) based on triazolyl isophthalate linkers with the general formula ∞3[Cu4(μ3-OH)2(R1-R2-trz-ia)3(H2O)x] are presented. Through size adjustment of the alkyl substituents R1 and/or R2 at the linker, the impact of linker functionalization on structure-property relationships was studied. Due to the arrangement of the substituents towards the cavities, the porosity (pore fraction 28%–39%), as well as the pore size can be adjusted by the size of the substituents of the triazole ring. Thermal analysis and temperature-dependent PXRD studies reveal a thermal stability of the MOFs up to 230 °C due to increasing framework stability through fine-tuning of the linker substitution pattern. Adsorption of CO2 (298 K) shows a decreasing maximum loading with increasing steric demand of the substituents of the triazole ring. Furthermore, the selective oxidation of cyclohexene with tert-butyl hydroperoxide (TBHP) is studied over the MOFs at 323 K in liquid chloroform. The catalytic activity increases with the steric demand of the substituents. Additionally, these isomorphous MOFs exhibit considerable robustness under oxidizing conditions confirmed by CO2 adsorption studies, as well as by the catalytic selective oxidation experiments. PMID:28772698

  6. An efficient route to selective bio-oxidation catalysts: an iterative approach comprising modeling, diversification, and screening, based on CYP102A1.

    PubMed

    Seifert, Alexander; Antonovici, Mihaela; Hauer, Bernhard; Pleiss, Jürgen

    2011-06-14

    Perillyl alcohol is the terminal hydroxylation product of the cheap and readily available terpene, limonene. It has high potential as an anti-tumor substance, but is of limited availability. In principle, cytochrome P450 monooxygenases, such as the self-sufficient CYP102A1, are promising catalysts for the oxidation of limonene or other inert hydrocarbons. The wild-type enzyme converts (4R)-limonene to four different oxidation products; however, terminal hydroxylation at the allylic C7 is not observed. Here we describe a generic strategy to engineer this widely used enzyme to hydroxylate exclusively the exposed, but chemically less reactive, primary C7 in the presence of other reactive positions. The approach presented here turns CYP102A1 into a highly selective catalyst with a shifted product spectra by successive rounds of modeling, the design of small focused libraries, and screening. In the first round a minimal CYP102A1 mutant library was rationally designed. It contained variants with improved or strongly shifted regio-, stereo- and chemoselectivity, compared to wild-type. From this library the variant with the highest perillyl alcohol ratio was fine-tuned by two additional rounds of molecular modeling, diversification, and screening. In total only 29 variants needed to be screened to identify the triple mutant A264V/A238V/L437F that converts (4R)-limonene to perillyl alcohol with a selectivity of 97 %. Focusing mutagenesis on a small number of relevant positions identified by computational approaches is the key for efficient screening for enzyme selectivity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Allyl methyl disulfide inhibits IL-8 and IP-10 secretion in intestinal epithelial cells via the NF-кB signaling pathway.

    PubMed

    Zhang, Yongchun; Wang, Ying; Zhang, Fang; Wang, Kaiming; Liu, Guangpu; Yang, Min; Luan, Yuxia; Zhao, Zhongxi; Zhang, Jianqiang; Cao, Xinke; Zhang, Daizhou

    2015-07-01

    Garlic and its active constituents have shown versatile medicinal activities in the prevention and treatment of various disorders. Allyl methyl disulfide (AMDS) was identified as one of the major bioactive components in an effective inhalation fork remedy using fresh garlic paste in our previous study. In this work, we investigated the immunological properties of AMDS to elucidate the underlying mechanisms of the fork inhalation treatment using fresh garlic. The inhibition effect of AMDS on TNF-α-induced IL-8 and IP-10 production in intestinal epithelial cell lines HT-29 and Caco-2 was first evaluated. Pretreatment of the cells with AMDS attenuated IL-8 and IP-10 secretion induced by TNF-α in a dose-dependent manner in the non-cytotoxic concentration range of 20 to 150 μM. Mechanistic studies revealed that AMDS suppressed the accumulation of IL-8 mRNA and inhibited IкBα degradation and NF-кB p65 translocation into the nucleus at both the transcriptional and translational levels, suggesting that the attenuation effort of AMDS on cytokine IL-8 secretion might at least be partially related to the NF-κB signaling pathway. These results suggest that AMDS may be a promising phytochemical agent in the treatment of immunological disorders, such as ulcerative colitis, Crohn's disease, intestinal inflammatory diseases and others. In addition, the mechanistic study data indicated that immune modulation could be one of the therapeutic mechanisms of the effective fork treatment containing AMDS as one of the major components. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Dose-response study of topical allyl isothiocyanate (mustard oil) as a human surrogate model of pain, hyperalgesia, and neurogenic inflammation.

