Sample records for tdi ccd camera

  1. A High Resolution TDI CCD Camera forMicrosatellite (HRCM)

    NASA Astrophysics Data System (ADS)

    Hao, Yuncai; Zheng, You; Dong, Ying; Li, Tao; Yu, Shijie

    In resent years it is a important development direction in the commercial remote sensing field to obtain (1-5)m high ground resolution from space using microsatellite. Thanks to progress of new technologies, new materials and new detectors it is possible to develop 1m ground resolution space imaging system with weight less than 20kg. Based on many years works on optical system design a project of very high resolution TDI CCD camera using in space was proposed by the authors of this paper. The performance parameters and optical lay-out of the HRCM was presented. A compact optical design and results analysis for the system was given in the paper also. and small fold mirror to take a line field of view usable for TDI CCD and short outer size. The length along the largest size direction is about 1/4 of the focal length. And two 4096X96(grades) line TDI CCD will be used as the focal plane detector. The special optical parts are fixed near before the final image for getting the ground pixel resolution higher than the Nyquist resolution of the detector using the sub-pixel technique which will be explained in the paper. In the system optical SiC will be used as the mirror material, the C-C composite material will be used as the material of the mechanical structure framework. The circle frame of the primary and secondary mirrors will use one time turning on a machine tool in order to assuring concentric request for alignment of the system. In general the HRCM have the performance parameters with 2.5m focal length, 20 FOV, 1/11relative aperture, (0.4-0.8) micrometer spectral range, 10 micron pixel size of TDI CCD, weight less than 20kg, 1m ground pixel resolution at flying orbit 500km high. Design and analysis of the HRCM put up in the paper indicate that HRCM have many advantages to use it in space. Keywords High resolution TDI CCD Sub-pixel imaging Light-weighted optical system SiC mirror

  2. Timing generator of scientific grade CCD camera and its implementation based on FPGA technology

    NASA Astrophysics Data System (ADS)

    Si, Guoliang; Li, Yunfei; Guo, Yongfei

    2010-10-01

    The Timing Generator's functions of Scientific Grade CCD Camera is briefly presented: it generates various kinds of impulse sequence for the TDI-CCD, video processor and imaging data output, acting as the synchronous coordinator for time in the CCD imaging unit. The IL-E2TDI-CCD sensor produced by DALSA Co.Ltd. use in the Scientific Grade CCD Camera. Driving schedules of IL-E2 TDI-CCD sensor has been examined in detail, the timing generator has been designed for Scientific Grade CCD Camera. FPGA is chosen as the hardware design platform, schedule generator is described with VHDL. The designed generator has been successfully fulfilled function simulation with EDA software and fitted into XC2VP20-FF1152 (a kind of FPGA products made by XILINX). The experiments indicate that the new method improves the integrated level of the system. The Scientific Grade CCD camera system's high reliability, stability and low power supply are achieved. At the same time, the period of design and experiment is sharply shorted.

  3. A configurable distributed high-performance computing framework for satellite's TDI-CCD imaging simulation

    NASA Astrophysics Data System (ADS)

    Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang

    2010-11-01

    This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.

  4. Onboard TDI stage estimation and calibration using SNR analysis

    NASA Astrophysics Data System (ADS)

    Haghshenas, Javad

    2017-09-01

    Electro-Optical design of a push-broom space camera for a Low Earth Orbit (LEO) remote sensing satellite is performed based on the noise analysis of TDI sensors for very high GSDs and low light level missions. It is well demonstrated that the CCD TDI mode of operation provides increased photosensitivity relative to a linear CCD array, without the sacrifice of spatial resolution. However, for satellite imaging, in order to utilize the advantages which the TDI mode of operation offers, attention should be given to the parameters which affect the image quality of TDI sensors such as jitters, vibrations, noises and etc. A predefined TDI stages may not properly satisfy image quality requirement of the satellite camera. Furthermore, in order to use the whole dynamic range of the sensor, imager must be capable to set the TDI stages in every shots based on the affecting parameters. This paper deals with the optimal estimation and setting the stages based on tradeoffs among MTF, noises and SNR. On-board SNR estimation is simulated using the atmosphere analysis based on the MODTRAN algorithm in PcModWin software. According to the noises models, we have proposed a formulation to estimate TDI stages in such a way to satisfy the system SNR requirement. On the other hand, MTF requirement must be satisfy in the same manner. A proper combination of both parameters will guaranty the full dynamic range usage along with the high SNR and image quality.

  5. Transmission electron microscope CCD camera

    DOEpatents

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  6. Earth elevation map production and high resolution sensing camera imaging analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai

    2010-11-01

    The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.

  7. High-speed line-scan camera with digital time delay integration

    NASA Astrophysics Data System (ADS)

    Bodenstorfer, Ernst; Fürtler, Johannes; Brodersen, Jörg; Mayer, Konrad J.; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert

    2007-02-01

    Dealing with high-speed image acquisition and processing systems, the speed of operation is often limited by the amount of available light, due to short exposure times. Therefore, high-speed applications often use line-scan cameras, based on charge-coupled device (CCD) sensors with time delayed integration (TDI). Synchronous shift and accumulation of photoelectric charges on the CCD chip - according to the objects' movement - result in a longer effective exposure time without introducing additional motion blur. This paper presents a high-speed color line-scan camera based on a commercial complementary metal oxide semiconductor (CMOS) area image sensor with a Bayer filter matrix and a field programmable gate array (FPGA). The camera implements a digital equivalent to the TDI effect exploited with CCD cameras. The proposed design benefits from the high frame rates of CMOS sensors and from the possibility of arbitrarily addressing the rows of the sensor's pixel array. For the digital TDI just a small number of rows are read out from the area sensor which are then shifted and accumulated according to the movement of the inspected objects. This paper gives a detailed description of the digital TDI algorithm implemented on the FPGA. Relevant aspects for the practical application are discussed and key features of the camera are listed.

  8. Vacuum compatible miniature CCD camera head

    DOEpatents

    Conder, Alan D.

    2000-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close(0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  9. Toolkit for testing scientific CCD cameras

    NASA Astrophysics Data System (ADS)

    Uzycki, Janusz; Mankiewicz, Lech; Molak, Marcin; Wrochna, Grzegorz

    2006-03-01

    The CCD Toolkit (1) is a software tool for testing CCD cameras which allows to measure important characteristics of a camera like readout noise, total gain, dark current, 'hot' pixels, useful area, etc. The application makes a statistical analysis of images saved in files with FITS format, commonly used in astronomy. A graphical interface is based on the ROOT package, which offers high functionality and flexibility. The program was developed in a way to ensure future compatibility with different operating systems: Windows and Linux. The CCD Toolkit was created for the "Pie of the Sky" project collaboration (2).

  10. Performance of an extended dynamic range time delay integration charge coupled device (XDR TDI CCD) for high-intrascene dynamic range scanning

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Dawson, Robin M.; Andrews, James T.; Bhaskaran, Mahalingham; Furst, David; Hsueh, Fu-Lung; Meray, Grazyna M.; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.

    2003-05-01

    Many applications, such as industrial inspection and overhead reconnaissance benefit from line scanning architectures where time delay integration (TDI) significantly improves sensitivity. CCDs are particularly well suited to the TDI architecture since charge is transferred virtually noiselessly down the column. Sarnoff's TDI CCDs have demonstrated extremely high speeds where a 7200 x 64, 8 um pixel device with 120 output ports demonstrated a vertical line transfer rate greater than 800 kHz. The most recent addition to Sarnoff's TDI technology is the implementation of extended dynamic range (XDR) in high speed, back illuminated TDI CCDs. The optical, intrascene dynamic range can be adjusted in the design of the imager with measured dynamic ranges exceeding 2,000,000:1 with no degradation in low light performance. The device provides a piecewise linear response to light where multiple slopes and break points can be set during the CCD design. A description of the device architecture and measured results from fabricated XDR TDI CCDs are presented.

  11. High-frame rate multiport CCD imager and camera

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Patterson, David R.; Esposito, Benjamin J.; Tower, John R.; Lawler, William B.

    1993-01-01

    A high frame rate visible CCD camera capable of operation up to 200 frames per second is described. The camera produces a 256 X 256 pixel image by using one quadrant of a 512 X 512 16-port, back illuminated CCD imager. Four contiguous outputs are digitally reformatted into a correct, 256 X 256 image. This paper details the architecture and timing used for the CCD drive circuits, analog processing, and the digital reformatter.

  12. Printed circuit board for a CCD camera head

    DOEpatents

    Conder, Alan D.

    2002-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close (0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  13. Solid state television camera (CCD-buried channel)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of an all solid state television camera, which uses a buried channel charge coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array is utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control (i.e., ALC and AGC) techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  14. Driving techniques for high frame rate CCD camera

    NASA Astrophysics Data System (ADS)

    Guo, Weiqiang; Jin, Longxu; Xiong, Jingwu

    2008-03-01

    This paper describes a high-frame rate CCD camera capable of operating at 100 frames/s. This camera utilizes Kodak KAI-0340, an interline transfer CCD with 640(vertical)×480(horizontal) pixels. Two output ports are used to read out CCD data and pixel rates approaching 30 MHz. Because of its reduced effective opacity of vertical charge transfer registers, interline transfer CCD can cause undesired image artifacts, such as random white spots and smear generated in the registers. To increase frame rate, a kind of speed-up structure has been incorporated inside KAI-0340, then it is vulnerable to a vertical stripe effect. The phenomena which mentioned above may severely impair the image quality. To solve these problems, some electronic methods of eliminating these artifacts are adopted. Special clocking mode can dump the unwanted charge quickly, then the fast readout of the images, cleared of smear, follows immediately. Amplifier is used to sense and correct delay mismatch between the dual phase vertical clock pulses, the transition edges become close to coincident, so vertical stripes disappear. Results obtained with the CCD camera are shown.

  15. The development of large-aperture test system of infrared camera and visible CCD camera

    NASA Astrophysics Data System (ADS)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  16. Design and development of a fiber optic TDI CCD-based slot-scan digital mammography system

    NASA Astrophysics Data System (ADS)

    Toker, Emre; Piccaro, Michele F.

    1993-12-01

    We previously reported on the development, design, and clinical evaluation of a CCD-based, high performance, filmless imaging system for stereotactic needle biopsy procedures in mammography. The MammoVision system has a limited imaging area of 50 mm X 50 mm, since it is designed specifically for breast biopsy applications. We are currently developing a new filmless imaging system designed to cover the 18 cm X 24 cm imaging area required for screening and diagnostic mammography. The diagnostic mammography system is based on four 1100 X 330 pixel format, full-frame, scientific grade, front illuminated, MPP mode CCDs, with 24 micrometers X 24 micrometers square pixels Each CCD is coupled to an x-ray intensifying screen via a 1.7:1 fiber optic reducer. The detector assembly (180 mm long and 13.5 mm wide) is scanned across the patient's breast synchronously with the x-ray source, with the CCDs operated in time-delay integration (TDI) mode. The total scan time is 4.0 seconds.

  17. Portal imaging with flat-panel detector and CCD camera

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Wai; Dallas, William J.

    1997-07-01

    This paper provides a comparison of imaging parameters of two portal imaging systems at 6 MV: a flat panel detector and a CCD-camera based portal imaging system. Measurements were made of the signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. Both systems have a linear response with respect to exposure, and the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal- to-noise ratio, which is higher than that observed wit the CCD-camera based portal imaging system. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The paper also presents data on the screen's photon gain (the number of light-photons per interacting x-ray photon), as well as on the magnitude of the Swank-noise, (which describes fluctuation in the screen's photon gain). Images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center, were generated at an exposure of 1 MU. The CCD-camera based system permits detection of aluminum-holes of 0.01194 cm diameter and 0.228 mm depth while the flat-panel detector permits detection of aluminum holes of 0.01194 cm diameter and 0.1626 mm depth, indicating a better signal-to-noise ratio. Rank order filtering was applied to the raw images from the CCD-based system in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-camera and generate 'salt and pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise.

  18. Solid state television camera (CCD-buried channel), revision 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An all solid state television camera was designed which uses a buried channel charge coupled device (CCD) as the image sensor. A 380 x 488 element CCD array is utilized to ensure compatibility with 525-line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (1) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (2) techniques for the elimination or suppression of CCD blemish effects, and (3) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  19. Solid state, CCD-buried channel, television camera study and design

    NASA Technical Reports Server (NTRS)

    Hoagland, K. A.; Balopole, H.

    1976-01-01

    An investigation of an all solid state television camera design, which uses a buried channel charge-coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array was utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a design which addresses the program requirements for a deliverable solid state TV camera.

  20. Typical effects of laser dazzling CCD camera

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin

    2015-05-01

    In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.

  1. CCD Camera Detection of HIV Infection.

    PubMed

    Day, John R

    2017-01-01

    Rapid and precise quantification of the infectivity of HIV is important for molecular virologic studies, as well as for measuring the activities of antiviral drugs and neutralizing antibodies. An indicator cell line, a CCD camera, and image-analysis software are used to quantify HIV infectivity. The cells of the P4R5 line, which express the receptors for HIV infection as well as β-galactosidase under the control of the HIV-1 long terminal repeat, are infected with HIV and then incubated 2 days later with X-gal to stain the infected cells blue. Digital images of monolayers of the infected cells are captured using a high resolution CCD video camera and a macro video zoom lens. A software program is developed to process the images and to count the blue-stained foci of infection. The described method allows for the rapid quantification of the infected cells over a wide range of viral inocula with reproducibility, accuracy and at relatively low cost.

  2. Theodolite with CCD Camera for Safe Measurement of Laser-Beam Pointing

    NASA Technical Reports Server (NTRS)

    Crooke, Julie A.

    2003-01-01

    The simple addition of a charge-coupled-device (CCD) camera to a theodolite makes it safe to measure the pointing direction of a laser beam. The present state of the art requires this to be a custom addition because theodolites are manufactured without CCD cameras as standard or even optional equipment. A theodolite is an alignment telescope equipped with mechanisms to measure the azimuth and elevation angles to the sub-arcsecond level. When measuring the angular pointing direction of a Class ll laser with a theodolite, one could place a calculated amount of neutral density (ND) filters in front of the theodolite s telescope. One could then safely view and measure the laser s boresight looking through the theodolite s telescope without great risk to one s eyes. This method for a Class ll visible wavelength laser is not acceptable to even consider tempting for a Class IV laser and not applicable for an infrared (IR) laser. If one chooses insufficient attenuation or forgets to use the filters, then looking at the laser beam through the theodolite could cause instant blindness. The CCD camera is already commercially available. It is a small, inexpensive, blackand- white CCD circuit-board-level camera. An interface adaptor was designed and fabricated to mount the camera onto the eyepiece of the specific theodolite s viewing telescope. Other equipment needed for operation of the camera are power supplies, cables, and a black-and-white television monitor. The picture displayed on the monitor is equivalent to what one would see when looking directly through the theodolite. Again, the additional advantage afforded by a cheap black-and-white CCD camera is that it is sensitive to infrared as well as to visible light. Hence, one can use the camera coupled to a theodolite to measure the pointing of an infrared as well as a visible laser.

  3. The CTIO Acquisition CCD-TV camera design

    NASA Astrophysics Data System (ADS)

    Schmidt, Ricardo E.

    1990-07-01

    A CCD-based Acquisition TV Camera has been developed at CTIO to replace the existing ISIT units. In a 60 second exposure, the new Camera shows a sixfold improvement in sensitivity over an ISIT used with a Leaky Memory. Integration times can be varied over a 0.5 to 64 second range. The CCD, contained in an evacuated enclosure, is operated at -45 C. Only the image section, an area of 8.5 mm x 6.4 mm, gets exposed to light. Pixel size is 22 microns and either no binning or 2 x 2 binning can be selected. The typical readout rates used vary between 3.5 and 9 microseconds/pixel. Images are stored in a PC/XT/AT, which generates RS-170 video. The contrast in the RS-170 frames is automatically enhanced by the software.

  4. Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware

    NASA Astrophysics Data System (ADS)

    Kang, Y.-W.; Byun, Y. I.; Rhee, J. H.; Oh, S. H.; Kim, D. K.

    2007-12-01

    We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512), KAF-1602E(1536×1024), KAF-3200E(2184×1472) made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.

  5. Adjustment of multi-CCD-chip-color-camera heads

    NASA Astrophysics Data System (ADS)

    Guyenot, Volker; Tittelbach, Guenther; Palme, Martin

    1999-09-01

    The principle of beam-splitter-multi-chip cameras consists in splitting an image into differential multiple images of different spectral ranges and in distributing these onto separate black and white CCD-sensors. The resulting electrical signals from the chips are recombined to produce a high quality color picture on the monitor. Because this principle guarantees higher resolution and sensitivity in comparison to conventional single-chip camera heads, the greater effort is acceptable. Furthermore, multi-chip cameras obtain the compete spectral information for each individual object point while single-chip system must rely on interpolation. In a joint project, Fraunhofer IOF and STRACON GmbH and in future COBRA electronic GmbH develop methods for designing the optics and dichroitic mirror system of such prism color beam splitter devices. Additionally, techniques and equipment for the alignment and assembly of color beam splitter-multi-CCD-devices on the basis of gluing with UV-curable adhesives have been developed, too.

  6. Compression of CCD raw images for digital still cameras

    NASA Astrophysics Data System (ADS)

    Sriram, Parthasarathy; Sudharsanan, Subramania

    2005-03-01

    Lossless compression of raw CCD images captured using color filter arrays has several benefits. The benefits include improved storage capacity, reduced memory bandwidth, and lower power consumption for digital still camera processors. The paper discusses the benefits in detail and proposes the use of a computationally efficient block adaptive scheme for lossless compression. Experimental results are provided that indicate that the scheme performs well for CCD raw images attaining compression factors of more than two. The block adaptive method also compares favorably with JPEG-LS. A discussion is provided indicating how the proposed lossless coding scheme can be incorporated into digital still camera processors enabling lower memory bandwidth and storage requirements.

  7. Proton radiation damage experiment on P-Channel CCD for an X-ray CCD camera onboard the ASTRO-H satellite

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Nishioka, Yusuke; Ohura, Satoshi; Koura, Yoshiaki; Yamauchi, Makoto; Nakajima, Hiroshi; Ueda, Shutaro; Kan, Hiroaki; Anabuki, Naohisa; Nagino, Ryo; Hayashida, Kiyoshi; Tsunemi, Hiroshi; Kohmura, Takayoshi; Ikeda, Shoma; Murakami, Hiroshi; Ozaki, Masanobu; Dotani, Tadayasu; Maeda, Yukie; Sagara, Kenshi

    2013-12-01

    We report on a proton radiation damage experiment on P-channel CCD newly developed for an X-ray CCD camera onboard the ASTRO-H satellite. The device was exposed up to 109 protons cm-2 at 6.7 MeV. The charge transfer inefficiency (CTI) was measured as a function of radiation dose. In comparison with the CTI currently measured in the CCD camera onboard the Suzaku satellite for 6 years, we confirmed that the new type of P-channel CCD is radiation tolerant enough for space use. We also confirmed that a charge-injection technique and lowering the operating temperature efficiently work to reduce the CTI for our device. A comparison with other P-channel CCD experiments is also discussed. We performed a proton radiation damage experiment on a new P-channel CCD. The device was exposed up to 109 protons cm-2 at 6.7 MeV. We confirmed that it is radiation tolerant enough for space use. We confirmed that a charge-injection technique reduces the CTI. We confirmed that lowering the operating temperature also reduces the CTI.

  8. High-performance dual-speed CCD camera system for scientific imaging

    NASA Astrophysics Data System (ADS)

    Simpson, Raymond W.

    1996-03-01

    Traditionally, scientific camera systems were partitioned with a `camera head' containing the CCD and its support circuitry and a camera controller, which provided analog to digital conversion, timing, control, computer interfacing, and power. A new, unitized high performance scientific CCD camera with dual speed readout at 1 X 106 or 5 X 106 pixels per second, 12 bit digital gray scale, high performance thermoelectric cooling, and built in composite video output is described. This camera provides all digital, analog, and cooling functions in a single compact unit. The new system incorporates the A/C converter, timing, control and computer interfacing in the camera, with the power supply remaining a separate remote unit. A 100 Mbyte/second serial link transfers data over copper or fiber media to a variety of host computers, including Sun, SGI, SCSI, PCI, EISA, and Apple Macintosh. Having all the digital and analog functions in the camera made it possible to modify this system for the Woods Hole Oceanographic Institution for use on a remote controlled submersible vehicle. The oceanographic version achieves 16 bit dynamic range at 1.5 X 105 pixels/second, can be operated at depths of 3 kilometers, and transfers data to the surface via a real time fiber optic link.

  9. NEUTRON RADIATION DAMAGE IN CCD CAMERAS AT JOINT EUROPEAN TORUS (JET).

    PubMed

    Milocco, Alberto; Conroy, Sean; Popovichev, Sergey; Sergienko, Gennady; Huber, Alexander

    2017-10-26

    The neutron and gamma radiations in large fusion reactors are responsible for damage to charged couple device (CCD) cameras deployed for applied diagnostics. Based on the ASTM guide E722-09, the 'equivalent 1 MeV neutron fluence in silicon' was calculated for a set of CCD cameras at the Joint European Torus. Such evaluations would be useful to good practice in the operation of the video systems. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Flat-panel detector, CCD cameras, and electron-beam-tube-based video for use in portal imaging

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Way; Dallas, William J.

    1998-07-01

    This paper provides a comparison of some imaging parameters of four portal imaging systems at 6 MV: a flat panel detector, two CCD cameras and an electron beam tube based video camera. Measurements were made of signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. All systems have a linear response with respect to exposure, and with the exception of the electron beam tube based video camera, the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal-to-noise ratio, which is higher than that observed with both CCD-Cameras or with the electron beam tube based video camera. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The measurements of signal-and noise were complemented by images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center. These images were generated at an exposure of 1 MU. The flat-panel detector permits detection of Aluminum holes of 1.2 mm diameter and 1.6 mm depth, indicating the best signal-to-noise ratio. The CCD-cameras rank second and third in signal-to- noise ratio, permitting detection of Aluminum-holes of 1.2 mm diameter and 2.2 mm depth (CCD_1) and of 1.2 mm diameter and 3.2 mm depth (CCD_2) respectively, while the electron beam tube based video camera permits detection of only a hole of 1.2 mm diameter and 4.6 mm depth. Rank Order Filtering was applied to the raw images from the CCD-based systems in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-Camera and generate 'Salt and Pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise. The paper also presents data on the metal-phosphor's photon gain (the number of light-photons per interacting x-ray photon).

  11. Measurement precision and noise analysis of CCD cameras

    NASA Astrophysics Data System (ADS)

    Wu, ZhenSen; Li, Zhiyang; Zhang, Ping

    1993-09-01

    CHINA The lirait precision of CCD camera with 1O. bit analogue to digital conversion is estimated in this paper . The noise effect on ineasurenent precision and the noise characteristics are analyzed in details. The noise process means are also discussed and the diagram of noise properties is given in this paper.

  12. Design principles and applications of a cooled CCD camera for electron microscopy.

    PubMed

    Faruqi, A R

    1998-01-01

    Cooled CCD cameras offer a number of advantages in recording electron microscope images with CCDs rather than film which include: immediate availability of the image in a digital format suitable for further computer processing, high dynamic range, excellent linearity and a high detective quantum efficiency for recording electrons. In one important respect however, film has superior properties: the spatial resolution of CCD detectors tested so far (in terms of point spread function or modulation transfer function) are inferior to film and a great deal of our effort has been spent in designing detectors with improved spatial resolution. Various instrumental contributions to spatial resolution have been analysed and in this paper we discuss the contribution of the phosphor-fibre optics system in this measurement. We have evaluated the performance of a number of detector components and parameters, e.g. different phosphors (and a scintillator), optical coupling with lens or fibre optics with various demagnification factors, to improve the detector performance. The camera described in this paper, which is based on this analysis, uses a tapered fibre optics coupling between the phosphor and the CCD and is installed on a Philips CM12 electron microscope equipped to perform cryo-microscopy. The main use of the camera so far has been in recording electron diffraction patterns from two dimensional crystals of bacteriorhodopsin--from wild type and from different trapped states during the photocycle. As one example of the type of data obtained with the CCD camera a two dimensional Fourier projection map from the trapped O-state is also included. With faster computers, it will soon be possible to undertake this type of work on an on-line basis. Also, with improvements in detector size and resolution, CCD detectors, already ideal for diffraction, will be able to compete with film in the recording of high resolution images.

  13. CTK: A new CCD Camera at the University Observatory Jena

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.

    2009-05-01

    The Cassegrain-Teleskop-Kamera (CTK) is a new CCD imager which is operated at the University Observatory Jena since begin of 2006. This article describes the main characteristics of the new camera. The properties of the CCD detector, the CTK image quality, as well as its detection limits for all filters are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  14. CCD Camera Lens Interface for Real-Time Theodolite Alignment

    NASA Technical Reports Server (NTRS)

    Wake, Shane; Scott, V. Stanley, III

    2012-01-01

    Theodolites are a common instrument in the testing, alignment, and building of various systems ranging from a single optical component to an entire instrument. They provide a precise way to measure horizontal and vertical angles. They can be used to align multiple objects in a desired way at specific angles. They can also be used to reference a specific location or orientation of an object that has moved. Some systems may require a small margin of error in position of components. A theodolite can assist with accurately measuring and/or minimizing that error. The technology is an adapter for a CCD camera with lens to attach to a Leica Wild T3000 Theodolite eyepiece that enables viewing on a connected monitor, and thus can be utilized with multiple theodolites simultaneously. This technology removes a substantial part of human error by relying on the CCD camera and monitors. It also allows image recording of the alignment, and therefore provides a quantitative means to measure such error.

  15. Development of an all-in-one gamma camera/CCD system for safeguard verification

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Il; An, Su Jung; Chung, Yong Hyun; Kwak, Sung-Woo

    2014-12-01

    For the purpose of monitoring and verifying efforts at safeguarding radioactive materials in various fields, a new all-in-one gamma camera/charged coupled device (CCD) system was developed. This combined system consists of a gamma camera, which gathers energy and position information on gamma-ray sources, and a CCD camera, which identifies the specific location in a monitored area. Therefore, 2-D image information and quantitative information regarding gamma-ray sources can be obtained using fused images. A gamma camera consists of a diverging collimator, a 22 × 22 array CsI(Na) pixelated scintillation crystal with a pixel size of 2 × 2 × 6 mm3 and Hamamatsu H8500 position-sensitive photomultiplier tube (PSPMT). The Basler scA640-70gc CCD camera, which delivers 70 frames per second at video graphics array (VGA) resolution, was employed. Performance testing was performed using a Co-57 point source 30 cm from the detector. The measured spatial resolution and sensitivity were 4.77 mm full width at half maximum (FWHM) and 7.78 cps/MBq, respectively. The energy resolution was 18% at 122 keV. These results demonstrate that the combined system has considerable potential for radiation monitoring.

  16. Development of CCD Cameras for Soft X-ray Imaging at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teruya, A. T.; Palmer, N. E.; Schneider, M. B.

