Sample records for tce transformation rates

  1. Estimated trichloroethene transformation rates due to naturally occurring biodegradation in a fractured-rock aquifer

    USGS Publications Warehouse

    Chapelle, Francis H.; Lacombe, Pierre J.; Bradley, Paul M.

    2012-01-01

    Rates of trichloroethene (TCE) mass transformed by naturally occurring biodegradation processes in a fractured rock aquifer underlying a former Naval Air Warfare Center (NAWC) site in West Trenton, New Jersey, were estimated. The methodology included (1) dividing the site into eight elements of equal size and vertically integrating observed concentrations of two daughter products of TCE biodegradation–cis-dichloroethene (cis-DCE) and chloride–using water chemistry data from a network of 88 observation wells; (2) summing the molar mass of cis-DCE, the first biodegradation product of TCE, to provide a probable underestimate of reductive biodegradation of TCE, (3) summing the molar mass of chloride, the final product of chlorinated ethene degradation, to provide a probable overestimate of overall biodegradation. Finally, lower and higher estimates of aquifer porosities and groundwater residence times were used to estimate a range of overall transformation rates. The highest TCE transformation rates estimated using this procedure for the combined overburden and bedrock aquifers was 945 kg/yr, and the lowest was 37 kg/yr. However, hydrologic considerations suggest that approximately 100 to 500 kg/yr is the probable range for overall TCE transformation rates in this system. Estimated rates of TCE transformation were much higher in shallow overburden sediments (approximately 100 to 500 kg/yr) than in the deeper bedrock aquifer (approximately 20 to 0.15 kg/yr), which reflects the higher porosity and higher contaminant mass present in the overburden. By way of comparison, pump-and-treat operations at the NAWC site are estimated to have removed between 1,073 and 1,565 kg/yr of TCE between 1996 and 2009.

  2. Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems.

    PubMed

    Kocamemi, B Alpaslan; Ceçen, F

    2010-01-01

    In the present study, cometabolic TCE degradation was evaluated using NH(4)-N as the growth-substrate. At initial TCE concentrations up to 845 microg/L, TCE degradation followed first-order kinetics. The increase in ammonium utilization rate favored the degradation of TCE. This ensured that biological transformation of TCE in nitrifying systems is accomplished through a cometabolic pathway by the catalysis of non-specific ammonia oxygenase enzyme of nitrifiers. The transformation yield (T(y)) of TCE, the amount of TCE degraded per unit mass of NH(4)-N, strongly depended on the initial NH(4)-N and TCE concentrations. In order to allow a rough estimation of TCE removal and nitrification at different influent TCE and NH(4)-N concentrations, a linear relationship was developed between 1/T(y) and the initial NH(4)-N/TCE ratio. The estimated T(y) values lead to the conclusion that nitrifying systems are promising candidates for biological removal of TCE through cometabolism.

  3. Chemostat Studies of TCE-Dehalogenating Anaerobic Consortia under Excess and Limited Electron Donor Addition

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Azizian, M.; Green, J.; Mayer-Blackwell, K.; Spormann, A. M.

    2015-12-01

    Two cultures - the Victoria Strain (VS) and the Evanite Strain (EV), enriched with the organohalide respiring bacteria Dehalococcoides mccartyi - were grown in chemostats for more than 4 years at a mean cell residence time of 50 days. The slow doubling rate represents growth likely experienced in the subsurface. The chemostats were fed formate as an electron donor and trichloroethene (TCE) as the terminal electron acceptor. Under excess formate conditions, stable operation was observed with respect to TCE transformation, steady-state hydrogen (H2) concentrations (40 nM), and the structure of the dehalogenating community. Both cultures completely transformed TCE to ethene, with minor amounts of vinyl chloride (VC) observed, along with acetate formation. When formate was limited, TCE was transformed incompletely to ethene (40-60%) and VC (60- 40%), and H2 concentrations ranged from 1 to 3 nM. The acetate concentration dropped below detection. Batch kinetic studies of TCE transformation with chemostat harvested cells found transformation rates of c-DCE and VC were greatly reduced when the cells were grown with limited formate. Upon increasing formate addition to the chemostats, from limited to excess, essentially complete transformation of TCE to ethene was achieved. The increase in formate was associated with an increase in H2 concentration and the production of acetate. Results of batch kinetic tests showed increases in transformation rates for TCE and c-DCE by factors of 3.5 and 2.5, respectively, while VC rates increased by factors of 33 to 500, over a six month period. Molecular analysis of chemostat samples is being performed to quantify the changes in copy numbers of reductase genes and to determine whether shifts in the strains of Dehalococcoides mccartyi where responsible for the observed rate increases. The results demonstrate the importance of electron donor supply for successful in-situ remediation.

  4. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations

    PubMed Central

    2014-01-01

    Background Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Methods Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. Results The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. Conclusions For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates. PMID:24401763

  5. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations.

    PubMed

    Dobaradaran, Sina; Lutze, Holger; Mahvi, Amir Hossein; Schmidt, Torsten C

    2014-01-08

    Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates.

  6. Fate of TCE in heated Fort Lewis soil.

    PubMed

    Costanza, Jed; Fletcher, Kelly E; Löffler, Frank E; Pennell, Kurt D

    2009-02-01

    This study explores the transformation of trichloroethene (TCE) caused by heating contaminated soil and groundwater samples obtained from the East Gate Disposal Yard (EGDY) located in Fort Lewis, WA. After field samples transferring into glass ampules and introducing 1.5 micromol of TCE, the sealed ampules were incubated at temperatures of 25, 50, and 95 degrees C for periods of up to 95.5 days. Although TCE was completely transformed into cis-1,2-dichloroethene (cis-DCE) after 42 days at 25 degrees C by microbial activity, this transformation was not observed at 50 or 95 degrees C. Chloride levels increased after 42 days at 25 degrees C corresponding to the mass of TCE transformed to cis-DCE, were constant at 50 degrees C, and increased at 95 degrees C yielding a TCE degradation half-life of 1.6-1.9 years. These findings indicate that indigenous microbes contribute to the partial dechlorination of TCE to cis-DCE at temperatures of less than 50 degrees C, whereas interphase mass transfer and physical recovery of TCE will predominate over in situ degradation processes at temperatures of greater than 50 degrees C during thermal treatment at the EGDY site.

  7. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater.

    PubMed

    Mao, Xuhui; Yuan, Songhu; Fallahpour, Noushin; Ciblak, Ali; Howard, Joniqua; Padilla, Ingrid; Loch-Caruso, Rita; Alshawabkeh, Akram N

    2012-11-06

    A novel reactive electrochemical flow system consisting of an iron anode and a porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides protons and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of the foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (<7.5 mg/L) and high current (>45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants in flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures.

  8. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.

    PubMed

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N

    2016-02-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min(-1)) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its adverse effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min(-1) flow, 500 mA current, and 5 mg L(-1) initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. Published by Elsevier Ltd.

  9. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate

    PubMed Central

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N.

    2015-01-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min−1) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its advers effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min−1 flow, 500 mA current, and 5 mg L−1 initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. PMID:26344148

  10. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.

    PubMed

    Haest, P J; Springael, D; Seuntjens, P; Smolders, E

    2012-11-01

    Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models.

    PubMed

    Haest, P J; Springael, D; Smolders, E

    2010-01-01

    The reductive dechlorination of trichloroethene (TCE) in a TCE source zone can be self-inhibited by TCE toxicity. A study was set up to examine the toxicity of TCE in terms of species specific degradation kinetics and microbial growth and to evaluate models that describe this self-inhibition. A batch experiment was performed using the TCE dechlorinating KB-1 culture at initial TCE concentrations ranging from 0.04mM to saturation (8.4mM). Biodegradation activity was highest at 0.3mM TCE and no activity was found at concentrations from 4 to 8mM. Species specific TCE and cis-DCE (cis-dichloroethene) degradation rates and Dehalococcoides numbers were modeled with Monod kinetics combined with either Haldane inhibition or a log-logistic dose-response inhibition on these rates. The log-logistic toxicity model appeared the most appropriate model and predicts that the species specific degradation activities are reduced by a factor 2 at about 1mM TCE, respectively cis-DCE. However, the model showed that the inhibitive effects on the time for TCE to ethene degradation are a complex function of degradation kinetics and the initial cell densities of the dechlorinating species. Our analysis suggests that the self-inhibition on biodegradation cannot be predicted by a single concentration threshold without information on the cell densities.

  12. Monitoring Anaerobic TCE Degradation by Evanite Cultre in Column Packed with TCE-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Ko, J.; Han, K.; Ahn, G.; Park, S.; Kim, N.; Ahn, H.; Kim, Y.

    2011-12-01

    Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, dehalococcoides spp., but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we examined two different types (i.e., Natural attenuation and bioaugmentation) of biological remediation process in anaerobic column packed with TCE-contaminated soil. A TCE degradation by indigenous microorganisms was confirmed by monitoring TCE and the metabolites (c-DCE, VC, ETH). However, TCE was transformed and stoichiometry amount of c-DCE was produced, and VC and ETH was not detected. To test bioaugmentation of Evanite culture containing dehalococcoides spp., Evanite culture was injected into the column and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the column by measuring TCE and VC reductases. In the result, the TCE was completely degraded to ETH using hydrogen as electron donor generate by hydrogen-production fermentation from formate.

  13. RATE OF TCE DEGRADATION IN PASSIVE REACTIVE BARRIERS CONSTRUCTED WITH PLANT MULCH (BIOWALLS)

    EPA Science Inventory

    This presentation reviews a case study at Altus AFB on the extent of treatment of TCE in a passive reactive barrier constructed with plant mulch. It presents data from a tracer test to estimate the rate of ground water flow at the site, and the residence time of water and TCE in...

  14. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.

    PubMed

    Kim, Seungjin; Bae, Wookeun; Hwang, Jungmin; Park, Jaewoo

    2010-01-01

    The degradation rates of toluene and trichloroethylene (TCE) by Pseudomonas putida and Bacillus spp. that were encapsulated in polyethylene glycol (PEG) polymers were evaluated in comparison with the results of exposure to suspended cultures. PEG monomers were polymerized together with TCE-degrading microorganisms, such that the cells were encapsulated in and protected by the matrices of the PEG polymers. TCE concentrations were varied from 0.1 to 1.5 mg/L. In the suspended cultures of P. putida, the TCE removal rate decreased as the initial TCE concentration increased, revealing TCE toxicity or a limitation of reducing power, or both. When the cells were encapsulated, an initial lag period of about 10-20 h was observed for toluene degradation. Once acclimated, the encapsulated P. putida cultures were more tolerant to TCE at an experimental range of 0.6-1.0 mg/L and gave higher transfer efficiencies (mass TCE transformed/mass toluene utilized). When the TCE concentration was low (e.g., 0.1 mg/L) the removal of TCE per unit mass of cells (specific removal) was significantly lower, probably due to a diffusion limitation into the PEG pellet. Encapsulated Bacillus spp. were able to degrade TCE cometabolically. The encapsulated Bacillus spp. gave significantly higher values than did P. putida in the specific removal and the transfer efficiency, particularly at relatively high TCE concentration of approximately 1.0±0.5 mg/L. The transfer efficiency by encapsulated Bacillus spp. in this study was 0.27 mgTCE/mgToluene, which was one to two orders of magnitude greater than the reported values.

  15. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.

    PubMed

    Liu, Yueqiang; Phenrat, Tanapon; Lowry, Gregory V

    2007-11-15

    Nanoscale zero-valent iron (NZVI) is used to remediate contaminated groundwater plumes and contaminant source zones. The target contaminant concentration and groundwater solutes (NO3-, Cl-, HCO3-, SO4(2-), and HPO4(2-)) should affect the NZVI longevity and reactivity with target contaminants, but these effects are not well understood. This study evaluates the effect of trichloroethylene (TCE) concentration and common dissolved groundwater solutes on the rates of NZVI-promoted TCE dechlorination and H2 evolution in batch reactors. Both model systems and real groundwater are evaluated. The TCE reaction rate constant was unaffected by TCE concentration for [TCE] < or = 0.46 mM and decreased by less than a factor of 2 for further increases in TCE concentration up to water saturation (8.4 mM). For [TCE] > or = 0.46 mM, acetylene formation increased, and the total amount of H2 evolved at the end of the particle reactive lifetime decreased with increasing [TCE], indicating a higher Fe0 utilization efficiency for TCE dechlorination. Common groundwater anions (5mN) had a minor effect on H2 evolution but inhibited TCE reduction up to 7-fold in increasing order of Cl- < SO4(2-) < HCO3- < HPO4(2). This order is consistent with their affinity to form complexes with iron oxide. Nitrate, a NZVI-reducible groundwater solute, present at 0.2 and 1 mN did not affect the rate of TCE reduction but increased acetylene production and decreased H2 evolution. NO3- present at > 3 mM slowed TCE dechlorination due to surface passivation. NO3- present at 5 mM stopped TCE dechlorination and H2 evolution after 3 days. Dissolved solutes accounted for the observed decrease of NZVI reactivity for TCE dechlorination in natural groundwater when the total organic content was small (< 1 mg/L).

  16. Surface carbon influences on the reductive transformation of TCE in the presence of granular iron.

    PubMed

    Firdous, R; Devlin, J F

    2018-04-05

    To gain insight into the processes of transformations in zero-valent iron systems, electrolytic iron (EI) has been used as a surrogate for the commercial products actually used in barriers. This substitution facilitates mechanistic studies, but may not be fully representative of all the relevant processes at work in groundwater remediation. To address this concern, the kinetic iron model (KIM) was used to investigate sorption and reactivity differences between EI and Connelly brand GI, using TCE as a probe compound. It was observed that retardation factors (R app ) for GI varied non-linearly with influent concentrations to the columns (C o ), and declined significantly as GI aged. In contrast, R app values for EI were small and insensitive to C o , and changed minimally with iron aging. Moreover, although declines in the rate constants (k) and increases in the sorption coefficients were observed for both iron types, they were most pronounced in the case of EI. SEM scans of the EI surface before and after aging (90 days) established the appearance of carbon on the older surface. This work provides evidence that iron with a higher surface carbon content outperforms pure iron, suggesting that the carbon is actively involved in promoting TCE reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Biodegradation of trichloroethylene (TCE) by methanotrophic community.

    PubMed

    Shukla, Awadhesh K; Vishwakarma, Pranjali; Upadhyay, S N; Tripathi, Anil K; Prasana, H C; Dubey, Suresh K

    2009-05-01

    Laboratory incubation experiments were carried out to assess the potential of methanotrophic culture for degrading TCE. Measurements of the growth rate and TCE degradation showed that the methanotrophs not only grew in presence of TCE but also degraded TCE. The rate of TCE degradation was found to be 0.19 ppm h(-1). The reverse transcriptase-PCR test was conducted to quantify expression of pmoA and mmoX genes. RT-PCR revealed expression of pmoA gene only. This observation provides evidence that the pmoA gene was functionally active for pMMO enzyme during the study. The diversity of the methanotrophs involved in TCE degradation was assessed by PCR amplification, cloning, restriction fragment length polymorphism and phylogenetic analysis of pmoA genes. Results suggested the occurrence of nine different phylotypes belonging to Type II methanotrophs in the enriched cultures. Out of the nine, five clustered with, genera Methylocystis and rest got clustered in to a separate group.

  18. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    PubMed

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design.

    PubMed

    Kaifas, Delphine; Malleret, Laure; Kumar, Naresh; Fétimi, Wafa; Claeys-Bruno, Magalie; Sergent, Michelle; Doumenq, Pierre

    2014-05-15

    Nanoscale zero-valent iron (nZVI) particles are efficient for the remediation of aquifers polluted by trichloroethylene (TCE). But for on-site applications, their reactivity can be affected by the presence of common inorganic co-pollutants, which are equally reduced by nZVI particles. The aim of this study was to assess the potential positive effects of nZVI surface modification and concentration level on TCE removal in the concomitant presence of two strong oxidants, i.e., Cr(VI) and NO3(-). A design of experiments, testing four factors (i.e. nZVI concentration, nZVI surface modification, Cr(VI) concentration and NO3(-) concentration), was used to select the best trials for the identification of the main effects of the factors and of the factors interactions. The effects of these factors were studied by measuring the following responses: TCE removal rates at different times, degradation kinetic rates, and the transformation products formed. As expected, TCE degradation was delayed or inhibited in most of the experiments, due to the presence of inorganics. The negative effects of co-pollutants can be palliated by combining surface modification with a slight increase in nZVI concentration. Encouragingly, complete TCE removal was achieved for some given experimental conditions. Noteworthily, nZVI surface modification was found to promote the efficient degradation of TCE. When degradation occurred, TCE was mainly transformed into innocuous non-chlorinated transformation products, while hazardous chlorinated transformation products accounted for a small percentage of the mass-balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Assessing TCE source bioremediation by geostatistical analysis of a flux fence.

    PubMed

    Cai, Zuansi; Wilson, Ryan D; Lerner, David N

    2012-01-01

    Mass discharge across transect planes is increasingly used as a metric for performance assessment of in situ groundwater remediation systems. Mass discharge estimates using concentrations measured in multilevel transects are often made by assuming a uniform flow field, and uncertainty contributions from spatial concentration and flow field variability are often overlooked. We extend our recently developed geostatistical approach to estimate mass discharge using transect data of concentration and hydraulic conductivity, so accounting for the spatial variability of both datasets. The magnitude and uncertainty of mass discharge were quantified by conditional simulation. An important benefit of the approach is that uncertainty is quantified as an integral part of the mass discharge estimate. We use this approach for performance assessment of a bioremediation experiment of a trichloroethene (TCE) source zone. Analyses of dissolved parent and daughter compounds demonstrated that the engineered bioremediation has elevated the degradation rate of TCE, resulting in a two-thirds reduction in the TCE mass discharge from the source zone. The biologically enhanced dissolution of TCE was not significant (~5%), and was less than expected. However, the discharges of the daughter products cis-1,2, dichloroethene (cDCE) and vinyl chloride (VC) increased, probably because of the rapid transformation of TCE from the source zone to the measurement transect. This suggests that enhancing the biodegradation of cDCE and VC will be crucial to successful engineered bioremediation of TCE source zones. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  1. Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia.

    PubMed

    Clausen, Lauge Peter Westergaard; Broholm, Mette Martina; Gosewinkel, Ulrich; Trapp, Stefan

    2017-08-01

    Trichloroethylene (TCE) is a widespread soil and groundwater pollutant and clean-up is often problematic and expensive. Phytoremediation may be a cost-effective solution at some sites. This study investigates TCE degradation by willows (S. viminalis) and willows inoculated with three strains of B. cepacia (301C, PR1-31 and VM1330-pTOM), using chloride formation as an indicator of dehalogenation. Willows were grown in non-sterile, hydroponic conditions for 3 weeks in chloride-free nutrient solution spiked with TCE. TCE was added weekly due to rapid loss by volatilization. Chloride and TCE in solution were measured every 2-3 days and chloride and metabolite concentrations in plants were measured at test termination. Based on transpiration, no tree toxicity of TCE exposure was observed. However, trees grown in chloride-free solution showed severely inhibited transpiration. No or very little chloride was formed during the test, and levels of chloride in TCE-exposed trees were not elevated. Chloride concentrations in chloride containing TCE-free nutrient solution doubled within 23 days, indicating active exclusion of chloride by root cell membranes. Only traces of TCE-metabolites were detected in plant tissue. We conclude that TCE is not, or to a limited extent (less than 3%), aerobically degraded by the willow trees. The three strains of B. cepacia did not enhance TCE mineralization. Future successful application of rhizo- and phytodegradation of TCE requires measures to be taken to improve the degradation rates.

  2. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells.

    PubMed Central

    Alvarez-Cohen, L; McCarty, P L

    1991-01-01

    The rate and capacity for chloroform (CF) and trichloroethylene (TCE) transformation by a mixed methanotrophic culture of resting cells (no exogenous energy source) and formate-fed cells were measured. As reported previously for TCE, formate addition resulted in an increased CF transformation rate (0.35 day-1 for resting cells and 1.5 day-1 for formate-fed cells) and transformation capacity (0.0065 mg of CF per mg of cells for resting cells and 0.015 mg of CF per mg of cells for formate-fed cells), suggesting that depletion of energy stores affects transformation behavior. The observed finite transformation capacity, even with an exogenous energy source, suggests that toxicity was also a factor. CF transformation capacity was significantly lower than that for TCE, suggesting a greater toxicity from CF transformation. The toxicity of CF, TCE, and their transformation products to whole cells was evaluated by comparing the formate oxidation activity of acetylene-treated cells to that of non-acetylene-treated cells with and without prior exposure to CF or TCE. Acetylene arrests the activity of methane monooxygenase in CF and TCE oxidation without halting cell activity toward formate. Significantly diminished formate oxidation by cells exposed to either CR or TCE without acetylene compared with that with acetylene suggests that the solvents themselves were not toxic under the experimental conditions but their transformation products were. The concurrent transformation of CF and TCE by resting cells was measured, and results were compared with predictions from a competitive-inhibition cometabolic transformation model. The reasonable fit between model predictions and experimental observations was supportive of model assumptions. PMID:1905516

  3. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 2. Transport of TCE

    USGS Publications Warehouse

    Sahoo, D.; Smith, J.A.; Imbrigiotta, T.E.; Mclellan, H.M.

    1998-01-01

    Field studies were conducted under an induced gradient in a trichloroethene (TCE)-contaminated aquifer at Picatinny Arsenal, NJ, to study (a) the rate-limited desorption of TCE from aquifer sediments to water and (b) the effect of a surfactant (Triton X-100) on the desorption and transport of TCE. Clean water was injected into the contaminated aquifer for 206 day. Triton X-100 was added for a 36-day period (days 36-71 from the start of clean water injection). The effect of Triton X-100 on the desorption and transport of TCE in the field was examined by observing the concentrations of these two solutes in four monitoring wells 3-9 m from the injection wells. These data show a small but discernible increase in the TCE concentration in two of the wells corresponding approximately to the time when surfactant reaches the wells; in the other two monitoring wells, the increase in TCE concentration is negligible. A solute transport model that assumes local sorption equilibrium and used a laboratory-derived distribution coefficient could not adequately describe TCE desorption and transport observed in the aquifer. Two model formulations that accounted for rate-limited sorption - two-site and multisite models - fit the data well. TCE concentrations after surfactant injection were underpredicted by the models unless mass transfer rate was increased to account for the effect of surfactant on the rate of TCE desorption. The concentration data from the two wells and the model analysis suggest that the rate of TCE desorption is increased (by approximately 30%) as a result of Triton X-100 injection.Field studies were conducted under an induced gradient in a trichloroethene (TCE)-contaminated aquifer at Picatinny Arsenal, NJ, to study (a) the rate-limited desorption of TCE from aquifer sediments to water and (b) the effect of a surfactant (Triton X-100) on the desorption and transport of TCE. Clean water was injected into the contaminated aquifer for 206 day. Triton X-100 was added

  4. Characteristics of permanganate oxidation of TCE at low reagent concentrations.

    PubMed

    Woo, N C; Hyun, S G; Park, W W; Lee, E S; Schwartz, F W

    2009-12-01

    A controlled-release technique using potassium permanganate (KMnO4) has been recently developed as a long-term and semi-passive remediation scheme for dilute groundwater plumes of chlorinated solvents such as trichloroethylene (TCE) and perchloroethylene. Batch experiments were performed to evaluate TCE removal efficiencies of a low concentration of permanganate (MnO4-) solution and to estimate the optimum dose of permanganate required to remove low levels of TCE from groundwater plumes without leaving intermediate organic forms. Experimental results indicated that when the molar ratio of [MnO4-]0/[TCE]0 was about 10, 95% of the TCE in the plume was removed within less than 90 min, and about 90% of the chloride in the organic forms was converted into inorganic ions, while the TCE removal rates and the chloride conversion rates were considerably lower when the [TCE]0/ [MnO4-]0 values were lower. These data suggested that the [MnO4-]0 and the [MnO4-]0/[TCE]0 values would have strong effects on the efficiency and completeness of TCE oxidation. Further detailed investigations of the effect of [MnO4-]0 and [MnO4-]0/[TCE]0 values on the removal efficiencies and completeness of the TCE oxidation are warranted for successful application of the controlled-release KMnO4 technique in practice.

  5. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater.

    PubMed

    Xie, Wenjing; Yuan, Songhu; Mao, Xuhui; Hu, Wei; Liao, Peng; Tong, Man; Alshawabkeh, Akram N

    2013-07-01

    A novel cathode, Pd loaded Ti/TiO2 nanotubes (Pd-Ti/TiO2NTs), is synthesized for the electrocatalytic reduction of trichloroethylene (TCE) in groundwater. Pd nanoparticles are successfully loaded on TiO2 nanotubes which grow on Ti plate via anodization. Using Pd-Ti/TiO2NTs as the cathode in an undivided electrolytic cell, TCE is efficiently and quantitatively transformed to ethane. Under conditions of 100 mA and pH 7, the removal efficiency of TCE (21 mg/L) is up to 91% within 120 min, following pseudo-first-order kinetics with the rate constant of 0.019 min(-1). Reduction rates increase from 0.007 to 0.019 min(-1) with increasing the current from 20 to 100 mA, slightly decrease in the presence of 10 mM chloride or bicarbonate, and decline with increasing the concentrations of sulfite or sulfide. O2 generated at the anode slightly influences TCE reduction. At low currents, TCE is mainly reduced by direct electron transfer on the Pd-Ti/TiO2NT cathode. However, the contribution of Pd-catalytic hydrodechlorination, an indirect reduction mechanism, becomes significant with increasing the current. Compared with other common cathodes, i.e., Ti-based mixed metal oxides, graphite and Pd/Ti, Pd-Ti/TiO2NTs cathode shows superior performance for TCE reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings.

    PubMed

    Weyens, Nele; Truyens, Sascha; Dupae, Joke; Newman, Lee; Taghavi, Safiyh; van der Lelie, Daniel; Carleer, Robert; Vangronsveld, Jaco

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l(-1) TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l(-1) TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.

    PubMed

    Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che

    2008-08-01

    Modeling of cometabolic kinetics is important for better understanding of degradation reaction and in situ application of bio-remediation. In this study, a model incorporated cell growth and decay, loss of transformation activity, competitive inhibition between growth substrate and non-growth substrate and self-inhibition of non-growth substrate was proposed to simulate the degradation kinetics of phenol and trichloroethylene (TCE) by Pseudomonas putida. All the intrinsic parameters employed in this study were measured independently, and were then used for predicting the batch experimental data. The model predictions conformed well to the observed data at different phenol and TCE concentrations. At low TCE concentrations (<2 mg l(-1)), the models with or without self-inhibition of non-growth substrate both simulated the experimental data well. However, at higher TCE concentrations (>6 mg l(-1)), only the model considering self-inhibition can describe the experimental data, suggesting that a self-inhibition of TCE was present in the system. The proposed model was also employed in predicting the experimental data conducted in a repeated batch reactor, and good agreements were observed between model predictions and experimental data. The results also indicated that the biomass loss in the degradation of TCE below 2 mg l(-1) can be totally recovered in the absence of TCE for the next cycle, and it could be used for the next batch experiment for the degradation of phenol and TCE. However, for higher concentration of TCE (>6 mg l(-1)), the recovery of biomass may not be as good as that at lower TCE concentrations.

  8. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

    PubMed

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

    2015-01-01

    Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    PubMed

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Biodegradation analyses of trichloroethylene (TCE) by bacteria and its use for biosensing of TCE.

    PubMed

    Chee, Gab-Joo

    2011-09-30

    Trichloroethylene (TCE) is a toxic, recalcitrant groundwater pollutant. TCE-degrading microorganisms were isolated from various environments. The aerobic bacteria isolated from toluene- and tryptophan-containing media were Pseudomonas sp. strain ASA86 and Burkholderia sp. strain TAM17, respectively; these are necessary for inducing TCE biodegradation in a selective medium. The half-degradation time of TCE to a concentration of 1mg/L was 18 h for strain ASA86 and 7 days for strain TAM17. While identifying toluene/TCE degradation genes, we found that in strain ASA86, the gene was the same as the todC1 gene product encoding toluene dioxygenase identified in Pseudomonas putida F1, and that in strain TAM17, the gene was similar to the tecA1 gene product encoding chlorobenzene dioxygenase identified in Burkholderia sp. PS12. A novel TCE biosensor was developed using strain ASA86 as the inducer of toluene under aerobic conditions. The TCE biosensor exhibited a linear relationship below 3 ppm TCE. Detection limit of the biosensor was 0.05 ppm TCE. The response time of the biosensor was less than 10 min. The biosensor response displayed a constant level during a 2 day period. The TCE biosensor displayed sufficient sensitivity for monitoring TCE in environmental systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. FRACTIONATION OF STABLE CARBON ISOTOPES DURING ABIOTIC TRANSFORMATION OF TCE

    EPA Science Inventory

    At a Superfund Site in Minnesota, ground water is contaminated with trichloroethylene (TCE) with the contaminant plume stretching over five miles long. The ground water is iron and manganese reducing, and the complete absence of dichloroethylene, vinyl chloride, and ethene in th...

  12. Monitoring TCE Degradation by In-situ Bioremediation in TCE-Contaminated site

    NASA Astrophysics Data System (ADS)

    Han, K.; Hong, U.; Ahn, G.; Jiang, H.; Yoo, H.; Park, S.; Kim, N.; Ahn, H.; Kwon, S.; Kim, Y.

    2012-12-01

    Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we investigated two different tests (i.e., biostimulation and bioaugmentation) of biological remediation through the Well-to-Well test (injection well to extraction well) in TCE-contaminated site. Also solutions (Electron donor & acceptor, tracer) were injected into the aquifer using a liquid coupled with nitrogen gas sparging. In biostimulation, we use 3 phases to monitoring biological remediation. Phase 1: we inject formate solution to get electron donor hydrogen (hydrogen can be generated from fermentation of formate). We also inject bromide as tracer. Phase 2: we made injection solution by formate, bromide and sulfate. The reason why we inject sulfate is that as a kind of electron accepter, sulfate reduction process is helpful to create anaerobic condition. Phase 3: we inject mixed solution made by formate, sulfate, fumarate, and bromide. The degradation of fumarate has the same mechanism and condition with TCE degradation, so we added fumarate to make sure that if the anaerobic TCE degradation by indigenous microorganisms started up (Because low TCE concentration by gas sparging). In the bioaugmentation test, we inject the Evanite culture (containing dehalococcoides spp) and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the field by measuring TCE and VC reductases.

  13. TCE TRANSPORT AND DEGRADATION IN SOIL USING ELECTROOSMOSIS

    EPA Science Inventory

    Laboratory experiments were used to characterize the transport and chemical transformation of TCE in undisturbed soil cores. Electroosmotic fluid flow was vertically downwards from anode to cathode. A voltage of 1.4 V/cm was applied to the soil for 4 weeks. More than 95% of the T...

  14. Transformation of carbon tetrachloride and chloroform by trichloroethene respiring anaerobic mixed cultures and supernatant.

    PubMed

    Vickstrom, Kyle E; Azizian, Mohammad F; Semprini, Lewis

    2017-09-01

    Carbon tetrachloride (CT) and chloroform (CF) were transformed in batch reactor experiments conducted with anaerobic dechlorinating cultures and supernatant (ADC + S) harvested from continuous flow reactors. The Evanite (EV) and Victoria/Stanford (VS) cultures, capable of respiring trichloroethene (TCE), 1,2-cis-dichloroethene (cDCE), and vinyl chloride (VC) to ethene (ETH), were grown in continuous flow reactors receiving an influent feed of saturated TCE (10 mM; 60 mEq) and formate (45 mM; 90 mEq) but no CT or CF. Cells and supernatant were harvested from the chemostats and inoculated into batch reactors at the onset of each experiment. CT transformation was complete following first order kinetics with CF, DCM and CS 2 as the measurable transformation products, representing 20-40% of the original mass of CT, with CO 2 likely the unknown transformation product. CF was transformed to DCM and likely CO 2 at an order of magnitude rate lower than CT, while DCM was not further transformed. An analytical first order model including multiple key reactions effectively simulated CT transformation, product formation and transformation, and provided reasonable estimates of transformation rate coefficients. Biotic and abiotic treatments indicated that CT was mainly transformed via abiotic processes. However, the presence of live cells was associated with the transformation of CF to DCM. In biotic tests both TCE and CT were simultaneously transformed, with TCE transformed to ETH and approximately 15-53% less CF formed via CT transformation. A 14-day exposure to CF (CF max  = 1.4 μM) reduced all rates of chlorinated ethene respiration by a factor of 10 or greater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. TCE treatment pasta-bilities.

    PubMed Central

    Holton, W C

    1999-01-01

    Monsanto's "Lasagna" process uses layers of treatment zones spaced between buried electrodes to remove trichloroethylene (TCE) from contaminated soil and groundwater. TCE is used primarily as a metal degreaser as well as in products such as dyes, printing ink, and paint. TCE can eventually make its way into the environment and is prevalent in the water and soil of industrialized nations. Although TCE breaks down in a few days when released into the atmosphere, it degrades much more slowly in soil, taking months or years. Moreover, it is often broken down by microbes into toxic substances such as vinylidene chloride (a suspected human carcinogen) and vinyl chloride (a known human carcinogen). The Lasagna process is based on the principle of electro-osmosis, in which an electric current draws water from low--permeability soils such as clays, silts, and fine sands. To remove TCE from contaminated soils, Monsanto scientists added layers of filtering media, which attack the contaminant as it is pulled from electrode to electrode. The technology has been tested at the Paducah Gaseous Diffusion Plant in western Kentucky, where it removed over 98% of TCE from contaminated soil. PMID:10464086

  16. Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.

    PubMed

    Brown, J R-M; Thompson, I P; Paton, G I; Singer, A C

    2009-12-01

    To examine plant terpenoids as inducers of TCE (trichloroethylene) biotransformation by an indigenous microbial community originating from a plume of TCE-contaminated groundwater. One-litre microcosms of groundwater were spiked with 100 micromol 1(-1) of TCE and amended weekly for 16 weeks with 20 microl 1(-1) of the following plant monoterpenes: linalool, pulegone, R-(+) carvone, S-(-) carvone, farnesol, cumene. Yeast extract-amended and unamended control treatments were also prepared. The addition of R-carvone and S-carvone, linalool and cumene resulted in the biotransformation of upwards of 88% of the TCE, significantly more than the unamendment control (61%). The aforementioned group of terpenes also significantly (P < 0.05) allowed more TCE to be degraded than the remaining two terpenes (farnesol and pulegone), and the yeast extract treatment which biotransformed 74-75% of the TCE. The microbial community profile was monitored by denaturing gradient gel electrophoresis and demonstrated much greater similarities between the microbial communities in terpene-amended treatments than in the yeast extract or unamended controls. TCE biotransformation can be significantly enhanced through the addition of selected plant terpenoids. Plant terpenoid and nutrient supplementation to groundwater might provide an environmentally benign means of enhancing the rate of in situ TCE bioremediation.

  17. HORIZONTAL LASAGNA TO BIOREMEDIATE TCE

    EPA Science Inventory

    Removal of TCE from these tight clay soils has been technically difficult and expensive. However, the LASAGNATM technique allows movement of the TCE into treatment zones for biodegradation or dechlorination in place, lessening the costs and exposure to TCE. Electroosmosis was c...

  18. Removal of trichloroethylene (TCE) contaminated soil using a two-stage anaerobic-aerobic composting technique.

    PubMed

    Ponza, Supat; Parkpian, Preeda; Polprasert, Chongrak; Shrestha, Rajendra P; Jugsujinda, Aroon

    2010-01-01

    The effect of organic carbon addition on remediation of trichloroethylene (TCE) contaminated clay soil was investigated using a two stage anaerobic-aerobic composting system. TCE removal rate and processes involved were determined. Uncontaminated clay soil was treated with composting materials (dried cow manure, rice husk and cane molasses) to represent carbon based treatments (5%, 10% and 20% OC). All treatments were spiked with TCE at 1,000 mg TCE/kg DW and incubated under anaerobic and mesophillic condition (35 degrees C) for 8 weeks followed by continuous aerobic condition for another 6 weeks. TCE dissipation, its metabolites and biogas composition were measured throughout the experimental period. Results show that TCE degradation depended upon the amount of organic carbon (OC) contained within the composting treatments/matrices. The highest TCE removal percentage (97%) and rate (75.06 micro Mole/kg DW/day) were obtained from a treatment of 10% OC composting matrices as compared to 87% and 27.75 micro Mole/kg DW/day for 20% OC, and 83% and 38.08 micro Mole/kg DW/day for soil control treatment. TCE removal rate was first order reaction kinetics. Highest degradation rate constant (k(1) = 0.035 day(- 1)) was also obtained from the 10% OC treatment, followed by 20% OC (k(1) = 0.026 day(- 1)) and 5% OC or soil control treatment (k(1) = 0.023 day(- 1)). The half-life was 20, 27 and 30 days, respectively. The overall results suggest that sequential two stages anaerobic-aerobic composting technique has potential for remediation of TCE in heavy texture soil, providing that easily biodegradable source of organic carbon is present.

  19. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.

    PubMed

    Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che; Hsieh, Feng-Ming

    2007-09-30

    The degradability of phenol and trichloroethene (TCE) by Pseudomonas putida BCRC 14349 in both suspended culture and immobilized culture systems are investigated. Chitosan beads at a size of about 1-2mm were employed to encapsulate the P. putida cells, becoming an immobilized culture system. The phenol concentration was controlled at 100 mg/L, and that of TCE was studied from 0.2 to 20 mg/L. The pH, between 6.7 and 10, did not affect the degradation of either phenol or TCE in the suspended culture system. However, it was found to be an important factor in the immobilized culture system in which the only significant degradation was observed at pH >8. This may be linked to the surface properties of the chitosan beads and its influence on the activity of the bacteria. The transfer yield of TCE on a phenol basis was almost the same for the suspended and immobilized cultures (0.032 mg TCE/mg phenol), except that these yields occurred at different TCE concentrations. The transfer yield at a higher TCE concentration for the immobilized system suggested that the cells immobilized in carriers can be protected from harsh environmental conditions. For kinetic rate interpretation, the Monod equation was employed to describe the degradation rates of phenol, while the Haldane's equation was used for TCE degradation. Based on the kinetic parameters obtained from the two equations, the rate for the immobilized culture systems was only about 1/6 to that of the suspended culture system for phenol degradation, and was about 1/2 for TCE degradation. The slower kinetics observed for the immobilized culture systems was probably due to the slow diffusion of substrate molecules into the beads. However, compared with the suspended cultures, the immobilized cultures may tolerate a higher TCE concentration as much less inhibition was observed and the transfer yield occurred at a higher TCE concentration.

  20. Factors Influencing TCE Anaerobic Dechlorination Investigated via Simulations of Microcosm Experiments

    NASA Astrophysics Data System (ADS)

    Mao, X.; Harkness, M.; Lee, M. D.; Mack, E. E.; Dworatzek, S.; Acheson, C.; McCarty, P.; Barry, D. A.; Gerhard, J. I.

    2006-12-01

    SABRE (Source Area BioREmediation) is a public-private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research project is a field site in the United Kingdom containing a TCE DNAPL source area. In preparation, a microcosm study was performed to determine the optimal combination of factors to support reductive dechlorination of TCE in site soil and groundwater. The study consisted of 168 bottles distributed between four laboratories (Dupont, GE, SiREM, and Terra Systems) and tested the impact of six carbon substrates (lactate, acetate, methanol, SRS (soybean oil), hexanol, butyl acetate), bioaugmentation with KB-1 bacterial culture, three TCE levels (100 mg/L, 400 mg/L, and 800 mg/L) and two sulphate levels (200 mg/L, >500 mg/L) on TCE dechlorination. This research presents a numerical model designed to simulate the main processes occurring in the microcosms, including substrate fermentation, sequential dechlorination, toxic inhibition, and the influence of sulphate concentration. In calibrating the model to over 60 of the microcosm experiments, lumped parameters were employed to quantify the effect of key factors on the conversion rate of each chlorinated ethene in the TCE degradation sequence. Results quantify the benefit (i.e., increased stepwise dechlorination rate) due to both bioaugmentation and the presence of higher sulphate concentrations. Competitive inhibition is found to increase in significance as TCE concentrations increase; however, inclusion of Haldane inhibition is not supported. Over a wide range of experimental conditions and dechlorination steps, SRS appears to induce relatively little hydrogen limitation, thereby facilitating relatively quick conversion of TCE to ethene. In general, hydrogen limitation is found to increase with increasing TCE concentration and with bioaugmentation, and

  1. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination.

    PubMed

    Weyens, Nele; Beckers, Bram; Schellingen, Kerim; Ceulemans, Reinhart; van der Lelie, Daniel; Newman, Lee; Taghavi, Safiyh; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    To examine the potential of Pseudomonas putida W619-TCE to improve phytoremediation of Ni-TCE co-contamination, the effects of inoculation of a Ni-resistant, TCE-degrading root endophyte on Ni-TCE phytotoxicity, Ni uptake and trichloroethylene (TCE) degradation of Ni-TCE-exposed poplar cuttings are evaluated. After inoculation with P. putida W619-TCE, root weight of non-exposed poplar cuttings significantly increased. Further, inoculation induced a mitigation of the Ni-TCE phytotoxicity, which was illustrated by a diminished exposure-induced increase in activity of antioxidative enzymes. Considering phytoremediation efficiency, inoculation with P. putida W619-TCE resulted in a 45% increased Ni uptake in roots as well as a slightly significant reduction in TCE concentration in leaves and TCE evapotranspiration to the atmosphere. These results indicate that endophytes equipped with the appropriate characteristics can assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation. Furthermore, as poplar is an excellent plant for biomass production as well as for phytoremediation, the obtained results can be exploited to produce biomass for energy and industrial feedstock applications in a highly productive manner on contaminated land that is not suited for normal agriculture. Exploiting this land for biomass production could contribute to diminish the conflict between food and bioenergy production.

  2. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  3. Fate and Transport of TCE Solvents Through Saturated Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Carmona, M.; Anaya, A. A.

    2014-12-01

    Dense Nonaqueous-Phase Liquids (DNAPLs) are a group of organic compounds that have been a serious problem for groundwater pollution in karst. The industrial production and utilization of these chemicals spread since 1940, and are present at tens of thousands of contaminated sites worldwide. The physic-chemical properties of DNAPLs in conjunction with the hydraulic properties of the karst systems create the perfect condition for DNAPLs to penetrate the epikarst, reach the groundwater, and more within the karst system to zones of potential exposure, such as wells, streams and wetlands. Trichloroethylene (TCE) is the most common DNPAL found in the subsurface environment. This research studies the fate and transport of TCE DNAPL in a karstified limestone physical model (KLPM). Experiments are carried out in KLPM. The KLPM is an enclosed stainless steel tank packed with a rectangular limestone block (15cm x 15cm x 76cm) that simulates a saturated confine karst aquifer. DNAPL experiment involve the injection of 40 ml of pure TCE into steady groundwater flow at the upstream boundary of the KLPM model, while sampling spatially and temporally along the block. Samples are analyzed for TCE on the pure and dissolved phase. Pure TCE is analyzed volumetrically and dissolved phase concentrations are analyze using a High Performance Liquid Chromatography (HPLC). TCE data is used to construct temporal distributions curves (TDCs) at different spatial locations. Results show that pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port and along preferential flow paths. TCE concentration TDCs show spatial variations related to the limestone block heterogeneously. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response and long tailing of TCE of TCE concentration are associated with diffusive transport in rock matrix and mass transport rates limitations. Bimodal distributions are

  4. Characterization of TCE DNAPL and Dissolved Phase Transport in Karst Media

    NASA Astrophysics Data System (ADS)

    Carmona, M.; Padilla, I. Y.

    2015-12-01

    Trichloroethylene (TCE) contaminated sites are a threat to the environment and human health. Of particular concerns is the contamination of karst groundwater systems (KGWSs). Their heterogeneous character, rapid flow through conduits, high permeability zones, and strong storage capacity in the rock porous-matrix pose a high risk of exposure over large areas and temporal scales. To achieve effective remedial actions for TCE removal, it is important to understand and quantify the fate and transport process of trichloroethylene in these systems. This research studies the fate, transport, and distribution of TCE Non-Aqueous Phase Liquids (NAPLs) and associated dissolved species in KGWSs. Experiments are conducted in a karstified limestone physical model, a limestone rock mimicking a saturated confined karst aquifer. After injecting TCE solvent into a steady groundwater flow field, samples are taken spatially and temporally and analyzed for TCE NAPL and dissolved phases. Data analysis shows the rapid detection of TCE NAPL and high aqueous concentrations along preferential pathway, even at distances far away from the injection point. Temporal distribution curves exhibit spatial variations related to the limestone rock heterogeneity. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response with long tailing indicates rate-limited diffusive transport in the rock matrix. Overall, results indicate that karstified limestone has a high capacity to rapidly transport pure and dissolved TCE along preferential flow paths, and to store and slowly release TCE over long periods of time.

  5. Quantitative and functional dynamics of Dehalococcoides spp. and its tceA and vcrA genes under TCE exposure.

    PubMed

    Doğan-Subaşi, Eylem; Bastiaens, Leen; Leys, Natalie; Boon, Nico; Dejonghe, Winnie

    2014-07-01

    This study aimed at monitoring the dynamics of phylogenetic and catabolic genes of a dechlorinating enrichment culture before, during, and after complete dechlorination of chlorinated compounds. More specifically, the effect of 40 μM trichloroethene (TCE) and 5.6 mM lactate on the gene abundance and activity of an enrichment culture was investigated for 40 days. Although tceA and vcrA gene copy numbers were relatively stable in DNA extracts over time, tceA and vcrA mRNA abundances were upregulated from undetectable levels to 2.96 × and 6.33 × 10⁴ transcripts/mL, respectively, only after exposure to TCE and lactate. While tceA gene transcripts decreased over time with TCE dechlorination, the vcrA gene was expressed steadily even when the concentration of vinyl chloride was at undetectable levels. In addition, ratios between catabolic and phylogenetic genes indicated that tceA and vcrA gene carrying organisms dechlorinated TCE and its produced daughter products, while vcrA gene was mainly responsible for the dechlorination of the lower VC concentrations in a later stage of degradation.

  6. HORIZONTAL LASAGNA^TM TO BIOREMEDIATE TCE

    EPA Science Inventory

    Removal of TCE from these tight clay soils has been technically difficult and expensive. However, the LASAGNA technique allows movement of the TCE into treatment zones for biodegradation or dechlorination in place, lessening the costs and exposure to TCE.

    Electroosmosis wa...

  7. Effects of 1,1,1-Trichloroethane and Triclocarban on Reductive Dechlorination of Trichloroethene in a TCE-Reducing Culture

    PubMed Central

    Wen, Li-Lian; Chen, Jia-Xian; Fang, Jia-Yi; Li, Ang; Zhao, He-Ping

    2017-01-01

    Chlorinated compounds were generally present in the environment due to widespread use in the industry. A short-term study was performed to evaluate the effects of 1,1,1- trichloroethane (TCA) and triclocarban (TCC) on trichloroethene (TCE) removal in a reactor fed with lactate as the sole electron donor. Both TCA and TCC inhibited TCE reduction, but the TCC had a more pronounced effect compared to TCA. The TCE-reducing culture, which had never been exposed to TCA before, reductively dechlorinated TCA to 1,1-dichloroethane (DCA). Below 15 μM, TCA had little effect on the transformation of TCE to cis-dichloroethene (DCE); however, the reduction of cis-DCE and vinyl chloride (VC) were more sensitive to TCA, and ethene production was completely inhibited when the concentration of TCA was above 15 μM. In cultures amended with TCC, the reduction of TCE was severely affected, even at concentrations as low as 0.3 μM; all the cultures stalled at VC, and no ethene was detected. The cultures that fully transformed TCE to ethene contained 5.2–8.1% Dehalococcoides. Geobacter and Desulfovibrio, the bacteria capable of partially reducing TCE to DCE, were detected in all cultures, but both represented a larger proportion of the community in TCC-amended cultures. All cultures were dominated by Clostridium_sensu_stricto_7, a genus that belongs to Firmicutes with proportions ranging from 40.9% (in a high TCC (15 μM) culture) to 88.2%. Methanobacteria was detected at levels of 1.1–12.7%, except in cultures added with 15 and 30 μM TCA, in which they only accounted for ∼0.4%. This study implies further environmental factors needed to be considered in the successful bioremediation of TCE in contaminated sites. PMID:28824572

  8. Effects of 1,1,1-Trichloroethane and Triclocarban on Reductive Dechlorination of Trichloroethene in a TCE-Reducing Culture.

    PubMed

    Wen, Li-Lian; Chen, Jia-Xian; Fang, Jia-Yi; Li, Ang; Zhao, He-Ping

    2017-01-01

    Chlorinated compounds were generally present in the environment due to widespread use in the industry. A short-term study was performed to evaluate the effects of 1,1,1- trichloroethane (TCA) and triclocarban (TCC) on trichloroethene (TCE) removal in a reactor fed with lactate as the sole electron donor. Both TCA and TCC inhibited TCE reduction, but the TCC had a more pronounced effect compared to TCA. The TCE-reducing culture, which had never been exposed to TCA before, reductively dechlorinated TCA to 1,1-dichloroethane (DCA). Below 15 μM, TCA had little effect on the transformation of TCE to cis -dichloroethene (DCE); however, the reduction of cis -DCE and vinyl chloride (VC) were more sensitive to TCA, and ethene production was completely inhibited when the concentration of TCA was above 15 μM. In cultures amended with TCC, the reduction of TCE was severely affected, even at concentrations as low as 0.3 μM; all the cultures stalled at VC, and no ethene was detected. The cultures that fully transformed TCE to ethene contained 5.2-8.1% Dehalococcoides . Geobacter and Desulfovibrio , the bacteria capable of partially reducing TCE to DCE, were detected in all cultures, but both represented a larger proportion of the community in TCC-amended cultures. All cultures were dominated by Clostridium _sensu_stricto_7, a genus that belongs to Firmicutes with proportions ranging from 40.9% (in a high TCC (15 μM) culture) to 88.2%. Methanobacteria was detected at levels of 1.1-12.7%, except in cultures added with 15 and 30 μM TCA, in which they only accounted for ∼0.4%. This study implies further environmental factors needed to be considered in the successful bioremediation of TCE in contaminated sites.

  9. Comparison of PCE and TCE disappearance in heated volatile organic analysis vials and flame-sealed ampules.

    PubMed

    Costanza, Jed; Pennell, Kurt D

    2008-02-01

    The rates of hydrolysis reported for tetrachloroethylene (PCE) and trichloroethylene (TCE) at elevated temperatures range over two orders-of-magnitude, where some of the variability may be due to the presence of a gas phase. Recent studies suggest that volatile organic analysis (VOA) vials provide a low-cost and readily available zero headspace system for measuring aqueous-phase hydrolysis rates. This work involved measuring rates of PCE and TCE disappearance and the corresponding appearance of dechlorination products in water-filled VOA vials and flame-sealed ampules incubated at 21 and 55 degrees C for up to 95.5 days. While PCE and TCE concentrations readily decreased in the VOA vials to yield first-order half lives of 11.2 days for PCE and 21.1 days for TCE at 55 degrees C, concentrations of anticipated dechlorination products, including chloride, remained constant or were not detected. The rate of PCE disappearance was 34 times faster in VOA vials at 55 degrees C compared to values obtained with flame-sealed ampules containing PCE-contaminated water. In addition, the concentration of TCE increased slightly in flame-sealed ampules incubated at 55 degrees C, while a decrease in TCE levels was observed in the VOA vials. The observed losses of PCE and TCE in the VOA vials were attributed to diffusion and sorption in the septa, rather than to dechlorination. These findings demonstrate that VOA vials are not suitable for measuring rates of volatile organic compound hydrolysis at elevated temperatures.

  10. Trichloroethene (TCE) hydrodechlorination by NiFe nanoparticles: Influence of aqueous anions on catalytic pathways.

    PubMed

    Han, Yanlai; Liu, Changjie; Horita, Juske; Yan, Weile

    2018-08-01

    Amending bulk and nanoscale zero-valent iron (ZVI) with catalytic metals significantly accelerates hydrodechlorination of groundwater contaminants such as trichloroethene (TCE). The bimetallic design benefits from a strong synergy between Ni and Fe in facilitating the production of active hydrogen for TCE reduction, and it is of research and practical interest to understand the impacts of common groundwater solutes on catalyst and ZVI functionality. In this study, TCE hydrodechlorination reaction was conducted using fresh NiFe bimetallic nanoparticles (NiFe BNPs) and those aged in chloride, sulfate, phosphate, and humic acid solutions with concurrent analysis of carbon fractionation of TCE and its daughter products. The apparent kinetics suggest that the reactivity of NiFe BNPs is relatively stable in pure water and chloride or humic acid solutions, in contrast to significant deactivation observed of PdFe bimetallic particles in similar media. Exposure to phosphate at greater than 0.1 mM led to a severe decrease in TCE reaction rate. The change in kinetic regimes from first to zeroth order with increasing phosphate concentration is consistent with consumption of reactive sites by phosphate. Despite severe kinetic effect, there is no significant shift in TCE 13 C bulk enrichment factor between the fresh and the phosphate-aged particles. Instead, pronounced retardation of TCE reaction by NiFe BNPs in deuterated water (D 2 O) points to the importance of hydrogen spillover in controlling TCE reduction rate by NiFe BNPs, and such process can be strongly affected by groundwater chemistry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Enhanced Fenton-like degradation of TCE in sand suspensions with magnetite by NTA/EDTA at circumneutral pH.

    PubMed

    Wang, Na; Jia, Daqing; Jin, Yaoyao; Sun, Sheng-Peng; Ke, Qiang

    2017-07-01

    The present study investigated the degradation of trichloroethylene (TCE) in sand suspensions by Fenton-like reaction with magnetite (Fe 3 O 4 ) in the presence of various chelators at circumneutral pH. The results showed that ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) greatly improved the rate of TCE degradation, while [S,S]-ethylenediaminedisuccinic acid (s,s-EDDS), malonate, citrate, and phytic acid (IP6) have minimal effects on TCE degradation. Quenching tests suggested that TCE was mainly degraded by hydroxyl radical (HO · ) attack, with about 90% inhibition on TCE degradation by the addition of HO · scavenger 2-propanol. The presence of 0.1-0.5% Fe 3 O 4 /sand (w/w) contributed to 40% increase in TCE degradation rates. In particular, the use of chelators can avoid high concentrations of H 2 O 2 required for the Fenton-like reaction with Fe 3 O 4 , and moreover improve the stoichiometric efficiencies of TCE degradation to H 2 O 2 consumption. The suitable concentrations of chelators (EDTA and NTA) and H 2 O 2 were suggested to be 0.5 and 20 mM, respectively. Under the given conditions, degradation rate constants of TCE were obtained at 0.360 h -1 with EDTA and 0.526 h -1 with NTA, respectively. Enhanced degradation of TCE and decreased usage of H 2 O 2 in this investigation suggested that Fenton-like reaction of Fe 3 O 4 together with NTA (or EDTA) may be a promising process for remediation of TCE-contaminated groundwater.

  12. Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE.

    PubMed

    Weyens, Nele; Taghavi, Safiyh; Barac, Tanja; van der Lelie, Daniel; Boulet, Jana; Artois, Tom; Carleer, Robert; Vangronsveld, Jaco

    2009-11-01

    Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. In this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation. Cultivable bacteria isolated from bulk soil, rhizosphere, root, stem, and leaf were genotypically characterized by amplified rDNA restriction analysis (ARDRA) of their 16S rRNA gene and identified by 16S rRNA gene sequencing. Bacteria that displayed distinct ARDRA patterns were screened for heavy metal resistance, as well as TCE tolerance and degradation, as preparation for possible future in situ inoculation experiments. Furthermore, in situ evapotranspiration measurements were performed to investigate if the degradation capacity of the associated bacteria is enough to prevent TCE evapotranspiration to the air. Between both tree species, the associated populations of cultivable bacteria clearly differed in composition. In English Oak, more species-specific, most likely obligate endophytes were found. The majority of the isolated bacteria showed increased tolerance to TCE, and TCE degradation capacity was observed in some of the strains. However, in situ evapotranspiration measurements revealed that a significant amount of TCE and its metabolites

  13. Bacteria associated with oak and ash on a TCE-contaminated site: Characterization of isolates with potential to avoid evapotranspiration of TCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weyens, N.; van der Lelie, D.; Taghavi, S.

    2009-11-01

    Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. Inmore » this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation. Cultivable bacteria isolated from bulk soil, rhizosphere, root, stem, and leaf were genotypically characterized by amplified rDNA restriction analysis (ARDRA) of their 16S rRNA gene and identified by 16S rRNA gene sequencing. Bacteria that displayed distinct ARDRA patterns were screened for heavy metal resistance, as well as TCE tolerance and degradation, as preparation for possible future in situ inoculation experiments. Furthermore, in situ evapotranspiration measurements were performed to investigate if the degradation capacity of the associated bacteria is enough to prevent TCE evapotranspiration to the air. Between both tree species, the associated populations of cultivable bacteria clearly differed in composition. In English Oak, more species-specific, most likely obligate endophytes were found. The majority of the isolated bacteria showed increased tolerance to TCE, and TCE degradation capacity was observed in some of the strains. However, in situ evapotranspiration measurements revealed that a significant amount of TCE and its

  14. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures.

    PubMed

    Sekar, Ramanan; Taillefert, Martial; DiChristina, Thomas J

    2016-11-01

    Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants. Additional targets for

  15. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures

    PubMed Central

    Sekar, Ramanan; Taillefert, Martial

    2016-01-01

    ABSTRACT Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. IMPORTANCE A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants

  16. Acetylene Fuels TCE Reductive Dechlorination by Defined Dehalococcoides/Pelobacter Consortia.

    PubMed

    Mao, Xinwei; Oremland, Ronald S; Liu, Tong; Gushgari, Sara; Landers, Abigail A; Baesman, Shaun M; Alvarez-Cohen, Lisa

    2017-02-21

    Acetylene (C 2 H 2 ) can be generated in contaminated groundwater sites as a consequence of chemical degradation of trichloroethene (TCE) by in situ minerals, and C 2 H 2 is known to inhibit bacterial dechlorination. In this study, we show that while high C 2 H 2 (1.3 mM) concentrations reversibly inhibit reductive dechlorination of TCE by Dehalococcoides mccartyi isolates as well as enrichment cultures containing D. mccartyi sp., low C 2 H 2 (0.4 mM) concentrations do not inhibit growth or metabolism of D. mccartyi. Cocultures of Pelobacter SFB93, a C 2 H 2 -fermenting bacterium, with D. mccartyi strain 195 or with D. mccartyi strain BAV1 were actively sustained by providing acetylene as the electron donor and carbon source while TCE or cis-DCE served as the electron acceptor. Inhibition by acetylene of reductive dechlorination and methanogenesis in the enrichment culture ANAS was observed, and the inhibition was removed by adding Pelobacter SFB93 into the consortium. Transcriptomic analysis of D. mccartyi strain 195 showed genes encoding for reductive dehalogenases (e.g., tceA) were not affected during the C 2 H 2 -inhibition, while genes encoding for ATP synthase, biosynthesis, and Hym hydrogenase were down-regulated during C 2 H 2 inhibition, consistent with the physiological observation of lower cell yields and reduced dechlorination rates in strain 195. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C 2 H 2 .

  17. Acetylene fuels TCE reductive dechlorination by defined Dehalococcoides/Pelobacter consortia

    USGS Publications Warehouse

    Mao, Xinwei; Oremland, Ronald S.; Liu, Tong; Landers, Abigail A; Baesman, Shaun; Alvarez-Cohen, Lisa

    2017-01-01

    Acetylene (C2H2) can be generated in contaminated groundwater sites as a consequence of chemical degradation of trichloroethene (TCE) by in situ minerals, and C2H2 is known to inhibit bacterial dechlorination. In this study, we show that while high C2H2 (1.3 mM) concentrations reversibly inhibit reductive dechlorination of TCE by Dehalococcoides mccartyi isolates as well as enrichment cultures containing D. mccartyi sp., low C2H2 (0.4 mM) concentrations do not inhibit growth or metabolism of D. mccartyi. Cocultures of Pelobacter SFB93, a C2H2-fermenting bacterium, with D. mccartyi strain 195 or with D. mccartyi strain BAV1 were actively sustained by providing acetylene as the electron donor and carbon source while TCE or cis-DCE served as the electron acceptor. Inhibition by acetylene of reductive dechlorination and methanogenesis in the enrichment culture ANAS was observed, and the inhibition was removed by adding Pelobacter SFB93 into the consortium. Transcriptomic analysis of D. mccartyi strain 195 showed genes encoding for reductive dehalogenases (e.g., tceA) were not affected during the C2H2-inhibition, while genes encoding for ATP synthase, biosynthesis, and Hym hydrogenase were down-regulated during C2H2 inhibition, consistent with the physiological observation of lower cell yields and reduced dechlorination rates in strain 195. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C2H2.

  18. Effect of trichloroethylene enhancement on deposition rate of low-temperature silicon oxide films by silicone oil and ozone

    NASA Astrophysics Data System (ADS)

    Horita, Susumu; Jain, Puneet

    2017-08-01

    A low-temperature silcon oxide film was deposited at 160 to 220 °C using an atmospheric pressure CVD system with silicone oil vapor and ozone gases. It was found that the deposition rate is markedly increased by adding trichloroethylene (TCE) vapor, which is generated by bubbling TCE solution with N2 gas flow. The increase is more than 3 times that observed without TCE, and any contamination due to TCE is hardly observed in the deposited Si oxide films from Fourier transform infrared spectra.

  19. RATE OF TCE DEGRADATION IN A PLANT MULCH PASSIVE REACTIVE BARRIER (BIOWALL)

    EPA Science Inventory

    A passive reactive barrier was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contaminated groun...

  20. Insights into dechlorination of PCE and TCE from carbon isotope fractionation by vitamin B12

    NASA Astrophysics Data System (ADS)

    Slater, G.; Sherwood Lollar, B.; Lesage, S.; Brown, S.

    2003-04-01

    Reductive dechlorination of perchloroethylene (PCE) and trichloroethylene (TCE) by vitamin B12 is both a potential remediation technique and an analogue of the microbial reductive dechlorination reaction. Stable carbon isotopic analysis, an effective and powerful tool for the investigation and monitoring of contaminant remediation, was used to characterize the isotopic effects of reductive dechlorination of PCE and TCE by vitamin B12 in laboratory microcosms. 10 mg/L vitamin B12 degraded greater than 90% of an initial concentration of PCE of 20 mg/L. TCE, the primary product of PCE degradation, accounted for between 64 - 72% of the PCE degraded. In experiments with TCE, 147 mg/L vitamin B12 degraded greater than 90% of an initial concentration of TCE of 20 mg/L. Cis-dichloroethene (cDCE), the primary product of TCE degradation, accounted for between 30 - 35% of the TCE degraded. Degradation of both PCE and TCE exhibited first order kinetics. Strong isotopic fractionation of the reactant PCE and of the reactant TCE was observed over the course of degradation. This fractionation could be described by a Rayleigh model with enrichment factors between -16.5 ppm and -15.8 ppm for PCE, and -17.2 ppm and -16.6 ppm for TCE. Fractionation was similar in all four experiments, with a mean enrichment factor of -16.5 +/- 0.6 ppm. These large enrichment factors indicate that isotopic analysis can be used to assess the occurrence of dechlorination of PCE and TCE by vitamin B12 in remediation situations. Significantly, the Rayleigh model could be used to predict the isotopic compositions of the major products of the reaction as well as the reactant, notwithstanding the lack of complete mass balance observed between product and reactant. This evidence suggests that isotopic fractionation is taking place during complexation of the chlorinated ethenes to vitamin B12, as has been suggested for reductive dechlorination by zero valent iron. The differences between e for this reaction and

  1. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    PubMed

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. REMEDIATION OF SITES CONTAMINATED WITH TCE

    EPA Science Inventory

    Widespread use of trichloroethylene (TCE) in the U.S. has resulted in its frequent detection in soil and groundwater. TCE can become a health hazard after being processed in the human liver; or reductive dehalogenation in the environment may result in production of vinyl chloride...

  3. Abiotic and Biotic Transformation of TCE under Sulfate Reducing Conditions: the Role of Spatial Heterogeneity

    EPA Science Inventory

    At a number of sites in the USA, passive reactive barriers built with shredded plant mulch have been constructed to treat ground water contaminated with TCE. These barriers are called biowalls because anaerobic biodegradation of the plant mulch is expected to provide substrates...

  4. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination--a proof of concept study.

    PubMed

    Liang, Chenju; Lee, I-Ling

    2008-09-10

    In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.

  5. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media.

    PubMed

    Peng, Sheng; Wang, Ning; Chen, Jiajun

    2013-10-01

    Steam and air co-injection is a promising technique for volatile and semi-volatile organic contaminant remediation in heterogeneous porous media. In this study, removal of trichloroethene (TCE) with steam-air co-injection was investigated through a series of 2D sandbox experiments with different layered sand structures, and through numerical simulations. The results show that a layered structure with coarse sand, in which steam and air convection are relatively rapid, resulted in a higher removal rate and a larger removal ratio than those observed in an experiment using finer sand; however, the difference was not significant, and the removal ratios from three experiments ranged from 85% to 94%. Slight downward movement of TCE was observed for Experiment 1 (TCE initially in a fine sand zone encased in a coarse sand), while no such movement was observed for Experiment 2 (TCE initially in two fine sand layers encased in a coarse sand) or 3 (TCE initially in a silty sand zone encased in a coarse sand). Simulations show accumulation of TCE at the interface of the layered sands, which indicates a capillary barrier effect in restraining the downward movement of TCE. This effect is illustrated further by a numerical experiment with homogeneous coarse sand, in which continuous downward TCE movement to the bottom of the sandbox was simulated. Another numerical experiment with higher water saturation was also conducted. The results illustrate a complicated influence of water saturation on TCE removal in a layered sand structure. Published by Elsevier B.V.