    PubMed

    Andersen, Hjalte H; Lo Vecchio, Silvia; Gazerani, Parisa; Arendt-Nielsen, Lars

    2017-09-01

    Despite being a ubiquitous animal pain model, the natural TRPA1-agonist allyl isothiocyanate (AITC, also known as "mustard oil") has only been sparsely investigated as a potential human surrogate model of pain, sensitization, and neurogenic inflammation. Its dose-response as an algogenic, sensitizing irritant remains to be elucidated in human skin. Three concentrations of AITC (10%, 50%, and 90%) and vehicle (paraffin) were applied for 5 minutes to 3 × 3 cm areas on the volar forearms in 14 healthy volunteers, and evoked pain intensity (visual analog scale 0-100 mm) and pain quality were assessed. In addition, a comprehensive battery of quantitative sensory tests was conducted, including assessment of mechanical and thermal sensitivity. Neurogenic inflammation was quantified using full-field laser perfusion imaging. Erythema and hyperpigmentation were assessed before, immediately after, and ≈64 hours after AITC exposure. AITC induced significant dose-dependent, moderate-to-severe spontaneous burning pain, mechanical and heat hyperalgesia, and dynamic mechanical allodynia (P < 0.05). No significant differences in induced pain hypersensitivity were observed between the 50% and 90% AITC concentrations. Acute and prolonged inflammation was evoked by all concentrations, and assessments by full-field laser perfusion imaging demonstrated a significant dose-dependent increase with a ceiling effect from 50% to 90%. Topical AITC application produces pain and somatosensory sensitization in a dose-dependent manner with optimal concentrations recommended to be >10% and ≤50%. The model is translatable to humans and could be useful in pharmacological proof-of-concept studies of TRPA1-antagonists, analgesics, and anti-inflammatory compounds or for exploratory clinical purposes, eg, loss- or gain-of-function in peripheral neuropathies.

  9. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    PubMed Central

    Ebner, David C.; Bagdanoff, Jeffrey T.; Ferreira, Eric M.; McFadden, Ryan M.; Caspi, Daniel D.; Trend, Raissa M.

    2010-01-01

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (−)-sparteine as chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of base and hydrogen bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 °C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good to excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones. PMID:19904777

  10. Hydrogen scavengers

    DOEpatents

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  11. Rhodium-catalyzed chemo-, regio-, and enantioselective addition of 2-pyridones to terminal allenes.

    PubMed

    Li, Changkun; Kähny, Matthias; Breit, Bernhard

    2014-12-08

    A rhodium-catalyzed chemo-, regio-, and enantioselective addition of 2-pyridones to terminal allenes to give branched N-allyl 2-pyridones is reported. Preliminary mechanistic studies support the hypothesis that the reaction was initiated from the more acidic 2-hydroxypyridine form, and the initial kinetic O-allylation product was finally converted into the thermodynamically more stable N-allyl 2-pyridones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydrothermal synthesis, crystal structure, and catalytic potential of a one-dimensional molybdenum oxide/bipyridinedicarboxylate hybrid.

    PubMed

    Amarante, Tatiana R; Neves, Patrícia; Valente, Anabela A; Paz, Filipe A Almeida; Fitch, Andrew N; Pillinger, Martyn; Gonçalves, Isabel S

    2013-04-15

    The reaction of MoO3, 2,2'-bipyridine-5,5-dicarboxylic acid (H2bpdc), water, and dimethylformamide in the mole ratio 1:1:1730:130 at 150 °C for 3 days in a rotating Teflon-lined digestion bomb leads to the isolation of the molybdenum oxide/bipyridinedicarboxylate hybrid material (DMA)[MoO3(Hbpdc)]·nH2O (1) (DMA = dimethylammonium). Compound 1 was characterized by scanning electron microscopy, FT-IR and (13)C{(1)H} CP MAS NMR spectroscopies, and elemental and thermogravimetric analyses. The solid state structure of 1 was solved and refined through Rietveld analysis of high resolution synchrotron X-ray powder diffraction data in conjunction with information derived from the above techniques. The material, crystallizing in the noncentrosymmetric monoclinic space group Pc, is composed of an anionic one-dimensional organic-inorganic hybrid polymer, ∞(1)[MoO3(Hbpdc)](-), formed by corner-sharing distorted {MoO4N2} octahedra, which cocrystallizes with charge-balancing DMA(+) cations and one water molecule per metal center. In the crystal structure of 1, the close packing of individual anionic polymers, DMA(+) cations, and water molecules is mediated by a series of supramolecular contacts, namely strong (O-H···O, N(+)-H···O(-)) and weak (C-H···O) hydrogen bonding interactions, and π-π contacts involving adjacent coordinated Hbpdc(-) ligands. The catalytic potential of 1 was investigated in the epoxidation reactions of the bioderived olefins methyl oleate (Ole) and DL-limonene (Lim) using tert-butylhydroperoxide (TBHP) as the oxygen donor and 1,2-dichloroethane (DCE) or (trifluoromethyl)benzene (BTF) as cosolvent, at 55 or 75 °C. Under these conditions, 1 acts as a source of active soluble species, leading to epoxide yields of up to 98% for methyl 9,10-epoxystearate (BTF, 75 °C, 100% conversion of Ole) and 89% for 1,2-epoxy-p-menth-8-ene (DCE, 55 °C, 95% conversion of Lim). Catalytic systems employing the ionic liquid 1-butyl-3-methylimidazolium bis

  13. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo.