    2013-09-01

    The Static X-Ray Imager (SXI) is a National Ignition Facility (NIF) diagnostic that uses a CCD camera to record time-integrated X-ray images of target features such as the laser entrance hole of hohlraums. SXI has two dedicated positioners on the NIF target chamber for viewing the target from above and below, and the X-ray energies of interest are 870 eV for the “soft” channel and 3 – 5 keV for the “hard” channels. The original cameras utilize a large format back-illuminated 2048 x 2048 CCD sensor with 24 micron pixels. Since the original sensor is no longer available, an effortmore » was recently undertaken to build replacement cameras with suitable new sensors. Three of the new cameras use a commercially available front-illuminated CCD of similar size to the original, which has adequate sensitivity for the hard X-ray channels but not for the soft. For sensitivity below 1 keV, Lawrence Livermore National Laboratory (LLNL) had additional CCDs back-thinned and converted to back-illumination for use in the other two new cameras. In this paper we describe the characteristics of the new cameras and present performance data (quantum efficiency, flat field, and dynamic range) for the front- and back-illuminated cameras, with comparisons to the original cameras.« less

  17. Optical synthesizer for a large quadrant-array CCD camera: Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Hagyard, Mona J.

    1992-01-01

    The objective of this program was to design and develop an optical device, an optical synthesizer, that focuses four contiguous quadrants of a solar image on four spatially separated CCD arrays that are part of a unique CCD camera system. This camera and the optical synthesizer will be part of the new NASA-Marshall Experimental Vector Magnetograph, and instrument developed to measure the Sun's magnetic field as accurately as present technology allows. The tasks undertaken in the program are outlined and the final detailed optical design is presented.

  18. Backthinned TDI CCD image sensor design and performance for the Pleiades high resolution Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Materne, A.; Bardoux, A.; Geoffray, H.; Tournier, T.; Kubik, P.; Morris, D.; Wallace, I.; Renard, C.

    2017-11-01

    The PLEIADES-HR Earth observing satellites, under CNES development, combine a 0.7m resolution panchromatic channel, and a multispectral channel allowing a 2.8 m resolution, in 4 spectral bands. The 2 satellites will be placed on a sun-synchronous orbit at an altitude of 695 km. The camera operates in push broom mode, providing images across a 20 km swath. This paper focuses on the specifications, design and performance of the TDI detectors developed by e2v technologies under CNES contract for the panchromatic channel. Design drivers, derived from the mission and satellite requirements, architecture of the sensor and measurement results for key performances of the first prototypes are presented.

  19. A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Kang, Y. W.; Byun, Y. I.

    2007-12-01

    We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512), KAF-1602E (15367times;1024), KAF-3200E (2184×1472) made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.

  20. Measuring high-resolution sky luminance distributions with a CCD camera.

    PubMed

    Tohsing, Korntip; Schrempf, Michael; Riechelmann, Stefan; Schilke, Holger; Seckmeyer, Gunther

    2013-03-10

    We describe how sky luminance can be derived from a newly developed hemispherical sky imager (HSI) system. The system contains a commercial compact charge coupled device (CCD) camera equipped with a fish-eye lens. The projection of the camera system has been found to be nearly equidistant. The luminance from the high dynamic range images has been calculated and then validated with luminance data measured by a CCD array spectroradiometer. The deviation between both datasets is less than 10% for cloudless and completely overcast skies, and differs by no more than 20% for all sky conditions. The global illuminance derived from the HSI pictures deviates by less than 5% and 20% under cloudless and cloudy skies for solar zenith angles less than 80°, respectively. This system is therefore capable of measuring sky luminance with the high spatial and temporal resolution of more than a million pixels and every 20 s respectively.

  1. SU-E-T-161: SOBP Beam Analysis Using Light Output of Scintillation Plate Acquired by CCD Camera.

    PubMed

    Cho, S; Lee, S; Shin, J; Min, B; Chung, K; Shin, D; Lim, Y; Park, S

    2012-06-01

    To analyze Bragg-peak beams in SOBP (spread-out Bragg-peak) beam using CCD (charge-coupled device) camera - scintillation screen system. We separated each Bragg-peak beam using light output of high sensitivity scintillation material acquired by CCD camera and compared with Bragg-peak beams calculated by Monte Carlo simulation. In this study, CCD camera - scintillation screen system was constructed with a high sensitivity scintillation plate (Gd2O2S:Tb) and a right-angled prismatic PMMA phantom, and a Marlin F-201B, EEE-1394 CCD camera. SOBP beam irradiated by the double scattering mode of a PROTEUS 235 proton therapy machine in NCC is 8 cm width, 13 g/cm 2 range. The gain, dose rate and current of this beam is 50, 2 Gy/min and 70 nA, respectively. Also, we simulated the light output of scintillation plate for SOBP beam using Geant4 toolkit. We evaluated the light output of high sensitivity scintillation plate according to intergration time (0.1 - 1.0 sec). The images of CCD camera during the shortest intergration time (0.1 sec) were acquired automatically and randomly, respectively. Bragg-peak beams in SOBP beam were analyzed by the acquired images. Then, the SOBP beam used in this study was calculated by Geant4 toolkit and Bragg-peak beams in SOBP beam were obtained by ROOT program. The SOBP beam consists of 13 Bragg-peak beams. The results of experiment were compared with that of simulation. We analyzed Bragg-peak beams in SOBP beam using light output of scintillation plate acquired by CCD camera and compared with that of Geant4 simulation. We are going to study SOBP beam analysis using more effective the image acquisition technique. © 2012 American Association of Physicists in Medicine.

  2. A USB 2.0 computer interface for the UCO/Lick CCD cameras

    NASA Astrophysics Data System (ADS)

    Wei, Mingzhi; Stover, Richard J.

    2004-09-01

    The new UCO/Lick Observatory CCD camera uses a 200 MHz fiber optic cable to transmit image data and an RS232 serial line for low speed bidirectional command and control. Increasingly RS232 is a legacy interface supported on fewer computers. The fiber optic cable requires either a custom interface board that is plugged into the mainboard of the image acquisition computer to accept the fiber directly or an interface converter that translates the fiber data onto a widely used standard interface. We present here a simple USB 2.0 interface for the UCO/Lick camera. A single USB cable connects to the image acquisition computer and the camera's RS232 serial and fiber optic cables plug into the USB interface. Since most computers now support USB 2.0 the Lick interface makes it possible to use the camera on essentially any modern computer that has the supporting software. No hardware modifications or additions to the computer are needed. The necessary device driver software has been written for the Linux operating system which is now widely used at Lick Observatory. The complete data acquisition software for the Lick CCD camera is running on a variety of PC style computers as well as an HP laptop.

  3. Optimum color filters for CCD digital cameras

    NASA Astrophysics Data System (ADS)

    Engelhardt, Kai; Kunz, Rino E.; Seitz, Peter; Brunner, Harald; Knop, Karl

    1993-12-01

    As part of the ESPRIT II project No. 2103 (MASCOT) a high performance prototype color CCD still video camera was developed. Intended for professional usage such as in the graphic arts, the camera provides a maximum resolution of 3k X 3k full color pixels. A high colorimetric performance was achieved through specially designed dielectric filters and optimized matrixing. The color transformation was obtained by computer simulation of the camera system and non-linear optimization which minimized the perceivable color errors as measured in the 1976 CIELUV uniform color space for a set of about 200 carefully selected test colors. The color filters were designed to allow perfect colorimetric reproduction in principle and at the same time with imperceptible color noise and with special attention to fabrication tolerances. The camera system includes a special real-time digital color processor which carries out the color transformation. The transformation can be selected from a set of sixteen matrices optimized for different illuminants and output devices. Because the actual filter design was based on slightly incorrect data the prototype camera showed a mean colorimetric error of 2.7 j.n.d. (CIELUV) in experiments. Using correct input data in the redesign of the filters, a mean colorimetric error of only 1 j.n.d. (CIELUV) seems to be feasible, implying that it is possible with such an optimized color camera to achieve such a high colorimetric performance that the reproduced colors in an image cannot be distinguished from the original colors in a scene, even in direct comparison.

  4. Time-resolved spectra of dense plasma focus using spectrometer, streak camera, and CCD combination.

    PubMed

    Goldin, F J; Meehan, B T; Hagen, E C; Wilkins, P R

    2010-10-01

    A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny-Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.

  5. Curved CCD detector devices and arrays for multispectral astrophysical applications and terrestrial stereo panoramic cameras

    NASA Astrophysics Data System (ADS)

    Swain, Pradyumna; Mark, David

    2004-09-01

    The emergence of curved CCD detectors as individual devices or as contoured mosaics assembled to match the curved focal planes of astronomical telescopes and terrestrial stereo panoramic cameras represents a major optical design advancement that greatly enhances the scientific potential of such instruments. In altering the primary detection surface within the telescope"s optical instrumentation system from flat to curved, and conforming the applied CCD"s shape precisely to the contour of the telescope"s curved focal plane, a major increase in the amount of transmittable light at various wavelengths through the system is achieved. This in turn enables multi-spectral ultra-sensitive imaging with much greater spatial resolution necessary for large and very large telescope applications, including those involving infrared image acquisition and spectroscopy, conducted over very wide fields of view. For earth-based and space-borne optical telescopes, the advent of curved CCD"s as the principle detectors provides a simplification of the telescope"s adjoining optics, reducing the number of optical elements and the occurrence of optical aberrations associated with large corrective optics used to conform to flat detectors. New astronomical experiments may be devised in the presence of curved CCD applications, in conjunction with large format cameras and curved mosaics, including three dimensional imaging spectroscopy conducted over multiple wavelengths simultaneously, wide field real-time stereoscopic tracking of remote objects within the solar system at high resolution, and deep field survey mapping of distant objects such as galaxies with much greater multi-band spatial precision over larger sky regions. Terrestrial stereo panoramic cameras equipped with arrays of curved CCD"s joined with associative wide field optics will require less optical glass and no mechanically moving parts to maintain continuous proper stereo convergence over wider perspective viewing fields than

  6. Dynamic photoelasticity by TDI imaging

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Sajan, M. R.

    2001-06-01

    High speed photographic system like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for the recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording system requiring time consuming and tedious wet processing of the films. Digital cameras are replacing the conventional cameras, to certain extent in static experiments. Recently, there is lots of interest in development and modifying CCD architectures and recording arrangements for dynamic scenes analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration mode for digitally recording dynamic photoelastic stress patterns. Applications in strobe and streak photoelastic pattern recording and system limitations will be explained in the paper.

  7. Optics design of laser spotter camera for ex-CCD sensor

    NASA Astrophysics Data System (ADS)

    Nautiyal, R. P.; Mishra, V. K.; Sharma, P. K.

    2015-06-01

    Development of Laser based instruments like laser range finder and laser ranger designator has received prominence in modern day military application. Aiming the laser on the target is done with the help of a bore sighted graticule as human eye cannot see the laser beam directly. To view Laser spot there are two types of detectors available, InGaAs detector and Ex-CCD detector, the latter being a cost effective solution. In this paper optics design for Ex-CCD based camera is discussed. The designed system is light weight and compact and has the ability to see the 1064nm pulsed laser spot upto a range of 5 km.

  8. PN-CCD camera for XMM: performance of high time resolution/bright source operating modes

    NASA Astrophysics Data System (ADS)

    Kendziorra, Eckhard; Bihler, Edgar; Grubmiller, Willy; Kretschmar, Baerbel; Kuster, Markus; Pflueger, Bernhard; Staubert, Ruediger; Braeuninger, Heinrich W.; Briel, Ulrich G.; Meidinger, Norbert; Pfeffermann, Elmar; Reppin, Claus; Stoetter, Diana; Strueder, Lothar; Holl, Peter; Kemmer, Josef; Soltau, Heike; von Zanthier, Christoph

    1997-10-01

    The pn-CCD camera is developed as one of the focal plane instruments for the European photon imaging camera (EPIC) on board the x-ray multi mirror (XMM) mission to be launched in 1999. The detector consists of four quadrants of three pn-CCDs each, which are integrated on one silicon wafer. Each CCD has 200 by 64 pixels (150 micrometer by 150 micrometers) with 280 micrometers depletion depth. One CCD of a quadrant is read out at a time, while the four quadrants can be processed independently of each other. In standard imaging mode the CCDs are read out sequentially every 70 ms. Observations of point sources brighter than 1 mCrab will be effected by photon pile- up. However, special operating modes can be used to observe bright sources up to 150 mCrab in timing mode with 30 microseconds time resolution and very bright sources up to several crab in burst mode with 7 microseconds time resolution. We have tested one quadrant of the EPIC pn-CCD camera at line energies from 0.52 keV to 17.4 keV at the long beam test facility Panter in the focus of the qualification mirror module for XMM. In order to test the time resolution of the system, a mechanical chopper was used to periodically modulate the beam intensity. Pulse periods down to 0.7 ms were generated. This paper describes the performance of the pn-CCD detector in timing and burst readout modes with special emphasis on energy and time resolution.

  9. LAMOST CCD camera-control system based on RTS2

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng

    2018-05-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.

  10. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    PubMed Central

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.

    2014-01-01

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510

  11. Experimental research on femto-second laser damaging array CCD cameras

    NASA Astrophysics Data System (ADS)

    Shao, Junfeng; Guo, Jin; Wang, Ting-feng; Wang, Ming

    2013-05-01

    Charged Coupled Devices (CCD) are widely used in military and security applications, such as airborne and ship based surveillance, satellite reconnaissance and so on. Homeland security requires effective means to negate these advanced overseeing systems. Researches show that CCD based EO systems can be significantly dazzled or even damaged by high-repetition rate pulsed lasers. Here, we report femto - second laser interaction with CCD camera, which is probable of great importance in future. Femto - second laser is quite fresh new lasers, which has unique characteristics, such as extremely short pulse width (1 fs = 10-15 s), extremely high peak power (1 TW = 1012W), and especially its unique features when interacting with matters. Researches in femto second laser interaction with materials (metals, dielectrics) clearly indicate non-thermal effect dominates the process, which is of vast difference from that of long pulses interaction with matters. Firstly, the damage threshold test are performed with femto second laser acting on the CCD camera. An 800nm, 500μJ, 100fs laser pulse is used to irradiate interline CCD solid-state image sensor in the experiment. In order to focus laser energy onto tiny CCD active cells, an optical system of F/5.6 is used. A Sony production CCDs are chose as typical targets. The damage threshold is evaluated with multiple test data. Point damage, line damage and full array damage were observed when the irradiated pulse energy continuously increase during the experiment. The point damage threshold is found 151.2 mJ/cm2.The line damage threshold is found 508.2 mJ/cm2.The full-array damage threshold is found to be 5.91 J/cm2. Although the phenomenon is almost the same as that of nano laser interaction with CCD, these damage thresholds are substantially lower than that of data obtained from nano second laser interaction with CCD. Then at the same time, the electric features after different degrees of damage are tested with electronic multi

  12. The In-flight Spectroscopic Performance of the Swift XRT CCD Camera During 2006-2007

    NASA Technical Reports Server (NTRS)

    Godet, O.; Beardmore, A.P.; Abbey, A.F.; Osborne, J.P.; Page, K.L.; Evans, P.; Starling, R.; Wells, A.A.; Angelini, L.; Burrows, D.N.; hide

    2007-01-01

    The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.

  13. Using a trichromatic CCD camera for spectral skylight estimation.

    PubMed

    López-Alvarez, Miguel A; Hernández-Andrés, Javier; Romero, Javier; Olmo, F J; Cazorla, A; Alados-Arboledas, L

    2008-12-01

    In a previous work [J. Opt. Soc. Am. A 24, 942-956 (2007)] we showed how to design an optimum multispectral system aimed at spectral recovery of skylight. Since high-resolution multispectral images of skylight could be interesting for many scientific disciplines, here we also propose a nonoptimum but much cheaper and faster approach to achieve this goal by using a trichromatic RGB charge-coupled device (CCD) digital camera. The camera is attached to a fish-eye lens, hence permitting us to obtain a spectrum of every point of the skydome corresponding to each pixel of the image. In this work we show how to apply multispectral techniques to the sensors' responses of a common trichromatic camera in order to obtain skylight spectra from them. This spectral information is accurate enough to estimate experimental values of some climate parameters or to be used in algorithms for automatic cloud detection, among many other possible scientific applications.

  14. The design and development of low- and high-voltage ASICs for space-borne CCD cameras

    NASA Astrophysics Data System (ADS)

    Waltham, N.; Morrissey, Q.; Clapp, M.; Bell, S.; Jones, L.; Torbet, M.

    2017-12-01

    The CCD remains the pre-eminent visible and UV wavelength image sensor in space science, Earth and planetary remote sensing. However, the design of space-qualified CCD readout electronics is a significant challenge with requirements for low-volume, low-mass, low-power, high-reliability and tolerance to space radiation. Space-qualified components are frequently unavailable and up-screened commercial components seldom meet project or international space agency requirements. In this paper, we describe an alternative approach of designing and space-qualifying a series of low- and high-voltage mixed-signal application-specific integrated circuits (ASICs), the ongoing development of two low-voltage ASICs with successful flight heritage, and two new high-voltage designs. A challenging sub-system of any CCD camera is the video processing and digitisation electronics. We describe recent developments to improve performance and tolerance to radiation-induced single event latchup of a CCD video processing ASIC originally developed for NASA's Solar Terrestrial Relations Observatory and Solar Dynamics Observatory. We also describe a programme to develop two high-voltage ASICs to address the challenges presented with generating a CCD's bias voltages and drive clocks. A 0.35 μm, 50 V tolerant, CMOS process has been used to combine standard low-voltage 3.3 V transistors with high-voltage 50 V diffused MOSFET transistors that enable output buffers to drive CCD bias drains, gates and clock electrodes directly. We describe a CCD bias voltage generator ASIC that provides 24 independent and programmable 0-32 V outputs. Each channel incorporates a 10-bit digital-to-analogue converter, provides current drive of up to 20 mA into loads of 10 μF, and includes current-limiting and short-circuit protection. An on-chip telemetry system with a 12-bit analogue-to-digital converter enables the outputs and multiple off-chip camera voltages to be monitored. The ASIC can drive one or more CCDs and

  15. MMW/THz imaging using upconversion to visible, based on glow discharge detector array and CCD camera

    NASA Astrophysics Data System (ADS)

    Aharon, Avihai; Rozban, Daniel; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, Natan S.

    2017-10-01

    An inexpensive upconverting MMW/THz imaging method is suggested here. The method is based on glow discharge detector (GDD) and silicon photodiode or simple CCD/CMOS camera. The GDD was previously found to be an excellent room-temperature MMW radiation detector by measuring its electrical current. The GDD is very inexpensive and it is advantageous due to its wide dynamic range, broad spectral range, room temperature operation, immunity to high power radiation, and more. An upconversion method is demonstrated here, which is based on measuring the visual light emitting from the GDD rather than its electrical current. The experimental setup simulates a setup that composed of a GDD array, MMW source, and a basic CCD/CMOS camera. The visual light emitting from the GDD array is directed to the CCD/CMOS camera and the change in the GDD light is measured using image processing algorithms. The combination of CMOS camera and GDD focal plane arrays can yield a faster, more sensitive, and very inexpensive MMW/THz camera, eliminating the complexity of the electronic circuits and the internal electronic noise of the GDD. Furthermore, three dimensional imaging systems based on scanning prohibited real time operation of such imaging systems. This is easily solved and is economically feasible using a GDD array. This array will enable us to acquire information on distance and magnitude from all the GDD pixels in the array simultaneously. The 3D image can be obtained using methods like frequency modulation continuous wave (FMCW) direct chirp modulation, and measuring the time of flight (TOF).

  16. Systems approach to the design of the CCD sensors and camera electronics for the AIA and HMI instruments on solar dynamics observatory

    NASA Astrophysics Data System (ADS)

    Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.

    2017-11-01

    Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.

  17. Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera

    NASA Technical Reports Server (NTRS)

    Stanojev, B. J.; Houts, M.

    2004-01-01

    Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.

  18. CTK-II & RTK: The CCD-cameras operated at the auxiliary telescopes of the University Observatory Jena

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.

    2016-03-01

    The Cassegrain-Teleskop-Kamera (CTK-II) and the Refraktor-Teleskop-Kamera (RTK) are two CCD-imagers which are operated at the 25 cm Cassegrain and 20 cm refractor auxiliary telescopes of the University Observatory Jena. This article describes the main characteristics of these instruments. The properties of the CCD-detectors, the astrometry, the image quality, and the detection limits of both CCD-cameras, as well as some results of ongoing observing projects, carried out with these instruments, are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  19. Design and realization of an AEC&AGC system for the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun

    2015-08-01

    An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.

  20. STK: A new CCD camera at the University Observatory Jena

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.; Berthold, T.

    2010-04-01

    The Schmidt-Teleskop-Kamera (STK) is a new CCD-imager, which is operated since begin of 2009 at the University Observatory Jena. This article describes the main characteristics of the new camera. The properties of the STK detector, the astrometry and image quality of the STK, as well as its detection limits at the 0.9 m telescope of the University Observatory Jena are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  1. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    NASA Astrophysics Data System (ADS)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  2. A compact high-speed pnCCD camera for optical and x-ray applications

    NASA Astrophysics Data System (ADS)

    Ihle, Sebastian; Ordavo, Ivan; Bechteler, Alois; Hartmann, Robert; Holl, Peter; Liebel, Andreas; Meidinger, Norbert; Soltau, Heike; Strüder, Lothar; Weber, Udo

    2012-07-01

    We developed a camera with a 264 × 264 pixel pnCCD of 48 μm size (thickness 450 μm) for X-ray and optical applications. It has a high quantum efficiency and can be operated up to 400 / 1000 Hz (noise≍ 2:5 ° ENC / ≍4:0 ° ENC). High-speed astronomical observations can be performed with low light levels. Results of test measurements will be presented. The camera is well suitable for ground based preparation measurements for future X-ray missions. For X-ray single photons, the spatial position can be determined with significant sub-pixel resolution.

  3. Optical readout of a two phase liquid argon TPC using CCD camera and THGEMs

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K. J.; Smith, N. A.; Touramanis, C.; Walker, J.

    2014-02-01

    This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by THick Gas Electron Multipliers (THGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double THGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the THGEM gain was ≈ 1000 and using a 1 msec exposure the CCD captured single alpha tracks. Successful operation of the CCD camera in two-phase cryogenic mode was also achieved. Using a 10 sec exposure a photograph of secondary scintillation light induced by the Am-241 source in LAr has been captured for the first time.

  4. LED characterization for development of on-board calibration unit of CCD-based advanced wide-field sensor camera of Resourcesat-2A

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Verma, Anurag

    2016-05-01

    The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.

  5. Upwelling Radiance at 976 nm Measured from Space Using a CCD Camera

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Kovalik, Joseph M.; Oaida, Bogdan V.; Abrahamson, Matthew J.; Wright, Malcolm W.

    2015-01-01

    The Optical Payload for Lasercomm Science (OPALS) Flight System on-board the International Space Station uses a charge coupled device (CCD) camera for receiving a beacon laser from Earth. Relative measurements of the background contributed by upwelling radiance under diverse illumination conditions and varying terrain is presented. In some cases clouds in the field-of-view allowed a comparison of terrestrial and cloud-top upwelling radiance. In this paper we will report these measurements and examine the extent of agreement with atmospheric model predictions.

  6. Scientific CCD technology at JPL

    NASA Technical Reports Server (NTRS)

    Janesick, J.; Collins, S. A.; Fossum, E. R.

    1991-01-01

    Charge-coupled devices (CCD's) were recognized for their potential as an imaging technology almost immediately following their conception in 1970. Twenty years later, they are firmly established as the technology of choice for visible imaging. While consumer applications of CCD's, especially the emerging home video camera market, dominated manufacturing activity, the scientific market for CCD imagers has become significant. Activity of the Jet Propulsion Laboratory and its industrial partners in the area of CCD imagers for space scientific instruments is described. Requirements for scientific imagers are significantly different from those needed for home video cameras, and are described. An imager for an instrument on the CRAF/Cassini mission is described in detail to highlight achieved levels of performance.

  7. On-ground and in-orbit characterisation plan for the PLATO CCD normal cameras

    NASA Astrophysics Data System (ADS)

    Gow, J. P. D.; Walton, D.; Smith, A.; Hailey, M.; Curry, P.; Kennedy, T.

    2017-11-01

    PLAnetary Transits and Ocillations (PLATO) is the third European Space Agency (ESA) medium class mission in ESA's cosmic vision programme due for launch in 2026. PLATO will carry out high precision un-interrupted photometric monitoring in the visible band of large samples of bright solar-type stars. The primary mission goal is to detect and characterise terrestrial exoplanets and their systems with emphasis on planets orbiting in the habitable zone, this will be achieved using light curves to detect planetary transits. PLATO uses a novel multi- instrument concept consisting of 26 small wide field cameras The 26 cameras are made up of a telescope optical unit, four Teledyne e2v CCD270s mounted on a focal plane array and connected to a set of Front End Electronics (FEE) which provide CCD control and readout. There are 2 fast cameras with high read-out cadence (2.5 s) for magnitude ~ 4-8 stars, being developed by the German Aerospace Centre and 24 normal (N) cameras with a cadence of 25 s to monitor stars with a magnitude greater than 8. The N-FEEs are being developed at University College London's Mullard Space Science Laboratory (MSSL) and will be characterised along with the associated CCDs. The CCDs and N-FEEs will undergo rigorous on-ground characterisation and the performance of the CCDs will continue to be monitored in-orbit. This paper discusses the initial development of the experimental arrangement, test procedures and current status of the N-FEE. The parameters explored will include gain, quantum efficiency, pixel response non-uniformity, dark current and Charge Transfer Inefficiency (CTI). The current in-orbit characterisation plan is also discussed which will enable the performance of the CCDs and their associated N-FEE to be monitored during the mission, this will include measurements of CTI giving an indication of the impact of radiation damage in the CCDs.

  8. Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera.

    PubMed

    Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng

    2017-06-20

    The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.

  9. Event-Driven Random-Access-Windowing CCD Imaging System

    NASA Technical Reports Server (NTRS)

    Monacos, Steve; Portillo, Angel; Ortiz, Gerardo; Alexander, James; Lam, Raymond; Liu, William

    2004-01-01

    A charge-coupled-device (CCD) based high-speed imaging system, called a realtime, event-driven (RARE) camera, is undergoing development. This camera is capable of readout from multiple subwindows [also known as regions of interest (ROIs)] within the CCD field of view. Both the sizes and the locations of the ROIs can be controlled in real time and can be changed at the camera frame rate. The predecessor of this camera was described in High-Frame-Rate CCD Camera Having Subwindow Capability (NPO- 30564) NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 26. The architecture of the prior camera requires tight coupling between camera control logic and an external host computer that provides commands for camera operation and processes pixels from the camera. This tight coupling limits the attainable frame rate and functionality of the camera. The design of the present camera loosens this coupling to increase the achievable frame rate and functionality. From a host computer perspective, the readout operation in the prior camera was defined on a per-line basis; in this camera, it is defined on a per-ROI basis. In addition, the camera includes internal timing circuitry. This combination of features enables real-time, event-driven operation for adaptive control of the camera. Hence, this camera is well suited for applications requiring autonomous control of multiple ROIs to track multiple targets moving throughout the CCD field of view. Additionally, by eliminating the need for control intervention by the host computer during the pixel readout, the present design reduces ROI-readout times to attain higher frame rates. This camera (see figure) includes an imager card consisting of a commercial CCD imager and two signal-processor chips. The imager card converts transistor/ transistor-logic (TTL)-level signals from a field programmable gate array (FPGA) controller card. These signals are transmitted to the imager card via a low-voltage differential signaling (LVDS) cable

  10. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  11. Sensors for 3D Imaging: Metric Evaluation and Calibration of a CCD/CMOS Time-of-Flight Camera.