  6. Transpiration and metabolisation of TCE by willow plants - a pot experiment.

    PubMed

    Schöftner, Philipp; Watzinger, Andrea; Holzknecht, Philipp; Wimmer, Bernhard; Reichenauer, Thomas G

    2016-01-01

    Willows were grown in glass cylinders filled with compost above water-saturated quartz sand, to trace the fate of TCE in water and plant biomass. The experiment was repeated once with the same plants in two consecutive years. TCE was added in nominal concentrations of 0, 144, 288, and 721 mg l(-1). Unplanted cylinders were set-up and spiked with nominal concentrations of 721 mg l(-1) TCE in the second year. Additionally, (13)C-enriched TCE solution (δ(13)C = 110.3 ‰) was used. Periodically, TCE content and metabolites were analyzed in water and plant biomass. The presence of TCE-degrading microorganisms was monitored via the measurement of the isotopic ratio of carbon ((13)C/(12)C) in TCE, and the abundance of (13)C-labeled microbial PLFAs (phospholipid fatty acids). More than 98% of TCE was lost via evapotranspiration from the planted pots within one month after adding TCE. Transpiration accounted to 94 to 78% of the total evapotranspiration loss. Almost 1% of TCE was metabolized in the shoots, whereby trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were dominant metabolites; less trichloroethanol (TCOH) and TCE accumulated in plant tissues. Microbial degradation was ruled out by δ(13)C measurements of water and PLFAs. TCE had no detected influence on plant stress status as determined by chlorophyll-fluorescence and gas exchange.

  7. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.

    PubMed

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Enhanced Degradation of TCE on a Superfund Site Using Endophyte-Assisted Poplar Tree Phytoremediation.

    PubMed

    Doty, Sharon L; Freeman, John L; Cohu, Christopher M; Burken, Joel G; Firrincieli, Andrea; Simon, Andrew; Khan, Zareen; Isebrands, J G; Lukas, Joseph; Blaylock, Michael J

    2017-09-05

    Trichloroethylene (TCE) is a widespread environmental pollutant common in groundwater plumes associated with industrial manufacturing areas. We had previously isolated and characterized a natural bacterial endophyte, Enterobacter sp. strain PDN3, of poplar trees, that rapidly metabolizes TCE, releasing chloride ion. We now report findings from a successful three-year field trial of endophyte-assisted phytoremediation on the Middlefield-Ellis-Whisman Superfund Study Area TCE plume in the Silicon Valley of California. The inoculated poplar trees exhibited increased growth and reduced TCE phytotoxic effects with a 32% increase in trunk diameter compared to mock-inoculated control poplar trees. The inoculated trees excreted 50% more chloride ion into the rhizosphere, indicative of increased TCE metabolism in planta. Data from tree core analysis of the tree tissues provided further supporting evidence of the enhanced rate of degradation of the chlorinated solvents in the inoculated trees. Test well groundwater analyses demonstrated a marked decrease in concentration of TCE and its derivatives from the tree-associated groundwater plume. The concentration of TCE decreased from 300 μg/L upstream of the planted area to less than 5 μg/L downstream of the planted area. TCE derivatives were similarly removed with cis-1,2-dichloroethene decreasing from 160 μg/L to less than 5 μg/L and trans-1,2-dichloroethene decreasing from 3.1 μg/L to less than 0.5 μg/L downstream of the planted trees. 1,1-dichloroethene and vinyl chloride both decreased from 6.8 and 0.77 μg/L, respectively, to below the reporting limit of 0.5 μg/L providing strong evidence of the ability of the endophytic inoculated trees to effectively remove TCE from affected groundwater. The combination of native pollutant-degrading endophytic bacteria and fast-growing poplar tree systems offers a readily deployable, cost-effective approach for the degradation of TCE, and may help mitigate potential transfer up

  9. Remediation of TCE-contaminated groundwater using nanocatalyst and bacteria.

    PubMed

    Kang, Ser Ku; Seo, Hyunhee; Sun, Eunyoung; Kim, Inseon; Roh, Yul

    2011-08-01

    The objective of this study was to develop and evaluate the remediation of trichloroethene (TCE)-contaminated groundwater using both a nanocatalyst (bio-Zn-magnetite) and bacterium (similar to Clostridium quinii) in anoxic environments. Of the 7 nanocatalysts tested, bio-Zn-magnetite showed the highest TCE dechlorination efficiency, with an average of ca. 90% within 8 days in a batch experiment. The column tests confirmed that the application of bio-Zn-magnetite in combination with the bacterium achieved high degradation efficiency (ca. 90%) of TCE within 5 days compared to the nanocatalyst only, which degraded only 30% of the TCE. These results suggest that the application of a nanocatalyst and the bacterium have potential for the remediation of TCE-contaminated groundwater in subsurface environments.

  10. Electrochemical transformation of trichloroethylene in aqueous solution by electrode polarity reversal.

    PubMed

    Rajic, Ljiljana; Fallahpour, Noushin; Yuan, Songhu; Alshawabkeh, Akram N

    2014-12-15

    Electrode polarity reversal is evaluated for electrochemical transformation of trichloroethylene (TCE) in aqueous solution using flow-through reactors with mixed metal oxide electrodes and Pd catalyst. The study tests the hypothesis that optimizing electrode polarity reversal will generate H2O2 in Pd presence in the system. The effect of polarity reversal frequency, duration of the polarity reversal intervals, current intensity and TCE concentration on TCE removal rate and removal mechanism were evaluated. TCE removal efficiencies under 6 cycles h(-1) were similar in the presence of Pd catalyst (50.3%) and without Pd catalyst (49.8%), indicating that Pd has limited impact on TCE degradation under these conditions. The overall removal efficacies after 60 min treatment under polarity reversal frequencies of 6, 10, 15, 30 and 90 cycles h(-1) were 50.3%, 56.3%, 69.3%, 34.7% and 23.4%, respectively. Increasing the frequency of polarity reversal increases TCE removal as long as sufficient charge is produced during each cycle for the reaction at the electrode. Electrode polarity reversal shifts oxidation/reduction and reduction/oxidation sequences in the system. The optimized polarity reversal frequency (15 cycles h(-1) at 60 mA) enables two reaction zones formation where reduction/oxidation occurs at each electrode surface. Published by Elsevier Ltd.

  11. Electrochemical transformation of trichloroethylene in aqueous solution by electrode polarity reversal

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Yuan, Songhu; Alshawabkeh, Akram N.

    2014-01-01

    Electrode polarity reversal is evaluated for electrochemical transformation of trichloroethylene (TCE) in aqueous solution using flow-through reactors with mixed metal oxide electrodes and Pd catalyst. The study tests the hypothesis that optimizing electrode polarity reversal will generate H2O2 in Pd presence in the system. The effect of polarity reversal frequency, duration of the polarity reversal intervals, current intensity and TCE concentration on TCE removal rate and removal mechanism were evaluated. TCE removal efficiencies under 6 cycles h−1 were similar in the presence of Pd catalyst (50.3%) and without Pd catalyst (49.8%), indicating that Pd has limited impact on TCE degradation under these conditions. The overall removal efficacies after 60 min treatment under polarity reversal frequencies of 6, 10, 15, 30 and 90 cycles h−1 were 50.3%, 56.3%, 69.3%, 34.7% and 23.4%, respectively. Increasing the frequency of polarity reversal increases TCE removal as long as sufficient charge is produced during each cycle for the reaction at the electrode. Electrode polarity reversal shifts oxidation/reduction and reduction/oxidation sequences in the system. The optimized polarity reversal frequency (15 cycles h−1 at 60 mA) enables two reaction zones formation where reduction/oxidation occurs at each electrode surface. PMID:25282093

  12. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.

    PubMed

    Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali

    2012-10-01

    Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. SOURCES, EMISSION AND EXPOSURE TO TRICHLOROETHYLENE (TCE) AND RELATED CHEMICALS

    EPA Science Inventory

    This report documents the sources, emission, environmental fate and exposures for TCE, some of its metabolites, and some other chemicals known to produce identical metabolites. The major findings for TCE are:


    1. The primary sources releasing TCE to the environment ...

    2. Nature's Helpers: Using Microorganisms to Remove Trichloroethene (TCE) from Groundwater

      NASA Astrophysics Data System (ADS)

      Delgado, A. G.; Krajmlanik-Brown, R.; Fajardo-Williams, D.; Halloum, I.

      2015-12-01

      Organic chlorinated solvents, such as perchloroethene (PCE) and trichloroethene (TCE), are toxic pollutants threatening ground water quality worldwide and present at many superfund sites. Bioremediation using microorganisms is a promising, green, efficient, and sustainable approach to remove PCE and TCE contamination from soil and groundwater. Under anaerobic conditions, specialized microorganisms (dechlorinators) can reduce these chlorinated ethenes to ethene, an innocuous product, and gain energy for growth by a process known as reductive dechlorination. Dechlorinators are most often present in the environment and in dechlorinating cultures alongside other microbes such as fermenters, methanogens, and acetogens. Fermenters, methanogens, and acetogens syntrophically provide essential nutrients and growth factors to dechlorinators, most specifically to the only members able to reduce TCE all the way to ethene: Dehalococcoides; unfortunately, they also compete with dechlorinators for electron donors. My laboratory devises reductive chlorination platforms to study competition and syntrophy among Dehalococcoides, and other microbes to optimize remediation reactions and transport in the subsurface. We look at competing processes present as part of the natural soil chemistry and microbiology and address these challenges through a combination of enrichment techniques, molecular microbial ecology (deep sequencing), water chemistry, and electron balances. We have applied knowledge gathered in my laboratory to: 1) enrich microbial dechlorinating cultures capable of some of the fastest rates of TCE to ethene dechlorination ever reported, and 2) successfully design and operate three different continuous dechlorinating reactor types. We attribute our successful reactor operations to our multidisciplinary approach which links microbiology and engineering. Our reactors produce robust dechlorinating cultures used for in-situ bioaugmentation of PCE and TCE at contaminated sites

    3. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination.

      PubMed

      Weyens, Nele; Croes, Sarah; Dupae, Joke; Newman, Lee; van der Lelie, Daniel; Carleer, Robert; Vangronsveld, Jaco

      2010-07-01

      The aim of this work was to investigate if engineered endophytes can improve phytoremediation of co-contaminations by organic pollutants and toxic metals. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive trichloroethylene (TCE) degradation, and (b) the ncc-nre Ni resistance/sequestration system. Plants were exposed to Ni and TCE and (a) Ni and TCE phytotoxicity, (b) TCE degradation and evapotranspiration, and (c) Ni concentrations in the roots and shoots were determined. Inoculation with B. cepacia VM1468 resulted in decreased Ni and TCE phytotoxicity, as measured by 30% increased root biomass and up to 50% decreased activities of enzymes involved in anti-oxidative defence in the roots. In addition, TCE evapotranspiration showed a decreasing trend and a 5 times higher Ni uptake was observed after inoculation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

    4. A study on radiation technological degradation of organic chloride wastewater--exemplified by TCE and PCE.

      PubMed

      Huang, Sheng-Kai; Hsieh, Ling-Ling; Chen, Chia-Chieh; Lee, Po-Hsiu; Hsieh, Bor-Tsung

      2009-01-01

      This paper describes the potential of using gamma radiation technology to degrade trichloroethylene (TCE) and perchloroethylene (PCE) wastewater. The experimental method is divided into two parts: (1) using the gamma-ray to irradiate the TCE and PCE solution, the dose-rate is 10Gy/minute, the irradiation dosage is 0-2.5kGy and (2) self-making the UV irradiation system, the tube specification is 254nm and 6W, and turning on 8 tubes at the same time to make the irradiation. The efficiency of degradation ratio for gamma-ray is better than UV in the range of 0.1-250ppm; for example, as for the concentration of 0.1ppm, when TCE is degraded to D(90) and T(90), the gamma-ray only needed 46.7Gy and took about 4.67 minutes, but UV needed to take about 28.1 minutes. The dose-concentration equations of TCE and PCE are: TCE: y=44.58+8.832x, R(2)=0.999; and PCE: y=81.33+12.81x, R(2)=0.997. We verified that the radiation technology is able to effectively degrade the organic chlorine wastewater without yielding the secondary pollution, and the TCE and PCE that degraded by using gamma-ray will be reached US-EPA and Taiwan Effluent Standard (5ppb).

    5. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Weyens, N.; van der Lelie, D.; Croes, S.

      The aim of this work was to investigate if engineered endophytes can improve phytoremediation of co-contaminations by organic pollutants and toxic metals. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive trichloroethylene (TCE) degradation, and (b) the ncc-nre Ni resistance/sequestration system. Plants were exposed to Ni and TCE and (a) Ni and TCE phytotoxicity, (b) TCE degradation and evapotranspiration, and (c) Ni concentrations in the roots and shoots were determined. Inoculation with B. cepacia VM1468 resulted in decreased Ni and TCE phytotoxicity, as measured by 30% increasedmore » root biomass and up to 50% decreased activities of enzymes involved in anti-oxidative defence in the roots. In addition, TCE evapotranspiration showed a decreasing trend and a 5 times higher Ni uptake was observed after inoculation. Engineered endophytes can improve phytoremediation of mixed contaminations via enhanced degradation of organic contaminants and improved metal uptake and translocation.« less

    6. Abiotic and Biotic Transformation of TCE under Sulfate Reducing Conditions: the Role of Spatial Heterogeneity (Monterey, CA)

      EPA Science Inventory

      At a number of sites in the USA, passive reactive barriers built with shredded plant mulch have been constructed to treat ground water contaminated with TCE. These barriers are called biowalls because anaerobic biodegradation of the plant mulch is expected to provide substrates ...

    7. [Preparation of Coated CMC-Fe0 Using Rheological Phase Reaction Method and Research on Degradation of TCE in Water].

      PubMed

      Fan, Wen-jing; Cheng, Yue; Yu, Shu-zhen; Fan, Xiao-feng

      2015-06-01

      The coated nanoscale zero-valent iron (coated CMC-Fe0) was synthesized with cheap and environment friendly CMC as the coating agent using rheological phase reaction. The sample was characterized by means of XRD, SEM, TEM and N2 adsorption-stripping and used to study reductive dechlorination of TCE. The experimental results indicated that the removal rate of TCE was about 100% when the CMC-Fe0 dosage was 6 g x L(-1), the initial TCE concentration was 5 mg x L(-1) and the reaction time was 40 h. The TCE degradation reaction of coated CMC-Fe0 followed a pseudo-first-order kinetic model. Finally, the product could be simply recovered.

    8. Transformation rules and degradation of CAHs by Fentonlike oxidation in growth ring of water distribution network-A review

      NASA Astrophysics Data System (ADS)

      Zhong, D.; Ma, W. C.; Jiang, X. Q.; Yuan, Y. X.; Yuan, Y.; Wang, Z. Q.; Fang, T. T.; Huang, W. Y.

      2017-08-01

      Chlorinated hydrocarbons are widely used as organic solvent and chemical raw materials. After treatment, water polluted with trichloroethylene (TCE)/tetrachloroethylene (PCE) can reach the water quality requirements, while water with trace amounts of TCE/PCE is still harmful to humans, which will cause cancers. Water distribution network is an extremely complicated system, in which adsorption, desorption, flocculation, movement, transformation and reduction will occur, leading to changes of TCE/PCE concentrations and products. Therefore, it is important to investigate the transformation rules of TCE/PCE in water distribution network. What’s more, growth-ring, including drinking water pipes deposits, can act as catalysts in Fenton-like reagent (H2O2). This review summarizes the status of transformation rules of CAHs in water distribution network. It also evaluates the effectiveness and fruit of CAHs degradation by Fenton-like reagent based on growth-ring. This review is important in solving the potential safety problems caused by TCE/PCE in water distribution network.

  1. Removal of gaseous trichloroethylene (TCE) in a composite membrane biofilm reactor.

    PubMed

    Kumar, Amit; Vercruyssen, Aline; Dewulf, Jo; Lens, Piet; Van Langenhove, Herman

    2012-01-01

    A membrane biofilm reactor (MBfR) was investigated for the degradation of trichloroethylene (TCE) vapors inoculated by Burkholderia vietnamiensis G4. Toluene (TOL) was used as the primary substrate. The MBfR was loaded sequentially with TOL, TCE (or both) during 110 days. In this study, a maximum steady-state TCE removal efficiency of 23% and a maximum volumetric elimination capacity (EC) of 2.1 g m(-3) h(-1) was achieved. A surface area based maximum elimination capacity (EC(m)) of 4.2 × 10(-3) g m(-2) h(-1) was observed, which is 2-10 times higher than reported in other gas phase biological treatment studies. However, further research is needed to optimize the TCE feeding cycle and to evaluate the inhibiting effects of TCE and its intermediates on TOL biodegradation.

  2. 77 FR 6863 - Proposed Collection; Comment Request for VITA/TCE Program Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    .../TCE Program Forms AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for... VITA/TCE Program Forms 14310, 8653, 8654, and 14024. DATES: Written comments should be received on or... . SUPPLEMENTARY INFORMATION: Title: VITA/TCE Program Forms. OMB Number: 1545-2222. Form Number: Forms 14310, 8653...

  3. TRICHLOROETHYLENE (TCE) ISSUE PAPERS

    EPA Science Inventory

    These issue papers are a part of EPA's effort to develop a trichloroethylene (TCE) human health risk assessment. These issue papers were developed by EPA to provide scientific and technical information to the National Academy of Sciences (NAS) for use in developing their advice ...

  4. Investigating the biogeochemical interactions involved in simultaneous TCE and Arsenic in situ bioremediation

    NASA Astrophysics Data System (ADS)

    Cook, E.; Troyer, E.; Keren, R.; Liu, T.; Alvarez-Cohen, L.

    2016-12-01

    The in situ bioremediation of contaminated sediment and groundwater is often focused on one toxin, even though many of these sites contain multiple contaminants. This reductionist approach neglects how other toxins may affect the biological and chemical conditions, or vice versa. Therefore, it is of high value to investigate the concurrent bioremediation of multiple contaminants while studying the microbial activities affected by biogeochemical factors. A prevalent example is the bioremediation of arsenic at sites co-contaminated with trichloroethene (TCE). The conditions used to promote a microbial community to dechlorinate TCE often has the adverse effect of inducing the release of previously sequestered arsenic. The overarching goal of our study is to simultaneously evaluate the bioremediation of arsenic and TCE. Although TCE bioremediation is a well-understood process, there is still a lack of thorough understanding of the conditions necessary for effective and stable arsenic bioremediation in the presence of TCE. The objective of this study is to promote bacterial activity that stimulates the precipitation of stable arsenic-bearing minerals while providing anaerobic, non-extreme conditions necessary for TCE dechlorination. To that end, endemic microbial communities were examined under various conditions to attempt successful sequestration of arsenic in addition to complete TCE dechlorination. Tested conditions included variations of substrates, carbon source, arsenate and sulfate concentrations, and the presence or absence of TCE. Initial arsenic-reducing enrichments were unable to achieve TCE dechlorination, probably due to low abundance of dechlorinating bacteria in the culture. However, favorable conditions for arsenic precipitation in the presence of TCE were eventually discovered. This study will contribute to the understanding of the key species in arsenic cycling, how they are affected by various concentrations of TCE, and how they interact with the key

  5. Acetylene fuels reductive dechlorination of TCE by Dehalococcoides/Pelobacter-containing microbial consortia

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Mao, X.; Mahandra, C.; Baesman, S. M.; Gushgari, S.; Alvarez-Cohen, L.; Liu, T.

    2015-12-01

    Groundwater contamination by trichloroethene (TCE) poses a threat to health and leads to the generation of vinyl chloride (VC), a carcinogen. Dehalococcoides mccartyi is the only bacterium that can completely dechlorinate TCE to ethene (C2H4). Acetylene (C2H2) occurs in TCE-contaminated sites as a consequence of chemical degradation of TCE. Yet acetylene inhibits a variety of microbial processes including methanogesis and reductive dechlorination. Pelobacter acetylenicus and related species can metabolize acetylene via acetylene hydratase and acetaldehyde dismutatse thereby generating acetate and H2 as endproducts, which could serve as electron donor and carbon source for growth of D. mccartyi. We found that 1mM acetylene (aqueous) inhibits growth of D. mccartyi strain 195 on 0.3 mM TCE, but that the inhibition was removed after 12 days with the addition of an acetylene-utilizing isolate from San Francisco Bay, Pelobacter strain SFB93. TCE did not inhibit the growth of this Pelobacter at the concentrations tested (0.1-0.5 mM) and TCE was not consumed by strain SFB93. Co-cultures of strain 195 with strain SFB93 at 5% inoculation were established in 120 mL serum bottles containing 40 mL defined medium. TCE was supplied at a liquid concentration of 0.1 mM, with 0.1 mM acetylene and N2/CO2 (90:10 v/v) headspace at 34 °C. Co-cultures were subsequently transferred (5% vol/vol inoculation) to generate subcultures after 20 μmol TCE was reduced to VC and 36 μmol acetylene was depleted. Aqueous H2 ranged from 114 to 217 nM during TCE-dechlorination, and the cell yield of strain 195 was 3.7 ±0.3 × 107 cells μmol-1 Cl- released. In a D. mccartyi-containing enrichment culture (ANAS) under the same conditions as above, it was found that inhibition of dechlorination by acetylene was reversed after 19 days by adding SFB93. Thus we showed that a co-culture of Pelobacter SFB93 and D. mccartyi 195 could be maintained with C2H2 as the electron donor and carbon source while TCE

  6. Trichloroethylene (TCE) in tree cores to complement a subsurface investigation on residential property near a former electroplating facility.

    PubMed

    Wilcox, Jeffrey D; Johnson, Kathy M

    2016-10-01

    Tree cores were collected and analyzed for trichloroethylene (TCE) on a private property between a former electroplating facility in Asheville, North Carolina (USA), and a contaminated wetland/spring complex. TCE was detected in 16 of 31 trees, the locations of which were largely consistent with a "plume core" delineated by a more detailed subsurface investigation nearly 2 years later. Concentrations in tree cores and nearby soil borings were not correlated, perhaps due to heterogeneities in both geologic and tree root structure, spatial and temporal variability in transpiration rates, or interferences caused by other contaminants at the site. Several tree cores without TCE provided evidence for significantly lower TCE concentrations in shallow groundwater along the margins of the contaminated spring complex in an area with limited accessibility. This study demonstrates that tree core analyses can complement a more extensive subsurface investigation, particularly in residential or ecologically sensitive areas.

  7. Influence of Different Electron Donors and Acceptors on Dehalorespiration of Tetrachloroethene by Desulfitobacterium frappieri TCE1

    PubMed Central

    Gerritse, Jan; Drzyzga, Oliver; Kloetstra, Geert; Keijmel, Mischa; Wiersum, Luit P.; Hutson, Roger; Collins, Matthew D.; Gottschal, Jan C.

    1999-01-01

    Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 μm and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35°C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H2, formate, l-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except formate and H2) are oxidized to acetate and CO2. When l-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher (up to 1.4 μmol of chloride released · min−1 · mg of protein−1). Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumarate or nitrate. PMID:10583967

  8. Transformation of mackinawite to greigite by trichloroethylene and tetrachloroethylene.

    PubMed

    Lan, Ying; Elwood Madden, Andrew S; Butler, Elizabeth C

    2016-10-12

    Trichloroethylene (TCE) and tetrachloroethylene (PCE) are common ground water contaminants susceptible to reductive dechlorination by FeS (mackinawite) in anaerobic environments. The objective of this study was to characterize the mineral-associated products that form when mackinawite reacts with TCE and PCE. The dissolved products of the reaction included Cl - and Fe 2+ , and trace amounts of cis 1,2-dichloroethylene (for TCE) and TCE (for PCE). Selected area electron diffraction (SAED) analysis identified greigite as a mackinawite oxidation product formed after reaction between TCE or PCE and FeS over seven weeks. Release of Fe 2+ is consistent with the solid state transformation of mackinawite to greigite, resulting in depletion of the solid with Fe. X-ray photoelectron spectroscopy of the sulfur 2p peak showed a shift to a higher binding energy after FeS reacted with TCE or PCE, also observed in other studies of mackinawite oxidation to greigite. The results may help efforts to maintain the reactivity of FeS generated to remediate chlorinated aliphatic contaminants in ground water.

  9. SET mediates TCE-induced liver cell apoptosis through dephosphorylation and upregulation of nucleolin

    PubMed Central

    Ren, Xiaohu; Huang, Xinfeng; Yang, Xifei; Liu, Yungang; Liu, Wei; Huang, Haiyan; Wu, Desheng; Zou, Fei; Liu, Jianjun

    2017-01-01

    Trichloroethylene (TCE) is an occupational and environmental chemical that can cause severe hepatotoxicity. While our previous studies showed that the phosphatase inhibitor SET is a key mediator of TCE-induced liver cell apoptosis, the molecular mechanisms remain elusive. Using quantitative phosphoproteomic analysis, we report here that nucleolin is a SET-regulated phosphoprotein in human liver HL-7702 cells. Functional analysis suggested that SET promoted dephosphorylation of nucleolin, decreased its binding to its transcriptional activator, c-myc, and upregulated nucleolin expression in TCE-treated cells. Importantly, TCE-induced hepatocyte apoptosis was significantly attenuated when nucleolin was downregulated with specific siRNAs. These findings indicate that TCE may induce hepatocyte apoptosis via SET-mediated dephosphorylation and overexpression of nucleolin. PMID:28402964

  10. SET mediates TCE-induced liver cell apoptosis through dephosphorylation and upregulation of nucleolin.

    PubMed

    Ren, Xiaohu; Huang, Xinfeng; Yang, Xifei; Liu, Yungang; Liu, Wei; Huang, Haiyan; Wu, Desheng; Zou, Fei; Liu, Jianjun

    2017-06-20

    Trichloroethylene (TCE) is an occupational and environmental chemical that can cause severe hepatotoxicity. While our previous studies showed that the phosphatase inhibitor SET is a key mediator of TCE-induced liver cell apoptosis, the molecular mechanisms remain elusive. Using quantitative phosphoproteomic analysis, we report here that nucleolin is a SET-regulated phosphoprotein in human liver HL-7702 cells. Functional analysis suggested that SET promoted dephosphorylation of nucleolin, decreased its binding to its transcriptional activator, c-myc, and upregulated nucleolin expression in TCE-treated cells. Importantly, TCE-induced hepatocyte apoptosis was significantly attenuated when nucleolin was downregulated with specific siRNAs. These findings indicate that TCE may induce hepatocyte apoptosis via SET-mediated dephosphorylation and overexpression of nucleolin.

  11. Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer.

    PubMed Central

    Henry, S M; Grbić-Galić, D

    1991-01-01

    Trichloroethylene (TCE)-transforming aquifer methanotrophs were evaluated for the influence of TCE oxidation toxicity and the effect of reductant availability on TCE transformation rates during methane starvation. TCE oxidation at relatively low (6 mg liter-1) TCE concentrations significantly reduced subsequent methane utilization in mixed and pure cultures tested and reduced the number of viable cells in the pure culture Methylomonas sp. strain MM2 by an order of magnitude. Perchloroethylene, tested at the same concentration, had no effect on the cultures. Neither the TCE itself nor the aqueous intermediates were responsible for the toxic effect, and it is suggested that TCE oxidation toxicity may have resulted from reactive intermediates that attacked cellular macromolecules. During starvation, all methanotrophs tested exhibited a decline in TCE transformation rates, and this decline followed exponential decay. Formate, provided as an exogenous electron donor, increased TCE transformation rates in Methylomonas sp. strain MM2, but not in mixed culture MM1 or unidentified isolate, CSC-1. Mixed culture MM2 did not transform TCE after 15 h of starvation, but mixed cultures MM1 and MM3 did. The methanotrophs in mixed cultures MM1 and MM3, and the unidentified isolate CSC-1 that was isolated from mixed culture MM1 contained lipid inclusions, whereas the methanotrophs of mixed culture MM2 and Methylomonas sp. strain MM2 did not. It is proposed that lipid storage granules serve as an endogenous source of electrons for TCE oxidation during methane starvation. Images PMID:2036010

  12. Monitoring Natural Biodegradation of TCE in Fractured Sedimentary Rocks Using delta 13C of TCE and its Degradation Products: Estimating Isotopic Fractionation Factor under Field Conditions

    NASA Astrophysics Data System (ADS)

    Revesz, K.; Shapiro, A. M.; Tiedeman, C.; Goode, D. J.; Lacombe, P. J.; Imbrigiotta, T. E.

    2008-12-01

    The isotopic ratio of 13C/12C, expressed in delta13CVPDB per mill for trichloroethene (TCE), can differentiate between microbial degradation and other processes (dilution, dispersion, and sorption) that can also affect the concentration of TCE and its degradation products. The delta13C of TCE isotopically fractionates during microbial degradation; however, it remains practically unchanged during other processes. The isotope fractionation factor (alpha) estimated under laboratory conditions, however, may not be representative of microbial degradation in natural ground waters. Estimating alpha under field conditions provides evidence of the presence or absence of in situ microbial degradation and provides valuable information on the in situ processes that affect the fate and transport of chlorinated hydrocarbons. Our modified analytical method of analyzing for the isotopic ratio proved to be comparable to previously published methods. Isotope values were stable within analytical uncertainty in sample sizes ranging from 22 to 2200 nanomoles. Prepared standard mixtures of TCE and DCEs (trans- and cis- dichloroethene) were analyzed after every five field samples, and were stable during the time period that field samples were processed (a year). Water samples were collected from multiple boreholes completed in the fractured mudstone underlying the former Naval Air Warfare Center, West Trenton, NJ, and analyzed for delta13C of the chlorinated hydrocarbons. The results showed an ongoing natural microbial degradation following the typical dehalogenation pathway: TCE to DCE (trans- and cis-dichloroethene) to VC (vinyl chloride). The carbon isotope enrichment due to fractionation was smaller between TCE to DCE degradation than the enrichment between DCE to VC degradation, which is consistent with previous investigations. Results also showed a correlation between delta13C of TCE and the transmissivity of the boreholes where water samples were collected. We assumed that

  13. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Low and high acetate amendments are equally as effective at promoting complete dechlorination of trichloroethylene (TCE).

    PubMed

    Wei, Na; Finneran, Kevin T

    2013-06-01

    Experiments with trichloroethylene-contaminated aquifer material demonstrated that TCE, cis-DCE, and VC were completely degraded with concurrent Fe(III) or Fe(III) and sulfate reduction when acetate was amended at stoichiometric concentration; competing TEAPs did not inhibit ethene production. Adding 10× more acetate did not increase the rate or extent of TCE reduction, but only increased methane production. Enrichment cultures demonstrated that ~90 μM TCE or ~22 μM VC was degraded primarily to ethene within 20 days with concurrent Fe(III) or Fe(III) + sulfate reduction. The dechlorination rates were comparable between the low and high acetate concentrations (0.36 vs 0.34 day(-1), respectively), with a slightly slower rate in the 10× acetate amended incubations. Methane accumulated to 13.5 (±0.5) μmol/tube in the TCE-degrading incubations with 10× acetate, and only 1.4 (±0.1) μmol/tube with low acetate concentration. Methane accumulated to 16 (±1.5) μmol/tube in VC-degrading enrichment with 10× acetate and 2 (±0.1) μmol/tube with stoichiometric acetate. The estimated fraction of electrons distributed to methanogenesis increased substantially when excessive acetate was added. Quantitative PCR analysis indicated that 10× acetate did not enhance Dehalococcoides biomass but rather increased the methanogen abundance by nearly one order of magnitude compared to that with stoichiometric acetate. The data suggest that adding low levels of substrate may be equally if not more effective as high concentrations, without producing excessive methane. This has implications for field remediation efforts, in that adding excess electron donor may not benefit the reactions of interest, which in turn will increase treatment costs without direct benefit to the stakeholders.

  15. Developmental neurotoxic effects of a low dose of TCE on a 3-D neurosphere system.

    PubMed

    Abdraboh, M E; Abdeen, S H; Salama, M; El-Husseiny, M; El-Sherbini, Y M; Eldeen, N M

    2018-02-01

    Trichloroethylene (TCE) is one of the industrial toxic byproducts that now persist in the air, soil, and water. Several studies have already illustrated the toxic effect of high doses of TCE on the biological functions of several organs. This study aims to highlight the toxic impact of a low dose of TCE (1 μmol/L) on the development of rat neural stem cells (NSCs). The subventricular zones (SVZ) of rat pup's brains were collected and minced, and the harvested cells were cultured in the presence of neural growth factors B27/N2 to develop neurospheres. The cells were then exposed to a dose of 1 μmol/L TCE for 1 or 2 weeks. The outcomes indicated a remarkable inhibitory effect of TCE on the differentiation capacity of NSCs, which was confirmed by down-regulation of the astrocyte marker GFAP The inhibitory effect of TCE on the proliferation of NSCs was identified by the reductions in neurosphere diameter, Ki67 expression, and cell cycle arrest at the G1/S phase. Immunolabelling with annexin V indicated the proapoptotic effect of TCE exposure. PCR results revealed a TCE-mediated suppression of the expression of the antioxidant enzyme SOD1. This paper illustrates, for the first time, a detailed examination of the toxic effects of an environmentally low dose of TCE on NCSs at the transcriptional, translational, and functional levels.

  16. [Steam and air co-injection in removing TCE in 2D-sand box].

    PubMed

    Wang, Ning; Peng, Sheng; Chen, Jia-Jun

    2014-07-01

    Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio.

  17. Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: a shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions.

    PubMed

    Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N

    2012-03-20

    Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H(2) and O(2) is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H(2)O(2) up to 17 mg/L. Under weak acidity, low concentrations of oxidizing •OH radicals are detected due to decomposition of H(2)O(2), slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 μM improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% •OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 μM/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and •OH generation rate constants confirms that •OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na(2)SO(4), NaCl, NaNO(3), NaHCO(3), K(2)SO(4), CaSO(4), and MgSO(4) does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppress degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation.

  18. Efficient Degradation of TCE in Groundwater Using Pd and Electro-generated H2 and O2: A Shift in Pathway from Hydrodechlorination to Oxidation in the Presence of Ferrous Ions

    PubMed Central

    Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N.

    2012-01-01

    Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H2 and O2 is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H2O2 up to 17 mg/L. Under weak acidity, low concentrations of oxidizing •OH radical are detected due to decomposition of H2O2, slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 μM improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% •OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 μM/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and •OH generation rate constants confirms that •OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na2SO4, NaCl, NaNO3, NaHCO3, K2SO4, CaSO4 and MgSO4 does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppresses degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation. PMID:22315993

  19. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.

    PubMed

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-03-15

    Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effect of Nitrogen Source on Growth and Trichloroethylene Degradation by Methane-Oxidizing Bacteria

    PubMed Central

    Chu, Kung-Hui; Alvarez-Cohen, Lisa

    1998-01-01

    The effect of nitrogen source on methane-oxidizing bacteria with respect to cellular growth and trichloroethylene (TCE) degradation ability were examined. One mixed chemostat culture and two pure type II methane-oxidizing strains, Methylosinus trichosporium OB3b and strain CAC-2, which was isolated from the chemostat culture, were used in this study. All cultures were able to grow with each of three different nitrogen sources: ammonia, nitrate, and molecular nitrogen. Both M. trichosporium OB3b and strain CAC-2 showed slightly lower net cellular growth rates and cell yields but exhibited higher methane uptake rates, levels of poly-β-hydroxybutyrate (PHB) production, and naphthalene oxidation rates when grown under nitrogen-fixing conditions. The TCE-degrading ability of each culture was measured in terms of initial TCE oxidation rates and TCE transformation capacities (mass of TCE degraded/biomass inactivated), measured both with and without external energy sources. Higher initial TCE oxidation rates and TCE transformation capacities were observed in nitrogen-fixing mixed, M. trichosporium OB3b, and CAC-2 cultures than in nitrate- or ammonia-supplied cells. TCE transformation capacities were found to correlate with cellular PHB content in all three cultures. The results of this study suggest that the nitrogen-fixing capabilities of methane-oxidizing bacteria can be used to select for high-activity TCE degraders for the enhancement of bioremediation in fixed-nitrogen-limited environments. PMID:9726896

  1. Photocatalysis of gaseous trichloroethylene (TCE) over TiO2: the effect of oxygen and relative humidity on the generation of dichloroacetyl chloride (DCAC) and phosgene.

    PubMed

    Ou, Hsin-Hung; Lo, Shang-Lien

    2007-07-19

    Batch photocatalytic degradation of 80+/-2.5 ppm V trichloroethylene (TCE) was conducted to investigate the effect of the oxygen and relative humidity (RH) on the formation of the dichloroacetyl chloride (DCAC) and phosgene. Based on the simultaneous ordinary differential equations (ODEs), the reaction rate constants of TCE ((2.31+/-0.28) approximately (9.41+/-0.63)x10(-2) min(-1)) are generally larger than that of DCAC ((0.94+/-1.25) approximately (9.35+/-1.71)x10(-3) min(-1)) by approximate one order. The phenomenon indicates the degradation potential of TCE is superior to that of DCAC. DCAC appreciably delivers the same degradation behavior with TCE that means there exists an optimum RH and oxygen concentration for photocatalysis of TCE and DCAC. At the time the peak yield of DCAC appears, the conversion ratio based on the carbon atom from TCE to DCAC is within the range of 30-83% suggesting that the DCAC generation is significantly attributed to TCE degradation. Regarding the phosgene formation, the increasing oxygen amount leads to the inhibitory effect on the phosgene yield which fall within the range of 5-15%. The formation mechanism of phosgene was also inferred that the Cl atoms attacking the C-C bond of DCAC results to the generation of phosgene rather than directly from the TCE destruction.

  2. Treatment of co-mingled benzene, toluene and TCE in groundwater.

    PubMed

    Chen, Liang; Liu, Yulong; Liu, Fei; Jin, Song

    2014-06-30

    This work addressed a hypothetical but practical scenario that includes biological oxidation and reductive dechlorination in treating groundwater containing co-mingled plume of trichloroethene (TCE), benzene and toluene. Groundwater immediately downgradient from the commonly used zero-valent iron (ZVI) has shown alkaline pH (up to 10.7). The elevated pH may influence BTEX compounds (i.e., benzene, toluene, ethyl benzene, and xylenes) biodegradation, which could also be inhibited by elevated concentrations of TCE. Data from this work suggests that the inhibition coefficients (IC) value for 100 μg/L and 500 μg/L of TCE on benzene and toluene degradation are 2.1-2.8 at pH 7.9, and 3.5-6.1 at pH 10.5. For a co-mingled plume, it appears to be more effective to reduce TCE by ZVI before addressing benzene and toluene biodegradation. The ample buffering capacity of most groundwater and the adaptation of benzene and toluene-degrading microbes are likely able to eliminate the adverse influence of pH shifts downgradient from a ZVI-PRB. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. TCE degradation in groundwater by chelators-assisted Fenton-like reaction of magnetite: Sand columns demonstration.

    PubMed

    Jia, Daqing; Sun, Sheng-Peng; Wu, Zhangxiong; Wang, Na; Jin, Yaoyao; Dong, Weiyang; Chen, Xiao Dong; Ke, Qiang

    2018-03-15

    Trichloroethylene (TCE) degradation in sand columns has been investigated to evaluate the potential of chelates-enhanced Fenton-like reaction with magnetite as iron source for in situ treatment of TCE-contaminated groundwater. The results showed that successful degradation of TCE in sand columns was obtained by nitrilotriacetic acid (NTA)-assisted Fenton-like reaction of magnetite. Addition of ethylenediaminedisuccinic acid (EDDS) resulted in an inhibitory effect on TCE degradation in sand columns. Similar to EDDS, addition of ethylenediaminetetraacetic acid (EDTA) also led to an inhibition of TCE degradation in sand column with small content of magnetite (0.5 w.t.%), but enhanced TCE degradation in sand column with high content of magnetite (7.0 w.t.%). Additionally, the presence of NTA, EDDS and EDTA greatly decreased H 2 O 2 uptake in sand columns due to the competition between chelates and H 2 O 2 for surface sites on magnetite (and sand). Furthermore, the presented results show that magnetite in sand columns remained stable in a long period operation of 230 days without significant loss of performance in terms of TCE degradation and H 2 O 2 uptake. Moreover, it was found that TCE was degraded mainly to formic acid and chloride ion, and the formation of chlorinated organic intermediates was minimal by this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Compound-Specific Isotope Analyses to Assess TCE Biodegradation in a Fractured Dolomitic Aquifer.

    PubMed

    Clark, Justin A; Stotler, Randy L; Frape, Shaun K; Illman, Walter A

    2017-01-01

    The potential for trichloroethene (TCE) biodegradation in a fractured dolomite aquifer at a former chemical disposal site in Smithville, Ontario, Canada, is assessed using chemical analysis and TCE and cis-DCE compound-specific isotope analysis of carbon and chlorine collected over a 16-month period. Groundwater redox conditions change from suboxic to much more reducing environments within and around the plume, indicating that oxidation of organic contaminants and degradation products is occurring at the study site. TCE and cis-DCE were observed in 13 of 14 wells sampled. VC, ethene, and/or ethane were also observed in ten wells, indicating that partial/full dechlorination has occurred. Chlorine isotopic values (δ 37 Cl) range between 1.39 to 4.69‰ SMOC for TCE, and 3.57 to 13.86‰ SMOC for cis-DCE. Carbon isotopic values range between -28.9 and -20.7‰ VPDB for TCE, and -26.5 and -11.8‰ VPDB for cis-DCE. In most wells, isotopic values remained steady over the 15-month study. Isotopic enrichment from TCE to cis-DCE varied between 0 and 13‰ for carbon and 1 and 4‰ for chlorine. Calculated chlorine-carbon isotopic enrichment ratios (ϵ Cl /ϵ C ) were 0.18 for TCE and 0.69 for cis-DCE. Combined, isotopic and chemical data indicate very little dechlorination is occurring near the source zone, but suggest bacterially mediated degradation is occurring closer to the edges of the plume. © 2016, National Ground Water Association.

  5. Transformation of Mixed Contaminants of Trichloroethylene and Chromium using Polymer Modified and Unmodified KMnO4 Particles in Soil and Water Treatment

    NASA Astrophysics Data System (ADS)

    Ighere, Jude

    Industrialization over the last century has positively impacted many aspects of our lives but at a cost. Soil and groundwater in thousands of sites are rendered contaminated due to detrimental storage and disposal practices thereby posing threat to sources of safe drinking water. In this research, the extent and kinetics of degradation of trichloroethylene (TCE) as a single contaminant in soil and water were investigated. Also, the reductive transformation of toxic hexavalent chromium, Cr (VI) to non-toxic trivalent, Cr (III) form was performed both in soil and aqueous system. The synergistic and antagonistic effect of associated with co-existing (TCE) and Cr (VI) was explored by simultaneous remediation in the same system. The extent and kinetics of trichloroethylene degradation by KMnO4 was mainly controlled by the molar ratio of KMnO4 to TCE. At molar ratios of 2:1 (stochiometric), 5:1, 10:1 of KMnO4 to TCE, 62.5%, 100%, and 100% of TCE were oxidized respectively in aqueous media. For different TCE concentrations below the solubility limit, the results were similar. In soil systems, the duration required for equilibrium degradation was longer with 62.8%, 96% and 100% conversions in a 3-day monitoring period. Under extreme pH conditions of 2.8 (acidic) and 12 (alkaline) in a stochiometric molar ratio, 63.75% and 59.75% yield was achieved in a 3-hour time to equilibrium. The reductive transformation of Cr (VI) to Cr (III) using ferrous ion (Fe2+) was a very fast reaction. The fast reduction reaction rate was accompanied by rapid precipitations of ferric ion and Cr (III). These precipitates ultimately quench or slow down the reaction. Under strong alkaline conditions, the degradation was slightly more effective. However, pH variation does not largely impact the overall extent of reaction at equilibrium. In soil, conversions of 73% and 91.9% were obtained at molar ratios of 1:10 and 1:15 of Cr (VI) to Fe(II) respectively in a 3-hour period. Since Cr (VI) is highly

  6. EFFECTS OF REACTION PARAMETERS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE RATE AND BY-PRODUCTS

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas prod...

  7. Anaerobic Transformation of Chlorinated Aliphatic Hydrocarbons in a Sand Aquifer Based on Spatial Chemical Distributions

    NASA Astrophysics Data System (ADS)

    Semprini, Lewis; Kitanidis, Peter K.; Kampbell, Don H.; Wilson, John T.

    1995-04-01

    We estimated the distribution of chlorinated aliphatic hydrocarbons (CAHs) from groundwater samples collected along three transects in a sand aquifer. Trichloroethylene (TCE) leaked and contaminated the aquifer probably more than a decade before we collected the measurements. The data show significant concentrations of TCE, cis-l,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethene. We attributed DCE, VC, and ethene to the reductive dehalogenation of TCE. The CAH concentrations varied significantly with depth and correlate with sulfate and methane concentrations. Anoxic aquifer conditions exist with methane present at relatively high concentrations at depth. High concentrations of TCE correspond with the absence of methane or low methane concentrations, whereas products of TCE dehalogenation are associated with higher methane concentrations and low sulfate concentrations. Indications are that the dechlorination of TCE and DCE to VC and ethene is associated with sulfate reduction and active methanogenesis. TCE dechlorination to DCE is likely occurring under the less reducing conditions of sulfate reduction, with further reductions to VC and ethene occurring under methanogenic conditions. We estimated that about 20% of TCE has dechlorinated to ethene. The analysis of the data enhanced our knowledge of natural in situ transformation and transport processes of CAHs.

  8. Formulation design for target delivery of iron nanoparticles to TCE zones.

    PubMed

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy. © 2013.

  9. Experimental and theoretical investigation of vibrational spectra of coordination polymers based on TCE-TTF.

    PubMed

    Olejniczak, Iwona; Lapiński, Andrzej; Swietlik, Roman; Olivier, Jean; Golhen, Stéphane; Ouahab, Lahcène

    2011-08-01

    The room-temperature infrared and Raman spectra of a series of four isostructural polymeric salts of 2,3,6,7-tetrakis(2-cyanoethylthio)-tetrathiafulvalene (TCE-TTF) with paramagnetic (Co(II), Mn(II)) and diamagnetic (Zn(II), Cd(II)) ions, together with BF(4)(-) or ClO(4)(-) anions are reported. Infrared and Raman-active modes are identified and assigned based on theoretical calculations for neutral and ionized TCE-TTF using density functional theory (DFT) methods. It is confirmed that the TCE-TTF molecules in all the materials investigated are fully ionized and interact in the crystal structure through cyanoethylthio groups. The vibrational modes related to the C=C stretching vibrations of TCE-TTF are analyzed assuming the occurrence of electron-molecular vibration coupling (EMV). The presence of the antisymmetric C=C dimeric mode provides evidence that charge transfer takes place between TCE-TTF molecules belonging to neighboring polymeric networks. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Betula pendula: A Promising Candidate for Phytoremediation of TCE in Northern Climates.

    PubMed

    Lewis, Jeffrey; Qvarfort, Ulf; Sjöström, Jan

    2015-01-01

    Betula pendula (Silver birch) trees growing on two contaminated sites were evaluated to assess their capacity to phytoscreen and phytoremediate chlorinated aliphatic compounds and heavy metals. Both locations are industrially-contaminated properties in central Sweden. The first was the site of a trichloroethylene (TCE) spill in the 1980s while the second was polluted with heavy metals by burning industrial wastes. In both cases, sap and sapwood from Silver birch trees were collected and analyzed for either chlorinated aliphatic compounds or heavy metals. These results were compared to analyses of the surface soil, vadose zone pore air and groundwater. Silver birch demonstrated the potential to phytoscreen and possibly phytoremediate TCE and related compounds, but it did not demonstrate the ability to effectively phytoextract heavy metals when compared with hyperaccumulator plants. The capacity of Silver birch to phytoremediate TCE appears comparable to tree species that have been employed in field-scale TCE phytoremediation efforts, such as Populus spp. and Eucalyptus sideroxylon rosea.

  11. Electrolytic Manipulation of Persulfate Reactivity by Iron Electrodes for TCE Degradation in Groundwater

    PubMed Central

    Yuan, Songhu; Liao, Peng; Alshawabkeh, Akram N.

    2014-01-01

    Activated persulfate oxidation is an effective in situ chemical oxidation process for groundwater remediation. However, reactivity of persulfate is difficult to manipulate or control in the subsurface causing activation before reaching the contaminated zone and leading to a loss of chemicals. Furthermore, mobilization of heavy metals by the process is a potential risk. An effective approach using iron electrodes is thus developed to manipulate the reactivity of persulfate in situ for trichloroethylene (TCE) degradation in groundwater, and to limit heavy metals mobilization. TCE degradation is quantitatively accelerated or inhibited by adjusting the current applied to the iron electrode, following k1 = 0.00053•Iv + 0.059 (−122 A/m3 ≤ Iv ≤ 244 A/m3) where k1 and Iv are the pseudo first-order rate constant (min−1) and volume normalized current (A/m3), respectively. Persulfate is mainly decomposed by Fe2+ produced from the electrochemical and chemical corrosion of iron followed by the regeneration via Fe3+ reduction on the cathode. SO4•− and •OH co-contribute to TCE degradation, but •OH contribution is more significant. Groundwater pH and oxidation-reduction potential can be restored to natural levels by the continuation of electrolysis after the disappearance of contaminants and persulfate, thus decreasing adverse impacts such as the mobility of heavy metals in the subsurface. PMID:24328192

  12. COMPLETE NATURAL ATTENUATION OF PCE AND TCE WITHOUT VINYL CHLORIDE AND ETHENE ACCUMULATION

    EPA Science Inventory

    A shallow aquifer at the Twin Cities Army Ammunition Plant (TCAAP) was contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE). Cisdichloroethylene (cis-DCE) is found in ground water at the site, indicating that reductive dehalogenation of PCE and TCE is occurrin...

  13. MICROFRACTURE SURFACE GEOCHEMISTRY AND ADHERENT MICROBIAL POPULATION METABOLISM IN TCE-CONTAMINATED COMPETENT BEDROCK

    EPA Science Inventory

    A TCE-contaminated competent bedrock site in Portsmouth, NH was used to determine if a relation existed between microfracture (MF) surface geochemistry and the ecology and metabolic activity of attached microbes relative to terminal electron accepting processes (TEAPs) and TCE bi...

  14. Fingerprinting TCE in a bedrock aquifer using compound-specific isotope analysis.

    PubMed

    Lojkasek-Lima, Paulo; Aravena, Ramon; Parker, Beth L; Cherry, John A

    2012-01-01

    A dual isotope approach based on compound-specific isotope analysis (CSIA) of carbon (C) and chlorine (Cl) was used to identify sources of persistent trichloroethylene (TCE) that caused the shut-down in 1994 of a municipal well in an extensive fractured dolostone aquifer beneath Guelph, Ontario. Several nearby industrial properties have known subsurface TCE contamination; however, only one has created a comprehensive monitoring network in the bedrock. The impacted municipal well and many monitoring wells were sampled for volatile organic compounds (VOCs), inorganic parameters, and CSIA. A wide range in isotope values was observed at the study site. The TCE varies between -35.6‰ and -21.8‰ and from 1.6‰ to 3.2‰ for δ(13) C and δ(37) Cl, respectively. In case of cis-1,2-dichloroethene, the isotope values range between -36.3‰ and -18.9‰ and from 2.4‰ to 4.7‰ for δ(13) C and δ(37) Cl, respectively. The dual isotope approach represented by a plot of δ(13) C vs. δ(37) Cl shows the municipal well samples grouped in a domain clearly separate from all other samples from the property with the comprehensive well network. The CSIA results collected under non-pumping and short-term pumping conditions thus indicate that this particular property, which has been studied intensively for several years, is not a substantial contributor of the TCE presently in the municipal well under non-pumping conditions. This case study demonstrates that CSIA signatures would have been useful much earlier in the quest to examine sources of the TCE in the municipal well if bedrock monitoring wells had been located at several depths beneath each of the potential TCE-contributing properties. Moreover, the CSIA results show that microbial reductive dechlorination of TCE occurs in some parts of the bedrock aquifer. At this site, the use of CSIA for C and Cl in combination with analyses of VOC and redox parameters proved to be important due to the complexity introduced by

  15. PCE/TCE DEGRADATION USING MULCH BIOWALLS

    EPA Science Inventory

    A passive reactive barrier (Biowall) was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contamin...

  16. Decision Tree based Prediction and Rule Induction for Groundwater Trichloroethene (TCE) Pollution Vulnerability

    NASA Astrophysics Data System (ADS)

    Park, J.; Yoo, K.

    2013-12-01

    For groundwater resource conservation, it is important to accurately assess groundwater pollution sensitivity or vulnerability. In this work, we attempted to use data mining approach to assess groundwater pollution vulnerability in a TCE (trichloroethylene) contaminated Korean industrial site. The conventional DRASTIC method failed to describe TCE sensitivity data with a poor correlation with hydrogeological properties. Among the different data mining methods such as Artificial Neural Network (ANN), Multiple Logistic Regression (MLR), Case Base Reasoning (CBR), and Decision Tree (DT), the accuracy and consistency of Decision Tree (DT) was the best. According to the following tree analyses with the optimal DT model, the failure of the conventional DRASTIC method in fitting with TCE sensitivity data may be due to the use of inaccurate weight values of hydrogeological parameters for the study site. These findings provide a proof of concept that DT based data mining approach can be used in predicting and rule induction of groundwater TCE sensitivity without pre-existing information on weights of hydrogeological properties.

  17. Physiological and functional diversity of phenol degraders isolated from phenol-grown aerobic granules: Phenol degradation kinetics and trichloroethylene co-metabolic activities.

    PubMed

    Zhang, Yi; Tay, Joo Hwa

    2016-03-15

    Aerobic granule is a novel form of microbial aggregate capable of degrading toxic and recalcitrant substances. Aerobic granules have been formed on phenol as the growth substrate, and used to co-metabolically degrade trichloroethylene (TCE), a synthetic solvent not supporting aerobic microbial growth. Granule formation process, rate limiting factors and the comprehensive toxic effects of phenol and TCE had been systematically studied. To further explore their potential at the level of microbial population and functions, phenol degraders were isolated and purified from mature granules in this study. Phenol and TCE degradation kinetics of 15 strains were determined, together with their TCE transformation capacities and other physiological characteristics. Isolation in the presence of phenol and TCE exerted stress on microbial populations, but the procedure was able to preserve their diversity. Wide variation was found with the isolates' kinetic behaviors, with the parameters often spanning 3 orders of magnitude. Haldane kinetics described phenol degradation well, and the isolates exhibited actual maximum phenol-dependent oxygen utilization rates of 9-449 mg DO g DW(-1) h(-1), in phenol concentration range of 4.8-406 mg L(-1). Both Michaelis-Menten and Haldane types were observed for TCE transformation, with the actual maximum rate of 1.04-21.1 mg TCE g DW(-1) h(-1) occurring between TCE concentrations of 0.42-4.90 mg L(-1). The TCE transformation capacities and growth yields on phenol ranged from 20-115 mg TCE g DW(-1) and 0.46-1.22 g DW g phenol(-1), respectively, resulting in TCE transformation yields of 10-70 mg TCE g phenol(-1). Contact angles of the isolates were between 34° and 82°, suggesting both hydrophobic and hydrophilic cell surface. The diversity in the isolates is a great advantage, as it enables granules to be versatile and adaptive under different operational conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    PubMed Central

    Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

    2014-01-01

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline. PMID:24857922

  19. Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates.

    PubMed

    Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

    2014-05-22

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26×10⁷ cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline.

  20. Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors.

    PubMed

    Freeborn, Ryan A; West, Kimberlee A; Bhupathiraju, Vishvesh K; Chauhan, Sadhana; Rahm, Brian G; Richardson, Ruth E; Alvarez-Cohen, Lisa

    2005-11-01

    Two rapidly fermented electron donors, lactate and methanol, and two slowly fermented electron donors, propionate and butyrate, were selected for enrichment studies to evaluate the characteristics of anaerobic microbial consortia that reductively dechlorinate TCE to ethene. Each electron donor enrichment subculture demonstrated the ability to dechlorinate TCE to ethene through several serial transfers. Microbial community analyses based upon 16S rDNA, including terminal restriction fragment length polymorphism (T-RFLP) and clone library/sequencing, were performed to assess major changes in microbial community structure associated with electron donors capable of stimulating reductive dechlorination. Results demonstrated that five phylogenic subgroups or genera of bacteria were present in all consortia, including Dehalococcoides sp., low G+C Gram-positives (mostly Clostridium and Eubacterium sp.), Bacteroides sp., Citrobacter sp., and delta Proteobacteria (mostly Desulfovibrio sp.). Phylogenetic association indicates that only minor shifts in the microbial community structure occurred between the four alternate electron donor enrichments and the parent consortium. Inconsistent detection of Dehalococcoides spp. in clone libraries and T-RFLP of enrichment subcultures was resolved using quantitative polymerase chain reaction (Q-PCR). Q-PCR with primers specific to Dehalococcoides 16S rDNA resulted in positive detection of this species in all enrichments. Our results suggest that TCE-dechlorinating consortia can be stably maintained on a variety of electron donors and that quantities of Dehalococcoides cells detected with Dehalococcoides specific 16S rDNA primer/probe sets do not necessarily correlate well with solvent degradation rates.

  1. Laboratory-scale column study for remediation of TCE-contaminated aquifers using three-section controlled-release potassium permanganate barriers.

    PubMed

    Yuan, Baoling; Li, Fei; Chen, Yanmei; Fu, Ming-Lai

    2013-05-01

    A laboratory-scale study with a sand column was designed to simulate trichloroethylene (TCE) pollution in the aquifer environment with three-section controlled-release potassium permanganate (CRP) barriers. The main objective of this study was to evaluate the feasibility of CRP barriers in remediation of TCE in aquifers in a long-term and controlled manner. CRP particles with a 1:3 molar ratio of KMnO4 to stearic acid showed the best controlled-release properties in pure water, and the theoretical release time was 138.5 days. The results of TCE removal in the test column indicated that complete removal efficiency of TCE in a sand column by three-section CRP barriers could be reached within 15 days. The molar ratio of KMnO4 to TCE in the three-section CRP barriers was 16:1, which was much lower than 82:1 as required when KMnO4 solution is used directly to achieve complete destruction of TCE. This result revealed that the efficiency of CRP for remediation of TCE was highly improved after encapsulation.

  2. The Drosophila Translational Control Element (TCE) Is Required for High-Level Transcription of Many Genes That Are Specifically Expressed in Testes

    PubMed Central

    Anderson, Ashley K.; Ohler, Uwe; Wassarman, David A.

    2012-01-01

    To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5′ untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300–400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding

  3. The Drosophila Translational Control Element (TCE) is required for high-level transcription of many genes that are specifically expressed in testes.

    PubMed

    Katzenberger, Rebeccah J; Rach, Elizabeth A; Anderson, Ashley K; Ohler, Uwe; Wassarman, David A

    2012-01-01

    To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5' untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding the

  4. Effect of biosurfactants on the aqueous solubility of PCE and TCE.

    PubMed

    Albino, John D; Nambi, Indumathi M

    2009-12-01

    The effect of biosurfactants on the solubility of tetrachloroethylene (PCE) and trichloroethylene (TCE) was studied in batch experiments pertaining to their use for solubilization and mobilization of such contaminants in surfactant enhanced aquifer remediation. Biosurfactants, rhamnolipid and surfactin used in solubility studies were synthesized in our laboratory by Pseudomonas aeruginosa (MTCC 2297) and Bacillus subtilis (MTCC 2423), respectively. The efficiency of the biosurfactants in solubilizing the chlorinated solvents was compared to that of synthetic surfactants. The Weight Solubilization Ratio (WSR) values for solubilization of PCE and TCE by biosurfactants were very high compared to the values obtained for synthetic surfactants. Surfactin proved to be a better surfactant over rhamnolipid. The WSR of surfactin on solubilization of PCE and TCE were 3.83 and 12.5, respectively, whereas the values obtained for rhamnolipid were 2.06 and 8.36. The solubility of the chlorinated solvents by biosurfactants was considerably affected by the changes in pH. The aqueous solubility of PCE and TCE increased tremendously with decrease in pH. The solubility of biosurfactants was observed to decrease with the pH, favoring partitioning of surfactants into the chlorinated solvents in significant amounts at lower pH. The excessive accumulation of biosurfactants at the interface facilitated interfacial tension reductions resulting in higher solubility of the chlorinated solvents at pH less than 7.

  5. TCE Removal From Contaminated Soil and Ground Water

    EPA Pesticide Factsheets

    Trichloroethylene (TCE) is a halogenated aliphatic organic compound which, due to its unique properties and solvent effects, has been widely used as an ingredient in industrial cleaning solutions and as a “universal” degreasing agent.

  6. 78 FR 17777 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Tax Counseling for the Elderly (TCE) Program...: This document provides notice of the availability of Application Packages for the 2014 Tax Counseling... for submitting an application package to the IRS for the Tax Counseling for the Elderly (TCE) Program...

  7. Oxidative degradation and toxicity reduction of trichloroethylene (TCE) in water using TiO2/solar light: comparative study of TiO2 slurry and immobilized systems.

    PubMed

    Cho, Il-Hyoung; Park, Jae-Hong; Kim, Young-Gyu

    2005-01-01

    A solar-driven, photocatalyzed degradation system using TiO2 slurry and immobilized systems was constructed and applied to the degradation of trichloroethylene (TCE) contaminated water using TiO2 with solar light. The experiments were carried out under constant weather conditions on a sunny day. Solar photocatalytic treatment efficiency of the solar light/TiO2 slurry system was compared with that of the solar light/TiO2 immobilized system. The operation of the solar light/TiO2 slurry and immobilized systems showed 100% (TiO2 slurry system), 80% (TiO2 immobilized system) degradation of the TCE after 6 h, with a chloride production yield of approximately 89% (TiO2 slurry system), 72% (TiO2 immobilized system). The oxidants such as H2O2 and S2O8(2-) in the TiO2 slurry and immobilized systems increased TCE degradation rate by suppressing the electron/hole recombination process. The degradation rate and relative toxicity reduction of TCE followed the order of solar light/TiO2 slurry + S2O8(2-) > solar light/TiO2 slurry + H2O2 > solar light/TiO2 immobilized + S2O8(2-) > solar light/TiO2 slurry > solar light/TiO2 immobilized + H2O2 > solar light/TiO2 immobilized. Finally, following to the toxicity result, the acute toxicity was reduced by below toxicity endpoint (EC50 concentration) following the treatment. It means that many of the metabolites of TCE reduction are less toxic to Vibrio fischeri than the parent compound. Based on these results, TCE can be efficiently and safely treated in a solar-driven, photocatalyzed degradation system.

  8. Editor's Highlight: High-Throughput Functional Genomics Identifies Modulators of TCE Metabolite Genotoxicity and Candidate Susceptibility Genes.

    PubMed

    De La Rosa, Vanessa Y; Asfaha, Jonathan; Fasullo, Michael; Loguinov, Alex; Li, Peng; Moore, Lee E; Rothman, Nathaniel; Nakamura, Jun; Swenberg, James A; Scelo, Ghislaine; Zhang, Luoping; Smith, Martyn T; Vulpe, Chris D

    2017-11-01

    Trichloroethylene (TCE), an industrial chemical and environmental contaminant, is a human carcinogen. Reactive metabolites are implicated in renal carcinogenesis associated with TCE exposure, yet the toxicity mechanisms of these metabolites and their contribution to cancer and other adverse effects remain unclear. We employed an integrated functional genomics approach that combined functional profiling studies in yeast and avian DT40 cell models to provide new insights into the specific mechanisms contributing to toxicity associated with TCE metabolites. Genome-wide profiling studies in yeast identified the error-prone translesion synthesis (TLS) pathway as an import mechanism in response to TCE metabolites. The role of TLS DNA repair was further confirmed by functional profiling in DT40 avian cell lines, but also revealed that TLS and homologous recombination DNA repair likely play competing roles in cellular susceptibility to TCE metabolites in higher eukaryotes. These DNA repair pathways are highly conserved between yeast, DT40, and humans. We propose that in humans, mutagenic TLS is favored over homologous recombination repair in response to TCE metabolites. The results of these studies contribute to the body of evidence supporting a mutagenic mode of action for TCE-induced renal carcinogenesis mediated by reactive metabolites in humans. Our approach illustrates the potential for high-throughput in vitro functional profiling in yeast to elucidate toxicity pathways (molecular initiating events, key events) and candidate susceptibility genes for focused study. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Improving the sweeping efficiency of permanganate into low permeable zones to treat TCE: experimental results and model development.

    PubMed

    Chokejaroenrat, Chanat; Kananizadeh, Negin; Sakulthaew, Chainarong; Comfort, Steve; Li, Yusong

    2013-11-19

    The residual buildup and treatment of dissolved contaminants in low permeable zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate into LPZs to treat dissolved-phase TCE. This was accomplished by conducting transport experiments that quantified the ability of xanthan-MnO4(-) solutions to penetrate and cover (i.e., sweep) an LPZ that was surrounded by transmissive sands. By incorporating the non-Newtonian fluid xanthan with MnO4(-), penetration of MnO4(-) into the LPZ improved dramatically and sweeping efficiency reached 100% in fewer pore volumes. To quantify how xanthan improved TCE removal, we spiked the LPZ and surrounding sands with (14)C-lableled TCE and used a multistep flooding procedure that quantified the mass of (14)C-TCE oxidized and bypassed during treatment. Results showed that TCE mass removal was 1.4 times greater in experiments where xanthan was employed. Combining xanthan with MnO4(-) also reduced the mass of TCE in the LPZ that was potentially available for rebound. By coupling a multiple species reactive transport model with the Brinkman equation for non-Newtonian flow, the simulated amount of (14)C-TCE oxidized during transport matched experimental results. These observations support the use of xanthan as a means of enhancing MnO4(-) delivery into LPZs for the treatment of dissolved-phase TCE.

  10. Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model

    NASA Astrophysics Data System (ADS)

    Borges Sebastião, Israel; Alexeenko, Alina

    2016-10-01

    The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.

  11. Investigating the efficiency of microscale zero valent iron-based in situ reactive zone (mZVI-IRZ) for TCE removal in fresh and saline groundwater.