    PubMed

    Srivastava, Sanjay K; Xiao, Dong; Lew, Karen L; Hershberger, Pamela; Kokkinakis, Demetrius M; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2003-10-01

    We have shown previously that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits survival of PC-3 and LNCaP human prostate cancer cells in culture, whereas proliferation of a normal prostate epithelial cell line is minimally affected by AITC even at concentrations that are highly cytotoxic to the prostate cancer cells. The present studies were designed to test the hypothesis that AITC administration may retard growth of human prostate cancer xenografts in vivo. Bolus i.p. injection of 10 micromol AITC, three times per week (Monday, Wednesday and Friday) beginning the day of tumor cell implantation, significantly inhibited the growth of PC-3 xenograft (P < 0.05 by two-way ANOVA). For example, 26 days after tumor cell implantation, the average tumor volume in control mice (1025 +/- 205 mm3) was approximately 1.7-fold higher compared with AITC-treated mice. Histological analysis of tumors excised at the termination of the experiment revealed a statistically significant increase in number of apoptotic bodies with a concomitant decrease in cells undergoing mitosis in the tumors of AITC-treated mice compared with that of control mice. Western blot analysis indicated an approximately 70% reduction in the levels of anti-apoptotic protein Bcl-2 in the tumor lysate of AITC-treated mice compared with that of control mice. Moreover, the tumors from AITC-treated mice, but not control mice, exhibited cleavage of BID, which is known to promote apoptosis. Statistically significant reduction in the expression of several proteins that regulate G2/M progression, including cyclin B1, cell division cycle (Cdc)25B and Cdc25C (44, 45 and 90% reduction, respectively, compared with control), was also observed in the tumors of AITC-treated mice relative to control tumors. In conclusion, the results of the present study indicate that AITC administration inhibits growth of PC-3 xenografts in vivo by inducing apoptosis and reducing mitotic activity.

  14. Novel high contrast electrochromic polymer materials based on 3,4-propylenedioxythiophene

    NASA Astrophysics Data System (ADS)

    Sahoo, Rabindra; Mishra, Sarada P.; Kumar, Anil; Sindhu, S.; Narasimha Rao, K.; Gopal, E. S. R.

    2007-09-01

    Mono and di allyl and napthyl substituted 3,4-propylenedioxythiophenes were synthesized and polymerized electrochemically. All the monomers were characterized for their molecular structures, and the polymers were characterized for their electrochemical properties. The disubstituted derivatives showed higher contrast than the corresponding mono substituted derivatives. The allyl substituted polymers showed higher contrast and faster switching time than corresponding napthyl substituted derivatives. The presence of the allyl group as the pendant can be used for further functionalization of the polymer.

  15. Noxious heat threshold temperature and pronociceptive effects of allyl isothiocyanate (mustard oil) in TRPV1 or TRPA1 gene-deleted mice.

    PubMed

    Tékus, Valéria; Horváth, Ádám; Hajna, Zsófia; Borbély, Éva; Bölcskei, Kata; Boros, Melinda; Pintér, Erika; Helyes, Zsuzsanna; Pethő, Gábor; Szolcsányi, János

    2016-06-01

    To investigate the roles of TRPV1 and TRPA1 channels in baseline and allyl isothiocyanate (AITC)-evoked nociceptive responses by comparing wild-type and gene-deficient mice. In contrast to conventional methods of thermonociception measuring reflex latencies, we used our novel methods to determine the noxious heat threshold. It was revealed that the heat threshold of the tail measured by an increasing-temperature water bath is significantly higher in TRPV1(-/-), but not TRPA1(-/-), mice compared to respective wild-types. There was no difference between the noxious heat thresholds of the hind paw as measured by an increasing-temperature hot plate in TRPV1(-/-), TRPA1(-/-) and the corresponding wild-type mice. The withdrawal latency of the tail from 0°C water was prolonged in TRPA1(-/-), but not TRPV1(-/-), mice compared to respective wild-types. In wild-type animals, dipping the tail or paw into 1% AITC induced an 8-14°C drop of the noxious heat threshold (heat allodynia) of both the tail and paw, and 40-50% drop of the mechanonociceptive threshold (mechanical allodynia) of the paw measured by dynamic plantar esthesiometry. These AITC-evoked responses were diminished in TRPV1(-/-), but not TRPA1(-/-), mice. Tail withdrawal latency to 1% AITC was significantly prolonged in both gene-deleted strains. Different heat sensors determine the noxious heat threshold in distinct areas: a pivotal role for TRPV1 on the tail is contrasted with no involvement of either TRPV1 or TRPA1 on the hind paw. Noxious heat threshold measurement appears appropriate for preclinical screening of TRP channel ligands as novel analgesics. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Molecularly imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination*