    PubMed

    Chiabrando, Filiberto; Chiabrando, Roberto; Piatti, Dario; Rinaudo, Fulvio

    2009-01-01

    3D imaging with Time-of-Flight (ToF) cameras is a promising recent technique which allows 3D point clouds to be acquired at video frame rates. However, the distance measurements of these devices are often affected by some systematic errors which decrease the quality of the acquired data. In order to evaluate these errors, some experimental tests on a CCD/CMOS ToF camera sensor, the SwissRanger (SR)-4000 camera, were performed and reported in this paper. In particular, two main aspects are treated: the calibration of the distance measurements of the SR-4000 camera, which deals with evaluation of the camera warm up time period, the distance measurement error evaluation and a study of the influence on distance measurements of the camera orientation with respect to the observed object; the second aspect concerns the photogrammetric calibration of the amplitude images delivered by the camera using a purpose-built multi-resolution field made of high contrast targets.

  12. High-speed imaging using 3CCD camera and multi-color LED flashes

    NASA Astrophysics Data System (ADS)

    Hijazi, Ala; Friedl, Alexander; Cierpka, Christian; Kähler, Christian; Madhavan, Vis

    2017-11-01

    This paper demonstrates the possibility of capturing full-resolution, high-speed image sequences using a regular 3CCD color camera in conjunction with high-power light emitting diodes of three different colors. This is achieved using a novel approach, referred to as spectral-shuttering, where a high-speed image sequence is captured using short duration light pulses of different colors that are sent consecutively in very close succession. The work presented in this paper demonstrates the feasibility of configuring a high-speed camera system using low cost and readily available off-the-shelf components. This camera can be used for recording six-frame sequences at frame rates up to 20 kHz or three-frame sequences at even higher frame rates. Both color crosstalk and spatial matching between the different channels of the camera are found to be within acceptable limits. A small amount of magnification difference between the different channels is found and a simple calibration procedure for correcting the images is introduced. The images captured using the approach described here are of good quality to be used for obtaining full-field quantitative information using techniques such as digital image correlation and particle image velocimetry. A sequence of six high-speed images of a bubble splash recorded at 400 Hz is presented as a demonstration.

  13. Performance Characterization of the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) CCD Cameras

    NASA Technical Reports Server (NTRS)

    Joiner, Reyann; Kobayashi, Ken; Winebarger, Amy; Champey, Patrick

    2014-01-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument currently being developed by NASA's Marshall Space Flight Center (MSFC), the National Astronomical Observatory of Japan (NAOJ), and other partners. The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's chromosphere. The polarized spectrum imaged by the CCD cameras will capture information about the local magnetic field, allowing for measurements of magnetic strength and structure. In order to make accurate measurements of this effect, the performance characteristics of the three on- board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, read noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of 2.0+/- 0.5 e--/DN, a read noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non- linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.

  14. Linear CCD attitude measurement system based on the identification of the auxiliary array CCD

    NASA Astrophysics Data System (ADS)

    Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan

    2015-10-01

    Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.

  15. Realization of Vilnius UPXYZVS photometric system for AltaU42 CCD camera at the MAO NAS of Ukraine

    NASA Astrophysics Data System (ADS)

    Vid'Machenko, A. P.; Andruk, V. M.; Samoylov, V. S.; Delets, O. S.; Nevodovsky, P. V.; Ivashchenko, Yu. M.; Kovalchuk, G. U.

    2005-06-01

    The description of two-inch glass filters of the Vilnius UPXYZVS photometric system, which are made at the Main Astronomical Observatory of NAS of Ukraine for AltaU42 CCD camera with format of 2048×2048 pixels, is presented in the paper. Reaction curves of instrumental system are shown. Estimations of minimal star's magnitudes for each filter's band in comparison with the visual V one are obtained. New software for automation of CCD frames processing is developed in program shell of LINUX/MIDAS/ROMAFOT. It is planned to carry out observations with the purpose to create the catalogue of primary UPXYZVS CCD standards in selected field of the sky for some radio-sources, globular and open clusters, etc. Numerical estimations of astrometric and photometric accuracy are obtained.

  16. Wide field NEO survey 1.0-m telescope with 10 2k×4k mosaic CCD camera

    NASA Astrophysics Data System (ADS)

    Isobe, Syuzo; Asami, Atsuo; Asher, David J.; Hashimoto, Toshiyasu; Nakano, Shi-ichi; Nishiyama, Kota; Ohshima, Yoshiaki; Terazono, Junya; Umehara, Hiroaki; Yoshikawa, Makoto

    2002-12-01

    We developed a new 1.0 m telescope with a 3 degree flat focal plane to which a mosaic CCD camera with 10 2k×4k chips is fixed. The system was set up in February 2002, and is now undergoing the final fine adjustments. Since the telescope has a focal length of 3 m, a field of 7.5 square degrees is covered in one image. In good seeing conditions, 1.5 arc seconds, at the site located in Bisei town, Okayama prefecture in Japan, we can expect to detect down to 20th magnitude stars with an exposure time of 60 seconds. Considering a read-out time, 46 seconds, of the CCD camera, one image is taken in every two minutes, and about 2,100 square degrees of field is expected to be covered in one clear night. This system is very effective for survey work, especially for Near-Earth-Asteroid detection.

  17. Deep-UV-sensitive high-frame-rate backside-illuminated CCD camera developments

    NASA Astrophysics Data System (ADS)

    Dawson, Robin M.; Andreas, Robert; Andrews, James T.; Bhaskaran, Mahalingham; Farkas, Robert; Furst, David; Gershstein, Sergey; Grygon, Mark S.; Levine, Peter A.; Meray, Grazyna M.; O'Neal, Michael; Perna, Steve N.; Proefrock, Donald; Reale, Michael; Soydan, Ramazan; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.; Zanzucchi, Pete

    2002-04-01

    New applications for ultra-violet imaging are emerging in the fields of drug discovery and industrial inspection. High throughput is critical for these applications where millions of drug combinations are analyzed in secondary screenings or high rate inspection of small feature sizes over large areas is required. Sarnoff demonstrated in1990 a back illuminated, 1024 X 1024, 18 um pixel, split-frame-transfer device running at > 150 frames per second with high sensitivity in the visible spectrum. Sarnoff designed, fabricated and delivered cameras based on these CCDs and is now extending this technology to devices with higher pixel counts and higher frame rates through CCD architectural enhancements. The high sensitivities obtained in the visible spectrum are being pushed into the deep UV to support these new medical and industrial inspection applications. Sarnoff has achieved measured quantum efficiencies > 55% at 193 nm, rising to 65% at 300 nm, and remaining almost constant out to 750 nm. Optimization of the sensitivity is being pursued to tailor the quantum efficiency for particular wavelengths. Characteristics of these high frame rate CCDs and cameras will be described and results will be presented demonstrating high UV sensitivity down to 150 nm.

  18. High-resolution CCD imaging alternatives

    NASA Astrophysics Data System (ADS)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  19. CCD-camera-based diffuse optical tomography to study ischemic stroke in preclinical rat models

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Jing; Niu, Haijing; Liu, Yueming; Su, Jianzhong; Liu, Hanli

    2011-02-01

    Stroke, due to ischemia or hemorrhage, is the neurological deficit of cerebrovasculature and is the third leading cause of death in the United States. More than 80 percent of stroke patients are ischemic stroke due to blockage of artery in the brain by thrombosis or arterial embolism. Hence, development of an imaging technique to image or monitor the cerebral ischemia and effect of anti-stoke therapy is more than necessary. Near infrared (NIR) optical tomographic technique has a great potential to be utilized as a non-invasive image tool (due to its low cost and portability) to image the embedded abnormal tissue, such as a dysfunctional area caused by ischemia. Moreover, NIR tomographic techniques have been successively demonstrated in the studies of cerebro-vascular hemodynamics and brain injury. As compared to a fiberbased diffuse optical tomographic system, a CCD-camera-based system is more suitable for pre-clinical animal studies due to its simpler setup and lower cost. In this study, we have utilized the CCD-camera-based technique to image the embedded inclusions based on tissue-phantom experimental data. Then, we are able to obtain good reconstructed images by two recently developed algorithms: (1) depth compensation algorithm (DCA) and (2) globally convergent method (GCM). In this study, we will demonstrate the volumetric tomographic reconstructed results taken from tissuephantom; the latter has a great potential to determine and monitor the effect of anti-stroke therapies.

  20. Double Star Measurements at the Southern Sky with 50 cm Reflectors and Fast CCD Cameras in 2012

    NASA Astrophysics Data System (ADS)

    Anton, Rainer

    2014-07-01

    A Cassegrain and a Ritchey-Chrétien reflector, both with 50 cm aperture, were used in Namibia for recordings of double stars with fast CCD cameras and a notebook computer. From superposition of "lucky images", measurements of 39 double and multiple systems were obtained and compared with literature data. Occasional deviations are discussed. Images of some remarkable systems are also presented.

  1. Dynamic imaging with a triggered and intensified CCD camera system in a high-intensity neutron beam

    NASA Astrophysics Data System (ADS)

    Vontobel, P.; Frei, G.; Brunner, J.; Gildemeister, A. E.; Engelhardt, M.

    2005-04-01

    When time-dependent processes within metallic structures should be inspected and visualized, neutrons are well suited due to their high penetration through Al, Ag, Ti or even steel. Then it becomes possible to inspect the propagation, distribution and evaporation of organic liquids as lubricants, fuel or water. The principle set-up of a suited real-time system was implemented and tested at the radiography facility NEUTRA of PSI. The highest beam intensity there is 2×107 cm s, which enables to observe sequences in a reasonable time and quality. The heart of the detection system is the MCP intensified CCD camera PI-Max with a Peltier cooled chip (1300×1340 pixels). The intensifier was used for both gating and image enhancement, where as the information was accumulated over many single frames on the chip before readout. Although, a 16-bit dynamic range is advertised by the camera manufacturers, it must be less due to the inherent noise level from the intensifier. The obtained result should be seen as the starting point to go ahead to fit the different requirements of car producers in respect to fuel injection, lubricant distribution, mechanical stability and operation control. Similar inspections will be possible for all devices with repetitive operation principle. Here, we report about two measurements dealing with the lubricant distribution in a running motorcycle motor turning at 1200 rpm. We were monitoring the periodic stationary movements of piston, valves and camshaft with a micro-channel plate intensified CCD camera system (PI-Max 1300RB, Princeton Instruments) triggered at exactly chosen time points.

  2. CCD imaging system for the EUV solar telescope

    NASA Astrophysics Data System (ADS)

    Gong, Yan; Song, Qian; Ye, Bing-Xun

    2006-01-01

    In order to develop the detector adapted to the space solar telescope, we have built a CCD camera system capable of working in the extra ultraviolet (EUV) band, which is composed of one phosphor screen, one intensified system using a photocathode/micro-channel plate(MCP)/ phosphor, one optical taper and one chip of front-illuminated (FI) CCD without screen windows. All of them were stuck one by one with optical glue. The working principle of the camera system is presented; moreover we have employed the mesh experiment to calibrate and test the CCD camera system in 15~24nm, the position resolution of about 19 μm is obtained at the wavelength of 17.1nm and 19.5nm.

  3. A high-sensitivity EM-CCD camera for the open port telescope cavity of SOFIA

    NASA Astrophysics Data System (ADS)

    Wiedemann, Manuel; Wolf, Jürgen; McGrotty, Paul; Edwards, Chris; Krabbe, Alfred

    2016-08-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has three target acquisition and tracking cameras. All three imagers originally used the same cameras, which did not meet the sensitivity requirements, due to low quantum efficiency and high dark current. The Focal Plane Imager (FPI) suffered the most from high dark current, since it operated in the aircraft cabin at room temperatures without active cooling. In early 2013 the FPI was upgraded with an iXon3 888 from Andor Techonolgy. Compared to the original cameras, the iXon3 has a factor five higher QE, thanks to its back-illuminated sensor, and orders of magnitude lower dark current, due to a thermo-electric cooler and "inverted mode operation." This leads to an increase in sensitivity of about five stellar magnitudes. The Wide Field Imager (WFI) and Fine Field Imager (FFI) shall now be upgraded with equally sensitive cameras. However, they are exposed to stratospheric conditions in flight (typical conditions: T≍-40° C, p≍ 0:1 atm) and there are no off-the-shelf CCD cameras with the performance of an iXon3, suited for these conditions. Therefore, Andor Technology and the Deutsches SOFIA Institut (DSI) are jointly developing and qualifying a camera for these conditions, based on the iXon3 888. These changes include replacement of electrical components with MIL-SPEC or industrial grade components and various system optimizations, a new data interface that allows the image data transmission over 30m of cable from the camera to the controller, a new power converter in the camera to generate all necessary operating voltages of the camera locally and a new housing that fulfills airworthiness requirements. A prototype of this camera has been built and tested in an environmental test chamber at temperatures down to T=-62° C and pressure equivalent to 50 000 ft altitude. In this paper, we will report about the development of the camera and present results from the environmental testing.

  4. CCD image sensor induced error in PIV applications

    NASA Astrophysics Data System (ADS)

    Legrand, M.; Nogueira, J.; Vargas, A. A.; Ventas, R.; Rodríguez-Hidalgo, M. C.

    2014-06-01

    The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (˜0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described.

  5. CCD TV focal plane guider development and comparison to SIRTF applications

    NASA Technical Reports Server (NTRS)

    Rank, David M.

    1989-01-01

    It is expected that the SIRTF payload will use a CCD TV focal plane fine guidance sensor to provide acquisition of sources and tracking stability of the telescope. Work has been done to develop CCD TV cameras and guiders at Lick Observatory for several years and have produced state of the art CCD TV systems for internal use. NASA decided to provide additional support so that the limits of this technology could be established and a comparison between SIRTF requirements and practical systems could be put on a more quantitative basis. The results of work carried out at Lick Observatory which was designed to characterize present CCD autoguiding technology and relate it to SIRTF applications is presented. Two different design types of CCD cameras were constructed using virtual phase and burred channel CCD sensors. A simple autoguider was built and used on the KAO, Mt. Lemon and Mt. Hamilton telescopes. A video image processing system was also constructed in order to characterize the performance of the auto guider and CCD cameras.

  6. Measuring the Flatness of Focal Plane for Very Large Mosaic CCD Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jiangang; Estrada, Juan; Cease, Herman

    2010-06-08

    Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k x 2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 yearsmore » starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.« less

  7. 3D digital image correlation using a single 3CCD colour camera and dichroic filter

    NASA Astrophysics Data System (ADS)

    Zhong, F. Q.; Shao, X. X.; Quan, C.

    2018-04-01

    In recent years, three-dimensional digital image correlation methods using a single colour camera have been reported. In this study, we propose a simplified system by employing a dichroic filter (DF) to replace the beam splitter and colour filters. The DF can be used to combine two views from different perspectives reflected by two planar mirrors and eliminate their interference. A 3CCD colour camera is then used to capture two different views simultaneously via its blue and red channels. Moreover, the measurement accuracy of the proposed method is higher since the effect of refraction is reduced. Experiments are carried out to verify the effectiveness of the proposed method. It is shown that the interference between the blue and red views is insignificant. In addition, the measurement accuracy of the proposed method is validated on the rigid body displacement. The experimental results demonstrate that the measurement accuracy of the proposed method is higher compared with the reported methods using a single colour camera. Finally, the proposed method is employed to measure the in- and out-of-plane displacements of a loaded plastic board. The re-projection errors of the proposed method are smaller than those of the reported methods using a single colour camera.

  8. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Haugh and M. B. Schneider

    2008-10-31

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. Amore » multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less

  9. Design of a CCD Camera for Space Surveillance

    DTIC Science & Technology

    2016-03-05

    Laboratory fabricated CCID-51M, a 2048x1024 pixel Charge Couple Device (CCD) imager. [1] The mission objective is to observe and detect satellites in...phased to transfer the charge to the outputs. An electronic shutter is created by having an equal area of pixels covered by an opaque metal mask. The...Figure 4 CDS Timing Diagram By design the CCD readout rate is 400 KHz. This rate was chosen so reading the 2E6 pixels from one output is less than

  10. Double Star Measurements at the Southern Sky with a 50 cm Reflector and a Fast CCD Camera in 2014

    NASA Astrophysics Data System (ADS)

    Anton, Rainer

    2015-04-01

    A Ritchey-Chrétien reflector with 50 cm aperture was used in Namibia for recordings of double stars with a fast CCD camera and a notebook computer. From superposition of "lucky images", measurements of 91 pairings in 79 double and multiple systems were obtained and compared with literature data. Occasional deviations are discussed. Some images of noteworthy systems are also presented.

  11. Cryostat and CCD for MEGARA at GTC

    NASA Astrophysics Data System (ADS)

    Castillo-Domínguez, E.; Ferrusca, D.; Tulloch, S.; Velázquez, M.; Carrasco, E.; Gallego, J.; Gil de Paz, A.; Sánchez, F. M.; Vílchez Medina, J. M.

    2012-09-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.

  12. Multiport backside-illuminated CCD imagers for high-frame-rate camera applications

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Sauer, Donald J.; Hseuh, Fu-Lung; Shallcross, Frank V.; Taylor, Gordon C.; Meray, Grazyna M.; Tower, John R.; Harrison, Lorna J.; Lawler, William B.

    1994-05-01

    Two multiport, second-generation CCD imager designs have been fabricated and successfully tested. They are a 16-port 512 X 512 array and a 32-port 1024 X 1024 array. Both designs are back illuminated, have on-chip CDS, lateral blooming control, and use a split vertical frame transfer architecture with full frame storage. The 512 X 512 device has been operated at rates over 800 frames per second. The 1024 X 1024 device has been operated at rates over 300 frames per second. The major changes incorporated in the second-generation design are, reduction in gate length in the output area to give improved high-clock-rate performance, modified on-chip CDS circuitry for reduced noise, and optimized implants to improve performance of blooming control at lower clock amplitude. This paper discusses the imager design improvements and presents measured performance results at high and moderate frame rates. The design and performance of three moderate frame rate cameras are discussed.

  13. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system.

    PubMed

    Saotome, Naoya; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji

    2016-04-01

    Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors' facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. The results of this study demonstrate that the authors' range check system is capable of quick and easy range verification with sufficient accuracy.

  14. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saotome, Naoya, E-mail: naosao@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke

    Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator blockmore » and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.« less

  15. VUV testing of science cameras at MSFC: QE measurement of the CLASP flight cameras

    NASA Astrophysics Data System (ADS)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-08-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint MSFC, National Astronomical Observatory of Japan (NAOJ), Instituto de Astrofisica de Canarias (IAC) and Institut D'Astrophysique Spatiale (IAS) sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512 × 512 detector, dual channel analog readout and an internally mounted cold block. At the flight CCD temperature of -20C, the CLASP cameras exceeded the low-noise performance requirements (<= 25 e- read noise and <= 10 e- /sec/pixel dark current), in addition to maintaining a stable gain of ≍ 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Three flight cameras and one engineering camera were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise and dark current of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV, EUV and X-ray science cameras at MSFC.

  16. Night Vision Camera

    NASA Technical Reports Server (NTRS)

    1996-01-01

    PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.

  17. The OCA CCD Camera Controller

    DTIC Science & Technology

    1996-01-01

    multi CCD arrays for wide field telescopes with an array of 8x8 1K CCDs in use at Las Campanas Observatory in Chile . The same group is also involved...Verify key EPROM -292H VIH . VIH Program security bitl 1 29AH . VPP Program security’ bit 2 *. .298H -Vpp Verify security bits - 9HVIH ViI NOTE: 1...Pulsed from V.. to VIL and returned to VIH . EPROM PROGRAMMING AND VERIFICATION ..t= 21’C to-+27 ’rC:-VCC= 5V ±10%VS3 = OV. SYMBOL I .-- PARAMETER MIN MAX

  18. Double and Multiple Star Measurements at the Southern Sky with a 50cm-Cassegrain and a Fast CCD Camera in 2008

    NASA Astrophysics Data System (ADS)

    Anton, Rainer

    2011-04-01

    Using a 50cm Cassegrain in Namibia, recordings of double and multiple stars were made with a fast CCD camera and a notebook computer. From superpositions of "lucky images", measurements of 149 systems were obtained and compared with literature data. B/W and color images of some remarkable systems are also presented.

  19. CCD Photometer Installed on the Telescope - 600 OF the Shamakhy Astrophysical Observatory II. The Technique of Observation and Data Processing of CCD Photometry

    NASA Astrophysics Data System (ADS)

    Abdullayev, B. I.; Gulmaliyev, N. I.; Majidova, S. O.; Mikayilov, Kh. M.; Rustamov, B. N.

    2009-12-01

    Basic technical characteristics of CCD matrix U-47 made by the Apogee Alta Instruments Inc. are provided. Short description and features of various noises introduced by optical system and CCD camera are presented. The technique of getting calibration frames: bias, dark, flat field and main stages of processing of results CCD photometry are described.

  20. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  1. CCD Astrometry with Robotic Telescopes

    NASA Astrophysics Data System (ADS)

    AlZaben, Faisal; Li, Dewei; Li, Yongyao; Dennis, Aren Fene, Michael; Boyce, Grady; Boyce, Pat

    2016-01-01

    CCD images were acquired of three binary star systems: WDS06145+1148, WDS06206+1803, and WDS06224+2640. The astrometric solution, position angle, and separation of each system were calculated with MaximDL v6 and Mira Pro x64 software suites. The results were consistent with historical measurements in the Washington Double Star Catalog. Our analysis found some differences in measurements between single-shot color CCD cameras and traditional monochrome CCDs using a filter wheel.

  2. Double and Multiple Star Measurements in the Northern Sky with a 10" Newtonian and a Fast CCD Camera in 2006 through 2009

    NASA Astrophysics Data System (ADS)

    Anton, Rainer

    2010-07-01

    Using a 10" Newtonian and a fast CCD camera, recordings of double and multiple stars were made at high frame rates with a notebook computer. From superpositions of "lucky images", measurements of 139 systems were obtained and compared with literature data. B/w and color images of some noteworthy systems are also presented.

  3. Low-cost digital dynamic visualization system

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Sajan, M. R.

    1995-05-01

    High speed photographic systems like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording systems requiring time consuming and tedious wet processing of the films. Currently digital cameras are replacing to certain extent the conventional cameras for static experiments. Recently, there is lot of interest in developing and modifying CCD architectures and recording arrangements for dynamic scene analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration (TDI) mode for digitally recording dynamic scenes. Applications in solid as well as fluid impact problems are presented.

  4. CCD Camera Observations

    NASA Astrophysics Data System (ADS)

    Buchheim, Bob; Argyle, R. W.

    One night late in 1918, astronomer William Milburn, observing the region of Cassiopeia from Reverend T.H.E.C. Espin's observatory in Tow Law (England), discovered a hitherto unrecorded double star (Wright 1993). He reported it to Rev. Espin, who measured the pair using his 24-in. reflector: the fainter star was 6.0 arcsec from the primary, at position angle 162.4 ^{circ } (i.e. the fainter star was south-by-southeast from the primary) (Espin 1919). Some time later, it was recognized that the astrograph of the Vatican Observatory had taken an image of the same star-field a dozen years earlier, in late 1906. At that earlier epoch, the fainter star had been separated from the brighter one by only 4.8 arcsec, at position angle 186.2 ^{circ } (i.e. almost due south). Were these stars a binary pair, or were they just two unrelated stars sailing past each other? Some additional measurements might have begun to answer this question. If the secondary star was following a curved path, that would be a clue of orbital motion; if it followed a straight-line path, that would be a clue that these are just two stars passing in the night. Unfortunately, nobody took the trouble to re-examine this pair for almost a century, until the 2MASS astrometric/photometric survey recorded it in late 1998. After almost another decade, this amateur astronomer took some CCD images of the field in 2007, and added another data point on the star's trajectory, as shown in Fig. 15.1.

  5. Electronic cameras for low-light microscopy.

    PubMed

    Rasnik, Ivan; French, Todd; Jacobson, Ken; Berland, Keith

    2013-01-01

    This chapter introduces to electronic cameras, discusses the various parameters considered for evaluating their performance, and describes some of the key features of different camera formats. The chapter also presents the basic understanding of functioning of the electronic cameras and how these properties can be exploited to optimize image quality under low-light conditions. Although there are many types of cameras available for microscopy, the most reliable type is the charge-coupled device (CCD) camera, which remains preferred for high-performance systems. If time resolution and frame rate are of no concern, slow-scan CCDs certainly offer the best available performance, both in terms of the signal-to-noise ratio and their spatial resolution. Slow-scan cameras are thus the first choice for experiments using fixed specimens such as measurements using immune fluorescence and fluorescence in situ hybridization. However, if video rate imaging is required, one need not evaluate slow-scan CCD cameras. A very basic video CCD may suffice if samples are heavily labeled or are not perturbed by high intensity illumination. When video rate imaging is required for very dim specimens, the electron multiplying CCD camera is probably the most appropriate at this technological stage. Intensified CCDs provide a unique tool for applications in which high-speed gating is required. The variable integration time video cameras are very attractive options if one needs to acquire images at video rate acquisition, as well as with longer integration times for less bright samples. This flexibility can facilitate many diverse applications with highly varied light levels. Copyright © 2007 Elsevier Inc. All rights reserved.

  6. SU-F-J-190: Time Resolved Range Measurement System Using Scintillator and CCD Camera for the Slow Beam Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saotome, N; Furukawa, T; Mizushima, K

    2016-06-15

    Purpose: To investigate the time structure of the range, we have verified the rang shift due to the betatron tune shift with several synchrotron parameters. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. Using image processing, the range was determined the 80 percent of distal dose of the depth light distribution. The root mean square error of the range measurement using the scintillator and CCD system is about 0.2 mm. Range measurement was performed at interval of 170 msec. The chromaticity of the synchrotron was changed in the range of plus ormore » minus 1% from reference chromaticity in this study. All of the particle inside the synchrotron ring were extracted with the output beam intensity 1.8×10{sup 8} and 5.0×10{sub 7} particle per sec. Results: The time strictures of the range were changed by changing of the chromaticity. The reproducibility of the measurement was sufficient to observe the time structures of the range. The range shift was depending on the number of the residual particle inside the synchrotron ring. Conclusion: In slow beam extraction for scanned carbon-ion therapy, the range shift is undesirable because it causes the dose uncertainty in the target. We introduced the time-resolved range measurement using scintillator and CCD system. The scintillator and CCD system have enabled to verify the range shift with sufficient spatial resolution and reproducibility.« less

  7. SU-F-BRA-16: Development of a Radiation Monitoring Device Using a Low-Cost CCD Camera Following Radionuclide Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taneja, S; Fru, L Che; Desai, V

    Purpose: It is now commonplace to handle treatments of hyperthyroidism using iodine-131 as an outpatient procedure due to lower costs and less stringent federal regulations. The Nuclear Regulatory Commission has currently updated release guidelines for these procedures, but there is still a large uncertainty in the dose to the public. Current guidelines to minimize dose to the public require patients to remain isolated after treatment. The purpose of this study was to use a low-cost common device, such as a cell phone, to estimate exposure emitted from a patient to the general public. Methods: Measurements were performed using an Applemore » iPhone 3GS and a Cs-137 irradiator. The charge-coupled device (CCD) camera on the phone was irradiated to exposure rates ranging from 0.1 mR/hr to 100 mR/hr and 30-sec videos were taken during irradiation with the camera lens covered by electrical tape. Interactions were detected as white pixels on a black background in each video. Both single threshold (ST) and colony counting (CC) methods were performed using MATLAB®. Calibration curves were determined by comparing the total pixel intensity output from each method to the known exposure rate. Results: The calibration curve showed a linear relationship above 5 mR/hr for both analysis techniques. The number of events counted per unit exposure rate within the linear region was 19.5 ± 0.7 events/mR and 8.9 ± 0.4 events/mR for the ST and CC methods respectively. Conclusion: Two algorithms were developed and show a linear relationship between photons detected by a CCD camera and low exposure rates, in the range of 5 mR/hr to 100-mR/hr. Future work aims to refine this model by investigating the dose-rate and energy dependencies of the camera response. This algorithm allows for quantitative monitoring of exposure from patients treated with iodine-131 using a simple device outside of the hospital.« less

  8. Technical Data Interoperability (TDI) Pathfinder Via Emerging Standards

    NASA Technical Reports Server (NTRS)

    Conroy, Mike; Gill, Paul; Hill, Bradley; Ibach, Brandon; Jones, Corey; Ungar, David; Barch, Jeffrey; Ingalls, John; Jacoby, Joseph; Manning, Josh; hide

    2014-01-01

    The TDI project (TDI) investigates trending technical data standards for applicability to NASA vehicles, space stations, payloads, facilities, and equipment. TDI tested COTS software compatible with a certain suite of related industry standards for capabilities of individual benefits and interoperability. These standards not only esnable Information Technology (IT) efficiencies, but also address efficient structures and standard content for business processes. We used source data from generic industry samples as well as NASA and European Space Agency (ESA) data from space systems.