    PubMed

    Xin, Jia; Tang, Fenglin; Yan, Jing; La, Chenghong; Zheng, Xilai; Liu, Wei

    2018-06-01

    In this study, long-term column experiments were conducted in three media (Milli-Q water, fresh groundwater and saline groundwater) to evaluate the trichloroethylene (TCE) removal performance, electron efficiency (EE), and permeability loss of a microscale zero valent iron-based in situ reactive zone (mZVI-IRZ) under different field conditions. A potential scenario of in situ contamination plume remediation was simulated by adding a TCE-containing influent to columns filled with mixed mZVI particles and silica sand at a flow rate of 4 mL h -1 for 6 months. Results showed that, over the course of 100 pore volumes (PV) for 6 months, mZVI displayed the lowest TCE breakthrough rate (0.0026 PV -1 ) and highest TCE removal capacity (43.72 mg) but the poorest EE value (25-40%) in saline groundwater. Mineral characterization (SEM, XRD), ion concentration analysis, and geochemical modeling corroborated that different dominant solid precipitates (magnetite, siderite, dolomite/magnetite) were identified inside the three columns. The column containing saline groundwater experienced the greatest porosity loss, approximately 30.23 mL over the course of 100 PVs. This study illustrates that, to improve designs of mZVI-IRZs, EE as well as hydraulic conductivity should be taken into consideration for predictive evaluations. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A Field Trial of TCE Phytoremediation by Genetically Modified Poplars Expressing Cytochrome P450 2E1.

    PubMed

    Legault, Emily K; James, C Andrew; Stewart, Keith; Muiznieks, Indulis; Doty, Sharon L; Strand, Stuart E

    2017-06-06

    A controlled field study was performed to evaluate the effectiveness of transgenic poplars for phytoremediation. Three hydraulically contained test beds were planted with 12 transgenic poplars, 12 wild type (WT) poplars, or left unplanted, and dosed with equivalent concentrations of trichloroethylene (TCE). Removal of TCE was enhanced in the transgenic tree bed, but not to the extent of the enhanced removal observed in laboratory studies. Total chlorinated ethene removal was 87% in the CYP2E1 bed, 85% in the WT bed, and 34% in the unplanted bed in 2012. Evapotranspiration of TCE from transgenic leaves was reduced by 80% and diffusion of TCE from transgenic stems was reduced by 90% compared to WT. Cis-dichloroethene and vinyl chloride levels were reduced in the transgenic tree bed. Chloride ion accumulated in the planted beds corresponding to the TCE loss, suggesting that contaminant dehalogenation was the primary loss fate.

  13. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).

    PubMed

    Chang, Y C; Huang, S C; Chen, K F

    2014-01-01

    In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered.

  14. Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models

    NASA Astrophysics Data System (ADS)

    Anaya, A. A.; Padilla, I. Y.

    2012-12-01

    indicates a highly heterogeneous system resulting in large preferential flow components. The distributions are highly correlated with statistically-developed spatial flow models. High degree of tailing in breakthrough curves indicate significant amount of mass limitations, particularly in diffuse flow regions. Higher flow rates in the system result in increasing preferential flow region volumes, but lower mass transfer limitations. Future work will involve experiments with non-aqueous phase liquid TCE, DEHP, and a mixture of these, and geo-temporal statistical modeling. This work is supported by the U.S. Department of Energy, Savannah River (Grant Award No. DE-FG09-07SR22571), and the National Institute of Environmental Health Sciences (NIEHS, Grant Award No. P42ES017198).

  15. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.

    PubMed

    Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

    2010-08-01

    Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.

  16. System for In-Situ Detection of Plant Exposure to Trichloroethylene (TCE)

    NASA Technical Reports Server (NTRS)

    Newman, Lee A. (Inventor); Lewis, Mark D. (Inventor); Anderson, Daniel J. (Inventor); Keith, Amy G. (Inventor)

    2013-01-01

    A system detects a plant's exposure to trichloroethylene (TCE) through plant leaf imaging. White light impinging upon a plant's leaf interacts therewith to produce interacted light. A detector is positioned to detect at least one spectral band of the interacted light. A processor coupled to the detector performs comparisons between photonic energy of the interacted light at the one or more spectral bands thereof and reference data defining spectral responses indicative of leaf exposure to TCE. An output device coupled to the processor provides indications of the comparisons.

  17. Impact of FeS Mineralogy on TCE Degradation

    EPA Science Inventory

    Iron- and sulfate-reducing conditions are often encountered in permeable reactive barrier (PRB) systems that are constructed to remove TCE from groundwater, which usually leads to the accumulation of FeS mineral phases in the matrix of the PRB. Poorly crystalline mackinawite (Fe...

  18. 75 FR 25319 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Tax Counseling for the Elderly (TCE) Program...: Correction to a notice. SUMMARY: This document contains a correction to a notice of the Tax Counseling for... application packages for the 2011 Tax Counseling for the Elderly (TCE) Program. FOR FURTHER INFORMATION...

  19. The influence of different geotechnically relevant amendments on the reductive degradation of TCE by nZVI

    NASA Astrophysics Data System (ADS)

    Freitag, Peter; Schöftner, Philipp; Waldner, Georg; Reichenauer, Thomas G.; Nickel, Claudia; Spitz, Marcus; Dietzel, Martin

    2014-05-01

    Trichloroethylene (TCE) was widely used as a cleaning and degreasing agent. Companies needing these agents were often situated in or close to built up areas, so spillage led to contaminated sites which now can only be remediated using in situ techniques. The situation is compounded by the fact that TCE tends to seep through ground water bodies forming pools at the bottom of the aquifer. When reacting with TCE, nanoscale zero valent iron (nZVI) is known to reduce it into non-toxic substances. The difficulty is to bring it in contact with the pollutant. Attempts using passive insertion into the groundwater via wells yielded mixed results. Reasons for this are that ZVI tends to coagulate, to sediment and to adsorb on the matrix of the aquifer. Also, in inhomogeneous aquifers a passive application of nZVI can be difficult and might not bring the desired results, due to existence of preferential flow paths. A possible solution to this problem is the physical in situ mixing of ZVI into the contaminant source. This can, in principle, be done by adapting jet grouting - a method that uses a high pressure slurry jet, consisting of water and geotechnical additives ("binders"), to mix and compact zones ("columns") in soil. These columns are commonly used to solve foundation problems but can also be used to solve the problem of delivering nZVI to TCE source zones. This paper examines the influence binders have on the degradation reaction between TCE and nZVI. The necessity of these binders is explained by the fact that the subsoil structure is rearranged during the jetting process leading to subsidence on the surface. These subsidences could result in damage to neighbouring structures. A series of batch experiments was conducted in this study. Contaminated groundwater was brought into contact with samples of slurries commonly used in geotechnical applications. We tested the effects of concresole, bentonite, zeolithe, fly ash, slag sand and cement on the kinetics of TCE

  20. Effects of different electron donor feeding patterns on TCE reductive dechlorination performance.

    PubMed

    Panagiotakis, I; Antoniou, K; Mamais, D; Pantazidou, M

    2015-03-01

    This study investigates how the feeding pattern of e(-) donors might affect the efficiency of enhanced in situ bioremediation in TCE-contaminated aquifers. A series of lab-scale batch experiments were conducted using butyrate or hydrogen gas (H2) as e(-) donor and a TCE-dechlorinating microbial consortium dominated by Dehalococcoides spp. The results of these experiments demonstrate that butyrate is similarly efficient for TCE dechlorination whether it is injected once or in doses. Moreover, the present work indicates that the addition of butyrate in great excess cannot be avoided, since it most likely provide, even indirectly, significant part of the H2 required. Furthermore, methanogenesis appears to be the major ultimate e(-) accepting process in all experiments, regardless the e(-) donor used and the feeding pattern. Finally, the timing of injection of H2 seems to significantly affect dechlorination performance, since the injection during the early stages improves VC-to-ETH dechlorination and reduce methanogenic activity.

  1. An Approach Using Gas Monitoring to Find the Residual TCE Location in the Unsaturated Zone of Woosan Industrial Complex (WIC), Korea

    NASA Astrophysics Data System (ADS)

    Koh, Y.; Lee, S.; Yang, J.; Lee, K.

    2012-12-01

    An area accommodating various industrial facilities has fairly high probability of groundwater contamination with multiple chlorinated solvents such as trichloroethene (TCE), carbon tetrachloride (CT), and chloroform (CF). Source tracing of chlorinated solvents in the unsaturated zone is an essential procedure for the management and remediation of contaminated area. From the previous study on seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume, the existence of residual DNAPLs at or above the water table has proved. Since TCE is one of the frequently detected VOCs (Volatile Organic Compounds) in groundwater, residual TCE can be detected by gas monitoring. Therefore, monitoring of temporal and spatial variations in the gas phase TCE contaminant at an industrial complex in Wonju, Korea, were used to find the residual TCE locations. As pilot tests, TCE gas samples collected in the unsaturated zone at 4 different wells were analyzed using SPME (Solid Phase MicroExtraction) fiber and Gas Chromatography (GC). The results indicated that detecting TCE in gas phase was successful from these wells and TCE analysis on gas samples, collected from the unsaturated zone, will be useful for source area characterization. However, some values were too high to doubt the accuracy of the current method, which needs a preliminary lab test with known concentrations. The modified experiment setups using packer at different depths are in process to find residual TCE locations in the unsaturated zone. Meanwhile, several PVD (polyethylene-membrane Passive Vapor Diffusion) samplers were placed under water table to detect VOCs by equilibrium between air in the vial and VOCs in pore water.

  2. Assessment of trichloroethylene (TCE) exposure in murine strains genetically-prone and non-prone to develop autoimmune disease.

    PubMed

    Keil, Deborah E; Peden-Adams, Margie M; Wallace, Stacy; Ruiz, Phillip; Gilkeson, Gary S

    2009-04-01

    There is increasing laboratory and epidemiologic evidence relating exposure to trichloroethylene (TCE) with autoimmune disease including scleroderma and lupus. New Zealand Black/New Zealand White (NZBWF1) and B6C3F1 mice were exposed to TCE (0, 1, 400 or 14,000 ppb) via drinking water for 27 or 30 weeks, respectively. NZBWF1 mice spontaneously develop autoimmune disease while B6C3F1 mice, a standard strain used in immunotoxicology testing, are not genetically prone to develop autoimmune disease. During the TCE exposure period, serum levels of total IgG, and autoantibodies (anti-ssDNA, -dsDNA, and -glomerular antigen [GA]) were monitored. At the termination of the study, renal pathology, natural killer (NK) cell activity, total IgG levels, autoantibody production, T-cell activation, and lymphocytic proliferative responses were evaluated. TCE did not alter NK cell activity, or T- and B-cell proliferation in either strain. Numbers of activated T-cells (CD4+/CD44+) were increased in the B6C3F1 mice but not in the NZBWF1 mice. Renal pathology, as indicated by renal score, was significantly increased in the B6C3F1, but not in the NZBWF1 mice. Serum levels of autoantibodies to dsDNA and ssDNA were increased at more time points in B6C3F1, as compared to the NZBWF1 mice. Anti-GA autoantibodies were increased by TCE treatment in early stages of the study in NZBWF1 mice, but by 23 weeks of age, control levels were comparable to those of TCE-exposed animals. Serum levels anti-GA autoantibodies in B6C3F1 were not affected by TCE exposure. Overall, these data suggest that TCE did not contribute to the progression of autoimmune disease in autoimmune-prone mice during the period of 11-36 weeks of age, but rather lead to increased expression of markers associated with autoimmune disease in a non-genetically prone mouse strain.

  3. Enhancement of TCE removal by a static magnetic field in a fungal biotrickling filter.

    PubMed

    Quan, Yue; Wu, Hao; Guo, Chunyu; Han, Yu; Yin, Chengri

    2018-07-01

    A fungal biotrickling filter (BTF) was employed to treat trichloroethylene (TCE) gas under different magnetic field intensities (MFIs). When the TCE inlet concentrations were approximately 370, 500-900, and 1000 mg/m 3 , the removal performances followed the order: MFI 20.0 mT > MFI 60.0 mT > MFI 80.0 mT > MFI 0 mT. In particular, at a TCE inlet concentration of 1000 mg/m 3 , MFI 20.0 mT was significantly better than MFI 0 mT performance. The corresponding removal efficiencies and maximum elimination capacities were 52.9%, 4854.1 mg/m 3  h and 39.4%, 3594.8 mg/m 3  h, respectively. BTF was shut down completely for 7 days and rapidly recovered in 6-10 days. High-throughput sequencing indicated that MF significantly affected the fungal community and significantly improved the relative abundance of the phylum Ascomycota, achieving the highest abundance of Ascomycota at MFI 20.0. These results indicated that a lower MFI can efficiently improve TCE removal performance in a fungal BTF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Feasibility study of Tethered Capsule Endomicroscopy (TCE) deployment in the small intestine (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Otuya, David O.; Verma, Yogesh; Dong, Jing; Gora, Michalina J.; Tearney, Guillermo J.

    2017-02-01

    Environmental enteric dysfunction (EED) is a poorly understood disease of the small intestine that causes nutrient malabsorption in children, predominantly from low and middle income countries. The clinical importance of EED is neurological and growth stunting that remains as the child grows into adulthood. Tethered capsule endomicroscopy (TCE) has the potential to improve the understanding of EED and could be used to determine the effectiveness of EED interventions. TCE in the adult esophagus and the duodenum has been demonstrated for Barrett`s esophagus and celiac disease diagnosis, respectively. While adult subjects can independently swallow these capsules, it is likely that infants will not, and, as a result, new strategies for introducing these devices in young children aged 0.5-2 years need to be investigated. Our first approach will be to introduce the TCE devices in infants under the aid of endoscopic guidance. To determine the most effective method, we have tested endoscopic approaches for introducing TCE devices into the small intestine of living swine. These methods will be compared and contrasted to discuss the most effective means for endoscopic tethered capsule introduction into the small intestine.

  5. A Planet Hunters Search of the Kepler TCE Inventory

    NASA Astrophysics Data System (ADS)

    Schwamb, Meg; Lintott, Chris; Fischer, Debra; Smith, Arfon; Boyajian, Tabetha; Brewer, John; Giguere, Matt; Lynn, Stuart; Schawinski, Kevin; Simpson, Rob; Wang, Ji

    2013-07-01

    NASA's Kepler spacecraft has spent the past 4 years monitoring ~160,000 stars for the signatures of transiting exoplanets. Planet Hunters (http://www.planethunters.org), part of the Zooniverse (http://www.zooniverse.org) collection of citizen science projects, uses the power of human pattern recognition via the World Wide Web to identify transits in the Kepler public data. We have demonstrated the success of a citizen science approach with the project's discoveries including PH1 b, a transiting circumbinary planet in a four star system., and over 20 previously unknown planet candidates. The Kepler team has released the list of 18,406 potential transit signals or threshold-crossing events (TCEs) identified in Quarters 1-12 (~1000 days) by their automated Transit Planet Search (TPS) algorithm. The majority of these detections found by TPS are triggered by transient events and are not valid planet candidates. To identify planetary candidates from the detected TCEs, a human review of the validation reports, generated by the Kepler pipeline for each TCE, is performed by several Kepler team members. We have undertaken an independent crowd-sourced effort to perform a systematic search of the Kepler Q1-12 TCE list. With the Internet we can obtain multiple assessments of each TCE's data validation report. Planet Hunters volunteers evaluate whether a transit is visible in the Kepler light curve folded on the expected period identified by TPS. We present the first results of this analysis.

  6. IRIS Toxicological Review of Trichloroethylene (TCE) (External Review Draft)

    EPA Science Inventory

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Trichloroethylene (TCE) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  7. Evaluation of areas of contribution and water quality at receptors related to TCE plumes in a valley fill aquifer system

    NASA Astrophysics Data System (ADS)

    Lefebvre, R.; Ouellon, T.; Blais, V.; Ballard, J.; Brunet, P.

    2009-05-01

    The Val-Belair sector is located within Quebec City, about 20 km from downtown. Potential source zones and TCE plumes in groundwater are found at the western limit of the sector. At the center of the sector, four municipal water supply wells pump groundwater from an aquifer in surficial sediments where dissolved TCE is found. Private residential wells are also found in the sector. The Nelson River and its tributaries drain the sector and flows from west to east. New characterization results and available data were used to develop a numerical model of groundwater flow and mass transport to 1) define geological and hydrogeological contexts, 2) delineate the distribution of TCE and identify its migration paths and 3) evaluate the effect of TCE on the water quality of receptors (Nelson River, municipal and residential wells). In the sector, 30 to 40 m of sediments filling a buried valley form two aquifers separated by an aquitard: an unconfined deltaic aquifer at surface, an underlying silty prodeltaic aquitard and a semi-confined aquifer of deltaic sands and diamictons. Groundwater exchanges between the aquifers are generally downward through the aquitard, but near the Nelson River there is upward flow. Monitoring has led to sparse TCE detections in the Nelson River, regular detections at a mean value of 0.62 μg/L at one municipal well, occasional detections at another well and no detection at the other two wells. No TCE was detected in private wells, which are located outside the migration paths of TCE plumes. The context and numerical modeling with particle tracking and mass transport show the relationships between the two source zones, three TCE plumes and three receptors. Municipal wells pump in the semi-confined aquifer at a level appearing sustainable, but use most of the recharge in the sub-watershed. Areas of contribution to the wells thus cover almost all the study area with a complex pattern. These wells compete with the effect of the Nelson River to drain

  8. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    PubMed

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    PubMed

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  10. Exposure of Daphnia magna to trichloroethylene (TCE) and vinyl chloride (VC): evaluation of gene transcription, cellular activity, and life-history parameters.

    PubMed

    Houde, Magali; Douville, Mélanie; Gagnon, Pierre; Sproull, Jim; Cloutier, François

    2015-06-01

    Trichloroethylene (TCE) is a ubiquitous contaminant classified as a human carcinogen. Vinyl chloride (VC) is primarily used to manufacture polyvinyl chloride and can also be a degradation product of TCE. Very few data exist on the toxicity of TCE and VC in aquatic organisms particularly at environmentally relevant concentrations. The aim of this study was to evaluate the sub-lethal effects (10 day exposure; 0.1; 1; 10 µg/L) of TCE and VC in Daphnia magna at the gene, cellular, and life-history levels. Results indicated impacts of VC on the regulation of genes related to glutathione-S-transferase (GST), juvenile hormone esterase (JHE), and the vitelline outer layer membrane protein (VMO1). On the cellular level, exposure to 0.1, 1, and 10 µg/L of VC significantly increased the activity of JHE in D. magna and TCE increased the activity of chitinase (at 1 and 10 µg/L). Results for life-history parameters indicated a possible tendency of TCE to affect the number of molts at the individual level in D. magna (p=0.051). Measurement of VG-like proteins using the alkali-labile phosphates (ALP) assay did not show differences between TCE treated organisms and controls. However, semi-quantitative measurement using gradient gel electrophoresis (213-218 kDa) indicated significant decrease in VG-like protein levels following exposure to TCE at all three concentrations. Overall, results indicate effects of TCE and VC on genes and proteins related to metabolism, reproduction, and growth in D. magna. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  11. Use of statistical tools to evaluate the reductive dechlorination of high levels of TCE in microcosm studies.

    PubMed

    Harkness, Mark; Fisher, Angela; Lee, Michael D; Mack, E Erin; Payne, Jo Ann; Dworatzek, Sandra; Roberts, Jeff; Acheson, Carolyn; Herrmann, Ronald; Possolo, Antonio

    2012-04-01

    A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study was designed as a fractional factorial experiment involving 177 bottles distributed between four industrial laboratories and was used to assess the impact of six electron donors, bioaugmentation, addition of supplemental nutrients, and two TCE levels (0.57 and 1.90 mM or 75 and 250 mg/L in the aqueous phase) on TCE dechlorination. Performance was assessed based on the concentration changes of TCE and reductive dechlorination degradation products. The chemical data was evaluated using analysis of variance (ANOVA) and survival analysis techniques to determine both main effects and important interactions for all the experimental variables during the 203-day study. The statistically based design and analysis provided powerful tools that aided decision-making for field application of this technology. The analysis showed that emulsified vegetable oil (EVO), lactate, and methanol were the most effective electron donors, promoting rapid and complete dechlorination of TCE to ethene. Bioaugmentation and nutrient addition also had a statistically significant positive impact on TCE dechlorination. In addition, the microbial community was measured using phospholipid fatty acid analysis (PLFA) for quantification of total biomass and characterization of the community structure and quantitative polymerase chain reaction (qPCR) for enumeration of Dehalococcoides organisms (Dhc) and the vinyl chloride reductase (vcrA) gene. The highest increase in levels of total biomass and Dhc was observed in the EVO microcosms, which correlated well with the dechlorination results. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. In situ redox manipulation of subsurface sediments from Fort Lewis, Washington: Iron reduction and TCE dechlorination mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JE Szecsody; JS Fruchter; DS Sklarew

    2000-03-21

    Pacific Northwest National Laboratory (PNNL) conducted a bench-scale study to determine how effective chemically treated Ft. Lewis sediments can degrade trichloroethylene (TCE). The objectives of this experimental study were to quantify: (1) sediment reduction and oxidation reactions, (2) TCE degradation reactions, and (3) other significant geochemical changes that occurred. Sediment reduction and oxidation were investigated to determine the mass of reducible iron in the Ft. Lewis sediments and the rate of this reduction and subsequent oxidation at different temperatures. The temperature dependence was needed to be able to predict field-scale reduction in the relatively cold ({approximately}11 C) Ft. Lewis aquifer.more » Results of these experiments were used in conjunction with other geochemical and hydraulic characterization to design the field-scale injection experiment and predict barrier longevity. For example, the sediment reduction rate controls the amount of time required for the dithionite solution to fully react with sediments. Sediment oxidation experiments were additionally conducted to determine the oxidation rate and provide a separate measure of the mass of reduced iron. Laboratory experiments that were used to meet these objectives included: (1) sediment reduction in batch (static) systems, (2) sediment reduction in 1-D columns, and (3) sediment oxidation in 1-D columns. Multiple reaction modeling was conducted to quantify the reactant masses and reaction rates.« less

  13. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation

    NASA Astrophysics Data System (ADS)

    Pierce, Amanda A.; Chapman, Steven W.; Zimmerman, Laura K.; Hurley, Jennifer C.; Aravena, Ramon; Cherry, John A.; Parker, Beth L.

    2018-05-01

    .e., Snap Sampler™) and contaminant mass stored in the low permeability rock matrix (i.e., CORE-DFN™). Simulations using a discrete fracture-matrix (DFN-M) numerical model capable of rigorously simulating flow and transport in both the fractures and matrix, including interactions, show that even slow, first-order degradation rates (i.e., 5- to 20-year half-lives) informed by site-derived parameters can contribute strongly to natural attenuation, resulting in TCE plumes that become stationary in space and might even retreat after 50 to 100 years, if the DNAPL sources become depleted due to the combination of diffusion and degradation processes.

  14. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.

    PubMed

    Pierce, Amanda A; Chapman, Steven W; Zimmerman, Laura K; Hurley, Jennifer C; Aravena, Ramon; Cherry, John A; Parker, Beth L

    2018-05-01

    .e., Snap Sampler™) and contaminant mass stored in the low permeability rock matrix (i.e., CORE-DFN™). Simulations using a discrete fracture-matrix (DFN-M) numerical model capable of rigorously simulating flow and transport in both the fractures and matrix, including interactions, show that even slow, first-order degradation rates (i.e., 5- to 20-year half-lives) informed by site-derived parameters can contribute strongly to natural attenuation, resulting in TCE plumes that become stationary in space and might even retreat after 50 to 100 years, if the DNAPL sources become depleted due to the combination of diffusion and degradation processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater.

    PubMed

    Davie, Matthew G; Cheng, Hefa; Hopkins, Gary D; Lebron, Carmen A; Reinhard, Martin

    2008-12-01

    To transition catalytic reductive dechlorination (CRD) into practice, it is necessary to demonstrate the effectiveness, robustness, and economic competitiveness of CRD-based treatment systems. A CRD system scaled up from previous laboratory studies was tested for remediating groundwater contaminated with 500-1200 microg L(-1) trichloroethylene (TCE) at Edwards Air Force Base (AFB), California. Groundwater was pumped from a treatment well at 2 gal min(-1), amended with hydrogen to 0.35 mg L(-1) and contacted for 2.3 min with 20 kg eggshell-coated Pd on alumina beads (2% Pd by wt) packed in a fixed-bed reactor, and then returned to the aquifer. Operation was continuous for 23 h followed a 1 h regeneration cycle. After regeneration, TCE removal was 99.8% for 4 to 9 h and then declined to 98.3% due to catalyst deactivation. The observed catalyst deactivation was tentatively attributed to formation of sulfidic compounds; modeling of catalyst deactivation kinetics suggests the presence of sulfidic species equivalent to 2-4 mg L(-1) hydrogen sulfide in the reactor water. Over the more than 100 day demonstration period, TCE concentrations in the treated groundwater were reduced by >99% to an average concentration of 4.1 microg L(-1). The results demonstrate CRD as a viable treatment alternative technically and economically competitive with activated carbon adsorption and other conventional physicochemical treatmenttechnologies.

  16. Use Of Statistical Tools To Evaluate The Reductive Dechlorination Of High Levels Of TCE In Microcosm Studies

    EPA Science Inventory

    A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study ...

  17. The Impact of FeS Mineralogy on TCE Degradation

    EPA Science Inventory

    Iron- and sulfate-reducing conditions are often encountered in permeable reactive barrier (PRB) systems that are constructed to remove TCE from groundwater, which usually leads to the accumulation of FeS mineral phases in the matrix of the PRB. Poorly crystalline mackinawite (Fe...

  18. The Microbial Degradation of TCE (Trichloroethylene).

    DTIC Science & Technology

    1987-04-01

    enrichment studies . All the sample flasks , including the controls, contained 14C in the 14C02 trap. The 14C measured in the control flask 14C02...layer compared to the controls. These data again suggested that TCE was being biologically modified. Those flasks flushed with air gave the first hard...only slightly soluble in water. All culture flasks were incubated at 250C for a minimum of a week. Results in the carbon and nitrogen source studies are

  19. IRIS Toxicological Review of Trichloroethylene (TCE) ...

    EPA Pesticide Factsheets

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Trichloroethylene (TCE) that when finalized will appear on the Integrated Risk Information System (IRIS) database. The purpose of this Toxicological Review is to provide scientific support and rationale for the hazard and dose-response assessment in IRIS pertaining to chronic exposure to trichloroethylene. It is not intended to be a comprehensive treatise on the chemical or toxicological nature of trichloroethylene.

  20. A global historical data set of tropical cyclone exposure (TCE-DAT)

    NASA Astrophysics Data System (ADS)

    Geiger, Tobias; Frieler, Katja; Bresch, David N.

    2018-01-01

    Tropical cyclones pose a major risk to societies worldwide, with about 22 million directly affected people and damages of USD 29 billion on average per year over the last 20 years. While data on observed cyclones tracks (location of the center) and wind speeds are publicly available, these data sets do not contain information about the spatial extent of the storm and people or assets exposed. Here, we apply a simplified wind field model to estimate the areas exposed to wind speeds above 34, 64, and 96 knots (kn). Based on available spatially explicit data on population densities and gross domestic product (GDP) we estimate (1) the number of people and (2) the sum of assets exposed to wind speeds above these thresholds accounting for temporal changes in historical distribution of population and assets (TCE-hist) and assuming fixed 2015 patterns (TCE-2015). The associated spatially explicit and aggregated country-event-level exposure data (TCE-DAT) cover the period 1950 to 2015 and are freely available at https://doi.org/10.5880/pik.2017.011 (Geiger at al., 2017c). It is considered key information to (1) assess the contribution of climatological versus socioeconomic drivers of changes in exposure to tropical cyclones, (2) estimate changes in vulnerability from the difference in exposure and reported damages and calibrate associated damage functions, and (3) build improved exposure-based predictors to estimate higher-level societal impacts such as long-term effects on GDP, employment, or migration. We validate the adequateness of our methodology by comparing our exposure estimate to estimated exposure obtained from reported wind fields available since 1988 for the United States. We expect that the free availability of the underlying model and TCE-DAT will make research on tropical cyclone risks more accessible to non-experts and stakeholders.

  1. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.

    PubMed

    Liang, S H; Chen, K F; Wu, C S; Lin, Y H; Kao, C M

    2014-05-01

    The objective of this study was to develop a controlled-oxidant-release technology combining in situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) concepts to remediate trichloroethene (TCE)-contaminated groundwater. In this study, a potassium permanganate (KMnO4)-releasing composite (PRC) was designed for KMnO4 release. The components of this PRC included polycaprolactone (PCL), KMnO4, and starch with a weight ratio of 1.14:2:0.96. Approximately 64% (w/w) of the KMnO4 was released from the PRC after 76 days of operation in a batch system. The results indicate that the released KMnO4 could oxidize TCE effectively. The results from a column study show that the KMnO4 released from 200 g of PRC could effectively remediate 101 pore volumes (PV) of TCE-contaminated groundwater (initial TCE concentration = 0.5 mg/L) and achieve up to 95% TCE removal. The effectiveness of the PRC system was verified by the following characteristics of the effluents collected after the PRC columns (barrier): (1) decreased TCE concentrations, (2) increased ORP and pH values, and (3) increased MnO2 and KMnO4 concentrations. The results of environmental scanning electron microscope (ESEM) analysis show that the PCL and starch completely filled up the pore spaces of the PRC, creating a composite with low porosity. Secondary micro-scale capillary permeability causes the KMnO4 release, mainly through a reaction-diffusion mechanism. The PRC developed could be used as an ISCO-based passive barrier system for plume control, and it has the potential to become a cost-effective alternative for the remediation of chlorinated solvent-contaminated groundwater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Physiological Opportunism of Desulfitobacterium hafniense Strain TCE1 towards Organohalide Respiration with Tetrachloroethene

    PubMed Central

    Duret, Aurélie; Holliger, Christof

    2012-01-01

    Desulfitobacterium hafniense strain TCE1 is capable of metabolically reducing tetra- and trichloroethenes by organohalide respiration. A previous study revealed that the pce gene cluster responsible for this process is located on an active composite transposon, Tn-Dha1. In the present work, we investigated the effects on the stability of the transposon during successive subcultivations of strain TCE1 in a medium depleted of tetrachloroethene. At the physiological level, an increased fitness of the population was observed after 9 successive transfers and was correlated with a decrease in the level of production of the PceA enzyme. The latter observation was a result of the gradual loss of the pce genes in the population of strain TCE1 and not of a regulation mechanism, as was postulated previously for a similar phenomenon described for Sulfurospirillum multivorans. A detailed molecular analysis of genetic rearrangements occurring around Tn-Dha1 showed two independent but concomitant events, namely, the transposition of the first insertion sequence, ISDha1-a, and homologous recombination across identical copies of ISDha1 flanking the transposon. A new model is proposed for the genetic heterogeneity around Tn-Dha1 in D. hafniense strain TCE1, along with some considerations for the cleavage mechanism mediated by the transposase TnpA1 encoded by ISDha1. PMID:22729540

  3. Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.

    PubMed

    Christenson, Mark D; Kambhu, Ann; Comfort, Steve D

    2012-10-01

    Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100-600 μg L(-1)) was identified in a low permeable silty-clay aquifer (K(h)=0.5 md(-1)) that was within 6m of ground surface. To treat the TCE, we manufactured slow-release potassium permanganate candles (SRPCs) that were 91.4 cm long and either 5. cm or 7.6 cm in dia. For comparison, we inserted equal masses of SRPCs (7.6-cm versus 5.1-cm dia) into the low permeable aquifer in staggered rows that intersected the TCE plume. The 5.1-cm dia candles were inserted using direct push rods while the 7.6-cm SRPCs were placed in 10 permanent wells. Pneumatic circulators that emitted small air bubbles were placed below the 7.6-cm SRPCs in the second year. Results 15 months after installation showed significant TCE reductions in the 7.6-cm candle treatment zone (67-85%) and between 10% and 66% decrease in wells impacted by the direct push candles. These results support using slow-release permanganate candles as a means of treating chlorinated solvents in low permeable aquifers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Microfabricated gas chromatograph for on-site determinations of TCE in indoor air arising from vapor intrusion. 2. Spatial/temporal monitoring.

    PubMed

    Kim, Sun Kyu; Burris, David R; Bryant-Genevier, Jonathan; Gorder, Kyle A; Dettenmaier, Erik M; Zellers, Edward T

    2012-06-05

    We demonstrate the use of two prototype Si-microfabricated gas chromatographs (μGC) for continuous, short-term measurements of indoor trichloroethylene (TCE) vapor concentrations related to the investigation of TCE vapor intrusion (VI) in two houses. In the first house, with documented TCE VI, temporal variations in TCE air concentrations were monitored continuously for up to 48 h near the primary VI entry location under different levels of induced differential pressure (relative to the subslab). Concentrations ranged from 0.23 to 27 ppb by volume (1.2-150 μg/m(3)), and concentration trends agreed closely with those determined from concurrent reference samples. The sensitivity and temporal resolution of the measurements were sufficiently high to detect transient fluctuations in concentration resulting from short-term changes in variables affecting the extent of VI. Spatial monitoring showed a decreasing TCE concentration gradient with increasing distance from the primary VI entry location. In the second house, with no TCE VI, spatial profiles derived from the μGC prototype data revealed an intentionally hidden source of TCE within a closet, demonstrating the capability for locating non-VI sources. Concentrations measured in this house ranged from 0.51 to 56 ppb (2.7-300 μg/m(3)), in good agreement with reference method values. This first field demonstration of μGC technology for automated, near-real-time, selective VOC monitoring at low- or subppb levels augurs well for its use in short- and long-term on-site analysis of indoor air in support of VI assessments.

  5. Effects of Aqueous Film-Forming Foams (AFFFs) on Trichloroethene (TCE) Dechlorination by a Dehalococcoides mccartyi-Containing Microbial Community.

    PubMed

    Harding-Marjanovic, Katie C; Yi, Shan; Weathers, Tess S; Sharp, Jonathan O; Sedlak, David L; Alvarez-Cohen, Lisa

    2016-04-05

    The application of aqueous film-forming foams (AFFFs) to extinguish chlorinated solvent-fueled fires has led to the co-contamination of poly- and perfluoroalkyl substances (PFASs) and trichloroethene (TCE) in groundwater and soil. Although reductive dechlorination of TCE by Dehalococcoides mccartyi is a frequently used remediation strategy, the effects of AFFF and PFASs on TCE dechlorination are not well-understood. Various AFFF formulations, PFASs, and ethylene glycols were amended to the growth medium of a D. mccartyi-containing enrichment culture to determine the impact on dechlorination, fermentation, and methanogenesis. The community was capable of fermenting organics (e.g., diethylene glycol butyl ether) in all AFFF formulations to hydrogen and acetate, but the product concentrations varied significantly according to formulation. TCE was dechlorinated in the presence of an AFFF formulation manufactured by 3M but was not dechlorinated in the presence of formulations from two other manufacturers. Experiments amended with AFFF-derived PFASs and perfluoroalkyl acids (PFAAs) indicated that dechlorination could be inhibited by PFASs but that the inhibition depends on surfactant concentration and structure. This study revealed that the fermentable components of AFFF can stimulate TCE dechlorination, while some of the fluorinated compounds in certain AFFF formulations can inhibit dechlorination.

  6. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores.

    PubMed

    Cheng, Hefa; Reinhard, Martin

    2010-07-15

    Desorption of hydrophobic organic compounds from micropores is characteristically slow compared to surface adsorption and partitioning. The slow-desorbing mass of a hydrophobic probe molecule can be used to calculate the hydrophobic micropore volume (HMV) of microporous solids. A gas chromatographic apparatus is described that allows characterization of the sorbed mass with respect to the desorption rate. The method is demonstrated using a dealuminated zeolite and an aquifer sand as the model and reference sorbents, respectively, and trichloroethylene (TCE) as the probe molecule. A glass column packed with the microporous sorbent is coupled directly to a gas chromatograph that is equipped with flame ionization and electron capture detectors. Sorption and desorption of TCE on the sorbent was measured by sampling the influent and effluent of the column using a combination of switching and injection valves. For geosorbents, the HMV is quantified based on Gurvitsch's rule from the mass of TCE desorbed at a rate that is characteristic for micropores. Instrumental requirements, design considerations, hardware details, detector calibration, performance, and data analysis are discussed along with applications. The method is novel and complements traditional vacuum gravimetric and piezometric techniques, which quantify the total pore volume under vacuum conditions. The HMV is more relevant than the total micropore volume for predicting the fate and transport of organic contaminants in the subsurface. Sorption in hydrophobic micropores strongly impacts the mobility of organic contaminants, and their chemical and biological transformations. The apparatus can serve as a tool for characterizing microporous solids and investigating contaminant-solid interactions. 2010 Elsevier B.V. All rights reserved.

  7. Effect of toluene concentration and hydrogen peroxide on Pseudomonas plecoglossicida cometabolizing mixture of cis-DCE and TCE in soil slurry.

    PubMed

    Li, Junhui; Lu, Qihong; de Toledo, Renata Alves; Lu, Ying; Shim, Hojae

    2015-12-01

    An indigenous Pseudomonas sp., isolated from the regional contaminated soil and identified as P. plecoglossicida, was evaluated for its aerobic cometabolic removal of cis-1,2-dichloroethylene (cis-DCE) and trichloroethylene (TCE) using toluene as growth substrate in a laboratory-scale soil slurry. The aerobic simultaneous bioremoval of the cis-DCE/TCE/toluene mixture was studied under different conditions. Results showed that an increase in toluene concentration level from 300 to 900 mg/kg prolonged the lag phase for the bacterial growth, while the bioremoval extent for cis-DCE, TCE, and toluene declined as the initial toluene concentration increased. In addition, the cometabolic bioremoval of cis-DCE and TCE was inhibited by the presence of hydrogen peroxide as the additional oxygen source, while the bioremoval of toluene (900 mg/kg) was enhanced after 9 days of incubation. The subsequent addition of toluene did not improve the cometabolic bioremoval of cis-DCE and TCE. The obtained results would help to enhance the applicability of bioremediation technology to the mixed waste contaminated sites.

  8. The role of microbial reductive dechlorination of TCE at a phytoremediation site

    USGS Publications Warehouse

    Godsy, E.M.; Warren, E.; Paganelli, V.V.

    2003-01-01

    In April 1996, a phytoremediation field demonstration site at the Naval Air Station, Fort Worth, Texas, was developed to remediate shallow oxic ground water (< 3.7 m deep) contaminated with chlorinated ethenes. Microbial populations were sampled in February and June 1998. The populations under the newly planted cottonwood trees had not yet matured to an anaerobic community that could dechlorinate trichloroethene (TCE) to cis-1,2-dichloroethene (DCE); however, the microbial population under a mature (???22-year-old) cottonwood tree about 30 m southwest of the plantings had a mature anaerobic population capable of dechlorinating TCE to DCE, and DCE to vinyl chloride (VC). Oxygen-free sediment incubations with contaminated groundwater also demonstrated that resident microorganisms were capable of the dechlorination of TCE to DCE. This suggests that a sufficient amount of organic material is present for microbial dechlorination in aquifer microniches where dissolved O2 concentrations are low. Phenol, benzoic acid, acetic acid, and a cyclic hydrocarbon, compounds consistent with the degradation of root exudates and complex aromatic compounds, were identified by gas chromatography/mass spectrometry (GC/MS) in sediment samples under the mature cottonwood tree. Elsewhere at the site, transpiration and degradation by the cottonwood trees appears to be responsible for loss of chlorinated ethenes.

  9. Effects of Reduced Sulfur Compounds on Pd-catalytic Hydrodechlorination of TCE in Groundwater by Cathodic H2 under Electrochemically-induced Oxidizing Conditions

    PubMed Central

    Yuan, Songhu; Chen, Mingjie; Mao, Xuhui; Alshawabkeh, Akram N.

    2014-01-01

    Reduced sulfur compounds (RSCs) poison Pd catalysts for catalytic hydrodechlorination of contaminants in anoxic groundwater. This study investigates the effects of RSCs on Pd-catalytic hydrodechlorination of trichloroethylene (TCE) in oxic groundwater. Water electrolysis in an undivided electrolytic cell is used to produce H2 for TCE hydrodechlorination under oxidizing conditions. TCE is efficiently hydrodechlorinated to ethane, with significant accumulation of H2O2 under acidic conditions. Presence of sulfide at concentrations less than 93.8 μM moderately inhibits TCE hydrodechlorination and H2O2 production. Presence of sulfite at low concentrations (≤ 1 mM) significantly enhances TCE decay, while at high concentration (3 mM) inhibits initially and enhances afterwards when sulfite concentration declines to less than 1 mM. Using radical scavenging experiments and electron spin resonance assay, SO3•− which is generated from sulfite under oxidizing conditions is validated as the new reactive species contributing to the enhancement. This study reveals a distinct mechanism of effect of sulfite on TCE hydrodechlorination by Pd and H2 in oxic groundwater and presents an alternative approach to increasing resistance of Pd to RSCs poisoning. PMID:23962132

  10. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.

    PubMed

    Kim, Hojeong; Hong, Hye-Jin; Jung, Juri; Kim, Seong-Hye; Yang, Ji-Won

    2010-04-15

    Nowadays, many researchers have studied the environmental application of the nanoscale zero-valent iron (nZVI) and several field applications for the groundwater remediation have been reported. Still, there are many concerns on the fate and transport of the nZVI and the corresponding risks. To avoid such concerns, it was investigated to immobilize nZVI in a support and then it was applied to degrade trichloroethylene (TCE). The nZVI and palladium-doped nZVI (Fe(0)- and Fe/Pd-alginate) were immobilized in the alginate bead where ferric and barium ions are used as the cross-linking cations of the bead. According to TEM (transmission electron microscopy), the size of the immobilized ZVI was as small as a few nanometers. From the surface analysis of the Fe/Pd-alginate, it is found that the immobilized nZVI has the core-shell structure. The core is composed of single crystal Fe(0), while most of irons on the surface are oxidized to Fe(3+). When 50 g/L of Fe/Pd-alginate (3.7 g Fe/L) was introduced to the aqueous solution, >99.8% of TCE was removed and the release of metal from the support was <3% of the loaded iron. The removal of TCE by Fe/Pd-alginate followed pseudo-first-order kinetics. The observed pseudo-first-order reaction constant (k(obs)) of Fe/Pd-alginate was 6.11 h(-1) and the mass normalized rate constant (k(m)) was 1.6 L h(-1) g(-1). The k(m) is the same order of magnitude with that of iron nanoparticles. In conclusion, it is considered that Fe/Pd-alginate can be used efficiently in the treatment of chlorinated solvent. 2009 Elsevier B.V. All rights reserved.

  11. Floral-Dip Transformation of Flax (Linum usitatissimum) to Generate Transgenic Progenies with a High Transformation Rate

    PubMed Central

    Bastaki, Nasmah K.; Cullis, Christopher A.

    2014-01-01

    Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation. PMID:25549243

  12. Floral-dip transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate.

    PubMed

    Bastaki, Nasmah K; Cullis, Christopher A

    2014-12-19

    Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.

  13. Methanogenic community development in anaerobic granular bioreactors treating trichloroethylene (TCE)-contaminated wastewater at 37 °C and 15 °C.

    PubMed

    Siggins, Alma; Enright, Anne-Marie; O'Flaherty, Vincent

    2011-04-01

    Four expanded granular sludge bed (EGSB) bioreactors were seeded with a mesophilically-grown granular sludge and operated in duplicate for mesophilic (37 °C; R1 & R2) and low- (15°; R3 & R4) temperature treatment of a synthetic volatile fatty acid (VFA) based wastewater (3 kg COD m(-3) d(-1)) with one of each pair (R1 & R3) supplemented with increasing concentrations of trichloroethylene (TCE; 10, 20, 40, 60 mg l(-1)) and one acting as a control. Bioreactor performance was evaluated by % COD removal efficiency and % biogas methane (CH(4)) content. Quantitative Polymerase Chain Reaction (qPCR) was used to investigate the methanogenic community composition and dynamics in the bioreactors during the trial, while specific methanogenic activity (SMA) and toxicity assays were utilized to investigate the activity and TCE/dichloroethylene (DCE) toxicity thresholds of key trophic groups, respectively. At both 37 °C and 15 °C, TCE levels of 60 mg l(-1) resulted in the decline of % COD removal efficiencies to 29% (Day 235) and 37% (Day 238), respectively, and in % biogas CH(4) to 54% (Day 235) and 5% (Day 238), respectively. Despite the inhibitory effect of TCE on the anaerobic digestion process, the main drivers influencing methanogenic community development, as determined by qPCR and Non-metric multidimensional scaling analysis, were (i) wastewater composition and (ii) operating temperature. At the apical TCE concentration both SMA and qPCR of methanogenic archaea suggested that acetoclastic methanogens were somewhat inhibited by the presence of TCE and/or its degradation derivatives, while competition by dechlorinating organisms may have limited the availability of H(2) for hydrogenotrophic methanogenesis. In addition, there appeared to be an inverse correlation between SMA levels and TCE tolerance, a finding that was supported by the analysis of the inhibitory effect of TCE on two additional biomass sources. The results indicate that low-temperature anaerobic

  14. Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: a large flow-tank study.

    PubMed

    Lee, Byung Sun; Kim, Jeong Hee; Lee, Ki Churl; Kim, Yang Bin; Schwartz, Franklin W; Lee, Eung Seok; Woo, Nam Chil; Lee, Myoung Ki

    2009-02-01

    A well-based, reactive barrier system using controlled-release potassium permanganate (CRP system) was recently developed as a long-term treatment option for dilute plumes of chlorinated solvents in groundwater. In this study, we performed large-scale (L x W x D = 8 m x 4 m x 2 m) flow-tank experiments to examine remedial efficacy of the CRP system. A total of 110 CRP rods (OD x L=5 cm x 150 cm) were used to construct a well-based CRP system (L x W x D = 3 m x 4 m x 1.5 m) comprising three discrete barriers installed at 1-m interval downstream. Natural sands having oxidant demand of 3.7 g MnO(4)(-)kg(-1) for 500 mg L(-1)MnO(4)(-) were used as porous media. After MnO(4)(-) concentrations were somewhat stabilized (0.5-6.0 mg L(-1)), trichloroethylene (TCE) plume was flowed through the flow-tank for 53 d by supplying 1.19 m(3)d(-1) of TCE solution. Mean initial TCE concentrations were 87 microg L(-1) for first 20 d and 172 microg L(-1) for the next 33 d. During TCE treatment, flow velocity (0.60md(-1)), pH (7.0-8.2), and concentrations of dissolved metals ([Al]=0.7 mg L(-1), [Fe]=0.01 mg L(-1)) showed little variations. The MnO(2)(s) contents in the sandy media measured after the TCE treatment ranged from 21 to 26 mg kg(-1), slightly increased from mean baseline value of 17 mg kg(-1). Strengths of the TCE plume considerably diminished by the CRP system. For the 87 microg L(-1) plume, TCE concentrations decreased by 38% (53), 67% (29), and 74% (23 microg L(-1)) after 1st, 2nd, and 3rd barriers, respectively. For the 172 microg L(-1) plume, TCE concentrations decreased by 27% (125), 46% (93), and 65% (61 microg L(-1)) after 1st, 2nd, and 3rd barriers, respectively. Incomplete destruction of TCE plume was attributed to the lack of lateral dispersion in the unpumped well-based barrier system. Development of delivery systems that can facilitate lateral spreading and mixing of permanganate with contaminant plume is warranted.

  15. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water.

    PubMed

    Ahmad, Mahtab; Lee, Sang Soo; Dou, Xiaomin; Mohan, Dinesh; Sung, Jwa-Kyung; Yang, Jae E; Ok, Yong Sik

    2012-08-01

    Conversion of crop residues into biochars (BCs) via pyrolysis is beneficial to environment compared to their direct combustion in agricultural field. Biochars developed from soybean stover at 300 and 700 °C (S-BC300 and S-BC700, respectively) and peanut shells at 300 and 700 °C (P-BC300 and P-BC700, respectively) were used for the removal of trichloroethylene (TCE) from water. Batch adsorption experiments showed that the TCE adsorption was strongly dependent on the BCs properties. Linear relationships were obtained between sorption parameters (K(M) and S(M)) and molar elemental ratios as well as surface area of the BCs. The high adsorption capacity of BCs produced at 700 °C was attributed to their high aromaticity and low polarity. The efficacy of S-BC700 and P-BC700 for removing TCE from water was comparable to that of activated carbon (AC). Pyrolysis temperature influencing the BC properties was a critical factor to assess the removal efficiency of TCE from water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Time-Fractional Advection-Dispersion Equation (tFADE) to Quantify Aqueous Phase Contaminant Elution from a Trichloroethene (TCE) NAPL Source Zone in Sand Columns

    NASA Astrophysics Data System (ADS)

    Tick, G. R.; Wei, S.; Sun, H.; Zhang, Y.

    2016-12-01

    Pore-scale heterogeneity, NAPL distribution, and sorption/desorption processes can significantly affect aqueous phase elution and mass flux in porous media systems. The application of a scale-independent fractional derivative model (tFADE) was used to simulate elution curves for a series of columns (5 cm, 7 cm, 15 cm, 25 cm, and 80 cm) homogeneously packed with 20/30-mesh sand and distributed with uniform saturations (7-24%) of NAPL phase trichloroethene (TCE). An additional set of columns (7 cm and 25 cm) were packed with a heterogeneous distribution of quartz sand upon which TCE was emplaced by imbibing the immiscible liquid, under stable displacement conditions, to simulate a spill-type process. The tFADE model was able to better represent experimental elution behavior for systems that exhibited extensive long-term concentration tailing requiring much less parameters compared to typical multi-rate mass transfer models (MRMT). However, the tFADE model was not able to effectively simulate the entire elution curve for such systems with short concentration tailing periods since it assumes a power-law distribution for the dissolution rate for TCE. Such limitations may be solved using the tempered fractional derivative model, which can capture the single-rate mass transfer process and therefore the short elution concentration tailing behavior. Numerical solution for the tempered fractional-derivative model in bounded domains however remains a challenge and therefore requires further study. However, the tFADE model shows excellent promise for understanding impacts on concentration elution behavior for systems in which physical heterogeneity, non-uniform NAPL distribution, and pronounced sorption-desorption effects dominate or are present.

  17. [Endonasal Dacryocystorhinostomy (DCR) with Transcanalicular Endoillumination (TCE) of the Saccus Lacrimalis].

    PubMed

    Hefner, J; Klask, J; Gerding, H

    2016-04-01

    Endonasal dacryocystorhinostomy (DCR) has been established as a standard procedure of lacrimal surgery, since it causes much less tissue damage than ab externo procedures. Diffiulties in visualization of the target area has been a limitation to the transnasal approach. An improvement of the classical endonasal DCR was achieved by the introduction of a transcanalicular endoillumination (TCE) of the lacrimal sac using a 23-Gauge vitreoretinal light probe, which can easily be intubated into the cannaliculi and advanced into the the lacrimal sac. Illumination of the lacrimal sac guides the endonasal approach and facilitates the creation of a lacrimal bypass. In our standard procedure a bicanalicular silicone intubation through the osteotomy is finally placed. Due to the introduction of TCE of the lacrimal sac, the surgical procedure of endonasal DCR became less traumatic and needed a significantly reduced operating time. Georg Thieme Verlag KG Stuttgart · New York.

  18. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly.

    PubMed

    Evans, M V; Chiu, W A; Okino, M S; Caldwell, J C

    2009-05-01

    Trichloroethylene (TCE) is a lipophilic solvent rapidly absorbed and metabolized via oxidation and conjugation to a variety of metabolites that cause toxicity to several internal targets. Increases in liver weight (hepatomegaly) have been reported to occur quickly in rodents after TCE exposure, with liver tumor induction reported in mice after long-term exposure. An integrated dataset for gavage and inhalation TCE exposure and oral data for exposure to two of its oxidative metabolites (TCA and DCA) was used, in combination with an updated and more accurate physiologically-based pharmacokinetic (PBPK) model, to examine the question as to whether the presence of TCA in the liver is responsible for TCE-induced hepatomegaly in mice. The updated PBPK model was used to help discern the quantitative contribution of metabolites to this effect. The update of the model was based on a detailed evaluation of predictions from previously published models and additional preliminary analyses based on gas uptake inhalation data in mice. The parameters of the updated model were calibrated using Bayesian methods with an expanded pharmacokinetic database consisting of oral, inhalation, and iv studies of TCE administration as well as studies of TCE metabolites in mice. The dose-response relationships for hepatomegaly derived from the multi-study database showed that the proportionality of dose to response for TCE- and DCA-induced hepatomegaly is not observed for administered doses of TCA in the studied range. The updated PBPK model was used to make a quantitative comparison of internal dose of metabolized and administered TCA. While the internal dose of TCA predicted by modeling of TCE exposure (i.e., mg TCA/kg-d) showed a linear relationship with hepatomegaly, the slope of the relationship was much greater than that for directly administered TCA. Thus, the degree of hepatomegaly induced per unit of TCA produced through TCE oxidation is greater than that expected per unit of TCA

  19. Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse.

    PubMed

    Luo, Yu-Syuan; Furuya, Shinji; Chiu, Weihsueh; Rusyn, Ivan

    2018-01-01

    Trichloroethylene (TCE) is a ubiquitous environmental toxicant that is a liver and kidney carcinogen. Conjugation of TCE with glutathione (GSH) leads to formation of nepthrotoxic and mutagenic metabolites postulated to be critical for kidney cancerdevelopment; however, relatively little is known regarding their tissue levels as previous analytical methods for their detection lacked sensitivity. Here, an LC-MS/MS-based method for simultaneous detection of S-(1,2-dichlorovinyl)-glutathione (DCVG), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC) in multiple mouse tissues was developed. This analytical method is rapid, sensitive (limits of detection (LOD) 3-30 fmol across metabolites and tissues), and robust to quantify all three metabolites in liver, kidneys, and serum. The method was used to characterize inter-tissue and inter-strain variability in formation of conjugative metabolites of TCE. Single oral dose of TCE (24, 240 or 800 mg/kg) was administered to male mice from 20 inbred strains of Collaborative Cross. Inter-strain variability in the levels of DCVG, DCVC, and NAcDCVC (GSD = 1.6-2.9) was observed. Whereas NAcDCVC was distributed equally among analyzed tissues, highest levels of DCVG were detected in liver and DCVC in kidneys. Evidence indicated that inter-strain variability in conjugative metabolite formation of TCE might affect susceptibility to adverse health effects and that this method might aid in filling data gaps in human health assessment of TCE.

  20. Analysis of sources of bulk conductivity change in saturated silica sand after unbuffered TCE oxidation by permanganate.

    PubMed

    Hort, Ryan D; Revil, André; Munakata-Marr, Junko

    2014-09-01

    Time lapse resistivity surveys could potentially improve monitoring of permanganate-based in situ chemical oxidation (ISCO) of organic contaminants such as trichloroethene (TCE) by tracking changes in subsurface conductivity that result from injection of permanganate and oxidation of the contaminant. Bulk conductivity and pore fluid conductivity changes during unbuffered TCE oxidation using permanganate are examined through laboratory measurements and conductivity modeling using PHREEQC in fluid samples and porous media samples containing silica sand. In fluid samples, oxidation of one TCE molecule produces three chloride ions and one proton, resulting in an increase in fluid electrical conductivity despite the loss of two permanganate ions in the reaction. However, in saturated sand samples in which up to 8mM TCE was oxidized, at least 94% of the fluid conductivity associated with the presence of protons was removed within 3h of sand contact, most likely through protonation of silanol groups found on the surface of the sand grains. Minor conductivity effects most likely associated with pH-dependent reductive dissolution of manganese dioxide were also observed but not accounted for in pore-fluid conductivity modeling. Unaccounted conductivity effects resulted in an under-calculation of post-reaction pore fluid conductivity of 2.1% to 5.5%. Although small increases in the porous media formation factor resulting from precipitation of manganese dioxide were detected (about 3%), these increases could not be confirmed to be statistically significant. Both injection of permanganate and oxidation of TCE cause increases in bulk conductivity that would be detectable through time-lapse resistivity surveys in field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues.

    PubMed

    Khan, Sheeba; Priyamvada, Shubha; Khan, Sara A; Khan, Wasim; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2009-07-01

    Trichloroethylene (TCE), an industrial solvent, is a major environmental contaminant. Histopathological examinations revealed that TCE caused liver and kidney toxicity and carcinogenicity. However, biochemical mechanism and tissue response to toxic insult are not completely elucidated. We hypothesized that TCE induces oxidative stress to various rat tissues and alters their metabolic functions. Male Wistar rats were given TCE (1000 mg/kg/day) in corn oil orally for 25 d. Blood and tissues were collected and analyzed for various biochemical and enzymatic parameters. TCE administration increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but decreased serum glucose, inorganic phosphate and phospholipids indicating kidney and liver toxicity. Activity of hexokinase, lactate dehydrogenase increased in the intestine and liver whereas decreased in renal tissues. Malate dehydrogenase and glucose-6-phosphatase and fructose-1, 6-bisphosphatase decreased in all tissues whereas increased in medulla. Glucose-6-phosphate dehydrogenase increased but NADP-malic enzyme decreased in all tissues except in medulla. The activity of BBM enzymes decreased but renal Na/Pi transport increased. Superoxide dismutase and catalase activities variably declined whereas lipid peroxidation significantly enhanced in all tissues. The present results indicate that TCE caused severe damage to kidney, intestine, liver and brain; altered carbohydrate metabolism and suppressed antioxidant defense system.

  2. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    PubMed

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration <1000 μgL(-1). These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system

    NASA Astrophysics Data System (ADS)

    Choung, Sungwook; Zimmerman, Lisa R.; Allen-King, Richelle M.; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-01

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc = 0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen + black carbon was the dominant CM fraction extracted from the sediments and accounted for > 60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that > 80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration < 1000 μg L- 1. These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM.

  4. Summary of External Peer Review and Public Comments and Disposition for Trichloroethylene (TCE)

    EPA Pesticide Factsheets

    This document summarizes the public and external peer review comments that the EPA’s Office of Pollution Prevention and Toxics (OPPT) received for the draft work plan risk assessment for trichloroethylene (TCE).

  5. Inhibition of Adrenergic and Non-Adrenergic Smooth Muscle Contraction in the Human Prostate by the Phosphodiesterase 10-Selective Inhibitor TC-E 5005.

    PubMed

    Hennenberg, Martin; Schott, Melanie; Kan, Aysenur; Keller, Patrick; Tamalunas, Alexander; Ciotkowska, Anna; Rutz, Beata; Wang, Yiming; Strittmatter, Frank; Herlemann, Annika; Yu, Qingfeng; Stief, Christian G; Gratzke, Christian

    2016-11-01

    The phosphodiesterase (PDE) 5 inhibitor tadalafil is available for treatment of male lower urinary tract symptoms (LUTS), while the role of other PDE isoforms for prostate smooth muscle tone is still unknown. Here, we examined effects of the PDE10-selective inhibitor TC-E 5005 on smooth muscle contraction in human prostate tissue. Prostate samples were obtained from patients undergoing radical prostatectomy. Expression of PDE10 was addressed by RT-PCR, Western blot, and fluorescence staining with different markers. Effects of TC-E 5005 and tadalafil on contraction, and relaxation of prostate strips were studied via organ bath. PDE10A was detectable by RT-PCR, Western blot, and fluorescence staining in prostate tissues. Colocalization with markers suggested expression of PDE10A in smooth muscle cells and catecholaminergic nerves. Norepinephrine, the α1 -adrenergic agonist phenylephrine, the thromboxane A2 analogue U46619, and endothelins 1-3 induced concentration-dependent contractions of prostate strips, while electric field stimulation (EFS) induced frequence-dependent contractions. Application of TC-E 5005 (500 nM) caused significant inhibition of norepinephrine-, phenylephrine-, and endothelin-3-induced contractions. Inhibition of EFS-induced contractions by TC-E 5005 ranged around 50%, resembling inhibition of EFS-induced contractions by tadalafil (10 μM). The prostacyclin analog treprostinil and the nitric oxide donor DEA NONOate induced relaxations of precontracted prostate strips, which were significantly amplified by TCE 5005. The PDE10-selective inhibitor TC-E 5005 inhibits adrenergic and neurogenic smooth muscle contractions in the human prostate. TC-E 5005 inhibits neurogenic contractions with similar efficacy than tadalafil, so that urodynamic effects in vivo appear possible. Prostate 76:1364-1374, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux

    NASA Astrophysics Data System (ADS)

    Padgett, Mark C.; Tick, Geoffrey R.; Carroll, Kenneth C.; Burke, William R.

    2017-03-01

    The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions > 0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤ 0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. < 0.2). However, compared to TOL, TCE generally exhibited more efficient removal behavior over all mole fractions tested and may have been the result of structural and molecular property differences between the compounds. Activity coefficient variability as a function of mole fraction was quantified through regression analysis and incorporated into dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole

  7. Kepler Reliability and Occurrence Rates

    NASA Astrophysics Data System (ADS)

    Bryson, Steve

    2016-10-01

    The Kepler mission has produced tables of exoplanet candidates (``KOI table''), as well as tables of transit detections (``TCE table''), hosted at the Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu). Transit detections in the TCE table that are plausibly due to a transiting object are selected for inclusion in the KOI table. KOI table entries that have not been identified as false positives (FPs) or false alarms (FAs) are classified as planet candidates (PCs, Mullally et al. 2015). A subset of PCs have been confirmed as planetary transits with greater than 99% probability, but most PCs have <99% probability of being true planets. The fraction of PCs that are true transiting planets is the PC reliability rate. The overall PC population is believed to have a reliability rate >90% (Morton & Johnson 2011).

  8. COMPLETE NATURAL ATTENUATION OF A PCE AND TCE PLUME AFTER SOURCE REMOVAL

    EPA Science Inventory

    Disposal of the chlorinated solvents PCE and TCE at the Twin Cities Army Ammunition Plant (TCAAP) resulted in the contamination of groundwater in a shallow, unconsolidated sand aquifer. The resulting plume had moved over 1000 feet from the disposal source area and had impacted p...

  9. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.

    PubMed

    Kret, E; Kiecak, A; Malina, G; Nijenhuis, I; Postawa, A

    2015-07-01

    The main aim of this study was to determine the sorption and biodegradation parameters of trichloroethene (TCE) and tetrachloroethene (PCE) as input data required for their fate and transport modelling in a Quaternary sandy aquifer. Sorption was determined based on batch and column experiments, while biodegradation was investigated using the compound-specific isotope analysis (CSIA). The aquifer materials medium (soil 1) to fine (soil 2) sands and groundwater samples came from the representative profile of the contaminated site (south-east Poland). The sorption isotherms were approximately linear (TCE, soil 1, K d = 0.0016; PCE, soil 1, K d = 0.0051; PCE, soil 2, K d = 0.0069) except for one case in which the best fitting was for the Langmuir isotherm (TCE, soil 2, K f = 0.6493 and S max = 0.0145). The results indicate low retardation coefficients (R) of TCE and PCE; however, somewhat lower values were obtained in batch compared to column experiments. In the column experiments with the presence of both contaminants, TCE influenced sorption of PCE, so that the R values for both compounds were almost two times higher. Non-significant differences in isotope compositions of TCE and PCE measured in the observation points (δ(13)C values within the range of -23.6 ÷ -24.3‰ and -26.3 ÷-27.7‰, respectively) indicate that biodegradation apparently is not an important process contributing to the natural attenuation of these contaminants in the studied sandy aquifer.

  10. Numerical simulations of the impact of seasonal heat storage on source zone emission in a TCE contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2016-04-01

    In urban regions, with high population densities and heat demand, seasonal high temperature heat storage in the shallow subsurface represents an attractive and efficient option for a sustainable heat supply. In fact, the major fraction of energy consumed in German households is used for room heating and hot water production. Especially in urbanized areas, however, the installation of high temperature heat storage systems is currently restricted due to concerns on negative influences on groundwater quality caused e.g. by possible interactions between heat storages and subsurface contaminants, which are a common problem in the urban subsurface. Detailed studies on the overall impact of the operation of high temperature heat storages on groundwater quality are scarce. Therefore, this work investigates possible interactions between groundwater temperature changes induced by heat storage via borehole heat exchangers and subsurface contaminations by numerical scenario analysis. For the simulation of non-isothermal groundwater flow, and reactive transport processes the OpenGeoSys code is used. A 2D horizontal cross section of a shallow groundwater aquifer is assumed in the simulated scenario, consisting of a sandy sediment typical for Northern Germany. Within the aquifer a residual trichloroethene (TCE) contaminant source zone is present. Temperature changes are induced by a seasonal heat storage placed within the aquifer with scenarios of maximum temperatures of 20°C, 40°C and 60°C, respectively, during heat injection and minimum temperatures of 2°C during heat extraction. In the scenario analysis also the location of the heat storage relative to the TCE source zone and plume was modified. Simulations were performed in a homogeneous aquifer as well as in a set of heterogeneous aquifers with hydraulic conductivity as spatially correlated random fields. In both cases, results show that the temperature increase in the heat plume and the consequential reduction of water

  11. IDENTIFICATION OF CHLOROMETHANE FROMATION PATHS DURING ELECTROCHEMICAL DECHLORINATION OF TCE USING GRAPHITE ELECTRODES

    EPA Science Inventory

    The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...

  12. IDENTIFICATION OF CHLOROMETHANE FORMATION PATHS DURING ELECTROCHEMICAL DECHLORINATION OF TCE USING GRAPHITE ELECTRODES

    EPA Science Inventory

    The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...

  13. UNCERTAINTY ANALYSIS OF TCE USING THE DOSE EXPOSURE ESTIMATING MODEL (DEEM) IN ACSL

    EPA Science Inventory

    The ACSL-based Dose Exposure Estimating Model(DEEM) under development by EPA is used to perform art uncertainty analysis of a physiologically based pharmacokinetic (PSPK) model of trichloroethylene (TCE). This model involves several circulating metabolites such as trichloroacet...

  14. Leuco-crystal-violet micelle gel dosimeters: Component effects on dose-rate dependence

    NASA Astrophysics Data System (ADS)

    Xie, J. C.; Katz, E. A. B.; Alexander, K. M.; Schreiner, L. J.; McAuley, K. B.