    PubMed Central

    Lay, Sovichea; Yu, Hai-ning; Hu, Bao-xiang; Shen, Sheng-rong

    2016-01-01

    A pre-treatment methodology for clenbuterol hydrochloride (CLEN) isolation and enrichment in a complex matrix environment was developed through exploiting molecularly imprinted polymers (MIPs). CLEN-imprinted polymers were synthesized by the combined use of ally-β-cyclodextrin (ally-β-CD) and methacrylic acid (MAA), allyl-β-CD and acrylonitrile (AN), and allyl-β-CD and methyl methacrylate (MMA) as the binary functional monomers. MAA-linked allyl-β-CD MIPs (M-MAA) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and a scanning electron microscope (SEM). Based upon the results, M-MAA polymers generally proved to be an excellent selective extraction compared to its references: AN-linked allyl-β-CD MIPs (M-AN) and MMA-linked allyl-β-CD MIPs (M-MMA). M-MAA polymers were eventually chosen to run through a molecularly imprinted solid-phase extraction (MISPE) micro-column to enrich CLEN residues spiked in pig livers. A high recovery was achieved, ranging from 91.03% to 96.76% with relative standard deviation (RSD) ≤4.45%. PMID:27256680

  17. Inhibition of Listeria monocytogenes on cooked cured chicken breasts by acidified coating containing allyl isothiocyanate or deodorized Oriental mustard extract.

    PubMed

    Olaimat, Amin N; Holley, Richard A

    2016-08-01

    Ready-to-eat meats are considered foods at high risk to cause life-threatening Listeria monocytogenes infections. This study screened 5 L. monocytogenes strains for their ability to hydrolyze sinigrin (a glucosinolate in Oriental mustard), which formed allyl isothiocyanate (AITC) and reduced L. monocytogenes viability on inoculated vacuum-packed, cooked, cured roast chicken slices at 4 °C. Tests involved incorporation of 25-50 μl/g AITC directly or 100-250 mg/g Oriental mustard extract in 0.5% (w/v) κ-carrageenan/2% (w/v) chitosan-based coatings prepared using 1.5% malic or acetic acid. L. monocytogenes strains hydrolyzed 33.6%-48.4% pure sinigrin in MH broth by 21 d at 25 °C. Acidified κ-carrageenan/chitosan coatings containing 25-50 μl/g AITC or 100-250 mg/g mustard reduced the viability of L. monocytogenes and aerobic bacteria on cooked, cured roast chicken slices by 4.1 to >7.0 log10 CFU/g compared to uncoated chicken stored at 4 °C for 70 d. Coatings containing malic acid were significantly more antimicrobial than those with acetic acid. During storage for 70 d, acidified κ-carrageenan/chitosan coatings containing 25-50 μl/g AITC or 250 mg/g mustard extract reduced lactic acid bacteria (LAB) numbers 3.8 to 5.4 log10 CFU/g on chicken slices compared to uncoated samples. Acidified κ-carrageenan/chitosan-based coatings containing either AITC or Oriental mustard extract at the concentrations tested had the ability to control L. monocytogenes viability and delay growth of potential spoilage bacteria on refrigerated, vacuum-packed cured roast chicken. Copyright © 2016. Published by Elsevier Ltd.

  18. Phosphine-functionalized NHC Ni(ii) and Ni(0) complexes: synthesis, characterization and catalytic properties.

    PubMed

    Rull, S G; Rama, R J; Álvarez, E; Fructos, M R; Belderrain, T R; Nicasio, M C

    2017-06-13

    Two families of nickel complexes bearing chelating diphenylphosphine-functionalized NHC ligands [Ni II (ArNHCPPh 2 )(allyl)]Cl 1a (Ar = Mes); 1b, (Ar = 2,6-iPr 2 -C 6 H 3 ) and [Ni 0 (ArNHCPPh 2 )(alkene)] 2a (Ar = 2,6-iPr 2 -C 6 H 3 , alkene = styrene); 2b (Ar = 2,6-iPr 2 -C 6 H 3 , alkene = diethyl fumarate) have been prepared and fully characterized. VT-NMR experiments in solution reveal that the allyl derivatives 1a-b are stereochemically nonrigid. The solid-state structure of the Ni 0 derivative 2b is also reported. These complexes display interesting catalytic properties in various cross-coupling reactions. The precatalyst [Ni 0 (ArNHCPPh 2 )(styrene)] 2a was found to be the most active system. The bulkiness of the N-substituent on the imidazole ring and the low oxidation state of the metal center in 2a accounted for its enhanced catalytic performance. This system catalyzed effectively the coupling of (hetero)aryl chlorides with a range of nucleophiles including Grignard reagents, boronic acids, secondary amines and indoles.