  9. Development and use of an L3CCD high-cadence imaging system for Optical Astronomy

    NASA Astrophysics Data System (ADS)

    Sheehan, Brendan J.; Butler, Raymond F.

    2008-02-01

    A high cadence imaging system, based on a Low Light Level CCD (L3CCD) camera, has been developed for photometric and polarimetric applications. The camera system is an iXon DV-887 from Andor Technology, which uses a CCD97 L3CCD detector from E2V technologies. This is a back illuminated device, giving it an extended blue response, and has an active area of 512×512 pixels. The camera system allows frame-rates ranging from 30 fps (full frame) to 425 fps (windowed & binned frame). We outline the system design, concentrating on the calibration and control of the L3CCD camera. The L3CCD detector can be either triggered directly by a GPS timeserver/frequency generator or be internally triggered. A central PC remotely controls the camera computer system and timeserver. The data is saved as standard `FITS' files. The large data loads associated with high frame rates, leads to issues with gathering and storing the data effectively. To overcome such problems, a specific data management approach is used, and a Python/PYRAF data reduction pipeline was written for the Linux environment. This uses calibration data collected either on-site, or from lab based measurements, and enables a fast and reliable method for reducing images. To date, the system has been used twice on the 1.5 m Cassini Telescope in Loiano (Italy) we present the reduction methods and observations made.

  10. Digital image measurement of specimen deformation based on CCD cameras and Image J software: an application to human pelvic biomechanics

    NASA Astrophysics Data System (ADS)

    Jia, Yongwei; Cheng, Liming; Yu, Guangrong; Lou, Yongjian; Yu, Yan; Chen, Bo; Ding, Zuquan

    2008-03-01

    A method of digital image measurement of specimen deformation based on CCD cameras and Image J software was developed. This method was used to measure the biomechanics behavior of human pelvis. Six cadaveric specimens from the third lumbar vertebra to the proximal 1/3 part of femur were tested. The specimens without any structural abnormalities were dissected of all soft tissue, sparing the hip joint capsules and the ligaments of the pelvic ring and floor. Markers with black dot on white background were affixed to the key regions of the pelvis. Axial loading from the proximal lumbar was applied by MTS in the gradient of 0N to 500N, which simulated the double feet standing stance. The anterior and lateral images of the specimen were obtained through two CCD cameras. Based on Image J software, digital image processing software, which can be freely downloaded from the National Institutes of Health, digital 8-bit images were processed. The procedure includes the recognition of digital marker, image invert, sub-pixel reconstruction, image segmentation, center of mass algorithm based on weighted average of pixel gray values. Vertical displacements of S1 (the first sacral vertebrae) in front view and micro-angular rotation of sacroiliac joint in lateral view were calculated according to the marker movement. The results of digital image measurement showed as following: marker image correlation before and after deformation was excellent. The average correlation coefficient was about 0.983. According to the 768 × 576 pixels image (pixel size 0.68mm × 0.68mm), the precision of the displacement detected in our experiment was about 0.018 pixels and the comparatively error could achieve 1.11\\perthou. The average vertical displacement of S1 of the pelvis was 0.8356+/-0.2830mm under vertical load of 500 Newtons and the average micro-angular rotation of sacroiliac joint in lateral view was 0.584+/-0.221°. The load-displacement curves obtained from our optical measure system

  11. The imaging system design of three-line LMCCD mapping camera

    NASA Astrophysics Data System (ADS)

    Zhou, Huai-de; Liu, Jin-Guo; Wu, Xing-Xing; Lv, Shi-Liang; Zhao, Ying; Yu, Da

    2011-08-01

    In this paper, the authors introduced the theory about LMCCD (line-matrix CCD) mapping camera firstly. On top of the introduction were consists of the imaging system of LMCCD mapping camera. Secondly, some pivotal designs which were Introduced about the imaging system, such as the design of focal plane module, the video signal's procession, the controller's design of the imaging system, synchronous photography about forward and nadir and backward camera and the nadir camera of line-matrix CCD. At last, the test results of LMCCD mapping camera imaging system were introduced. The results as following: the precision of synchronous photography about forward and nadir and backward camera is better than 4 ns and the nadir camera of line-matrix CCD is better than 4 ns too; the photography interval of line-matrix CCD of the nadir camera can satisfy the butter requirements of LMCCD focal plane module; the SNR tested in laboratory is better than 95 under typical working condition(the solar incidence degree is 30, the reflectivity of the earth's surface is 0.3) of each CCD image; the temperature of the focal plane module is controlled under 30° in a working period of 15 minutes. All of these results can satisfy the requirements about the synchronous photography, the temperature control of focal plane module and SNR, Which give the guarantee of precision for satellite photogrammetry.

  12. VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras

    NASA Technical Reports Server (NTRS)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtain, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.

  13. Two cases of paraoccupational asthma due to toluene diisocyanate (TDI).

    PubMed

    De Zotti, R; Muran, A; Zambon, F

    2000-12-01

    Two cases of paraoccupational asthma caused by toluene diisocyanate (TDI) are reported. The first patient was a metal worker in a machine shop situated near a factory producing polyurethane foam. Symptoms at work were not explainable by any specific exposure to irritants or allergens in the work site. As the patient recalled previous occasional work in the adjacent polyurethane factory with accompanying worsening of respiratory symptoms, a specific inhalation (SIC) test was performed with TDI, which confirmed the diagnosis of TDI asthma. The second case was a woman working part time as a secretary in the offices of her son's factory for varnishing wooden chairs. TDI was present in the products used in the varnishing shed. The SIC test confirmed the diagnosis of TDI asthma, despite the fact that the patient's job did not present risk of exposure to the substance. In both patients, symptoms disappeared when further exposure was avoided. These two cases confirm that paraoccupational exposure to TDI must be considered when evaluating patients with asthma not mediated by immunoglobulin E. They also suggest the need for more prospective studies evaluating the health risk for the general population living near polyurethane factories or other firms that use TDI.

  14. CCD BVI c observations of Cepheids

    NASA Astrophysics Data System (ADS)

    Berdnikov, L. N.; Kniazev, A. Yu.; Sefako, R.; Kravtsov, V. V.; Zhujko, S. V.

    2014-02-01

    In 2008-2013, we obtained 11333 CCD BVI c frames for 57 Cepheids from the General Catalogue of Variable Stars. We performed our observations with the 76-cm telescope of the South African Astronomical Observatory (SAAO, South Africa) and the 40-cm telescope of the Cerro Armazones Astronomical Observatory of the Universidad Católica del Norte (OCA, Chile) using the SBIG ST-10XME CCD camera. The tables of observations, the plots of light curves, and the current light elements are presented. Comparison of our light curves with those constructed from photoelectric observations shows that the differences between their mean magnitudes exceed 0ṃ05 in 20% of the cases. This suggests the necessity of performing CCD observations for all Cepheids.

  15. Digital photography for the light microscope: results with a gated, video-rate CCD camera and NIH-image software.

    PubMed

    Shaw, S L; Salmon, E D; Quatrano, R S

    1995-12-01

    In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.

  16. SU-C-207A-03: Development of Proton CT Imaging System Using Thick Scintillator and CCD Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, S; Uesaka, M; Nishio, T

    2016-06-15

    Purpose: In the treatment planning of proton therapy, Water Equivalent Length (WEL), which is the parameter for the calculation of dose and the range of proton, is derived by X-ray CT (xCT) image and xCT-WEL conversion. However, about a few percent error in the accuracy of proton range calculation through this conversion has been reported. The purpose of this study is to construct a proton CT (pCT) imaging system for an evaluation of the error. Methods: The pCT imaging system was constructed with a thick scintillator and a cooled CCD camera, which acquires the two-dimensional image of integrated value ofmore » the scintillation light toward the beam direction. The pCT image is reconstructed by FBP method using a correction between the light intensity and residual range of proton beam. An experiment for the demonstration of this system was performed with 70-MeV proton beam provided by NIRS cyclotron. The pCT image of several objects reconstructed from the experimental data was evaluated quantitatively. Results: Three-dimensional pCT images of several objects were reconstructed experimentally. A finestructure of approximately 1 mm was clearly observed. The position resolution of pCT image was almost the same as that of xCT image. And the error of proton CT pixel value was up to 4%. The deterioration of image quality was caused mainly by the effect of multiple Coulomb scattering. Conclusion: We designed and constructed the pCT imaging system using a thick scintillator and a CCD camera. And the system was evaluated with the experiment by use of 70-MeV proton beam. Three-dimensional pCT images of several objects were acquired by the system. This work was supported by JST SENTAN Grant Number 13A1101 and JSPS KAKENHI Grant Number 15H04912.« less

  17. Development of proton CT imaging system using plastic scintillator and CCD camera

    NASA Astrophysics Data System (ADS)

    Tanaka, Sodai; Nishio, Teiji; Matsushita, Keiichiro; Tsuneda, Masato; Kabuki, Shigeto; Uesaka, Mitsuru

    2016-06-01

    A proton computed tomography (pCT) imaging system was constructed for evaluation of the error of an x-ray CT (xCT)-to-WEL (water-equivalent length) conversion in treatment planning for proton therapy. In this system, the scintillation light integrated along the beam direction is obtained by photography using the CCD camera, which enables fast and easy data acquisition. The light intensity is converted to the range of the proton beam using a light-to-range conversion table made beforehand, and a pCT image is reconstructed. An experiment for demonstration of the pCT system was performed using a 70 MeV proton beam provided by the AVF930 cyclotron at the National Institute of Radiological Sciences. Three-dimensional pCT images were reconstructed from the experimental data. A thin structure of approximately 1 mm was clearly observed, with spatial resolution of pCT images at the same level as that of xCT images. The pCT images of various substances were reconstructed to evaluate the pixel value of pCT images. The image quality was investigated with regard to deterioration including multiple Coulomb scattering.

  18. Development of a 300,000-pixel ultrahigh-speed high-sensitivity CCD

    NASA Astrophysics Data System (ADS)

    Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Poggemann, D.; Ruckelshausen, A.; van Kuijk, H.; Bosiers, Jan T.

    2006-02-01

    We are developing an ultrahigh-speed, high-sensitivity broadcast camera that is capable of capturing clear, smooth slow-motion videos even where lighting is limited, such as at professional baseball games played at night. In earlier work, we developed an ultrahigh-speed broadcast color camera1) using three 80,000-pixel ultrahigh-speed, highsensitivity CCDs2). This camera had about ten times the sensitivity of standard high-speed cameras, and enabled an entirely new style of presentation for sports broadcasts and science programs. Most notably, increasing the pixel count is crucially important for applying ultrahigh-speed, high-sensitivity CCDs to HDTV broadcasting. This paper provides a summary of our experimental development aimed at improving the resolution of CCD even further: a new ultrahigh-speed high-sensitivity CCD that increases the pixel count four-fold to 300,000 pixels.

  19. 3D morphology reconstruction using linear array CCD binocular stereo vision imaging system

    NASA Astrophysics Data System (ADS)

    Pan, Yu; Wang, Jinjiang

    2018-01-01

    Binocular vision imaging system, which has a small field of view, cannot reconstruct the 3-D shape of the dynamic object. We found a linear array CCD binocular vision imaging system, which uses different calibration and reconstruct methods. On the basis of the binocular vision imaging system, the linear array CCD binocular vision imaging systems which has a wider field of view can reconstruct the 3-D morphology of objects in continuous motion, and the results are accurate. This research mainly introduces the composition and principle of linear array CCD binocular vision imaging system, including the calibration, capture, matching and reconstruction of the imaging system. The system consists of two linear array cameras which were placed in special arrangements and a horizontal moving platform that can pick up objects. The internal and external parameters of the camera are obtained by calibrating in advance. And then using the camera to capture images of moving objects, the results are then matched and 3-D reconstructed. The linear array CCD binocular vision imaging systems can accurately measure the 3-D appearance of moving objects, this essay is of great significance to measure the 3-D morphology of moving objects.

  20. OP09O-OP404-9 Wide Field Camera 3 CCD Quantum Efficiency Hysteresis

    NASA Technical Reports Server (NTRS)

    Collins, Nick

    2009-01-01

    The HST/Wide Field Camera (WFC) 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. At the nominal operating temperature of -83C, the QEH feature contrast was typically 0.1-0.2% or less. The behavior was replicated using flight spare detectors. A visible light flat-field (540nm) with a several times full-well signal level can pin the detectors at both optical (600nm) and near-UV (230nm) wavelengths, suppressing the QEH behavior. We are characterizing the timescale for the detectors to become unpinned and developing a protocol for flashing the WFC3 CCDs with the instrument's internal calibration system in flight. The HST/Wide Field Camera 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. The first observed manifestation of QEH was the presence in a small percentage of flat-field images of a bowtie-shaped contrast that spanned the width of each chip. At the nominal operating temperature of -83C, the contrast observed for this feature was typically 0.1-0.2% or less, though at warmer temperatures contrasts up to 5% (at -50C) have been observed. The bowtie morphology was replicated using flight spare detectors in tests at the GSFC Detector Characterization Laboratory by power cycling the detector while cold. Continued investigation revealed that a clearly-related global QE suppression at the approximately 5% level can be produced by cooling the detector in the dark; subsequent flat-field exposures at a constant illumination show asymptotically increasing response. This QE "pinning" can be achieved with a single high signal flat-field or a series of lower signal flats; a visible light (500-580nm) flat-field with a signal level of several hundred thousand electrons per pixel is sufficient for QE pinning at both optical (600nm) and near-UV (230nm) wavelengths. We are characterizing the timescale for the detectors to become unpinned and developing a

  1. Novel polyurethanes from xylan and TDI: Preparation and characterization

    USDA-ARS?s Scientific Manuscript database

    In this work a novel polyurethane was developed involving xylan and tolylene-2,4-diisocyanate (TDI). Polymer synthesis was achieved via conventional heat or microwave-assisted reaction in dimethylsulfoxide. Because xylan has multiple OH groups on each polymer chain, the TDI/xylan molar ratio neede...

  2. The Speckle Toolbox: A Powerful Data Reduction Tool for CCD Astrometry

    NASA Astrophysics Data System (ADS)

    Harshaw, Richard; Rowe, David; Genet, Russell

    2017-01-01

    Recent advances in high-speed low-noise CCD and CMOS cameras, coupled with breakthroughs in data reduction software that runs on desktop PCs, has opened the domain of speckle interferometry and high-accuracy CCD measurements of double stars to amateurs, allowing them to do useful science of high quality. This paper describes how to use a speckle interferometry reduction program, the Speckle Tool Box (STB), to achieve this level of result. For over a year the author (Harshaw) has been using STB (and its predecessor, Plate Solve 3) to obtain measurements of double stars based on CCD camera technology for pairs that are either too wide (the stars not sharing the same isoplanatic patch, roughly 5 arc-seconds in diameter) or too faint to image in the coherence time required for speckle (usually under 40ms). This same approach - using speckle reduction software to measure CCD pairs with greater accuracy than possible with lucky imaging - has been used, it turns out, for several years by the U. S. Naval Observatory.

  3. Toluene Diisocyanates (TDI) Action Plan

    EPA Pesticide Factsheets

    This Action Plan addresses the use of toluene diisocyanate (TDI) and related compounds in products that may result in consumer and general population exposures, particularly in or around buildings, including homes and schools.

  4. Information-Efficient Spectral Imaging Sensor With Tdi

    DOEpatents

    Rienstra, Jeffrey L.; Gentry, Stephen M.; Sweatt, William C.

    2004-01-13

    A programmable optical filter for use in multispectral and hyperspectral imaging employing variable gain time delay and integrate arrays. A telescope focuses an image of a scene onto at least one TDI array that is covered by a multispectral filter that passes separate bandwidths of light onto the rows in the TDI array. The variable gain feature of the TDI array allows individual rows of pixels to be attenuated individually. The attenuations are functions of the magnitudes of the positive and negative components of a spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. This system provides for a very efficient determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.

  5. Development of Measurement Device of Working Radius of Crane Based on Single CCD Camera and Laser Range Finder

    NASA Astrophysics Data System (ADS)

    Nara, Shunsuke; Takahashi, Satoru

    In this paper, what we want to do is to develop an observation device to measure the working radius of a crane truck. The device has a single CCD camera, a laser range finder and two AC servo motors. First, in order to measure the working radius, we need to consider algorithm of a crane hook recognition. Then, we attach the cross mark on the crane hook. Namely, instead of the crane hook, we try to recognize the cross mark. Further, for the observation device, we construct PI control system with an extended Kalman filter to track the moving cross mark. Through experiments, we show the usefulness of our device including new control system of mark tracking.

  6. Research on detecting heterogeneous fibre from cotton based on linear CCD camera

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-bin; Cao, Bing; Zhang, Xin-peng; Shi, Wei

    2009-07-01

    The heterogeneous fibre in cotton make a great impact on production of cotton textile, it will have a bad effect on the quality of product, thereby affect economic benefits and market competitive ability of corporation. So the detecting and eliminating of heterogeneous fibre is particular important to improve machining technics of cotton, advance the quality of cotton textile and reduce production cost. There are favorable market value and future development for this technology. An optical detecting system obtains the widespread application. In this system, we use a linear CCD camera to scan the running cotton, then the video signals are put into computer and processed according to the difference of grayscale, if there is heterogeneous fibre in cotton, the computer will send an order to drive the gas nozzle to eliminate the heterogeneous fibre. In the paper, we adopt monochrome LED array as the new detecting light source, it's lamp flicker, stability of luminous intensity, lumens depreciation and useful life are all superior to fluorescence light. We analyse the reflection spectrum of cotton and various heterogeneous fibre first, then select appropriate frequency of the light source, we finally adopt violet LED array as the new detecting light source. The whole hardware structure and software design are introduced in this paper.

  7. Advantages of computer cameras over video cameras/frame grabbers for high-speed vision applications

    NASA Astrophysics Data System (ADS)

    Olson, Gaylord G.; Walker, Jo N.

    1997-09-01

    Cameras designed to work specifically with computers can have certain advantages in comparison to the use of cameras loosely defined as 'video' cameras. In recent years the camera type distinctions have become somewhat blurred, with a great presence of 'digital cameras' aimed more at the home markets. This latter category is not considered here. The term 'computer camera' herein is intended to mean one which has low level computer (and software) control of the CCD clocking. These can often be used to satisfy some of the more demanding machine vision tasks, and in some cases with a higher rate of measurements than video cameras. Several of these specific applications are described here, including some which use recently designed CCDs which offer good combinations of parameters such as noise, speed, and resolution. Among the considerations for the choice of camera type in any given application would be such effects as 'pixel jitter,' and 'anti-aliasing.' Some of these effects may only be relevant if there is a mismatch between the number of pixels per line in the camera CCD and the number of analog to digital (A/D) sampling points along a video scan line. For the computer camera case these numbers are guaranteed to match, which alleviates some measurement inaccuracies and leads to higher effective resolution.

  8. Backside illuminated CMOS-TDI line scanner for space applications

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Ben-Ari, N.; Nevo, I.; Shiloah, N.; Zohar, G.; Kahanov, E.; Brumer, M.; Gershon, G.; Ofer, O.

    2017-09-01

    A new multi-spectral line scanner CMOS image sensor is reported. The backside illuminated (BSI) image sensor was designed for continuous scanning Low Earth Orbit (LEO) space applications including A custom high quality CMOS Active Pixels, Time Delayed Integration (TDI) mechanism that increases the SNR, 2-phase exposure mechanism that increases the dynamic Modulation Transfer Function (MTF), very low power internal Analog to Digital Converters (ADC) with resolution of 12 bit per pixel and on chip controller. The sensor has 4 independent arrays of pixels where each array is arranged in 2600 TDI columns with controllable TDI depth from 8 up to 64 TDI levels. A multispectral optical filter with specific spectral response per array is assembled at the package level. In this paper we briefly describe the sensor design and present some electrical and electro-optical recent measurements of the first prototypes including high Quantum Efficiency (QE), high MTF, wide range selectable Full Well Capacity (FWC), excellent linearity of approximately 1.3% in a signal range of 5-85% and approximately 1.75% in a signal range of 2-95% out of the signal span, readout noise of approximately 95 electrons with 64 TDI levels, negligible dark current and power consumption of less than 1.5W total for 4 bands sensor at all operation conditions .

  9. Use of a CCD camera for the thermographic study of a transient liquid phase bonding process in steel

    NASA Astrophysics Data System (ADS)

    Castro, Eduardo H.; Epelbaum, Carlos; Carnero, Angel; Arcondo, Bibiana

    2001-03-01

    The bonding of steel pieces and the development of novel soldering methods, appropriate to the extended variety of applications of steels nowadays, bring the sensing of temperature an outstanding role in any metallurgical process. Transient liquid phase bonding (TLPB) processes have been successfully employed to join metals, among them steels. A thin layer of metal A, with a liquids temperature TLA, is located between two pieces of metal B, with a liquids temperature TLB higher than TLA. The joining zone is heated up to a temperature T(TLACCD camera with 752x582 pixels has been adapted for temperature measurements through the coil of the furnace. The output of the camera is digitized and visualized in a 14-inch monitor. The temperature is calculated using the correlation with the gray tone present in the monitor, which is measured by means of suitable software. The technical specifications of the camera and the modifications introduced to adapt it for this work are presented. The calibration of the camera and the method employed in the measurements are described. The measured temperatures are corrected by the effect of emissivity of the materials surfaces and the environment radiation reflected. Thermographs obtained are shown and results are discussed. We conclude that a low priced camera may be used to measure temperature in this range with acceptable accuracy.

  10. A reflectance model for non-contact mapping of venous oxygen saturation using a CCD camera

    NASA Astrophysics Data System (ADS)

    Li, Jun; Dunmire, Barbrina; Beach, Kirk W.; Leotta, Daniel F.

    2013-11-01

    A method of non-contact mapping of venous oxygen saturation (SvO2) is presented. A CCD camera is used to image skin tissue illuminated alternately by a red (660 nm) and an infrared (800 nm) LED light source. Low cuff pressures of 30-40 mmHg are applied to induce a venous blood volume change with negligible change in the arterial blood volume. A hybrid model combining the Beer-Lambert law and the light diffusion model is developed and used to convert the change in the light intensity to the change in skin tissue absorption coefficient. A simulation study incorporating the full light diffusion model is used to verify the hybrid model and to correct a calculation bias. SvO2 in the fingers, palm, and forearm for five volunteers are presented and compared with results in the published literature. Two-dimensional maps of venous oxygen saturation are given for the three anatomical regions.

  11. New low noise CCD cameras for Pi-of-the-Sky project

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Mankiewicz, L.; Pozniak, K.; Romaniuk, R.; Sitek, P.; Sokolowski, M.; Sulej, R.; Uzycki, J.; Wrochna, G.

    2006-10-01

    Modern research trends require observation of fainter and fainter astronomical objects on large areas of the sky. This implies usage of systems with high temporal and optical resolution with computer based data acquisition and processing. Therefore Charge Coupled Devices (CCD) became so popular. They offer quick picture conversion with much better quality than film based technologies. This work is theoretical and practical study of the CCD based picture acquisition system. The system was optimized for "Pi of The Sky" project. But it can be adapted to another professional astronomical researches. The work includes issue of picture conversion, signal acquisition, data transfer and mechanical construction of the device.

  12. The simulated spectrum of the OGRE X-ray EM-CCD camera system

    NASA Astrophysics Data System (ADS)

    Lewis, M.; Soman, M.; Holland, A.; Lumb, D.; Tutt, J.; McEntaffer, R.; Schultz, T.; Holland, K.

    2017-12-01

    The X-ray astronomical telescopes in use today, such as Chandra and XMM-Newton, use X-ray grating spectrometers to probe the high energy physics of the Universe. These instruments typically use reflective optics for focussing onto gratings that disperse incident X-rays across a detector, often a Charge-Coupled Device (CCD). The X-ray energy is determined from the position that it was detected on the CCD. Improved technology for the next generation of X-ray grating spectrometers has been developed and will be tested on a sounding rocket experiment known as the Off-plane Grating Rocket Experiment (OGRE). OGRE aims to capture the highest resolution soft X-ray spectrum of Capella, a well-known astronomical X-ray source, during an observation period lasting between 3 and 6 minutes whilst proving the performance and suitability of three key components. These three components consist of a telescope made from silicon mirrors, gold coated silicon X-ray diffraction gratings and a camera that comprises of four Electron-Multiplying (EM)-CCDs that will be arranged to observe the soft X-rays dispersed by the gratings. EM-CCDs have an architecture similar to standard CCDs, with the addition of an EM gain register where the electron signal is amplified so that the effective signal-to-noise ratio of the imager is improved. The devices also have incredibly favourable Quantum Efficiency values for detecting soft X-ray photons. On OGRE, this improved detector performance allows for easier identification of low energy X-rays and fast readouts due to the amplified signal charge making readout noise almost negligible. A simulation that applies the OGRE instrument performance to the Capella soft X-ray spectrum has been developed that allows the distribution of X-rays onto the EM-CCDs to be predicted. A proposed optical model is also discussed which would enable the missions minimum success criteria's photon count requirement to have a high chance of being met with the shortest possible

  13. Multiple Sensor Camera for Enhanced Video Capturing

    NASA Astrophysics Data System (ADS)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  14. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  15. Circuit design of an EMCCD camera

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Song, Qian; Jin, Jianhui; He, Chun

    2012-07-01

    EMCCDs have been used in the astronomical observations in many ways. Recently we develop a camera using an EMCCD TX285. The CCD chip is cooled to -100°C in an LN2 dewar. The camera controller consists of a driving board, a control board and a temperature control board. Power supplies and driving clocks of the CCD are provided by the driving board, the timing generator is located in the control board. The timing generator and an embedded Nios II CPU are implemented in an FPGA. Moreover the ADC and the data transfer circuit are also in the control board, and controlled by the FPGA. The data transfer between the image workstation and the camera is done through a Camera Link frame grabber. The software of image acquisition is built using VC++ and Sapera LT. This paper describes the camera structure, the main components and circuit design for video signal processing channel, clock driver, FPGA and Camera Link interfaces, temperature metering and control system. Some testing results are presented.