    2017-05-01

    Designed experiments were performed to produce empirical models for the dose sensitivity, initial absorbance, and dose-rate dependence respectively for leucocrystal violet (LCV) micelle gel dosimeters containing cetyltrimethylammonium bromide (CTAB) and 2,2,2-trichloroethanol (TCE). Previous gels of this type showed dose-rate dependent behaviour, producing an ˜18% increase in dose sensitivity between dose rates of 100 and 600 cGy min-1. Our models predict that the dose rate dependence can be reduced by increasing the concentration of TCE, CTAB and LCV. Increasing concentrations of LCV and CTAB produces a significant increase in dose sensitivity with a corresponding increase in initial absorbance. An optimization procedure was used to determine a nearly dose-rate independent gel which maintained high sensitivity and low initial absorbance. This gel which contains 33 mM CTAB, 1.25 mM LCV, and 96 mM TCE in 25 mM trichloroacetic acid and 4 wt% gelatin showed an increase in dose sensitivity of only 4% between dose rates of 100 and 600 cGy min-1, and provides an 80% greater dose sensitivity compared to Jordan’s standard gels with similar initial absorbance.

  15. In situ detection of organic molecules: Optrodes for TCE (trichloroethylene) and CHCl sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, S. M.; Langry, K. C.; Ridley, M. N.

    1990-05-01

    We have developed new absorption-based chemical indicators for detecting chloroform (CHCl{sub 3}) and trichloroethylene (TCE). These indicators were used to make very sensitive optical chemical sensors (optrodes) for each of these two contaminants. Concentrations below 10 ppb can be accurately measured using these sensors. Furthermore, they are selective and do not response to similar contaminants commonly found with TCE and CHCl{sub 3} in contaminated groundwater. In addition, the sensor response is linearly proportional to the chemical concentration. In this report, we describe the details of this optrode and the putative reaction sequences of the indicator chemistries with CHCl{sub 3} andmore » TCE and present an analysis of the spectral data obtained from the reaction products. A key part of the development of this optrode was designing a simple readout device. The readout is a dual-channel fiber-optic fluorimeter modified to measure transmission or absorption of light. The system is controlled by a lap-top microcomputer and is fully field portable. In addition to describing the final absorption optrode, details of the chemical indicator reactions are presented for both absorption- (colorimetric) and fluorescence-based optrodes. Finally, we report on the syntheses of several compounds used to evaluate the indicator chemical reactions that led to the development of the absorption optrode. 23 refs., 26 figs., 1 tab.« less

  16. Potential for Methanotroph-Mediated Natural Attenuation of TCE in a Basalt Aquifer

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Newby, D. T.; Reed, D. W.; Igoe, A.; Petzke, L.; Delwiche, M. E.; McKinley, J. P.; Roberto, F. F.; Whiticar, M. J.

    2002-12-01

    Methanotrophic bacteria are one of the microbial communities believed to be responsible for natural attenuation of a trichloroethylene (TCE) plume in the Snake River Plain Aquifer (SRPA). To better understand the role that indigenous methanotrophs may have in TCE degradation in the aquifer, groundwater was collected from four SRPA wells and analyzed for geochemical properties and methanotroph diversity. Dissolved methane concentrations in the aquifer ranged from 1 to >1000 nM. Stable carbon isotope ratios for dissolved methane suggest a microbial source for the methane (del 13C values of ca. -61 per mil in three wells). The combination of 13C enriched methane and 13C depleted-dissolved inorganic carbon in one of the wells suggests that microbial oxidation of methane occurs. Filtered groundwater yielded microorganisms that were used as inocula for enrichments or were frozen and subsequently extracted for DNA. Primers that target taxonomic (type I and type II 16S rDNA) or functional (mmoX and pmoA methane monooxygenase subunits) genes were used to characterize the indigenous methanotrophs via PCR, cloning, and sequencing. DNA sequencing and alignment results suggest that clones with sequences most similar to Methylocystis sp. (a type II methanotroph) and Methylobacter sp. (a type I methanotroph) are frequently present in filtered groundwater with the former often represented in enrichment cultures as well. Methanotroph genes are detected in the aquifer even in wells having methane concentrations as low as 1 nM. Methanotroph presence and a microbial origin for the dissolved methane indicate that microbial cycling of this key gas may play a role in the destruction of TCE in the aquifer.

  17. Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron.

    PubMed

    Dror, Ishai; Jacov, Osnat Merom; Cortis, Andrea; Berkowitz, Brian

    2012-07-25

    A new composite material based on deposition of nanosized zerovalent iron (nZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix is presented, for catalytic transformation of organic contaminants in water. Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with nZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nZVI by preventing agglomeration of iron nanoparticles, thus increasing their active surface area. The porous structure of the diatomite matrix allows high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material resulting in faster rates of remediation. The composite material rapidly degrades or transforms completely a large spectrum of water contaminants, including halogenated solvents like TCE, PCE, and cis-DCE, pesticides like alachlor, atrazine and bromacyl, and common ions like nitrate, within minutes to hours. A field experiment where contaminated groundwater containing a mixture of industrial and agricultural persistent pollutants was conducted together with a set of laboratory experiments using individual contaminant solutions to analyze chemical transformations under controlled conditions.

  18. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux.

    PubMed

    Padgett, Mark C; Tick, Geoffrey R; Carroll, Kenneth C; Burke, William R

    2017-03-01

    The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions >0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. <0.2). However, compared to TOL, TCE generally exhibited more efficient removal behavior over all mole fractions tested and may have been the result of structural and molecular property differences between the compounds. Activity coefficient variability as a function of mole fraction was quantified through regression analysis and incorporated into dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole fraction

  19. Coupling of Realistic Rate Estimates with Genomics for Assessing Contaminant Attenuation and Long-Term Plume Containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colwell, F.S.; Crawford, R.L.; Sorenson, K.

    2005-09-01

    Acceptance of monitored natural attenuation (MNA) as a preferred treatment technology saves significant site restoration costs for DOE. However, in order to be accepted MNA requires direct evidence of which processes are responsible for the contaminant loss and also the rates of the contaminant loss. Our proposal aims to: 1) provide evidence for one example of MNA, namely the disappearance of the dissolved trichloroethylene (TCE) from the Snake River Plain aquifer (SRPA) at the Idaho National Laboratory’s Test Area North (TAN) site, 2) determine the rates at which aquifer microbes can co-metabolize TCE, and 3) determine whether there are othermore » examples of natural attenuation of chlorinated solvents occurring at DOE sites. To this end, our research has several objectives. First, we have conducted studies to characterize the microbial processes that are likely responsible for the co-metabolic destruction of TCE in the aquifer at TAN (University of Idaho and INL). Second, we are investigating realistic rates of TCE co-metabolism at the low catabolic activities typical of microorganisms existing under aquifer conditions (INL). Using the co-metabolism rate parameters derived in low-growth bioreactors, we will complete the models that predict the time until background levels of TCE are attained in the aquifer at TAN and validate the long-term stewardship of this plume. Coupled with the research on low catabolic activities of co-metabolic microbes we are determining the patterns of functional gene expression by these cells, patterns that may be used to diagnose the co-metabolic activity in the SRPA or other aquifers.« less

  20. Spreading rate dependence of gravity anomalies along oceanic transform faults.

    PubMed

    Gregg, Patricia M; Lin, Jian; Behn, Mark D; Montési, Laurent G J

    2007-07-12

    Mid-ocean ridge morphology and crustal accretion are known to depend on the spreading rate of the ridge. Slow-spreading mid-ocean-ridge segments exhibit significant crustal thinning towards transform and non-transform offsets, which is thought to arise from a three-dimensional process of buoyant mantle upwelling and melt migration focused beneath the centres of ridge segments. In contrast, fast-spreading mid-ocean ridges are characterized by smaller, segment-scale variations in crustal thickness, which reflect more uniform mantle upwelling beneath the ridge axis. Here we present a systematic study of the residual mantle Bouguer gravity anomaly of 19 oceanic transform faults that reveals a strong correlation between gravity signature and spreading rate. Previous studies have shown that slow-slipping transform faults are marked by more positive gravity anomalies than their adjacent ridge segments, but our analysis reveals that intermediate and fast-slipping transform faults exhibit more negative gravity anomalies than their adjacent ridge segments. This finding indicates that there is a mass deficit at intermediate- and fast-slipping transform faults, which could reflect increased rock porosity, serpentinization of mantle peridotite, and/or crustal thickening. The most negative anomalies correspond to topographic highs flanking the transform faults, rather than to transform troughs (where deformation is probably focused and porosity and alteration are expected to be greatest), indicating that crustal thickening could be an important contributor to the negative gravity anomalies observed. This finding in turn suggests that three-dimensional magma accretion may occur near intermediate- and fast-slipping transform faults.

  1. Dependences of deposition rate and OH content on concentration of added trichloroethylene in low-temperature silicon oxide films deposited using silicone oil and ozone gas

    NASA Astrophysics Data System (ADS)

    Horita, Susumu; Jain, Puneet

    2018-03-01

    We investigated the dependences of the deposition rate and residual OH content of SiO2 films on the concentration of trichloroethylene (TCE), which was added during deposition at low temperatures of 160-260 °C with the reactant gases of silicone oil (SO) and O3. The deposition rate depends on the TCE concentration and is minimum at a concentration of ˜0.4 mol/m3 at 200 °C. The result can be explained by surface and gas-phase reactions. Experimentally, we also revealed that the thickness profile is strongly affected by gas-phase reaction, in which the TCE vapor was blown directly onto the substrate surface, where it mixed with SO and O3. Furthermore, it was found that adding TCE vapor reduces residual OH content in the SiO2 film deposited at 200 °C because TCE enhances the dehydration reaction.

  2. Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater.

    PubMed

    Sheu, Y T; Chen, S C; Chien, C C; Chen, C C; Kao, C M

    2015-03-02

    A long-lasting emulsified colloidal substrate (LECS) was developed for continuous carbon and nanoscale zero-valent iron (nZVI) release to remediate trichloroethylene (TCE)-contaminated groundwater under reductive dechlorinating conditions. The developed LECS contained nZVI, vegetable oil, surfactants (Simple Green™ and lecithin), molasses, lactate, and minerals. An emulsification study was performed to evaluate the globule droplet size and stability of LECS. The results show that a stable oil-in-water emulsion with uniformly small droplets (0.7 μm) was produced, which could continuously release the primary substrates. The emulsified solution could serve as the dispensing agent, and nZVI particles (with diameter 100-200 nm) were distributed in the emulsion evenly without aggregation. Microcosm results showed that the LECS caused a rapid increase in the total organic carbon concentration (up to 488 mg/L), and reductive dechlorination of TCE was significantly enhanced. Up to 99% of TCE (with initial concentration of 7.4 mg/L) was removed after 130 days of operation. Acidification was prevented by the production of hydroxide ion by the oxidation of nZVI. The formation of iron sulfide reduced the odor from produced hydrogen sulfide. Microbial analyses reveal that dechlorinating bacteria existed in soils, which might contribute to TCE dechlorination. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A conservative evaluation of the transport of TCE from the confined aquifer beneath J-Field, Aberdeen Proving Ground, Maryland, to a hypothetical receptor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, L. E.; Patton, T. L.; Quinn, J. J.

    1999-01-04

    Past disposal operations at the Toxic Burn Pits (TBP) area of J-Field, Aberdeen Proving Ground, Maryland, have resulted in volatile organic compound (VOC) contamination of groundwater. Although the contaminant concentration is highest in the surficial aquifer, VOCs are also present in the confined aquifer, which is approximately 30 m (100 ft) deep at the TBP area. This study focuses on the confined aquifer, a sandy valley-fill Pleistocene unit in a paleochannel cut into Cretaceous sands and clays. This report documents the locations of the region's pumping wells, which are over 6 km (4 mi) away from the TBP. The distancesmore » to the pumping wells and the complex stratigraphy limit the likelihood of any contamination reaching a receptor well. Nonetheless, a worst-case scenario was evaluated with a model designed to simulate the transport of trichloroethylene (TCE), the main chemical of concern, from the confined aquifer beneath the TBP along a hypothetical, direct flowpath to a receptor well. The model was designed to be highly conservative (i.e., based on assumptions that promote the transport of contaminants). In addition to the direct flowpath assumption, the model uses the lowest literature value for the biodegradation rate of TCE, a low degree of sorption, a continuous-strength source, and a high flow velocity. Results from this conservative evaluation indicate that the simulated contaminant plume extends into areas offshore from J-Field, but decays before reaching a receptor well. The 5-ppb contour, for example, travels approximately 5 km (3 mi) before stagnating. Recent field analyses have documented that complete biodegradation of TCE to ethene and ethane is occurring directly below the TBP; therefore, the likelihood of TCE or its daughter products reaching a pumping well appears negligible. Thus, the model results may be useful in proposing either a no action or a natural attenuation alternative for the confined aquifer.« less

  4. Combined removal of a BTEX, TCE, and cis-DCE mixture using Pseudomonas sp. immobilized on scrap tyres.

    PubMed

    Lu, Qihong; de Toledo, Renata Alves; Xie, Fei; Li, Junhui; Shim, Hojae

    2015-09-01

    The simultaneous aerobic removal of a mixture of benzene, toluene, ethylbenzene, and o,m,p-xylene (BTEX); cis-dichloroethylene (cis-DCE); and trichloroethylene (TCE) from the artificially contaminated water using an indigenous bacterial isolate identified as Pseudomonas plecoglossicida immobilized on waste scrap tyres was investigated. Suspended and immobilized conditions were compared for the removal of these volatile organic compounds. For the immobilized system, toluene, benzene, and ethylbenzene were completely removed, while the highest removal efficiencies of 99.0 ± 0.1, 96.8 ± 0.3, 73.6 ± 2.5, and 61.6 ± 0.9% were obtained for o-xylene, m,p-xylene, TCE, and cis-DCE, respectively. The sorption kinetics of contaminants towards tyre surface was also evaluated, and the sorption capacity generally followed the order of toluene > benzene > m,p-xylene > o-xylene > ethylbenzene > TCE > cis-DCE. Scrap tyres showed a good capability for the simultaneous sorption and bioremoval of BTEX/cis-DCE/TCE mixture, implying a promising waste material for the removal of contaminant mixture from industrial wastewater or contaminated groundwater.

  5. LESSONS LEARNED FROM IN-SITU RESISTIVE HEATING OF TCE AT FORT LEWIS, WASHINGTON

    EPA Science Inventory

    The EGDY is the source of a potentially expanding, three mile long TCE plume in a sole source drinking water aquifer. Thermal remediation is being employed to reduce source mass loading to the dissolved phase aquifer plume and reduce the time to reach site cleanup goals. This i...

  6. Consideration of Treatment Performance Assessment Metrics for a TCE Source Area Bioremediation (SABRe project)

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Wilson, R. D.

    2009-05-01

    Techniques for optimizing the removal of NAPL mass in source zones have advanced at a more rapid rate than strategies to assess treatment performance. Informed selection of remediation approaches would be easier if measurements of performance were more directly transferable. We developed a number of methods based on data generated from multilevel sampler (MLS) transects to assess the effectiveness of a bioaugmentation/biostimulation trial in a TCE source residing in a terrace gravel aquifer in the East Midlands, UK. In this spatially complex aquifer, treatment inferred from long screen monitoring well data was not as reliable as that from consideration of mass flux changes across transects installed in and downgradient of the source. Falling head tests were conducted in the MLS ports to generate the necessary hydraulic conductivity (K) data. Combining K with concentration provides a mass flux map that allows calculation of mass turnover and an assessment of where in the complex geology the greatest turnover occurred. Five snapshots over a 600-day period indicate a marked reduction in TCE flux, suggesting a significant reduction in DNAPL mass over that expected due to natural processes. However, persistence of daughter products suggested that complete dechlorination did not occur. The MLS fence data also revealed that delivery of both carbon source and pH buffer were not uniform across the test zone. This may have lead to the generation of niches of iron(III) and sulphate reduction as well as methanogenesis, which impacted on dechlorination processes. In the absence of this spatial data, it is difficult to reconcile apparent treatment as indicated in monitoring well data to on-going processes.

  7. An improved architecture for video rate image transformations

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.; Juday, Richard D.

    1989-01-01

    Geometric image transformations are of interest to pattern recognition algorithms for their use in simplifying some aspects of the pattern recognition process. Examples include reducing sensitivity to rotation, scale, and perspective of the object being recognized. The NASA Programmable Remapper can perform a wide variety of geometric transforms at full video rate. An architecture is proposed that extends its abilities and alleviates many of the first version's shortcomings. The need for the improvements are discussed in the context of the initial Programmable Remapper and the benefits and limitations it has delivered. The implementation and capabilities of the proposed architecture are discussed.

  8. Construction of high frame rate images with Fourier transform

    NASA Astrophysics Data System (ADS)

    Peng, Hu; Lu, Jian-Yu

    2002-05-01

    Traditionally, images are constructed with a delay-and-sum method that adjusts the phases of received signals (echoes) scattered from the same point in space so that they are summed in phase. Recently, the relationship between the delay-and-sum method and the Fourier transform is investigated [Jian-yu Lu, Anjun Liu, and Hu Peng, ``High frame rate and delay-and-sum imaging methods,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control (submitted)]. In this study, a generic Fourier transform method is developed. Two-dimensional (2-D) or three-dimensional (3-D) high frame rate images can be constructed using the Fourier transform with a single transmission of an ultrasound pulse from an array as long as the transmission field of the array is known. To verify our theory, computer simulations have been performed with a linear array, a 2-D array, a convex curved array, and a spherical 2-D array. The simulation results are consistent with our theory. [Work supported in part by Grant 5RO1 HL60301 from NIH.

  9. A CuNi bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE).

    PubMed

    Liu, Bo; Zhang, Hao; Lu, Qi; Li, Guanghe; Zhang, Fang

    2018-09-01

    To address the challenges of low hydrodechlorination efficiency by non-noble metals, a CuNi bimetallic cathode with nanostructured copper array film was fabricated for effective electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution. The CuNi bimetallic cathodes were prepared by a simple one-step electrodeposition of copper onto the Ni foam substrate, with various electrodeposition time of 5/10/15/20 min. The optimum electrodeposition time was 10 min when copper was coated as a uniform nanosheet array on the nickel foam substrate surface. This cathode exhibited the highest TCE removal, which was twice higher compared to that of the nickel foam cathode. At the same passed charge of 1080C, TCE removal increased from 33.9 ± 3.3% to 99.7 ± 0.1% with the increasing operation current from 5 to 20 mA cm -2 , while the normalized energy consumption decreased from 15.1 ± 1.0 to 2.6 ± 0.01 kWh log -1  m -3 . The decreased normalized energy consumption at a higher current density was due to the much higher removal efficiency at a higher current. These results suggest that CuNi cathodes prepared by simple electrodeposition method represent a promising and cost-effective approach for enhanced electrochemical dechlorination. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. MICROBIAL TRANSFORMATION RATE CONSTANTS OF STRUCTURALLY DIVERSE MAN-MADE CHEMICALS

    EPA Science Inventory

    To assist in estimating microbially mediated transformation rates of man-made chemicals from their chemical structures, all second order rate constants that have been measured under conditions that make the values comparable have been extracted from the literature and combined wi...

  11. 77 FR 20695 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Tax Counseling for the Elderly (TCE) Program...: This document provides notice of the availability of Application Packages for the 2013 Tax Counseling... . The deadline for submitting an application package to the IRS for the Tax Counseling for the Elderly...

  12. 76 FR 30243 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Tax Counseling for the Elderly (TCE) Program...: This document provides notice of the availability of Application Packages for the 2012 Tax Counseling.... The deadline for submitting an application package to the IRS for the 2012 Tax Counseling for the...

  13. 75 FR 22437 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Tax Counseling for the Elderly (TCE) Program...: This document provides notice of the availability of Application Packages for the 2011 Tax Counseling.... The deadline for submitting an application package to the IRS for the 2011 Tax Counseling for the...

  14. Modeling 3D-CSIA data: Carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of TCE to ethene.

    PubMed

    Van Breukelen, Boris M; Thouement, Héloïse A A; Stack, Philip E; Vanderford, Mindy; Philp, Paul; Kuder, Tomasz

    2017-09-01

    Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key step towards this goal, a model was developed that simulates simultaneous carbon, chlorine, and hydrogen isotope fractionation during SRD of trichloroethene, via cis-1,2-dichloroethene (and trans-DCE as minor pathway), and vinyl chloride to ethene, following Monod kinetics. A simple correction term for individual isotope/isotopologue rates avoided multi-element isotopologue modeling. The model was successfully validated with data from a mixed culture Dehalococcoides microcosm. Simulation of Cl-CSIA required incorporation of secondary kinetic isotope effects (SKIEs). Assuming a limited degree of intramolecular heterogeneity of δ 37 Cl in TCE decreased the magnitudes of SKIEs required at the non-reacting Cl positions, without compromising the goodness of model fit, whereas a good fit of a model involving intramolecular CCl bond competition required an unlikely degree of intramolecular heterogeneity. Simulation of H-CSIA required SKIEs in H atoms originally present in the reacting compounds, especially for TCE, together with imprints of strongly depleted δ 2 H during protonation in the products. Scenario modeling illustrates the potential of H-CSIA for source apportionment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Biodegradation of PCE and TCE in landfill leachate predicted from concentrations of molecular hydrogen: a case study.

    PubMed

    Gonsoulin, Mary E; Wilson, Barbara H; Wilson, John T

    2004-12-01

    The Refuse Hideaway Landfill (23-acre) received municipal, commercial, and industrial waste between 1974 and 1988. It was designed as a "natural attenuation" landfill and no provision was made to collect and treat contaminated water. Natural biological degradation through sequential reductive dechlorination had been an important mechanism for natural attenuation at the site. We used the concentration of hydrogen to forecast whether reductive dechlorination would continue over time at particular locations in the plume. Based on published literature, reductive dechlorination and natural attenuation of PCE, TCE, and cis-DCE can be expected in the aquifer if the concentration of molecular hydrogen in monitoring wells are adequate (> 1 nanomolar). Reductive dechlorination can be expected to continue as the ground water moves down gradient. Natural attenuation through reductive dechlorination is not expected in flow paths that originate at down gradient monitoring wells with low concentrations of molecular hydrogen (< 1 nanomolar). In three monitoring wells at the margin of the landfill and in five monitoring wells down gradient of the landfill, ground water maintained a molecular hydrogen concentration, ranging from 1.30 to 9.17 nanomolar, that is adequate for reductive dechlorination. In three of the monitoring wells far down gradient of the landfill, the concentration of molecular hydrogen (0.33 to 0.83 nanomolar) was not adequate to support reductive dechlorination. In wells with adequate concentrations of hydrogen, the concentrations of chlorinated volatile organic compounds were attenuated over time, or concentrations of chlorinated volatile organics were below the detection limit. In wells with inadequate concentrations of hydrogen, the concentrations of chlorinated organic compounds attenuated at a slower rate over time. In wells with adequate hydrogen the first order rate of attenuation of PCE, TCE, cis-DCE and total chlorinated volatile organic compounds varies

  16. A SEARCH FOR RESIDUAL BEHAVIORAL EFFECTS OF TRICHLOROETHYLENE (TCE) IN RATS EXPOSED AS YOUNG ADULTS

    EPA Science Inventory

    Trichloroethylene (TCE) is a solvent of concern to the EPA due to its extensive use in industry, its prevalence in urban air, and its appearance in water supplies. Human clinical studies have associated short and long-termsolvent exposures with cognitive dysfunction including att...

  17. Evaluation of Toxic Effects of Aeration and Trichloroethylene Oxidation on Methanotrophic Bacteria Grown with Different Nitrogen Sources

    PubMed Central

    Chu, Kung-Hui; Alvarez-Cohen, Lisa

    1999-01-01

    In this study we evaluated specific and nonspecific toxic effects of aeration and trichloroethylene (TCE) oxidation on methanotrophic bacteria grown with different nitrogen sources (nitrate, ammonia, and molecular nitrogen). The specific toxic effects, exerted directly on soluble methane monooxygenase (sMMO), were evaluated by comparing changes in methane uptake rates and naphthalene oxidation rates following aeration and/or TCE oxidation. Nonspecific toxic effects, defined as general cellular damage, were examined by using a combination of epifluorescent cellular stains to measure viable cell numbers based on respiratory activity and measuring formate oxidation activities following aeration and TCE transformation. Our results suggest that aeration damages predominantly sMMO rather than other general cellular components, whereas TCE oxidation exerts a broad range of toxic effects that damage both specific and nonspecific cellular functions. TCE oxidation caused sMMO-catalyzed activity and respiratory activity to decrease linearly with the amount of substrate degraded. Severe TCE oxidation toxicity resulted in total cessation of the methane, naphthalene, and formate oxidation activities and a 95% decrease in the respiratory activity of methanotrophs. The failure of cells to recover even after 7 days of incubation with methane suggests that cellular recovery following severe TCE product toxicity is not always possible. Our evidence suggests that generation of greater amounts of sMMO per cell due to nitrogen fixation may be responsible for enhanced TCE oxidation activities of nitrogen-fixing methanotrophs rather than enzymatic protection mechanisms associated with the nitrogenase enzymes. PMID:9925614

  18. Coupling of Realistic Rate Estimates with Genomics for Assessing Contaminant Attenuation and Long-Term Plume Containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colwell, F. S.; Crawford, R. L.; Sorenson, K.

    2005-09-01

    Acceptance of monitored natural attenuation (MNA) as a preferred treatment technology saves significant site restoration costs for DOE. However, in order to be accepted MNA requires direct evidence of which processes are responsible for the contaminant loss and also the rates of the contaminant loss. Our proposal aims to: 1) provide evidence for one example of MNA, namely the disappearance of the dissolved trichloroethylene (TCE) from the Snake River Plain aquifer (SRPA) at the Idaho National Laboratory’s Test Area North (TAN) site, 2) determine the rates at which aquifer microbes can co-metabolize TCE, and 3) determine whether there are othermore » examples of natural attenuation of chlorinated solvents occurring at DOE sites. To this end, our research has several objectives. First, we have conducted studies to characterize the microbial processes that are likely responsible for the co-metabolic destruction of TCE in the aquifer at TAN (University of Idaho and INL). Second, we are investigating realistic rates of TCE co-metabolism at the low catabolic activities typical of microorganisms existing under aquifer conditions (INL). Using the co-metabolism rate parameters derived in low-growth bioreactors, we will complete the models that predict the time until background levels of TCE are attained in the aquifer at TAN and validate the long-term stewardship of this plume. Coupled with the research on low catabolic activities of co-metabolic microbes we are determining the patterns of functional gene expression by these cells, patterns that may be used to diagnose the co-metabolic activity in the SRPA or other aquifers. Third, we have systematically considered the aquifer contaminants at different locations in plumes at other DOE sites in order to determine whether MNA is a broadly applicable remediation strategy for chlorinated hydrocarbons (North Wind Inc.). Realistic terms for co-metabolism of TCE will provide marked improvements in DOE’s ability to predict

  19. REMEDIATION OF TCE-CONTAMINATED GROUNDWATER BY A PERMEABLE REACTIVE BARRIER FILLED WITH PLANT MULCH (BIOWALL)

    EPA Science Inventory

    A pilot-scale permeable reactive barrier filled with plant mulch was installed at Altus Air Force Base (in Oklahoma, USA) to treat trichloroethylene (TCE) contamination in ground water emanating from a landfill. The barrier was constructed in June 2002. It was 139 meters long, 7 ...

  20. EFFECTIVE REMOVAL OF TCE IN A LABORATORY MODEL OF A PRB CONSTRUCTED WITH PLANT MULCH

    EPA Science Inventory

    Ground water contaminated with TCE is commonly treated with a permeable reactive barrier (PRB) constructed with zero-valence iron. The cost of iron as the reactive matrix has driven a search for less costly alternatives, and composted plant mulch has been used as an alternative ...

  1. Documents for SBAR Panel: Trichloroethylene (TCE); Regulation of Use in Vapor Degreasing under TSCA §6(a)

    EPA Pesticide Factsheets

    SBAR panel to to address risks resulting from the manufacture, import, processing, distribution in commerce, and use of chemicals, as well as any manner or method of disposal of chemicals: Trichloroethylene (TCE)

  2. A scrutiny of heterogeneity at the TCE Source Area BioREmediation (SABRE) test site

    NASA Astrophysics Data System (ADS)

    Rivett, M.; Wealthall, G. P.; Mcmillan, L. A.; Zeeb, P.

    2015-12-01

    A scrutiny of heterogeneity at the UK's Source Area BioREmediation (SABRE) test site is presented to better understand how spatial heterogeneity in subsurface properties and process occurrence may constrain performance of enhanced in-situ bioremediation (EISB). The industrial site contained a 25 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) that was exceptionally well monitored via a network of multilevel samplers and high resolution core sampling. Moreover, monitoring was conducted within a 3-sided sheet-pile cell that allowed a controlled streamtube of flow to be drawn through the source zone by an extraction well. We primarily focus on the longitudinal transect of monitoring along the length of the cell that provides a 200 groundwater point sample slice along the streamtube of flow through the DNAPL source zone. TCE dechlorination is shown to be significant throughout the cell domain, but spatially heterogeneous in occurrence and progress of dechlorination to lesser chlorinated ethenes - it is this heterogeneity in dechlorination that we primarily scrutinise. We illustrate the diagnostic use of the relative occurrence of TCE parent and daughter compounds to confirm: dechlorination in close proximity to DNAPL and enhanced during the bioremediation; persistent layers of DNAPL into which gradients of dechlorination products are evident; fast flowpaths through the source zone where dechlorination is less evident; and, the importance of underpinning flow regime understanding on EISB performance. Still, even with such spatial detail, there remains uncertainty over the dataset interpretation. These includes poor closure of mass balance along the cell length for the multilevel sampler based monitoring and points to needs to still understand lateral flows (even in the constrained cell), even greater spatial resolution of point monitoring and potentially, not easily proven, ethene degradation loss.

  3. Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid

    PubMed Central

    ZHANG, Xiang; GU, Xiaogang; LU, Shuguang; MIAO, Zhouwei; XU, Minhui; FU, Xiaori; DANISH, Muhammad; Brusseau, Mark L.; QIU, Zhaofu; SUI, Qian

    2017-01-01

    Trichloroethene (TCE) degradation by Fe(III)-activated calcium peroxide (CP) in the presence of citric acid (CA) in aqueous solution was investigated. The results demonstrated that the presence of CA enhanced TCE degradation significantly by increasing the concentration of soluble Fe(III) and promoting H2O2 generation. The generation of HO• and O2−• in both the CP/Fe(III) and CP/Fe(III)/CA systems was confirmed with chemical probes. The results of radical scavenging tests showed that TCE degradation was due predominantly o direct oxidation by HO•, while O2−• strengthened the generation of HO• by promoting Fe(III) transformation in the CP/Fe(III)/CA system. Acidic pH conditions were favorable for TCE degradation, and the TCE degradation rate decreased with increasing pH. The presence of Cl−, HCO3−, and humic acid (HA) inhibited TCE degradation to different extents for the CP/Fe(III)/CA system. Analysis of Cl− production suggested that TCE degradation in the CP/Fe(III)/CA system occurred through a dechlorination process. In summary, this study provided detailed information for the application of CA-enhanced Fe(III)-activated calcium peroxide for treating TCE contaminated groundwater. PMID:28959499

  4. Dechlorination of trichloroethylene formed from 1,1,2,2-tetrachloroethane by dehydrochlorination in Portland cement slurry including Fe(II).

    PubMed

    Jung, Bahngmi; Batchelor, Bill

    2008-03-01

    Transformation of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) by Fe(II) in 10% cement slurries was characterized using a batch reactor system. 1,1,2,2-TeCA was completely converted to trichloroethylene (TCE) within 1h in all experiments, even in controls with cement that did not include Fe(II). Therefore, complete degradation of 1,1,2,2-TeCA depends on the behavior of TCE. The half-life of TCE was observed to be 15d when concentrations of Fe(II) and 1,1,2,2-TeCA were 98mM and 0.245mM, respectively. The kinetics of TCE removal was observed to be dependent on Fe(II) dose, pH and initial substrate concentration. Pseudo-first-order rate constants linearly increased with Fe(II) dose up to 198mM when initial target concentration was 0.245mM. Pseudo-first-order kinetics generally described the degradation reactions of TCE at a specific initial concentration, but a modified Langmuir-Hinshelwood model was necessary to describe the degradation kinetics of TCE over a wide range of initial concentrations. A surface reaction of TCE on active solids, which were formed from Fe(II) and products of cement hydration appears to control observed TCE degradation kinetics.

  5. Abiotic Removal of TCE and cis-DCE by Magnetite under Aerobic Conditions in Ground Water (Maryland)

    EPA Science Inventory

    The former Twin Cities Army Ammunition Plant (TCAAP) is located just north of St. Paul, Minnesota. Disposal of chlorinated solvents at the Building102 site on the TCAAP contaminated groundwater in the shallow, unconsolidated sand aquifer with TCE and cis-DCE. Concentrations of ...

  6. Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures.

    PubMed

    Delgado, Anca G; Fajardo-Williams, Devyn; Popat, Sudeep C; Torres, César I; Krajmalnik-Brown, Rosa

    2014-03-01

    The discovery of Dehalococcoides mccartyi reducing perchloroethene and trichloroethene (TCE) to ethene was a key landmark for bioremediation applications at contaminated sites. D. mccartyi-containing cultures are typically grown in batch-fed reactors. On the other hand, continuous cultivation of these microorganisms has been described only at long hydraulic retention times (HRTs). We report the cultivation of a representative D. mccartyi-containing culture in continuous stirred-tank reactors (CSTRs) at a short, 3-d HRT, using TCE as the electron acceptor. We successfully operated 3-d HRT CSTRs for up to 120 days and observed sustained dechlorination of TCE at influent concentrations of 1 and 2 mM TCE to ≥ 97 % ethene, coupled to the production of 10(12) D. mccartyi cells Lculture (-1). These outcomes were possible in part by using a medium with low bicarbonate concentrations (5 mM) to minimize the excessive proliferation of microorganisms that use bicarbonate as an electron acceptor and compete with D. mccartyi for H2. The maximum conversion rates for the CSTR-produced culture were 0.13 ± 0.016, 0.06 ± 0.018, and 0.02 ± 0.007 mmol Cl(-) Lculture (-1) h(-1), respectively, for TCE, cis-dichloroethene, and vinyl chloride. The CSTR operation described here provides the fastest laboratory cultivation rate of high-cell density Dehalococcoides cultures reported in the literature to date. This cultivation method provides a fundamental scientific platform for potential future operations of such a system at larger scales.

  7. FIELD SCALE EVALUATION OF TREATMENT OF TCE IN A BIOWALL AT THE OU-1 SITE

    EPA Science Inventory

    A passive reactive barrier (Biowall) was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contamin...

  8. Microcosm Studies to Evaluate Aerobic Cometabolism of Low Concentrations of 1,4-Dioxane by Isobutane-utilizing Microorganisms in the Presence of Chlorinated Solvent Co-contaminants

    NASA Astrophysics Data System (ADS)

    Rolston, H. M.; Azizian, M.; Hyman, M. R.; Semprini, L.

    2015-12-01

    Due to its use as a stabilizer for chlorinated solvents, 1,4-dioxane (1,4D), a probable human carcinogen, is a common co-contaminant in solvent spills at industrial and military sites and landfills. Its persistence in large groundwater plumes at low concentrations makes it a relevant candidate for in-situ bioremediation via cometabolism. Microcosm studies are being performed to evaluate the capability of aerobic microorganisms to cometabolize mixtures of 1,4D and chlorinated solvents, such as trichloroethylene (TCE), 1,1,1-trichloroethane (1,1,1TCA), and 1,1-dichloroethene (1,1DCE), with isobutane as the primary substrate. Microcosms were constructed using aquifer solids from Fort Carson, Colorado, a site contaminated with 1,4D and TCE, to assess the isobutane uptake and transformation of 1,4D and chlorinated solvents by microorganisms native to the site. Additional microcosms were augmented with Rhodococcus rhodochrous, a bacterium shown to cometabolize 1,4D and chlorinated solvents. Results indicate that native microcosms cometabolized 1,4D upon stimulation with isobutane after a lag period of about 15 days. TCE was also transformed, but at significantly slower rates. The presence of 1,4D and TCE at 500 and 300 ppb, respectively, did not inhibit the growth of native microorganisms on isobutane, with isobutane uptake and 1,4D transformation occurring simultaneously. Bioaugmented microcosms transformed 1,4D immediately after inoculation with R. rhodochrous. Tests in bioaugmented microorganisms indicated that the presence of TCE at low concentrations inhibits but does not block the transformation of 1,4D. Results from the microcosms will be used to design field tests to be performed at Fort Carson. Additional microcosm studies will compare the stimulation of native and bioaugmented microcosms and the transformation of mixtures of 1,4D, 1,1,1TCA and 1,1DCE. Molecular methods will analyze the monoxygenase enzymes expressed in the native and bioaugmented microcosms.

  9. Impact of electrode sequence on electrochemical removal of trichloroethylene from aqueous solution

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Alshawabkeh, Akram N.

    2015-01-01

    The electrode sequence in a mixed flow-through electrochemical cell is evaluated to improve the hydrodechlorination (HDC) of trichloroethylene (TCE) in aqueous solutions. In a mixed (undivided) electrochemical cell, oxygen generated at the anode competes with the transformation of target contaminants at the cathode. In this study, we evaluate the effect of placing the anode downstream from the cathode and using multiple electrodes to promote TCE reduction. Experiments with a cathode followed by an anode (C→A) and an anode followed by a cathode (A→C) were conducted using mixed metal oxide (MMO) and iron as electrode materials. The TCE removal rates when the anode is placed downstream of the cathode (C→A) were 54% by MMO→MMO, 64% by MMO→Fe and 87% by Fe→MMO sequence. Removal rates when the anode is placed upstream of the cathode (A→C) were 38% by MMO→MMO, 58% by Fe→MMO and 69% by MMO→Fe sequence. Placing the anode downstream of the cathode positively improves (by 26%) the degradation of aqueous TCE in a mixed flow-through cell as it minimizes the influence of oxygen generated at the MMO anode on TCE reduction at the cathode. Furthermore, placing the MMO anode downstream of the cathode neutralizes pH and redox potential of the treated solution. Higher flow velocity under the C→A setup increases TCE mass flux reduction rate. Using multiple cathodes and an iron foam cathode up stream of the anode increase the removal rate by 1.6 and 2.4 times, respectively. More than 99% of TCE was removed in the presence of Pd catalyst on carbon and as an iron foam coating. Enhanced reaction rates found in this study imply that a mixed flow-through electrochemical cell with multiple cathodes up stream of an anode is an effective method to promote the reduction of TCE in groundwater. PMID:25931774

  10. Impact of Iron Sulfide Transformation on Trichloroethylene Degradation

    EPA Science Inventory

    Trichloroethylene (TCE) is one of the most common and persistent groundwater contaminants encountered at hazardous waste sites around the world. A growing body of evidence indicates that iron sulfides play an important role in degrading TCE in natural environments and in enginee...

  11. Hydrogeologic investigation of the Malvern TCE Superfund Site, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    1997-01-01

    from the disposal area toward Valley Creek. A comparison of data from 1995 to 1996 with data from 1981 to 1984 shows that concentrations of TCE, PCE, and TCA in water from most off-site wells have decreased and that water from fewer wells contains detectable concentrations of those compounds.A capture-zone analysis was performed for three wells at the disposal area. The analysis showed that pumping wells CC-16, CC-17, and CC-18 at a combined rate of 270 gal/min would form a capture zone ranging from approximately 443 to 477 ft wide at a distance 500 ft upgradient from the center of the pumping wells. Pumping wells CC-16 and CC-17 together at a combined rate of 172 gal/min would form a capture zone ranging from approximately 172 to 400 ft wide at a distance 500 ft upgradient from the center of the pumping wells.

  12. Microbiota associated with the migration and transformation of chlorinated aliphatic hydrocarbons in groundwater.

    PubMed

    Guan, Xiangyu; Liu, Fei; Xie, Yuxuan; Zhu, Lingling; Han, Bin

    2013-08-01

    Pollution of groundwater with chlorinated aliphatic hydrocarbons (CAHs) is a serious environmental problem which is threatening human health. Microorganisms are the major participants in degrading these contaminants. Here, groundwater contaminated for a decade with CAHs was investigated. Numerical simulation and field measurements were used to track and forecast the migration and transformation of the pollutants. The diversity, abundance, and possible activity of groundwater microbial communities at CAH-polluted sites were characterized by molecular approaches. The number of microorganisms was between 5.65E+05 and 1.49E+08 16S rRNA gene clone numbers per liter according to quantitative real-time PCR analysis. In 16S rRNA gene clone libraries constructed from samples along the groundwater flow, eight phyla were detected, and Proteobacteria were dominant (72.8 %). The microbial communities varied with the composition and concentration of pollutants. Meanwhile, toluene monooxygenases and methane monooxygenases capable of degradation of PCE and TCE were detected, demonstrating the major mechanism for PCE and TCE degradation and possibility for in situ remediation by addition of oxygen in this study.

  13. Evaluation of data transformations used with the square root and schoolfield models for predicting bacterial growth rate.

    PubMed Central

    Alber, S A; Schaffner, D W

    1992-01-01

    A comparison was made between mathematical variations of the square root and Schoolfield models for predicting growth rate as a function of temperature. The statistical consequences of square root and natural logarithm transformations of growth rate use in several variations of the Schoolfield and square root models were examined. Growth rate variances of Yersinia enterocolitica in brain heart infusion broth increased as a function of temperature. The ability of the two data transformations to correct for the heterogeneity of variance was evaluated. A natural logarithm transformation of growth rate was more effective than a square root transformation at correcting for the heterogeneity of variance. The square root model was more accurate than the Schoolfield model when both models used natural logarithm transformation. PMID:1444367

  14. Rate-independent dissipation in phase-field modelling of displacive transformations

    NASA Astrophysics Data System (ADS)

    Tůma, K.; Stupkiewicz, S.; Petryk, H.

    2018-05-01

    In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.

  15. A three-electrode column for Pd-catalytic oxidation of TCE in groundwater with automatic pH-regulation and resistance to reduced sulfur compound foiling.

    PubMed

    Yuan, Songhu; Chen, Mingjie; Mao, Xuhui; Alshawabkeh, Akram N

    2013-01-01

    A hybrid electrolysis and Pd-catalytic oxidation process is evaluated for degradation of trichloroethylene (TCE) in groundwater. A three-electrode, one anode and two cathodes, column is employed to automatically develop a low pH condition in the Pd vicinity and a neutral effluent. Simulated groundwater containing up to 5 mM bicarbonate can be acidified to below pH 4 in the Pd vicinity using a total of 60 mA with 20 mA passing through the third electrode. By packing 2 g of Pd/Al(2)O(3) pellets in the developed acidic region, the column efficiency for TCE oxidation in simulated groundwater (5.3 mg/L TCE) increases from 44 to 59 and 68% with increasing Fe(II) concentration from 0 to 5 and 10 mg/L, respectively. Different from Pd-catalytic hydrodechlorination under reducing conditions, this hybrid electrolysis and Pd-catalytic oxidation process is advantageous in controlling the fouling caused by reduced sulfur compounds (RSCs) because the in situ generated reactive oxidizing species, i.e., O(2), H(2)O(2) and OH, can oxidize RSCs to some extent. In particular, sulfite at concentrations less than 1 mM even greatly increases TCE oxidation by the production of SO(4)(•-), a strong oxidizing radical, and more OH. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The Role of Magnetite in In Situ Biogeochemical Transformation

    EPA Science Inventory

    The former Twin Cities Army Ammunition Plant (TCAAP) is located just north of St. Paul, Minnesota. Disposal of chlorinated solvents on the TCAAP contaminated groundwater in the shallow, unconsolidated sand aquifer with TCE and cis-DCE. Concentrations of TCE and cis-DCE rapidly ...

  17. Evaluating the potential for quantitative monitoring of in situ chemical oxidation of aqueous-phase TCE using in-phase and quadrature electrical conductivity

    NASA Astrophysics Data System (ADS)

    Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.

    2015-07-01

    Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.

  18. Influence of humic substances on electrochemical degradation of trichloroethylene in limestone aquifers

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Nazari, Roya; Alshawabkeh, Akram N.

    2015-01-01

    In this study we investigate the influence of humic substances (HS) on electrochemical transformation of trichloroethylene (TCE) in groundwater from limestone aquifers. A laboratory flow-through column with an electrochemical reactor that consists of a palladized iron foam cathode followed by a MMO anode was used to induce TCE electro-reduction in groundwater. Up to 82.9% TCE removal was achieved in the absence of HS. Presence of 1, 2, 5, and 10 mgTOC L−1 reduced TCE removal to 70.9%, 61.4%, 51.8% and 19.5%, respectively. The inverse correlation between HS content and TCE removal was linear. Total organic carbon (TOC), dissolved organic carbon (DOC) and absorption properties (A=254 nm, 365 nm and 436 nm) normalized to DOC, were monitored during treatment to understand the behavior and impacts of HS under electrochemical processes. Changes in all parameters occurred mainly after contact with the cathode, which implies that the HS are reacting either directly with electrons from the cathode or with H2 formed at the cathode surface. Since hydrodechlorination is the primary TCE reduction mechanism in this setup, reactions of the HS with the cathode limit transformation of TCE. The presence of limestone gravel reduced the impact of HS on TCE removal. The study concludes that presence of humic substances adversely affects TCE removal from contaminated groundwater by electrochemical reduction using palladized cathodes. PMID:26549889

  19. Lactate Injection by Electric Currents for Bioremediation of Tetrachloroethylene in Clay

    PubMed Central

    Wu, Xingzhi; Gent, David B.; Davis, Jeffrey L.; Alshawabkeh, Akram N.

    2012-01-01

    Biological transformation of tetrachloroethylene (PCE) in silty clay samples by ionic injection of lactate under electric fields is evaluated. To prepare contaminated samples, a silty clay slurry was mixed with PCE, inoculated with KB-1® dechlorinators and was consolidated in a 40 cm long cell. A current density between 5.3 and 13.3 A m−2 was applied across treated soil samples while circulating electrolytes containing 10 mg L−1 lactate concentration between the anode and cathode compartments to maintain neutral pH and chemically reducing boundary conditions. The total adsorbed and aqueous PCE was degraded in the soil to trichloroethylene (TCE), cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC) and ethene in 120 d, which is about double the time expected for transformation. Lactate was delivered into the soil by a reactive transport rate of 3.7 cm2 d−1 V−1. PCE degradation in the clay samples followed zero order transformation rates ranging from 1.5 to 5 mg L−1 d−1 without any significant formation of TCE. cis-DCE transformation followed first order transformation rates of 0.06 to 0.10 per day. A control experiment conducted with KB-1 and lactate, but without electricity did not show any significant lactate buildup or cis-DCE transformation because the soil was practically impermeable (hydraulic conductivity of 2×10−7 cm s−1). It is concluded that ionic migration will deliver organic additives and induce biological activity and complete PCE transformation in clay, even though the transformation occurs under slower rates compared to ideal conditions. PMID:23264697

  20. 1,4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume.

    PubMed

    Karges, Ursula; Becker, Johannes; Püttmann, Wilhelm

    2018-04-01

    An effective and sensitive method for the analysis of 1,4-dioxane in water has been available since 2008 (EPA 522). This method is increasingly being applied to investigate the distribution of 1,4-dioxane in the aquatic environment. However, there is a need for more information about the possible occurrence of 1,4-dioxane in groundwater in Europe in general, and in Germany in particular, where virtually no data have been collected so far. The possible contamination of groundwater with 1,4-dioxane is of relevance to Germany because up to 70% of Germany's drinking water is obtained from groundwater and about 17% from river bank filtrate, which contains variable proportions of groundwater. The aim of the present study is to investigate selected and representative groundwater sites in Germany that have suspected occurrences of 1,4-dioxane. Five of the sites are well known for their volatile chlorinated hydrocarbon contamination, two sites have representative landfill leachate characteristics, and one site is negatively impacted by a detergent manufacturing plant. The presence of 1,4-dioxane was observed at each of these sites. Measured maximum concentration values ranged from 0.15μg/L to 152μg/L. An aquifer containing a trichloroethylene (TCE) plume with 1,4-dioxane as a co-contaminant was investigated in more detail. A perfect match was found between the concentrations of 1,4-dioxane and TCE in the vertical and horizontal distribution profiles. The results indicate the necessity for investigating groundwater contamination by 1,4-dioxane at sites with known 1,1,1-trichloroethane (TCA) and TCE contaminations, in landfill leachates, and at sites of detergent production. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A High-Rate, Single-Crystal Model for Cyclotrimethylene Trinitramine including Phase Transformations and Plastic Slip

    DOE PAGES

    Addessio, Francis L.; Luscher, Darby Jon; Cawkwell, Marc Jon; ...

    2017-05-14

    A continuum model for the high-rate, thermo-mechanical deformation of single-crystal cyclotrimethylene trinitramine (RDX) is developed. The model includes the effects of anisotropy, large deformations, nonlinear thermo-elasticity, phase transformations, and plastic slip. A multiplicative decomposition of the deformation gradient is used. The volumetric elastic component of the deformation is accounted for through a free-energy based equation of state for the low- (α) and high-pressure (γ) polymorphs of RDX. Crystal plasticity is addressed using a phenomenological thermal activation model. The deformation gradient for the phase transformation is based on an approach that has been applied to martensitic transformations. Simulations were conducted andmore » compared to high-rate, impact loading of oriented RDX single crystals. The simulations considered multiple orientations of the crystal relative to the direction of shock loading and multiple sample thicknesses. Thirteen slip systems, which were inferred from indentation and x-ray topography, were used to model the α-polymorph. It is shown that by increasing the number of slip systems from the previously considered number of six (6) to thirteen (13) in the α-polymorph, better comparisons with data may be obtained. Simulations of impact conditions in the vicinity of the α- to γ-polymorph transformation (3.8 GPa) are considered. Eleven of the simulations, which were at pressures below the transformation value (3.0 GPa), were compared to experimental data. Comparison of the model was also made with available data for one experiment above the transformation pressure (4.4 GPa). Also, simulations are provided for a nominal pressure of 7.5 GPa to demonstrate the effect of the transformation kinetics on the deformation of a high-rate plate impact problem.« less

  2. A High-Rate, Single-Crystal Model for Cyclotrimethylene Trinitramine including Phase Transformations and Plastic Slip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addessio, Francis L.; Luscher, Darby Jon; Cawkwell, Marc Jon

    A continuum model for the high-rate, thermo-mechanical deformation of single-crystal cyclotrimethylene trinitramine (RDX) is developed. The model includes the effects of anisotropy, large deformations, nonlinear thermo-elasticity, phase transformations, and plastic slip. A multiplicative decomposition of the deformation gradient is used. The volumetric elastic component of the deformation is accounted for through a free-energy based equation of state for the low- (α) and high-pressure (γ) polymorphs of RDX. Crystal plasticity is addressed using a phenomenological thermal activation model. The deformation gradient for the phase transformation is based on an approach that has been applied to martensitic transformations. Simulations were conducted andmore » compared to high-rate, impact loading of oriented RDX single crystals. The simulations considered multiple orientations of the crystal relative to the direction of shock loading and multiple sample thicknesses. Thirteen slip systems, which were inferred from indentation and x-ray topography, were used to model the α-polymorph. It is shown that by increasing the number of slip systems from the previously considered number of six (6) to thirteen (13) in the α-polymorph, better comparisons with data may be obtained. Simulations of impact conditions in the vicinity of the α- to γ-polymorph transformation (3.8 GPa) are considered. Eleven of the simulations, which were at pressures below the transformation value (3.0 GPa), were compared to experimental data. Comparison of the model was also made with available data for one experiment above the transformation pressure (4.4 GPa). Also, simulations are provided for a nominal pressure of 7.5 GPa to demonstrate the effect of the transformation kinetics on the deformation of a high-rate plate impact problem.« less

  3. RATES OF TRANSFORMATION OF METHYL PARATHION AND DIETHYL PHTHALATE BY AUFWUCHS MICROORGANISMS

    EPA Science Inventory

    Using batch cultures, the authors determined transformation rates for low concentrations of two toxicants--an insectide, methyl parathion, and a plasticizer, diethyl phthalate--by aufwuchs. Aufwuchs samples were collected from field sites, an indoor channel, and a continuous-flow...

  4. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addessio, Francis L.; Bronkhorst, Curt Allan; Bolme, Cynthia Anne

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientationsmore » relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.« less

  5. Copper:molybdenum sub-oxide blend as transparent conductive electrode (TCE) indium free

    NASA Astrophysics Data System (ADS)

    Hssein, Mehdi; Cattin, Linda; Morsli, Mustapha; Addou, Mohammed; Bernède, Jean-Christian

    2016-05-01

    Oxide/metal/oxide structures have been shown to be promising alternatives to ITO. In such structures, in order to decrease the high light reflection of the metal film it is embedded between two metal oxides dielectric. MoO3-x is often used as oxide due to its capacity to be a performing anode buffer layer in organic solar cells, while silver is the metal the most often used [1]. Some attempts to use cheaper metal such as copper have been done. However it was shown that Cu diffuses strongly into MoO3-x [2]. Here we used this property to grow simple new transparent conductive oxide (TCE), i.e., Cu: MoO3-x blend. After the deposition of a thin Cu layer, a film of MoO3-x is deposited by sublimation. An XPS study shows more than 50% of Cu is present at the surface of the structure. In order to limit the Cu diffusion an ultra-thin Al layer is deposited onto MoO3-x. Then, in order to obtain a good hole collecting contact with the electron donor of the organic solar cells, a second MoO3-x layer is deposited. After optimization of the thickness of the different layers, the optimum structure is as follow: Cu (12 nm) : MoO3-x (20 nm)/Al (0.5 nm)/ MoO3-x (10 nm). The sheet resistance of this structure is Rsq = 5.2 Ω/sq. and its transmittance is Tmax = 65%. The factor of merit ϕM = T10/Rsq. = 2.41 × 10-3 Ω-1, which made this new TCE promising as anode in organic solar cells. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  6. Content Instruction through a Foreign Language. A Report on the 1992-1993 TCE Programme. Research and Fieldwork No. 18.

    ERIC Educational Resources Information Center

    Rasanen, Anne, Ed.; Marsh, David, Ed.

    This volume of articles is a report from the national teacher in-service development program in teaching content through a foreign language at the Continuing Education Centre of the University of Jyvaskyla, Finland. This publication is mainly in English, because of the basic rationale of the Teaching Content through English (TCE) programme, and…

  7. COMPARISON OF MICROBIAL TRANSFORMATION RATE COEFFICIENTS OF XENOBIOTIC CHEMICALS BETWEEN FIELD-COLLECTED AND LABORATORY MICROCOSM MICROBIOTA

    EPA Science Inventory

    Two second-order transformation rate coefficients--kb, based on total plate counts, and kA, based on periphyton-colonized surface areas--were used to compare xenobiotic chemical transformation by laboratory-developed (microcosm) and by field-collected microbiota. Similarity of tr...

  8. Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils.

    PubMed

    Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan

    2010-07-01

    The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 muM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE.

  9. Effects of land use change on soil gross nitrogen transformation rates in subtropical acid soils of Southwest China.

    PubMed

    Xu, Yongbo; Xu, Zhihong

    2015-07-01

    Land use change affects soil gross nitrogen (N) transformations, but such information is particularly lacking under subtropical conditions. A study was carried out to investigate the potential gross N transformation rates in forest and agricultural (converted from the forest) soils in subtropical China. The simultaneously occurring gross N transformations in soil were quantified by a (15)N tracing study under aerobic conditions. The results showed that change of land use types substantially altered most gross N transformation rates. The gross ammonification and nitrification rates were significantly higher in the agricultural soils than in the forest soils, while the reverse was true for the gross N immobilization rates. The higher total carbon (C) concentrations and C / N ratio in the forest soils relative to the agricultural soils were related to the greater gross N immobilization rates in the forest soils. The lower gross ammonification combined with negligible gross nitrification rates, but much higher gross N immobilization rates in the forest soils than in the agricultural soils suggest that this may be a mechanism to effectively conserve available mineral N in the forest soils through increasing microbial biomass N, the relatively labile organic N. The greater gross nitrification rates and lower gross N immobilization rates in the agricultural soils suggest that conversion of forests to agricultural soils may exert more negative effects on the environment by N loss through NO3 (-) leaching or denitrification (when conditions for denitrification exist).

  10. Effect of Phenol Molecular Structure on Bacterial Transformation Rate Constants in Pond and River Samples

    PubMed Central

    Paris, Doris F.; Wolfe, N. Lee; Steen, William C.; Baughman, George L.

    1983-01-01

    Microbial transformation rate constants for a series of phenols were correlated with a property of the substituents, van der Waal's radius. Transformation products were the corresponding catechols, with the exception of p-hydroxybenzoic acid, the product of p-acetylphenol. A different product suggested a different pathway; p-acetylphenol, therefore, was deleted from the data base. PMID:16346236

  11. Unprecedented rates of land-use transformation in modeled climate change mitigation pathways

    NASA Astrophysics Data System (ADS)

    Turner, P. A.; Field, C. B.; Lobell, D. B.; Sanchez, D.; Mach, K. J.

    2017-12-01

    Integrated assessment models (IAMs) generate climate change mitigation scenarios consistent with global temperature targets. To limit warming to 2°, stylized cost-effective mitigation pathways rely on extensive deployments of carbon dioxide (CO2) removal (CDR) technologies, including multi-gigatonne yearly carbon removal from the atmosphere through bioenergy with carbon capture and storage (BECCS) and afforestation/reforestation. These assumed CDR deployments keep ambitious temperature limits in reach, but associated rates of land-use transformation have not been evaluated. For IAM scenarios from the IPCC Fifth Assessment Report, we compare rates of modeled land-use conversion to recent observed commodity crop expansions. In scenarios with a likely chance of limiting warming to 2° in 2100, the rate of energy cropland expansion supporting BECCS exceeds past commodity crop rates by several fold. In some cases, mitigation scenarios include abrupt reversal of deforestation, paired with massive afforestation/reforestation. Specifically, energy cropland in <2° scenarios expands, on average, by 8.2 Mha yr-1 and 11.7% p.a. across scenarios. This rate exceeds, by more than 3-fold, the observed expansion of soybean, the most rapidly expanding commodity crop. If energy cropland instead increases at rates equal to recent soybean and oil palm expansions, the scale of CO2 removal possible with BECCS is 2.6 to 10-times lower, respectively, than the deployments <2° IAM scenarios rely upon in 2100. IAM mitigation pathways may favor multi-gigatonne biomass-based CDR given undervalued sociopolitical and techno-economic deployment barriers. Heroic modeled rates for land-use transformation imply that large-scale biomass-based CDR is not an easy solution to the climate challenge.

  12. Is Traditional Chinese Exercise Associated With Lower Mortality Rates in Older People? Evidence From a Prospective Chinese Elderly Cohort Study in Hong Kong.

    PubMed

    Shen, Chen; Lee, Siu Yin; Lam, Tai Hing; Schooling, C Mary

    2016-01-01

    The inverse association of aerobic exercise with death has been well documented. However, evidence on traditional Chinese exercise (TCE) and rate of death in older Chinese is limited. Multivariable Cox regression analysis was used to assess the associations of TCE and other types of physical activity with death from all causes and specific causes in a population-based prospective cohort of 66,820 Chinese persons (≥65 years of age) who were enrolled between July 1998 and December 2001 at all 18 Elderly Health Centers in Hong Kong and followed up until May 31, 2012. During an average of 10.9 years of follow-up, 19,845 deaths occurred. TCE was inversely associated with death from all causes (hazard ratio (HR) = 0.78, 95% confidence interval (CI): 0.74, 0.82), cardiovascular disease (HR = 0.77, 95% CI: 0.70, 0.85), cancer (HR = 0.84, 95% CI: 0.77, 0.92), and respiratory disease (HR = 0.71, 95% CI: 0.63, 0.80) but was not associated with death from accidents (excluding falls) (HR = 0.79, 95% CI: 0.44, 1.42), after adjustment for age, sex, socioeconomic position, alcohol use, smoking, body mass index, and health status. The associations did not vary by amount of TCE. Aerobic exercise had similar inverse associations as TCE, but associations for stretching exercises and walking slowly were less marked. Further studies of TCE are warranted in older Chinese. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Cometabolic Degradation of Trichloroethene by Rhodococcus sp. Strain L4 Immobilized on Plant Materials Rich in Essential Oils▿ †

    PubMed Central

    Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan

    2010-01-01

    The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 μM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE. PMID:20472723

  14. GROSS N TRANSFORMATION RATES AND MICROBIAL POPULATION DYNAMICS UNDER FIELD AND LABORATORY CONDITIONS FROM TWO DIFFERENT ECOSYSTEMS

    EPA Science Inventory

    Change of soil and environmental conditions can influence microbial activities and subsequent soil nitrogen (N) transformation processes. The objective of this study was to compare gross N transformation rates between field and laboratory incubation conditions using an old-field...

  15. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  16. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE.

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  17. Intraoperative monitoring of somatosensory (SSEPs) and transcranial electric motor-evoked potentials (tce-MEPs) during surgical correction of neuromuscular scoliosis in patients with central or peripheral nervous system diseases.

    PubMed

    Pastorelli, F; Di Silvestre, M; Vommaro, F; Maredi, E; Morigi, A; Bacchin, M R; Bonarelli, S; Plasmati, R; Michelucci, R; Greggi, T

    2015-11-01

    Combined intraoperative monitoring (IOM) of transcranial electric motor-evoked potentials (tce-MEPs) and somatosensory-evoked potentials (SSEPs) is safe and effective for spinal cord monitoring during scoliosis surgery. However, the literature data regarding the reliability of spinal cord monitoring in patients with neuromuscular scoliosis are conflicting and need to be confirmed. We reviewed IOM records of 40 consecutive patients with neuromuscular scoliosis related to central nervous system (CNS) (29 pts) or peripheral nervous system (PNS) (11 patients) diseases, who underwent posterior fusion with instrumentation surgery for spinal deformity. Multimodalitary IOM with SSEPs and tce-MEPs was performed. Spinal cord monitoring using at least one modality was attempted in 38/40 (95 %) patients. No false-negative results were present in either group, but a relatively high incidence of false-positive cases (4/29, 13.8 %) was noted in the CNS group. Two patients in the CNS group and one patient in the PNS group presented transient postoperative motor deficits (true positive), related to surgical manoeuvres in two cases and to malposition in the other one. Multimodalitary IOM is safe and effective to detect impending spinal cord and peripheral nerves dysfunction in neuromuscular scoliosis surgery. However, the interpretation of neurophysiological data may be challenging in such patients, and the rate of false-positive results is high when pre-operatory motor deficits are severe.

  18. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene.

    PubMed

    Phenrat, Tanapon; Schoenfelder, Daniel; Kirschling, Teresa L; Tilton, Robert D; Lowry, Gregory V

    2018-03-01

    For in situ groundwater remediation, polyelectrolyte-modified nanoscale zerovalent iron particles (NZVIs) have to be delivered into the subsurface, where they degrade pollutants such as trichloroethylene (TCE). The effect of groundwater organic and ionic solutes on TCE dechlorination using polyelectrolyte-modified NZVIs is unexplored, but is required for an effective remediation design. This study evaluates the TCE dechlorination rate and reaction by-products using poly(aspartate) (PAP)-modified and bare NZVIs in groundwater samples from actual TCE-contaminated sites in Florida, South Carolina, and Michigan. The effects of groundwater solutes on short- and intermediate-term dechlorination rates were evaluated. An adsorbed PAP layer on the NZVIs appeared to limit the adverse effect of groundwater solutes on the TCE dechlorination rate in the first TCE dechlorination cycle (short-term effect). Presumably, the pre-adsorption of PAP "trains" and the Donnan potential in the adsorbed PAP layer prevented groundwater solutes from further blocking NZVI reactive sites, which appeared to substantially decrease the TCE dechlorination rate of bare NZVIs. In the second and third TCE dechlorination cycles (intermediate-term effect), TCE dechlorination rates using PAP-modified NZVIs increased substantially (~100 and 200%, respectively, from the rate of the first spike). The desorption of PAP from the surface of NZVIs over time due to salt-induced desorption is hypothesized to restore NZVI reactivity with TCE. This study suggests that NZVI surface modification with small, charged macromolecules, such as PAP, helps to restore NZVI reactivity due to gradual PAP desorption in groundwater.

  19. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.

    PubMed

    Parker, Beth L; Chapman, Steven W; Guilbeault, Martin A

    2008-11-14

    This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard

  20. High-resolution experiments on chemical oxidation of DNAPL in variable-aperture fractures

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud; Rajaram, Harihar; Detwiler, Russell L.; Jones, Trevor

    2015-04-01

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. We present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were quantified for each experiment. The integrated mass transfer rate from the TCE phase for all experiments exhibited three time regimes: an early-time regime with slower mass transfer rates limited by low specific interfacial area; an intermediate-time regime with higher mass transfer rates resulting from breakup of large TCE blobs, which greatly increases specific interfacial area; and a late-time regime with low mass transfer rates due to the deposition of MnO2 precipitates. In two experiments, mass balance analyses suggested that TCE mass removal rates exceeded the maximum upper bound mass removal rates derived by assuming that oxidation and dissolution are the only mechanisms for TCE mass removal. We propose incomplete oxidation by permanganate and TCE solubility enhancement by intermediate reaction products as potential mechanisms to explain this behavior. We also speculate that some intermediate reaction products with surfactant-like properties may play a role in lowering the TCE-water interfacial tension, thus causing breakup of large TCE blobs. Our quantitative experimental measurements will be useful in the context of developing accurate computational models for chemical oxidation of TCE in fractures.

  1. The Gaseous Explosive Reaction : the Effect of Pressure on the Rate of Propagation of the Reaction Zone and upon the Rate of Molecular Transformation

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1932-01-01

    This study of gaseous explosive reaction has brought out a number of important fundamental characteristics of the explosive reaction indicating that the basal processes of the transformation are much simpler and corresponds more closely to the general laws and principles of ordinary transformations than is usually supposed. The report calls attention to the point that the rate of molecular transformation within the zone was found in all cases to be proportional to pressure, that the transformation within the zone is the result of binary impacts. This result is of unusual interest in the case of the reaction of heavy hydrocarbon fuels and the reaction mechanism proposed by the recent kinetic theory of chain reactions.