  19. Oxidative shielding or oxidative stress?

    PubMed

    Naviaux, Robert K

    2012-09-01

    In this review I report evidence that the mainstream field of oxidative damage biology has been running fast in the wrong direction for more than 50 years. Reactive oxygen species (ROS) and chronic oxidative changes in membrane lipids and proteins found in many chronic diseases are not the result of accidental damage. Instead, these changes are the result of a highly evolved, stereotyped, and protein-catalyzed "oxidative shielding" response that all eukaryotes adopt when placed in a chemically or microbially hostile environment. The machinery of oxidative shielding evolved from pathways of innate immunity designed to protect the cell from attack and limit the spread of infection. Both oxidative and reductive stress trigger oxidative shielding. In the cases in which it has been studied explicitly, functional and metabolic defects occur in the cell before the increase in ROS and oxidative changes. ROS are the response to disease, not the cause. Therefore, it is not the oxidative changes that should be targeted for therapy, but rather the metabolic conditions that create them. This fresh perspective is relevant to diseases that range from autism, type 1 diabetes, type 2 diabetes, cancer, heart disease, schizophrenia, Parkinson's disease, and Alzheimer disease. Research efforts need to be redirected. Oxidative shielding is protective and is a misguided target for therapy. Identification of the causal chemistry and environmental factors that trigger innate immunity and metabolic memory that initiate and sustain oxidative shielding is paramount for human health.

  20. Toxic effects of a horseradish extract and allyl isothiocyanate in the urinary bladder after 13-week administration in drinking water to F344 rats.

    PubMed

    Hasumura, Mai; Imai, Toshio; Cho, Young-Man; Ueda, Makoto; Hirose, Masao; Nishikawa, Akiyoshi; Ogawa, Kumiko

    2011-01-01

    Subchronic toxicity of a horseradish extract (HRE), consisting mainly of a mixture of allyl isothiocyanate (AITC) and other isothiocyanates, was investigated with administration at concentrations of 0, 0.0125, 0.025 and 0.05% of HRE in drinking water for 13 weeks to male and female F344 rats. For comparison, treatment with 0.0425% of AITC was similarly performed. Body weight gain was reduced in the 0.05% HRE and AITC males as compared to the 0% controls, and the cause was considered at least partly related to decreased water consumption due to the acrid smell of the test substance and decreased food consumption. Serum biochemistry demonstrated increased urea nitrogen in 0.025 and 0.05% HRE and AITC males and 0.0125-0.05% HRE and AITC females, along with decreased total cholesterol in 0.0125-0.05% HRE females. On histopathological assessment, papillary/nodular hyperplasia of bladder mucosa was observed in 0.05% HRE and AITC males and females, in addition to simple mucosal hyperplasia found in all treated groups. Based on the above findings, no-observed-adverse-effect levels (NOAELs) were estimated to be below 0.0125% of HRE for both males and females, corresponding to 9.4 and 8.0 mg/kg body weight/day, respectively, and there appeared to be comparable toxicological properties of HRE to AITC, such as the inductive effect of significant proliferative lesions in the urinary bladder.

  1. Process for the synthesis of unsaturated alcohols

    DOEpatents

    Maughon, Bob R.; Burdett, Kenneth A.; Lysenko, Zenon

    2007-02-13

    A process of preparing an unsaturated alcohol (olefin alcohol), such as, a homo-allylic mono-alcohol or homo-allylic polyol, involving protecting a hydroxy-substituted unsaturated fatty acid or fatty acid ester, such as methyl ricinoleate, derived from a seed oil, to form a hydroxy-protected unsaturated fatty acid or fatty acid ester; homo-metathesizing or cross-metathesizing the hydroxy-protected unsaturated fatty acid or fatty acid ester to produce a product mixture containing a hydroxy-protected unsaturated metathesis product; and deprotecting the hydroxy-protected unsaturated metathesis product under conditions sufficient to prepare the unsaturated alcohol. Preferably, methyl ricinoleate is converted by cross-metathesis or homo-metathesis into the homo-allylic mono-alcohol 1-decene-4-ol or the homo-allylic polyol 9-octadecene-7,12-diol, respectively.

  2. Tandem cyclopropanation with dibromomethane under Grignard conditions.

    PubMed

    Brunner, Gerhard; Eberhard, Laura; Oetiker, Jürg; Schröder, Fridtjof

    2008-10-03

    Tertiary Grignard reagents and dibromomethane efficiently cyclopropanate allylic (and certain homoallylic) magnesium and lithium alcoholates at ambient temperature in ether solvents. Lithium (homo)allyl alcoholates are directly cyclopropanated with magnesium and CH2Br2 under Barbier conditions at higher temperatures. The reaction rates depend on the substitution pattern of the (homo)allylic alcoholates and on the counterion with lithium giving best results. Good to excellent syn-selectivities are obtained from alpha-substituted substrates, which are in accord with a staggered Houk model. In tandem reactions, cyclopropyl carbinols are obtained from allyloxylithium or -magnesium intermediates, generated in situ by alkylation of conjugated aldehydes, ketones, and esters as well as from allyl carboxylates or vinyloxiranes. Using this methodology, numerous fragrance ingredients and their precursors were efficiently converted to the corresponding cyclopropyl carbinols.