  16. Quasi-Speckle Measurements of Close Double Stars With a CCD Camera

    NASA Astrophysics Data System (ADS)

    Harshaw, Richard

    2017-01-01

    CCD measurements of visual double stars have been an active area of amateur observing for several years now. However, most CCD measurements rely on “lucky imaging” (selecting a very small percentage of the best frames of a larger frame set so as to get the best “frozen” atmosphere for the image), a technique that has limitations with regards to how close the stars can be and still be cleanly resolved in the lucky image. In this paper, the author reports how using deconvolution stars in the analysis of close double stars can greatly enhance the quality of the autocorellogram, leading to a more precise solution using speckle reduction software rather than lucky imaging.

  17. Inexpensive Neutron Imaging Cameras Using CCDs for Astronomy

    NASA Astrophysics Data System (ADS)

    Hewat, A. W.

    We have developed inexpensive neutron imaging cameras using CCDs originally designed for amateur astronomical observation. The low-light, high resolution requirements of such CCDs are similar to those for neutron imaging, except that noise as well as cost is reduced by using slower read-out electronics. For example, we use the same 2048x2048 pixel ;Kodak; KAI-4022 CCD as used in the high performance PCO-2000 CCD camera, but our electronics requires ∼5 sec for full-frame read-out, ten times slower than the PCO-2000. Since neutron exposures also require several seconds, this is not seen as a serious disadvantage for many applications. If higher frame rates are needed, the CCD unit on our camera can be easily swapped for a faster readout detector with similar chip size and resolution, such as the PCO-2000 or the sCMOS PCO.edge 4.2.

  18. Infrared imaging spectrometry by the use of bundled chalcogenide glass fibers and a PtSi CCD camera

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Kikuchi, Katsuhiro; Tanaka, Chinari; Sone, Hiroshi; Morimoto, Shozo; Yamashita, Toshiharu T.; Nishii, Junji

    1999-10-01

    A coherent fiber bundle for infrared image transmission was prepared by arranging 8400 chalcogenide (AsS) glass fibers. The fiber bundle, 1 m in length, is transmissive in the infrared spectral region of 1 - 6 micrometer. A remote spectroscopic imaging system was constructed with the fiber bundle and an infrared PtSi CCD camera. The system was used for the real-time observation (frame time: 1/60 s) of gas distribution. Infrared light from a SiC heater was delivered to a gas cell through a chalcogenide fiber, and transmitted light was observed through the fiber bundle. A band-pass filter was used for the selection of gas species. A He-Ne laser of 3.4 micrometer wavelength was also used for the observation of hydrocarbon gases. Gases bursting from a nozzle were observed successfully by a remote imaging system.

  19. Camera for Quasars in the Early Universe (CQUEAN)

    NASA Astrophysics Data System (ADS)

    Kim, Eunbin; Park, W.; Lim, J.; Jeong, H.; Kim, J.; Oh, H.; Pak, S.; Im, M.; Kuehne, J.

    2010-05-01

    The early universe of z ɳ is where the first stars, galaxies, and quasars formed, starting the re-ionization of the universe. The discovery and the study of quasars in the early universe allow us to witness the beginning of history of astronomical objects. In order to perform a medium-deep, medium-wide, imaging survey of quasars, we are developing an optical CCD camera, CQUEAN (Camera for QUasars in EArly uNiverse) which uses a 1024*1024 pixel deep-depletion CCD. It has an enhanced QE than conventional CCD at wavelength band around 1μm, thus it will be an efficient tool for observation of quasars at z > 7. It will be attached to the 2.1m telescope at McDonald Observatory, USA. A focal reducer is designed to secure a larger field of view at the cassegrain focus of 2.1m telescope. For long stable exposures, auto-guiding system will be implemented by using another CCD camera viewing an off-axis field. All these instruments will be controlled by the software written in python on linux platform. CQUEAN is expected to see the first light during summer in 2010.

  20. Electronic still camera

    NASA Astrophysics Data System (ADS)

    Holland, S. Douglas

    1992-09-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  1. Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas (Inventor)

    1992-01-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  2. A CCD Spectrometer for One Dollar

    NASA Astrophysics Data System (ADS)

    Beaver, J.; Robert, D.

    2011-09-01

    We describe preliminary tests on a very low-cost system for obtaining stellar spectra for instructional use in an introductory astronomy laboratory. CCD imaging with small telescopes is now commonplace and relatively inexpensive. Giving students direct experience taking stellar spectra, however, is much more difficult, and the equipment can easily be out of reach for smaller institutions, especially if one wants to give the experience to large numbers of students. We have performed preliminary tests on an extremely low-cost (about $1.00) objective grating that can be coupled with an existing CCD camera or commercial digital single-lens reflex (DSLR) camera and a small telescope typical of introductory astronomy labs. With this equipment we believe it is possible for introductory astronomy students to take stellar spectra that are of high enough quality to distinguish between many MK spectral classes, or to determine standard B and V magnitudes. We present observational tests of this objective grating used on an 8" Schmidt-Cassegrain with a low-end, consumer DSLR camera. Some low-cost strategies for reducing the raw data are compared, with an eye toward projects ranging from individual undergraduate research projects to use by many students in a non-majors introductory astronomy lab. Toward this end we compare various trade offs between complexity of the observing and data reduction processes and the usefulness of the final results. We also describe some undergraduate astronomy education projects that this system could potentially be used for. Some of these projects could involve data-sharing collaborations between students at different institutions.

  3. Recognition and Matching of Clustered Mature Litchi Fruits Using Binocular Charge-Coupled Device (CCD) Color Cameras

    PubMed Central

    Wang, Chenglin; Tang, Yunchao; Zou, Xiangjun; Luo, Lufeng; Chen, Xiong

    2017-01-01

    Recognition and matching of litchi fruits are critical steps for litchi harvesting robots to successfully grasp litchi. However, due to the randomness of litchi growth, such as clustered growth with uncertain number of fruits and random occlusion by leaves, branches and other fruits, the recognition and matching of the fruit become a challenge. Therefore, this study firstly defined mature litchi fruit as three clustered categories. Then an approach for recognition and matching of clustered mature litchi fruit was developed based on litchi color images acquired by binocular charge-coupled device (CCD) color cameras. The approach mainly included three steps: (1) calibration of binocular color cameras and litchi image acquisition; (2) segmentation of litchi fruits using four kinds of supervised classifiers, and recognition of the pre-defined categories of clustered litchi fruit using a pixel threshold method; and (3) matching the recognized clustered fruit using a geometric center-based matching method. The experimental results showed that the proposed recognition method could be robust against the influences of varying illumination and occlusion conditions, and precisely recognize clustered litchi fruit. In the tested 432 clustered litchi fruits, the highest and lowest average recognition rates were 94.17% and 92.00% under sunny back-lighting and partial occlusion, and sunny front-lighting and non-occlusion conditions, respectively. From 50 pairs of tested images, the highest and lowest matching success rates were 97.37% and 91.96% under sunny back-lighting and non-occlusion, and sunny front-lighting and partial occlusion conditions, respectively. PMID:29112177

  4. TiO2@TDI@DMAPA: an amine-modified nanoparticle, tailored to act as an economic basic heterogeneous nanocatalyst

    NASA Astrophysics Data System (ADS)

    Esfahanian, Farzane; Amoozadeh, Ali; Bitaraf, Mehrnoosh

    2018-06-01

    This study has represented an easy and inexpensive method for the synthesis of a new basic nanocatalyst. In this regard, 3-dimethylaminopropylamine (DMAPA), an economic, industrial, and readily obtainable basic compound, has been grafted onto nano-titania particles by the use of 2,4-toluene diisocyanate (TDI) as a bi-functional, inexpensive, and highly reactive linker. The prepared catalyst has been characterized using the spectroscopic FT-IR method, XRD, FE-SEM, EDX, and back titration. Furthermore, it was identified as an effective catalyst in the preparation of DHPM derivatives and pyranopyrazoles which results in high purity and high yields of products. Response surface methodology (RSM) based on a central composite design (CCD) was employed to reach the optimal conditions. The catalyst can be readily separated and recycled up to six times. [Figure not available: see fulltext.

  5. Toluene diisocyanate concentration investigation among TDI-related factories in Taiwan and their relations to the type of industry.

    PubMed

    Yeh, Hui-Jung; Shih, Tung-Sheng; Tsai, Perng-Jy; Chang, Ho-Yuan

    2002-03-01

    To determine nationwide 2,4- and 2,6-toluene diisocyanates (TDI) concentrations among polyurethane (PU) resin, PU foam, and other TDI-related industries in Taiwan. The ratios of 2,4-/2,6-TDI and the noncarcinogenic risk among these three industries were also investigated. Personal and fixed-area monitoring of TDI concentrations as well as questionnaires were performed for 26 factories in Taiwan. The modified OHSA 42 method was applied in sampling and analysis. Noncarcinogenic hazard index was estimated for these three industries based on the average concentration measurements. Significant differences of TDI concentrations were found among the three industry categories. For personal monitoring, PU foam was found to have the highest TDI levels [18.6 (+/-33.6) and 22.1 (+/-42.3) ppb for 2,4- and 2,6-TDI], Others average [8.3 (+/-18.9) and 10.2 (+/-17.2) ppb], and PU resin lowest [2.0 (+/-3.5) and 0.7 (+/-1.2) ppb]. The estimated average hazard indices were found to be 310-3310. A substantial percentage of airborne TDI concentrations among in Taiwan industries exceeded current TDI occupational exposure limit, and significant difference of TDI levels were found among the three industry categories. The control remedy for the tasks of charging and foaming should be enforced with the highest priority. A separate 2,6-TDI exposure standard is warranted.

  6. A New Remote Sensing Filter Radiometer Employing a Fabry-Perot Etalon and a CCD Camera for Column Measurements of Methane in the Earth Atmosphere

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Huang, W.; Heaps, W. S.

    2012-01-01

    A portable remote sensing system for precision column measurements of methane has been developed, built and tested at NASA GSFC. The sensor covers the spectral range from 1.636 micrometers to 1.646 micrometers, employs an air-gapped Fabry-Perot filter and a CCD camera and has a potential to operate from a variety of platforms. The detector is an XS-1.7-320 camera unit from Xenics Infrared solutions which combines an uncooled InGaAs detector array working up to 1.7 micrometers. Custom software was developed in addition to the graphical user basic interface X-Control provided by the company to help save and process the data. The technique and setup can be used to measure other trace gases in the atmosphere with minimal changes of the etalon and the prefilter. In this paper we describe the calibration of the system using several different approaches.

  7. An Overview of the CBERS-2 Satellite and Comparison of the CBERS-2 CCD Data with the L5 TM Data

    NASA Technical Reports Server (NTRS)

    Chandler, Gyanesh

    2007-01-01

    CBERS satellite carries on-board a multi sensor payload with different spatial resolutions and collection frequencies. HRCCD (High Resolution CCD Camera), IRMSS (Infrared Multispectral Scanner), and WFI (Wide-Field Imager). The CCD and the WFI camera operate in the VNIR regions, while the IRMSS operates in SWIR and thermal region. In addition to the imaging payload, the satellite carries a Data Collection System (DCS) and Space Environment Monitor (SEM).

  8. Time delay and integration array (TDI) using charge transfer device technology. Phase 2, volume 1: Technical

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The 20x9 TDI array was developed to meet the LANDSAT Thematic Mapper Requirements. This array is based upon a self-aligned, transparent gate, buried channel process. The process features: (1) buried channel, four phase, overlapping gate CCD's for high transfer efficiency without fat zero; (2) self-aligned transistors to minimize clock feedthrough and parasitic capacitance; and (3) transparent tin oxide electrode for high quantum efficiency with front surface irradiation. The requirements placed on the array and the performance achieved are summarized. This data is the result of flat field measurements only, no imaging or dynamic target measurements were made during this program. Measurements were performed with two different test stands. The bench test equipment fabricated for this program operated at the 8 micro sec line time and employed simple sampling of the gated MOSFET output video signal. The second stand employed Correlated Doubled Sampling (CDS) and operated at 79.2 micro sec line time.

  9. Risk assessment for consumer exposure to toluene diisocyanate (TDI) derived from polyurethane flexible foam.

    PubMed

    Arnold, Scott M; Collins, Michael A; Graham, Cynthia; Jolly, Athena T; Parod, Ralph J; Poole, Alan; Schupp, Thomas; Shiotsuka, Ronald N; Woolhiser, Michael R

    2012-12-01

    Polyurethanes (PU) are polymers made from diisocyanates and polyols for a variety of consumer products. It has been suggested that PU foam may contain trace amounts of residual toluene diisocyanate (TDI) monomers and present a health risk. To address this concern, the exposure scenario and health risks posed by sleeping on a PU foam mattress were evaluated. Toxicity benchmarks for key non-cancer endpoints (i.e., irritation, sensitization, respiratory tract effects) were determined by dividing points of departure by uncertainty factors. The cancer benchmark was derived using the USEPA Benchmark Dose Software. Results of previous migration and emission data of TDI from PU foam were combined with conservative exposure factors to calculate upper-bound dermal and inhalation exposures to TDI as well as a lifetime average daily dose to TDI from dermal exposure. For each non-cancer endpoint, the toxicity benchmark was divided by the calculated exposure to determine the margin of safety (MOS), which ranged from 200 (respiratory tract) to 3×10(6) (irritation). Although available data indicate TDI is not carcinogenic, a theoretical excess cancer risk (1×10(-7)) was calculated. We conclude from this assessment that sleeping on a PU foam mattress does not pose TDI-related health risks to consumers. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The Development of the Spanish Fireball Network Using a New All-Sky CCD System

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.; Llorca, J.; Fabregat, J.; Martínez, V. J.; Reglero, V.; Jelínek, M.; Kubánek, P.; Mateo, T.; Postigo, A. De Ugarte

    2004-12-01

    We have developed an all-sky charge coupled devices (CCD) automatic system for detecting meteors and fireballs that will be operative in four stations in Spain during 2005. The cameras were developed following the BOOTES-1 prototype installed at the El Arenosillo Observatory in 2002, which is based on a CCD detector of 4096 × 4096 pixels with a fish-eye lens that provides an all-sky image with enough resolution to make accurate astrometric measurements. Since late 2004, a couple of cameras at two of the four stations operate for 30 s in alternate exposures, allowing 100% time coverage. The stellar limiting magnitude of the images is +10 in the zenith, and +8 below ~ 65° of zenithal angle. As a result, the images provide enough comparison stars to make astrometric measurements of faint meteors and fireballs with an accuracy of ~ 2°arcminutes. Using this prototype, four automatic all-sky CCD stations have been developed, two in Andalusia and two in the Valencian Community, to start full operation of the Spanish Fireball Network. In addition to all-sky coverage, we are developing a fireball spectroscopy program using medium field lenses with additional CCD cameras. Here we present the first images obtained from the El Arenosillo and La Mayora stations in Andalusia during their first months of activity. The detection of the Jan 27, 2003 superbolide of ± 17 ± 1 absolute magnitude that overflew Algeria and Morocco is an example of the detection capability of our prototype.

  11. First Carlsberg Meridian Telescope (CMT) CCD Catalogue.

    NASA Astrophysics Data System (ADS)

    Bélizon, F.; Muiños, J. L.; Vallejo, M.; Evans, D. W.; Irwin, M.; Helmer, L.

    2003-11-01

    The Carlsberg Meridian Telescope (CMT) is a telescope owned by Copenhagen University Observatory (CUO). It was installed in the Spanish observatory of El Roque de los Muchachos on the island of La Palma (Canary Islands) in 1984. It is operated jointly by the CUO, the Institute of Astronomy, Cambridge (IoA) and the Real Instituto y Observatorio de la Armada of Spain (ROA) in the framework of an international agreement. From 1984 to 1998 the instrument was provided with a moving slit micrometer and with its observations a series of 11 catalogues were published, `Carlsberg Meridian Catalogue La Palma (CMC No 1-11)'. Since 1997, the telescope has been controlled remotely via Internet. The three institutions share this remote control in periods of approximately three months. In 1998, the CMT was upgraded by installing as sensor, a commercial Spectrasource CCD camera as a test of the possibility of performing meridian transits observed in drift-scan mode. Once this was shown possible, in 1999, a second model of CCD camera, built in the CUO workshop with a better performance, was installed. The Spectrasource camera was loaned to ROA by CUO and is now installed in the San Fernando Automatic Meridian Circle in San Juan (CMASF). In 1999, the observations were started of a sky survey from -3deg to +30deg in declination. In July 2002, a first release of the survey was published, with the positions of the observed stars in the band between -3deg and +3deg in declination. This oral communication will present this first release of the survey.

  12. Explosive Transient Camera (ETC) Program

    DTIC Science & Technology

    1991-10-01

    VOLTAGES 4.- VIDEO OUT CCD CLOCKING UNIT UUPSTAIRS" ELECTRONICS AND ANALOG TO DIGITAL IPR OCECSSER I COMMANDS TO DATA AND STATUS INSTRUMENT INFORMATION I...and transmits digital video and status information to the "downstairs" system. The clocking unit and regulator/driver board are the only CCD dependent...A. 1001, " Video Cam-era’CC’" tandari Piells" (1(P’ll m-norartlum, unpublished). Condon,, J.J., Puckpan, M.A., and Vachalski, J. 1970, A. J., 9U, 1149

  13. CCD detector development projects by the Beamline Technical Support Group at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Lee, John H.; Fernandez, Patricia; Madden, Tim; Molitsky, Michael; Weizeorick, John

    2007-11-01

    This paper will describe two ongoing detector projects being developed by the Beamline Technical Support Group at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The first project is the design and construction of two detectors: a single-CCD system and a two-by-two Mosaic CCD camera for Small-Angle X-ray Scattering (SAXS). Both of these systems utilize the Kodak KAF-4320E CCD coupled to fiber optic tapers, custom mechanical hardware, electronics, and software developed at ANL. The second project is a Fast-CCD (FCCD) detector being developed in a collaboration between ANL and Lawrence Berkeley National Laboratory (LBNL). This detector will use ANL-designed readout electronics and a custom LBNL-designed CCD, with 480×480 pixels and 96 outputs, giving very fast readout.

  14. Environmental performance evaluation of an advanced-design solid-state television camera

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.

  15. Mosaic CCD method: A new technique for observing dynamics of cometary magnetospheres

    NASA Technical Reports Server (NTRS)

    Saito, T.; Takeuchi, H.; Kozuba, Y.; Okamura, S.; Konno, I.; Hamabe, M.; Aoki, T.; Minami, S.; Isobe, S.

    1992-01-01

    On April 29, 1990, the plasma tail of Comet Austin was observed with a CCD camera on the 105-cm Schmidt telescope at the Kiso Observatory of the University of Tokyo. The area of the CCD used in this observation is only about 1 sq cm. When this CCD is used on the 105-cm Schmidt telescope at the Kiso Observatory, the area corresponds to a narrow square view of 12 ft x 12 ft. By comparison with the photograph of Comet Austin taken by Numazawa (personal communication) on the same night, we see that only a small part of the plasma tail can be photographed at one time with the CCD. However, by shifting the view on the CCD after each exposure, we succeeded in imaging the entire length of the cometary magnetosphere of 1.6 x 10(exp 6) km. This new technique is called 'the mosaic CCD method'. In order to study the dynamics of cometary plasma tails, seven frames of the comet from the head to the tail region were twice imaged with the mosaic CCD method and two sets of images were obtained. Six microstructures, including arcade structures, were identified in both the images. Sketches of the plasma tail including microstructures are included.

  16. Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng

    2017-02-01

    A real-time tricolor phase measuring profilometry (RTPMP) based on charge coupled device (CCD) sensitivity calibration is proposed. Only one colour fringe pattern whose red (R), green (G) and blue (B) components are, respectively, coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is needed and sent to an appointed flash memory on a specialized digital light projector (SDLP). A specialized time-division multiplexing timing sequence actively controls the SDLP to project the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile actively controls a high frame rate monochrome CCD camera to capture the corresponding deformed patterns synchronously with the SDLP. So the sufficient information for reconstructing the three-dimensional (3D) shape in one over twenty-four of a second is obtained. Due to the different spectral sensitivity of the CCD camera to RGB lights, the captured deformed patterns from R, G and B channels cannot share the same peak and valley, which will lead to lower accuracy or even failing to reconstruct the 3D shape. So a deformed pattern amending method based on CCD sensitivity calibration is developed to guarantee the accurate 3D reconstruction. The experimental results verify the feasibility of the proposed RTPMP method. The proposed RTPMP method can obtain the 3D shape at over the video frame rate of 24 frames per second, avoid the colour crosstalk completely and be effective for measuring real-time changing object.

  17. Binary pressure-sensitive paint measurements using miniaturised, colour, machine vision cameras

    NASA Astrophysics Data System (ADS)

    Quinn, Mark Kenneth

    2018-05-01

    Recent advances in machine vision technology and capability have led to machine vision cameras becoming applicable for scientific imaging. This study aims to demonstrate the applicability of machine vision colour cameras for the measurement of dual-component pressure-sensitive paint (PSP). The presence of a second luminophore component in the PSP mixture significantly reduces its inherent temperature sensitivity, increasing its applicability at low speeds. All of the devices tested are smaller than the cooled CCD cameras traditionally used and most are of significantly lower cost, thereby increasing the accessibility of such technology and techniques. Comparisons between three machine vision cameras, a three CCD camera, and a commercially available specialist PSP camera are made on a range of parameters, and a detailed PSP calibration is conducted in a static calibration chamber. The findings demonstrate that colour machine vision cameras can be used for quantitative, dual-component, pressure measurements. These results give rise to the possibility of performing on-board dual-component PSP measurements in wind tunnels or on real flight/road vehicles.

  18. Line scanning system for direct digital chemiluminescence imaging of DNA sequencing blots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karger, A.E.; Weiss, R.; Gesteland, R.F.

    A cryogenically cooled charge-coupled device (CCD) camera equipped with an area CCD array is used in a line scanning system for low-light-level imaging of chemiluminescent DNA sequencing blots. Operating the CCD camera in time-delayed integration (TDI) mode results in continuous data acquisition independent of the length of the CCD array. Scanning is possible with a resolution of 1.4 line pairs/mm at the 50% level of the modulation transfer function. High-sensitivity, low-light-level scanning of chemiluminescent direct-transfer electrophoresis (DTE) DNA sequencing blots is shown. The detection of DNA fragments on the blot involves DNA-DNA hybridization with oligonucleotide-alkaline phosphatase conjugate and 1,2-dioxetane-based chemiluminescence.more » The width of the scan allows the recording of up to four sequencing reactions (16 lanes) on one scan. The scan speed of 52 cm/h used for the sequencing blots corresponds to a data acquisition rate of 384 pixels/s. The chemiluminescence detection limit on the scanned images is 3.9 [times] 10[sup [minus]18] mol of plasmid DNA. A conditional median filter is described to remove spikes caused by cosmic ray events from the CCD images. 39 refs., 9 refs.« less

  19. Development of a CCD array as an imaging detector for advanced X-ray astrophysics facilities

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.

    1981-01-01

    The development of a charge coupled device (CCD) X-ray imager for a large aperture, high angular resolution X-ray telescope is discussed. Existing CCDs were surveyed and three candidate concepts were identified. An electronic camera control and computer interface, including software to drive a Fairchild 211 CCD, is described. In addition a vacuum mounting and cooling system is discussed. Performance data for the various components are given.

  20. Measurements of 42 Wide CPM Pairs with a CCD

    NASA Astrophysics Data System (ADS)

    Harshaw, Richard

    2015-11-01

    This paper addresses the use of a Skyris 618C color CCD camera as a means of obtaining data for analysis in the measurement of wide common proper motion stars. The equipment setup is described and data collection procedure outlined. Results of the measures of 42 CPM stars are presented, showing the Skyris is a reliable device for the measurement of double stars.

  1. An ultrahigh-speed color video camera operating at 1,000,000 fps with 288 frame memories

    NASA Astrophysics Data System (ADS)

    Kitamura, K.; Arai, T.; Yonai, J.; Hayashida, T.; Kurita, T.; Maruyama, H.; Namiki, J.; Yanagi, T.; Yoshida, T.; van Kuijk, H.; Bosiers, Jan T.; Saita, A.; Kanayama, S.; Hatade, K.; Kitagawa, S.; Etoh, T. Goji

    2008-11-01

    We developed an ultrahigh-speed color video camera that operates at 1,000,000 fps (frames per second) and had capacity to store 288 frame memories. In 2005, we developed an ultrahigh-speed, high-sensitivity portable color camera with a 300,000-pixel single CCD (ISIS-V4: In-situ Storage Image Sensor, Version 4). Its ultrahigh-speed shooting capability of 1,000,000 fps was made possible by directly connecting CCD storages, which record video images, to the photodiodes of individual pixels. The number of consecutive frames was 144. However, longer capture times were demanded when the camera was used during imaging experiments and for some television programs. To increase ultrahigh-speed capture times, we used a beam splitter and two ultrahigh-speed 300,000-pixel CCDs. The beam splitter was placed behind the pick up lens. One CCD was located at each of the two outputs of the beam splitter. The CCD driving unit was developed to separately drive two CCDs, and the recording period of the two CCDs was sequentially switched. This increased the recording capacity to 288 images, an increase of a factor of two over that of conventional ultrahigh-speed camera. A problem with the camera was that the incident light on each CCD was reduced by a factor of two by using the beam splitter. To improve the light sensitivity, we developed a microlens array for use with the ultrahigh-speed CCDs. We simulated the operation of the microlens array in order to optimize its shape and then fabricated it using stamping technology. Using this microlens increased the light sensitivity of the CCDs by an approximate factor of two. By using a beam splitter in conjunction with the microlens array, it was possible to make an ultrahigh-speed color video camera that has 288 frame memories but without decreasing the camera's light sensitivity.

  2. Coaxial fundus camera for opthalmology

    NASA Astrophysics Data System (ADS)

    de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.

    2015-09-01

    A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.

  3. Optical registration of spaceborne low light remote sensing camera

    NASA Astrophysics Data System (ADS)

    Li, Chong-yang; Hao, Yan-hui; Xu, Peng-mei; Wang, Dong-jie; Ma, Li-na; Zhao, Ying-long

    2018-02-01

    For the high precision requirement of spaceborne low light remote sensing camera optical registration, optical registration of dual channel for CCD and EMCCD is achieved by the high magnification optical registration system. System integration optical registration and accuracy of optical registration scheme for spaceborne low light remote sensing camera with short focal depth and wide field of view is proposed in this paper. It also includes analysis of parallel misalignment of CCD and accuracy of optical registration. Actual registration results show that imaging clearly, MTF and accuracy of optical registration meet requirements, it provide important guarantee to get high quality image data in orbit.

  4. CCD Photometer Installed on the Telescope - 600 OF the Shamakhy Astrophysical Observatory: I. Adjustment of CCD Photometer with Optics - 600

    NASA Astrophysics Data System (ADS)

    Lyuty, V. M.; Abdullayev, B. I.; Alekberov, I. A.; Gulmaliyev, N. I.; Mikayilov, Kh. M.; Rustamov, B. N.

    2009-12-01

    Short description of optical and electric scheme of CCD photometer with camera U-47 installed on the Cassegrain focus of ZEISS-600 telescope of the ShAO NAS Azerbaijan is provided. The reducer of focus with factor of reduction 1.7 is applied. It is calculated equivalent focal distances of a telescope with a focus reducer. General calculations of optimum distance from focal plane and t sizes of optical filters of photometer are presented.

  5. Risk mitigation process for utilization of commercial off-the-shelf (COTS) parts in CCD camera for military applications

    NASA Astrophysics Data System (ADS)

    Ahmad, Anees; Batcheldor, Scott; Cannon, Steven C.; Roberts, Thomas E.