  2. Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept.

    PubMed

    Phenrat, Tanapon; Kumloet, Itsaraphong

    2016-12-15

    In this study, a novel electromagnetically enhanced treatment concept is proposed for in situ remediation of a source zone of chlorinated dense non-aqueous phase liquid (DNAPL) that is slowly dissolved, causing contaminated groundwater for centuries. Here, we used polystyrene sulfonate (PSS)-modified nanoscale zerovalent iron (NZVI) particles (ferromagnetic) in combination with a low frequency (LF) (150 kHz) AC electromagnetic field (EMF) to accelerate the degradation of the DNAPLs via enhanced dissolution and reductive dechlorination. Trichloroethylene (TCE) and tetrachloroethylene (PCE) were used in a bench-scaled evaluation. The PSS-modified NZVI successfully targeted the DNAPL/water interface, as evidenced by the Pickering emulsion formation. Dechlorination of TCE- and PCE-DNAPL was measured by quantifying the by-product formation (acetylene, ethene, and ethane). Without magnetic induction heating (MIH) by LF EMF, PSS-modified NZVI transformed TCE- and PCE-DNAPL to ethene and ethane at the rate constants of 12.19 × 10 -3 and 1.00 × 10 -3  μmol/h/m 2 , respectively, following pseudo zero-order reactions. However, four MIH cycles of PSS-NZVI increased the temperature up to 87 °C and increased the rate constants of TCE-DNAPL and PCE-DNAPL up to 14.58 and 58.01 times, respectively, in comparison to the dechlorination rate without MIH. Theoretical analysis suggested that the MIH of the PSS-modified NZVI enhanced the dechlorination of TCE- and PCE-DNAPL via the combination of the enhanced thermal dissolution of DNAPL, the effect of increasing the temperature on the rate constant (the Arrhenius equation), and the accelerated NZVI corrosion. Nevertheless, the effect of the Arrhenius equation was dominant. For the first time, this proof-of-concept study reveals the potential for using polyelectrolyte-modified NZVI coupled with LF EMF as a combined remediation technique for increasing the rate and completeness of in situ chlorinated DNAPL source remediation

  3. Why Litigation-Driven History Matters: Lessons Learned from the Secret History of TCE.

    PubMed

    Zahniser, Keith A

    2015-02-01

    Litigation drives extensive historical research but often allows only select observers to see the results. Historians have conducted untold studies for litigation that become "secret histories" because these histories are not published. An example is the historical use and regulation of the chemical trichloroethylene (TCE), a hazardous chemical at issue in much environmental litigation, but a topic virtually absent in the secondary literature. This practice seems to contravene accepted standards of open scholarship. Although not directly aligned with the traditional academic model of historical practice, however, historical research and writing for litigation achieve legitimate and important results without abandoning the discipline's professional standards. History done by consultants for litigation is neither a history of compromised standards nor as "secret" as feared.

  4. A Continuous Flow Column Study of Anaerobic PCE Transformation With the Evanite Culture and Hanford Aquifer Solids

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Behrens, S.; Azizian, M.; Sabalowsky, A.; Dolan, M.; Ruiz-Hass, P.; Ingle, J.; Spormann, A.

    2005-12-01

    Anaerobic reductive dehalogenation of tetrachloroethene (PCE) and trichoroethene (TCE) is a promising technology for the in situ treatment of high concentration source zones in contaminated aquifers. Continuous flow column studies were performed where a mixed dehalogenating culture (Evanite culture) that contains Dehalococcides-like microorganisms was bioaugmented into aquifer solids from the Hanford DOE site. Studies conducted prior to bioaugmentation showed PCE transport was retarded due to sorption onto the aquifer solids. Upon bioaugmentation and with continuous lactate addition, PCE (10 mg/L) was transformed to cis-dichloroethene ( cis-DCE), and enhanced transformation of sorbed PCE was observed. Prolonged production of cis-DCE was associated with iron reducing conditions, while eventual vinyl chloride (VC) reduction to ethene was associated with sulfate reducing conditions. Microbial processes included lactate fermentation to acetate and propionate, iron reduction, sulfate reduction, and reductive dehalogenation, with reductive dehalogenation utilizing 2 to 3% of the electron donor addition. PCE was completely transformed to ethene within a hydraulic residence time of one day. Upon competition of the column tests spatial samples of aquifer solids were analyzed using molecular methods and solids were used in batch microcosm activity tests. Dehalococcoides sp. 16S rRNA gene copy numbers dropped from ~ 74% of total Eubacterial 16S rRNA genes in the original inoculum, to about 0.5 to 4% through out the column, consistent with the estimates of electron donor utilization for dehalogenation reactions. Microcosm tests showed most of PCE transformation activity at the entrance of the column, consistent with the Dehalococcoides sp. 16S rRNA gene copy numbers being highest in that area. Roughly 20% of the Dehalococcoides sp. population in the column possessed a vcrA gene for the respiration of VC to ethene. The vcrA-positive subpopulation decreases to about 5% towards

  5. Better Rooting Procedure to Enhance Survival Rate of Field Grown Malaysian Eksotika Papaya Transformed with 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Gene

    PubMed Central

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom

    2013-01-01

    A high survival rate for transformed papaya plants when transferred to the field is useful in the quest for improving the commercial quality traits. We report in this paper an improved rooting method for the production of transformed Malaysian Eksotika papaya with high survival rate when transferred to the field. Shoots were regenerated from embryogenic calli transformed with antisense and RNAi constructs of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes using the Agrobacterium tumefaciens-mediated transformation method. Regenerated transformed shoots, each measuring approximately 3-4 cm in height, were cultured in liquid half-strength Murashige and Skoog (MS) medium or sterile distilled water, and with either perlite or vermiculite supplementation. All the culturing processes were conducted either under sterile or nonsterile condition. The results showed that rooting under sterile condition was better. Shoots cultured in half-strength MS medium supplemented with vermiculite exhibited a 92.5% rooting efficiency while perlite showed 77.5%. The survival rate of the vermiculite-grown transformed papaya plantlets after transfer into soil, contained in polybags, was 94%, and the rate after transfer into the ground was 92%. Morpho-histological analyses revealed that the tap roots were more compact, which might have contributed to the high survival rates of the plantlets. PMID:25969786

  6. Better rooting procedure to enhance survival rate of field grown malaysian eksotika papaya transformed with 1-aminocyclopropane-1-carboxylic Acid oxidase gene.

    PubMed

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom

    2013-01-01

    A high survival rate for transformed papaya plants when transferred to the field is useful in the quest for improving the commercial quality traits. We report in this paper an improved rooting method for the production of transformed Malaysian Eksotika papaya with high survival rate when transferred to the field. Shoots were regenerated from embryogenic calli transformed with antisense and RNAi constructs of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes using the Agrobacterium tumefaciens-mediated transformation method. Regenerated transformed shoots, each measuring approximately 3-4 cm in height, were cultured in liquid half-strength Murashige and Skoog (MS) medium or sterile distilled water, and with either perlite or vermiculite supplementation. All the culturing processes were conducted either under sterile or nonsterile condition. The results showed that rooting under sterile condition was better. Shoots cultured in half-strength MS medium supplemented with vermiculite exhibited a 92.5% rooting efficiency while perlite showed 77.5%. The survival rate of the vermiculite-grown transformed papaya plantlets after transfer into soil, contained in polybags, was 94%, and the rate after transfer into the ground was 92%. Morpho-histological analyses revealed that the tap roots were more compact, which might have contributed to the high survival rates of the plantlets.

  7. Microbial Transformation of Triadimefon to Triadimenol in Soils: Selective Production Rates of Triadimenol Stereoisomers Affect Exposure and Risk

    EPA Science Inventory

    The microbial transformation of triadimefon, an agricultural fungicide of the 1,2,4-triazole class, was followed at a nominal concentration of 50 μg/mL over 4 months under aerobic conditions in three different soil types. Rates and products of transformation were measured, as wel...

  8. Discrepancies in Leader and Follower Ratings of Transformational Leadership: Relationship with Organizational Culture in Mental Health.

    PubMed

    Aarons, Gregory A; Ehrhart, Mark G; Farahnak, Lauren R; Sklar, Marisa; Horowitz, Jonathan

    2017-07-01

    The role of leadership in the management and delivery of health and allied health services is often discussed but lacks empirical research. Discrepancies are often found between leaders' self-ratings and followers' ratings of the leader. To our knowledge no research has examined leader-follower discrepancies and their association with organizational culture in mental health clinics. The current study examines congruence, discrepancy, and directionality of discrepancy in relation to organizational culture in 38 mental health teams (N = 276). Supervisors and providers completed surveys including ratings of the supervisor transformational leadership and organizational culture. Polynomial regression and response surface analysis models were computed examining the associations of leadership discrepancy and defensive organizational culture and its subscales. Discrepancies between supervisor and provider reports of transformational leadership were associated with a more negative organizational culture. Culture suffered more where supervisors rated themselves more positively than providers, in contrast to supervisors rating themselves lower than the provider ratings of the supervisor. Leadership and leader discrepancy should be a consideration in improving organizational culture and for strategic initiatives such as quality of care and the implementation and sustainment of evidence-based practice.

  9. Discrepancies in Leader and Follower Ratings of Transformational Leadership: Relationship with Organizational Culture in Mental Health

    PubMed Central

    Ehrhart, Mark G.; Farahnak, Lauren R.; Sklar, Marisa; Horowitz, Jonathan

    2015-01-01

    The role of leadership in the management and delivery of health and allied health services is often discussed but lacks empirical research. Discrepancies are often found between leaders’ self-ratings and followers’ ratings of the leader. To our knowledge no research has examined leader–follower discrepancies and their association with organizational culture in mental health clinics. The current study examines congruence, discrepancy, and directionality of discrepancy in relation to organizational culture in 38 mental health teams (N = 276). Supervisors and providers completed surveys including ratings of the supervisor transformational leadership and organizational culture. Polynomial regression and response surface analysis models were computed examining the associations of leadership discrepancy and defensive organizational culture and its subscales. Discrepancies between supervisor and provider reports of transformational leadership were associated with a more negative organizational culture. Culture suffered more where supervisors rated themselves more positively than providers, in contrast to supervisors rating themselves lower than the provider ratings of the supervisor. Leadership and leader discrepancy should be a consideration in improving organizational culture and for strategic initiatives such as quality of care and the implementation and sustainment of evidence-based practice. PMID:26164567

  10. Enhancing rock phosphate integration rate for fast bio-transformation of cow-dung waste-paper mixtures to organic fertilizer.

    PubMed

    Unuofin, F O; Siswana, M; Cishe, E N

    2016-01-01

    Rock phosphate (RP) addition in cow-dung waste-paper mixtures at rates above 2% P has been reported to increase the rate of bio-transformation and humification of organic waste mixtures during vermicomposting to produce organic fertilizer for organic farming. However, the optimization of RP for vermicomposting was not established. The objective of this study was to determine the optimal amount of RP integration rates for effective bio-transformation of cow-dung waste-paper mixtures. Arrays of RP integration degrees (0, 0.5, 1, 1.5, 2, and 4% P as RP) were thoroughly mixed with cow- dung waste-paper mixtures to achieve an optimized C:N ratio of 30 and allowed to vermidegrade following the introduction of earthworms at a stocking mass of 12.5 g-worms kg -1 . The bio-transformation of the waste mixtures was examined by measuring C:N ratios and humification index (HI) and per cent ash and volatile solids. Application of 1% P as RP resulted in fast bio-transformation and maturation of cow-dung waste-paper mixtures. A scanning electron microscopy (SEM) was used to evaluate the morphological properties of the different vermicomposts affected by rates of RP showing the degree of degradation of initial compacted aggregates of cellulose and protein fibres in the mixtures at maturity. A germination test was used to further determine phytotoxicity of the final composts and microbial biomass assessment. The final vermicompost (organic fertilizer) had a C:N ratio of 7, MBC of 900 mg kg -1 and HI of 27.1%. The RP incorporation rate of 1% P of RP investigated is therefore, recommended for efficient vermidegradation and humification of cow-dung waste-paper mixtures. However, higher rates of RP incorporation should be considered where greater P enrichment of the final vermicompost (organic fertilizer) is desired.

  11. The calcite → aragonite transformation in low-Mg marble: Equilibrium relations, transformations mechanisms, and rates

    USGS Publications Warehouse

    Hacker, Bradley R.; Rubie, David C.; Kirby, Stephen H.; Bohlen, Steven R.

    2005-01-01

    Experimental transformation of a rather pure natural calcite marble to aragonite marble did not proceed via the expected straightforward polymorphic replacement. Instead, the small amount of Mg in the starting material (0.36 wt %) was excluded from the growing aragonite and diffused preferentially into the remaining calcite grains, producing Mg-rich calcite rods that persisted as relicts. Nucleation of aragonite occurred exclusively on grain boundaries, with aragonite [001] oriented subparallel to calcite [0001]. The aragonite crystals preferentially consumed the calcite crystal on which they nucleated, and the reaction fronts developed preferentially along the {010} and {110} planes of aragonite. Each aragonite neoblast that grew was nearly free of Mg (typically <0.1 wt %). The excess Mg was taken up by the calcite grains in between, stabilizing them and causing a few volume percent rodlike relicts of Mg-enriched calcite (up to 10 wt % MgO) to be left behind by the advancing reaction front. The aragonite growth rates are approximately linear and range from ∼3 × 10−11 m s−1 at 600°C to ∼9 × 10−9 m s−1 at 850°C, with an apparent activation enthalpy of 166 ± 91 kJ mol−1. This reaction mechanism and the resultant texture are akin to cellular precipitation reactions in metals. Similar transformation textures have been reported from high-Mg marbles in Japan and China that disproportionated to low-Mg calcite and dolomite.

  12. Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions.

    PubMed

    Gandhi, Sumeet; Oh, Byung-Taek; Schnoor, Jerald L; Alvarez, Pedro J J

    2002-04-01

    Flow-through aquifer columns packed with a middle layer of granular iron (Fe0) were used to study the applicability and limitations of bio-enhanced Fe0 barriers for the treatment of contaminant mixtures in groundwater. Concentration profiles along the columns showed extensive degradation of hexavalent chromium Cr(VI), nitrate, sulfate, and trichloroethene (TCE), mainly in the Fe0 layer. One column was bioaugmented with Shevanella algae BRY, an iron-reducing bacterium that could enhance Fe0 reactivity by reductive dissolution of passivating iron oxides. This strain did not enhance Cr(VI), which was rapidly reduced by iron, leaving little room for improvement by microbial participation. Nevertheless, BRY-enhanced nitrate removal (from 15% to 80%), partly because this strain has a wide range of electron acceptors, including nitrate. Sulfate was removed (55%) only in a column that was bioaugmented with a mixed culture containing sulfate-reducing bacteria. Apparently, these bacteria used H2 (produced by Fe0 corrosion) as electron donor to respire sulfate. Most of the TCE was degraded in the zone containing Fe0 (50-70%), and bioaugmentation with BRY slightly increased the removal efficiency to about 80%. Microbial colonization of the Fe0 surface was confirmed by scanning electron microscopy.

  13. Decontamination of TCE- and U-rich waters by granular iron: Role of sorbed Fe(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charlet, L.; Liger, E.; Gerasimo, P.

    1998-01-01

    Uranium (UO{sub 2}{sup 2+}) and chlorinated aliphatics [tetrachloroethane (PCE) and trichloroethane (TCE)] can be reduced and thus immobilized or degraded, respectively, by the same abiotic mechanism. In this mechanism the reduction reaction is coupled to the oxidation of Fe(II) sorbed on iron corrosion products such as hematite. This is indicated by the equilibrium E{sub h} values measured during uranium immobilization and PCE degradation reactions of zerovalent iron. These values fit closely with those measured in the Fe(II)-{alpha}Fe{sub 2}O{sub 3}-H{sub 2}O system (in the absence of U or PCE), not those of the Fe(o)/Fe(II) or H{sub 2}(g)/H{sub 2}O couples. Because ironmore » (II) is very unstable in environments that are not strictly anaerobic, Fe(o) serves as a source of Fe(II). The reduction kinetic rate, analyzed in detail for the reduction of U(VI), is found to be a function of the concentration of OH{sup {minus}}, Fe{sup 2+} and reactive surface sites, and is given in terms of sorbed species concentrations by {l_brace}d[U(VI)]{sub ads}{r_brace}/dt = {l_brace}{minus}k{prime}[{triple_bond}FeOFeOH{sup 0}][U(VI)]{sub ads}{r_brace}. This rate law applies to organic pollutants as well, as long as they can be reduced by surface Fe(II): {l_brace}d[Pollutant]{r_brace}/dt = {l_brace}{minus}k{prime}[{triple_bond}FeOFeOH{sup 0}][Pollutant]{r_brace}. This mechanism suggests new possibilities for the improvement of low-cost decontamination techniques for U- and chlorinated aliphatic-rich waters.« less

  14. Stereoselective Microbial Transformation of Triadimefon to Triadimenol in Soils: Varying Production Rates of Triadimenol Stereoisomers Could Impact Risk Assessment

    EPA Science Inventory

    The microbial transformation of triadimefon, an agricultural fungicide of the 1,2,4-triazole class, was followed over several months under aerobic conditions in 3 different soil types to observe rates and products of transformation as well as enantiomer fractions of parent and pr...

  15. Demonstration-site development and phytoremediation processes associated with trichloroethene (TCE) in ground water, Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    USGS Publications Warehouse

    Shah, Sachin D.; Braun, Christopher L.

    2004-01-01

    A field-scale phytoremediation demonstration study was initiated in 1996 by the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, at a site on Naval Air StationJoint Reserve Base Carswell Field (NAS–JRB) adjacent to Air Force Plant 4 (AFP4) in Fort Worth, Tex. (fig. 1). Trichloroethene (TCE) has been used at AFP4 in aircraft manufacturing processes for decades; spills and leaks from tanks in the manufacturing building have resulted in shallow ground-water contamination on-site and downgradient from the facility (Eberts and others, 2003). The objective of the study was to determine the effectiveness of eastern cottonwoods (Populus deltoides) in decreasing the mass of dissolved TCE in ground water through phytoremediation. Phytoremediation is a process by which plants decrease the mass of a contaminant through a variety of chemical, physical, and biological means. Before development of the phytoremediation demonstration site, natural attenuation of TCE at the site occurred by sorption, dispersion, dilution, and possibly volatilization (Eberts and others, 2003).Long-term, field-scale monitoring and evaluation of this site contribute to the understanding of the processes associated with phytoremediation and provide practical information about field-scale applications of the method. This fact sheet briefly summarizes the development of the phytoremediation demonstration site at NAS–JRB and describes some of the physical and chemical processes associated with phytoremediation. The phytoremediation demonstration site is on the southern edge of the central lobe of a TCE plume in the surficial (alluvial) aquifer. The plume originates at AFP4 about 0.9 mile upgradient from the site (fig. 1). The 9.5-acre site is in the northwestern corner of the golf course on NAS–JRB. The saturated thickness of the alluvial aquifer, which is composed of clay, silt, sand, and gravel, ranges from about 1.5 to 5 feet at the site. The total thickness of the alluvial

  16. Degradation of trichloroethylene by photocatalysis in an internally circulating slurry bubble column reactor.

    PubMed

    Jeon, Jin Hee; Kim, Sang Done; Lim, Tak Hyoung; Lee, Dong Hyun

    2005-08-01

    The effects of initial trichloroethylene (TCE) concentration, recirculating liquid flow rate and gas velocity on photodegradation of TCE have been determined in an internally circulating slurry bubble column reactor (0.15m-ID x 0.85 m-high). Titanium dioxide (TiO2) powder was employed as a photocatalyst and the optimum loading of TiO2 in the present system is found to be approximately 0.2 wt%. The stripping fraction of TCE by air flow increases but photodegradation fraction of TCE decreases with increasing the initial TCE concentration, recirculating liquid flow rate and gas velocity. The average removal efficiency of TCE is found to be approximately 97% in an internally circulating slurry bubble column reactor.

  17. Follow-on site investigation at the Manitowoc Army Reserve Center (MARC). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-24

    The objectives of the MARC FSI were to: Determine if the Reserve Center is the source of low-level trichloroethylene (TCE) contamination (i.e., 5 to 9 micrograms/1) detected in a nearby Ranney collector well (Collector 'B') operated by Manitowoc Public Utilities (MPU) and to determine if 1,2-dichloroethane contamination detected in MARC Well MW-6 by E. C. Jordan Co. (Jordan) has migrated off site toward Collector 'B.' TCE was not found on site in any sampled soils or groundwater. However, very low concentrations (i.e., just above certified reporting limits (CRLs)) of four VOCs were found in groundwater in the vicinity of themore » septic tank drainage field. These included 1,2-dichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, and tetrachloroethylene. Only one VOC, 1,2-dichloroethane, was detected at the same well (MW-6) in both rounds of groundwater sampling. This compound is not a transformation product of TCE, nor can it be transformed to TCE by natural processes.« less

  18. Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Barrick, Erin J.; Jain, Divya; DuPont, John N.; Seidman, David N.

    2017-12-01

    10 wt pct Ni steel is a high-strength steel that possesses good ballistic resistance from the deformation induced transformation of austenite to martensite, known as the transformation-induced-plasticity effect. The effects of rapid heating and cooling rates associated with welding thermal cycles on the phase transformations and microstructures, specifically in the heat-affected zone, were determined using dilatometry, microhardness, and microstructural characterization. Heating rate experiments demonstrate that the Ac3 temperature is dependent on heating rate, varying from 1094 K (821 °C) at a heating rate of 1 °C/s to 1324 K (1051 °C) at a heating rate of 1830 °C/s. A continuous cooling transformation diagram produced for 10 wt pct Ni steel reveals that martensite will form over a wide range of cooling rates, which reflects a very high hardenability of this alloy. These results were applied to a single pass, autogenous, gas tungsten arc weld. The diffusion of nickel from regions of austenite to martensite during the welding thermal cycle manifests itself in a muddled, rod-like lath martensitic microstructure. The results of these studies show that the nickel enrichment of the austenite in 10 wt pct Ni steel plays a critical role in phase transformations during welding.

  19. DDE in sediments of the Palos Verdes shelf, California: In situ transformation rates and geochemical fate

    USGS Publications Warehouse

    Eganhouse, R.P.; Pontolillo, J.

    2008-01-01

    From 1947 to 1971 the world's largest manufacturer of DDT discharged process wastes into the sewers of Los Angeles County. Roughly 870-1450 t of DDT were released to the ocean off Palos Verdes, CA, a portion of which (???100 t) resides in sediments on the continental shelf and slope. The most abundant DDT compound in the sediments, p,p???-DDE, is degrading by reductive dechlorination, butthe rate of transformation and factors controlling it are not well understood. In order to estimate in situ transformation rates and predict the long-term fate of p,p???-DDE, box cores were collected in 1992 and 2003 from a single location on the Palos Verdes Shelf and analyzed for 8 DDT compounds and 84 polychlorinated biphenyl (PCB) congeners. The PCBs show no evidence of dechlorination, and inventories did not change between 1992 and 2003. By contrast, the inventory of p,p???-DDE decreased by 43%, whereas that of p,p???-DDMU, the putative reductive dechlorination product increased by 34%. The first-order transformation rate for p,p???-DDE at the study site is 0.051 ?? 0.006 yr-1. A multistep reaction model suggests that inventories of p,p???-DDE and p,p???-DDMU will continue to decline, whereas that of p,p???-DDNU will reach a maximum around 2014.

  20. A Continuous Flow Column Study of the Anaerobic Transformation of a CAH Mixture of Tetrachloroethene and Carbon Tetrachloride Using Formate as an Electron Donor

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Azizian, M. F.; Kim, Y.

    2011-12-01

    Many groundwater sites are contaminated with mixtures of chlorinated aliphatic hydrocarbons (CAHs) that represent a challenge when biological remediation processes are being considered. This is especially challenging when high concentrations of CAHs are present.Trichloromethane (CF), for example, has been observed to inhibit and potentially exert toxicity on reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene (TCE). Results will be presented from a continuous flow column study where the simultaneous transformation of PCE and carbon tetrachloride (CT) was achieved. The column was packed with a quartz sand and bioaugmented with the Evanite Culture (EV) that is capable of transforming PCE to ethene. The column was fed a synthetic groundwater that was amended with PCE to achieve an influent concentration near its solubility limit (0.10 mM) and formate (1.5 mM) that reacts to produce hydrogen as the ultimate electron donor. The column was operated for over 1600 days prior to the addition of CT. During this period PCE was transformed mainly to vinyl chloride (VC) and ethene (ETH) and minor amounts of cis-dichloroethene (cis-DCE) and TCE. The transformation extent achieved based on the column effluent concentrations ranged from about 50% ETH, 30% VC, and 20 cis-DCE up to 80% ETH and 20% VC. When the column was fed sulfate, it was completely transformed via sulfate reduction. Ferrous iron production from ferric iron reduction was observed early in the study. Acetate was also formed as a result of homoacetogenesis from hydrogen utilization. CT addition (0.015 mM) was started at 1600 days while PCE addition was continued. During the first 25 days of CT addition, CT concentrations gradually increased to 50% of the injection concentration and chloromethane (CM) and CF were observed as transformation products. CT concentrations then decreased with over 98% transformation achieved.CM was removed to below the detection limit and CF concentration decreases to

  1. A novel recursive Fourier transform for nonuniform sampled signals: application to heart rate variability spectrum estimation.

    PubMed

    Holland, Alexander; Aboy, Mateo

    2009-07-01

    We present a novel method to iteratively calculate discrete Fourier transforms for discrete time signals with sample time intervals that may be widely nonuniform. The proposed recursive Fourier transform (RFT) does not require interpolation of the samples to uniform time intervals, and each iterative transform update of N frequencies has computational order N. Because of the inherent non-uniformity in the time between successive heart beats, an application particularly well suited for this transform is power spectral density (PSD) estimation for heart rate variability. We compare RFT based spectrum estimation with Lomb-Scargle Transform (LST) based estimation. PSD estimation based on the LST also does not require uniform time samples, but the LST has a computational order greater than Nlog(N). We conducted an assessment study involving the analysis of quasi-stationary signals with various levels of randomly missing heart beats. Our results indicate that the RFT leads to comparable estimation performance to the LST with significantly less computational overhead and complexity for applications requiring iterative spectrum estimations.

  2. Oxidation of volatile organic vapours in air by solid potassium permanganate.

    PubMed

    Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir

    2013-06-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept.

    PubMed

    Phenrat, Tanapon; Thongboot, Thippawan; Lowry, Gregory V

    2016-01-19

    This study evaluates the concept of using zerovalent iron (ZVI) powder or nanoscale zerovalent iron (NZVI) particles in combination with a low frequency (150 kHz) AC electromagnetic field (AC EMF) to effectively remove trichloroethylene (TCE) from groundwater and saturated soils. ZVI and NZVI are ferromagnetic, which can induce heat under applied AC EMF. The heat generated by ZVI and NZVI induction can increase the rate of dechlorination, according to Arrhenius' equation, and increase the rate of TCE desorption from TCE-sorbed soil. Both dechlorination and TCE desorption enhance the overall TCE removal rate. We evaluated this novel concept in laboratory batch reactors. We found that both ZVI and NZVI can induce heat under applied AC EMF up to 120 °C in 20 min. Using ZVI and NZVI with AC EMF enhanced dechlorination of dissolved TCE (no soil) up to 4.96-fold. In addition to increasing the temperature by ZVI and NZVI induction heating, AC EMF increased intrinsic ZVI and NZVI reactivity, ostensibly due to accelerated corrosion, as demonstrated by the increased ORP. In a soil-water-TCE system, NZVI together with AC EMF thermally enhanced desorption of TCE from soil and increased the degradation of TCE up to 5.36-fold compared to the absence of AC EMF. For the first time, this study indicates the potential for ZVI and NZVI coupled with AC EMF as a combined remediation technique for increasing the rate and completeness of in situ cleanup of adsorbed phase contaminants.

  4. Effect of Cooling Rate on Phase Transformations in a High-Strength Low-Alloy Steel Studied from the Liquid Phase

    NASA Astrophysics Data System (ADS)

    Dorin, Thomas; Stanford, Nicole; Taylor, Adam; Hodgson, Peter

    2015-12-01

    The phase transformation and precipitation in a high-strength low-alloy steel have been studied over a large range of cooling rates, and a continuous cooling transformation (CCT) diagram has been produced. These experiments are unique because the measurements were made from samples cooled directly from the melt, rather than in homogenized and re-heated billets. The purpose of this experimental design was to examine conditions pertinent to direct strip casting. At the highest cooling rates which simulate strip casting, the microstructure was fully bainitic with small regions of pearlite. At lower cooling rates, the fraction of polygonal ferrite increased and the pearlite regions became larger. The CCT diagram and the microstructural analysis showed that the precipitation of NbC is suppressed at high cooling rates, and is likely to be incomplete at intermediate cooling rates.

  5. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    NASA Astrophysics Data System (ADS)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnOx, CoOx. The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnOx and CoOx catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition.

  6. Reduced Mutation Rate and Increased Transformability of Transposon-Free Acinetobacter baylyi ADP1-ISx

    PubMed Central

    Suárez, Gabriel A.; Renda, Brian A.; Dasgupta, Aurko

    2017-01-01

    ABSTRACT The genomes of most bacteria contain mobile DNA elements that can contribute to undesirable genetic instability in engineered cells. In particular, transposable insertion sequence (IS) elements can rapidly inactivate genes that are important for a designed function. We deleted all six copies of IS1236 from the genome of the naturally transformable bacterium Acinetobacter baylyi ADP1. The natural competence of ADP1 made it possible to rapidly repair deleterious point mutations that arose during strain construction. In the resulting ADP1-ISx strain, the rates of mutations inactivating a reporter gene were reduced by 7- to 21-fold. This reduction was higher than expected from the incidence of new IS1236 insertions found during a 300-day mutation accumulation experiment with wild-type ADP1 that was used to estimate spontaneous mutation rates in the strain. The extra improvement appears to be due in part to eliminating large deletions caused by IS1236 activity, as the point mutation rate was unchanged in ADP1-ISx. Deletion of an error-prone polymerase (dinP) and a DNA damage response regulator (umuDAb [the umuD gene of A. baylyi]) from the ADP1-ISx genome did not further reduce mutation rates. Surprisingly, ADP1-ISx exhibited increased transformability. This improvement may be due to less autolysis and aggregation of the engineered cells than of the wild type. Thus, deleting IS elements from the ADP1 genome led to a greater than expected increase in evolutionary reliability and unexpectedly enhanced other key strain properties, as has been observed for other clean-genome bacterial strains. ADP1-ISx is an improved chassis for metabolic engineering and other applications. IMPORTANCE Acinetobacter baylyi ADP1 has been proposed as a next-generation bacterial host for synthetic biology and genome engineering due to its ability to efficiently take up DNA from its environment during normal growth. We deleted transposable elements that are capable of copying themselves

  7. Reduced Mutation Rate and Increased Transformability of Transposon-Free Acinetobacter baylyi ADP1-ISx.

    PubMed

    Suárez, Gabriel A; Renda, Brian A; Dasgupta, Aurko; Barrick, Jeffrey E

    2017-09-01

    The genomes of most bacteria contain mobile DNA elements that can contribute to undesirable genetic instability in engineered cells. In particular, transposable insertion sequence (IS) elements can rapidly inactivate genes that are important for a designed function. We deleted all six copies of IS 1236 from the genome of the naturally transformable bacterium Acinetobacter baylyi ADP1. The natural competence of ADP1 made it possible to rapidly repair deleterious point mutations that arose during strain construction. In the resulting ADP1-ISx strain, the rates of mutations inactivating a reporter gene were reduced by 7- to 21-fold. This reduction was higher than expected from the incidence of new IS 1236 insertions found during a 300-day mutation accumulation experiment with wild-type ADP1 that was used to estimate spontaneous mutation rates in the strain. The extra improvement appears to be due in part to eliminating large deletions caused by IS 1236 activity, as the point mutation rate was unchanged in ADP1-ISx. Deletion of an error-prone polymerase ( dinP ) and a DNA damage response regulator ( umuD Ab [the umuD gene of A. baylyi ]) from the ADP1-ISx genome did not further reduce mutation rates. Surprisingly, ADP1-ISx exhibited increased transformability. This improvement may be due to less autolysis and aggregation of the engineered cells than of the wild type. Thus, deleting IS elements from the ADP1 genome led to a greater than expected increase in evolutionary reliability and unexpectedly enhanced other key strain properties, as has been observed for other clean-genome bacterial strains. ADP1-ISx is an improved chassis for metabolic engineering and other applications. IMPORTANCE Acinetobacter baylyi ADP1 has been proposed as a next-generation bacterial host for synthetic biology and genome engineering due to its ability to efficiently take up DNA from its environment during normal growth. We deleted transposable elements that are capable of copying themselves

  8. Evaluation of co-metabolic removal of trichloroethylene in a biotrickling filter under acidic conditions.

    PubMed

    Chheda, Dhawal; Sorial, George A

    2017-07-01

    This study investigated the removal of hydrophobic trichloroethylene (TCE) in the presence of methanol (co-metabolite) in a biotrickling filter, which was seeded with fungi at pH4. Starvation was chosen as the biomass control strategy. Two systems, Biofilter I (methanol:TCE 70:30) and Biofilter II (methanol:TCE 80:20) were run in parallel, each with varying composition ratios. The TCE loading rates for both biofilters ranged from 3.22 to 12.88g/m 3 /hr. Depending on the ratio, methanol concentrations varied from 4.08 to 27.95g/m 3 /hr. The performance of the systems was evaluated and compared by calculating removal kinetics, carbon mass balance, efficiencies and elimination capacities. Methanol was observed to enhance TCE removal during the initial loading rate. However, methanol later inhibited TCE degradation above 6.44g TCE/m 3 /hr (Biofilter I) and 3.22g TCE/m 3 /hr (Biofilter II). Conversely, TCE did not impede methanol removal because over 95% methanol elimination was consistently achieved. Overall, Biofilter I was able to outperform Biofilter II due to its greater resistance towards methanol competition. Copyright © 2016. Published by Elsevier B.V.

  9. Analysis of transformations of the ultrafast electron transfer photoreaction mechanism in liquid solutions by the rate distribution approach.

    PubMed

    Kuzmin, Michael G; Soboleva, Irina V

    2014-05-01

    Representation of the experimental reaction kinetics in the form of rate distribution is shown to be an effective method for the analysis of the mechanisms of these reactions and for comparisons of the kinetics with QC calculations, as well as with the experimental data on the medium mobility. The rate constant distribution function P(k) can be obtained directly from the experimental kinetics N(t) by an inverse Laplace transform. The application of this approach to kinetic data for several excited-state electron transfer reactions reveals the transformations of their rate control factors in the time domain of 1-1000 ps. In neat electron donating solvents two components are observed. The fastest component (k > 1 ps(-1)) was found to be controlled by the fluctuations of the overall electronic coupling matrix element, involving all the reactant molecules, located inside the interior of the solvent shell, rather than for specific pairs of reactant molecules. The slower component (1 > k > 0.1 ps(-1)) is controlled by the medium reorganization (longitudinal relaxation times, τL). A substantial contribution from the non-stationary diffusion controlled reaction is observed in diluted solutions ([Q] < 1 M). No contribution from the long-distance electron transfer (electron tunneling) proposed earlier for the excited-state electron transfer between perylene and tetracyanoethylene in acetonitrile is observed. The rate distribution approach provides a simple and efficient method for the quantitative analysis of the reaction mechanism and transformation of the rate control factors in the course of the reactions.

  10. Managing risks of noncancer health effects at hazardous waste sites: A case study using the Reference Concentration (RfC) of trichloroethylene (TCE).

    PubMed

    Dourson, Michael L; Gadagbui, Bernard K; Thompson, Rod B; Pfau, Edward J; Lowe, John

    2016-10-01

    A method for determining a safety range for non-cancer risks is proposed, similar in concept to the range used for cancer in the management of waste sites. This safety range brings transparency to the chemical specific Reference Dose or Concentration by replacing their "order of magnitude" definitions with a scientifically-based range. EPA's multiple RfCs for trichloroethylene (TCE) were evaluated as a case study. For TCE, a multi-endpoint safety range was judged to be 3 μg/m(3) to 30 μg/m,(3) based on a review of kidney effects found in NTP (1988), thymus effects found in Keil et al. (2009) and cardiac effects found in the Johnson et al. (2003) study. This multi-endpoint safety range is derived from studies for which the appropriate averaging time corresponds to different exposure durations, and, therefore, can be applied to both long- and short-term exposures with appropriate consideration of exposure averaging times. For shorter-term exposures, averaging time should be based on the time of cardiac development in humans during fetal growth, an average of approximately 20-25 days. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Man; He, Feng; Zhao, Dongye

    2011-01-01

    Zero valent iron (ZVI) nanoparticles have been studied extensively for degradation of chlorinated solvents in the aqueous phase, and have been tested for in-situ remediation of contaminated soil and groundwater. However, little is known about its effectiveness for degrading soil-sorbed contaminants. This work studied reductive dechlorination of trichloroethylene (TCE) sorbed in two model soils (a potting soil and Smith Farm soil) using carboxymethyl cellulose (CMC) stabilized Fe-Pd bimetallic nanoparticles. Effects of sorption, surfactants and dissolved organic matter (DOC) were determined through batch kinetic experiments. While the nanoparticles can effectively degrade soil-sorbed TCE, the TCE degradation rate was strongly limited bymore » desorption kinetics, especially for the potting soil which has a higher organic matter content of 8.2%. Under otherwise identical conditions, {approx}44% of TCE sorbed in the potting soil was degraded in 30 h, compared to {approx}82% for Smith Farm soil (organic matter content = 0.7%). DOC from the potting soil was found to inhibit TCE degradation. The presence of the extracted SOM at 40 ppm and 350 ppm as TOC reduced the degradation rate by 34% and 67%, respectively. Four prototype surfactants were tested for their effects on TCE desorption and degradation rates, including two anionic surfactants known as SDS (sodium dodecyl sulfate) and SDBS (sodium dodecyl benzene sulfonate), a cationic surfactant hexadecyltrimethylammonium (HDTMA) bromide, and a non-ionic surfactant Tween 80. All four surfactants were observed to enhance TCE desorption at concentrations below or above the critical micelle concentration (cmc), with the anionic surfactant SDS being most effective. Based on the pseudo-first-order reaction rate law, the presence of 1 x cmc SDS increased the reaction rate by a factor of 2.5 when the nanoparticles were used for degrading TCE in a water solution. SDS was effective for enhancing degradation of TCE sorbed in Smith

  12. Use of Compound-Specific Stable Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOC

    DTIC Science & Technology

    2013-12-01

    trichloroethylene USEPA U.S. Environmental Protection Agency UST underground storage tank V-PDB Vienna - Pee Dee Belemnite ACRONYMS AND...compound (e.g., trichloroethylene [TCE]) can vary as a result of differences in their source material or compound synthesis or due to transformation... trichloroethylene [TCE], and benzene) that commonly drive VI investigations; 2) development of a protocol for application of CSIA in VI investigations; and 3

  13. Effect of Cooling Rates on γ → α Transformation and Metastable States in Fe-Cu Alloys with Addition of Ni

    NASA Astrophysics Data System (ADS)

    Crozet, C.; Verdier, M.; Lay, S.; Antoni-Zdziobek, A.

    2018-07-01

    α/γ phase transformations occurring in Fe-10Cu-xNi alloys (0 ≤ x ≤ 15 in mass%) were studied using X-ray diffraction, scanning electron microscopy, electron back scattered diffraction, transmission electron microscopy and chemical analysis, combining X-ray microanalysis with energy dispersive spectrometry in the scanning electron microscope and electron microprobe analysis with wavelength dispersive spectrometry. The influence of cooling rate on the microstructure was investigated using ice-brine quenching and 2 °C/min slow cooling rate performed with dilatometry. Ni addition induces metastable transformations on cooling: massive and bainitic ferrite are formed depending on the alloy composition and cooling rate. Moreover, most of the Cu phase precipitates on cooling giving rise to a fine distribution of Cu particles in the ferrite grains. For both cooling conditions, the hardness increases with increasing Ni content and a higher hardness is obtained in the quenched alloy for each composition. The change in hardness is correlated to the effect of Ni solid solution, transformation structure and size of Cu particles.

  14. Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products.

    PubMed

    de Weert, J P A; Keijzer, T J S; van Gaans, P F M

    2014-12-01

    In situ chemical oxidation (ISCO) is a soil remediation technique to remove organic pollutants from soil and groundwater with oxidants, like KMnO4. However, also natural organic compounds in soils are being oxidized, which makes the technique less efficient. Laboratory experiments were performed to investigate the influence of temperature on this efficiency, through its effect on the relative oxidation rates - by permanganate - of natural organic compounds and organic pollutants at 16 and 15°C. Specific types of organic matter used were cellulose, oak wood, anthracite, reed - and forest peat, in addition to two natural soils. Dense Non-Aqueous Phase Liquid-tetrachloroethene (DNAPL-PCE), DNAPL trichloroethene (DNAPL-TCE) and a mixture of DNAPL-PCE, -TCE and -hexachlorobutadiene were tested as pollutants. Compared to 16°C, oxidation was slower at 5°C for the specific types of organic matter and the natural soils, with exception of anthracite, which was unreactive. The oxidation rate of DNAPL TCE was lower at 5°C too. However, at this temperature oxidation was fast, implying that no competitive loss to natural organic compounds will be expected in field applications by lowering temperature. Oxidation of DNAPL-PCE and PCE in the mixture proceeded at equal rates at both temperatures, due to the dissolution rate as limiting factor. These results show that applying permanganate ISCO to DNAPL contamination at lower temperatures will limit the oxidation of natural organic matter, without substantially affecting the oxidation rate of the contaminant. This will make such remediation more effective and sustainable in view of protecting natural soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.

    PubMed

    Kim, Seungjin; Hwang, Jeongmin; Chung, Jinwook; Bae, Wookeun

    2014-06-30

    The effect of non-aromatic compounds on the trichloroethylene (TCE) degradation of toluene-oxidizing bacteria were evaluated using Burkholderia cepacia G4 that expresses toluene 2-monooxygenase and Pseudomonas putida that expresses toluene dioxygenase. TCE degradation rates for B. cepacia G4 and P. putida with toluene alone as growth substrate were 0.144 and 0.123 μg-TCE/mg-protein h, respectively. When glucose, acetate and ethanol were fed as additional growth substrates, those values increased up to 0.196, 0.418 and 0.530 μg-TCE/mg-protein h, respectively for B. cepacia G4 and 0.319, 0.219 and 0.373 μg-TCE/mg-protein h, respectively for P. putida. In particular, the addition of ethanol resulted in a high TCE degradation rate regardless of the initial concentration. The use of a non-aromatic compound as an additional substrate probably enhanced the TCE degradation because of the additional supply of NADH that is consumed in co-metabolic degradation of TCE. Also, it is expected that the addition of a non-aromatic substrate can reduce the necessary dose of toluene and, subsequently, minimize the potential competitive inhibition upon TCE co-metabolism by toluene. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Global rates of mantle serpentinization and H2 release at oceanic transform faults

    NASA Astrophysics Data System (ADS)

    Ruepke, Lars; Hasenclever, Joerg

    2017-04-01

    The cycling of seawater through the ocean floor is the dominant mechanism of biogeochemical exchange between the solid earth and the global ocean. Crustal fluid flow appears to be typically associated with major seafloor structures, and oceanic transform faults (OTF) are one of the most striking yet poorly understood features of the global mid-ocean ridge systems. Fracture zones and transform faults have long been hypothesized to be sites of substantial biogeochemical exchange between the solid Earth and the global ocean. This is particularly interesting with regard to the ocean biome. Deep ocean ecosystems constitute 60% of it but their role in global ocean biogeochemical cycles is much overlooked. There is growing evidence that life is supported by chemosynthesis at hydrothermal vents but also in the crust, and therefore this may be a more abundant process than previously thought. In this context, the serpentine forming interaction between seawater and cold lithospheric mantle rocks is particularly interesting as it is also a mechanism of abiotic hydrogen and methane formation. Interestingly, a quantitative global assessment of mantle serpentinization at oceanic transform faults in the context of the biogeochemical exchange between the seafloor and the global ocean is still largely missing. Here we present the results of a set of 3-D thermo-mechanical model calculations that investigate mantle serpentinization at OTFs for the entire range of globally observed slip rates and fault lengths. These visco-plastic models predict the OTF thermal structure and the location of crustal-scale brittle deformation, which is a prerequisite for mantle serpentinization to occur. The results of these simulations are integrated with information on the global distribution of OTF lengths and slip rates yielding global estimates on mantle serpentinization and associated H2 release. We find that OTFs are potentially sites of intense crustal fluid flow and are in terms of H2 release

  17. Oncogenic transformation through the cell cycle and the LET dependent inverse dose rate effect

    NASA Technical Reports Server (NTRS)

    Geard, C. R.; Miller, R. C.; Brenner, D. J.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1994-01-01

    Synchronised populations of mouse C3H/10T-1/2 cells were obtained by a stringent mitotic dislodgment procedure. Mitotic cells rapidly attach and progress sequentially through the cell cycle. Irradiation (3 Gy of X rays) was carried out at intervals from 0 to 18 h after initiating cell cycle progression of the mitotic cells. Oncogenic transformation was enhanced 10-fold over cells irradiated soon after replating (G1 and S phases) for cells in a near 2 h period corresponding to cells in G2 phase but not in mitosis. The cell surviving fraction had a 2-1/2-fold variation with resistant peaks corresponding to the late G1 and late S phases. These findings provide experimental support for the hypothesis initiated by Rossi and Kellerer and developed by Brenner and Hall to explain the LET dependent inverse dose rate effect for oncogenic transformation.

  18. On the preparation of TiO2-sepiolite hybrid materials for the photocatalytic degradation of TCE: influence of TiO2 distribution in the mineralization.

    PubMed

    Suárez, Silvia; Coronado, Juan M; Portela, Raquel; Martín, Juan Carlos; Yates, Malcolm; Avila, Pedro; Sánchez, Benigno

    2008-08-15

    Hybrid structured photocatalysts based on sepiolite, an adsorbent, and TiO2 were prepared by extrusion of ceramic dough and conformed as plates. The influence of the photocatalyst configuration was studied either by including TiO2 in the extrusion process (incorporated materials) or by coating the sepiolite plates with a TiO2 film (coated materials). The influence of the OH- surface concentration in the photocatalytic performance was studied by treating the ceramic plates at different temperatures. The samples were characterized by N2 adsorption-desorption, MIP, SEM, XRD, and UV-vis-NIR spectroscopy and tested in the photocatalytic degradation of trichloroethylene (TCE) as a target VOC molecule. Most of the catalysts presented high photoactivity, but considerable differences were observed when the CO2 selectivity was analyzed. The results demonstrate that there is a significant effect of the catalyst configuration on the selectivity of the process. An intimate contact between the sepiolite fibers and TiO2 particles for incorporated materials with a corncob-like structure favored the migration of nondesirable reaction products such as COCl2 and dichloroacetyl chloride (DCAC) to the adsorbent, reacting with OH- groups of the adsorbent and favoring the TCE mimeralization.

  19. Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques.

    PubMed

    Richardson, Ruth E; Bhupathiraju, Vishvesh K; Song, Donald L; Goulet, Tanuja A; Alvarez-Cohen, Lisa

    2002-06-15

    An anaerobic microbial consortium (referred to as ANAS) that reductively dechlorinates trichloroethene (TCE) completely to ethene with the transient production of cisdichloroethene (cDCE) and vinyl chloride was enriched from contaminated soil obtained from Alameda Naval Air Station. ANAS uses lactate as its electron donor and has been functionally stable for over 2 years. Following a brief exposure to oxygen, a subculture (designated VCC) derived from ANAS could dechlorinate TCE only to vinyl chloride with lactate as its electron donor. Three molecular methods were used concurrently to characterize the community structure of ANAS and VCC: clone library construction/clone sequencing, terminal restriction fragment length polymorphism (T-RFLP) analysis, and fluorescent in situ hybridization (FISH) with rRNA probes. The community structure of ANAS did not change significantly over the course of a single feeding/dechlorination cycle, and only minor fluctuations occurred over many feeding cycles spanning the course of 1 year. Clone libraries and T-RFLP analyses suggested that ANAS was dominated by populations belonging to three phylogenetic groups: Dehalococcoides species, Desulfovibrio species, and members of the Clostridiaceae (within the low G + C Gram-positives). FISH results suggest that members of the Cytophaga/Flavobacterium/Bacteroides (CFB) cluster and high G + C Gram-positives (HGCs) were numerically important in ANAS despite their under-representation in the clone libraries. Parallel analyses of VCC samples suggested that Dehalococcoides species and Clostridiaceae were only minor populations in this community. Instead, VCC had increased populations of organisms in the beta and gamma subclasses of the Proteobacteria as well as significant populations of organisms in the CFB cluster. It is possible that symbiotic interactions are occurring between some of ANAS's phylogenetic groups under the enrichment conditions, including interspecies hydrogen transfer from

  20. Engineering the Transformation Strain in LiMn y Fe 1–y PO 4 Olivines for Ultrahigh Rate Battery Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravnsbæk, Dorthe B.; Xiang, Kai; Xing, Wenting

    2016-04-13

    Alkali ion intercalation compounds used as battery electrodes often exhibit first-order phase transitions during electro-chemical cycling, accompanied by significant transformation strains. Despite 30 years of research into the behavior of such compounds, the relationship between transformation strain and electrode performance, especially the rate at which working ions (e.g., Li) can be intercalated and deintercalated, is still absent. In this work, we use the LiMn yFe 1-yPO 4 system for a systematic study, and measure using operando synchrotron radiation powder X-ray diffraction (SR-PXD) the dynamic strain behavior as a function of the Mn content (y) in powders of similar to 50more » nm average diameter. The dynamically produced strain deviates significantly from what is expected from the equilibrium phase diagrams and demonstrates metastability but nonetheless spans a wide range from 0 to 8 vol % with y. For the first time, we show that the discharge capacity at high C-rates (20-50C rate) varies in inverse proportion to the transformation strain, implying that engineering electrode materials for reduced strain can be used to maximize the power capability of batteries.« less

  1. Trichloroethylene Exposure Reduces Liver Injury in a Mouse Model of Primary Biliary Cholangitis

    PubMed Central

    Ray, Jessica L.; Kopec, Anna K.; Joshi, Nikita; Cline-Fedewa, Holly; Lash, Lawrence H.; Williams, Kurt J.; Leung, Patrick S.; Gershwin, M. Eric

    2017-01-01

    Abstract Trichloroethylene (TCE) is a persistent environmental contaminant proposed to contribute to autoimmune disease. Experimental studies in lupus-prone MRL+/+ mice have suggested that TCE exposure can trigger autoimmune hepatitis. The vast majority of studies examining the connection between TCE and autoimmunity utilize this model, and the impact of TCE exposure in other established models of autoimmune liver disease is not known. We tested the hypothesis that TCE exposure exacerbates experimental hepatic autoimmunity in dominant negative transforming growth factor beta receptor type II (dnTGFBRII) mice, which develop serological and histological features resembling human primary biliary cholangitis. Female 8-week-old wild-type and dnTGFBRII mice were exposed to TCE (0.5 mg/ml) or vehicle (1% ethoxylated castor oil) in the drinking water for 12 or 22 weeks. Liver histopathology in 20- and 30-week-old wild-type mice was unremarkable irrespective of treatment. Mild portal inflammation was observed in vehicle-exposed 20-week-old dnTGFBRII mice and was not exacerbated by TCE exposure. Vehicle-exposed 30-week-old dnTGFBRII mice developed anti-mitochondrial antibodies, marked hepatic inflammation with necrosis, and hepatic accumulation of both B and T lymphocytes. To our surprise, TCE exposure dramatically reduced hepatic parenchymal inflammation and injury in 30-week-old dnTGFBRII mice, reflected by changes in hepatic proinflammatory gene expression, serum chemistry, and histopathology. Interestingly, TCE did not affect hepatic B cell accumulation or induction of the anti-inflammatory cytokine IL10. These data indicate that TCE exposure reduces autoimmune liver injury in female dnTGFBRII mice and suggests that the precise effect of environmental chemicals in autoimmunity depends on the experimental model. PMID:28115651

  2. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Pan; Hongqian, Chu; Qinghe, Meng

    Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and themore » lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8{sup +} T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. - Highlights: • Lack of TAK1 in DC caused an abolished TCE-induced CHS response. • TAK1 in DCs was essential to maintain the homeostasis of T cells in TCE-induced CHS. • Intact TAK1 in DCs was critical to promote T-cell priming in TCE-induced CHS. • DC-specific TAK1 deficiency abolished the TCE-mediated phosphorylation of Jnk.« less

  3. Simulated transport and biodegradation of chlorinated ethenes in a fractured dolomite aquifer near Niagara Falls, New York

    USGS Publications Warehouse

    Yager, Richard M.

    2002-01-01

    Leakage of trichloroethene (TCE) from a neutralization pond at a former manufacturing facility near Niagara Falls, N.Y. during 1950-87 into the Guelph Formation of the Lockport Group, a fractured dolomite aquifer, created a plume of TCE and its metabolites that, by 1990, extended about 4,300 feet south of the facility. A smaller plume of dense, nonaqueous-phase liquids (DNAPL) probably serves as a continuing source of TCE. The presence of the TCE metabolites cis-1,2-dichloroethene (DCE), vinyl chloride (VC), and ethene in the plume, and the results of previous laboratory microcosm studies, indicate that the TCE is being degraded by naturally occurring microorganisms. Biodegradation rates of TCE and its metabolites were estimated through simulation with BIOMOC, a solute-transport model that represents multispecies reactions through Monod kinetics. A fracture zone in the Guelph Formation was represented as a porous medium containing an extensive, 3-foot thick layer with several interconnected fractures; this layer is bounded above and below by subhorizontal stratigraphic contacts. The Monod reaction constants were estimated through nonlinear regression to minimize the difference between computed concentrations of TCE and its metabolites, and the concentrations measured before and during 5 years of pump-and-treat remediation.Transport simulations indicated that, by April 1998, the chlorinated ethene plume had reached a dynamic equilibrium between the rate of TCE dissolution and the rate of removal through pumping and biodegradation. Biodegradation of chlorinated ethenes at the site can be simulated as first-order reactions because the concentrations are generally less than the half-saturation constants estimated for Monod kinetics (320 mg/L for TCE, 10 mg/L for DCE, and 1 mg/L for VC). Computed degradation rates are proportional to the estimated ground-water velocity, which could vary by more than an order magnitude at the site, as indicated by the estimated range of

  4. Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite.

    PubMed

    Liu, Xixiang; Yuan, Songhu; Tong, Man; Liu, Deng

    2017-04-15

    Reduction by Fe(II)-bearing silicate minerals has been proposed as an important mechanism for the attenuation of chlorinated hydrocarbons (CHCs) in anoxic subsurfaces. The redox condition of subsurface often changes from anoxic to oxic due to natural processes and human activities, but little is known about the transformation of CHCs induced by Fe(II)-bearing silicate minerals under oxic conditions. This study reveals that trichloroethylene (TCE) can be efficiently oxidized during the oxygenation of reduced nontronite at pH 7.5, whereas the reduction was negligible under anoxic conditions. The maximum oxidation of TCE (initially 1 mg/L) attained 89.6% for 3 h oxygenation of 2 g/L nontronite with 50% reduction extent. TCE oxidation is attributed to the strongly oxidizing hydroxyl radicals (OH) produced by the oxygenation of Fe(II) in nontronite. Fe(II) on the edges is preferentially oxygenated for OH production, and the interior Fe(II) serves as an electron pool to regenerate the Fe(II) on the edges. Oxidation of TCE could be sustainable through chemically or biologically reducing the oxidized silicate minerals. Our findings present a new mechanism for the transformation of CHCs and other redox-active substances in the redox-fluctuation environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Transforming GSC-II Magnitudes into JWST/FGS Count Rates

    NASA Astrophysics Data System (ADS)

    Holfeltz, Sherie T.; Chayer, P.; Nelan, E. P.

    2010-01-01

    The JWST Fine Guidance Sensor (FGS) will provide the positions of guide stars to the spacecraft attitude control system to facilitate the fine pointing of the Observatory. The FGS is an infrared camera operating in an unfiltered passband from 0.6 to 5.3 microns. The ground system will select guide stars from the Guide Star Catalog II (GSC-II), which is an all-sky catalog with three optical passbands (BJ, RF, IN) derived from photographic plates, and from 2MASS. We present a method for predicting a guide star's FGS photon count rate, which is needed to operate the FGS. The method consists of first deriving equations for transforming the GSC-II optical passbands into J, H, and K for stars that are below the 2MASS faint limiting magnitude, based upon fitting the distribution of brighter stars in color-color diagrams using GSC-II and 2MASS photometry. Next, we convolve the BJ, RF, IN and predicted J, H, and K magnitudes (or 2MASS magnitudes if available) for a given star with the wavelength dependent throughput and sensitivity of the telescope and FGS. To estimate the accuracy of this method for stars that are too faint for 2MASS, we compare the predicted J, H, and K magnitudes for a large sample of stars to data from the United Kingdom Infrared Telescope (UKIRT) Deep Sky Survey (UKIDSS) Large Area Survey (LAS). Using synthetic magnitudes computed from Kurucz models for stars of different spectral types, we show that the method should provide reliable FGS count rates.

  6. The structure and dynamics of Nano Particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    NASA Astrophysics Data System (ADS)

    Shi, Wenxiong

    2016-11-01

    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly.

  7. Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil.

    PubMed Central

    Fan, S; Scow, K M

    1993-01-01

    The biodegradation of trichloroethylene (TCE) and toluene, incubated separately and in combination, by indigenous microbial populations was measured in three unsaturated soils incubated under aerobic conditions. Sorption and desorption of TCE (0.1 to 10 micrograms ml-1) and toluene (1.0 to 20 micrograms ml-1) were measured in two soils and followed a reversible linear isotherm. At a concentration of 1 micrograms ml-1, TCE was not degraded in the absence of toluene in any of the soils. In combination, both 1 microgram of TCE ml-1 and 20 micrograms of toluene ml-1 were degraded simultaneously after a lag period of approximately 60 to 80 h, and the period of degradation lasted from 70 to 90 h. Usually 60 to 75% of the initial 1 microgram of TCE ml-1 was degraded, whereas 100% of the toluene disappeared. A second addition of 20 micrograms of toluene ml-1 to a flask with residual TCE resulted in another 10 to 20% removal of the chemical. Initial rates of degradation of toluene and TCE were similar at 32, 25, and 18 degrees C; however, the lag period increased with decreasing temperature. There was little difference in degradation of toluene and TCE at soil moisture contents of 16, 25, and 30%, whereas there was no detectable degradation at 5 and 2.5% moisture. The addition of phenol, but not benzoate, stimulated the degradation of TCE in Rindge and Yolo silt loam soils, methanol and ethylene slightly stimulated TCE degradation in Rindge soil, glucose had no effect in either soil, and dissolved organic carbon extracted from soil strongly sorbed TCE but did not affect its rate of biodegradation. PMID:8328806

  8. THE EFFECT OF VOLTAGE ON ELECTROCHEMICAL DEGRADATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    This study investigates electrochemical degradation of Trichloroethylene (TCE) using granular graphite as electrodes in a flow-through reactor system. The experiments were conducted to obtain information on the effect of voltage and flow rates on the degradation rates of TCE. The...

  9. Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms.

    PubMed Central

    Moran, B N; Hickey, W J

    1997-01-01

    This study investigated the efficiency of methane and ammonium for stimulating trichloroethylene (TCE) biodegradation in groundwater microcosms (flasks and batch exchange columns) at a psychrophilic temperature (12 degrees C) typical of shallow aquifers in the northern United States or a mesophilic temperature (24 degrees C) representative of most laboratory experiments. After 140 days, TCE biodegradation rates by ammonia oxidizers and methanotrophs in mesophilic flask microcosms were similar (8 to 10 nmol day-1), but [14C]TCE mineralization (biodegradation to 14CO2) by ammonia oxidizers was significantly greater than that by methanotrophs (63 versus 53%). Under psychrophilic conditions, [14C]TCE mineralization in flask systems by ammonia oxidizers and methanotrophs was reduced to 12 and 5%, respectively. In mesophilic batch exchange columns, average TCE biodegradation rates for methanotrophs (900 nmol liter-1 day-1) were not significantly different from those of ammonia oxidizers (775 nmol liter-1 day-1). Psychrophilic TCE biodegradation rates in the columns were similar with both biostimulants and averaged 145 nmol liter-1 day-1. Methanotroph biostimulation was most adversely affected by low temperatures. At 12 degrees C, the biodegradation efficiencies (TCE degradation normalized to microbial activity) of methanotrophs and ammonia oxidizers decreased by factors of 2.6 and 1.6, respectively, relative to their biodegradation efficiencies at 24 degrees C. Collectively, these experiments demonstrated that in situ bioremediation of TCE is feasible at the psychrophilic temperatures common in surficial aquifers in the northern United States and that for such applications biostimulation of ammonia oxidizers could be more effective than has been previously reported. PMID:9327550

  10. Trichloroethylene Exposure Reduces Liver Injury in a Mouse Model of Primary Biliary Cholangitis.

    PubMed

    Ray, Jessica L; Kopec, Anna K; Joshi, Nikita; Cline-Fedewa, Holly; Lash, Lawrence H; Williams, Kurt J; Leung, Patrick S; Gershwin, M Eric; Luyendyk, James P

    2017-04-01

    Trichloroethylene (TCE) is a persistent environmental contaminant proposed to contribute to autoimmune disease. Experimental studies in lupus-prone MRL+/+ mice have suggested that TCE exposure can trigger autoimmune hepatitis. The vast majority of studies examining the connection between TCE and autoimmunity utilize this model, and the impact of TCE exposure in other established models of autoimmune liver disease is not known. We tested the hypothesis that TCE exposure exacerbates experimental hepatic autoimmunity in dominant negative transforming growth factor beta receptor type II (dnTGFBRII) mice, which develop serological and histological features resembling human primary biliary cholangitis. Female 8-week-old wild-type and dnTGFBRII mice were exposed to TCE (0.5 mg/ml) or vehicle (1% ethoxylated castor oil) in the drinking water for 12 or 22 weeks. Liver histopathology in 20- and 30-week-old wild-type mice was unremarkable irrespective of treatment. Mild portal inflammation was observed in vehicle-exposed 20-week-old dnTGFBRII mice and was not exacerbated by TCE exposure. Vehicle-exposed 30-week-old dnTGFBRII mice developed anti-mitochondrial antibodies, marked hepatic inflammation with necrosis, and hepatic accumulation of both B and T lymphocytes. To our surprise, TCE exposure dramatically reduced hepatic parenchymal inflammation and injury in 30-week-old dnTGFBRII mice, reflected by changes in hepatic proinflammatory gene expression, serum chemistry, and histopathology. Interestingly, TCE did not affect hepatic B cell accumulation or induction of the anti-inflammatory cytokine IL10. These data indicate that TCE exposure reduces autoimmune liver injury in female dnTGFBRII mice and suggests that the precise effect of environmental chemicals in autoimmunity depends on the experimental model. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system.

    PubMed

    Dicke, Ulrike; Ewert, Stephan D; Dau, Torsten; Kollmeier, Birger

    2007-01-01

    Periodic amplitude modulations (AMs) of an acoustic stimulus are presumed to be encoded in temporal activity patterns of neurons in the cochlear nucleus. Physiological recordings indicate that this temporal AM code is transformed into a rate-based periodicity code along the ascending auditory pathway. The present study suggests a neural circuit for the transformation from the temporal to the rate-based code. Due to the neural connectivity of the circuit, bandpass shaped rate modulation transfer functions are obtained that correspond to recorded functions of inferior colliculus (IC) neurons. In contrast to previous modeling studies, the present circuit does not employ a continuously changing temporal parameter to obtain different best modulation frequencies (BMFs) of the IC bandpass units. Instead, different BMFs are yielded from varying the number of input units projecting onto different bandpass units. In order to investigate the compatibility of the neural circuit with a linear modulation filterbank analysis as proposed in psychophysical studies, complex stimuli such as tones modulated by the sum of two sinusoids, narrowband noise, and iterated rippled noise were processed by the model. The model accounts for the encoding of AM depth over a large dynamic range and for modulation frequency selective processing of complex sounds.

  12. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay.

    PubMed

    Yao, Pan; Hongqian, Chu; Qinghe, Meng; Lanqin, Shang; Jianjun, Jiang; Xiaohua, Yang; Xuetao, Wei; Weidong, Hao

    2016-09-15

    Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and the lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8(+) T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A Phenomenological Study of Transformational and Transactional Leadership Behaviors of Principals in Highly Rated Louisiana Schools Serving Elementary through High School Grades

    ERIC Educational Resources Information Center

    Juneau, Cassidy

    2014-01-01

    The purpose of this phenomenological narrative was to examine the experiences of principals in highly rated schools serving elementary through high school grades in central and southwest Louisiana in regards to transformational and transactional leadership. Highly rated schools are defined as schools achieving an A or B rating under the Louisiana…

  14. Effect of geochemical properties on degradation of trichloroethylene by stabilized zerovalent iron nanoparticle with Na-acrylic copolymer.