  3. Synthesis of Organic Compounds (Selected Articles)

    DTIC Science & Technology

    1990-10-03

    OH+TiCI,+4NH3 - (CH2+CHCH 2 0)4 Ti+4NH4 Cl Allyl ester of-orthotitanium acid is obtained for the first time [1]. The proposed method is based on the...reaction of allyl alcohol with titanium tetrachloride in the presence of ammonia in the medium of benzene. DESCRIPTION OF SYNTHESIS Synthesis is...point 141-1420 at I mm: it is hygroscopic and easily hydrolized. NOTE Synthesis can be carried out in the absence of benzene in the medium of allyl

  4. The Enzymatic Oxidation of Graphene Oxide

    PubMed Central

    Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

    2011-01-01

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

  5. Stabilized tin-oxide-based oxidation/reduction catalysts

    NASA Technical Reports Server (NTRS)

    Watkins, Anthony Neal (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Jordan, Jeffrey D. (Inventor); Schryer, Jacqueline L. (Inventor)

    2008-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  6. The enzymatic oxidation of graphene oxide.

    PubMed

    Kotchey, Gregg P; Allen, Brett L; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A; Tyurina, Yulia Y; Klein-Seetharaman, Judith; Kagan, Valerian E; Star, Alexander

    2011-03-22

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon--the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (∼40 μM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, ultraviolet-visible, electron paramagnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gas chromatography-mass spectrometry. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Owing to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors.

  7. NIOSH Manual of Analytical Methods (third edition). Fourth supplement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-08-15

    The NIOSH Manual of Analytical Methods, 3rd edition, was updated for the following chemicals: allyl-glycidyl-ether, 2-aminopyridine, aspartame, bromine, chlorine, n-butylamine, n-butyl-glycidyl-ether, carbon-dioxide, carbon-monoxide, chlorinated-camphene, chloroacetaldehyde, p-chlorophenol, crotonaldehyde, 1,1-dimethylhydrazine, dinitro-o-cresol, ethyl-acetate, ethyl-formate, ethylenimine, sodium-fluoride, hydrogen-fluoride, cryolite, sodium-hexafluoroaluminate, formic-acid, hexachlorobutadiene, hydrogen-cyanide, hydrogen-sulfide, isopropyl-acetate, isopropyl-ether, isopropyl-glycidyl-ether, lead, lead-oxide, maleic-anhydride, methyl-acetate, methyl-acrylate, methyl-tert-butyl ether, methyl-cellosolve-acetate, methylcyclohexanol, 4,4'-methylenedianiline, monomethylaniline, monomethylhydrazine, nitric-oxide, p-nitroaniline, phenyl-ether, phenyl-ether-biphenyl mixture, phenyl-glycidyl-ether, phenylhydrazine, phosphine, ronnel, sulfuryl-fluoride, talc, tributyl-phosphate, 1,1,2-trichloro-1,2,2-trifluoroethane, trimellitic-anhydride, triorthocresyl-phosphate, triphenyl-phosphate, and vinyl-acetate.

  8. Composition, Stability, and Bioavailability of Garlic Products Being Used in a Clinical Trial

    PubMed Central

    Lawson, Larry D.; Gardner, Christopher D.

    2008-01-01

    In support of a new clinical trial designed to compare the effects of crushed fresh garlic and two types of garlic supplement tablets (enteric-coated dried fresh garlic and dried aged garlic extract) on serum lipids, the three garlic products have been characterized for (a) composition (14 sulfur and 2 non-sulfur compounds), (b) stability of suspected active compounds, and (c) availability of allyl thiosulfinates (mainly allicin) under both simulated gastrointestinal (tablet dissolution) conditions and in vivo. The allyl thiosulfinates of blended fresh garlic were stable for at least two years when stored at −80 °C. The dissolution release of thiosulfinates from the enteric-coated garlic tablets was found to be >95%. The bioavailability of allyl thiosulfinates from these tablets, measured as breath allyl methyl sulfide, was found to be complete and equivalent to that of crushed fresh garlic. S-allylcysteine was stable for 12 months at ambient temperature. The stability of the suspected active compounds under the conditions of the study and the bioavailability of allyl thiosulfinates from the dried garlic supplement have validated the use of these preparations for comparison in a clinical trial. PMID:16076102