    2002-09-01

    This paper presents the lessons learned during the design and development of a high performance cooled CCD camera for military applications utilizing common commercial off the shelf (COTS) parts. Our experience showed that concurrent evaluation and testing of high risk COTS must be performed to assess their performance over the required temperature range and other special product requirements such as fuel vapor compatibility, EMI and shock susceptibility, etc. Technical, cost and schedule risks for COTS parts must also be carefully evaluated. The customer must be involved in the selection and evaluation of such parts so that the performance limitations of the selected parts are clearly understood. It is equally important to check with vendors on the availability and obsolescence of the COTS parts being considered since the electronic components are often replaced by newer, better and cheaper models in a couple of years. In summary, this paper addresses the major benefits and risks associated with using commercial and industrial parts in military products, and suggests a risk mitigation approach to ensure a smooth development phase, and predictable performance from the end product.

  6. Evaluation of the disintegration time of rapidly disintegrating tablets via a novel method utilizing a CCD camera.

    PubMed

    Morita, Yutaka; Tsushima, Yuki; Yasui, Masanobu; Termoz, Ryoji; Ajioka, Junko; Takayama, Kozo

    2002-09-01

    Many kinds of rapidly disintegrating or oral disintegrating tablets (RDT) have been developed to improve the ease of tablet administration, especially for elderly and pediatric patients. In these cases, knowledge regarding disintegration behavior appears important with respect to the development of such a novel tablet. Ordinary disintegration testing, such as the Japanese Pharmacopoeia (JP) method, faces limitations with respect to the evaluation of rapid disintegration due to strong agitation. Therefore, we have developed a novel apparatus and method to determine the dissolution of the RDT. The novel device consists of a disintegrating bath and CCD camera interfaced with a personal computer equipped with motion capture and image analysis software. A newly developed RDT containing various types of binder was evaluated with this protocol. In this method, disintegration occurs in a mildly agitated medium, which allows differentiation of minor distinctions among RDTs of different formulations. Simultaneously, we were also able to detect qualitative information, i.e., morphological changes in the tablet during disintegration. This method is useful for the evaluation of the disintegration of RDT during pharmaceutical development, and also for quality control during production.

  7. Image Information Obtained Using a Charge-Coupled Device (CCD) Camera During an Immersion Liquid Evaporation Process for Measuring the Refractive Index of Solid Particles.

    PubMed

    Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka

    2018-06-01

    The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.

  8. Comparing the TYCHO Catalogue with CCD Astrograph Observations

    NASA Astrophysics Data System (ADS)

    Zacharias, N.; Hoeg, E.; Urban, S. E.; Corbin, T. E.

    1997-08-01

    Selected fields around radio-optical reference frame sources have been observed with the U.S. Naval Observatory CCD astrograph (UCA). This telescope is equipped with a red-corrected 206mm 5-element lens and a 4k by 4k CCD camera which provides a 1 square degree field of view. Positions with internal precisions of 20 mas for stars in the 7 to 12 magnitude range have been obtained with 30 second exposures. A comparison is made with the Tycho Catalogue, which is accurate to about 5 to 50 mas at mean epoch of J1991.25, depending on the magnitude of the star. Preliminary proper motions are obtained using the Astrographic Catalogue (AC) to update the Tycho positions to the epoch of the UCA observations, which adds an error contribution of about 15 to 20 mas. Individual CCD frames have been reduced with an average of 30 Tycho reference stars per frame. A linear plate model gives an average adjustment standard error of 46 mas, consistent with the internal errors. The UCA is capable of significantly improving the positions of Tycho stars fainter than about visual magnitude 9.5.

  9. A Flight Photon Counting Camera for the WFIRST Coronagraph

    NASA Astrophysics Data System (ADS)

    Morrissey, Patrick

    2018-01-01

    A photon counting camera based on the Teledyne-e2v CCD201-20 electron multiplying CCD (EMCCD) is being developed for the NASA WFIRST coronagraph, an exoplanet imaging technology development of the Jet Propulsion Laboratory (Pasadena, CA) that is scheduled to launch in 2026. The coronagraph is designed to directly image planets around nearby stars, and to characterize their spectra. The planets are exceedingly faint, providing signals similar to the detector dark current, and require the use of photon counting detectors. Red sensitivity (600-980nm) is preferred to capture spectral features of interest. Since radiation in space affects the ability of the EMCCD to transfer the required single electron signals, care has been taken to develop appropriate shielding that will protect the cameras during a five year mission. In this poster, consideration of the effects of space radiation on photon counting observations will be described with the mitigating features of the camera design. An overview of the current camera flight system electronics requirements and design will also be described.

  10. Evaluation of anti-asthmatic and antioxidant potential of Boerhavia procumbens in toluene diisocyanate (TDI) treated rats.

    PubMed

    Bokhari, Jasia; Khan, Muhammad Rashid

    2015-08-22

    Asthma is an ailment of airways characterized by activation of the T helper (Th) 2 lymphocytes and subsequent movement of inflammatory cells. Boerhavia procumbens of family Nyctaginaceae is locally used for the treatment of asthma, cough, hemorrhoids, dropsy, cardiac, eyes and kidney problems. We have evaluated its methanol extract (BPM) as a therapeutic candidate for asthma against toluene diisocyanate (TDI) allergic model in rat. The BPM extract was obtained from the whole plant of B. procumbens in methanol. Sprague-Dawley male 36 rats (200-250 g) were categorized into 6 groups having six rats in each category. The animals were provoked (10%) and sensitized (5%) by TDI. Animals of groups I-III were vehicle control (ethyl acetate), diseased control (TDI) and reference control (TDI+dexamethasone {2.5mg/kg bw}), respectively. Animals of group IV (TDI+200mg/kg bw) and group V (TDI+400mg/kg bw) were administered with BPM whereas group VI was administered with 400mg/kg bw alone of BPM. Protective effects of BPM were determined by counting the number of leucocytes and estimation of interleukines in blood, bronchoalveolar lavage (BAL) and in in vitro culture of spleen cells. Estimation of antioxidant enzymes, lipid peroxides and H2O2 and histopathology of lungs were carried out for antioxidant potential of plant extract used. Methanol extract of B. procumbens suppressed the asthmatic symptoms and inhibited the infiltration of eosinophils and lymphocytes in lungs of TDI provoked rats. Administration of BPM to TDI provoked rats, dose dependently, inhibited the release of interleukins (IL)-2 in serum and IL-4, IL-6 interferon gamma (IFN-γ) in bronchoalveolar lavage (BAL) and in in vitro culture of spleen cells, and ameliorated the oxidative stress in lung tissues. Quantitative scoring of the lung histopathology exhibited protective effects of BPM and the inflammation, mucus, thickening of peribronchial smooth muscle layer and subepithelial deposition of collagen induced

  11. Camera-on-a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.

  12. Design of a Day/Night Star Camera System

    NASA Technical Reports Server (NTRS)

    Alexander, Cheryl; Swift, Wesley; Ghosh, Kajal; Ramsey, Brian

    1999-01-01

    This paper describes the design of a camera system capable of acquiring stars during both the day and night cycles of a high altitude balloon flight (35-42 km). The camera system will be filtered to operate in the R band (590-810 nm). Simulations have been run using MODTRAN atmospheric code to determine the worse case sky brightness at 35 km. With a daytime sky brightness of 2(exp -05) W/sq cm/str/um in the R band, the sensitivity of the camera system will allow acquisition of at least 1-2 stars/sq degree at star magnitude limits of 8.25-9.00. The system will have an F2.8, 64.3 mm diameter lens and a 1340X1037 CCD array digitized to 12 bits. The CCD array is comprised of 6.8 X 6.8 micron pixels with a well depth of 45,000 electrons and a quantum efficiency of 0.525 at 700 nm. The camera's field of view will be 6.33 sq degree and provide attitude knowledge to 8 arcsec or better. A test flight of the system is scheduled for fall 1999.

  13. A design of driving circuit for star sensor imaging camera

    NASA Astrophysics Data System (ADS)

    Li, Da-wei; Yang, Xiao-xu; Han, Jun-feng; Liu, Zhao-hui

    2016-01-01

    The star sensor is a high-precision attitude sensitive measuring instruments, which determine spacecraft attitude by detecting different positions on the celestial sphere. Imaging camera is an important portion of star sensor. The purpose of this study is to design a driving circuit based on Kodak CCD sensor. The design of driving circuit based on Kodak KAI-04022 is discussed, and the timing of this CCD sensor is analyzed. By the driving circuit testing laboratory and imaging experiments, it is found that the driving circuits can meet the requirements of Kodak CCD sensor.

  14. Development and assessment of Transpirative Deficit Index (D-TDI) for agricultural drought monitoring

    NASA Astrophysics Data System (ADS)

    Borghi, Anna; Rienzner, Michele; Gandolfi, Claudio; Facchi, Arianna

    2017-04-01

    Drought is a major cause of crop yield loss, both in rainfed and irrigated agroecosystems. In past decades, many approaches have been developed to assess agricultural drought, usually based on the monitoring or modelling of the soil water content condition. All these indices show weaknesses when applied for a real time drought monitoring and management at the local scale, since they do not consider explicitly crops and soil properties at an adequate spatial resolution. This work describes a newly developed agricultural drought index, called Transpirative Deficit Index (D-TDI), and assesses the results of its application over a study area of about 210 km2 within the Po River Plain (northern Italy). The index is based on transforming the interannual distribution of the transpirative deficit (potential crop transpiration minus actual transpiration), calculated daily by means of a spatially distributed conceptual hydrological model and cumulated over user-selected time-steps, to a standard normal distribution (following the approach proposed by the meteorological index SPI - Standard Precipitation Index). For the application to the study area a uniform maize crop cover (maize is the most widespread crop in the area) and 22-year (1993-2014) meteorological data series were considered. Simulation results consist in maps of the index cumulated over 10-day time steps over a mesh with cells of 250 m. A correlation analysis was carried out (1) to study the characteristics and the memory of D-TDI and to assess its intra- and inter-annual variability, (2) to assess the response of the agricultural drought (i.e., the information provided by D-TDI) to the meteorological drought computed through the SPI over different temporal steps. The D-TDI is positively auto-correlated with a persistence of 30 days, and positively cross-correlated to the SPI with a persistence of 40 days, demonstrating that D-TDI responds to meteorological forcing. Correlation analyses demonstrate that soils

  15. 2,4-/2,6-Toluene diisocyanate mixture (TDI)

    Integrated Risk Information System (IRIS)

    2,4 - / 2,6 - Toluene diisocyanate mixture ( TDI ) ; CASRN 26471 - 62 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Haz

  16. Optical and dark characterization of the PLATO CCD at ESA

    NASA Astrophysics Data System (ADS)

    Verhoeve, Peter; Prod'homme, Thibaut; Oosterbroek, Tim; Duvet, Ludovic; Beaufort, Thierry; Blommaert, Sander; Butler, Bart; Heijnen, Jerko; Lemmel, Frederic; van der Luijt, Cornelis; Smit, Hans; Visser, Ivo

    2016-07-01

    PLATO - PLAnetary Transits and Oscillations of stars - is the third medium-class mission (M3) to be selected in the European Space Agency (ESA) Science and Robotic Exploration Cosmic Vision programme. It is due for launch in 2025 with the main objective to find and study terrestrial planets in the habitable zone around solar-like stars. The payload consists of >20 cameras; with each camera comprising 4 Charge-Coupled Devices (CCDs), a large number of flight model devices procured by ESA shall ultimately be integrated on the spacecraft. The CCD270 - specially designed and manufactured by e2v for the PLATO mission - is a large format (8 cm x 8 cm) back-illuminated device operating at 4 MHz pixel rate and coming in two variants: full frame and frame transfer. In order to de-risk the PLATO CCD procurement and aid the mission definition process, ESA's Payload Technology Validation section is currently validating the PLATO CCD270. This validation consists in demonstrating that the device achieves its specified electrooptical performance in the relevant environment: operated at 4 MHz, at cold and before and after proton irradiation. As part of this validation, CCD270 devices have been characterized in the dark as well as optically with respect to performance parameters directly relevant for the photometric application of the CCDs. Dark tests comprise the measurement of gain sensitivity to bias voltages, charge injection tests, and measurement of hot and variable pixels after irradiation. In addition, the results of measurements of Quantum Efficiency for a range of angles of incidence, intra- pixel response (non-)uniformity, and response to spot illumination, before and after proton irradiation. In particular, the effect of radiation induced degradation of the charge transfer efficiency on the measured charge in a star-like spot has been studied as a function of signal level and of position on the pixel grid, Also, the effect of various levels of background light on the

  17. Evaluation of self-reported skin problems among workers exposed to toluene diisocyanate (TDI) at a foam manufacturing facility.

    PubMed

    Daftarian, Helga S; Lushniak, Boris D; Reh, Christopher M; Lewis, Daniel M

    2002-12-01

    Toluene diisocyanate, or TDI (CAS 584-84-9) is a well-known asthmagen and respiratory irritant. TDI is also known for its ability to irritate the skin and mucous membranes. To further investigate the dermal effects of TDI, NIOSH investigators conducted a cross-sectional study at a flexible foam manufacturing plant. A total of 114 workers participated in the study. Participants completed a medical questionnaire, provided blood for antibody testing to TDI and other allergens, and a subset of participants reporting skin symptoms underwent skin patch testing to a standard diisocyanate panel. Production line workers were more than twice as likely to report skin problems as those working in nonproduction areas (PRR = 2.66; 95% CI = 1.14-16.32; P = 0.02). Age, gender and duration of employment at the plant were comparable among participants working in production and nonproduction areas. Of the 100 participants who provided blood samples for antibody testing, specific IgG antibody to TDI was detected in two individuals, and none of the samples demonstrated specific IgE antibody to TDI. Of the 26 workers who underwent skin patch testing, none developed reactions to the diisocyanate allergens. These results suggest that the skin symptoms among study participants represent an irritant rather than an immunologic reaction to TDI, or to an unidentified allergen present in the foam.

  18. A CCD search for geosynchronous debris

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom; Vilas, Faith

    1986-01-01

    Using the Spacewatch Camera, a search was conducted for objects in geosynchronous earth orbit. The system is equipped with a CCD camera cooled with dry ice; the image scale is 1.344 arcsec/pixel. The telescope drive was off so that during integrations the stars were trailed while geostationary objects appeared as round images. The technique should detect geostationary objects to a limiting apparent visual magnitude of 19. A sky area of 8.8 square degrees was searched for geostationary objects while geosynchronous debris passing through was 16.4 square degrees. Ten objects were found of which seven are probably geostationary satellites having apparent visual magnitudes brighter than 13.1. Three objects having magnitudes equal to or fainter than 13.7 showed motion in the north-south direction. The absence of fainter stationary objects suggests that a gap in debris size exists between satellites and particles having diameters in the millimeter range.

  19. 3D digital image correlation using single color camera pseudo-stereo system

    NASA Astrophysics Data System (ADS)

    Li, Junrui; Dan, Xizuo; Xu, Wan; Wang, Yonghong; Yang, Guobiao; Yang, Lianxiang

    2017-10-01

    Three dimensional digital image correlation (3D-DIC) has been widely used by industry to measure the 3D contour and whole-field displacement/strain. In this paper, a novel single color camera 3D-DIC setup, using a reflection-based pseudo-stereo system, is proposed. Compared to the conventional single camera pseudo-stereo system, which splits the CCD sensor into two halves to capture the stereo views, the proposed system achieves both views using the whole CCD chip and without reducing the spatial resolution. In addition, similarly to the conventional 3D-DIC system, the center of the two views stands in the center of the CCD chip, which minimizes the image distortion relative to the conventional pseudo-stereo system. The two overlapped views in the CCD are separated by the color domain, and the standard 3D-DIC algorithm can be utilized directly to perform the evaluation. The system's principle and experimental setup are described in detail, and multiple tests are performed to validate the system.

  20. A Three-Line Stereo Camera Concept for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Sandau, Rainer; Hilbert, Stefan; Venus, Holger; Walter, Ingo; Fang, Wai-Chi; Alkalai, Leon

    1997-01-01

    This paper presents a low-weight stereo camera concept for planetary exploration. The camera uses three CCD lines within the image plane of one single objective. Some of the main features of the camera include: focal length-90 mm, FOV-18.5 deg, IFOV-78 (mu)rad, convergence angles-(+/-)10 deg, radiometric dynamics-14 bit, weight-2 kg, and power consumption-12.5 Watts. From an orbit altitude of 250 km the ground pixel size is 20m x 20m and the swath width is 82 km. The CCD line data is buffered in the camera internal mass memory of 1 Gbit. After performing radiometric correction and application-dependent preprocessing the data is compressed and ready for downlink. Due to the aggressive application of advanced technologies in the area of microelectronics and innovative optics, the low mass and power budgets of 2 kg and 12.5 Watts is achieved, while still maintaining high performance. The design of the proposed light-weight camera is also general purpose enough to be applicable to other planetary missions such as the exploration of Mars, Mercury, and the Moon. Moreover, it is an example of excellent international collaboration on advanced technology concepts developed at DLR, Germany, and NASA's Jet Propulsion Laboratory, USA.

  1. Testing fully depleted CCD

    NASA Astrophysics Data System (ADS)

    Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan

    2014-08-01

    The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.

  2. 41 CFR 301-1.2 - What is an “employee” for purposes of TDY allowances?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What is an âemployeeâ for purposes of TDY allowances? 301-1.2 Section 301-1.2 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES INTRODUCTION 1-APPLICABILITY § 301...

  3. CCD Photometry of bright stars using objective wire mesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiński, Krzysztof; Zgórz, Marika; Schwarzenberg-Czerny, Aleksander, E-mail: chrisk@amu.edu.pl

    2014-06-01

    Obtaining accurate photometry of bright stars from the ground remains problematic due to the danger of overexposing the target and/or the lack of suitable nearby comparison stars. The century-old method of using objective wire mesh to produce multiple stellar images seems promising for the precise CCD photometry of such stars. Furthermore, our tests on β Cep and its comparison star, differing by 5 mag, are very encouraging. Using a CCD camera and a 20 cm telescope with the objective covered by a plastic wire mesh, in poor weather conditions, we obtained differential photometry with a precision of 4.5 mmag permore » two minute exposure. Our technique is flexible and may be tuned to cover a range as big as 6-8 mag. We discuss the possibility of installing a wire mesh directly in the filter wheel.« less

  4. Multicolor CCD photometry of the open cluster NGC 752

    NASA Astrophysics Data System (ADS)

    Bartašiūtė, Stanislava; Janusz, Robert; Boyle, Richard P.; Philip, A. G. Davis; Deveikis, Viktoras

    2010-01-01

    We obtained CCD observations of the open cluster NGC 752 with the 1.8m Vatican Advanced Technology Telescope (Mt. Graham, Arizona) with a 4K CCD camera and eight intermediate-band filters of the Stromvil (Strömgren + Vilnius) system. Four 12‧ × 12‧ fields were observed, covering the central part of the cluster. The good-quality multicolor data made it possible to obtain precise estimates of distance moduli, metallicity and foreground reddening for individual stars down to the limiting magnitude, V = 17.5, enabling photometric identification of faint cluster members. The new observations provide an extension of the lower main sequence to three magnitudes beyond the previous (photographic) limit. A relatively small number of photometric members identified at fainter magnitudes seems to be indicative of actual dissolution of the cluster from the low-mass end.

  5. Control and protection of outdoor embedded camera for astronomy

    NASA Astrophysics Data System (ADS)

    Rigaud, F.; Jegouzo, I.; Gaudemard, J.; Vaubaillon, J.

    2012-09-01

    The purpose of CABERNET- Podet-Met (CAmera BEtter Resolution NETwork, Pole sur la Dynamique de l'Environnement Terrestre - Meteor) project is the automated observation, by triangulation with three cameras, of meteor showers to perform a calculation of meteoroids trajectory and velocity. The scientific goal is to search the parent body, comet or asteroid, for each observed meteor. To install outdoor cameras in order to perform astronomy measurements for several years with high reliability requires a very specific design for the box. For these cameras, this contribution shows how we fulfilled the various functions of their boxes, such as cooling of the CCD, heating to melt snow and ice, the protecting against moisture, lightning and Solar light. We present the principal and secondary functions, the product breakdown structure, the technical solutions evaluation grid of criteria, the adopted technology products and their implementation in multifunction subsets for miniaturization purpose. To manage this project, we aim to get the lowest manpower and development time for every part. In appendix, we present the measurements the image quality evolution during the CCD cooling, and some pictures of the prototype.

  6. Establishing imaging sensor specifications for digital still cameras

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    2007-02-01

    Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.

  7. Design of area array CCD image acquisition and display system based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  8. Color-magnitude diagram of Palomar 4 - CCD photometry

    NASA Astrophysics Data System (ADS)

    Christian, C. A.; Heasley, J. N.

    1986-04-01

    Photometry of the globular cluster Pal 4 was obtained with the RCA CCD camera on the 3.6 m Canada-France-Hawaii Telescope on Mauna Kea. The color-magnitude diagram of the cluster shows a well-defined red horizontal branch, typical of outer halo systems, and an asymptotic giant branch well separated from the giant branch. The population of Pal 4 has been sampled to the main-sequence turnoff region (V = 25), allowing a detailed comparison of this distant object with theoretical models. The cluster parameters consistent with the CCD data are (m - M)0 = 20.1 + or - 0.1 mag, E(B - V) = 0.02 + or - 0.02, and Fe/H forbidden line = -1.7 + or - 0.1 with Y =0.2. The age of the cluster, determined by comparison with the isochrones of VandenBerg and Bell (1985) is consistent with an age of 15 + or - 1 Gyr, similar to inner halo globular clusters with ages determined in the same way.

  9. Architecture of PAU survey camera readout electronics

    NASA Astrophysics Data System (ADS)

    Castilla, Javier; Cardiel-Sas, Laia; De Vicente, Juan; Illa, Joseph; Jimenez, Jorge; Maiorino, Marino; Martinez, Gustavo

    2012-07-01

    PAUCam is a new camera for studying the physics of the accelerating universe. The camera will consist of eighteen 2Kx4K HPK CCDs: sixteen for science and two for guiding. The camera will be installed at the prime focus of the WHT (William Herschel Telescope). In this contribution, the architecture of the readout electronics system is presented. Back- End and Front-End electronics are described. Back-End consists of clock, bias and video processing boards, mounted on Monsoon crates. The Front-End is based on patch panel boards. These boards are plugged outside the camera feed-through panel for signal distribution. Inside the camera, individual preamplifier boards plus kapton cable completes the path to connect to each CCD. The overall signal distribution and grounding scheme is shown in this paper.

  10. 41 CFR 301-1.1 - What is an “agency” for purposes of TDY allowances?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What is an âagencyâ for purposes of TDY allowances? 301-1.1 Section 301-1.1 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES INTRODUCTION 1-APPLICABILITY § 301-1.1 What is an...

  11. Method for eliminating artifacts in CCD imagers

    DOEpatents

    Turko, B.T.; Yates, G.J.

    1992-06-09

    An electronic method for eliminating artifacts in a video camera employing a charge coupled device (CCD) as an image sensor is disclosed. The method comprises the step of initializing the camera prior to normal read out and includes a first dump cycle period for transferring radiation generated charge into the horizontal register while the decaying image on the phosphor being imaged is being integrated in the photosites, and a second dump cycle period, occurring after the phosphor image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers. Image charge is then transferred from the photosites and to the vertical registers and read out in conventional fashion. The inventive method allows the video camera to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers and, and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites. 3 figs.

  12. Photoelectric and CCD observations of 10 asteroids

    NASA Astrophysics Data System (ADS)

    de Sanctis, M. C.; Barucci, M. A.; Angeli, C. A.; Fulchignoni, M.; Burchi, R.; Angelini, P.

    1994-10-01

    A program of physical studies of asteroids has been carried out using two types of detectors: photoelectric photometer and CCD camera. In this paper we report the results of photometric observations of 10 asteroids. We have obtained a total of 35 single night lightcurves and we have determined rotational periods for the asteroids 1520 Imatra (P = 5.23 h), 1534 Nasi (P = 9.75 h), 2078 Nanking (P = 6.473 h), 2241 Alcathous (P = 9.41 h), 3103 1982 BB (P = 5.709 h), 3139 Shantou (P = 8.33 h), 3259 Brownlee (P = 9.24 h), 4455 Ruriko (P = 4.23 h).

  13. High-frame-rate infrared and visible cameras for test range instrumentation

    NASA Astrophysics Data System (ADS)

    Ambrose, Joseph G.; King, B.; Tower, John R.; Hughes, Gary W.; Levine, Peter A.; Villani, Thomas S.; Esposito, Benjamin J.; Davis, Timothy J.; O'Mara, K.; Sjursen, W.; McCaffrey, Nathaniel J.; Pantuso, Francis P.

    1995-09-01

    Field deployable, high frame rate camera systems have been developed to support the test and evaluation activities at the White Sands Missile Range. The infrared cameras employ a 640 by 480 format PtSi focal plane array (FPA). The visible cameras employ a 1024 by 1024 format backside illuminated CCD. The monolithic, MOS architecture of the PtSi FPA supports commandable frame rate, frame size, and integration time. The infrared cameras provide 3 - 5 micron thermal imaging in selectable modes from 30 Hz frame rate, 640 by 480 frame size, 33 ms integration time to 300 Hz frame rate, 133 by 142 frame size, 1 ms integration time. The infrared cameras employ a 500 mm, f/1.7 lens. Video outputs are 12-bit digital video and RS170 analog video with histogram-based contrast enhancement. The 1024 by 1024 format CCD has a 32-port, split-frame transfer architecture. The visible cameras exploit this architecture to provide selectable modes from 30 Hz frame rate, 1024 by 1024 frame size, 32 ms integration time to 300 Hz frame rate, 1024 by 1024 frame size (with 2:1 vertical binning), 0.5 ms integration time. The visible cameras employ a 500 mm, f/4 lens, with integration time controlled by an electro-optical shutter. Video outputs are RS170 analog video (512 by 480 pixels), and 12-bit digital video.

  14. Noise and sensitivity of x-ray framing cameras at Nike (abstract)

    NASA Astrophysics Data System (ADS)

    Pawley, C. J.; Deniz, A. V.; Lehecka, T.

    1999-01-01

    X-ray framing cameras are the most widely used tool for radiographing density distributions in laser and Z-pinch driven experiments. The x-ray framing cameras that were developed specifically for experiments on the Nike laser system are described. One of these cameras has been coupled to a CCD camera and was tested for resolution and image noise using both electrons and x rays. The largest source of noise in the images was found to be due to low quantum detection efficiency of x-ray photons.

  15. X-ray imaging using digital cameras

    NASA Astrophysics Data System (ADS)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  16. Occultation Predictions Using CCD Strip-Scanning Astrometry

    NASA Technical Reports Server (NTRS)

    Dunham, Edward W.; Ford, C. H.; Stone, R. P. S.; McDonald, S. W.; Olkin, C. B.; Elliot, J. L.; Witteborn, Fred C. (Technical Monitor)

    1994-01-01

    We are developing the method of CCD strip-scanning astrometry for the purpose of deriving reliable advance predictions for occultations involving small objects in the outer solar system. We are using a camera system based on a Ford/Loral 2Kx2K CCD with the Crossley telescope at Lick Observatory for this work. The columns of die CCD are aligned East-West, the telescope drive is stopped, and the CCD is clocked at the same rate that the stars drift across it. In this way we obtain arbitrary length strip images 20 arcmin wide with 0.58" pixels. Since planets move mainly in RA, it is possible to obtain images of the planet and star to be occulted on the same strip well before the occultation occurs. The strip-to-strip precision (i.e. reproducibility) of positions is limited by atmospheric image motion to about 0.1" rms per strip. However, for objects that are nearby in R.A., the image motion is highly correlated and their relative positions are good to 0.02" rms per strip. We will show that the effects of atmospheric image motion on a given strip can be removed if a sufficient number of strips of a given area have been obtained. Thus, it is possible to reach an rms precision of 0.02" per strip, corresponding to about 0.3 of Pluto or Triton's angular radius. The ultimate accuracy of a prediction based on strip-scanning astrometry is currently limited by the accuracy of the positions of the stars in the astrometric network used and by systematic errors most likely due to the optical system. We will show the results of . the prediction of some recent occultations as examples of the current capabilities and limitations of this technique.