    PubMed

    Chen, Meng-yi; Su, Yuh-fan; Shih, Yang-hsin

    2014-11-01

    Stable nanoscale zero-valent iron (NZVI) particles have been developed to remediate chlorinated compounds. The degradation kinetics and efficiency of trichloroethylene (TCE) by a commercial stabilized NZVI with Na-acrylic copolymer (acNZVI) were investigated and compared with those by laboratory-synthesized NZVI and carboxymethyl cellulose (CMC)-stabilized NZVI particles. Results show that the degradation of TCE by acNZVI was faster than that by NZVI and CMC-NZVI. Increase in temperature enhanced the degradation rate and efficiency of TCE with acNZVI. The activation energy of TCE degradation by acNZVI was estimated to be 23 kJ/mol. The degradation rate constants of TCE decreased from 0.064 to 0.026 min(-1) with decrease in initial pH from 9.03 to 4.23. Common groundwater anions including NO3(-), Cl(-), HCO3(-), and SO4(2-) inhibited slightly the degradation efficiencies of TCE by acNZVI. The Na-acrylic copolymer-stabilized NZVI, which exhibited high degradation kinetics and efficiency, could be a good remediation agent for chlorinated organic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The structure and dynamics of Nano Particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    PubMed Central

    Shi, Wenxiong

    2016-01-01

    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly. PMID:27853312

  16. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium †

    PubMed Central

    Little, C. Deane; Palumbo, Anthony V.; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine the rate, methane dependence, and mechanism of TCE biodegradation. TCE biodegradation by strain 46-1 appears to be a cometabolic process that occurs when the organism is actively metabolizing a suitable growth substrate such as methane or methanol. It is proposed that TCE biodegradation by methanotrophs occurs by formation of TCE epoxide, which breaks down spontaneously in water to form dichloroacetic and glyoxylic acids and one-carbon products. Images PMID:16347616

  17. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    PubMed

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  18. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  19. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.

    PubMed

    Lee, Il-Su; Bae, Jae-Ho; McCarty, Perry L

    2007-10-30

    Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.

  20. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE

    NASA Astrophysics Data System (ADS)

    Lee, Il-Su; Bae, Jae-Ho; McCarty, Perry L.

    2007-10-01

    Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H 2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H 2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H 2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H 2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.

  1. Expectation Maximization Algorithm for Box-Cox Transformation Cure Rate Model and Assessment of Model Misspecification Under Weibull Lifetimes.

    PubMed

    Pal, Suvra; Balakrishnan, Narayanaswamy

    2018-05-01

    In this paper, we develop likelihood inference based on the expectation maximization algorithm for the Box-Cox transformation cure rate model assuming the lifetimes to follow a Weibull distribution. A simulation study is carried out to demonstrate the performance of the proposed estimation method. Through Monte Carlo simulations, we also study the effect of model misspecification on the estimate of cure rate. Finally, we analyze a well-known data on melanoma with the model and the inferential method developed here.

  2. [A method to estimate the short-term fractal dimension of heart rate variability based on wavelet transform].

    PubMed

    Zhonggang, Liang; Hong, Yan

    2006-10-01

    A new method of calculating fractal dimension of short-term heart rate variability signals is presented. The method is based on wavelet transform and filter banks. The implementation of the method is: First of all we pick-up the fractal component from HRV signals using wavelet transform. Next, we estimate the power spectrum distribution of fractal component using auto-regressive model, and we estimate parameter 7 using the least square method. Finally according to formula D = 2- (gamma-1)/2 estimate fractal dimension of HRV signal. To validate the stability and reliability of the proposed method, using fractional brown movement simulate 24 fractal signals that fractal value is 1.6 to validate, the result shows that the method has stability and reliability.

  3. Cometabolic biodegradation of trichloroethylene in microcosms

    USGS Publications Warehouse

    Kane, Allen C.; Wilson, Timothy P.; Fischer, Jeffrey M.

    1997-01-01

    Laboratory microcosms were used to determine the concentrations of oxygen (O2) and methane (CH4) that optimize trichloroethylene (TCE) biodegradation in sediment and ground-water samples from a TCE-contaminated aquifer at Picatinny Arsenal, Morris County, New Jersey. The mechanism for degradation is the cometabolic activity of methanotrophic bacteria. The laboratory data will be used to support a field study designed to demonstrate the effectiveness of combining air sparging with cometabolic degradation of TCE for the purpose of aquifer remediation. Microcosms were constructed in autoclaved 250-mL (milliliter) amber glass bottles with valves for repeated headspace sampling. Equal volumes (25 mL) of sediment and ground water, collected from a depth of 40 feet, were added. TCE was added to attain initial aqueous concentrations equal to the field level of 1,400 mu g/L (micrograms per liter). Nine microcosms were constructed with initial headspace O2 concentrations of 5%, 10%, or 14% and CH4 concentrations of 0.5%, 3%, or 5%, with nitrogen making up the balance. Sterile controls, controls without CH4, and controls without sediment were also constructed. A 4-mL gas sample was removed periodically and TCE, O2 , CH4 , and carbon dioxide (CO2) concentrations were measured by using gas chromatography. As biodegradation proceeded, the decrease in O2, CH4 , and TCE concentrations and the production of CO2 were monitored. An initial acclimation period of at least 100 days was observed in those microcosms in which significant microbial activity occurred, as determined from decreases in O2 and CH4 concentrations and an increase in CO2 content. Degradation of TCE occurred with O2 concentrations of 2.7 to 8.7% and CH4 concentrations of 0.5 to 3.5%. Microcosms that initially contained 10% O2 and 3% CH4 showed the greatest microbial activity and the greatest amount of TCE degradation. The greatest rates of TCE degradation occurred when O2 and CH4 headspace concentrations reached

  4. EFFECTS OF PH ON DECHLORINATION OF TRICHLOROETHYLENE BY ZERO-VALENT IRON

    EPA Science Inventory

    The reduction rates of trichloroethylene (TCE) using zero-valent iron (ZVI) and the rates of iron hydrolysis were characterized at pH values of 5 to 10. The reduction of TCE by ZVI was carried out in batch reactors filled with pH-buffered (phosphate based) solutions under anaerob...

  5. United States Air Force 611th Civil Engineer Squadron, Elmendorf AFB, Alaska. Final engineering evaluation/cost analysis potential tce impact to the drinking water supply, Galena Airport, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-05

    This decision document presents the selected removal action to address potential trichloroethene (TCE) impact to drinking water supply wells, located in the Installation Restoration Program (IRP) site ST009, otherwise known as the West Unit, at Galena Airport, Alaska. The information fron the RI Report is summarized, along with an analysis of potential removal action alternatives, in the Engineering Evaluation/Cost Analysis (EE/CA).

  6. Contrasting dual (C, Cl) isotope fractionation offers potential to distinguish reductive chloroethene transformation from breakdown by permanganate.

    PubMed

    Doğan-Subaşı, Eylem; Elsner, Martin; Qiu, Shiran; Cretnik, Stefan; Atashgahi, Siavash; Shouakar-Stash, Orfan; Boon, Nico; Dejonghe, Winnie; Bastiaens, Leen

    2017-10-15

    cis-1,2-Dichloroethene (cis-DCE) and trichloroethene (TCE) are persistent, toxic and mobile pollutants in groundwater systems. They are both conducive to reductive dehalogenation and to oxidation by permanganate. In this study, the potential of dual element (C, Cl) compound specific isotope analyses (CSIA) for distinguishing between chemical oxidation and anaerobic reductive dechlorination of cis-DCE and TCE was investigated. Well-controlled cis-DCE degradation batch tests gave similar carbon isotope enrichment factors ε C (‰), but starkly contrasting dual element isotope slopes Δδ 13 C/Δδ 37 Cl for permanganate oxidation (ε C =-26‰±6‰, Δδ 13 C/Δδ 37 Cl≈-125±47) compared to reductive dechlorination (ε C =-18‰±4‰, Δδ 13 C/Δδ 37 Cl≈4.5±3.4). The difference can be tracked down to distinctly different chlorine isotope fractionation: an inverse isotope effect during chemical oxidation (ε Cl =+0.2‰±0.1‰) compared to a large normal isotope effect in reductive dechlorination (ε Cl =-3.3‰±0.9‰) (p≪0.05). A similar trend was observed for TCE. The dual isotope approach was evaluated in the field before and up to 443days after a pilot scale permanganate injection in the subsurface. Our study indicates, for the first time, the potential of the dual element isotope approach for distinguishing cis-DCE (and TCE) concentration drops caused by dilution, oxidation by permanganate and reductive dechlorination both at laboratory and field scale. Copyright © 2017. Published by Elsevier B.V.

  7. Trichloroethylene Hypersensitivity Syndrome Is Potentially Mediated through Its Metabolite Chloral Hydrate.

    PubMed

    Huang, Yongshun; Xia, Lihua; Wu, Qifeng; Zeng, Zifang; Huang, Zhenlie; Zhou, Shanyu; Jin, Jiachun; Huang, Hanlin

    2015-01-01

    We documented previously the entity of trichloroethylene (TCE) hypersensitivity syndrome (THS) in occupational workers. To identify the culprit causative compound, determine the type of hypersensitivity of THS, and establish a screening test for subjects at risk of THS. TCE and its main metabolites chloral hydrate (CH), trichloroethanol (TCOH) and trichloroacetic acid (TCA) were used as allergens at different concentrations in skin patch tests. The study included 19 case subjects diagnosed with occupational THS, 22 control healthy workers exposed to TCE (exposure >12 weeks), and 20 validation new workers exposed to TCE for <12 weeks free of THS. All subjects were followed-up for 12 weeks after the patch test. The highest patch test positive rate in subjects with THS was for CH, followed by TCOH, TCA and TCE. The CH patch test positive rate was 100% irrespective of CH concentrations (15%, 10% and 5%). The TCOH patch test positive rate was concentration-dependent (89.5%, 73.7% and 52.6% for 5%, 0.5% and 0.05%, respectively). Lower patch test positive rates were noted for TCA and TCE. All patch tests (including four allergens) were all negative in each of the 22 control subjects. None of the subjects of the validation group had a positive 15% CH patch test. Chloral hydrate seems to be the culprit causative compound of THS and type IV seems to be the major type of hypersensitivity of THS. The CH patch test could be potentially useful for screening workers at risk of THS.

  8. Trichloroethylene Hypersensitivity Syndrome Is Potentially Mediated through Its Metabolite Chloral Hydrate

    PubMed Central

    Huang, Yongshun; Xia, Lihua; Wu, Qifeng; Zeng, Zifang; Huang, Zhenlie; Zhou, Shanyu; Jin, Jiachun; Huang, Hanlin

    2015-01-01

    Background We documented previously the entity of trichloroethylene (TCE) hypersensitivity syndrome (THS) in occupational workers. Objectives To identify the culprit causative compound, determine the type of hypersensitivity of THS, and establish a screening test for subjects at risk of THS. Methods TCE and its main metabolites chloral hydrate (CH), trichloroethanol (TCOH) and trichloroacetic acid (TCA) were used as allergens at different concentrations in skin patch tests. The study included 19 case subjects diagnosed with occupational THS, 22 control healthy workers exposed to TCE (exposure >12 weeks), and 20 validation new workers exposed to TCE for <12 weeks free of THS. All subjects were followed-up for 12 weeks after the patch test. Results The highest patch test positive rate in subjects with THS was for CH, followed by TCOH, TCA and TCE. The CH patch test positive rate was 100% irrespective of CH concentrations (15%, 10% and 5%). The TCOH patch test positive rate was concentration-dependent (89.5%, 73.7% and 52.6% for 5%, 0.5% and 0.05%, respectively). Lower patch test positive rates were noted for TCA and TCE. All patch tests (including four allergens) were all negative in each of the 22 control subjects. None of the subjects of the validation group had a positive 15% CH patch test. Conclusions Chloral hydrate seems to be the culprit causative compound of THS and type IV seems to be the major type of hypersensitivity of THS. The CH patch test could be potentially useful for screening workers at risk of THS. PMID:26020924

  9. Activity-Dependent Enzymatic Assay for the Detection of Toluene-Oxidizing Bacteria Capable of Trichloroethylene Degradation

    NASA Astrophysics Data System (ADS)

    Kauffman, M. E.; Kauffman, M. E.; Keener, W. K.; Watwood, M. E.; Lehman, R. M.

    2001-12-01

    Toluene-oxidizing bacteria produce enzymes that cometabolically degrade trichloroethylene (TCE). These inducible enzymes are produced only in the presence of certain aromatic substrates such as toluene or phenol. Recent laboratory studies have utilized analog chemical substrates to identify production of bacterial enzymes capable of degrading trichloroethylene. These analog substrates produce chromogenic and/or fluorescent products when biotransformed by the enzymes of interest. In this study, 3-hydroxyphenylacetylene (3-HPA) was identified as an activity-dependent enzymatic probe for the detection of three of the four known toluene oxygenase enzymes capable of TCE degradation. Laboratory studies were conducted using pure cultures of Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas putida F1. Cell cultures grown on lactate (non-enzyme inducing) or lactate and toluene (inducing) were trapped trapped on black polycarbonate filters, exposed to 3-HPA, and examined for fluorescence using an epifluorescent microscope. Additionally, B. cepacia G4 cells were grown under the same conditions, but in the presence of mineral and basalt specimens to allow for bacterial attachment. The specimens were then exposed to 3-HPA and examined under an epifluorescent microscope. Our results demonstrate that cells induced for the production of oxygenase enzymes, both unattached and attached, are able to transform 3-HPA to a fluorescent product, although cells attached to geologic materials, such as basalt, take substantially longer to transform the probe. Cells grown under non-inducing conditions do not transform the probe, regardless of their attachment status. Additionally, well water samples taken from a TCE-contaminated aquifer were successfully assayed using the 3-HPA enzymatic probe. The development of this enzyme activity-dependent enzymatic assay provides a fast and reliable method to assess the potential for TCE and aromatic contaminant bioremediation.

  10. Genesis analysis of karst water trichloroethylene pollution in the east of a city

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ma, Zhenmin; Wen, Ming

    2017-04-01

    To understand the situation of Karst water Trichloroethylene (TCE) pollution in the east of city, Karst water samples sampled at 43 monitoring sites were analyzed. Result shows that relevance ratio of TCE is 100%, over the standard rate of 97.67% and the maximum value is 73.64μg/L, as 14.73 times as the standard value(5μg/L). Causes of groundwater TCE pollution were analyzed. Result shows that indiscriminate discharge of waste water and poor groundwater vulnerability are the main reasons. And based on the reasons, the pollution ways of TCE were found out.

  11. Phase Transformation Evolution in NiTi Shape Memory Alloy under Cyclic Nanoindentation Loadings at Dissimilar Rates

    PubMed Central

    Amini, Abbas; Cheng, Chun; Kan, Qianhua; Naebe, Minoo; Song, Haisheng

    2013-01-01

    Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60 sec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy. PMID:24336228

  12. Understanding pH Effects on Trichloroethylene and Perchloroethylene Adsorption to Iron in Permeable Reactive Barriers for Groundwater Remediation.

    PubMed

    Luo, Jing; Farrell, James

    2013-01-01

    Metallic iron filings are becoming increasing used in permeable reactive barriers for remediating groundwater contaminated by chlorinated solvents. Understanding solution pH effects on rates of reductive dechlorination in permeable reactive barriers is essential for designing remediation systems that can meet treatment objectives under conditions of varying groundwater properties. The objective of this research was to investigate how the solution pH value affects adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) on metallic iron surfaces. Because adsorption is first required before reductive dechlorination can occur, pH effects on halocarbon adsorption energies may explain pH effects on dechlorination rates. Adsorption energies for TCE and PCE were calculated via molecular mechanics simulations using the Universal force field and a self-consistent reaction field charge equilibration scheme. A range in solution pH values was simulated by varying the amount of atomic hydrogen adsorbed on the iron. The potential energies associated TCE and PCE complexes were dominated by electrostatic interactions, and complex formation with the surface was found to result in significant electron transfer from the iron to the adsorbed halocarbons. Adsorbed atomic hydrogen was found to lower the energies of TCE complexes more than those for PCE. Attractions between atomic hydrogen and iron atoms were more favorable when TCE versus PCE was adsorbed to the iron surface. These two findings are consistent with the experimental observation that changes in solution pH affect TCE reaction rates more than those for PCE.

  13. Nanoscale and Microscale Iron Emulsions for Treating DNAPL

    NASA Technical Reports Server (NTRS)

    Geiger, Cherie L.

    2002-01-01

    This study demonstrated the feasibility of using emulsified nanoscale and microscale iron particles to enhance dehalogenation of (Dense Non-Aqueous Phase Liquid) DNAPL free-phase. The emulsified system consisted of a surfactant-stabilized, biodegradable oil-in-water emulsion with nanoscale or microscale iron particles contained within the emulsion droplets. It was demonstrated that DNAPLs, such as trichloroethene (TCE), diffuse through the oil membrane of the emulsion particle whereupon they reach an aqueous interior and the surface of an iron particle where dehalogenation takes place. The hydrocarbon reaction by-products of the dehalogenation reaction, primarily ethene (no chlorinated products detected), diffuse out of the emulsion droplet. This study also demonstrated that an iron-emulsion system could be delivered in-situ to the DNAPL pool in a soil matrix by using a simulated push well technique. Iron emulsions degraded pure TCE at a rate comparable to the degradation of dissolved phase TCE by iron particles, while pure iron had a very low degradation rate for free-phase TCE. The iron-emulsion systems can be injected into a sand matrix where they become immobilized and are not moved by flowing water. It has been documented that surfactant micelles possess the ability to pull pooled TCE into emulsion droplets where degradation of TCE takes place.

  14. Full-Field Spectroscopy at Megahertz-frame-rates: Application of Coherent Time-Stretch Transform

    NASA Astrophysics Data System (ADS)

    DeVore, Peter Thomas Setsuda

    Outliers or rogue events are found extensively in our world and have incredible effects. Also called rare events, they arise in the distribution of wealth (e.g., Pareto index), finance, network traffic, ocean waves, and e-commerce (selling less of more). Interest in rare optical events exploded after the sighting of optical rogue waves in laboratory experiments at UCLA. Detecting such tail events in fast streams of information necessitates real-time measurements. The Coherent Time-Stretch Transform chirps a pulsed source of radiation so that its temporal envelope matches its spectral profile (analogous to the far field regime of spatial diffraction), and the mapped spectral electric field is slow enough to be captured by a real-time digitizer. Combining this technique with spectral encoding, the time stretch technique has enabled a new class of ultra-high performance spectrometers and cameras (30+ MHz), and analog-to-digital converters that have led to the discovery of optical rogue waves and detection of cancer cells in blood with one in a million sensitivity. Conventionally, the Coherent Time-Stretch Transform maps the spectrum into the temporal electric field, but the time-dilation process along with inherent fiber losses results in reduction of peak power and loss of sensitivity, a problem exacerbated by extremely narrow molecular linewidths. The loss issue notwithstanding, in many cases the requisite dispersive optical device is not available. By extending the Coherent Time-Stretch Transform to the temporal near field, I have demonstrated, for the first time, phase-sensitive absorption spectroscopy of a gaseous sample at millions of frames per second. As the Coherent Time-Stretch Transform may capture both near and far field optical waves, it is a complete spectro-temporal optical characterization tool. This is manifested as an amplitude-dependent chirp, which implies the ability to measure the complex refractive index dispersion at megahertz frame rates. This

  15. Performance measures for transform data coding.

    NASA Technical Reports Server (NTRS)

    Pearl, J.; Andrews, H. C.; Pratt, W. K.

    1972-01-01

    This paper develops performance criteria for evaluating transform data coding schemes under computational constraints. Computational constraints that conform with the proposed basis-restricted model give rise to suboptimal coding efficiency characterized by a rate-distortion relation R(D) similar in form to the theoretical rate-distortion function. Numerical examples of this performance measure are presented for Fourier, Walsh, Haar, and Karhunen-Loeve transforms.

  16. DSMC simulations of shock tube experiments for the dissociation rate of nitrogen

    NASA Astrophysics Data System (ADS)

    Bird, G. A.

    2012-11-01

    The DSMC method has been used to simulate the flow associated with several experiments that led to predictions of the dissociation rate in nitrogen. One involved optical interferometry to determine the density behind strong shock wave and the other involved the measurement of the shock tube end-wall pressure after the reflection of a similar shock wave. DSMC calculations for the un-reflected shock wave were made with the older TCE model that converts rate coefficients to reaction cross-sections, with the newer Q-K model that predicts the rates and with a set of reaction cross-sections for nitrogen dissociation from QCT calculations. A comparison of the resulting density profiles with the measured profile provides a test of the validity of the DSMC chemistry models. The DSMC reaction rates were sampled directly in the DSMC calculation, both far downstream where the flow is in equilibrium and in the non-equilibrium region immediately behind the shock. This permits a critical evaluation of data reduction procedures that were employed to deduce the dissociation rate from the measured quantities.

  17. The efficiency evaluation of in situ remediation performed around the source zone of DNAPL contaminated site, Wonju, Korea

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Lee, S. H.; Lee, K. K.

    2014-12-01

    The location of DNAPL source and distribution of contaminant plume at an industrial complex, Wonju, Korea, was examined based on the combined results of seasonal impact analysis, historical approach, radon tracer approach, and chemical fingerprinting conducted from 2009 to 2013 (Yang et al., 2013). With regard to the amount of contaminants discharged at this study site, there is no exact information on disposal. Therefore, various remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pump-and-treatment have been performed to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones. Also, dissolved TCE concentration and mass of residual TCE in the initial stage of disposal were estimated to evaluate the efficiency of in situ remediation. The remediation efficiency according to the remediation actions was evaluated by tracing a time-series of plume evolution and estimating the temporal mass discharge at three transects (Source, Transec-1, Transect-2) which was assigned along the groundwater flow path. From results of periodically monitored TCE concentration at main source zone, the TCE level (15.74 mg/L) before the remediation dramatically decreased up to 0.56 mg/L at the end of year 2012 due to the effect of remediation. During the intensive remediation period from 2012 to 2013, the early average mass discharge (26.58 g/day) at source transect was decreased to average 4.99 g/day. Especially, in case of surfactant flushing test which was conducted to eliminate the residual TCE, the efficiency of surfactant flushing test was evaluated using the recovery rate of chloride ion which was used as tracer. The results for recovery rate of chloride ion show that test wells observed the slow recovery rate represented more effective dissolution of TCE than wells showing the rapid recovery rate. By using the source zone monitoring data and analytical solution, initial

  18. Nutrient supplements boost yeast transformation efficiency

    PubMed Central

    Yu, Sheng-Chun; Dawson, Alexander; Henderson, Alyssa C.; Lockyer, Eloise J.; Read, Emily; Sritharan, Gayathri; Ryan, Marjah; Sgroi, Mara; Ngou, Pok M.; Woodruff, Rosie; Zhang, Ruifeng; Ren Teen Chia, Travis; Liu, Yu; Xiang, Yiyu; Spanu, Pietro D.

    2016-01-01

    Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per μg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening. PMID:27760994

  19. Effects Of Evaporation Rate of Some Common Organic Contaminants on Hydraulic Conductivity of Aquifer Sand

    NASA Astrophysics Data System (ADS)

    Saud, Q. J.; Hasan, S. E.

    2014-12-01

    As part of a larger study to investigate potential effects of hydrocarbons on the geotechnical properties of aquifer solids, a series of laboratory experiments were carried out to ascertain the influence of evaporation rate of some common and widespread organic contaminants on the hydraulic conductivity of aquifer sand. Gasoline and its constituent chemicals-benzene, toluene, ethylbenzene, xylene (BTEX), isooctane- and trichloroethylene (TCE) were used to contaminate sand samples collected from the aquifer and vadose zone, at varying concentrations for extended periods of time. The goal was to study any change in the chemical makeup of the contaminants and its control on hydraulic conductivity of the sand. It was found that: (a) gasoline breaks down into constituent compounds when subjected to evaporation, e.g. during oil spills and leaks; and (b) lighter compounds volatilize faster and in the following order: TCE> benzene > isooctane > toluene > gasoline> ethylbenzene > xylene. In addition, these contaminants also caused a decrease in hydraulic conductivity of sand by up to 60% as compared to the uncontaminated sand. The inherent differences in the chemical structure of contaminating chemicals influenced hydraulic conductivity such that the observed decrease was greater for aliphatic than aromatic and chlorinated hydrocarbons. The presentation includes details of the experimental set up; evaporation rate, and geotechnical tests; X-ray diffraction and scanning electron microscope studies; and data analyses and interpretation. Rate of evaporation test indicates that residual LNAPLs will occupy a certain portion of the pores in the soil either as liquid or vapor phase in the vadose zone, and will create a coating on the adjacent solid mineral grains in the aquifer. Replacement of air by the LNAPLs along with grain coatings and the intramolecular forces would impede groundwater movement, thus affecting overall permeability of contaminated aquifers. Keywords: aquifer

  20. Trichloroethylene Is Associated with Kidney Cancer Mortality: A Population-based Analysis.

    PubMed

    Alanee, Shaheen; Clemons, Joseph; Zahnd, Whitney; Sadowski, Daniel; Dynda, Danuta

    2015-07-01

    To examine the association between the distribution of trichloroethylene (TCE) exposure and mortality from kidney cancer (Kca) across United States counties. Multiple linear regression was used to assess the association of TCE discharges from industrial sites and age-adjusted incidence and mortality rates for Kca during 2005 through 2010, controlling for confounders. A total of 163 counties were included in analysis. We observed an excess risk of Kca mortality associated with higher amounts of environmental TCE releases. A significant dose-response relationship was observed between TCE releases and Kca mortality in females. Smoking, education, income, hypertension, and obesity were significant predictors of incidence and mortality, consistent with previous research on the epidemiology of Kca. TCE exposure may increase the risk of mortality from Kca, an association not highlighted before. There is a need for policy measures to limit TCE discharge to the environment if these results are validated. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Geophysical logging and thermal imaging near the Hemphill Road TCE National Priorities List Superfund site near Gastonia, North Carolina

    USGS Publications Warehouse

    Antolino, Dominick J.; Chapman, Melinda J.

    2017-03-27

    Borehole geophysical logs and thermal imaging data were collected by the U.S. Geological Survey near the Hemphill Road TCE (trichloroethylene) National Priorities List Superfund site near Gastonia, North Carolina, during August 2014 through February 2015. In an effort to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants, surface geological mapping and borehole geophysical log and thermal imaging data collection, which included the delineation of more than 600 subsurface features (primarily fracture orientations), was completed in five open borehole wells and two private supply bedrock wells. In addition, areas of possible groundwater discharge within a nearby creek downgradient of the study site were determined based on temperature differences between the stream and bank seepage using thermal imagery.

  2. Methane and Trichloroethylene Degradation by Methylosinus trichosporium OB3b Expressing Particulate Methane Monooxygenase

    PubMed Central

    Lontoh, Sonny; Semrau, Jeremy D.

    1998-01-01

    Whole-cell assays of methane and trichloroethylene (TCE) consumption have been performed on Methylosinus trichosporium OB3b expressing particulate methane monooxygenase (pMMO). From these assays it is apparent that varying the growth concentration of copper causes a change in the kinetics of methane and TCE degradation. For M. trichosporium OB3b, increasing the copper growth concentration from 2.5 to 20 μM caused the maximal degradation rate of methane (Vmax) to decrease from 300 to 82 nmol of methane/min/mg of protein. The methane concentration at half the maximal degradation rate (Ks) also decreased from 62 to 8.3 μM. The pseudo-first-order rate constant for methane, Vmax/Ks, doubled from 4.9 × 10−3 to 9.9 × 10−3 liters/min/mg of protein, however, as the growth concentration of copper increased from 2.5 to 20 μM. TCE degradation by M. trichosporium OB3b was also examined with varying copper and formate concentrations. M. trichosporium OB3b grown with 2.5 μM copper was unable to degrade TCE in both the absence and presence of an exogenous source of reducing equivalents in the form of formate. Cells grown with 20 μM copper, however, were able to degrade TCE regardless of whether formate was provided. Without formate the Vmax for TCE was 2.5 nmol/min/mg of protein, while providing formate increased the Vmax to 4.1 nmol/min/mg of protein. The affinity for TCE also increased with increasing copper, as seen by a change in Ks from 36 to 7.9 μM. Vmax/Ks for TCE degradation by pMMO also increased from 6.9 × 10−5 to 5.2 × 10−4 liters/min/mg of protein with the addition of formate. From these whole-cell studies it is apparent that the amount of copper available is critical in determining the oxidation of substrates in methanotrophs that are expressing only pMMO. PMID:16349516

  3. Quantification of natural vapor fluxes of trichloroethene in the unsaturated zone at Picatinny Arsenal, New Jersey

    USGS Publications Warehouse

    Smith, James A.; Tisdale, Amy K.; Cho, H. Jean

    1996-01-01

    The upward flux of trichloroethene (TCE) vapor through the unsaturated zone above a contaminated, water-table aquifer at Picatinny Arsenal, New Jersey, has been studied under natural conditions over a 12-month period. Vertical gas-phase diffusion fluxes were estimated indirectly by measuring the TCE vapor concentration gradient in the unsaturated zone and using Fick's law to calculate the flux. The total gas-phase flux (e.g., the sum of diffusion and advection fluxes) was measured directly with a vertical flux chamber (VFC). In many cases, the upward TCE vapor flux was several orders of magnitude greater than the upward TCE diffusion flux, suggesting that mechanisms other than steady-state vapor diffusion are contributing to the vertical transport of TCE vapors through the unsaturated zone. The measured total flux of TCE vapor from the subsurface to the atmosphere is approximately 50 kg/yr and is comparable in magnitude to the removal rate of TCE from the aquifer by an existing pump-and-treat system and by discharge into a nearby stream. The net upward flux of TCE is reduced significantly during a storm event, presumably due to the mass transfer of TCE from the soil gas to the infiltrating rainwater and its subsequent downward advection. Several potential problems associated with the measurement of total gas-phase fluxes are discussed.

  4. Transform coding for space applications

    NASA Technical Reports Server (NTRS)

    Glover, Daniel

    1993-01-01

    Data compression coding requirements for aerospace applications differ somewhat from the compression requirements for entertainment systems. On the one hand, entertainment applications are bit rate driven with the goal of getting the best quality possible with a given bandwidth. Science applications are quality driven with the goal of getting the lowest bit rate for a given level of reconstruction quality. In the past, the required quality level has been nothing less than perfect allowing only the use of lossless compression methods (if that). With the advent of better, faster, cheaper missions, an opportunity has arisen for lossy data compression methods to find a use in science applications as requirements for perfect quality reconstruction runs into cost constraints. This paper presents a review of the data compression problem from the space application perspective. Transform coding techniques are described and some simple, integer transforms are presented. The application of these transforms to space-based data compression problems is discussed. Integer transforms have an advantage over conventional transforms in computational complexity. Space applications are different from broadcast or entertainment in that it is desirable to have a simple encoder (in space) and tolerate a more complicated decoder (on the ground) rather than vice versa. Energy compaction with new transforms are compared with the Walsh-Hadamard (WHT), Discrete Cosine (DCT), and Integer Cosine (ICT) transforms.

  5. Promising Emerging Mechanisms

    EPA Science Inventory

    Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...

  6. Contributions of Fe Minerals to Abiotic Dechlorination

    EPA Science Inventory

    Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...

  7. Reductive Dechlorination of Carbon Tetrachloride by Tetrachloroethene and Trichloroethene Respiring Anaerobic Mixed Cultures

    NASA Astrophysics Data System (ADS)

    Vickstrom, K. E.; Azizian, M.; Semprini, L.

    2015-12-01

    Carbon tetrachloride (CT) is a toxic and recalcitrant groundwater contaminant with the potential to form a broad range of transformation products. Of the possible biochemical pathways through which CT can be degraded, reductive dehalogenation to less chlorinated compounds and mineralization to carbon dioxide (CO2) appear to be the most frequently utilized pathways by anaerobic organisms. Results will be presented from batch experiments of CT degradation by the Evanite (EV), Victoria Strain (VS) and Point Mugu (PM) anaerobic dechlorinating cultures. The cultures are grown in chemostats and are capable of transforming tetrachloroethene (PCE) or trichloroethene (TCE) to ethene by halorespiration via reductive dehalogenase enzymes. For the batch CT transformation tests, the cells along with supernatant were harvested from chemostats fed PCE or TCE, but never CT. The batch reactors were initially fed 0.0085 mM CT and an excess of formate (EV and VS) or lactate (PM) as electron donor. Transformation of CT was 100% with about 20% converted to chloroform (CF) and undetected products. Multiple additions of CT showed a slowing of pseudo first-order CT transformation rates across all cultures. Batch reactors were then established and fed 0.085 mM CT with an excess of electron donor in order to better quantify the reductive pathway. CT was transformed to CF and dichloromethane (DCM), with trace amounts of chloromethane (CM) detected. Between 60-90% of the mass added to the system was accounted for, showing that the majority of the carbon tetrachloride present is being reductively dehalogenated. Results from batch reactors that were poisoned using sodium azide, and from reactors not provided electron donor will be presented to distinguish between biotic and abiotic reactions. Furthermore, results from reactors prepared with acetylene (a potent, reversible inhibitor of reductive dehalogenases (1)) will be presented as a means of identifying the enzymes involved in the

  8. DSMC study of oxygen shockwaves based on high-fidelity vibrational relaxation and dissociation models

    NASA Astrophysics Data System (ADS)

    Borges Sebastião, Israel; Kulakhmetov, Marat; Alexeenko, Alina

    2017-01-01

    This work evaluates high-fidelity vibrational-translational (VT) energy relaxation and dissociation models for pure O2 normal shockwave simulations with the direct simulation Monte Carlo (DSMC) method. The O2-O collisions are described using ab initio state-specific relaxation and dissociation models. The Macheret-Fridman (MF) dissociation model is adapted to the DSMC framework by modifying the standard implementation of the total collision energy (TCE) model. The O2-O2 dissociation is modeled with this TCE+MF approach, which is calibrated with O2-O ab initio data and experimental equilibrium dissociation rates. The O2-O2 vibrational relaxation is modeled via the Larsen-Borgnakke model, calibrated to experimental VT rates. All the present results are compared to experimental data and previous calculations available in the literature. It is found that, in general, the ab initio dissociation model is better than the TCE model at matching the shock experiments. Therefore, when available, efficient ab initio models are preferred over phenomenological models. We also show that the proposed TCE + MF formulation can be used to improve the standard TCE model results when ab initio data are not available or limited.

  9. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes.

    PubMed

    Petersen, Matthew A; Sale, Thomas C; Reardon, Kenneth F

    2007-04-01

    Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration.

  10. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis.

    PubMed

    Gilbert, Kathleen M; Reisfeld, Brad; Zurlinden, Todd J; Kreps, Meagan N; Erickson, Stephen W; Blossom, Sarah J

    2014-09-15

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL+/+mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL+/+mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis

    PubMed Central

    Gilbert, Kathleen M.; Reisfeld, Brad; Zurlinden, Todd; Kreps, Meagan N.; Erickson, Stephen W.; Blossom, Sarah J.

    2014-01-01

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL+/+ mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL+/+ mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. PMID:25026505

  12. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater.

    PubMed

    Li, Hui; Chen, Ya Qin; Chen, Shuai; Wang, Xiao Li; Guo, Shu; Qiu, Yue Feng; Liu, Yong Di; Duan, Xiao Li; Yu, Yun Jiang

    2017-01-01

    This study synthesized the wheat straw biochar-supported nanoscale zerovalent iron (BC-nZVI) via in-situ reduction with NaBH4 and biochar pyrolyzed at 600°C. Wheat straw biochar, as a carrier, significantly enhanced the removal of trichloroethylene (TCE) by nZVI. The pseudo-first-order rate constant of TCE removal by BC-nZVI (1.079 h-1) within 260 min was 1.4 times higher and 539.5 times higher than that of biochar and nZVI, respectively. TCE was 79% dechlorinated by BC-nZVI within 15 h, but only 11% dechlorinated by unsupported nZVI, and no TCE dechlorination occurred with unmodified biochar. Weakly acidic solution (pH 5.7-6.8) significantly enhanced the dechlorination of TCE. Chloride enhanced the removal of TCE, while SO42-, HCO3- and NO3- all inhibited it. Humic acid (HA) inhibited BC-nZVI reactivity, but the inhibition decreased slightly as the concentration of HA increased from 40 mg∙L-1 to 80 mg∙L-1, which was due to the electron shutting by HA aggregates. Results suggest that BC-nZVI was promising for remediation of TCE contaminated groundwater.

  13. Decomposition of gas-phase trichloroethene by the UV/TiO2 process in the presence of ozone.

    PubMed

    Shen, Y S; Ku, Y

    2002-01-01

    The decomposition of gas-phase trichloroethene (TCE) in air streams by direct photolysis, the UV/TiO2 and UV/O3 processes was studied. The experiments were carried out under various UV light intensities and wavelengths, ozone dosages, and initial concentrations of TCE to investigate and compare the removal efficiency of the pollutant. For UV/TiO2 process, the individual contribution to the decomposition of TCE by direct photolysis and hydroxyl radicals destruction was differentiated to discuss the quantum efficiency with 254 and 365 nm UV lamps. The removal of gaseous TCE was found to reduce by UV/TiO2 process in the presence of ozone possibly because of the ozone molecules could scavenge hydroxyl radicals produced from the excitation of TiO2 by UV radiation to inhibit the decomposition of TCE. A photoreactor design equation for the decomposition of gaseous TCE by the UV/TiO2 process in air streams was developed by combining the continuity equation of the pollutant and the surface catalysis reaction rate expression. By the proposed design scheme, the temporal distribution of TCE at various operation conditions by the UV/TiO2 process can be well modeled.

  14. Flow Dependence Assessment for Fate and Transport of DNAPL in Karst Media

    NASA Astrophysics Data System (ADS)

    Carmona, M.; Padilla, I. Y.

    2017-12-01

    DNAPLs are a group of organic compounds, which exhibit high fluid density, relatively aqueous solubility, and a high level of toxicity. It is also very persistent and remains in the environment long after been released. Massive production of these compounds, their constant use and poor disposal methods have increased the occurrence of these contaminants in groundwater systems. The physico-chemical properties of DNAPL, combined with the high variation of groundwater flow causes contaminants to behave unpredictably in such aquifer. This research focuses on fate and transport of trichloroethylene (which is one of the most frequent DNAPL found) in a karstified limestone physical model (KLPM) at two different flow rates. The KLPM represents a real case of a saturated confined karst aquifer consisting of a porous limestone block enclosed in a stainless-steel tank with fifteen horizontal sampling ports. After injection of pure TCE solvent into a steady groundwater flow field, samples are taken spatially and temporally and analyzed volumetrically and analytically with HPLC. Data show pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port. Results from the constructed temporal distributions curves at different spatial locations show spatial variations related to the limestone block heterogeneity. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response with long tailing is indicative of diffusive transport in the rock matrix and mass transport rates limitations. Although, high flow rates show greater mass removal of TCE by dissolving its NAPL, pure TCE accumulates at all flow rates studied. Overall, results show that karstified limestone has a high capacity to rapidly transport, as well as store and slowly release TCE pure and dissolved phase for long periods of time. They also show that fate and transport of contaminants in karst environments is significantly flow dependent.

  15. Evaluation of the Potential Impact of Inhibition of Trichloroethylene Metabolism in the Liver on Extra-Hepatic Toxicity

    EPA Science Inventory

    The interaction between trichloroethylene (TCE) and chloroform (CHCI3) is less than additive, with co-exposure to TCE and CHCl3 resulting in less hepatic and renal toxicity than observed with CHCl3 alone. Vapor uptake data demonstrate that co-exposure to CHCl3 decreases the rate ...

  16. Aragonite→calcite transformation studied by EPR of Mn 2+ ions

    NASA Astrophysics Data System (ADS)

    Lech, J.; Śl|zak, A.

    1989-05-01

    The irreversible transformation aragonite→calcite has been studied both at different fixed heating rates (5, 10, 15 and 20 K/min) and at different fixed temperatures. Apparent progression rates of the transformation were observed above 685 K. At 730 K the transformation became sudden and violent. Time developments of the transformation at fixed temperatures have been discussed in terms of Avrami-Lichti's approach to transitions involving nucleation processes.

  17. Kinetics of austenite-pearlite transformation in eutectoid carbon steel

    NASA Astrophysics Data System (ADS)

    Hawbolt, E. B.; Chau, B.; Brimacombe, J. K.

    1983-09-01

    The kinetics of the austenite-to-pearlite transformation have been measured under isothermal and continuous-cooling conditions on a eutectoid carbon (1080) steel using a diametral dilatometric technique. The isothermal transformation kinetics have been analyzed in terms of the Avrami Equation containing the two parameters n and b; the initiation of transformation was characterized by an empirically determined transformation-start time (tAv). The parameter n was found to be nearly constant; and neither n nor b was dependent on the cooling rate between T A1 and the test temperature. Continuous-cooling tests were performed with cooling rates ranging from 7.5 to 108 °C per second, and the initiation of transformation was determined. Comparison of this transformation-start time for different cooling rates with the measured slow cooling of a test coupon immersed in a salt bath indicates that, particularly at lower temperatures, the transformation in the traditional T-T-T test specimen may not be isothermal. The additivity rule was found to predict accurately the time taken, relative to tAv, to reach a given fraction of austenite transformed, even though there is some question that the isokinetic condition was met above 660 °C. However, the additivity rule does not hold for the pretransformation or incubation period, as originally proposed by Scheil, and seriously overestimates the incubation time. Application of the additivity rule to the prediction of transformation-finish time, based on transformation start at TA1, also leads to overestimates, but these are less serious. The isothermal parameters— n ( T), b ( T), and tAv ( T)—have been used to predict continuous-cooling transformation kinetics which are in close agreement with measurements at four cooling rates ranging from 7.5 to 64 °C per second.

  18. Design of Warped Stretch Transform

    PubMed Central

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-01-01

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458

  19. PGDP Trichloroethene Biodegradation Investigation Summary Report: Regional Gravel Aquifer & Northwest Plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampson, Steve

    The evaluation of biological degradation processes addressed by this report are part of a broad trichloroethene (TCE) Fate and Transport Investigation that includes four (4) topics of phased investigation (Table ES1) relative to degradation and/or attenuation of TCE in the Regional Gravel Aquifer (RGA) underlying the United States Department of Energy Paducah Gaseous Diffusion Plant (PGDP). In order of implementation the project phases are: (1) derivation of a TCE first-order rate constant by normalization of TCE values against technetium-99 ( 99Tc) and chloride. 2) identification of the presence of microbes capable of aerobic co-metabolic TCE biodegradation using enzyme activity probesmore » (this report); 3) Compound-specific isotope analysis (CSIA) to support prevalence of biotic and/or abiotic degradation processes; and 4) evaluation of potential abiotic RGA-TCE attenuation mechanisms including sorption. This report summarizes the Phase II activities related to the identification and evaluation of biological degradation processes that may be actively influencing TCE fate and transport in the RGA contaminant plumes at the United States Department of Energy (DOE) PGDP and its environs (Figure ES1). The goals of these activities were to identify active biological degradation mechanisms in the RGA through multiple lines of evidence and to provide DOE with recommendations for future TCE biological degradation investigations.« less

  20. Computational and Experimental Investigation of Contaminant Plume Response to DNAPL Source Zone Architecture and Depletion in Porous and Fractured Media

    DTIC Science & Technology

    2013-09-01

    Mass in the Rock Matrix. Table 4.8.5.1: Flow and Transport Parameters Used for TCE Dissolution Modeling in Discrete Fracture Approach. Table 4.8.5.2...represent the flow rate over time. Figure 4.8.4.5: The Profile of Estimated Diffusing TCE Front into the Rock Matrix. Figure 4.8.5.1: a) Mesh Used for TCE...fractured rocks . The work of Illman et al. (2009) motivates us to conduct a laboratory fractured rock block experiment in which a large number of pumping

  1. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.

    PubMed Central

    Nelson, M J; Montgomery, S O; Mahaffey, W R; Pritchard, P H

    1987-01-01

    Biodegradation of trichloroethylene (TCE) by bacterial strain G4 resulted in complete dechlorination of the compound, as indicated by the production of inorganic chloride. A component of the water from which strain G4 was isolated that was required for TCE degradation was identified as phenol. Strain G4 degraded TCE in the presence of chloramphenicol only when preinduced with phenol. Toluene, o-cresol. and m-cresol could replace the phenol requirement. Two of the inducers of TCE metabolism, phenol and toluene, apparently induced the same aromatic degradative pathway that cleaved the aromatic ring by meta fission. Cells induced with either phenol or toluene had similar oxidation rates for several aromatic compounds and had similar levels of catechol-2,3-dioxygenase. The results indicate that one or more enzymes of an inducible pathway for aromatic degradation in strain G4 are responsible for the degradation of TCE. PMID:3606099

  2. Enhancing fire safety at Hydro plants with dry transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemen, D.M.

    Hydroelectric plant owners and engineers can use dry-type transformers to reduce fire hazards in auxiliary power systems. The decision to replace a liquid-immersed transformer with a dry-type product has a price: higher unit cost and a need to be more vigilant in detailing transformer specifications. But, whether the change affects only one failed transformer or is part of a plant rehabilitation project, the benefits in safety can be worth it. Voltages on hydroelectric plant auxiliary power systems can range from a 20 kV medium-voltage system to the normal 480-208/120 V low-voltage system. Dry transformers typically are used in such systemsmore » to reduce the fire hazard present with liquid-filled transformers. For a hydro plant owner or engineer seeking alternatives to liquid-filled transformers, there are two main kinds of dry-type transformers to consider: vacuum pressure impregnated (VPI) and cast coil epoxy resin. VPI transformers normally are manufactured in sizes up to 6,000 kVA with primary voltage ratings up to 20 kV. Cast coil transformers can be made in sizes from 75 to 10,000 kVA, with primary voltage ratings up to 34,500 V. Although the same transformer theory applies to dry transformers as to liquid-filled units, the cooling medium, air, required different temperature rise ratings, dielectric tests, and construction techniques to ensure reliability. Consequently, the factory and field tests for dry units are established by a separate set of American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards. Cast coil transformers have several important advantages over VPI units.« less

  3. Integer cosine transform for image compression

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Pollara, F.; Shahshahani, M.

    1991-01-01

    This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.

  4. Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC

    NASA Astrophysics Data System (ADS)

    Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina

    2016-11-01

    New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.

  5. Nurse executive transformational leadership found in participative organizations.

    PubMed

    Dunham-Taylor, J

    2000-05-01

    The study examined a national sample of 396 randomly selected hospital nurse executives to explore transformational leadership, stage of power, and organizational climate. Results from a few nurse executive studies have found nurse executives were transformational leaders. As executives were more transformational, they achieved better staff satisfaction and higher work group effectiveness. This study integrates Bass' transformational leadership model with Hagberg's power stage theory and Likert's organizational climate theory. Nurse executives (396) and staff reporting to them (1,115) rated the nurse executives' leadership style, staff extra effort, staff satisfaction, and work group effectiveness using Bass and Avolio's Multifactor Leadership Questionnaire. Executives' bosses (360) rated executive work group effectiveness. Executives completed Hagberg's Personal Power Profile and ranked their organizational climate using Likert's Profile of Organizational Characteristics. Nurse executives used transformational leadership fairly often; achieved fairly satisfied staff levels; were very effective according to bosses; were most likely at stage 3 (power by achievement) or stage 4 (power by reflection); and rated their hospital as a Likert System 3 Consultative Organization. Staff satisfaction and work group effectiveness decreased as nurse executives were more transactional. Higher transformational scores tended to occur with higher educational degrees and within more participative organizations. Transformational qualities can be enhanced by further education, by achieving higher power stages, and by being within more participative organizations.

  6. CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) for Near-Perfect Selective Transformation

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.; hide

    2015-01-01

    The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.

  7. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater

    PubMed Central

    Li, Hui; Chen, Ya Qin; Chen, Shuai; Wang, Xiao Li; Guo, Shu; Qiu, Yue Feng; Liu, Yong Di; Duan, Xiao Li; Yu, Yun Jiang

    2017-01-01

    This study synthesized the wheat straw biochar-supported nanoscale zerovalent iron (BC-nZVI) via in-situ reduction with NaBH4 and biochar pyrolyzed at 600°C. Wheat straw biochar, as a carrier, significantly enhanced the removal of trichloroethylene (TCE) by nZVI. The pseudo-first-order rate constant of TCE removal by BC-nZVI (1.079 h−1) within 260 min was 1.4 times higher and 539.5 times higher than that of biochar and nZVI, respectively. TCE was 79% dechlorinated by BC-nZVI within 15 h, but only 11% dechlorinated by unsupported nZVI, and no TCE dechlorination occurred with unmodified biochar. Weakly acidic solution (pH 5.7–6.8) significantly enhanced the dechlorination of TCE. Chloride enhanced the removal of TCE, while SO42−, HCO3− and NO3− all inhibited it. Humic acid (HA) inhibited BC-nZVI reactivity, but the inhibition decreased slightly as the concentration of HA increased from 40 mg∙L-1 to 80 mg∙L-1, which was due to the electron shutting by HA aggregates. Results suggest that BC-nZVI was promising for remediation of TCE contaminated groundwater. PMID:28264061

  8. Strain-rate and temperature-driven transition in the shear transformation zone for two-dimensional amorphous solids

    NASA Astrophysics Data System (ADS)

    Cao, Penghui; Park, Harold S.; Lin, Xi

    2013-10-01

    We couple the recently developed self-learning metabasin escape algorithm, which enables efficient exploration of the potential energy surface (PES), with shear deformation to elucidate strain-rate and temperature effects on the shear transformation zone (STZ) characteristics in two-dimensional amorphous solids. In doing so, we report a transition in the STZ characteristics that can be obtained through either increasing the temperature or decreasing the strain rate. The transition separates regions having two distinct STZ characteristics. Specifically, at high temperatures and high strain rates, we show that the STZs have characteristics identical to those that emerge from purely strain-driven, athermal quasistatic atomistic calculations. At lower temperatures and experimentally relevant strain rates, we use the newly coupled PES + shear deformation method to show that the STZs have characteristics identical to those that emerge from a purely thermally activated state. The specific changes in STZ characteristics that occur in moving from the strain-driven to thermally activated STZ regime include a 33% increase in STZ size, faster spatial decay of the displacement field, a change in the deformation mechanism inside the STZ from shear to tension, a reduction in the stress needed to nucleate the first STZ, and finally a notable loss in characteristic quadrupolar symmetry of the surrounding elastic matrix that has previously been seen in athermal, quasistatic shear studies of STZs.

  9. An Animal Model of Trichloroethylene-Induced Skin Sensitization in BALB/c Mice.

    PubMed

    Wang, Hui; Zhang, Jia-xiang; Li, Shu-long; Wang, Feng; Zha, Wan-sheng; Shen, Tong; Wu, Changhao; Zhu, Qi-xing

    2015-01-01

    Trichloroethylene (TCE) is a major occupational hazard and environmental contaminant that can cause multisystem disorders in the form of occupational medicamentosa-like dermatitis. Development of dermatitis involves several proinflammatory cytokines, but their role in TCE-mediated dermatitis has not been examined in a well-defined experimental model. In addition, few animal models of TCE sensitization are available, and the current guinea pig model has apparent limitations. This study aimed to establish a model of TCE-induced skin sensitization in BALB/c mice and to examine the role of several key inflammatory cytokines on TCE sensitization. The sensitization rate of dorsal painted group was 38.3%. Skin edema and erythema occurred in TCE-sensitized groups, as seen in 2,4-dinitrochlorobenzene (DNCB) positive control. Trichloroethylene sensitization-positive (dermatitis [+]) group exhibited increased thickness of epidermis, inflammatory cell infiltration, swelling, and necrosis in dermis and around hair follicle, but ear painted group did not show these histological changes. The concentrations of serum proinflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-2 were significantly increased in 24, 48, and 72 hours dermatitis [+] groups treated with TCE and peaked at 72 hours. Deposition of TNF-α, IFN-γ, and IL-2 into the skin tissue was also revealed by immunohistochemistry. We have established a new animal model of skin sensitization induced by repeated TCE stimulations, and we provide the first evidence that key proinflammatory cytokines including TNF-α, IFN-γ, and IL-2 play an important role in the process of TCE sensitization. © The Author(s) 2015.

  10. The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution.

    PubMed

    Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram

    2016-03-01

    In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants

    NASA Astrophysics Data System (ADS)

    Suchomel, Eric J.; Ramsburg, C. Andrew; Pennell, Kurt D.

    2007-12-01

    The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween® 80) and sodium dihexyl sulfosuccinate (Aerosol® MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl 2 yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (> 30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR = 1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (< 5%) occurring when the total trapping number exceeded 2 × 10 - 5 . These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple

  12. Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene.

    PubMed

    Jiang, Yan; Wang, Dan; Zhang, Guoxing; Wang, Guoqing; Tong, Jian; Chen, Tao

    2016-11-01

    Trichloroethylene (TCE) is ubiquitous in our living environment, and prenatal exposure to TCE is reported to cause congenital heart disease in humans. Although multiple studies have been performed using animal models, they have limited value in predicting effects on humans due to the unknown species-specific toxicological effects. To test whether exposure to low doses of TCE induces developmental toxicity in humans, we investigated the effect of TCE on human embryonic stem cells (hESCs) and cardiomyocytes (derived from the hESCs). In the current study, hESCs cardiac differentiation was achieved by using differentiation medium consisting of StemPro-34. We examined the effects of TCE on cell viability by cell growth assay and cardiac inhibition by analysis of spontaneously beating cluster. The expression levels of genes associated with cardiac differentiation and Ca 2+ channel pathways were measured by immunofluorescence and qPCR. The overall data indicated the following: (1) significant cardiac inhibition, which was characterized by decreased beating clusters and beating rates, following treatment with low doses of TCE; (2) significant up-regulation of the Nkx2.5/Hand1 gene in cardiac progenitors and down regulation of the Mhc-7/cTnT gene in cardiac cells; and (3) significant interference with Ca 2+ channel pathways in cardiomyocytes, which contributes to the adverse effect of TCE on cardiac differentiation during early embryo development. Our results confirmed the involvement of Ca 2+ turnover network in TCE cardiotoxicity as reported in animal models, while the inhibition effect of TCE on the transition of cardiac progenitors to cardiomyocytes is unique to hESCs, indicating a species-specific effect of TCE on heart development. This study provides new insight into TCE biology in humans, which may help explain the development of congenital heart defects after TCE exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1372-1380, 2016. © 2015 Wiley

  13. Investigation of Processes Controlling Elution of Solutes from Nonaqueous Phase Liquid (NAPL) Pools into Groundwater

    NASA Astrophysics Data System (ADS)

    Seyedabbasi, M.; Pirestani, K.; Holland, S. B.; Imhoff, P. T.

    2005-12-01

    Two major processes influencing the elution of solutes from porous media contaminated with nonaqueous phase liquids (NAPLs) are external mass transfer between the NAPL and groundwater and internal diffusion through NAPL ganglia and pools. There is a relatively large body of literature on the dissolution of single-species NAPLs. Less is known about the rates of elution of compounds dissolving from multicomponent NAPLs. We examined the mass transfer of one solute, 2,3-dimethyl-2-butanol (DMB) - a partitioning tracer, between groundwater and a dense NAPL - trichloroethylene (TCE). Diffusion cell experiments were used to measure the molecular diffusion coefficient of DMB in pure TCE and in porous media contaminated with a TCE pool. Measured diffusion coefficients were compared with empirical correlations (pure TCE) and a parallel resistance model (TCE pool). Based on the results from these analyses, a dimensionless Biot number was derived to express the ratio of the external rate of mass transfer from a NAPL pool to the internal rate of diffusion within the pool, which varies with NAPL saturation and NAPL-water partition coefficient. Biot numbers were then estimated for several laboratory scale experiments involving DMB transport between NAPL pools and groundwater. The estimated Biot numbers were in good agreement with experimental results. The expression for the Biot number developed here may be used to assess the processes controlling the elution of solutes from NAPL pools, which has implications on long-term predictions of solute dissolution from NAPLs in the field.

  14. Reduction-Triggered Transformation of Crosslinking Modules of Disulfide-Containing Micelles with Chemically Tunable Rates.

    PubMed

    Deng, Zhengyu; Yuan, Shuai; Xu, Ronald X; Liang, Haojun; Liu, Shiyong

    2018-05-16

    A dilemma exists between the circulation stability and cargo release/mass diffusion at desired sites for designing delivery nanocarriers and in vivo nanoreactors. We herein report disulfide-crosslinked (DCL) micelles exhibiting reduction-triggered switching of crosslinking modules and synchronized hydrophobic-to-hydrophilic transition. Tumor cell-targeted DCL micelles undergo cytoplasmic milieu-triggered disulfide cleavage and cascade self-immolative decaging reactions at chemically adjustable rates, generating primary amine moieties. Extensive amidation reactions with neighboring ester moieties then occur due to high local concentrations and suppression of apparent amine pKa within hydrophobic cores, leading to the transformation of crosslinking modules and formation of tracelessly crosslinked (TCL) micelles with hydrophilic cores inside live cells. We further integrate this design principle with theranostic nanocarriers for selective intracellular drug transport guided by enhanced magnetic resonance (MR) imaging performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fourier transform-based scattering-rate method for self-consistent simulations of carrier transport in semiconductor heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrottke, L., E-mail: lutz@pdi-berlin.de; Lü, X.; Grahn, H. T.

    We present a self-consistent model for carrier transport in periodic semiconductor heterostructures completely formulated in the Fourier domain. In addition to the Hamiltonian for the layer system, all expressions for the scattering rates, the applied electric field, and the carrier distribution are treated in reciprocal space. In particular, for slowly converging cases of the self-consistent solution of the Schrödinger and Poisson equations, numerous transformations between real and reciprocal space during the iterations can be avoided by using the presented method, which results in a significant reduction of computation time. Therefore, it is a promising tool for the simulation and efficientmore » design of complex heterostructures such as terahertz quantum-cascade lasers.« less

  16. [Involvement of cellular immunity and humoral immunity in mixed allergy induced by trichloroethylene].

    PubMed

    Xu, Xinyun; Li, Xueyu; Liu, Yuefeng

    2014-12-01

    To investigate whether cellular immunity and humoral immunity are involved in trichlorethylene (TCE)-induced mixed allergy, then provide the scientific basis for the mechanism of this disease. Guinea pigs and rats were tested for this study by application of guinea pig maximization test (GPMT), the animals were randomly divided into negative control, positive control and TCE treatment groups. Animals of these groups were administrated with olive oil, 2, 4-dinitrochlorobenzene (DNCB), and TCE, respectively, by intradermal injection. After TCE administration, rat peripheral blood samples were collected by flow cytometry to detect lymphocytes CD3⁺, CD4⁺, CD8⁺. Guinea pig peripheral blood samples were collected to detect the levels of IgG, IgA, IgM, C3, C4, and the spleens were taken out from guinea pigs after various treatment, mRNA expression of GATA3, T-bet, CTLA4 and Foxp3 in lymphocytes of guinea pig spleen was detected by real-time fluorescent PCR assay. Additionally, TCE allergic dermatitis patients were selected for the study, the peripheral blood samples were collected from the TCE patients group and control group, quantitative PCR was applied to detect mRNA expression of immune-related genes Foxp3, GATA3, CTLA4, T-bet. TCE induced obvious skin allergic reaction in guinea pigs, the sensitization rate was 83.3%, IgG levels in TCE group and positive control increased significantly. Additionally, mRNA expression levels of GATA3, T-bet, CTLA4 significantly elevated in TCE group and positive control, but Foxp3 mRNA levels decreased. The lymphocytes CD3⁺ ratio in TCE group and positive control of rats was higher than that in negative control, we found that there was no statistical difference of CD4⁺, CD8⁺, CD4⁺/CD8⁺ between TCE group and negative control of rats. The mRNA expression levels of Foxp3, GATA3, CTLA4 in TCE patients increased by 115%, 97%, 241%, respectively as compared with the control, T-bet levels decreased by 47%when compared with the

  17. Model Parameter Variability for Enhanced Anaerobic Bioremediation of DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Mao, X.; Gerhard, J. I.; Barry, D. A.

    2005-12-01

    The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethene source areas containing dense, non-aqueous phase liquids (DNAPL). This 4-year, 5.7 million dollars research effort focuses on a pilot-scale demonstration of enhanced bioremediation at a trichloroethene (TCE) DNAPL field site in the United Kingdom, and includes a significant program of laboratory and modelling studies. Prior to field implementation, a large-scale, multi-laboratory microcosm study was performed to determine the optimal system properties to support dehalogenation of TCE in site soil and groundwater. This statistically-based suite of experiments measured the influence of key variables (electron donor, nutrient addition, bioaugmentation, TCE concentration and sulphate concentration) in promoting the reductive dechlorination of TCE to ethene. As well, a comprehensive biogeochemical numerical model was developed for simulating the anaerobic dehalogenation of chlorinated ethenes. An appropriate (reduced) version of this model was combined with a parameter estimation method based on fitting of the experimental results. Each of over 150 individual microcosm calibrations involved matching predicted and observed time-varying concentrations of all chlorinated compounds. This study focuses on an analysis of this suite of fitted model parameter values. This includes determining the statistical correlation between parameters typically employed in standard Michaelis-Menten type rate descriptions (e.g., maximum dechlorination rates, half-saturation constants) and the key experimental variables. The analysis provides insight into the degree to which aqueous phase TCE and cis-DCE inhibit dechlorination of less-chlorinated compounds. Overall, this work provides a database of the numerical

  18. Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation.

    PubMed

    Li, Zhaohui; Hanlie, Hong

    2008-02-01

    A combination of surfactant solubilization with permanganate oxidation of trichloroethylene (TCE) was studied in batch, flow-through column, and three-dimensional (3-D) tank tests. Batch results showed that chloride production, an indication of TCE degradation, followed a pseudo-first-order reaction kinetics with respect to KMnO4 in the presence of free-phase TCE. A higher chloride production rate was achieved when anionic surfactants were present. The observed pseudo-first-order reaction rate constant increased as the concentrations of anionic surfactants Ninate 411 and Calfax increased from 0% to 0.1%, 0.3%, and 1.0%. Column experiments on TCE reduction by permanganate in the presence and absence of surfactants were carried out using well-sorted coarse Ottawa sand. The peak effluent TCE concentration reached 1700 mg/L due to enhanced solubilization when both sodium dodecyl sulfate (SDS) and permanganate were used, in contrast to less than 300 mg/L when only permanganate solution was used. In addition, the effluent TCE concentration decreased much faster when SDS was present in the permanganate solution, compared with the case when SDS was absent. With an initial 1 mL of TCE emplaced in the columns, the effluent TCE concentration dropped to <5mg/L after 29-31h of flushing with 1% SDS and 0.1% KMnO4 solution in contrast to 37-73 h when only 0.1% KMnO4 was used. Furthermore, KMnO4 breakthrough occurred after 21-25 h of injection when SDS was present compared with 45-70 h later when SDS was absent. A slightly higher chloride concentration was observed in the earlier stage of the column experiment and the chloride concentration decreased quickly once KMnO4 was seen in the effluent. The 3-D tank test showed that the MnO2 precipitation front formed more quickly when 1% SDS was present, which further confirmed the observation from the column study.

  19. Methane as a product of chloroethene biodegradation under methanogenic conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1999-01-01

    Radiometric detection headspace analyses of microcosms containing bed sediments from two geographically distinct sites indicated that 10-39% of the radiolabeled carbon transformed during anaerobic biodegradation of [1,2- 14C]trichloroethene (TCE) or [1,2-14C]vinyl chloride (VC) under methanogenic conditions was ultimately incorporated into 14CH4. The results demonstrate that, in addition to ethene, ethane, and CO2, CH4 can be a significant product of chloroethene biodegradation in some methanogenic sediments.Radiometric detection headspace analyses of microcosms containing bed sediments from two geographically distinct sites indicated that 10-39% of the radiolabeled carbon transformed during anaerobic biodegradation of [1,2-14C]trichloroethene (TCE) or [1,2-14C]vinyl chloride (VC) under methanogenic conditions was ultimately incorporated into 14CH4. The results demonstrate that, in addition to ethene, ethane, and CO2, CH4 can be a significant product of chloroethene biodegradation in some methanogenic sediments.

  20. Spectroscopic fingerprints for charge localization in the organic semiconductor (DOEO)4[HgBr4]·TCE

    NASA Astrophysics Data System (ADS)

    Koplak, Oksana V.; Chernenkaya, Alisa; Medjanik, Katerina; Brambilla, Alberto; Gloskovskii, Andrei; Calloni, Alberto; Elmers, Hans-Joachim; Schönhense, Gerd; Ciccacci, Franco; Morgunov, Roman B.

    2015-05-01

    Changes of the electronic structure accompanied by charge localization and a transition to an antiferromagnetic ground state were observed in the organic semiconductor (DOEO)4[HgBr4]·TCE. Localization starts in the temperature region of about 150 K and the antiferromagnetic state occurs below 60 K. The magnetic moment of the crystal contains contributions of inclusions (droplets), and individual paramagnetic centers formed by localized holes and free charge carriers at 2 K. Two types of inclusions of 100-400 nm and 2-5 nm sizes were revealed by transmission electron microscopy. Studying the temperature- and angular dependence of electron spin resonance (ESR) spectra revealed fingerprints of antiferromagnetic contributions as well as paramagnetic resonance spectra of individual localized charge carriers. The results point on coexistence of antiferromagnetic long and short range order as evident from a second ESR line. Photoelectron spectroscopy in the VUV, soft and hard X-ray range shows temperature-dependent effects upon crossing the critical temperatures around 60 K and 150 K. The substantially different probing depths of soft and hard X-ray photoelectron spectroscopy yield information on the surface termination. The combined investigation using complementary methods at the same sample reveals the close relation of changes in the transport properties and in the energy distribution of electronic states.