  9. Novel derivatives of aclacinomycin A block cancer cell migration through inhibition of farnesyl transferase.

    PubMed

    Magi, Shigeyuki; Shitara, Tetsuo; Takemoto, Yasushi; Sawada, Masato; Kitagawa, Mitsuhiro; Tashiro, Etsu; Takahashi, Yoshikazu; Imoto, Masaya

    2013-03-01

    In the course of screening for an inhibitor of farnesyl transferase (FTase), we identified two compounds, N-benzyl-aclacinomycin A (ACM) and N-allyl-ACM, which are new derivatives of ACM. N-benzyl-ACM and N-allyl-ACM inhibited FTase activity with IC50 values of 0.86 and 2.93 μM, respectively. Not only ACM but also C-10 epimers of each ACM derivative failed to inhibit FTase. The inhibition of FTase by N-benzyl-ACM and N-allyl-ACM seems to be specific, because these two compounds did not inhibit geranylgeranyltransferase or geranylgeranyl pyrophosphate (GGPP) synthase up to 100 μM. In cultured A431 cells, N-benzyl-ACM and N-allyl-ACM also blocked both the membrane localization of H-Ras and activation of the H-Ras-dependent PI3K/Akt pathway. In addition, they inhibited epidermal growth factor (EGF)-induced migration of A431 cells. Thus, N-benzyl-ACM and N-allyl-ACM inhibited EGF-induced migration of A431 cells by inhibiting the farnesylation of H-Ras and subsequent H-Ras-dependent activation of the PI3K/Akt pathway.

  10. Isoprene Peroxy Radical Dynamics.

    PubMed

    Teng, Alexander P; Crounse, John D; Wennberg, Paul O

    2017-04-19

    Approximately 500 Tg of 2-methyl-1,3-butadiene (isoprene) is emitted by deciduous trees each year. Isoprene oxidation in the atmosphere is initiated primarily by addition of hydroxyl radicals (OH) to C 4 or C 1 in a ratio 0.57 ± 0.03 (1σ) to produce two sets of distinct allylic radicals. Oxygen (O 2 ) adds to these allylic radicals either δ (Z or E depending on whether the allylic radical is cis or trans) or β to the OH group forming six distinct peroxy radical isomers. Due to the enhanced stability of the allylic radical, however, these peroxy radicals lose O 2 in competition with bimolecular reactions. In addition, the Z-δ hydroxy peroxy radical isomers undergo unimolecular 1,6 H-shift isomerization. Here, we use isomer-resolved measurements of the reaction products of the peroxy radicals to diagnose this complex chemistry. We find that the ratio of δ to β hydroxy peroxy radicals depends on their bimolecular lifetime (τ bimolecular ). At τ bimolecular ≈ 0.1 s, a transition occurs from a kinetically to a largely thermodynamically controlled distribution at 297 K. Thus, in nature, where τ bimolecular > 10 s, the distribution of isoprene hydroxy peroxy radicals will be controlled primarily by the difference in the relative stability of the peroxy radical isomers. In this regime, β hydroxy peroxy radical isomers comprise ∼95% of the radical pool, a much higher fraction than in the nascent (kinetic) distribution. Intramolecular 1,6 H-shift isomerization of the Z-δ hydroxy peroxy radical isomers produced from OH addition to C 4 is estimated to be ∼4 s -1 at 297 K. While the Z-δ isomer is initially produced in low yield, it is continually reformed via decomposition of the β hydroxy peroxy radicals. As a result, unimolecular chemistry from this isomer contributes about half of the atmospheric fate of the entire pool of peroxy radicals formed via addition of OH at C 4 for typical atmospheric conditions (τ bimolecular = 100 s and T = 25 C). In contrast

  11. Kinetics of OH- and Cl-initiated oxidation of CH2dbnd CHC(O)O(CH2)2CH3 and CH2dbnd CHCH2C(O)O(CH2)2CH3 and fate of the alkoxy radicals formed

    NASA Astrophysics Data System (ADS)

    Rivela, Cynthia; Blanco, María B.; Teruel, Mariano A.

    2016-05-01

    Rate coefficients of the reactions of OH and Cl radicals with vinyl and allyl butyrate were determined for the first time at 298 K and 1 atm using the relative method to be (in cm3 molecule-1 s-1): k1(OH + CH2dbnd CHC(O)O(CH2)2CH3) = (2.61 ± 0.31) × 10-11, k2(Cl + CH2dbnd CHC(O)O(CH2)2CH3) = (2.48 ± 0.89) × 10-10, k3(OH + CH2dbnd CHCH2C(O)O(CH2)2CH3) = (2.89 ± 0.31) × 10-11, and k4(Cl + CH2dbnd CHCH2C(O)O(CH2)2CH3) = (2.25 ± 0.96) × 10-10. Reactivity trends and atmospheric lifetimes of esters are presented. Additionally, a product study shown butyric acid and polifunctional products for the reactions of vinyl and allyl butyrate, respectively and general mechanism is proposed.

  12. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles.