  17. Phase shifting white light interferometry using colour CCD for optical metrology and bio-imaging applications

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2018-02-01

    Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.

  18. Improvement in the light sensitivity of the ultrahigh-speed high-sensitivity CCD with a microlens array

    NASA Astrophysics Data System (ADS)

    Hayashida, T.,; Yonai, J.; Kitamura, K.; Arai, T.; Kurita, T.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Kitagawa, S.; Hatade, K.; Yamaguchi, T.; Takeuchi, H.; Iida, K.

    2008-02-01

    We are advancing the development of ultrahigh-speed, high-sensitivity CCDs for broadcast use that are capable of capturing smooth slow-motion videos in vivid colors even where lighting is limited, such as at professional baseball games played at night. We have already developed a 300,000 pixel, ultrahigh-speed CCD, and a single CCD color camera that has been used for sports broadcasts and science programs using this CCD. However, there are cases where even higher sensitivity is required, such as when using a telephoto lens during a baseball broadcast or a high-magnification microscope during science programs. This paper provides a summary of our experimental development aimed at further increasing the sensitivity of CCDs using the light-collecting effects of a microlens array.

  19. Nonlinear feedback model attitude control using CCD in magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Lin, CHIN-E.; Hou, Ann-San

    1994-01-01

    A model attitude control system for a CCD camera magnetic suspension system is studied in this paper. In a recent work, a position and attitude sensing method was proposed. From this result, model position and attitude of a magnetic suspension system can be detected by generating digital outputs. Based on this achievement, a control system design using nonlinear feedback techniques for magnetic suspended model attitude control is proposed.

  20. Illumination box and camera system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.; Klunder, Gregory L.

    2002-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  1. Soft X-ray and XUV imaging with a charge-coupled device /CCD/-based detector

    NASA Technical Reports Server (NTRS)

    Loter, N. G.; Burstein, P.; Krieger, A.; Ross, D.; Harrison, D.; Michels, D. J.

    1981-01-01

    A soft X-ray/XUV imaging camera which uses a thinned, back-illuminated, all-buried channel RCA CCD for radiation sensing has been built and tested. The camera is a slow-scan device which makes possible frame integration if necessary. The detection characteristics of the device have been tested over the 15-1500 eV range. The response was linear with exposure up to 0.2-0.4 erg/sq cm; saturation occurred at greater exposures. Attention is given to attempts to resolve single photons with energies of 1.5 keV.

  2. Fra Angelico's painting technique revealed by terahertz time-domain imaging (THz-TDI)

    NASA Astrophysics Data System (ADS)

    Koch Dandolo, Corinna Ludovica; Picollo, Marcello; Cucci, Costanza; Jepsen, Peter Uhd

    2016-10-01

    We have investigated with terahertz time-domain imaging (THz-TDI) the well-known Lamentation over the dead Christ panel painting (San Marco Museum, Florence) painted by Fra Giovanni Angelico within 1436 and 1441. The investigation provided a better understanding of the construction and gilding technique used by the eminent artist, as well as the plastering technique used during the nineteenth-century restoration intervention. The evidence obtained from THz-TDI scans was correlated with the available documentation on the preservation history of the art piece. Erosion and damages documented for the wooden support, especially in the lower margin, found confirmation in the THz-TD images.

  3. Mars Science Laboratory Engineering Cameras

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  4. Hyper Suprime-Cam: Camera dewar design

    NASA Astrophysics Data System (ADS)

    Komiyama, Yutaka; Obuchi, Yoshiyuki; Nakaya, Hidehiko; Kamata, Yukiko; Kawanomoto, Satoshi; Utsumi, Yousuke; Miyazaki, Satoshi; Uraguchi, Fumihiro; Furusawa, Hisanori; Morokuma, Tomoki; Uchida, Tomohisa; Miyatake, Hironao; Mineo, Sogo; Fujimori, Hiroki; Aihara, Hiroaki; Karoji, Hiroshi; Gunn, James E.; Wang, Shiang-Yu

    2018-01-01

    This paper describes the detailed design of the CCD dewar and the camera system which is a part of the wide-field imager Hyper Suprime-Cam (HSC) on the 8.2 m Subaru Telescope. On the 1.°5 diameter focal plane (497 mm in physical size), 116 four-side buttable 2 k × 4 k fully depleted CCDs are tiled with 0.3 mm gaps between adjacent chips, which are cooled down to -100°C by two pulse tube coolers with a capability to exhaust 100 W heat at -100°C. The design of the dewar is basically a natural extension of Suprime-Cam, incorporating some improvements such as (1) a detailed CCD positioning strategy to avoid any collision between CCDs while maximizing the filling factor of the focal plane, (2) a spherical washers mechanism adopted for the interface points to avoid any deformation caused by the tilt of the interface surface to be transferred to the focal plane, (3) the employment of a truncated-cone-shaped window, made of synthetic silica, to save the back focal space, and (4) a passive heat transfer mechanism to exhaust efficiently the heat generated from the CCD readout electronics which are accommodated inside the dewar. Extensive simulations using a finite-element analysis (FEA) method are carried out to verify that the design of the dewar is sufficient to satisfy the assigned errors. We also perform verification tests using the actually assembled CCD dewar to supplement the FEA and demonstrate that the design is adequate to ensure an excellent image quality which is key to the HSC. The details of the camera system, including the control computer system, are described as well as the assembling process of the dewar and the process of installation on the telescope.

  5. Development of a CCD based solar speckle imaging system

    NASA Astrophysics Data System (ADS)

    Nisenson, Peter; Stachnik, Robert V.; Noyes, Robert W.

    1986-02-01

    A program to develop software and hardware for the purpose of obtaining high angular resolution images of the solar surface is described. The program included the procurement of a Charge Coupled Devices imaging system; an extensive laboratory and remote site testing of the camera system; the development of a software package for speckle image reconstruction which was eventually installed and tested at the Sacramento Peak Observatory; and experiments of the CCD system (coupled to an image intensifier) for low light level, narrow spectral band solar imaging.

  6. Mechanical Design of the LSST Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordby, Martin; Bowden, Gordon; Foss, Mike

    2008-06-13

    The LSST camera is a tightly packaged, hermetically-sealed system that is cantilevered into the main beam of the LSST telescope. It is comprised of three refractive lenses, on-board storage for five large filters, a high-precision shutter, and a cryostat that houses the 3.2 giga-pixel CCD focal plane along with its support electronics. The physically large optics and focal plane demand large structural elements to support them, but the overall size of the camera and its components must be minimized to reduce impact on the image stability. Also, focal plane and optics motions must be minimized to reduce systematic errors inmore » image reconstruction. Design and analysis for the camera body and cryostat will be detailed.« less

  7. Optical design of portable nonmydriatic fundus camera

    NASA Astrophysics Data System (ADS)

    Chen, Weilin; Chang, Jun; Lv, Fengxian; He, Yifan; Liu, Xin; Wang, Dajiang

    2016-03-01

    Fundus camera is widely used in screening and diagnosis of retinal disease. It is a simple, and widely used medical equipment. Early fundus camera expands the pupil with mydriatic to increase the amount of the incoming light, which makes the patients feel vertigo and blurred. Nonmydriatic fundus camera is a trend of fundus camera. Desktop fundus camera is not easy to carry, and only suitable to be used in the hospital. However, portable nonmydriatic retinal camera is convenient for patient self-examination or medical stuff visiting a patient at home. This paper presents a portable nonmydriatic fundus camera with the field of view (FOV) of 40°, Two kinds of light source are used, 590nm is used in imaging, while 808nm light is used in observing the fundus in high resolving power. Ring lights and a hollow mirror are employed to restrain the stray light from the cornea center. The focus of the camera is adjusted by reposition the CCD along the optical axis. The range of the diopter is between -20m-1 and 20m-1.

  8. CMOS-TDI detector technology for reconnaissance application

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Jung, Melanie; Sengebusch, Karsten

    2014-10-01

    The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design CMOS in a TDI (Time Delay and Integration) architecture. This project includes the technological design of future high or multi-spectral resolution spaceborne instruments and the possibility of higher integration. DLR OS and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) in Duisburg were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large-swath and high-spectral resolution with intelligent synchronization control, fast-readout ADC (analog digital converter) chains and new focal-plane concepts opens the door to new remote-sensing and smart deep-space instruments. The paper gives an overview of the detector development status and verification program at DLR, as well as of new control possibilities for CMOS-TDI detectors in synchronization control mode.

  9. Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers.

    PubMed

    Hinken, David; Schinke, Carsten; Herlufsen, Sandra; Schmidt, Arne; Bothe, Karsten; Brendel, Rolf

    2011-03-01

    We report in detail on the luminescence imaging setup developed within the last years in our laboratory. In this setup, the luminescence emission of silicon solar cells or silicon wafers is analyzed quantitatively. Charge carriers are excited electrically (electroluminescence) using a power supply for carrier injection or optically (photoluminescence) using a laser as illumination source. The luminescence emission arising from the radiative recombination of the stimulated charge carriers is measured spatially resolved using a camera. We give details of the various components including cameras, optical filters for electro- and photo-luminescence, the semiconductor laser and the four-quadrant power supply. We compare a silicon charged-coupled device (CCD) camera with a back-illuminated silicon CCD camera comprising an electron multiplier gain and a complementary metal oxide semiconductor indium gallium arsenide camera. For the detection of the luminescence emission of silicon we analyze the dominant noise sources along with the signal-to-noise ratio of all three cameras at different operation conditions.

  10. Method for eliminating artifacts in CCD imagers

    DOEpatents

    Turko, Bojan T.; Yates, George J.

    1992-01-01

    An electronic method for eliminating artifacts in a video camera (10) employing a charge coupled device (CCD) (12) as an image sensor. The method comprises the step of initializing the camera (10) prior to normal read out and includes a first dump cycle period (76) for transferring radiation generated charge into the horizontal register (28) while the decaying image on the phosphor (39) being imaged is being integrated in the photosites, and a second dump cycle period (78), occurring after the phosphor (39) image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers (32). Image charge is then transferred from the photosites (36) and (38) to the vertical registers (32) and read out in conventional fashion. The inventive method allows the video camera (10) to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers (28) and (32), and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites (36) and (37).

  11. CCD correlation techniques

    NASA Technical Reports Server (NTRS)

    Hewes, C. R.; Bosshart, P. W.; Eversole, W. L.; Dewit, M.; Buss, D. D.

    1976-01-01

    Two CCD techniques were discussed for performing an N-point sampled data correlation between an input signal and an electronically programmable reference function. The design and experimental performance of an implementation of the direct time correlator utilizing two analog CCDs and MOS multipliers on a single IC were evaluated. The performance of a CCD implementation of the chirp z transform was described, and the design of a new CCD integrated circuit for performing correlation by multiplication in the frequency domain was presented. This chip provides a discrete Fourier transform (DFT) or inverse DFT, multipliers, and complete support circuitry for the CCD CZT. The two correlation techniques are compared.

  12. Single-Pulse Dual-Energy Mammography Using a Binary Screen Coupled to Dual CCD Cameras

    DTIC Science & Technology

    1999-08-01

    Fossum, "Active pixel sensors—Are CCD’s Dinosaurs ?," Proc. SPIE 1900, 2-14 (1993). "S. Mendis, S. E. Kemeny, R. Gee, B. Pain, and E. R. Fossum, "Progress...Clin Oncol 13:1470-1477, 1995 12. Wahl RL, Zasadny K, Helvie M, et al: Metabolic monitoring of breast cancer chemohormonotherapy using posi- tron

  13. Analysis of crystalline lens coloration using a black and white charge-coupled device camera.

    PubMed

    Sakamoto, Y; Sasaki, K; Kojima, M

    1994-01-01

    To analyze lens coloration in vivo, we used a new type of Scheimpflug camera that is a black and white type of charge-coupled device (CCD) camera. A new methodology was proposed. Scheimpflug images of the lens were taken three times through red (R), green (G), and blue (B) filters, respectively. Three images corresponding with the R, G, and B channels were combined into one image on the cathode-ray tube (CRT) display. The spectral transmittance of the tricolor filters and the spectral sensitivity of the CCD camera were used to correct the scattering-light intensity of each image. Coloration of the lens was expressed on a CIE standard chromaticity diagram. The lens coloration of seven eyes analyzed by this method showed values almost the same as those obtained by the previous method using color film.

  14. Ground-based observations of 951 Gaspra: CCD lightcurves and spectrophotometry with the Galileo filters

    NASA Technical Reports Server (NTRS)

    Mottola, Stefano; Dimartino, M.; Gonano-Beurer, M.; Hoffmann, H.; Neukum, G.

    1992-01-01

    This paper reports the observations of 951 Gaspra carried out at the European Southern Observatory (La Silla, Chile) during the 1991 apparition, using the DLR CCD Camera equipped with a spare set of the Galileo SSI filters. Time-resolved spectrophotometric measurements are presented. The occurrence of spectral variations with rotation suggests the presence of surface variegation.

  15. Fixed-pattern noise correction method based on improved moment matching for a TDI CMOS image sensor.

    PubMed

    Xu, Jiangtao; Nie, Huafeng; Nie, Kaiming; Jin, Weimin

    2017-09-01

    In this paper, an improved moment matching method based on a spatial correlation filter (SCF) and bilateral filter (BF) is proposed to correct the fixed-pattern noise (FPN) of a time-delay-integration CMOS image sensor (TDI-CIS). First, the values of row FPN (RFPN) and column FPN (CFPN) are estimated and added to the original image through SCF and BF, respectively. Then the filtered image will be processed by an improved moment matching method with a moving window. Experimental results based on a 128-stage TDI-CIS show that, after correcting the FPN in the image captured under uniform illumination, the standard deviation of row mean vector (SDRMV) decreases from 5.6761 LSB to 0.1948 LSB, while the standard deviation of the column mean vector (SDCMV) decreases from 15.2005 LSB to 13.1949LSB. In addition, for different images captured by different TDI-CISs, the average decrease of SDRMV and SDCMV is 5.4922/2.0357 LSB, respectively. Comparative experimental results indicate that the proposed method can effectively correct the FPNs of different TDI-CISs while maintaining image details without any auxiliary equipment.

  16. NPS assessment of color medical displays using a monochromatic CCD camera

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Gu, Xiliang; Fan, Jiahua

    2012-02-01

    This paper presents an approach to Noise Power Spectrum (NPS) assessment of color medical displays without using an expensive imaging colorimeter. The R, G and B color uniform patterns were shown on the display under study and the images were taken using a high resolution monochromatic camera. A colorimeter was used to calibrate the camera images. Synthetic intensity images were formed by the weighted sum of the R, G, B and the dark screen images. Finally the NPS analysis was conducted on the synthetic images. The proposed method replaces an expensive imaging colorimeter for NPS evaluation, which also suggests a potential solution for routine color medical display QA/QC in the clinical area, especially when imaging of display devices is desired.

  17. Puesta en marcha de un microdensitómetro automático basado en CCD

    NASA Astrophysics Data System (ADS)

    Calderón, J. H.; Bustos Fierro, I. H.

    We present the commisioning of a CCD-based microdensitometer intended to perform astrometric measurements of photographic plates. The work done consisted in the installation of a CCD camera, the modification of the motion system, the construction of a new illumination device, the adaptation of the electronics, and the development of software. The instrument is intended to be used for the astrometric measurement mainly of plates of the Astrographic Catalog and Carte du Ciel collections from Córdoba Observatory. In this phase of the project we counted with the collaboration of the Instituto Provincial de Enseñanza Media No 59, 25 de Mayo, Cruz Alta (Province of Córdoba). The origin and importance of such collaboration is commented.

  18. A TV Camera System Which Extracts Feature Points For Non-Contact Eye Movement Detection

    NASA Astrophysics Data System (ADS)

    Tomono, Akira; Iida, Muneo; Kobayashi, Yukio

    1990-04-01

    This paper proposes a highly efficient camera system which extracts, irrespective of background, feature points such as the pupil, corneal reflection image and dot-marks pasted on a human face in order to detect human eye movement by image processing. Two eye movement detection methods are sugested: One utilizing face orientation as well as pupil position, The other utilizing pupil and corneal reflection images. A method of extracting these feature points using LEDs as illumination devices and a new TV camera system designed to record eye movement are proposed. Two kinds of infra-red LEDs are used. These LEDs are set up a short distance apart and emit polarized light of different wavelengths. One light source beams from near the optical axis of the lens and the other is some distance from the optical axis. The LEDs are operated in synchronization with the camera. The camera includes 3 CCD image pick-up sensors and a prism system with 2 boundary layers. Incident rays are separated into 2 wavelengths by the first boundary layer of the prism. One set of rays forms an image on CCD-3. The other set is split by the half-mirror layer of the prism and forms an image including the regularly reflected component by placing a polarizing filter in front of CCD-1 or another image not including the component by not placing a polarizing filter in front of CCD-2. Thus, three images with different reflection characteristics are obtained by three CCDs. Through the experiment, it is shown that two kinds of subtraction operations between the three images output from CCDs accentuate three kinds of feature points: the pupil and corneal reflection images and the dot-marks. Since the S/N ratio of the subtracted image is extremely high, the thresholding process is simple and allows reducting the intensity of the infra-red illumination. A high speed image processing apparatus using this camera system is decribed. Realtime processing of the subtraction, thresholding and gravity position

  19. THE DARK ENERGY CAMERA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaugher, B.; Diehl, H. T.; Alvarez, O.

    2015-11-15

    The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuummore » Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel{sup −1}. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6–9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less

  20. The Dark Energy Camera

    DOE PAGES

    Flaugher, B.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar.more » The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less

  1. Design of 90×8 ROIC with pixel level digital TDI implementation for scanning type LWIR FPAs

    NASA Astrophysics Data System (ADS)

    Ceylan, Omer; Kayahan, Huseyin; Yazici, Melik; Gurbuz, Yasar

    2013-06-01

    Design of a 90×8 CMOS readout integrated circuit (ROIC) based on pixel level digital time delay integration (TDI) for scanning type LWIR focal plane arrays (FPAs) is presented. TDI is implemented on 8 pixels which improves the SNR of the system with a factor of √8. Oversampling rate of 3 improves the spatial resolution of the system. TDI operation is realized with a novel under-pixel analog-to-digital converter, which improves the noise performance of ROIC with a lower quantization noise. Since analog signal is converted to digital domain in-pixel, non-uniformities and inaccuracies due to analog signal routing over large chip area is eliminated. Contributions of each pixel for proper TDI operation are added in summation counters, no op-amps are used for summation, hence power consumption of ROIC is lower than its analog counterparts. Due to lack of multiple capacitors or summation amplifiers, ROIC occupies smaller chip area compared to its analog counterparts. ROIC is also superior to its digital counterparts due to novel digital TDI implementation in terms of power consumption, noise and chip area. ROIC supports bi-directional scan, multiple gain settings, bypass operation, automatic gain adjustment, pixel select/deselect, and is programmable through serial or parallel interface. Input referred noise of ROIC is less than 750 rms electrons, while power consumption is less than 20mW. ROIC is designed to perform both in room and cryogenic temperatures.

  2. pnCCD for photon detection from near-infrared to X-rays

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Andritschke, Robert; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Strüder, Lothar

    2006-09-01

    A pnCCD is a special type of charge-coupled device developed for spectroscopy and imaging of X-rays with high time resolution and quantum efficiency. Its most famous application is the operation on the XMM-Newton satellite, an X-ray astronomy mission that was launched by the European space agency in 1999. The excellent performance of the focal plane camera has been maintained for more than 6 years in orbit. The energy resolution in particular has shown hardly any degradation since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. This ‘frame-store pnCCD’ shows an enhanced performance compared to the XMM-Newton type of pnCCD. Now, more options in device design and operation are available to tailor the detector to its respective application. Part of this concept is a programmable analog signal processor, which has been developed for the readout of the CCD signals. The electronic noise of the new detector has a value of only 2 electrons equivalent noise charge (ENC), which is less than half of the figure achieved for the XMM-Newton-type pnCCD. The energy resolution for the Mn-Kα line at 5.9 keV is approximately 130 eV FWHM. We have close to 100% quantum efficiency for both low- and high-energy photon detection (e.g. the C-K line at 277 eV, and the Ge-Kα line at 10 keV, respectively). Very high frame rates of 1000 images/s have been achieved due to the ultra-fast readout accomplished by the parallel architecture of the pnCCD and the analog signal processor. Excellent spectroscopic performance is shown even at the relatively high operating temperature of -25 °C that can be achieved by a Peltier cooler. The applications of the low-noise and fast pnCCD detector are not limited to the detection of X-rays. With an anti-reflective coating deposited on the photon entrance window, we achieve high quantum efficiency also for near-infrared and optical

  3. Vilnius Multicolor CCD Photometry of the Open Cluster NGC 752

    NASA Astrophysics Data System (ADS)

    Bartašiūtė, S.; Janusz, R.; Boyle, R. P.; Philip, A. G. Davis

    We have performed multicolor CCD observations of the central area of NGC 752 to search for faint, low-mass members of this open cluster. Four 12'x12' fields were taken on the 1.8 m Vatican Advanced Technology Telescope (Mt. Graham, Arizona) using a 4K CCD camera and eight intermediate-band filters of the Strömvil system. In this paper we present a catalog of photometry for 405 stars down to the limiting magnitude V=18.5, which contains V magnitudes and color indices of the Vilnius system, together with photometric determinations of spectral types, absolute magnitudes MV, interstellar reddening values EY-V and metallicity parameters [Fe/H]. The good quality multicolor data made it possible to identify the locus of the lower main sequence to four magnitudes beyond the previous (photographic) limit. A relatively small number of photometric members identified at faint magnitudes seems to be indicative of actual dissolution of the cluster from the low-mass end.

  4. Performance measurement of commercial electronic still picture cameras

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Feng; Tseng, Shinn-Yih; Chiang, Hwang-Cheng; Cheng, Jui-His; Liu, Yuan-Te

    1998-06-01

    Commercial electronic still picture cameras need a low-cost, systematic method for evaluating the performance. In this paper, we present a measurement method to evaluating the dynamic range and sensitivity by constructing the opto- electronic conversion function (OECF), the fixed pattern noise by the peak S/N ratio (PSNR) and the image shading function (ISF), and the spatial resolution by the modulation transfer function (MTF). The evaluation results of individual color components and the luminance signal from a PC camera using SONY interlaced CCD array as the image sensor are then presented.

  5. A programmable CCD driver circuit for multiphase CCD operation

    NASA Technical Reports Server (NTRS)

    Ewin, Audrey J.; Reed, Kenneth V.

    1989-01-01

    A programmable CCD (charge-coupled device) driver circuit was designed to drive CCDs in multiphased modes. The purpose of the drive electronics is to operate developmental CCD imaging arrays for NASA's tiltable moderate resolution imaging spectrometer (MODIS-T). Five objectives for the driver were considered during its design: (1) the circuit drives CCD electrode voltages between 0 V and +30 V to produce reasonable potential wells, (2) the driving sequence is started with one input signal, (3) the driving sequence is started with one input signal, (4) the circuit allows programming of frame sequences required by arrays of any size, (5) it produces interfacing signals for the CCD and the DTF (detector test facility). Simulation of the driver verified its function with the master clock running up to 10 MHz. This suggests a maximum rate of 400,000 pixels/s. Timing and packaging parameters were verified. The design uses 54 TTL (transistor-transistor logic) chips. Two versions of hardware were fabricated: wirewrap and printed circuit board. Both were verified functionally with a logic analyzer.

  6. 41 CFR 301-30.4 - When an illness or injury occurs on TDY, what expenses may be allowed?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 30-EMERGENCY TRAVEL § 301-30.4 When an illness or injury occurs on TDY, what expenses may be allowed... illness or injury for a reasonable period of time (generally 14 calendar days). However, your agency may...

  7. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-12-15

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  8. A small CCD zenith camera (ZC-G1) - developed for rapid geoid monitoring in difficult projects

    NASA Astrophysics Data System (ADS)

    Gerstbach, G.; Pichler, H.

    2003-10-01

    Modern Geodesy by terrestrial or space methods is accurate to millimetres or even better. This requires very exact system definitions, together with Astronomy & Physics - and a geoid of cm level. To reach this precision, astrogeodetic vertical deflections are more effective than gravimetry or other methods - as shown by the 1st author 1996 at many projects in different European countries and landscapes. While classical Astrogeodesy is rather complicated (time consuming, heavy instruments and observer's experience) new electro-optical methods are semi-automatic and fill our "geoid gap" between satellite resolution (150 km) and local requirements (2-10 km): With CCD we can speed up and achieve high accuracy almost without observer's experience. In Vienna we construct a mobile zenith camera guided by notebook and GPS: made of Dur-Al, f=20 cm with a Starlite MX-sensor (752×580 pixels à 11μm). Accuracy ±1" within 10 min, mounted at a usual survey tripod. Weight only 4 kg for a special vertical axis, controlled by springs (4×90°) and 2 levels (2002) or sensor (2003). Applications 2003: Improving parts of Austrian geoid (±4 cm→2 cm); automatic astro-points in alpine surveys (vertical deflection effects 3-15 cm per km). Transform of GPS heights to ±1 cm. Tunneling study: heighting up to ±0.1 mm without external control; combining astro-topographic and geological data. Plans 2004: Astro control of polygons and networks - to raise accuracy and economy by ~40% (Sun azimuths of ±3"; additional effort only 10-20%). Planned with servo theodolites and open co-operation groups.

  9. Head-coupled remote stereoscopic camera system for telepresence applications

    NASA Astrophysics Data System (ADS)

    Bolas, Mark T.; Fisher, Scott S.

    1990-09-01

    The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.

  10. Low Noise Camera for Suborbital Science Applications

    NASA Technical Reports Server (NTRS)

    Hyde, David; Robertson, Bryan; Holloway, Todd

    2015-01-01

    Low-cost, commercial-off-the-shelf- (COTS-) based science cameras are intended for lab use only and are not suitable for flight deployment as they are difficult to ruggedize and repackage into instruments. Also, COTS implementation may not be suitable since mission science objectives are tied to specific measurement requirements, and often require performance beyond that required by the commercial market. Custom camera development for each application is cost prohibitive for the International Space Station (ISS) or midrange science payloads due to nonrecurring expenses ($2,000 K) for ground-up camera electronics design. While each new science mission has a different suite of requirements for camera performance (detector noise, speed of image acquisition, charge-coupled device (CCD) size, operation temperature, packaging, etc.), the analog-to-digital conversion, power supply, and communications can be standardized to accommodate many different applications. The low noise camera for suborbital applications is a rugged standard camera platform that can accommodate a range of detector types and science requirements for use in inexpensive to mid range payloads supporting Earth science, solar physics, robotic vision, or astronomy experiments. Cameras developed on this platform have demonstrated the performance found in custom flight cameras at a price per camera more than an order of magnitude lower.