  1. Fate and Transport Modeling of Selected Chlorinated Organic Compounds at Hangar 1000, U.S. Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Davis, J. Hal

    2003-01-01

    The Jacksonville Naval Air Station occupies 3,800 acres adjacent to the St. Johns River in Jacksonville, Florida. Two underground storage tanks at Hangar 1000 contained solvents from the late 1960s until they were removed in 1994. Ground-water samples at one of the tank sites had levels of trichloroethene (TCE) and total dichloroethene (DCE) of 8,710 micrograms per liter (mg/L) and 4,280 mg/L, respectively. Vinyl chloride (VC) at the site is the result of the biodegradation of DCE. Ground water beneath Hangar 1000 flows toward a storm sewer. TCE and DCE plumes travel with the ground water and presumably have reached the storm sewer, which discharges to the St. Johns River. Simulation of solute transport indicates that the traveltime from the storage tank site to the storm sewer is 16, 14, and 12 years for TCE, DCE, and VC respectively. TCE has the longest traveltime because it has the highest retardation factor at 2.5, DCE takes less time with a retardation factor of 2.0, and VC has the quickest traveltime because it has the lowest retardation factor of 1.7. Based on modeling results, the release of contaminants in the aquifer occurred more than 16 years ago. Model-derived dispersivity values at Hangar 1000 were: longitudinal 1.5 feet (ft), transverse 0.27 ft, and vertical 0.27 ft. The model-derived first order decay rates for biodegradation of TCE, DCE, and VC were 0.0002 per day (d-1), 0.0002 d-1, and 0.06 d-1, respectively. These rates are equivalent to half-lives of 13.7 years for TCE and DCE and 17 days for VC. Source area reductions in contaminant concentrations of 50 and 100 percent were modeled to simulate remediation. As expected, reducing the source concentration by 50 percent resulted in eventual TCE, DCE, and VC concentrations that were half of the original concentrations. About 16 years were needed for new steady-state TCE concentrations to develop, about 14 years for DCE, and about 12 years for VC. Reducing the source area concentrations by 100

  2. Biophysical mechanisms of trichloroethene uptake and loss in baldcypress growing in shallow contaminated groundwater

    USGS Publications Warehouse

    Nietch, C.T.; Morris, J.T.; Vroblesky, D.A.

    1999-01-01

    Wetland vegetation may be useful in the remediation of shallow contaminated aquifers. Mesocosm experiments were conducted to describe the regulatory mechanisms affecting trichloroethene (TCE) removal rates from groundwater by flood-adapted wetland trees at a contaminated site. TCE flux through baldcypress [Taxodium distichum (L) Rich] seedlings grown in glass- carboys decreased from day to night and from August to December. The diel fluctuation coincided with changes in leaf-level physiology, as the daytime flux was significantly correlated with net photosynthesis but not with respiration at night. A decrease in seedling water use from summer to winter explained the large seasonal difference in TCE flux. A simple model that simulates gas-phase diffusion through aerenchyma tested the importance of diffusion of TCE vapor from roots to the stem. The modeled diffusive flux was within 64% of the observed value during the winter but could only explain 8% of the summer flux. Seedling water use was a good estimator of flux during the summer. Hence, evapotranspiration (ET) in the summer may serve as a good predictor for the potential of TCE removal by baldcypress trees, while diffusive flux may better approximate potential contaminant loss in the winter.Wetland vegetation may be useful in the remediation of shallow contaminated aquifers. Mesocosm experiments were conducted to describe the regulatory mechanisms affecting trichloroethene (TCE) removal rates from groundwater by flood-adapted wetland trees at a contaminated site. TCE flux through baldcypress [Taxodium distichum (L) Rich] seedlings grown in glass-carboys decreased from day to night and from August to December. The diel fluctuation coincided with changes in leaf-level physiology, as the daytime flux was significantly correlated with net photosynthesis but not with respiration at night. A decrease in seedling water use from summer to winter explained the large seasonal difference in TCE flux. A simple model that

  3. EFFECTS OF PH ON DECHLORINATION OF TRICHLOROETHYLENE BY ZERO-VALENT IRON

    EPA Science Inventory

    The surface normalized reaction rate constants (ksa) of trichloroethylene (TCE) and zero-valent iron (ZVI) was quantified in batch reactors at pH values between 1.7 and 10. The ksa of TCE linearly decreased from 0.044 to 0.009 L/hr-m2 between pH 3.8 and 8.0, whereas the ksa at pH...

  4. The Role of miR-182-5p in Hepatocarcinogenesis of Trichloroethylene in Mice.

    PubMed

    Jiang, Yan; Chen, Jiahong; Yue, Cong; Zhang, Hang; Tong, Jian; Li, Jianxiang; Chen, Tao

    2017-03-01

    Trichloroethylene (TCE), commonly used as an industrial solvent, is ubiquitous in our living environment. TCE exposure can induce hepatocellular carcinoma (HCC) in mice, but the underlying mechanisms remain elusive. To understand the role of miRNA in the hepatocarcinogenesis of TCE, we examined the miRNA expression profiles by microarray in the liver of B6C3F1 male mice exposed to TCE at 0 or 1000 mg/kg b.w. Nine differentially expressed miRNAs were identified, out of which miR-182-5p exhibited the highest increase in expression. Moreover, the TCE-induced upregulation of miR182-5p in mouse liver was dose dependent and correlated with promoter DNA hypomethylation. Treatment of mouse liver cell lines (BNL CL.2 and Hepa1-6) with TCE at non-toxic doses (0.1 and/or 0.3 mM) significantly increased the expression level of miR-182-5p accompanied with elevated cell proliferation. The TCE-induced cell proliferation was further found to be mediated by miR-182-5p overexpression. Additionally, tumor suppressor gene Cited2, which was downregulated in TCE exposed mouse liver cells, was proved to be a direct target of miR-182-5p. In conclusion, TCE might up-regulate miR-182-5p expression by DNA hypomethylation, which could suppress Cited2 and improve cell proliferation rate, resulting in liver tumor. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Fate and transport modeling of selected chlorinated organic compounds at Operable Unit 3, U.S. Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Davis, J. Hal

    2000-01-01

    Ground water contaminated by the chlorinated organic compounds trichloroethene (TCE), cis-dichloroethene (DCE), and vinyl chloride (VC) has been found in the surficial aquifer beneath the Naval Aviation Depot at the U.S. Naval Air Station, Jacksonville, Florida. The affected area is designated Operable Unit 3 (OU3) and covers 134 acres adjacent to the St. Johns River. Site-specific ground-water flow modeling was conducted at OU3 using MODFLOW, and solute-transport modeling was conducted using MT3DMS. Simulations using a low dispersivity value, which resulted in the highest concentration discharging to the St. Johns River, gave the following results. At 60 years traveltime, the highest concentration of TCE associated with the Area C plume had discharged to St. Johns River at a level that exceeded 1x103 micrograms per liter (ug/L). At 100 years traveltime, the highest concentration of TCE associated with the Area D plume had discharged to the river at a level exceeding 3x103 ug/L. At 200 years traveltime, the Area B plume had not begun discharging to the river. Simulations using a first-order decay rate half-life of 13.5 years (the slowest documented) at Area G caused the TCE to degrade before reaching the St. Johns River. If the ratio of the concentrations of TCE to cis-DCE and VC remained relatively constant, these breakdown products would not reach the river. However, the actual breakdown rates of cis-DCE and VC are unknown. Simulations were repeated using average dispersivity values with the following results. At 60 years traveltime, the highest concentration of TCE associated with the Area C plume had discharged to St. Johns River at a level exceeding 4x102 ug/L. At 100 years traveltime, the highest concentration of TCE associated with the Area D plume had discharged to the river at a level exceeding 1x103 ug/L. At 200 years traveltime, the Area B plume had not begun discharging to the river. 'Pump and treat' was simulated as a remedial alternative. The

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Kathleen M., E-mail: gilbertkathleenm@uams.edu; Reisfeld, Brad, E-mail: brad.reisfeld@colostate.edu; Zurlinden, Todd J., E-mail: tjzurlin@rams.colostate.edu

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL +/+ mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL +/+ mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed.more » A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. - Highlights: • We developed a toxicodynamic model to study effects of trichloroethylene on liver. • We examined protective as well as pro-inflammatory events in the liver. • Trichloroethylene inhibits IL-6 production by macrophages.

  7. A comparison of orthogonal transformations for digital speech processing.

    NASA Technical Reports Server (NTRS)

    Campanella, S. J.; Robinson, G. S.

    1971-01-01

    Discrete forms of the Fourier, Hadamard, and Karhunen-Loeve transforms are examined for their capacity to reduce the bit rate necessary to transmit speech signals. To rate their effectiveness in accomplishing this goal the quantizing error (or noise) resulting for each transformation method at various bit rates is computed and compared with that for conventional companded PCM processing. Based on this comparison, it is found that Karhunen-Loeve provides a reduction in bit rate of 13.5 kbits/s, Fourier 10 kbits/s, and Hadamard 7.5 kbits/s as compared with the bit rate required for companded PCM. These bit-rate reductions are shown to be somewhat independent of the transmission bit rate.

  8. Transformer room fire tests

    NASA Astrophysics Data System (ADS)

    Fustich, C. D.

    1980-03-01

    A series of transformer room fire tests are reported to demonstate the shock hazard present when automatic sprinklers operate over energized electrical equipment. Fire protection was provided by standard 0.5 inch pendent automatic sprinklers temperature rated at 135 F and installed to give approximately 150 sq ft per head coverage. A 480 v dry transformer was used in the room to provide a three phase, four wire distribution system. It is shown that the induced currents in the test room during the various tests are relatively small and pose no appreciable personnel shock hazard.

  9. Spatial transform coding of color images.

    NASA Technical Reports Server (NTRS)

    Pratt, W. K.

    1971-01-01

    The application of the transform-coding concept to the coding of color images represented by three primary color planes of data is discussed. The principles of spatial transform coding are reviewed and the merits of various methods of color-image representation are examined. A performance analysis is presented for the color-image transform-coding system. Results of a computer simulation of the coding system are also given. It is shown that, by transform coding, the chrominance content of a color image can be coded with an average of 1.0 bits per element or less without serious degradation. If luminance coding is also employed, the average rate reduces to about 2.0 bits per element or less.

  10. Photochemical transformation of the insensitive munitions compound 2,4-dinitroanisole.

    PubMed

    Rao, Balaji; Wang, Wei; Cai, Qingsong; Anderson, Todd; Gu, Baohua

    2013-01-15

    The insensitive munitions compound 2,4-dinitroanisole (DNAN) is increasingly being used as a replacement for traditional, sensitive munitions compounds (e.g., trinitrotoluene [TNT]), but the environmental fate and photo-transformation of DNAN in natural water systems are currently unknown. In this study, we investigated the photo-transformation rates of DNAN with both ultraviolet (UV) and sunlight irradiation under different environmentally relevant conditions. Sunlight photo-transformation of DNAN in water was found to follow predominantly pseudo-first-order decay kinetics with an average half-life (t(1/2)) of approximately 0.70 d and activation energy (E(a)) of 53 kJ mol(-1). Photo-transformation rates of DNAN were dependent on the wavelength of the light source: irradiation with UV-B light (280-315 nm) resulted in a greater quantum yield of transformation (φ(UV-B)=3.7×10(-4)) than rates obtained with UV-A light (φ(UV-A)=2.9×10(-4) at 316-400 nm) and sunlight (φ(sun)=1.1×10(-4)). Photo-oxidation was the dominant mechanism for DNAN photo-transformation, based on the formation of nitrite (NO(2)(-)) and nitrate (NO(3)(-)) as major N species and 2,4-dinitrophenol as the minor species. Environmental factors (e.g., temperature, pH, and the presence or absence of naturally dissolved organic matter) displayed modest to little effects on the rate of DNAN photo-transformation. These observations indicate that sunlight-induced photo-transformation of DNAN may represent a significant abiotic degradation pathway in surface water, which may have important implications in evaluating the potential impacts and risks of DNAN in the environment. Published by Elsevier B.V.

  11. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.

    PubMed

    Wu, Hau-Tieng; Lewis, Gregory F; Davila, Maria I; Daubechies, Ingrid; Porges, Stephen W

    2016-10-17

    With recent advances in sensor and computer technologies, the ability to monitor peripheral pulse activity is no longer limited to the laboratory and clinic. Now inexpensive sensors, which interface with smartphones or other computer-based devices, are expanding into the consumer market. When appropriate algorithms are applied, these new technologies enable ambulatory monitoring of dynamic physiological responses outside the clinic in a variety of applications including monitoring fatigue, health, workload, fitness, and rehabilitation. Several of these applications rely upon measures derived from peripheral pulse waves measured via contact or non-contact photoplethysmography (PPG). As technologies move from contact to non-contact PPG, there are new challenges. The technology necessary to estimate average heart rate over a few seconds from a noncontact PPG is available. However, a technology to precisely measure instantaneous heat rate (IHR) from non-contact sensors, on a beat-to-beat basis, is more challenging. The objective of this paper is to develop an algorithm with the ability to accurately monitor IHR from peripheral pulse waves, which provides an opportunity to measure the neural regulation of the heart from the beat-to-beat heart rate pattern (i.e., heart rate variability). The adaptive harmonic model is applied to model the contact or non-contact PPG signals, and a new methodology, the Synchrosqueezing Transform (SST), is applied to extract IHR. The body sway rhythm inherited in the non-contact PPG signal is modeled and handled by the notion of wave-shape function. The SST optimizes the extraction of IHR from the PPG signals and the technique functions well even during periods of poor signal to noise. We contrast the contact and non-contact indices of PPG derived heart rate with a criterion electrocardiogram (ECG). ECG and PPG signals were monitored in 21 healthy subjects performing tasks with different physical demands. The root mean square error of IHR

  12. Optimization of Agrobacterium-Mediated Transformation in Soybean

    PubMed Central

    Li, Shuxuan; Cong, Yahui; Liu, Yaping; Wang, Tingting; Shuai, Qin; Chen, Nana; Gai, Junyi; Li, Yan

    2017-01-01

    High transformation efficiency is a prerequisite for study of gene function and molecular breeding. Agrobacterium tumefaciens-mediated transformation is a preferred method in many plants. However, the transformation efficiency in soybean is still low. The objective of this study is to optimize Agrobacterium-mediated transformation in soybean by improving the infection efficiency of Agrobacterium and regeneration efficiency of explants. Firstly, four factors affecting Agrobacterium infection efficiency were investigated by estimation of the rate of GUS transient expression in soybean cotyledonary explants, including Agrobacterium concentrations, soybean explants, Agrobacterium suspension medium, and co-cultivation time. The results showed that an infection efficiency of over 96% was achieved by collecting the Agrobacterium at a concentration of OD650 = 0.6, then using an Agrobacterium suspension medium containing 154.2 mg/L dithiothreitol to infect the half-seed cotyledonary explants (from mature seeds imbibed for 1 day), and co-cultured them for 5 days. The Agrobacterium infection efficiencies for soybean varieties Jack Purple and Tianlong 1 were higher than the other six varieties. Secondly, the rates of shoot elongation were compared among six different concentration combinations of gibberellic acid (GA3) and indole-3-acetic acid (IAA). The shoot elongation rate of 34 and 26% was achieved when using the combination of 1.0 mg/L GA3 and 0.1 mg/L IAA for Jack Purple and Tianlong 1, respectively. This rate was higher than the other five concentration combinations of GA3 and IAA, with an 18 and 11% increase over the original laboratory protocol (a combination of 0.5 mg/L GA3 and 0.1 mg/L IAA), respectively. The transformation efficiency was 7 and 10% for Jack Purple and Tianlong 1 at this optimized hormone concentration combination, respectively, which was 2 and 6% higher than the original protocol, respectively. Finally, GUS histochemical staining, PCR, herbicide

  13. Optimization of Agrobacterium-Mediated Transformation in Soybean.

    PubMed

    Li, Shuxuan; Cong, Yahui; Liu, Yaping; Wang, Tingting; Shuai, Qin; Chen, Nana; Gai, Junyi; Li, Yan

    2017-01-01

    High transformation efficiency is a prerequisite for study of gene function and molecular breeding. Agrobacterium tumefaciens -mediated transformation is a preferred method in many plants. However, the transformation efficiency in soybean is still low. The objective of this study is to optimize Agrobacterium -mediated transformation in soybean by improving the infection efficiency of Agrobacterium and regeneration efficiency of explants. Firstly, four factors affecting Agrobacterium infection efficiency were investigated by estimation of the rate of GUS transient expression in soybean cotyledonary explants, including Agrobacterium concentrations, soybean explants, Agrobacterium suspension medium, and co-cultivation time. The results showed that an infection efficiency of over 96% was achieved by collecting the Agrobacterium at a concentration of OD 650 = 0.6, then using an Agrobacterium suspension medium containing 154.2 mg/L dithiothreitol to infect the half-seed cotyledonary explants (from mature seeds imbibed for 1 day), and co-cultured them for 5 days. The Agrobacterium infection efficiencies for soybean varieties Jack Purple and Tianlong 1 were higher than the other six varieties. Secondly, the rates of shoot elongation were compared among six different concentration combinations of gibberellic acid (GA 3 ) and indole-3-acetic acid (IAA). The shoot elongation rate of 34 and 26% was achieved when using the combination of 1.0 mg/L GA 3 and 0.1 mg/L IAA for Jack Purple and Tianlong 1, respectively. This rate was higher than the other five concentration combinations of GA 3 and IAA, with an 18 and 11% increase over the original laboratory protocol (a combination of 0.5 mg/L GA 3 and 0.1 mg/L IAA), respectively. The transformation efficiency was 7 and 10% for Jack Purple and Tianlong 1 at this optimized hormone concentration combination, respectively, which was 2 and 6% higher than the original protocol, respectively. Finally, GUS histochemical staining, PCR

  14. Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments

    USGS Publications Warehouse

    Lorah, M.M.; Olsen, L.D.

    2001-01-01

    Laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a trichloroethylene (TCE) to evaluate potential biodegradation rates of TCE and its anaerobic daughter products (cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride (VC)). Anaerobic degradation of TCE was about an order of magnitude faster under methanogenic conditions than under sulfate-reducing conditions. Both 12DCE and VC were found under sulfate-reducing conditions in the microcosms containing the wetland sediment, but their production, especially for VC, was substantially slower than under methanogenic conditions. Methane concentrations remained approximately constant (when losses in the formalin-amended controls are considered) in the microcosms amended with TCE and increased in the microcosms amended with the 12DCE isomers and VC during the first 18-25 days of incubation. The most rapid decrease in concentrations of TCE, cis-12DCE, trans-12DCE, and VC was found after aerobic methane-oxidizing conditions were definitely established.

  15. Competition by aquifer materials in a bimetallic nanoparticle/persulfate system for the treatment of trichloroethylene.

    PubMed

    Al-Shamsi, Mohammed Ahmad; Thomson, Neil R

    2013-10-01

    It has been suggested in the literature that aquifer materials can compete with the target organic compounds in an activated peroxygen system. In this study, we employed a rapid treatment method using persulfate activated with bimetallic nanoparticles to investigate the competition between aquifer materials and the dissolved phase of a target organic compound. The concentration of dissolved trichloroethylene (TCE) remaining after using the activated persulfate system was two- to three-fold higher in a soil slurry batch system than in an aqueous batch system. For all five aquifer materials investigated, an increase in the mass of the aquifer solids significantly decreased the degradation of TCE. A linear relationship was observed between the mass of aquifer materials and the initial TCE degradation rate, suggesting that the organic carbon and/or aquifer material constituents (e.g., carbonates and bicarbonates) compete with the oxidation of TCE.

  16. Test Plan for Methanotrophic Bioreactor at Savannah River Site-TNX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, C.J.

    1994-10-04

    The primary purpose of this project is to demonstrate the feasibility and practicality of operating a methanotrophic mobile trickle filter bioreactor (MMB) unit to effectively reduce or eliminate trichloroethylene (TCE) and associated hydrocarbons from contaminated groundwater. The two-column trickle filter system can process 1.67 gallons per minute (gpm) of contaminated groundwater. During this project, the pilot system will evaluate, optimize, and demonstrate methanotrophic treatment technology (MTT). The mobile system will receive a 1--4% methane to air mixture for stimulating the methanotrophic TCE degrading bacteria, thereby increasing the rates of degradation of these contaminants. This project will also evaluate the efficacymore » of different bacteria for degrading TCE for use in the system at the laboratory-scale sample groundwater monitoring wells at TNX and set up the system for continued operation. The trickle filter system may be used to inexpensively treat other small-scale organic waste streams at SRS after the initial start-up. The MTT was demonstrated as an effective and efficient method of degrading TCE in the laboratory and during a field-scale in situ demonstration for degrading TCE in a groundwater plume at SRS. The methanotrophic bacteria increase significantly in population numbers and in the production of methane monooxygenase (MMO), an extremely powerful oxidizer. MMO was demonstrated as effective in oxidizing TCE and other recalcitrant compounds in laboratory studies. In the presence of MMO, TCE is oxidized to TCE-epoxide, which breaks down spontaneously into simple, easily degraded, daughter compounds. The system will receive a 1--4% methane to air mixture, which will effectively grow and maintain the methanotrophic bacteria that will degrade TCE. This demonstration will have broad applications to bioremediating contaminated groundwater systems where in situ bioremediation is not practical.« less

  17. Kinetics of the coesite to quartz transformation

    USGS Publications Warehouse

    Mosenfelder, J.L.; Bohlen, S.R.

    1997-01-01

    The survival of coesite in ultrahigh-pressure (UHP) rocks has important implications for the exhumation of subducted crustal rocks. We have conducted experiments to study the mechanism and rate of the coesite ??? quartz transformation using polycrystalline coesite aggregates, fabricated by devitrifying silica glass cylinders containing 2850H/106 Si at 1000??C and 3.6 GPa for 24h. Conditions were adjusted following synthesis to transform the samples at 700-1000??C at pressures 190-410 MPa below the quartz-coesite equilibrium boundary. Reaction proceeds via grain-boundary nucleation and interface-controlled growth, with characteristic reaction textures remarkably similar to those seen in natural UHP rocks. We infer that the experimental reaction mechanism is identical to that in nature, a prerequisite for reliable extrapolation of the rate data. Growth rates obtained by direct measurement differ by up to two orders of magnitude from those estimated by fitting a rate equation to the transformation-time data. Fitting the rates to Turnbull's equation for growth therefore yields two distinct sets of parameters with similar activation energies (242 or 269 kJ/mol) but significantly different pre-exponential constants. Extrapolation based on either set of growth rates suggests that coesite should not be preserved on geologic time scales if it reaches the quartz stability field at temperatures above 375-400??C. The survival of coesite has previously been linked to its inclusion in strong phases, such as garnet, that can sustain a high internal pressure during decompression. Other factors that may play a crucial role in preservation are low fluid availability - possibly even less than that of our nominally "dry" experiments - and the development of transformation stress, which inhibits nucleation and growth. These issues are discussed in the context of our experiments as well as recent observations from natural rocks. ?? 1997 Elsevier Science B.V.

  18. Analysis of current density and specific absorption rate in biological tissue surrounding an air-core type of transcutaneous transformer for an artificial heart.

    PubMed

    Shiba, Kenji; Nukaya, Masayuki; Tsuji, Toshio; Koshiji, Kohji

    2006-01-01

    This paper reports on the specific absorption rate (SAR) and the current density analysis of biological tissue surrounding an air-core type of transcutaneous transformer for an artificial heart. The electromagnetic field in the biological tissue surrounding the transformer was analyzed by the transmission-line modeling method, and the SAR and current density as a function of frequency (200k-1 MHz) for a transcutaneous transmission of 20 W were calculated. The model's biological tissue has three layers including the skin, fat and muscle. As a result, the SAR in the vicinity of the transformer is sufficiently small and the normalized SAR value, which is divided by the ICNIRP's basic restriction, is 7 x 10(-3) or less. On the contrary, the current density is slightly in excess of the ICNIRP's basic restrictions as the frequency falls and the output voltage rises. Normalized current density is from 0.2 to 1.2. In addition, the layer in which the current's density is maximized depends on the frequency, the muscle in the low frequency (<700 kHz) and the skin in the high frequency (>700 kHz). The result shows that precision analysis taking into account the biological properties is very important for developing the transcutaneous transformer for TAH.

  19. (Bio)transformation of 2,4-dinitroanisole (DNAN) in Soils

    PubMed Central

    Olivares, Christopher I.; Abrell, Leif; Khatiwada, Raju; Chorover, Jon; Sierra-Alvarez, Reyes; Field, Jim A.

    2015-01-01

    Recent studies have begun to assess the environmental fate and toxicity of 2,4-dinitroanisole (DNAN), an insensitive munition compound of interest to defense agencies. Aerobic and anaerobic DNAN biotransformation in soils was evaluated in this study. Under aerobic conditions, there was little evidence of transformation; most observed removal was attributed to adsorption and subsequent slow chemical reactions. Under anaerobic conditions, DNAN was reductively (bio)transformed and the rate of the transformation was positively correlated with soil organic carbon (OC) up to a threshold of 2.07% OC. H2 addition enhanced the nitroreduction rate compared to endogenous treatments lacking H2. Heat-killed treatments provided rates similar to the endogenous treatment, suggesting that abiotic factors play a role in DNAN reduction. Ten (bio)transformation products were detected by high-resolution mass spectrometry. The proposed transformation pathway involves reduction of DNAN to aromatic amines, with putative reactive nitroso-intermediates coupling with the amines to form azo dimers. Secondary reactions include N-alkyl substitution, O-demethylation (sometimes followed by dehydroxylation), and removal of an N-containing group. Globally, our results suggest that the main reaction DNAN undergoes in anaerobic soils is nitroreduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by anaerobic coupling reactions yielding azo-dimers. The dimers were subsequently subject to further (bio)transformations. PMID:26551225

  20. Determination of pollutant diffusion coefficients in naturally formed biofilms using a single tube extractive membrane bioreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.F.; Splendiani, A.; Freitas dos Santos, L.M.

    A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquidmore » films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick.« less

  1. The Transformations of Transformations.

    ERIC Educational Resources Information Center

    Lin, Francis Y.

    2000-01-01

    Harris's original idea of transformations has been changed several times in Chomsky's work. This article explicates these transformations, arguing that though their motivations are highly understandable, these transformations are not necessary for understanding the workings of natural languages. (Author/VWL)

  2. Transformational Learners: Transformational Teachers

    ERIC Educational Resources Information Center

    Jones, Marguerite

    2009-01-01

    Transformational learning, according to Mezirow (1981), involves transforming taken-for-granted frames of reference into more discriminating, flexible "habits of mind". In teacher education, transformative learning impacts on the development of students' action theories, self-efficacy and professional attributes. Although considered…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clausen, J.L.; Sturchio, N.C.; Heraty, L.J.

    NA processes such as biodegradation, sorption, dilution dispersion, advection, and possibly sorption and diffusion are occurring in the Northeast and Northwest plumes. However, the overall biological attenuation rate for TCE within the plumes is not sufficiently rapid to utilize as remedial option. The mobility and toxicity of {sup 99}Tc is not being reduced by attenuating processes within the Northwest Plume. The current EPA position is that NA is not a viable remedial approach unless destructive processes are present or processes are active which reduce the toxicity and mobility of a contaminant. Therefore, active remediation of the dissolved phase plumes willmore » be necessary to reduce contaminant concentrations before an NA approach could be justified at PGDP for either plume. Possible treatment methods for the reduction of dissolved phase concentrations within the plumes are pump-and-treat bioaugmentation, biostimulation, or multiple reactive barriers. Another possibility is the use of a regulatory instrument such as an Alternate Concentration Limit (ACL) petition. Biodegradation of TCE is occurring in both plumes and several hypothesis are possible to explain the apparent conflicts with some of the geochemical data. The first hypothesis is active intrinsic bioremediation is negligible or so slow to be nonmeasurable. In this scenario, the D.O., chloride, TCE, and isotopic results are indicative of past microbiological reactions. It is surmised in this scenario, that when the initial TCE release occurred, sufficient energy sources were available for microorganisms to drive aerobic reduction of TCE, but these energy sources were rapidly depleted. The initial degraded TCE has since migrated to downgradient locations. In the second scenario, TCE anaerobic degradation occurs in organic-rich micro-environments within a generally aerobic aquifer. TCE maybe strongly absorbed to organic-rich materials in the aquifer matrix and degraded by local Immunities of

  4. 10 CFR 217.35 - Extension of priority ratings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and needs to purchase a transformer for its manufacture, that person must use a DO-F1 rated order to obtain the needed transformer. (b) The priority rating must be included on each successive order placed...

  5. 10 CFR 217.35 - Extension of priority ratings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and needs to purchase a transformer for its manufacture, that person must use a DO-F1 rated order to obtain the needed transformer. (b) The priority rating must be included on each successive order placed...

  6. 10 CFR 217.35 - Extension of priority ratings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and needs to purchase a transformer for its manufacture, that person must use a DO-F1 rated order to obtain the needed transformer. (b) The priority rating must be included on each successive order placed...

  7. Trichloroethylene and tetrachloroethylene elimination from the air by means of a hybrid bioreactor with immobilized biomass.

    PubMed

    Tabernacka, Agnieszka; Zborowska, Ewa

    2012-09-01

    Two-phase bioreactors consisting of bacterial consortium in suspension and sorbents with immobilized biomass were used to treat waste air containing chlorinated ethenes, trichloroethylene (TCE) and tetrachloroethylene (PCE). Synthetic municipal sewage was used as the medium for bacterial growth. The system was operated with loadings in the range 1.48-4.76 gm(-3)h(-1) for TCE and 1.49-5.96 gm(-3)h(-1) for PCE. The efficiency of contaminant elimination was 55-86% in the bioreactor with wood chips and 33-89% in the bioreactor filled with zeolite. The best results were observed 1 week after the pollutant loading was increased. However, in these conditions, the stability of the process was not achieved. In the next 7 days the effectiveness of the system decreased. Contaminant removal efficiency, enzymatic activity and the biomass content were all diminished. The system was working without being supplied with additional hydrocarbons as the growth-supporting substrates. It is assumed that ammonia produced during the transformation of wastewater components induced enzymes for the cometabolic degradation of TCE and PCE. However, the evaluation of nitrogen compound transformations in the system is difficult due to the sorption on carriers and the combined processes of nitrification and the aerobic denitrification. An applied method of air treatment is advantageous from both economic and environmental point of views. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements.

    PubMed

    Velimirovic, Milica; Carniato, Luca; Simons, Queenie; Schoups, Gerrit; Seuntjens, Piet; Bastiaens, Leen

    2014-04-15

    In this study, the aging behavior of microscale zerovalent iron (mZVI) particles was investigated by quantifying the hydrogen gas generated by anaerobic mZVI corrosion in batch degradation experiments. Granular iron and nanoscale zerovalent iron (nZVI) particles were included in this study as controls. Firstly, experiments in liquid medium (without aquifer material) were performed and revealed that mZVI particles have approximately a 10-30 times lower corrosion rate than nZVI particles. A good correlation was found between surface area normalized corrosion rate (RSA) and reaction rate constants (kSA) of PCE, TCE, cDCE and 1,1,1-TCA. Generally, particles with higher degradation rates also have faster corrosion rates, but exceptions do exists. In a second phase, the hydrogen evolution was also monitored during batch tests in the presence of aquifer material and real groundwater. A 4-9 times higher corrosion rate of mZVI particles was observed under the natural environment in comparison with the aquifer free artificial condition, which can be attributed to the low pH of the aquifer and its buffer capacity. A corrosion model was calibrated on the batch experiments to take into account the inhibitory effects of the corrosion products (dissolved iron, hydrogen and OH(-)) on the iron corrosion rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Trichloroethylene Biotransformation and its Role in Mutagenicity, Carcinogenicity and Target Organ Toxicity

    PubMed Central

    Lash, Lawrence H.; Chiu, Weihsueh A.; Guyton, Kathryn Z.; Rusyn, Ivan

    2014-01-01

    Metabolism is critical for the mutagenicity, carcinogenicity, and other adverse health effects of trichloroethylene (TCE). Despite the relatively small size and simple chemical structure of TCE, its metabolism is quite complex, yielding multiple intermediates and end-products. Experimental animal and human data indicate that TCE metabolism occurs through two major pathways: cytochrome P450 (CYP)-dependent oxidation and glutathione (GSH) conjugation catalyzed by GSH S-transferases (GSTs). Herein we review recent data characterizing TCE processing and flux through these pathways. We describe the catalytic enzymes, their regulation and tissue localization, as well as the evidence for transport and inter-organ processing of metabolites. We address the chemical reactivity of TCE metabolites, highlighting data on mutagenicity of these end-products. Identification in urine of key metabolites, particularly trichloroacetate (TCA), dichloroacetate (DCA), trichloroethanol and its glucuronide (TCOH and TCOG), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC), in exposed humans and other species (mostly rats and mice) demonstrates function of the two metabolic pathways in vivo. The CYP pathway primarily yields chemically stable end-products. However, the GST pathway conjugate S-(1,2-dichlorovinyl)glutathione (DCVG) is further processed to multiple highly reactive species that are known to be mutagenic, especially in kidney where in situ metabolism occurs. TCE metabolism is highly variable across sexes, species, tissues and individuals. Genetic polymorphisms in several of the key enzymes metabolizing TCE and its intermediates contribute to variability in metabolic profiles and rates. In all, the evidence characterizing the complex metabolism of TCE can inform predictions of adverse responses including mutagenesis, carcinogenesis, and acute and chronic organ-specific toxicity. PMID:25484616

  10. The signal extraction of fetal heart rate based on wavelet transform and BP neural network

    NASA Astrophysics Data System (ADS)

    Yang, Xiao Hong; Zhang, Bang-Cheng; Fu, Hu Dai

    2005-04-01

    This paper briefly introduces the collection and recognition of bio-medical signals, designs the method to collect FM signals. A detailed discussion on the system hardware, structure and functions is also given. Under LabWindows/CVI,the hardware and the driver do compatible, the hardware equipment work properly actively. The paper adopts multi threading technology for real-time analysis and makes use of latency time of CPU effectively, expedites program reflect speed, improves the program to perform efficiency. One threading is collecting data; the other threading is analyzing data. Using the method, it is broaden to analyze the signal in real-time. Wavelet transform to remove the main interference in the FM and by adding time-window to recognize with BP network; Finally the results of collecting signals and BP networks are discussed. 8 pregnant women's signals of FM were collected successfully by using the sensor. The correctness rate of BP network recognition is about 83.3% by using the above measure.

  11. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles.

    PubMed

    Kim, Eun-Ju; Kim, Jae-Hwan; Chang, Yoon-Seok; Turcio-Ortega, David; Tratnyek, Paul G

    2014-04-01

    Nano-zerovalent iron (nZVI) formed under sulfidic conditions results in a biphasic material (Fe/FeS) that reduces trichloroethene (TCE) more rapidly than nZVI associated only with iron oxides (Fe/FeO). Exposing Fe/FeS to dissolved metals (Pd(2+), Cu(2+), Ni(2+), Co(2+), and Mn(2+)) results in their sequestration by coprecipitation as dopants into FeS and FeO and/or by electroless precipitation as zerovalent metals that are hydrogenation catalysts. Using TCE reduction rates to probe the effect of metal amendments on the reactivity of Fe/FeS, it was found that Mn(2+) and Cu(2+) decreased TCE reduction rates, while Pd(2+), Co(2+), and Ni(2+) increased them. Electrochemical characterization of metal-amended Fe/FeS showed that aging caused passivation by growth of FeO and FeS phases and poisoning of catalytic metal deposits by sulfide. Correlation of rate constants for TCE reduction (kobs) with electrochemical parameters (corrosion potentials and currents, Tafel slopes, and polarization resistance) and descriptors of hydrogen activation by metals (exchange current density for hydrogen reduction and enthalpy of solution into metals) showed the controlling process changed with aging. For fresh Fe/FeS, kobs was best described by the exchange current density for activation of hydrogen, whereas kobs for aged Fe/FeS correlated with electrochemical descriptors of electron transfer.

  12. Transport and Application of Heat-Activated Persulfate for In-situ Chemical Oxidation of Residual Trichloroethylene

    NASA Astrophysics Data System (ADS)

    Quig, L.; Johnson, G. R.

    2015-12-01

    Persulfate ISCO has been shown to treat a wide range of contaminants. While persulfate ISCO can be tailored to site and pollutant specific characteristics (e.g., activation via energy or catalysis), thermal activation of persulfate is particularly promising as it can be easily controlled and requires no additional reagents. A mechanistic study of the physical and chemical processes controlling the effectiveness of this remedial approach is not well documented in the literature with much therein focused on reactions in batch systems. The purpose of this research was twofold. Initial studies characterized the overall transport behavior of unactivated and thermally-activated persulfate (20, 60, and 90°C) in one-dimensional soil column systems. Finally, experiments were conducted to investigate persulfate ISCO as a remedial approach for residual-phase trichloroethylene (TCE). At all activation temperatures investigated, persulfate exhibited ideal transport behavior in miscible displacement experiments. Moment analysis of persulfate ion breakthrough curves indicated negligible interaction of persulfate with the natural sandy material. Persulfate ISCO for residual-phase TCE was characterized at two flow rates, 0.2 mL/min and 0.5 mL/min, resulting in two degrees of persulfate activation, 39.5% and 24.6%, respectively. Both ISCO soil column systems showed an initial, long-term plateau in effluent TCE concentrations indicating steady-state dissolution of pure phase TCE. Observed effluent concentrations decreased after 75 and 100 pore volumes (normalized for the measured residual NAPL fraction) compared to 110 pore volumes in the control study. Pseudo first-order reaction rate constants for the decreasing TCE concentrations equaled 0.063/hr and 0.083/hr, respectively, compared to 0.041/hr for the control. Moment analysis of the complete dissolution of TCE in the persulfate/activated persulfate remediation systems indicated approximately 33% oxidation of TCE mass present. By

  13. Effect of Trichloroethylene on Minimum Energy Requirement and Gene Expression in a Nutrient Limited Methanotroph

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Delwiche, M.; Newby, D.; Wood, A.; Bingham, M.; Crawford, R. L.; Strap, J. L.

    2005-12-01

    Monitored natural attenuation (MNA) of contaminant plumes requires data for predictive modeling of plume destruction including the rates of microbial contaminant degradation. Methanotrophs are implicated in co-metabolism of trichloroethylene (TCE) in the Snake River Plain aquifer (SRPA) where MNA is the selected method of treatment. Our research aims to: 1) determine realistic activities of these cells when starved, a condition typical of subsurface microbes, and 2) detect the genes that are transcribed when methanotrophs experience stress or starvation related to TCE exposure and conditions in the subsurface. Methylosinus trichosporium OB3b (OB3b), a model methanotroph, was starved in a biomass recycle reactor and soluble methane monooxygenase (sMMO) activities determined, with and without TCE exposure (ca. 100 μg TCE/L). Starved methanotrophs, present at 3 x 109 cells/mL in the reactor, consumed methane at 0.001 fmoles of methane/cell/day and gradually increased sMMO activities when exposed to higher methane concentrations. sMMO activities of starved OB3b cells exposed to TCE were indistinguishable from cells that were not exposed over brief (one day) periods. The sequences of eight genes, known to code for starvation/stress proteins, were retrieved from phylogenetic relatives (α-proteobacteria) of OB3b. Primers (18-22 bp) were designed from conserved regions in the consensus sequences to obtain OB3b-specific sequences for the eight genes. Primers for the starvation/stress genes successfully amplified all eight genes in OB3b using PCR. Our plan is to clone and sequence these OB3b genes then synthesize oligonucleotides that can be added to a microarray that includes targets for OB3b structural and regulatory gene sequences as a prelude to evaluating gene expression under different nutrient availability conditions and in the presence and absence of TCE. Incorporation of starvation-based rate estimates into natural attenuation models of contaminant plumes will

  14. Screening for biosurfactant production by 2,4,6-trinitrotoluene-transforming bacteria.

    PubMed

    Avila-Arias, H; Avellaneda, H; Garzón, V; Rodríguez, G; Arbeli, Z; Garcia-Bonilla, E; Villegas-Plazas, M; Roldan, F

    2017-08-01

    To isolate and identify TNT-transforming cultures from explosive-contaminated soils with the ability to produce biosurfactants. Bacteria (pure and mixed cultures) were selected based on their ability to transform TNT in minimum media with TNT as the sole nitrogen source and an additional carbon source. TNT-transforming bacteria were identified by 16S rRNA gene sequencing. TNT transformation rates were significantly lower when no additional carbon or nitrogen sources were added. Surfactant production was enabled by the presence of TNT. Fourteen cultures were able to transform the explosive (>50%); of these, five showed a high transformation capacity (>90%), and six produced surfactants. All explosive-transforming cultures contained Proteobacteria of the genera Achromobacter, Stenotrophomonas, Pseudomonas, Sphingobium, Raoultella, Rhizobium and Methylopila. These cultures transformed TNT when an additional carbon source was added. Remarkably, Achromobacter spanius S17 and Pseudomonas veronii S94 have high TNT transformation rates and are surfactant producers. TNT is a highly toxic, mutagenic and carcinogenic nitroaromatic explosive; therefore, bioremediation to eliminate or mitigate its presence in the environment is essential. TNT-transforming cultures that produce surfactants are a promising method for remediation. To the best of our knowledge, this is the first report that links surfactant production and TNT transformation by bacteria. © 2017 The Society for Applied Microbiology.

  15. Implementation of Time-Resolved Step-Scan Fourier Transform Infrared (FT-IR) Spectroscopy Using a kHz Repetition Rate Pump Laser

    PubMed Central

    MAGANA, DONNY; PARUL, DZMITRY; DYER, R. BRIAN; SHREVE, ANDREW P.

    2011-01-01

    Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)3Cl2 in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers. PMID:21513597

  16. Effects of Praxelis clematidea invasion on soil nitrogen fractions and transformation rates in a tropical savanna.

    PubMed

    Wei, Hui; Xu, Jialin; Quan, Guoming; Zhang, Jiaen; Qin, Zhong

    2017-02-01

    Plant invasion has been reported to affect a mass of soil ecological processes and functions, although invasion effects are often context-, species- and ecosystem- specific. This study was conducted to explore potential impacts of Praxelis clematidea invasion on contents of total and available soil nitrogen (N) and microbial N transformations in a tropical savanna. Soil samples were collected from the surface and sub-surface layers in plots with non-, slight, or severe P. clematidea invasion in Hainan Province of southern China, which remains less studied, and analyzed for contents of the total and available N fractions and microbial N transformations. Results showed that total N content significantly increased in the surface soil but trended to decrease in the sub-surface soil in the invaded plots relative to the non-invaded control. Slight invasion significantly increased soil alkali-hydrolysable N content in the two soil layers. Soil net N mineralization rate was not significantly changed in both the soil layers, although soil microbial biomass N was significantly higher in plots with severe invasion than the control. There was no significant difference in content of soil N fractions between plots with slight and severe invasion. Our results suggest that invasion of P. clematidea promotes soil N accumulation in the surface soil layer, which is associated with increased microbial biomass N. However, the invasion-induced ecological impacts did not increase with further invasion. Significantly higher microbial biomass N was maintained in plots with severe invasion, implying that severe P. clematidea invasion may accelerate nutrient cycling in invaded ecosystems.

  17. FY01 Phytoremediation of Chlorinated Ethenes in Southern Sector Seepline Sediments of SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigmon, R.L.

    This treatability study is now in the second year of deployment for the Southern Sector Phytoremediation Project. Phytoremediation is the use of vegetation and associated media to treat contaminated soils, sediments, and groundwater. Phytoremediation is a rapidly developing technology that promises effective and safe cleanup of certain hazardous wastes. This ongoing work addresses the fate of volatile organic contaminants (VOCs) in an experiment that simulates a vegetated seepline supplied with trichloroethylene- (TCE-) and perchloroethylene- (PCE-) contaminated groundwater. The primary objective is to determine how the trees and sediments uptake groundwater TCE and PCE, biodegrade it, and/or transform it. The experimentalmore » focus of this project is the biological removal of VOCs from seepline groundwater and sediments.« less

  18. Effect of Nitrogen on Transformation Behaviors and Microstructure of V-N Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Zhao, Baochun; Zhao, Tan; Li, Guiyan; Lu, Qiang

    Multi-pass deformation simulation tests were performed on V-N microalloyed steels with different nitrogen addition by using a Gleeble-3800 thermo-mechanical simulator and the corresponding continuous cooling transformation (CCT) diagrams were determined by thermal dilation method and metallographic method. The deformed austenite transformation behavior and resultant microstructure of the tested steels were studied. Furthermore, the effect of nitrogen addition on the transformation behavior and microstructure evolution was analyzed. The results show that the transformed microstructures in the three tested steels are ferrite, pearlite and bainite respectively while the transformation temperatures are not the same. For the two tested steel with higher nitrogen additions, higher ferrite start temperature and critical cooling rates are observed. Furthermore, an increase in nitrogen addition leads to increasing quantities of ferrite and the transformed ferrite is smaller in size. The hardness test results reveal that the hardness number increases with increasing nitrogen addition at low cooling rate while the value tends to be smaller due to increasing nitrogen addition at high cooling rate. Therefore, the hardness number of the steel with high nitrogen addition is not so sensitive to cooling rate as that of the steel with low nitrogen addition.

  19. Assessment of 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene (DDE) Transformation Rates on the Palos Verdes Shelf, CA

    USGS Publications Warehouse

    Eganhouse, Robert P.; Pontolillo, James

    2008-01-01

    In 1953, the world's largest producer of DDT, Montrose Chemical Corporation, began to discharge process wastes into sewers of the Los Angeles County Sanitation Districts (LACSD), California. By 1971, when the sewer connection was terminated, approximately 1,500-2,000 metric tons of DDT had been introduced to the LACSD treatment plant in Carson, CA. After treatment, effluent from this plant was released to the ocean through a submarine outfall system on the Palos Verdes Shelf (PVS) near Los Angeles, resulting in the accumulation of highly contaminated marine sediments. Numerous investigations of the PVS have been undertaken since the late 1960s, but few have focused on the biogeochemical fate of DDT and its transformation products. In the early 1990s, it was shown that DDE, the major DDT compound in the sediments, was being reductively dechlorinated by microorganisms resident in sediments on the PVS. The U.S. Geological Survey undertook a study in cooperation with the U.S. Environmental Protection Agency to provide a better understanding of the range of reductive dechlorination rates on the PVS and the environmental factors that control them. Existing data show that rates of reductive dechlorination are variable spatially. A comparison of data from two cores collected approximately 7 kilometers downcurrent from the outfall systems in 1992 and 2003 yielded an average first-order transformation rate of approximately 0.05 yr-1. A multistep reaction model suggests that inventories of DDE in PVS sediments at the study site will continue to decline, whereas the inventory of the metabolite DDNU will reach a maximum around 2014.

  20. Degradation of trichloroethene with a noval ball milled Fe-C nanocomposite

    DOE PAGES

    Gao, Jie; Wang, Wei; Rondinone, Adam Justin; ...

    2015-07-18

    Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron-carbon (Fe-C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbedmore » >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe-C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C 3-C 6 compounds. When placed in hexane-water mixture, the Fe-C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation.« less

  1. Trichloroethylene degradation by persulphate with magnetite as a heterogeneous activator in aqueous solution.

    PubMed

    Ruan, Xiaoxin; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian

    2015-01-01

    Iron oxide-magnetite (Fe3O4) as a heterogeneous activator to activate persulphate anions (S2O8(2-)) for trichloroethylene (TCE) degradation was investigated in this study. The experimental results showed that TCE could be completely oxidized within 5 h by using 5 g L(-1) magnetite and 63 mM S2O8(2-), indicating the effectiveness of the process for TCE removal. Various factors of the process, including. (S2O8(2-) and magnetite dosages, and initial solution pH, were evaluated, and TCE degradation fitted well to the pseudo-first-order kinetic model. The calculated kinetic rate constant was increased with increasing S2O8(2-) and magnetite dosages, but it was independent of solution pH. In addition, the changes of magnetite morphology examined by scanning electron microscopy and X-ray powder diffraction, respectively, confirmed the slight corrosion with α-Fe2O3 coated on the magnetite surface. The probe compounds tests clearly identified the generation of the reactive oxygen species in the system. While the free radical quenching studies further demonstrated that •SO4- and •OH were the major radicals responsible for TCE degradation, whereas •O2- contributed less in the system, and therefore the roles of reactive oxygen species on TCE degradation mechanisms were proposed accordingly. To our best knowledge, this is the first time the performance and mechanism of magnetite-activated persulphate oxidation for TCE degradation are reported. The findings of this study provided a new insight into the heterogeneous catalysis mechanism and showed a great potential for the practical application of this technique in in situ TCE-contaminated groundwater remediation.

  2. Nested monitoring approaches to delineate groundwater trichloroethene discharge to a UK lowland stream at multiple spatial scales.

    PubMed

    Weatherill, John; Krause, Stefan; Voyce, Kevin; Drijfhout, Falko; Levy, Amir; Cassidy, Nigel

    2014-03-01

    cm) TCE transformation may be significant at a local scale in the streambed deposits. Our findings highlight the need for efficient multi-scale monitoring strategies in geologically heterogeneous lowland stream/aquifer systems in order to more adequately quantify the risk to surface water ecological receptors posed by point-source groundwater contaminants like TCE. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Improved injection needles facilitate germline transformation of the buckeye butterfly Junonia coenia.

    PubMed

    Beaudette, Kahlia; Hughes, Tia M; Marcus, Jeffrey M

    2014-01-01

    Germline transformation with transposon vectors is an important tool for insect genetics, but progress in developing transformation protocols for butterflies has been limited by high post-injection ova mortality. Here we present an improved glass injection needle design for injecting butterfly ova that increases survival in three Nymphalid butterfly species. Using the needles to genetically transform the common buckeye butterfly Junonia coenia, the hatch rate for injected Junonia ova was 21.7%, the transformation rate was 3%, and the overall experimental efficiency was 0.327%, a substantial improvement over previous results in other butterfly species. Improved needle design and a higher efficiency of transformation should permit the deployment of transposon-based genetic tools in a broad range of less fecund lepidopteran species.

  4. Characterization of emission factors related to source activity for trichloroethylene degreasing and chrome plating processes.

    PubMed

    Wadden, R A; Hawkins, J L; Scheff, P A; Franke, J E

    1991-09-01

    A study at an automotive parts fabrication plant evaluated four metal surface treatment processes during production conditions. The evaluation provides examples of how to estimate process emission factors from activity and air concentration data. The processes were open tank and enclosed tank degreasing with trichloroethylene (TCE), chromium conversion coating, and chromium electroplating. Area concentrations of TCE and chromium (Cr) were monitored for 1-hr periods at three distances from each process. Source activities at each process were recorded during each sampling interval. Emission rates were determined by applying appropriate mass balance models to the concentration patterns around each source. The emission factors obtained from regression analysis of the emission rate and activity data were 16.9 g TCE/basket of parts for the open-top degreaser; 1.0 g TCE/1000 parts for the enclosed degreaser; 1.48-1.64 mg Cr/1000 parts processed in the hot CrO3/HNO3 tank for the chrome conversion coating; and 5.35-9.17 mg Cr/rack of parts for chrome electroplating. The factors were also used to determine the efficiency of collection for the local exhaust systems serving each process. Although the number of observations were limited, these factors may be useful for providing initial estimates of emissions from similar processes in other settings.

  5. The efficiency of parameter estimation of latent path analysis using summated rating scale (SRS) and method of successive interval (MSI) for transformation of score to scale

    NASA Astrophysics Data System (ADS)

    Solimun, Fernandes, Adji Achmad Rinaldo; Arisoesilaningsih, Endang

    2017-12-01

    Research in various fields generally investigates systems and involves latent variables. One method to analyze the model representing the system is path analysis. The data of latent variables measured using questionnaires by applying attitude scale model yields data in the form of score, before analyzed should be transformation so that it becomes data of scale. Path coefficient, is parameter estimator, calculated from scale data using method of successive interval (MSI) and summated rating scale (SRS). In this research will be identifying which data transformation method is better. Path coefficients have smaller varieties are said to be more efficient. The transformation method that produces scaled data and used in path analysis capable of producing path coefficients (parameter estimators) with smaller varieties is said to be better. The result of analysis using real data shows that on the influence of Attitude variable to Intention Entrepreneurship, has relative efficiency (ER) = 1, where it shows that the result of analysis using data transformation of MSI and SRS as efficient. On the other hand, for simulation data, at high correlation between items (0.7-0.9), MSI method is more efficient 1.3 times better than SRS method.

  6. Swallowable capsule with air channel for improved image-guided cancer detection in the esophagus

    NASA Astrophysics Data System (ADS)

    Seibel, Eric J.; Melville, C. David; Lung, Jonathan K. C.; Babchanik, Alexander P.; Lee, Cameron M.; Johnston, Richard S.; Dominitz, Jason A.

    2009-02-01

    A new type of endoscope has been developed and tested in the human esophagus, a tethered-capsule endoscope (TCE) that requires no sedation for oral ingestion and esophageal inspection. The TCE uses scanned red, green, and blue laser light to image the upper digestive tract using a swallowable capsule of 6.4mm in diameter and 18mm in length on a 1.4mm diameter tether. The TCE has been modified for image-guided interventions in the lower esophagus, specifically for more effective detection and measurement of the extent of Barrett's esophagus, a precursor to esophageal cancer. Three modifications have been tested in vivo: (1) weighting the capsule so it is negatively buoyant in water, (2) increasing the frame rate of 500-line images to 30 Hz (video rate), and (3) adding a 1.0mm inner diameter working channel alongside the tether for distending the lower esophagus with air pressure during endoscopy. All three modifications proved effective for more clearly visualizing the lower esophagus in the first few human subjects. The air channel was especially useful because it did not change tolerability in the first subject for unsedated endoscopy and the air easily removed bubbles obscuring tissue from the field of view. The air provided a non-invasive intervention by stimulating the mechanosensor of the lower esophageal sphincter at the precise time that the TCE was positioned for most informative imaging. All three TCE modifications proved successful for improved visualization of esophageal pathology, such as suspected Barrett's esophagus, without the use of sedation.

  7. Determination of the continuous cooling transformation diagram of a high strength low alloyed steel

    NASA Astrophysics Data System (ADS)

    Kang, Hun Chul; Park, Bong June; Jang, Ji Hun; Jang, Kwang Soon; Lee, Kyung Jong

    2016-11-01

    The continuous cooling transformation diagram of a high strength low alloyed steel was determined by a dilatometer and microscopic analysis (OM, SEM) as well as thermodynamic analysis. As expected, Widmanstätten ferrite, bainite and martensite coexisted for most cooling rates, which made it difficult to determine the transformation kinetics of individual phases. However, peaks were clearly observed in the dilatometric {d( {LVDT} )}/{dT} curves. By overlapping the {d( {LVDT} )}/{dT} curves, which were determined using various cooling rates, peaks were separated and the peak rate temperatures, as well as the temperature at the start of transformation (5%) and the end of transformation (95%) of an individual phase, were determined. A SEM analysis was also conducted to identify which phase existed and to quantify the volume fraction of each phase. It was confirmed that the additional {d( {LVDT} )}/{dT} curve analysis described the transformation behavior more precisely than the conventional continuous cooling transformation diagram, as determined by the volume measured from the microstructure analysis.

  8. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    PubMed

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  9. Challenges and Opportunities to Improve Cervical Cancer Screening Rates in US Health Centers through Patient-Centered Medical Home Transformation

    PubMed Central

    Makaroff, Laura; Chung, Michelle; Lin, Sue C.

    2015-01-01

    Over the last 50 years, the incidence of cervical cancer has dramatically decreased. However, health disparities in cervical cancer screening (CCS) persist for women from racial and ethnic minorities and those residing in rural and poor communities. For more than 45 years, federally funded health centers (HCs) have been providing comprehensive, culturally competent, and quality primary health care services to medically underserved communities and vulnerable populations. To enhance the quality of care and to ensure more women served at HCs are screened for cervical cancer, over eight HCs received funding to support patient-centered medical home (PCMH) transformation with goals to increase CCS rates. The study conducted a qualitative analysis using Atlas.ti software to describe the barriers and challenges to CCS and PCMH transformation, to identify potential solutions and opportunities, and to examine patterns in barriers and solutions proposed by HCs. Interrater reliability was assessed using Cohen's Kappa. The findings indicated that HCs more frequently described patient-level barriers to CCS, including demographic, cultural, and health belief/behavior factors. System-level barriers were the next commonly cited, particularly failure to use the full capability of electronic medical records (EMRs) and problems coordinating with external labs or providers. Provider-level barriers were least frequently cited. PMID:25685561

  10. Impact of Moisture Content and Grain Size on Hydrocarbon Diffusion in Porous Media

    NASA Astrophysics Data System (ADS)

    McLain, A. A.; Ho, C. K.

    2001-12-01

    Diffusion of hydrocarbon vapors in porous media can play an important role in our ability to characterize subsurface contaminants such as trichloroethylene (TCE). For example, traditional monitoring methods often rely on direct sampling of contaminated soils or vapor. These samples may be influenced by the diffusion of vapors away from the contaminant source term, such as non-aqueous-phase TCE liquid. In addition, diffusion of hydrocarbon vapors can also impact the migration and dispersion of the contaminant in the subsurface. Therefore, understanding the diffusion rates and vapor transport processes of hydrocarbons in variably-saturated, heterogeneous porous media will assist in the characterization and detection of these subsurface contaminants. The purpose of this study was to investigate the impact of soil heterogeneity and water-moisture content on the diffusion processes for TCE. A one-dimensional column experiment was used to monitor the rates of vapor diffusion through sand. Experiments were performed with different average water-moisture contents and different grain sizes. On one end of the column, a reservoir cap is used to encase the TCE, providing a constant vapor boundary condition while sealing the end. The other end of the column contains a novel microchemical sensor. The sensor employs a polymer-absorption resistor (chemiresistor) that reversibly swells and increases in resistance when exposed to hydrocarbons. Once calibrated, the chemiresistors can be used to passively monitor vapor concentrations. This unique method allows the detection of in-situ vapor concentrations without disturbing the local environment. Results are presented in the form of vapor-concentration breakthrough curves as detected by the sensor. The shape of the breakthrough curve is dependent on several key parameters, including the length of the column and parameters (e.g., water-moisture content and grain-size) that affect the effective diffusion coefficient of TCE in air

  11. Mechanisms of Radiation Toxicity in Transformed and Non-Transformed Cells

    PubMed Central

    Panganiban, Ronald-Allan M.; Snow, Andrew L.; Day, Regina M.

    2013-01-01

    Radiation damage to biological systems is determined by the type of radiation, the total dosage of exposure, the dose rate, and the region of the body exposed. Three modes of cell death—necrosis, apoptosis, and autophagy—as well as accelerated senescence have been demonstrated to occur in vitro and in vivo in response to radiation in cancer cells as well as in normal cells. The basis for cellular selection for each mode depends on various factors including the specific cell type involved, the dose of radiation absorbed by the cell, and whether it is proliferating and/or transformed. Here we review the signaling mechanisms activated by radiation for the induction of toxicity in transformed and normal cells. Understanding the molecular mechanisms of radiation toxicity is critical for the development of radiation countermeasures as well as for the improvement of clinical radiation in cancer treatment. PMID:23912235

  12. High-Resolution Experimental Investigation of mass transfer enhancement by chemical oxidation from DNAPL entrapped in variable-aperture fractures

    NASA Astrophysics Data System (ADS)

    Arshadi, M.; Rajaram, H.; Detwiler, R. L.; Jones, T.

    2012-12-01

    Permanganate oxidation of DNAPL- contaminated fractured rock is an effective remediation technology. Permanganate ion reacts with dissolved DNAPL in a bi-molecular oxidation-reduction reaction. The consumption of dissolved DNAPL in this reaction results in increased concentration gradients away from the free-phase DNAPL, resulting in reaction-enhanced mass transfer, which accelerates contaminant removal. The specific objective of our research was to perform high-resolution non-intrusive experimental studies of permanganate oxidation in a 15.24 × 15.24 cm, transparent, analog, variable-aperture fracture with complex initial TCE entrapped phase geometry. Our experimental system uses light-transmission techniques to accurately measure both fracture aperture and the evolution of individual entrapped DNAPL blobs during the remediation experiments at high resolution (pixel size : 6.2×10-3 cm). Three experiments were performed with different flow rates and permanganate inflow concentrations to observe DNAPL-permanganate interactions across a broader range of conditions. Prior to initiating each experiment, the aperture field within the fracture was measured. The oxidation experiment was initiated by TCE injection into the water saturated fracture till the TCE reached the outflow end, followed by water re-injection through the fracture. The flowing water mobilized some TCE. We continued injection of water till TCE mobilization ceased, leaving behind the residual TCE entrapped within the variable-aperture fracture. Subsequently, permanganate injection through the fracture resulted in propagation of a fingered reaction front into the fracture. We developed image processing algorithms to analyze the evolution of DNAPL phase geometry over the duration of the experiment. The permanganate consumption rate varied significantly within the fracture due to the complex flow and DNAPL concentration fields. Precipitated MnO2 was clearly evident on the downstream side of DNAPL blobs

  13. Kinetics model of bainitic transformation with stress

    NASA Astrophysics Data System (ADS)

    Zhou, Mingxing; Xu, Guang; Hu, Haijiang; Yuan, Qing; Tian, Junyu

    2018-01-01

    Thermal simulations were conducted on a Gleeble 3800 simulator. The main purpose is to investigate the effects of stress on the kinetics of bainitic transformation in a Fe-C-Mn-Si advanced high strength bainitic steel. Previous studies on modeling the kinetics of stress affected bainitic transformation only considered the stress below the yield strength of prior austenite. In the present study, the stress above the yield strength of prior austenite is taken into account. A new kinetics model of bainitic transformation dependent on the stress (including the stresses below and above the yield strength of prior austenite) and the transformation temperature is proposed. The new model presents a good agreement with experimental results. In addition, it is found that the acceleration degree of stress on bainitic transformation increases with the stress whether its magnitude is below or above the yield strength of austenite, but the increasing rate gradually slows down when the stress is above the yield strength of austenite.

  14. Comparison of DSMC Reaction Models with QCT Reaction Rates for Nitrogen

    DTIC Science & Technology

    2016-07-17

    The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 13...Distribution A: Approved for Public Release, Distribution Unlimited PA #16299 Introduction • Comparison with measurements is final goal • Validation...model verification and parameter adjustment • Four chemistry models: total collision energy (TCE), quantum kinetic (QK), vibration-dissociation favoring

  15. Transition of dislocation glide to shear transformation in shocked tantalum

    DOE PAGES

    Hsiung, Luke L.; Campbell, Geoffrey H.

    2017-02-28

    A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa (strain rate: ~1 x 10 4 sec -1) is presented. While no ω (hexagonal) phase was found in shock-recovered pure Ta and Ta-5W that contain mainly a low-energy cellular dislocation structure, shock-induced ω phase was found to form in Ta-10W that contains evenly distributed dislocations with a stored dislocation density higher than 1 x 10 12 cm -2. The TEM results clearly reveal that shock-induced α (bcc) → ω (hexagonal) shear transformation occurs when dynamic recovery reactions which lead the formation low-energymore » cellular dislocation structure become largely suppressed in Ta-10W shocked under dynamic (i.e., high strain-rate and high-pressure) conditions. A novel dislocation-based mechanism is proposed to rationalize the transition of dislocation glide to twinning and/or shear transformation in shock-deformed tantalum. Lastly, twinning and/or shear transformation take place as an alternative deformation mechanism to accommodate high-strain-rate straining when the shear stress required for dislocation multiplication exceeds the threshold shear stresses for twinning and/or shear transformation.« less

  16. Deformation, Fluid Flow and Mantle Serpentinization at Oceanic Transform Faults

    NASA Astrophysics Data System (ADS)

    Rupke, L.; Hasenclever, J.

    2017-12-01

    Oceanic transform faults (OTF) and fracture zones have long been hypothesized to be sites of enhanced fluid flow and biogeochemical exchange. In this context, the serpentine forming interaction between seawater and cold lithospheric mantle rocks is particularly interesting. The transformation of peridotite to serpentinite not only leads to hydration of oceanic plates and is thereby an important agent of the geological water cycle, it is also a mechanism of abiotic hydrogen and methane formation, which can support archeal and bacterial communities at the seafloor. Inferring the likely amount of mantle undergoing serpentinization reactions therefore allows estimating the amount of biomass that may be autotrophically produced at and around oceanic transform faults and mid-ocean ridges Here we present results of 3-D geodynamic model simulations that explore the interrelations between deformation, fluid flow, and mantle serpentinization at oceanic transform faults. We investigate how slip rate and fault offset affect the predicted patterns of mantle serpentinization around oceanic transform faults. Global rates of mantle serpentinization and associated H2 production are calculated by integrating the modeling results with plate boundary data. The global additional OTF-related production of H2 is found to be between 6.1 and 10.7 x 1011 mol per year, which is comparable to the predicted background mid-ocean ridge rate of 4.1 - 15.0 x 1011 mol H2/yr. This points to oceanic transform faults as potential sites of intense fluid-rock interaction, where chemosynthetic life could be sustained by serpentinization reactions.

  17. Synthesis and characterization of supported polysugar-stabilized palladium nanoparticle catalysts for enhanced hydrodechlorination of trichloroethylene

    NASA Astrophysics Data System (ADS)

    Bacik, Deborah B.; Zhang, Man; Zhao, Dongye; Roberts, Christopher B.; Seehra, Mohinar S.; Singh, Vivek; Shah, Naresh

    2012-07-01

    Palladium (Pd) nanoparticle catalysts were successfully synthesized within an aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping ligand which offers a green alternative to conventional nanoparticle synthesis techniques. The CMC-stabilized Pd nanoparticles were subsequently dispersed within support materials using the incipient wetness impregnation technique for utilization in heterogeneous catalyst systems. The unsupported and supported (both calcined and uncalcined) Pd nanoparticle catalysts were characterized using transmission electron microscopy, energy dispersive x-ray spectrometry, x-ray diffraction, and Brunauer-Emmett-Teller surface area measurement and their catalytic activity toward the hydrodechlorination of trichloroethylene (TCE) in aqueous media was examined using homogeneous and heterogeneous catalyst systems, respectively. The unsupported Pd nanoparticles showed considerable activity toward the degradation of TCE, as demonstrated by the reaction kinetics. Although the supported Pd nanoparticle catalysts had a lower catalytic activity than the unsupported particles that were homogeneously dispersed in the aqueous solutions, the supported catalysts retained sufficient activity toward the degradation of TCE. In addition, the use of the hydrophilic Al2O3 support material induced a mass transfer resistance to TCE that affected the initial hydrodechlorination rate. This paper demonstrates that supported Pd catalysts can be applied to the heterogeneous catalytic hydrodechlorination of TCE.