    PubMed

    Lin, Run; Li, Yuancheng; MacDonald, Tobey; Wu, Hui; Provenzale, James; Peng, Xingui; Huang, Jing; Wang, Liya; Wang, Andrew Y; Yang, Jianyong; Mao, Hui

    2017-02-01

    Detecting circulating tumor cells (CTCs) with high sensitivity and specificity is critical to management of metastatic cancers. Although immuno-magnetic technology for in vitro detection of CTCs has shown promising potential for clinical applications, the biofouling effect, i.e., non-specific adhesion of biomolecules and non-cancerous cells in complex biological samples to the surface of a device/probe, can reduce the sensitivity and specificity of cell detection. Reported herein is the application of anti-biofouling polyethylene glycol-block-allyl glycidyl ether copolymer (PEG-b-AGE) coated iron oxide nanoparticles (IONPs) to improve the separation of targeted tumor cells from aqueous phase in an external magnetic field. PEG-b-AGE coated IONPs conjugated with transferrin (Tf) exhibited significant anti-biofouling properties against non-specific protein adsorption and off-target cell uptake, thus substantially enhancing the ability to target and separate transferrin receptor (TfR) over-expressed D556 medulloblastoma cells. Tf conjugated PEG-b-AGE coated IONPs exhibited a high capture rate of targeted tumor cells (D556 medulloblastoma cell) in cell media (58.7±6.4%) when separating 100 targeted tumor cells from 1×10 5 non-targeted cells and 41 targeted tumor cells from 100 D556 medulloblastoma cells spiked into 1mL blood. It is demonstrated that developed nanoparticle has higher efficiency in capturing targeted cells than widely used micron-sized particles (i.e., Dynabeads ® ). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Photoinduced azidohydroperoxidation of myrtenyl hydroperoxide with semiconductor particles and lucigenin as PET-catalysts.

    PubMed

    Griesbeck, Axel G; Reckenthäler, Melissa; Uhlig, Johannes

    2010-06-01

    The allylic hydroperoxide 2 (myrtenyl hydroperoxide), available from singlet oxygen photooxygenation of beta-pinene (1), is converted into the azido bis-hydroperoxide 3 by an electron-transfer induced azidyl radical formation and trapping of the initial tertiary carbon radical by triplet oxygen. The azido bis-hydroperoxide 3 is reduced to the azido 1,2-diol 4 or the amino diol 5, respectively. Beside classical fluorescent PET sensitizers such as rhodamines, also nanosized semiconductor particles as well as lucigenin were applied as catalysts. The electron transfer rate of azide oxidation was determined for lucigenin by fluorescence quenching analysis.

  14. Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria.

    PubMed

    Sauder, Laura A; Ross, Ashley A; Neufeld, Josh D

    2016-04-01

    Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested onNitrosopumilus maritimus, two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representative Nitrosomonas europaea All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 μM) and methylene blue hydrate (3 μM) was comparable to carboxy-PTIO (100 μM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. The Thr-His Connection on the Distal Heme of Catalase-Related Hemoproteins: A Hallmark of Reaction with Fatty Acid Hydroperoxides.

    PubMed

    Mashhadi, Zahra; Newcomer, Marcia E; Brash, Alan R

    2016-11-03

    This review focuses on a group of heme peroxidases that retain the catalase fold in structure, yet show little or no reaction with hydrogen peroxide. Instead of having a role in oxidative defense, these enzymes are involved in secondary metabolite biosynthesis. The prototypical enzyme is catalase-related allene oxide synthase, an enzyme that converts a specific fatty acid hydroperoxide to the corresponding allene oxide (epoxide). Other catalase-related enzymes form allylic epoxides, aldehydes, or a bicyclobutane fatty acid. In all catalases (including these relatives), a His residue on the distal face of the heme is absolutely required for activity. Its immediate neighbor in sequence as well as in 3 D space is conserved as Val in true catalases and Thr in the fatty acid hydroperoxide-metabolizing enzymes. Thr-His on the distal face of the heme is critical in switching the substrate specificity from H 2 O 2 to fatty acid hydroperoxide. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation

    NASA Astrophysics Data System (ADS)

    Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain

    2017-06-01

    The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.

  17. Powerful Oxidizing Agents for the Oxidative Deintercalation of Lithium from Transition Metal Oxides

    DTIC Science & Technology

    1989-08-16

    22217 11 TITLE dnrcluae Sec’.r/ 2 ’als.rit,catC Powerful Oxidizing Agents for the Oxidative Deintercalation of Lithium from Transition Metal Oxides...0 d dlentity by block number) FIELD GROUP SUB GROUP Oxidizing Agents, Lithium Oxides I - Deintercalation 19 AbS*RA?, trne on-tsxes~e it necessary...anid enit’y oy 010ck .1Uf~oer. N02+ andMoF6 are shown to be powerful oxidizing agents for the deintercalation of lithium from Li~oO2 an 62Ct . The

  18. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...

  19. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...

  20. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...