  18. Potential immunotoxic effects of trichloroethylene-induced IV allergic reaction in renal impairment

    PubMed Central

    Yu, Jun-Feng; Feng, Yan-Yan

    2017-01-01

    Trichloroethylene (TCE) is known to induce allergic contact dermatitis and subsequent occupational medicamentosa-like dermatitis (OMLD) with multi-system injuries, including liver, kidney, and skin injuries. However, the mechanisms underlying immune system dysfunction that result in organ injury have not yet been clearly elucidated. In the present study, we measured the levels of secreted cytokines by effect or T cells in TCE-treated guinea pigs to better understand the contribution of allergic disorders in renal injuries. We immunized guinea pigs with trichloroethylene using the Guinea Pig Maximization Test (GPMT) and scored the inflammation on the guinea pigs’ skin. The kidney function and ultra-structural changes in the kidneys were detected using biochemical methods and electron microscopy. The deposition of cytokines was determined using immunohistochemistry. The sensitization rate was 63.16% in the TCE-sensitized groups. The electron microscopy results showed tubular epithelial cell mitochondrial swelling, vacuolar degeneration, and atrophy of the microvillus in the sensitized groups. A high degree of cytokine deposition was observed in the renal tubular proximal epithelial cells in the TCE-sensitized groups. As observed in this study, the variation in the level of immune system activation not only indicates that TCE can largely magnify the immune reaction but also suggests a potential role of immune dysfunction in renal impairment. PMID:28867961

  19. Occupational Health Risks Among Trichloroethylene-Exposed Workers in a Clock Manufacturing Factory

    PubMed Central

    Singthong, Siriporn; Pakkong, Pannee; Choosang, Kantima; Wongsanit, Sarinya

    2015-01-01

    Trichloroethylene (TCE) is an important volatile organic compound once widely used in industry throughout the world. Occupational exposure to TCE can cause a number of health hazards such as allergic reactions and genetic damage. The purpose of this study was to evaluate occupational exposure to TCE, by analysis of the air in the breathing zone and of urine from workers employed in a clock manufacturing factory. A subjective symptom survey was conducted by using a self-administered questionnaire to evaluate the health hazards. Micronucleus (MN) frequency, based on the cytokinesis-block micronucleus assay (CBMN) in peripheral blood lymphocytes, (PBLs) was used as a biomarker for chromosome damage. A total of 244 participants, including 171 workers occupationally exposed to TCE and 73 non-exposed control employees, working mainly in office jobs in the same factory, were enrolled in this study. Analyses of airborne TCE concentrations in the workplace, and of urinary trichloroacetic acid (TCA) of the workers and controls, were performed by Gas Chromatography-Electron Capture Detector (GC-ECD) using the modified headspace technique. The average concentration of TCE in the workplace breathing zone was 27.83 ± 6.02 ppm. The average level of urinary TCA of the exposed workers and controls was 14.84 ± 1.62, 2.95 ± 0.28 mg/L. The frequency of MN/1000BN was 7.029 ± 0.39, significantly higher than for those in the control group (3.57 ± 0.31, p = 0.001). According to multiple linear regression analysis, the results indicated that urinary TCA levels correlated with the increased MN in exposed workers (r = 0.285, p < 0.001). The prevalence rate of subjective symptoms in the exposed group was 9.61-11.76 times higher than the rate of the non-exposed group (p < 0.001). It was found that skin (29.6%) and respiratory symptoms (21.1%) were the most frequent among the exposed workers. In conclusion, these results indicate that increased micronucleus frequency is associated with

  20. Occupational health risks among trichloroethylene-exposed workers in a clock manufacturing factory.

    PubMed

    Singthong, Siriporn; Pakkong, Pannee; Choosang, Kantima; Wongsanit, Sarinya

    2014-08-22

    Trichloroethylene (TCE) is an important volatile organic compound once widely used in industry throughout the world. Occupational exposure to TCE can cause a number of health hazards such as allergic reactions and genetic damage. The purpose of this study was to evaluate occupational exposure to TCE, by analysis of the air in the breathing zone and of urine from workers employed in a clock manufacturing factory. A subjective symptom survey was conducted by using a self-administered questionnaire to evaluate the health hazards. Micronucleus (MN) frequency, based on the cytokinesis-block micronucleus assay (CBMN) in peripheral blood lymphocytes, (PBLs) was used as a biomarker for chromosome damage. A total of 244 participants, including 171 workers occupationally exposed to TCE and 73 non-exposed control employees, working mainly in office jobs in the same factory, were enrolled in this study. Analyses of airborne TCE concentrations in the workplace, and of urinary trichloroacetic acid (TCA) of the workers and controls, were performed by Gas Chromatography-Electron Capture Detector (GC-ECD) using the modified headspace technique. The average concentration of TCE in the workplace breathing zone was 27.83 ± 6.02 ppm. The average level of urinary TCA of the exposed workers and controls was 14.84 ± 1.62, 2.95 ± 0.28 mg/L. The frequency of MN/1000BN was 7.029 ± 0.39, significantly higher than for those in the control group (3.57 ± 0.31, p = 0.001). According to multiple linear regression analysis, the results indicated that urinary TCA levels correlated with the increased MN in exposed workers (r = 0.285, p < 0.001). The prevalence rate of subjective symptoms in the exposed group was 9.61-11.76 times higher than the rate of the non-exposed group (p < 0.001). It was found that skin (29.6%) and respiratory symptoms (21.1%) were the most frequent among the exposed workers. In conclusion, these results indicate that increased micronucleus frequency is associated with

  1. 130. View, looking northeast, into transformer bay no. 2 showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. View, looking northeast, into transformer bay no. 2 showing three ca. 1920s General Electric transformers; each is rated at 55,000-6,600 volts, 9,000 kva, and each is oil cooled. These transformers were no longer in operation and in the process of being removed. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  2. Study of an amorphous alloy core transformer

    NASA Astrophysics Data System (ADS)

    Nafalski, A.; Frost, D. C.

    1994-05-01

    Amorphous core transformers (ACT) have become a technological and commercial reality and there are an estimated 400,000 units installed worldwide [1]. Their applications reflect changes in buying practices, where the efficiency evaluation is an important factor in the purchasing decision for distribution transformers. Use of the total ownership cost (TOC) concept facilities the selection of a transformer on the basis of its performance. This concept is used in this paper to investigate the feasibility of applying a distribution ACT in Western Australian (WA). A 10 kVA ACT, evaluated by the TOC method, was compared with a traditional silicon iron core transformer of the same rating. The cost of amorphous metal (relative to alternative materials), the distribution load profile, and the values of capitalised loss costs are factors which affect the cost effectiveness of ACTs.

  3. Atlantic Water transformation in the Nordic Seas and its influence on the export rate of the Overflow Waters

    NASA Astrophysics Data System (ADS)

    Garcia Quintana, Yarisbel; Wiesner, Pia; Hu, Xianmin; Myers, Paul

    2017-04-01

    The Nordic Seas (NS) are the main gateway between the Arctic and the Atlantic Oceans. The basin can be considered as the headwaters for the Meridional Overturning Circulation (MOC), for it is there that the Denmark Strait Overflow Water (DSOW) and the Iceland-Scotland Overflow Water (ISOW) acquire their properties. Their inflow into the North Atlantic Ocean occurs across the Greenland-Scotland ridge. Together with Labrador Sea Water, DSOW and ISOW are the main components of the North Atlantic Deep Water (NADW), which ventilates the lower limb of the Atlantic MOC. In spite recent studies exploring the export rate and later pathways of the overflows, the question about what drives them, remains. Here we explore the transformation of the Atlantic Water (AW) as it enters the NS through Denmark Strait, Iceland Faroe Ridge and Faroe Schotland Channel, as well as its pathways within the basin. To do so, we use an eddy-permitting ocean general circulation model run over the period 2002 to 2015. Two different approaches are used to track the AW transformation in the NS: the well-tested off-line Lagrangian tool ARIANE and on-line passive tracers. In both cases we use the same definition of AW to tag its inflow through the three entering sections. The overflows directly impact circulation and water properties in much of the deep Atlantic Ocean, thus a better understanding of the physical processes behind their variability is crucial a asset.

  4. Efficient and heritable transformation of Phalaenopsis orchids.

    PubMed

    Hsing, Hong-Xian; Lin, Yi-Jyun; Tong, Chii-Gong; Li, Min-Jeng; Chen, Yun-Jin; Ko, Swee-Suak

    2016-12-01

    Phalaenopsis orchid (Phal. orchid) is visually attractive and it is important economic floriculture species. Phal. orchids have many unique biological features. However, investigation of these features and validation on their biological functions are limited due to the lack of an efficient transformation method. We developed a heritable and efficient Agrobacterium- mediated transformation using protocorms derived from tetraploid or diploid Phal. orchids. A T-DNA vector construct containing eGFP driven by ubiquitin promoter was subjected to transformation. An approximate 1.2-5.2 % transformation rate was achieved. Genomic PCR confirmed that hygromycin selection marker, HptII gene and target gene eGFP were integrated into the orchid genome. Southern blotting indicated a low T-DNA insertion number in the orchid genome of the transformants. Western blot confirmed the expression of eGFP protein in the transgenic orchids. Furthermore, the GFP signal was detected in the transgenic orchids under microscopy. After backcrossing the pollinia of the transgenic plants to four different Phal. orchid varieties, the BC1 progenies showed hygromycin resistance and all surviving BC1 seedlings were HptII positive in PCR and expressed GFP protein as shown by western blot. This study demonstrated a stable transformation system was generated for Phal. orchids. This useful transformation protocol enables functional genomics studies and molecular breeding.

  5. [Neoplastic transformation of mouse fibroblasts under the influence of high-energy protons and gamma-rays].

    PubMed

    Voskanian, K Sh

    2004-01-01

    Oncoginic transformations of mouse fibroblasts C3H10T1/2 after exposure to proton energies 150 and 584 MeV were compared with fibroblast effects of gamma-radiation. Prior to exposure, cell populations (2.7 x 10(3) cells/cm2) were inoculated in plastic vials with the surface area of 75 cm2 and cultivated 11 days. Survivability was determined by comparing the number of cell colonies in irradiated and non-irradiated (control) vials. Transformation rate was calculated by dividing the total transformation focus number by the number of survived cells in a vial. Rate of oncogenic transformations after gamma- and proton (584 MeV) irradiation was essentially identical, i.e. the parameter grew rapidly at the doses < 1 Gy and slowed down at the doses > 1 Gy. In the dose interval between 1 and 5 Gy, transformation rate for proton energy 150 MeV was found low compared with gamma-radiation and proton energy 584 MeV. It is hypothesized that the different transformation rate after exposure to proton energy 150 MeV is linked with the high linear energy transfer as compared with the proton energy of 584 MeV and gamma-radiation.

  6. DNA Repair and the Evolution of Transformation in Bacillus Subtilis. II. Role of Inducible Repair

    PubMed Central

    Wojciechowski, M. F.; Hoelzer, M. A.; Michod, R. E.

    1989-01-01

    In Bacillus subtilis, DNA repair and recombination are intimately associated with competence, the physiological state in which the bacterium can bind, take up and recombine exogenous DNA. Previously, we have shown that the homologous DNA transformation rate (ratio of transformants to total cells) increases with increasing UV dosage if cells are transformed after exposure to UV radiation (UV-DNA), whereas the transformation rate decreases if cells are transformed before exposure to UV (DNA-UV). In this report, by using different DNA repair-deficient mutants, we show that the greater increase in transformation rate in UV-DNA experiments than in DNA-UV experiments does not depend upon excision repair or inducible SOS-like repair, although certain quantitative aspects of the response do depend upon these repair systems. We also show that there is no increase in the transformation rate in a UV-DNA experiment when repair and recombination proficient cells are transformed with nonhomologous plasmid DNA, although the results in a DNA-UV experiment are essentially unchanged by using plasmid DNA. We have used din operon fusions as a sensitive means of assaying for the expression of genes under the control of the SOS-like regulon in both competent and noncompetent cell subpopulations as a consequence of competence development and our subsequent experimental treatments. Results indicate that the SOS-like system is induced in both competent and noncompetent subpopulations in our treatments and so should not be a major factor in the differential response in transformation rate observed in UV-DNA and DNA-UV treatments. These results provide further support to the hypothesis that the evolutionary function of competence is to bring DNA into the cell for use as template in the repair of DNA damage. PMID:2497048

  7. Transformational leadership and the mental health team.

    PubMed

    Corrigan, Patrick W; Diwan, Sarah; Campion, John; Rashid, Fadwa

    2002-11-01

    Bass's (1990) multifactor model contrasts transformational and transactional styles of leadership with an essentially ineffective style: laissez-faire leadership. This study examines the relationship between these leadership styles and measures of organizational culture and staff burnout in mental health services teams. There were 236 leaders and 620 subordinates from 54 mental health teams who provided their perceptions of leadership style, organizational culture, and burnout in their program. Results show transformational leadership to be positively associated with a cohesive organizational culture and negatively associated with burnout. Moreover, leaders and subordinates differ in their ratings of transformational leadership-leaders viewed themselves more positively. These findings are helpful for understanding the central role of leaders in the organizational structure of teams.

  8. Oceanic transform faults: how and why do they form? (Invited)

    NASA Astrophysics Data System (ADS)

    Gerya, T.

    2013-12-01

    transform faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps. The ridge instability is governed by rheological weakening of active fault structures. The instability is most efficient for slow to intermediate spreading rates, whereas ultraslow and (ultra)fast spreading rates tend to destabilize transform faults (Gerya, 2010; Püthe and Gerya, 2013) References Gerya, T. (2010) Dynamical instability produces transform faults at mid-ocean ridges. Science, 329, 1047-1050. Gerya, T. (2012) Origin and models of oceanic transform faults. Tectonophys., 522-523, 34-56 Gerya, T.V. (2013a) Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution. Phys. Earth Planet. Interiors, 214, 35-52. Gerya, T.V. (2013b) Initiation of transform faults at rifted continental margins: 3D petrological-thermomechanical modeling and comparison to the Woodlark Basin. Petrology, 21, 1-10. Püthe, C., Gerya, T.V. (2013) Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models. Gondwana Res., DOI: http://dx.doi.org/10.1016/j.gr.2013.04.005 Taylor, B., Goodliffe, A., Martinez, F. (2009) Initiation of transform faults at rifted continental margins. Comptes Rendus Geosci., 341, 428-438.

  9. Phase Transformations During Cooling of Automotive Steels

    NASA Astrophysics Data System (ADS)

    Padgett, Matthew C.

    This thesis explores the effect of cooling rate on the microstructure and phases in advanced high strength steels (AHSS). In the manufacturing of automobiles, the primary joining mechanism for steel is resistance spot welding (RSW), a process that produces a high heat input and rapid cooling in the welded metal. The effect of RSW on the microstructure of these material systems is critical to understanding their mechanical properties. A dual phase steel, DP-600, and a transformation induced plasticity bainitic-ferritic steel, TBF-1180, were studied to assess the changes to their microstructure that take place in controlled cooling environments and in uncontrolled cooling environments, i.e. resistance spot welding. Continuous cooling transformation (CCT) diagrams were developed using strip specimens of DP-600 and TBF-1180 to determine the phase transformations that occur as a function of cooling rate. The resulting phases were determined using a thermal-mechanical simulator and dilatometry, combined with light optical microscopy and hardness measurements. The resulting phases were compared with RSW specimens where cooling rate was controlled by varying the welding time for two-plate welds. Comparisons were drawn between experimental welds of DP-600 and simulations performed using a commercial welding software. The type and quantity of phases present after RSW were examined using a variety of techniques, including light optical microscopy using several etchants, hardness measurements, and x-ray diffraction (XRD).

  10. Data compression using adaptive transform coding. Appendix 1: Item 1. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rost, Martin Christopher

    1988-01-01

    Adaptive low-rate source coders are described in this dissertation. These coders adapt by adjusting the complexity of the coder to match the local coding difficulty of the image. This is accomplished by using a threshold driven maximum distortion criterion to select the specific coder used. The different coders are built using variable blocksized transform techniques, and the threshold criterion selects small transform blocks to code the more difficult regions and larger blocks to code the less complex regions. A theoretical framework is constructed from which the study of these coders can be explored. An algorithm for selecting the optimal bit allocation for the quantization of transform coefficients is developed. The bit allocation algorithm is more fully developed, and can be used to achieve more accurate bit assignments than the algorithms currently used in the literature. Some upper and lower bounds for the bit-allocation distortion-rate function are developed. An obtainable distortion-rate function is developed for a particular scalar quantizer mixing method that can be used to code transform coefficients at any rate.

  11. Basic Characterization of Natural Transformation in a Highly Transformable Haemophilus parasuis Strain SC1401

    PubMed Central

    Dai, Ke; He, Lvqin; Chang, Yung-Fu; Cao, Sanjie; Zhao, Qin; Huang, Xiaobo; Wu, Rui; Huang, Yong; Yan, Qigui; Han, Xinfeng; Ma, Xiaoping; Wen, Xintian; Wen, Yiping

    2018-01-01

    Haemophilus parasuis causes Glässer's disease and pneumonia, incurring serious economic losses in the porcine industry. In this study, natural competence was investigated in H. parasuis. We found competence genes in H. parasuis homologous to ones in Haemophilus influenzae and a high consensus battery of Sxy-dependent cyclic AMP (cAMP) receptor protein (CRP-S) regulons using bioinformatics. High rates of natural competence were found from the onset of stationary-phase growth condition to mid-stationary phase (OD600 from 0.29 to 1.735); this rapidly dropped off as cells reached mid-stationary phase (OD600 from 1.735 to 1.625). As a whole, bacteria cultured in liquid media were observed to have lower competence levels than those grown on solid media plates. We also revealed that natural transformation in this species is stable after 200 passages and is largely dependent on DNA concentration. Transformation competition experiments showed that heterogeneous DNA cannot outcompete intraspecific natural transformation, suggesting an endogenous uptake sequence or other molecular markers may be important in differentiating heterogeneous DNA. We performed qRT-PCR targeting multiple putative competence genes in an effort to compare bacteria pre-cultured in TSB++ vs. TSA++ and SC1401 vs. SH0165 to determine expression profiles of the homologs of competence-genes in H. influenzae. Taken together, this study is the first to investigate natural transformation in H. parasuis based on a highly naturally transformable strain SC1401. PMID:29473023

  12. Chloroethene Biodegradation Potential, ADOT/PF Peger Road Maintenance Facility, Fairbanks, Alaska

    USGS Publications Warehouse

    Bradley, Paul M.; Chapelle, Frances H.

    2004-01-01

    A series of 14C-radiotracer-based microcosm experiments were conducted to assess: 1) the extent, rate and products of microbial dechlorination of trichloroethene (TCE), cis-dichloroethene (cis-DCE) and vinyl chloride (VC) in sediments at the Peger Road site; 2) the effect of three electron donor amendments (molasses, shrimp and crab chitin, and 'Hydrogen Release Compound' (HRC)) on microbial degradation of TCE in three Peger Road sediments; and 3) the potential significance at the site of chloroethene biodegradation processes other than reductive dechlorination. In these experiments, TCE biodegradation yielded the reduced products, DCE and VC, and the oxidation product CO 2. Biodegradation of DCE and VC involved stoichiometric oxidation to CO 2. Both laboratory microcosm study and field redox assessment results indicated that the predominant terminal electron accepting process in Peger Road plume sediments under anoxic conditions was Mn/Fe-reduction. The rates of chloroethene biodegradation observed in Peger Road sediment microcosms under low temperature conditions (4?C) were within the range of those observed in sediments from temperate (20?C) aquifer systems. This result confirmed that biodegradation can be a significant mechanism for in situ contaminant remediation even in cold temperature aquifers. The fact that CO2 was the sole product of cis-DCE and VC biodegradation detected in Peger Road sediments indicated that a natural attenuation assessment based on reduced daughter product accumulation may significantly underestimate the potential for DCE and VC biodegradation at the Peger Road. Neither HRC nor molasses addition stimulated TCE reductive dechlorination. The fact that molasses and HRC amendment did stimulate Mn/Fe-reduction suggests that addition of these electron donors favored microbial Mn/Fe-reduction to the detriment of microbial TCE dechlorinating activity. In contrast, amendment of sediment microcosms with shrimp and crab chitin resulted in the

  13. Enhanced reductive de-chlorination of a solvent contaminated aquifer through addition and apparent fermentation of cyclodextrin

    NASA Astrophysics Data System (ADS)

    Blanford, William James; Pecoraro, Michael Philip; Heinrichs, Rebecca; Boving, Thomas Bernhard

    2018-01-01

    In a field study, aqueous cyclodextrin (CD) was investigated for its ability to extract chlorinated volatile organic compounds (cVOC), such as trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), and dichloroethene (DCE) through in-situ flushing of a sandy aquifer. After cessation of aquifer flushing, a plume of CD was left. Changes in CD, cVOC, and inorganic terminal electron acceptors (TEAs) (DO, nitrate, sulfate, iron) were monitored in four rounds of wellwater sampling (20, 210, 342, and 425 days after cessation of active pumping). Post-CD flushing VOC levels rebounded (850% for TCE, 190% for TCA, and 53% for DCE) between the first two sampling rounds, apparently due to rate-limited desorption from aquifer media and dissolution from remaining NAPL. However, substantial reduction in the mass of TCE (6.3 to 0.11 mol: 98%) and TCA (2.8 to 0.73 mol: 74%) in groundwater was observed between 210 and 425 days. DCE should primarily be produced from the degradation of TCE and is expected to subsequently degrade to chloroethene. Since DCE levels decreased only slightly (0.23 to 0.17 mol: 26%), its degradation rate should be similar to that produced from the decaying TCE. Cyclodextrin was monitored starting from day 210. The mass of residual CD (as measured by Total Organic Carbon) decreased from 150 mol (day 210) to 66 (day 425) (56% decrease). The naturally anaerobic zone within the aquifer where residual CD mass decreased coincided with a loss of other major potential TEAs: nitrate (97% loss), sulfate (31%) and iron (31%). In other studies, TCE and 1,1,1-TCA have been found to be more energetically favorable TEAs than sulfate and iron and their degradation via reductive dechlorination has been found to be enhanced by the fermentation of carbohydrates. Such processes can explain these observations, but more investigation is needed to evaluate whether residual levels of CD can facilitate the anaerobic degradation of chlorinated VOCs.

  14. Transforming han: a correlational method for psychology and religion.

    PubMed

    Oh, Whachul

    2015-06-01

    Han is a destructive feeling in Korea. Although Korea accomplished significant exterior growth, Korean society is still experiencing the dark aspects of transforming han as evidenced by having the highest suicide rate in Asia. Some reasons for this may be the fragmentation between North and South Korea. If we can transform han then it can become constructive. I was challenged to think of possibilities for transforming han internally; this brings me to the correlational method through psychological and religious interpretation. This study is to challenge and encourage many han-ridden people in Korean society. Through the psychological and religious understanding of han, people suffering can positively transform their han. They can relate to han more subjectively, and this means the han-ridden psyche has an innate sacredness of potential to transform.

  15. Simple immunoassay for detection of PCBs in transformer oil.

    PubMed

    Glass, Thomas R; Ohmura, Naoya; Taemi, Yukihiro; Joh, Takashi

    2005-07-01

    A rapid and inexpensive procedure to detect polychlorinated biphenyls (PCBs) in transformer oil is needed to facilitate identification and removal of PCB contaminated transformers. Here we describe a simple two-step liquid-liquid extraction using acidic dimethyl sulfoxide in conjunction with an immunoassay for detecting PCBs in transformer oil. The process described is faster and simpler than any previous immunoassay while maintaining comparable detection limit and false negative rate. Cross reactivity data, characterizing the immunoassay response to the four Kanechlor technical mixtures of PCBs in oil, are presented. Forty-five used transformer oil samples were analyzed by gas chromatography-high-resolution mass spectrometry and were also evaluated using the immunoassay protocol developed. Results presented show zero false negatives at a 1.4 ppm nominal cutoff for the transformer oils analyzed.

  16. Complement C3a binding to its receptor as a negative modulator of Th2 response in liver injury in trichloroethylene-sensitized mice.

    PubMed

    Wang, Feng; Zha, Wan-sheng; Zhang, Jia-xiang; Li, Shu-long; Wang, Hui; Ye, Liang-ping; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing

    2014-08-17

    Trichloroethylene (TCE) is a major occupational health hazard and causes occupational medicamentosa-like dermatitis (OMLDT) and liver damage. Recent evidence suggests immune response as a distinct mode of action for TCE-induced liver damage. This study aimed to explore the role of the key complement activation product C3a and its receptor C3aR in TCE-induced immune liver injury. A mouse model of skin sensitization was induced by TCE in the presence and absence of the C3aR antagonist SB 290157. Liver function was evaluated by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in conjunction with histopathological characterizations. C3a and C3aR were detected by immunohistochemistry and C5b-9 was assessed by immunofluorescence. IFN-γ and IL4 expressions were determined by flow cytometry and ELISA. The total sensitization rate was 44.1%. TCE sensitization caused liver cell necrosis and inflammatory infiltration, elevated serum ALT and AST, expression of C3a and C3aR, and deposition of C5b-9 in the liver. IFN-γ and IL-4 expressions were up-regulated in spleen mononuclear cells and their serum levels were also increased. Pretreatment with SB 290157 resulted in more inflammatory infiltration in the liver, higher levels of AST, reduced C3aR expression on Kupffer cells, and decreased IL-4 levels while IFN-γ remained unchanged. These data demonstrate that blocking of C3a binding to C3aR reduces IL4, shifts IFN-γ and IL-4 balance, and aggravates TCE-sensitization induced liver damage. These findings reveal a novel mechanism whereby modulation of Th2 response by C3a binding to C3a receptor contributes to immune-mediated liver damage by TCE exposure. Copyright © 2014. Published by Elsevier Ireland Ltd.

  17. Foundations for Streaming Model Transformations by Complex Event Processing.

    PubMed

    Dávid, István; Ráth, István; Varró, Dániel

    2018-01-01

    Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.

  18. Highly Efficient Agrobacterium-Mediated Transformation of Wheat Via In Planta Inoculation

    NASA Astrophysics Data System (ADS)

    Risacher, Thierry; Craze, Melanie; Bowden, Sarah; Paul, Wyatt; Barsby, Tina

    This chapter details a reproducible method for the transformation of spring wheat using Agrobacterium tumefaciens via the direct inoculation of bacteria into immature seeds in planta as described in patent WO 00/63398(1. Transformation efficiencies from 1 to 30% have been obtained and average efficiencies of at least 5% are routinely achieved. Regenerated plants are phenotypically normal with 30-50% of transformation events carrying introduced genes at single insertion sites, a higher rate than is typically reported for transgenic plants produced using biolistic transformation methods.

  19. Rates of biotite weathering, and clay mineral transformation and neoformation, determined from watershed geochemical mass-balance methods for the Coweeta Hydrologic Laboratory, Southern Blue Ridge Mountains, North Carolina, USA

    Treesearch

    Jason R. Price; Michael A. Velbel

    2013-01-01

    Biotite is a common constituent of silicate bedrock. Its weathering releases plant nutrients and consumes atmospheric CO2. Because of its stoichiometric relationship with its transformational weathering product and sensitivity to botanical activity, calculating biotite weathering rates using watershed mass-balance methods has proven challenging....

  20. Identification of trichloroethylene and its metabolites in human seminal fluid of workers exposed to trichloroethylene.

    PubMed

    Forkert, Poh-Gek; Lash, Lawrence; Tardif, Robert; Tanphaichitr, Nongnuj; Vandevoort, Catherine; Moussa, Madeleine

    2003-03-01

    We have investigated the potential of the male reproductive tract to accumulate trichloroethylene (TCE) and its metabolites, including chloral, trichloroethanol (TCOH), trichloroacetic acid (TCA), and dichloroacetic acid (DCA). Human seminal fluid and urine samples from eight mechanics diagnosed with clinical infertility and exposed to TCE occupationally were analyzed. In in vivo experimental studies, TCE and its metabolites were determined in epididymis and testis of mice exposed to TCE (1000 ppm) by inhalation for 1 to 4 weeks. In other studies, incubations of monkey epididymal microsomes were performed in the presence of TCE and NADPH. Our results showed that seminal fluid from all eight subjects contained TCE, chloral, and TCOH. DCA was present in samples from two subjects, and only one contained TCA. TCA and/or TCOH were also identified in urine samples from only two subjects. TCE, chloral, and TCOH were detected in murine epididymis after inhalation exposure with TCE for 1 to 4 weeks. Levels of TCE and chloral were similar throughout the entire exposure period. TCOH levels were similar at 1 and 2 weeks but increased significantly after 4 weeks of TCE exposure. Chloral was identified in microsomal incubations with TCE in monkey epididymis. CYP2E1, a P450 that metabolizes TCE, was localized in human and monkey epididymal epithelium and testicular Leydig cells. These results indicated that TCE is metabolized in the reproductive tract of the mouse and monkey. Furthermore, TCE and its metabolites accumulated in seminal fluid, and suggested associations between production of TCE metabolites, reproductive toxicity, and impaired fertility.

  1. Malignant transformation of actinic cheilitis: A systematic review of observational studies.

    PubMed

    Dancyger, Alex; Heard, Victoria; Huang, Baikai; Suley, Cameron; Tang, Dorothy; Ariyawardana, Anura

    2018-06-04

    The aim of the present systematic review was to determine the malignant transformation rate of actinic cheilitis (AC). A comprehensive literature search was conducted using Medline/PubMed, Cumulative Index of Nursing and Allied Health Literature, Scopus, OvidSP, and Google Scholar. The inclusion criteria comprised of observational human studies involving the malignant transformation of AC and publications in English. Studies included in this review were clinical follow-up, cohort, retrospective, or prospective investigations. The search yielded 1126 articles, and after exclusion, 34 full-text articles were eligible for full-text analysis. Only one article met the inclusion criteria. Based on the included article, it was determined that the malignant transformation rate of AC to squamous cell carcinoma (SCC) was 3.07%. Excluded articles focused on the clinicopathological characteristics and treatment efficacies of AC, and no malignant transformation rate was assessed. There is a need for more clinical studies on the malignant transformation of AC, as lip cancer is a public health concern. High-risk populations, including those living in tropical regions, have excessive exposure to UV radiation, and have older aged males, fair-skinned people, and smokers should be identified to prevent AC and its malignant change. Health practitioners should facilitate early intervention to prevent the progression of AC to SCC of the lip. © 2018 John Wiley & Sons Australia, Ltd.

  2. Nitrate reduction and its effects on trichloroethylene degradation by granular iron.

    PubMed

    Lu, Qiong; Jeen, Sung-Wook; Gui, Lai; Gillham, Robert W

    2017-04-01

    Laboratory column experiments and reactive transport modeling were performed to evaluate the reduction of nitrate and its effects on trichloroethylene (TCE) degradation by granular iron. In addition to determining degradation kinetics of TCE in the presence of nitrate, the columns used in this study were equipped with electrodes which allowed for in situ measurements of corrosion potentials of the iron material. Together with Raman spectroscopic measurements the mechanisms of decline in iron reactivity were examined. The experimental results showed that the presence of nitrate resulted in an increase in corrosion potential and the formation of thermodynamically stable passive films on the iron surface which impaired iron reactivity. The extent of the decline in iron reactivity was proportional to the nitrate concentration. Consequently, significant decreases in TCE and nitrate degradation rates and migration of degradation profiles for both compounds occurred. Furthermore, the TCE degradation kinetics deviated from the pseudo-first-order model. The results of reactive transport modeling, which related the amount of a passivating iron oxide, hematite (α-Fe 2 O 3 ), to the reactivity of iron, were generally consistent with the patterns of migration of TCE and nitrate profiles observed in the column experiments. More encouragingly, the simulations successfully demonstrated the differences in performances of three columns without changing model parameters other than concentrations of nitrate in the influent. This study could be valuable in the design of iron permeable reactive barriers (PRBs) or in the development of effective maintenance procedures for PRBs treating TCE-contaminated groundwater with elevated nitrate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar; Arshadi, Masoud

    2015-04-01

    Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.

  4. Chronic exposure to trichloroethene causes early onset of SLE-like disease in female MRL +/+ mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Ping; Koenig, Rolf; Boor, Paul J.

    2008-04-01

    Trichloroethene (TCE) exacerbates the development of autoimmune responses in autoimmune-prone MRL +/+ mice. Although TCE-mediated autoimmune responses are associated with an increase in serum immunoglobulins and autoantibodies, the underlying mechanism of autoimmunity is not known. To determine the progression of TCE-mediated immunotoxicity, female MRL +/+ mice were chronically exposed to TCE through the drinking water (0.5 mg/ml of TCE) for various periods of time. Serum concentrations of antinuclear antibodies increased after 36 and 48 weeks of TCE exposure. Histopathological analyses showed lymphocyte infiltration in the livers of MRL +/+ mice exposed to TCE for 36 or 48 weeks. Lymphocyte infiltrationmore » was also apparent in the pancreas, lungs, and kidneys of mice exposed to TCE for 48 weeks. Immunoglobulin deposits in kidney glomeruli were found after 48 weeks of exposure to TCE. Our results suggest that chronic exposure to TCE promotes inflammation in the liver, pancreas, lungs, and kidneys, which may lead to SLE-like disease in MRL +/+ mice.« less

  5. Pressure Induced Phase Transformations of Silica Polymorphs and Glasses

    NASA Astrophysics Data System (ADS)

    Cagin, Tahir; Demiralp, Ersan; Goddard, William A., III

    1998-03-01

    Silica, SiO_2, is one of the most widely studied substance, and it has some complex and unusual properties. We have used a recently developed 2-body interaction force field (E. Demiralp, T. Cagin, W.A. Goddard, III, unpublished.) to study the structural phase transformations in silica under various pressure loading conditions. The specific transformations we studied are α-quartz to stishovite, coesite to stishovite and fused glass to stishovite-like dense, a dominantly six-coordinated glassy phase. Molecular dynamics simulations are performed under the constant loading rates ranging from 0.1 GPa/ps to 2.0 GPa/ps, pressures upto 100 GPa and at temperatures 300, 500, 700 and 900 K. We observe the crystal to crystal transformations to occur reconstructively, whereas it occurs in a smooth and displacive manner from glass to a stishovite-like phase confirming earlier conjectures. (E.M. Stolper and T.J. Ahrens, Geophys. Res. Let.) 14, 1231 (1987). To elucidate the shock loading experiments, we studied the dependence of transition pressure on the loading rate and the temperature. To assess the hysterisis effect we also studied the unloading behavior of each transformation.

  6. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    PubMed

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  7. Transformational leadership training programme for charge nurses.

    PubMed

    Duygulu, Sergul; Kublay, Gulumser

    2011-03-01

    This paper is a report of an evaluation of the effects of a transformational leadership training programme on Unit Charge Nurses' leadership practices. Current healthcare regulations in the European Union and accreditation efforts of hospitals for their services mandate transformation in healthcare services in Turkey. Therefore, the transformational leadership role of nurse managers is vital in determining and achieving long-term goals in this process. The sample consisted of 30 Unit Charge Nurses with a baccalaureate degree and 151 observers at two university hospitals in Turkey. Data were collected using the Leadership Practices Inventory-Self and Observer (applied four times during a 14-month study process from December 2005 to January 2007). The transformational leadership training programme had theoretical (14 hours) and individual study (14 hours) in five sections. Means, standard deviations and percentages, repeated measure tests and two-way factor analysis were used for analysis. According the Leadership Practices Inventory-Self and Observer ratings, leadership practices increased statistically significantly with the implementation of the programme. There were no significant differences between groups in age, length of time in current job and current position. The Unit Charge Nurses Leadership Practices Inventory self-ratings were significantly higher than those of the observers. There is a need to develop similar programmes to improve the leadership skills of Unit Charge Nurses, and to make it mandatory for nurses assigned to positions of Unit Charge Nurse to attend this kind of leadership programme. © 2010 Blackwell Publishing Ltd.

  8. The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella.

    PubMed

    Liang, Fang; Du, Kui; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang

    2015-12-28

    To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m(2); temperature: 30°C; pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R(2) = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.

  9. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  10. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach

    NASA Astrophysics Data System (ADS)

    Schaefer, Charles E.; Lippincott, David R.; Klammler, Harald; Hatfield, Kirk

    2018-02-01

    An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4 m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151 days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.

  11. Protistan Predation Affects Trichloroethene Biodegradation in a Bedrock Aquifer▿

    PubMed Central

    Cunningham, Joseph J.; Kinner, Nancy E.; Lewis, Maureen

    2009-01-01

    Despite extensive research on the bottom-up force of resource availability (e.g., electron donors and acceptors), slow biodegradation rates and stalling at cis-dichloroethene (cDCE) and vinyl chloride continue to be observed in aquifers contaminated with trichloroethene (TCE). The objective of this research was to gauge the impact of the top-down force of protistan predation on TCE biodegradation in laboratory microcosms. When indigenous bacteria from an electron donor-limited TCE-contaminated bedrock aquifer were present, the indigenous protists inhibited reductive dechlorination altogether. The presence of protists during organic carbon-amended conditions caused the bacteria to elongate (length:width, ≥10:1), but reductive dechlorination was still inhibited. When a commercially available dechlorinating bacterial culture and an organic carbon amendment were added in he presence of protists, the elongated bacteria predominated and reductive dechlorination stalled at cDCE. When protists were removed under organic carbon-amended conditions, reductive dechlorination stalled at cDCE, whereas in the presence organic carbon and bacterial amendments, the total chlorinated ethene concentration decreased, indicating TCE was converted to ethene and/or CO2. The data suggested that indigenous protists grazed dechlorinators to extremely low levels, inhibiting dechlorination altogether. Hence, in situ bioremediation/bioaugmentation may not be successful in mineralizing TCE unless the top-down force of protistan predation is inhibited. PMID:19820148

  12. Performance Evaluation of Frequency Transform Based Block Classification of Compound Image Segmentation Techniques

    NASA Astrophysics Data System (ADS)

    Selwyn, Ebenezer Juliet; Florinabel, D. Jemi

    2018-04-01

    Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.

  13. Trichloroethylene Metabolism in the Rat Ovary Reduces Oocyte Fertilizability

    PubMed Central

    Wu, Katherine Lily; Berger, Trish

    2007-01-01

    Exposure to trichloroethylene (TCE, an environmental toxicant) reduced oocyte fertilizability in the rat. In vivo, TCE may be metabolized by cytochrome P450 dependent oxidation or glutathione conjugation in the liver or kidneys, respectively. Cytochrome P450 dependent oxidation is the higher affinity pathway. The primary isoform of cytochrome P450 to metabolize TCE in the liver, cytochrome P450 2E1, is present in the rodent ovary. Ovarian metabolism of TCE by the oxidative pathway and the production of reactive oxygen species may occur given the presence of the metabolizing enzyme. The objectives of this study were to define the sensitive interval of oocyte growth to TCE exposure, and to determine if TCE exposure resulted in the formation of ovarian protein carbonyls, an indicator of oxidative damage. Rats were exposed to TCE in drinking water (0.45% TCE (v/v) in 3% Tween) or 3% Tween (vehicle-control) during three 4–5 day intervals of oocyte development preceding ovulation. Oocytes from TCE-exposed females were less fertilizable compared with vehicle-control oocytes. Immunohistochemical labeling of ovaries and Western blotting of ovarian proteins demonstrated TCE treatment induced a greater incidence of protein carbonyls compared with vehicle controls. Protein carbonyl formation in the ovary is consistent with TCE metabolism by the cytochrome P450 pathway. Oxidative damage following ovarian TCE metabolism or the presence of TCE metabolites may contribute to reduced oocyte fertilizability. In summary, these results indicate maturing oocytes are susceptible to very short in vivo exposures to TCE. PMID:17673192

  14. Transformational, transactional among physician and laissez-faire leadership among physician executives.

    PubMed

    Xirasagar, Sudha

    2008-01-01

    The purpose of this paper is to examine the empirical validity of transformational, transactional and laissez-faire leadership and their sub-scales among physician managers. A nation-wide, anonymous mail survey was carried out in the United States, requesting community health center executive directors to provide ratings of their medical director's leadership behaviors (34 items) and effectiveness (nine items), using the Multifactor Leadership Questionnaire 5X-Short, on a five-point Likert scale. The survey response rate was 40.9 percent, for a total 269 responses. Exploratory factor analysis was done, using principal factor extraction, followed by promax rotation). The data yielded a three-factor structure, generally aligned with Bass and Avolio's constructs of transformational, transactional and laissez-faire leadership. Data do not support the factorial independence of their subscales (idealized influence, inspirational motivation, individualized consideration, and intellectual stimulation under transformational leadership; contingent reward, management-by-exception active, and management-by-exception passive under transactional leadership). Two contingent reward items loaded on transformational leadership, and all items of management-by-exception passive loaded on laissez-faire. A key limitation is that supervisors were surveyed for ratings of the medical directors' leadership style. Although past research in other fields has shown that supervisor ratings are strongly correlated with subordinate ratings, further research is needed to validate the findings by surveying physician and other clinical subordinates. Such research will also help to develop appropriate content of leadership training for clinical leaders. This study represents an important step towards establishing the empirical evidence for the full range of leadership constructs among physician leaders.

  15. Malignant transformation of oral submucous fibrosis in Taiwan: A nationwide population-based retrospective cohort study.

    PubMed

    Yang, Po-Yu; Chen, Yi-Tzu; Wang, Yu-Hsun; Su, Ni-Yu; Yu, Hui-Chieh; Chang, Yu-Chao

    2017-11-01

    Oral submucous fibrosis (OSF) is one of the well-recognized oral potentially malignant disorders. In this study, we investigated the malignant transformation of OSF in a Taiwanese population. A retrospective cohort study was analyzed from Taiwan's National Health Insurance Research Database. A comparison cohort was randomly frequency-matched with the OSF cohort according to age, sex, and index year. Oral leukoplakia (OL) was further stratified to evaluate for the possible synergistic effects of OSF-associated malignant transformation. In this cohort, 71 (9.13%) of 778 cases of OSF were observed to transform into oral cancer. The malignant transformation rate was 29.26-fold in the OSF cohort than in the comparison cohort after adjustment (95% confidence intervals 20.55-41.67). To further stratify with OL, OSF with OL (52.46%; 95% confidence intervals 34.88-78.91) had higher risk of malignant transformation rate than OSF alone (29.84%; 95% confidence intervals 20.99-42.42). The Kaplan-Meier plot revealed the rate free of malignant transformation was significant over the 13-year follow-up period (log-rank test, P<.001). The mean duration of malignant transformation was 5.1, 2.7, and 2.2 years for non-OSF, OSF alone, and OSF with OL, respectively. Oral submucous fibrosis patients exhibited a significantly higher risk of malignant transformation than those without OSF. OL could enhance malignant transformation in patients with OSF. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Embedded wavelet packet transform technique for texture compression

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-09-01

    A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.

  17. Effects of medium and trace metals on kinetics of carbon tetrachloride transformation by Pseudomonas sp. strain KC.

    PubMed Central

    Tatara, G M; Dybas, M J; Criddle, C S

    1993-01-01

    Under denitrifying conditions, Pseudomonas sp. strain KC transforms carbon tetrachloride (CT) to carbon dioxide via a complex but as yet undetermined mechanism. Transformation rates were first order with respect to CT concentration over the CT concentration range examined (0 to 100 micrograms/liter) and proportional to protein concentration, giving pseudo-second-order kinetics overall. Addition of ferric iron (1 to 20 microM) to an actively transforming culture inhibited CT transformation, and the degree of inhibition increased with increasing iron concentration. By removing iron from the trace metals solution or by removing iron-containing precipitate from the growth medium, higher second-order rate coefficients were obtained. Copper also plays a role in CT transformation. Copper was toxic at neutral pH. By adjusting the medium pH to 8.2, soluble iron and copper levels decreased as a precipitate formed, and CT transformation rates increased. However, cultures grown at high pH without any added trace copper (1 microM) exhibited slower growth rates and greatly reduced rates of CT transformation, indicating that copper is required for CT transformation. The use of pH adjustment to decrease iron solubility, to avoid copper toxicity, and to provide a selective advantage for strain KC was evaluated by using soil slurries and groundwater containing high levels of iron. In samples adjusted to pH 8.2 and inoculated with strain KC, CT disappeared rapidly in the absence or presence of acetate or nitrate supplements. CT did not disappear in pH-adjusted controls that were not inoculated with strain KC. PMID:8357248

  18. Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification

    NASA Astrophysics Data System (ADS)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2013-08-01

    A complete microstructural characterization and phase transformation analysis has been performed for several Nb and Nb-Mo microalloyed low-carbon steels using electron backscattered diffraction (EBSD) and dilatometry tests. Compression thermomechanical schedules were designed resulting in the undeformed and deformed austenite structures before final transformation. The effects of microalloying additions and accumulated deformation were analyzed after CCT diagram development and microstructural quantification. The resulting microstructures ranged from polygonal ferrite and pearlite at slow cooling ranges, to a combination of quasipolygonal ferrite and granular ferrite for intermediate cooling rates, and finally, to bainitic ferrite with martensite for fast cooling rates. The addition of Mo promotes a shift in the CCT diagrams to lower transformation start temperatures. When the amount of Nb is increased, CCT diagrams show little variations for transformations from the undeformed austenite and higher initial transformation temperatures in the transformations from the deformed austenite. This different behavior is due to the effect of niobium on strain accumulation in austenite and its subsequent acceleration of transformation kinetics. This article shows the complex interactions between chemical composition, deformation, and the phases formed, as well as their effect on microstructural unit sizes and homogeneity.

  19. Simulation Kinetics of Austenitic Phase Transformation in Ti+Nb Stabilized IF and Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Ghosh, Sumit; Dasharath, S. M.; Mula, Suhrit

    2018-05-01

    In the present study, the influence of cooling rates (low to ultrafast) on diffusion controlled and displacive transformation of Ti-Nb IF and microalloyed steels has been thoroughly investigated. Mechanisms of nucleation and formation of non-equiaxed ferrite morphologies (i.e., acicular ferrite and bainitic ferrite) have been analyzed in details. The continuous cooling transformation behavior has been studied in a thermomechanical simulator (Gleeble 3800) using the cooling rates of 1-150 °C/s. On the basis of the dilatometric analysis of each cooling rate, continuous cooling transformation (CCT) diagrams have been constructed for both the steels to correlate the microstructural features at each cooling rate in different critical zones. In the case of the IF steel, massive ferrite grains along with granular bainite structures have been developed at cooling rates > 120 °C/s. On the other hand, a mixture of lath bainitic and lath martensite structures has been formed at a cooling rate of 80 °C/s in the microalloyed steel. A strong dependence of the cooling rates and C content on the microstructures and mechanical properties has been established. The steel samples that were fast cooled to a mixture of bainite ferrite and martensite showed a significant improvement of impact toughness and hardness (157 J, for IF steel and 174 J for microalloyed steel) as compared to that of the as-received specimens (133 J for IF steel and 116 J for microalloyed steel). Thus, it can be concluded that the hardness and impact toughness properties are correlated well with the microstructural constituents as indicated by the CCT diagram. Transformation mechanisms and kinetics of austenitic transformation to different phase morphologies at various cooling rates have been discussed in details to correlate microstructural evolution and mechanical properties.

  20. Simulation Kinetics of Austenitic Phase Transformation in Ti+Nb Stabilized IF and Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Ghosh, Sumit; Dasharath, S. M.; Mula, Suhrit

    2018-04-01

    In the present study, the influence of cooling rates (low to ultrafast) on diffusion controlled and displacive transformation of Ti-Nb IF and microalloyed steels has been thoroughly investigated. Mechanisms of nucleation and formation of non-equiaxed ferrite morphologies (i.e., acicular ferrite and bainitic ferrite) have been analyzed in details. The continuous cooling transformation behavior has been studied in a thermomechanical simulator (Gleeble 3800) using the cooling rates of 1-150 °C/s. On the basis of the dilatometric analysis of each cooling rate, continuous cooling transformation (CCT) diagrams have been constructed for both the steels to correlate the microstructural features at each cooling rate in different critical zones. In the case of the IF steel, massive ferrite grains along with granular bainite structures have been developed at cooling rates > 120 °C/s. On the other hand, a mixture of lath bainitic and lath martensite structures has been formed at a cooling rate of 80 °C/s in the microalloyed steel. A strong dependence of the cooling rates and C content on the microstructures and mechanical properties has been established. The steel samples that were fast cooled to a mixture of bainite ferrite and martensite showed a significant improvement of impact toughness and hardness (157 J, for IF steel and 174 J for microalloyed steel) as compared to that of the as-received specimens (133 J for IF steel and 116 J for microalloyed steel). Thus, it can be concluded that the hardness and impact toughness properties are correlated well with the microstructural constituents as indicated by the CCT diagram. Transformation mechanisms and kinetics of austenitic transformation to different phase morphologies at various cooling rates have been discussed in details to correlate microstructural evolution and mechanical properties.

  1. TRANSFORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants wasmore » revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).« less

  2. A Blueprint for Innovation to Achieve Health System Transformation.

    PubMed

    Snowdon, Anne W

    2017-01-01

    Global health systems are challenged by escalating costs and growing demands for care created by the demands of aging populations and rising rates of chronic illness which place unsustainable pressure on health systems to meet population health needs. To overcome these challenges, transformational change is needed to strengthen health system performance and sustainability. Innovation is widely viewed as the strategy to drive transformational change in health systems; yet to date, innovation has lacked a clearly defined focus or agenda to achieve transformation. An actionable innovation agenda is needed to achieve transformational change for health systems. The key conditions for success as an innovation strategy are examined, including clearly defined innovation objectives, key milestones, and actionable steps every system stakeholder must pursue in order to guide the innovation agenda and ultimately accelerate the transformational changes needed for a sustainable healthcare system that delivers value to populations.

  3. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Wang, Y. L.

    2000-01-01

    One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.

  4. Agrobacterium-mediated transformation in Alpinia galanga (Linn.) Willd. for enhanced acetoxychavicol acetate production.

    PubMed

    Rao, Kiranmayee; Chodisetti, Bhuvaneswari; Mangamoori, Lakshmi Narasu; Giri, Archana

    2012-09-01

    Agrobacterium-mediated transformations ensure elevated amounts of secondary metabolite accumulation with genetic and biosynthetic stability. In the present study, Alpinia galanga rich in bioactive compounds was genetically transformed using different strains of Agrobacterium rhizogenes viz. LBA 9402, A(4), 532, 2364 and PRTGus. Even though a higher growth rate was obtained with the LBA 9402 strain, maximum acetoxychavicol acetate accumulation (ACA) was seen in the PRTGus transformant. PRTGus root line has shown 10.1 fold higher ACA content in comparison to the control roots. The lowest ACA production was shown by the A(4) transformant (4.9 fold). The quantification of ACA in the transformed roots was carried out by using HPLC, which was found to be in the order of PRTGus > LBA 9402 > 2364 > 532 > A(4). The fast growth rate of hairy roots, genetic stability and their ability to synthesize more than one metabolite offer a promising system for the production of valuable secondary metabolites.

  5. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults.

    PubMed

    McGuire, Jeffrey J; Boettcher, Margaret S; Jordan, Thomas H

    2005-03-24

    East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.

  6. Formation Rate-Limited Pharmacokinetics of Biologically Active Epoxy Transformers of Prodrug Treosulfan.

    PubMed

    Romański, Michał; Kasprzyk, Anna; Karbownik, Agnieszka; Szałek, Edyta; Główka, Franciszek K

    2016-05-01

    A prodrug treosulfan (TREO) is being evaluated in clinical trials as a myeloablative agent before hematopoietic stem cell transplantation. The active derivatives of TREO, monoepoxide (EBDM), and diepoxide (DEB) are formed in a pH-dependent nonenzymatic reaction. The aim of the study was to investigate pharmacokinetics of the TREO epoxy transformers in a rabbit model and explain the causes of low plasma concentrations of EBDM and DEB observed in patients receiving high-dose TREO before hematopoietic stem cell transplantation. New Zealand white rabbits (n = 5 per cohort) received an intravenous infusion of TREO (group I), injection of DEB (group II), and injection of a solution containing EBDM (group III). When EBDM and DEB were administered to the rabbits, they underwent a very rapid elimination (half-life 0.069 and 0.046 h) associated with a high systemic clearance (10.0 and 14.0 L h(-1) kg(-1)). After administration of TREO, the t1/2 of EBDM was statistically equal to the t1/2 of the prodrug (1.6 h). To conclude, after administration of TREO, its epoxy transformers demonstrate a formation-limited elimination. Then EBDM and DEB have the same elimination half-life as TREO, but the levels of EBDM and DEB in the body, including plasma, are much lower than TREO on account of their inherently high clearance. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe.

    PubMed

    Wei, Jianjun; Qian, Yajing; Liu, Wenjuan; Wang, Lutao; Ge, Yijie; Zhang, Jianghao; Yu, Jiang; Ma, Xingmao

    2014-05-01

    Catalytic nickel was successfully incorporated into nanoscale iron to enhance its dechlorination efficiency for trichloroethylene (TCE), one of the most commonly detected chlorinated organic compounds in groundwater. Ethane was the predominant product. The greatest dechlorination efficiency was achieved at 22 molar percent of nickel. This nanoscale Ni-Fe is poorly ordered and inhomogeneous; iron dissolution occurred whereas nickel was relatively stable during the 24-hr reaction. The morphological characterization provided significant new insights on the mechanism of catalytic hydrodechlorination by bimetallic nanoparticles. TCE degradation and ethane production rates were greatly affected by environmental parameters such as solution pH, temperature and common groundwater ions. Both rate constants decreased and then increased over the pH range of 6.5 to 8.0, with the minimum value occurring at pH 7.5. TCE degradation rate constant showed an increasing trend over the temperature range of 10 to 25°C. However, ethane production rate constant increased and then decreased over the range, with the maximum value occurring at 20°C. Most salts in the solution appeared to enhance the reaction in the first half hour but overall they displayed an inhibitory effect. Combined ions showed a similar effect as individual salts. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  8. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.

    PubMed

    Paul, Laiby; Smolders, Erik

    2015-01-01

    The anaerobic biotransformation of trichloroethylene (TCE) can be affected by competing electron acceptors such as Fe (III). This study assessed the role of Fe (III) reduction on the bioenhanced dissolution of TCE dense non-aqueous phase liquid (DNAPL). Columns were set up as 1-D diffusion cells consisting of a lower DNAPL layer, a layer with an aquifer substratum and an upper water layer that is regularly refreshed. The substrata used were either inert sand or sand coated with 2-line ferrihydrite (HFO) or two environmental Fe (III) containing samples. The columns were inoculated with KB-1 and were repeatedly fed with formate. In none of the diffusion cells, vinyl chloride or ethene was detected while dissolved and extractable Fe (II) increased strongly during 60 d of incubation. The cis-DCE concentration peaked at 4.0 cm from the DNAPL (inert sand) while it was at 3.4 cm (sand+HFO), 1.7 cm and 2.5 cm (environmental samples). The TCE concentration gradients near the DNAPL indicate that the DNAPL dissolution rate was larger than that in an abiotic cell by factors 1.3 (inert sand), 1.0 (sand+HFO) and 2.2 (both environmental samples). This results show that high bioavailable Fe (III) in HFO reduces the TCE degradation by competitive Fe (III) reduction, yielding lower bioenhanced dissolution. However, Fe (III) reduction in environmental samples was not reducing TCE degradation and the dissolution factor was even larger than that of inert sand. It is speculated that physical factors, e.g. micro-niches in the environmental samples protect microorganisms from toxic concentrations of TCE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Piezoelectric transformer and modular connections for high power and high voltage power supplies

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.

  10. Reduction of trichloroethylene and nitrate by zero-valent iron with peat.

    PubMed

    Min, Jee-Eun; Kim, Meejeong; Pardue, John H; Park, Jae-Woo

    2008-02-01

    The feasibility of using zero-valent iron (ZVI) and peat mixture as in situ barriers for contaminated sediments and groundwater was investigated. Trichloroethylene (TCE) and nitrate (NO(3)(-)), redox sensitive contaminants were reduced by ZVI and peat soil mixture under anaerobic condition. Peat was used to support the sorption of TCE, microbial activity for biodegradation of TCE and denitrification while TCE and nitrate were reduced by ZVI. Decreases in TCE concentrations were mainly due to ZVI, while peat supported denitrifying microbes and further affected the sorption of TCE. Due to the competition of electrons, nitrate reduction was inhibited by TCE, while TCE reduction was not affected by nitrate. From the results of peat and sterilized peat, it can be concluded that peat was involved in both dechlorination and denitrification but biological reduction of TCE was negligible compared to that of nitrate. The results from hydrogen and methane gas analyses confirmed that hydrogen utilization by microbes and methanogenic process had occurred in the ZVI-peat system. Even though effect of the peat on TCE reduction were quantitatively small, ZVI and peat contributed to the removal of TCE and nitrate independently. The 16S rRNA analysis revealed that viable bacterial diversity was narrow and the most frequently observed genera were Bacillus and Staphylococcus spp.

  11. Characterization of trichloroethylene adsorption onto waste biocover soil in the presence of landfill gas.

    PubMed

    He, Ruo; Su, Yao; Kong, Jiaoyan

    2015-09-15

    Waste biocover soils (WBS) have been demonstrated to have great potential in mitigating trichloroethylene (TCE) emission from landfills, due to the relatively high TCE-degrading capacity. In this study, the characteristics of TCE adsorption on WBS in the presence of the major landfill gas components (i.e., CH4 and CO2) were investigated in soil microcosms. The adsorption isotherm of TCE onto WBS was fitted well with linear model within the TCE concentrations of 7000 ppmv. The adsorption capacity of TCE onto WBS was affected by temperature, soil moisture content and particle size, of which, temperature was the dominant factor. The adsorption capacity of TCE onto the experimental materials increased with the increasing organic matter content. A significantly positive correlation was observed between the adsorption capacity of TCE and the organic matter content of experimental materials that had relatively higher organic content (r = 0.988, P = 0.044). To better understand WBS application in practice, response surface methodology was developed to predict TCE adsorption capacity and emissions through WBS in different landfills in China. These results indicated that WBS had high adsorption capacity of TCE in LFG and temperature should be paid more attention to manipulate WBS to reduce TCE emissions from landfills. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The foliar uptake and downward translocation of trichloroethylene and 1,2,3-trichlorobenzene in air-plant-water systems.

    PubMed

    Su, Yuhong; Liang, Yongchao

    2013-05-15

    The foliar uptake and downward translocation of trichloroethylene (TCE) and 1,2,3-trichlorobenzene (TCB) in wheat, corn, and tomato seedlings were investigated following 2-48-h exposure of the plant shoots to vapor-contaminated air. The results showed that both TCE and TCB could be rapidly transported from air to plant rhizosphere solution through the foliar uptake and downward transport; the TCE and TCB concentrations in rhizosphere solutions increased with exposure time and external contaminant concentration. Among the three plant species studied, the TCE and TCB downward transport followed the order of wheat>tomato>corn. The transport efficiency of TCE by the three plants was far greater than that of TCB. With a 24-h uptake time, the amounts of TCE transported into the rhizosphere solution by wheat, tomato, and corn seedlings were 2.39 ± 0.42, 1.50 ± 0.22 and 1.45 ± 0.08 μg TCE per gram of fresh weight biomass, respectively, when the initial external TCE concentration was set at 12 mg l(-1). In a 48-h uptake experiment with corn seedlings, the TCE concentration in the rhizosphere solutions was lower in the TCE-TCB mixture system than in the single TCE system, whereas there was no significant difference in TCB concentration between the single TCB and TCE-TCB mixture systems at 48 h. The downward transport processes of TCE were inhibited, while those of TCB were enhanced in the mixed contaminant system within a 48-h uptake time. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCEmore » exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure

  14. Service Blueprinting: Transforming the Student Experience

    ERIC Educational Resources Information Center

    Bitner, Mary Jo; Ostrom, Amy L.; Burkhard, Kevin A.

    2012-01-01

    There is much discussion today about the need to transform higher education for the benefit of students, employers, and society at large. Experts and researchers list the numerous challenges: low student retention and graduation rates, the increasing cost of higher education, and concerns that graduates don't possess the skills required to compete…

  15. [Chromosome abnormalities associated with Phl and acturial survivorship curve in chronic myeloid leukemia. Probabilistic interpretation of blastic transformation of CML].

    PubMed

    Coutris, G

    1981-12-01

    Sixty-six patients with chronic myelogenous leukemia, all with Philadelphia chromosome, have been studied for chromosomic abnormalities associated (CAA) to Ph', as well as for actuarial curve of survivorship. Patients dying from another disease were excluded from this study. Frequency of cells with CAA was measured and appeared strongly higher after blastic transformation than during myelocytic state; probability to be a blastic transformation is closely correlated with this frequency. On the other hand, actuarial curve of survivorship is very well represented by an exponential curve. This suggests a constant rate of death during disease evolution, for these patients without intercurrent disease. As a mean survivance after blastic transformation is very shorter than myelocytic duration, a constant rate of blastic transformation could be advanced: it explains possible occurrence of transformation as soon as preclinic state of a chronic myelogenous leukemia. Even if CAA frequency increases after blastic transformation, CAA can occur a long time before it and do not explain it: submicroscopic origin should be searched for the constant rate of blastic transformation would express the risk of a genic transformation at a constant rate during myelocytic state.

  16. RATES OF HYDROUS FERRIC OXIDE CRYSTALLIZATION AND THE INFLUENCE ON COPRECIPITATED ARSENATE

    EPA Science Inventory

    Arsenate coprecipitated with hydrous ferric oxide (HFO) was stabilized against dissolution during transformation of HFO to more crystalline iron (hydr)oxides. The rate of arsenate stabilization approximately coincided with the rate of HFO transformation at pH 6 and 40 ?C. Compa...

  17. Superfund record of decision (EPA Region 9): Aircraft Control and Warning Site, Mather Air Force Base, CA, December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This decision document, a Record of Decision (ROD), presents the selected remedial action for the AC W Site, Installation Restoration Program (IRP) Site 12, at Mather Air Force Base (AFB), Sacramento County, California. Reports indicate that from 1958 to 1966 waste solvents and transformer oils were disposed in a waste disposal pipe in the AC W area. Investigations conducted as part of the Air Force Installation Restoration Program (IRP) failed to locate the waste disposal pipe but did find trichloroethylene (TCE) contamination in the shallow water bearing zone (SWBZ) in the AC W area. The SWBZ is classified as amore » potential source of drinking water by the State of California, although it is not currently used in the AC W area. The selected remedy will address the potential threat to human health posed by TCE contamination in groundwater (primarily in the SWBZ).« less

  18. Reactive Minerals and Dechlorinating Communities: Mechanisms Governing the Degradation of Chlorinated Ethenes during Back Diffusion from Low Permeability Zones in Aerobic and Anaerobic Environments

    NASA Astrophysics Data System (ADS)

    Berns, E. C.; Zeng, R.; Singh, H.; Valocchi, A. J.; Sanford, R. A.; Strathmann, T. J.; Schaefer, C. E.; Werth, C. J.

    2017-12-01

    Low permeability zones (LPZs) comprised of silts and clays, and contaminated with chlorinated ethenes, can act as a long term source of contaminated groundwater by diffusion into adjacent high permeability zones (HPZs). Following initial remediation efforts, chlorinated ethenes that have diffused into LPZs will back diffuse and recontaminate HPZs. Because chlorinated ethenes are known to cause cancer and damage the liver, kidneys, and central nervous system, it is important to understand how they degrade in natural systems and how to model their fate and transport. Previous work has shown that anaerobic hydrogenolysis reactions are facilitated by both dechlorinating microorganisms and reactive minerals. Abiotic dichloro-elimination reactions with reactive minerals can also degrade chlorinated ethenes to acetylene, albeit at slower rates than biotic processes. More recently, studies have explored aerobic abiotic degradation of chlorinated ethenes to formate, glycolate, and carbon dioxide. This study focuses on these biotic and abiotic reactions and their contributions to chlorinated ethene degradation under aerobic and anaerobic conditions at the LPZ/HPZ interface. A two-dimensional flow cell was constructed to model this interface using clay and sand from Pease Air Force Base. The clay was inoculated with a dechlorinating enrichment culture. Tenax adsorbent beads equilibrated with trichloroethylene (TCE) were used as a chlorinated ethene source zone at the base of the clay. TCE and its degradation products diffused from the clay into the sand, where they were removed from the flow cell by groundwater at a rate of 50 mL/day. Volatile compounds were trapped in a sample loop and removed every 48 hours for analysis by GC-FID. Organic and inorganic ions in the effluent were analyzed on the HPLC and IC. The experiment was terminated by freezing the flow cell, and chemical profiles through the flow cell material were created to show the spatial distribution of degradation

  19. Dilatometric investigation of α(orthorhombic)→β(tetragonal) transformation in U-15 wt.% Cr alloy

    NASA Astrophysics Data System (ADS)

    Rameshkumar, Santhosh; Raju, Subramanian; Saibaba, Saroja

    2018-04-01

    The α→β transformation characteristics in U-15wt.% Cr alloy have been investigated by dilatometry at slow heating rates (3-10 K min-1). The starting microstructure of U-15Cr alloy consists of a mixture of metastable βm-U(body centred tetroganal), α-U(orthorhombic) and elemental Cr(bcc) phases. Upon heating, the metastable βmU phase has progressively transformed to equilibrium α-U structure; before, finally undergoing equilibrium α→β transformation with further increase in temperature. The measured α→β transformation temperature, when extrapolated to 0 K min-1 heating rate has been found to be higher than the currently accepted equilibrium phase diagram estimate. This is due to the kinetic difficulty associated with Cr-diffusion in U-15Cr alloy. The kinetics of α→β transformation upon continuous heating has been modeled in terms of a suitable framework for diffusional transformations, and the effective activation energy for overall transformation has been estimated to be in the range 160-180 kJ mol-1.

  20. Soft black hole absorption rates as conservation laws

    DOE PAGES

    Avery, Steven G.; Schwab, Burkhard U. W.

    2017-04-10

    The absorption rate of low-energy, or soft, electromagnetic radiation by spherically symmetric black holes in arbitrary dimensions is shown to be fixed by conservation of energy and large gauge transformations. Here, we interpret this result as the explicit realization of the Hawking-Perry-Strominger Ward identity for large gauge transformations in the background of a non-evaporating black hole. Along the way we rederive and extend our previous analytic results regarding the absorption rate for the minimal scalar and the photon.