  11. Cameras for digital microscopy.

    PubMed

    Spring, Kenneth R

    2013-01-01

    This chapter reviews the fundamental characteristics of charge-coupled devices (CCDs) and related detectors, outlines the relevant parameters for their use in microscopy, and considers promising recent developments in the technology of detectors. Electronic imaging with a CCD involves three stages--interaction of a photon with the photosensitive surface, storage of the liberated charge, and readout or measurement of the stored charge. The most demanding applications in fluorescence microscopy may require as much as four orders of greater magnitude sensitivity. The image in the present-day light microscope is usually acquired with a CCD camera. The CCD is composed of a large matrix of photosensitive elements (often referred to as "pixels" shorthand for picture elements, which simultaneously capture an image over the entire detector surface. The light-intensity information for each pixel is stored as electronic charge and is converted to an analog voltage by a readout amplifier. This analog voltage is subsequently converted to a numerical value by a digitizer situated on the CCD chip, or very close to it. Several (three to six) amplifiers are required for each pixel, and to date, uniform images with a homogeneous background have been a problem because of the inherent difficulties of balancing the gain in all of the amplifiers. Complementary metal oxide semiconductor sensors also exhibit relatively high noise associated with the requisite high-speed switching. Both of these deficiencies are being addressed, and sensor performance is nearing that required for scientific imaging. Copyright © 1998 Elsevier Inc. All rights reserved.

  12. Is flat fielding safe for precision CCD astronomy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumer, Michael; Davis, Christopher P.; Roodman, Aaron

    The ambitious goals of precision cosmology with wide-field optical surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST) demand precision CCD astronomy as their foundation. This in turn requires an understanding of previously uncharacterized sources of systematic error in CCD sensors, many of which manifest themselves as static effective variations in pixel area. Such variation renders a critical assumption behind the traditional procedure of flat fielding—that a sensor's pixels comprise a uniform grid—invalid. In this work, we present a method to infer a curl-free model of a sensor's underlying pixel grid from flat-field images,more » incorporating the superposition of all electrostatic sensor effects—both known and unknown—present in flat-field data. We use these pixel grid models to estimate the overall impact of sensor systematics on photometry, astrometry, and PSF shape measurements in a representative sensor from the Dark Energy Camera (DECam) and a prototype LSST sensor. Applying the method to DECam data recovers known significant sensor effects for which corrections are currently being developed within DES. For an LSST prototype CCD with pixel-response non-uniformity (PRNU) of 0.4%, we find the impact of "improper" flat fielding on these observables is negligible in nominal .7'' seeing conditions. Furthermore, these errors scale linearly with the PRNU, so for future LSST production sensors, which may have larger PRNU, our method provides a way to assess whether pixel-level calibration beyond flat fielding will be required.« less

  13. Is flat fielding safe for precision CCD astronomy?

    DOE PAGES

    Baumer, Michael; Davis, Christopher P.; Roodman, Aaron

    2017-07-06

    The ambitious goals of precision cosmology with wide-field optical surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST) demand precision CCD astronomy as their foundation. This in turn requires an understanding of previously uncharacterized sources of systematic error in CCD sensors, many of which manifest themselves as static effective variations in pixel area. Such variation renders a critical assumption behind the traditional procedure of flat fielding—that a sensor's pixels comprise a uniform grid—invalid. In this work, we present a method to infer a curl-free model of a sensor's underlying pixel grid from flat-field images,more » incorporating the superposition of all electrostatic sensor effects—both known and unknown—present in flat-field data. We use these pixel grid models to estimate the overall impact of sensor systematics on photometry, astrometry, and PSF shape measurements in a representative sensor from the Dark Energy Camera (DECam) and a prototype LSST sensor. Applying the method to DECam data recovers known significant sensor effects for which corrections are currently being developed within DES. For an LSST prototype CCD with pixel-response non-uniformity (PRNU) of 0.4%, we find the impact of "improper" flat fielding on these observables is negligible in nominal .7'' seeing conditions. Furthermore, these errors scale linearly with the PRNU, so for future LSST production sensors, which may have larger PRNU, our method provides a way to assess whether pixel-level calibration beyond flat fielding will be required.« less

  14. Variable high-resolution color CCD camera system with online capability for professional photo studio application

    NASA Astrophysics Data System (ADS)

    Breitfelder, Stefan; Reichel, Frank R.; Gaertner, Ernst; Hacker, Erich J.; Cappellaro, Markus; Rudolf, Peter; Voelk, Ute

    1998-04-01

    Digital cameras are of increasing significance for professional applications in photo studios where fashion, portrait, product and catalog photographs or advertising photos of high quality have to be taken. The eyelike is a digital camera system which has been developed for such applications. It is capable of working online with high frame rates and images of full sensor size and it provides a resolution that can be varied between 2048 by 2048 and 6144 by 6144 pixel at a RGB color depth of 12 Bit per channel with an also variable exposure time of 1/60s to 1s. With an exposure time of 100 ms digitization takes approx. 2 seconds for an image of 2048 by 2048 pixels (12 Mbyte), 8 seconds for the image of 4096 by 4096 pixels (48 Mbyte) and 40 seconds for the image of 6144 by 6144 pixels (108 MByte). The eyelike can be used in various configurations. Used as a camera body most commercial lenses can be connected to the camera via existing lens adaptors. On the other hand the eyelike can be used as a back to most commercial 4' by 5' view cameras. This paper describes the eyelike camera concept with the essential system components. The article finishes with a description of the software, which is needed to bring the high quality of the camera to the user.

  15. Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm.

    PubMed

    Chen, Xueli; Gao, Xinbo; Qu, Xiaochao; Chen, Duofang; Ma, Xiaopeng; Liang, Jimin; Tian, Jie

    2010-10-10

    The camera lens diaphragm is an important component in a noncontact optical imaging system and has a crucial influence on the images registered on the CCD camera. However, this influence has not been taken into account in the existing free-space photon transport models. To model the photon transport process more accurately, a generalized free-space photon transport model is proposed. It combines Lambertian source theory with analysis of the influence of the camera lens diaphragm to simulate photon transport process in free space. In addition, the radiance theorem is also adopted to establish the energy relationship between the virtual detector and the CCD camera. The accuracy and feasibility of the proposed model is validated with a Monte-Carlo-based free-space photon transport model and physical phantom experiment. A comparison study with our previous hybrid radiosity-radiance theorem based model demonstrates the improvement performance and potential of the proposed model for simulating photon transport process in free space.

  16. An Efficient Image Compressor for Charge Coupled Devices Camera

    PubMed Central

    Li, Jin; Xing, Fei; You, Zheng

    2014-01-01

    Recently, the discrete wavelet transforms- (DWT-) based compressor, such as JPEG2000 and CCSDS-IDC, is widely seen as the state of the art compression scheme for charge coupled devices (CCD) camera. However, CCD images project on the DWT basis to produce a large number of large amplitude high-frequency coefficients because these images have a large number of complex texture and contour information, which are disadvantage for the later coding. In this paper, we proposed a low-complexity posttransform coupled with compressing sensing (PT-CS) compression approach for remote sensing image. First, the DWT is applied to the remote sensing image. Then, a pair base posttransform is applied to the DWT coefficients. The pair base are DCT base and Hadamard base, which can be used on the high and low bit-rate, respectively. The best posttransform is selected by the l p-norm-based approach. The posttransform is considered as the sparse representation stage of CS. The posttransform coefficients are resampled by sensing measurement matrix. Experimental results on on-board CCD camera images show that the proposed approach significantly outperforms the CCSDS-IDC-based coder, and its performance is comparable to that of the JPEG2000 at low bit rate and it does not have the high excessive implementation complexity of JPEG2000. PMID:25114977

  17. Performance Characterization of the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) CCD Cameras

    NASA Astrophysics Data System (ADS)

    Joiner, R. K.; Kobayashi, K.; Winebarger, A. R.; Champey, P. R.

    2014-12-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument which is currently being developed by NASA's Marshall Space Flight Center (MSFC) and the National Astronomical Observatory of Japan (NAOJ). The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's Chromosphere to make measurements of the magnetic field in this region. In order to make accurate measurements of this effect, the performance characteristics of the three on-board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of no greater than 2 e-/DN, a noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non-linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.

  18. Performance Characterization of the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) CCD Cameras

    NASA Technical Reports Server (NTRS)

    Joiner, Reyann; Kobayashi, Ken; Winebarger, Amy; Champey, Patrick

    2014-01-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument which is currently being developed by NASA's Marshall Space Flight Center (MSFC) and the National Astronomical Observatory of Japan (NAOJ). The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's Chromosphere to make measurements of the magnetic field in this region. In order to make accurate measurements of this effect, the performance characteristics of the three on-board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of no greater than 2 e(-)/DN, a noise level less than 25e(-), a dark current level which is less than 10e(-)/pixel/s, and a residual nonlinearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.

  19. Automated Meteor Detection by All-Sky Digital Camera Systems

    NASA Astrophysics Data System (ADS)

    Suk, Tomáš; Šimberová, Stanislava

    2017-12-01

    We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.

  20. Structural Dynamics Analysis and Research for FEA Modeling Method of a Light High Resolution CCD Camera

    NASA Astrophysics Data System (ADS)

    Sun, Jiwen; Wei, Ling; Fu, Danying

    2002-01-01

    resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.

  1. Opto-mechanical design of the G-CLEF flexure control camera system

    NASA Astrophysics Data System (ADS)

    Oh, Jae Sok; Park, Chan; Kim, Jihun; Kim, Kang-Min; Chun, Moo-Young; Yu, Young Sam; Lee, Sungho; Nah, Jakyoung; Park, Sung-Joon; Szentgyorgyi, Andrew; McMuldroch, Stuart; Norton, Timothy; Podgorski, William; Evans, Ian; Mueller, Mark; Uomoto, Alan; Crane, Jeffrey; Hare, Tyson

    2016-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is the very first light instrument of the Giant Magellan Telescope (GMT). The G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. KASI (Korea Astronomy and Space Science Institute) is responsible for Flexure Control Camera (FCC) included in the G-CLEF Front End Assembly (GCFEA). The FCC is a kind of guide camera, which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within the GCFEA. The FCC consists of five optical components: a collimator including triple lenses for producing a pupil, neutral density filters allowing us to use much brighter star as a target or a guide, a tent prism as a focus analyzer for measuring the focus offset at the fiber mirror, a reimaging camera with three pair of lenses for focusing the beam on a CCD focal plane, and a CCD detector for capturing the image on the fiber mirror. In this article, we present the optical and mechanical FCC designs which have been modified after the PDR in April 2015.

  2. NPS assessment of color medical image displays using a monochromatic CCD camera

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Gu, Xiliang; Fan, Jiahua

    2012-10-01

    This paper presents an approach to Noise Power Spectrum (NPS) assessment of color medical displays without using an expensive imaging colorimeter. The R, G and B color uniform patterns were shown on the display under study and the images were taken using a high resolution monochromatic camera. A colorimeter was used to calibrate the camera images. Synthetic intensity images were formed by the weighted sum of the R, G, B and the dark screen images. Finally the NPS analysis was conducted on the synthetic images. The proposed method replaces an expensive imaging colorimeter for NPS evaluation, which also suggests a potential solution for routine color medical display QA/QC in the clinical area, especially when imaging of display devices is desired

  3. Single Particle Damage Events in Candidate Star Camera Sensors

    NASA Technical Reports Server (NTRS)

    Marshall, Paul; Marshall, Cheryl; Polidan, Elizabeth; Wacyznski, Augustyn; Johnson, Scott

    2005-01-01

    Si charge coupled devices (CCDs) are currently the preeminent detector in star cameras as well as in the near ultraviolet (uv) to visible wavelength region for astronomical observations in space and in earth-observing space missions. Unfortunately, the performance of CCDs is permanently degraded by total ionizing dose (TID) and displacement damage effects. TID produces threshold voltage shifts on the CCD gates and displacement damage reduces the charge transfer efficiency (CTE), increases the dark current, produces dark current nonuniformities and creates random telegraph noise in individual pixels. In addition to these long term effects, cosmic ray and trapped proton transients also interfere with device operation on orbit. In the present paper, we investigate the dark current behavior of CCDs - in particular the formation and annealing of hot pixels. Such pixels degrade the ability of a CCD to perform science and also can present problems to the performance of star camera functions (especially if their numbers are not correctly anticipated). To date, most dark current radiation studies have been performed by irradiating the CCDs at room temperature but this can result in a significantly optimistic picture of the hot pixel count. We know from the Hubble Space Telescope (HST) that high dark current pixels (so-called hot pixels or hot spikes) accumulate as a function of time on orbit. For example, the HST Advanced Camera for Surveys/Wide Field Camera instrument performs monthly anneals despite the loss of observational time, in order to partially anneal the hot pixels. Note that the fact that significant reduction in hot pixel populations occurs for room temperature anneals is not presently understood since none of the commonly expected defects in Si (e.g. divacancy, E center, and A-center) anneal at such a low temperature. A HST Wide Field Camera 3 (WFC3) CCD manufactured by E2V was irradiated while operating at -83C and the dark current studied as a function of

  4. Effect of camera resolution and bandwidth on facial affect recognition.

    PubMed

    Cruz, Mario; Cruz, Robyn Flaum; Krupinski, Elizabeth A; Lopez, Ana Maria; McNeeley, Richard M; Weinstein, Ronald S

    2004-01-01

    This preliminary study explored the effect of camera resolution and bandwidth on facial affect recognition, an important process and clinical variable in mental health service delivery. Sixty medical students and mental health-care professionals were recruited and randomized to four different combinations of commonly used teleconferencing camera resolutions and bandwidths: (1) one chip charged coupling device (CCD) camera, commonly used for VHSgrade taping and in teleconferencing systems costing less than $4,000 with a resolution of 280 lines, and 128 kilobytes per second bandwidth (kbps); (2) VHS and 768 kbps; (3) three-chip CCD camera, commonly used for Betacam (Beta) grade taping and in teleconferencing systems costing more than $4,000 with a resolution of 480 lines, and 128 kbps; and (4) Betacam and 768 kbps. The subjects were asked to identify four facial affects dynamically presented on videotape by an actor and actress presented via a video monitor at 30 frames per second. Two-way analysis of variance (ANOVA) revealed a significant interaction effect for camera resolution and bandwidth (p = 0.02) and a significant main effect for camera resolution (p = 0.006), but no main effect for bandwidth was detected. Post hoc testing of interaction means, using the Tukey Honestly Significant Difference (HSD) test and the critical difference (CD) at the 0.05 alpha level = 1.71, revealed subjects in the VHS/768 kbps (M = 7.133) and VHS/128 kbps (M = 6.533) were significantly better at recognizing the displayed facial affects than those in the Betacam/768 kbps (M = 4.733) or Betacam/128 kbps (M = 6.333) conditions. Camera resolution and bandwidth combinations differ in their capacity to influence facial affect recognition. For service providers, this study's results support the use of VHS cameras with either 768 kbps or 128 kbps bandwidths for facial affect recognition compared to Betacam cameras. The authors argue that the results of this study are a consequence of the

  5. Relative source allocation of TDI to drinking water for derivation of a criterion for chloroform: a Monte-Carlo and multi-exposure assessment.

    PubMed

    Niizuma, Shun; Matsui, Yoshihiko; Ohno, Koichi; Itoh, Sadahiko; Matsushita, Taku; Shirasaki, Nobutaka

    2013-10-01

    Drinking water quality standard (DWQS) criteria for chemicals for which there is a threshold for toxicity are derived by allocating a fraction of tolerable daily intake (TDI) to exposure from drinking water. We conducted physiologically based pharmacokinetic model simulations for chloroform and have proposed an equation for total oral-equivalent potential intake via three routes (oral ingestion, inhalation, and dermal exposures), the biologically effective doses of which were converted to oral-equivalent potential intakes. The probability distributions of total oral-equivalent potential intake in Japanese people were estimated by Monte Carlo simulations. Even when the chloroform concentration in drinking water equaled the current DWQS criterion, there was sufficient margin between the intake and the TDI: the probability that the intake exceeded TDI was below 0.1%. If a criterion that the 95th percentile estimate equals the TDI is regarded as both providing protection to highly exposed persons and leaving a reasonable margin of exposure relative to the TDI, then the chloroform drinking water criterion could be a concentration of 0.11mg/L. This implies a daily intake equal to 34% of the TDI allocated to the oral intake (2L/d) of drinking water for typical adults. For the highly exposed persons, inhalation exposure via evaporation from water contributed 53% of the total intake, whereas dermal absorption contributed only 3%. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. CCD high-speed videography system with new concepts and techniques

    NASA Astrophysics Data System (ADS)

    Zheng, Zengrong; Zhao, Wenyi; Wu, Zhiqiang

    1997-05-01

    A novel CCD high speed videography system with brand-new concepts and techniques is developed by Zhejiang University recently. The system can send a series of short flash pulses to the moving object. All of the parameters, such as flash numbers, flash durations, flash intervals, flash intensities and flash colors, can be controlled according to needs by the computer. A series of moving object images frozen by flash pulses, carried information of moving object, are recorded by a CCD video camera, and result images are sent to a computer to be frozen, recognized and processed with special hardware and software. Obtained parameters can be displayed, output as remote controlling signals or written into CD. The highest videography frequency is 30,000 images per second. The shortest image freezing time is several microseconds. The system has been applied to wide fields of energy, chemistry, medicine, biological engineering, aero- dynamics, explosion, multi-phase flow, mechanics, vibration, athletic training, weapon development and national defense engineering. It can also be used in production streamline to carry out the online, real-time monitoring and controlling.

  7. Use and validation of mirrorless digital single light reflex camera for recording of vitreoretinal surgeries in high definition

    PubMed Central

    Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish

    2018-01-01

    Purpose: The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Methods: Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Conclusion: Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching. PMID:29283133

  8. Use and validation of mirrorless digital single light reflex camera for recording of vitreoretinal surgeries in high definition.

    PubMed

    Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish

    2018-01-01

    The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching.

  9. SLR digital camera for forensic photography

    NASA Astrophysics Data System (ADS)

    Har, Donghwan; Son, Youngho; Lee, Sungwon

    2004-06-01

    Forensic photography, which was systematically established in the late 19th century by Alphonse Bertillon of France, has developed a lot for about 100 years. The development will be more accelerated with the development of high technologies, in particular the digital technology. This paper reviews three studies to answer the question: Can the SLR digital camera replace the traditional silver halide type ultraviolet photography and infrared photography? 1. Comparison of relative ultraviolet and infrared sensitivity of SLR digital camera to silver halide photography. 2. How much ultraviolet or infrared sensitivity is improved when removing the UV/IR cutoff filter built in the SLR digital camera? 3. Comparison of relative sensitivity of CCD and CMOS for ultraviolet and infrared. The test result showed that the SLR digital camera has a very low sensitivity for ultraviolet and infrared. The cause was found to be the UV/IR cutoff filter mounted in front of the image sensor. Removing the UV/IR cutoff filter significantly improved the sensitivity for ultraviolet and infrared. Particularly for infrared, the sensitivity of the SLR digital camera was better than that of the silver halide film. This shows the possibility of replacing the silver halide type ultraviolet photography and infrared photography with the SLR digital camera. Thus, the SLR digital camera seems to be useful for forensic photography, which deals with a lot of ultraviolet and infrared photographs.

  10. Night Sky Weather Monitoring System Using Fish-Eye CCD

    NASA Astrophysics Data System (ADS)

    Tomida, Takayuki; Saito, Yasunori; Nakamura, Ryo; Yamazaki, Katsuya

    Telescope Array (TA) is international joint experiment observing ultra-high energy cosmic rays. TA employs fluorescence detection technique to observe cosmic rays. In this technique, tho existence of cloud significantly affects quality of data. Therefore, cloud monitoring provides important information. We are developing two new methods for evaluating night sky weather with pictures taken by charge-coupled device (CCD) camera. One is evaluating the amount of cloud with pixels brightness. The other is counting the number of stars with contour detection technique. The results of these methods show clear correlation, and we concluded both the analyses are reasonable methods for weather monitoring. We discuss reliability of the star counting method.

  11. The future scientific CCD

    NASA Technical Reports Server (NTRS)

    Janesick, J. R.; Elliott, T.; Collins, S.; Marsh, H.; Blouke, M. M.

    1984-01-01

    Since the first introduction of charge-coupled devices (CCDs) in 1970, CCDs have been considered for applications related to memories, logic circuits, and the detection of visible radiation. It is pointed out, however, that the mass market orientation of CCD development has left largely untapped the enormous potential of these devices for advanced scientific instrumentation. The present paper has, therefore, the objective to introduce the CCD characteristics to the scientific community, taking into account prospects for further improvement. Attention is given to evaluation criteria, a summary of current CCDs, CCD performance characteristics, absolute calibration tools, quantum efficiency, aspects of charge collection, charge transfer efficiency, read noise, and predictions regarding the characteristics of the next generation of silicon scientific CCD imagers.

  12. TADIR-production version: El-Op's high-resolution 480x4 TDI thermal imaging system

    NASA Astrophysics Data System (ADS)

    Sarusi, Gabby; Ziv, Natan; Zioni, O.; Gaber, J.; Shechterman, Mark S.; Lerner, M.

    1999-07-01

    Efforts invested at El-Op during the last four years have led to the development of TADIR - engineering model thermal imager, demonstrated in 1998, and eventually to the final production version of TADIR to be demonstrated in full operation during 1999. Both versions take advantage of the high resolution and high sensitivity obtained by the 480 X 4 TDI MCT detector as well as many more features implemented in the system to obtain a state of the art high- end thermal imager. The production version of TADIR uses a 480 X 6 TDI HgCdTe detector made by the SCD Israeli company. In this paper, we will present the main features of the production version of TADIR.

  13. Accurate estimation of camera shot noise in the real-time

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.

    2017-10-01

    Nowadays digital cameras are essential parts of various technological processes and daily tasks. They are widely used in optics and photonics, astronomy, biology and other various fields of science and technology such as control systems and video-surveillance monitoring. One of the main information limitations of photo- and videocameras are noises of photosensor pixels. Camera's photosensor noise can be divided into random and pattern components. Temporal noise includes random noise component while spatial noise includes pattern noise component. Temporal noise can be divided into signal-dependent shot noise and signal-nondependent dark temporal noise. For measurement of camera noise characteristics, the most widely used methods are standards (for example, EMVA Standard 1288). It allows precise shot and dark temporal noise measurement but difficult in implementation and time-consuming. Earlier we proposed method for measurement of temporal noise of photo- and videocameras. It is based on the automatic segmentation of nonuniform targets (ASNT). Only two frames are sufficient for noise measurement with the modified method. In this paper, we registered frames and estimated shot and dark temporal noises of cameras consistently in the real-time. The modified ASNT method is used. Estimation was performed for the cameras: consumer photocamera Canon EOS 400D (CMOS, 10.1 MP, 12 bit ADC), scientific camera MegaPlus II ES11000 (CCD, 10.7 MP, 12 bit ADC), industrial camera PixeLink PL-B781F (CMOS, 6.6 MP, 10 bit ADC) and video-surveillance camera Watec LCL-902C (CCD, 0.47 MP, external 8 bit ADC). Experimental dependencies of temporal noise on signal value are in good agreement with fitted curves based on a Poisson distribution excluding areas near saturation. Time of registering and processing of frames used for temporal noise estimation was measured. Using standard computer, frames were registered and processed during a fraction of second to several seconds only. Also the

  14. World's fastest and most sensitive astronomical camera

    NASA Astrophysics Data System (ADS)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these

  15. Method to implement the CCD timing generator based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Song, Qian; He, Chun; Jin, Jianhui; He, Lin

    2010-07-01

    With the advance of the PFPA technology, the design methodology of digital systems is changing. In recent years we develop a method to implement the CCD timing generator based on FPGA and VHDL. This paper presents the principles and implementation skills of the method. Taking a developed camera as an example, we introduce the structure, input and output clocks/signals of a timing generator implemented in the camera. The generator is composed of a top module and a bottom module. The bottom one is made up of 4 sub-modules which correspond to 4 different operation modes. The modules are implemented by 5 VHDL programs. Frame charts of the architecture of these programs are shown in the paper. We also describe implementation steps of the timing generator in Quartus II, and the interconnections between the generator and a Nios soft core processor which is the controller of this generator. Some test results are presented in the end.

  16. Neutron counting with cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo

    2015-07-01

    A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involvedmore » are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)« less

  17. Optical diagnostics of the arc plasma using fast intensified CCD-spectrograph system

    NASA Astrophysics Data System (ADS)

    Pavelescu, Gabriela; Guillot, Stephane; Braic, Mariana T.; Hong, Dunpin; Pavelescu, D.; Fleurier, Claude; Braic, Viorel; Gherendi, F.; Dumitrescu, G.; Anghelita, P.; Bauchire, J. M.

    2004-10-01

    Spectroscopic diagnostics, using intensified high speed CCD camera, was applied to study the arc dynamics in low voltage circuit breakers, in vacuum and in air. Time-resolved emission spectroscopy of the vacuum arc plasma, generated during electrode separation, provided information about the interruption process. The investigations were focused on the partial unsuccessful interruption around current zero. Absorption spectroscopy, in a peculiar setup, was used in order to determine the metallic atoms densities in the interelectrode space of a low voltage circuit breaker, working in ambient air.

  18. Development of a driving method suitable for ultrahigh-speed shooting in a 2M-fps 300k-pixel single-chip color camera

    NASA Astrophysics Data System (ADS)

    Yonai, J.; Arai, T.; Hayashida, T.; Ohtake, H.; Namiki, J.; Yoshida, T.; Etoh, T. Goji

    2012-03-01

    We have developed an ultrahigh-speed CCD camera that can capture instantaneous phenomena not visible to the human eye and impossible to capture with a regular video camera. The ultrahigh-speed CCD was specially constructed so that the CCD memory between the photodiode and the vertical transfer path of each pixel can store 144 frames each. For every one-frame shot, the electric charges generated from the photodiodes are transferred in one step to the memory of all the parallel pixels, making ultrahigh-speed shooting possible. Earlier, we experimentally manufactured a 1M-fps ultrahigh-speed camera and tested it for broadcasting applications. Through those tests, we learned that there are cases that require shooting speeds (frame rate) of more than 1M fps; hence we aimed to develop a new ultrahigh-speed camera that will enable much faster shooting speeds than what is currently possible. Since shooting at speeds of more than 200,000 fps results in decreased image quality and abrupt heating of the image sensor and drive circuit board, faster speeds cannot be achieved merely by increasing the drive frequency. We therefore had to improve the image sensor wiring layout and the driving method to develop a new 2M-fps, 300k-pixel ultrahigh-speed single-chip color camera for broadcasting purposes.

  19. Medición de coeficientes de extinción en CASLEO y características del CCD ROPER-2048B del telescopio JS

    NASA Astrophysics Data System (ADS)

    Fernández-Lajús, E.; Gamen, R.; Sánchez, M.; Scalia, M. C.; Baume, G. L.

    2016-08-01

    From observations made with the ``Jorge Sahade'' telescope of the Complejo Astronomico El Leoncito, the UBVRI-band extinction coeficients were measured, and some parameters and characteristics of the direct-image CCD camera ROPER 2048B were determined.

  20. The Multi-site All-Sky CAmeRA (MASCARA). Finding transiting exoplanets around bright (mV < 8) stars

    NASA Astrophysics Data System (ADS)

    Talens, G. J. J.; Spronck, J. F. P.; Lesage, A.-L.; Otten, G. P. P. L.; Stuik, R.; Pollacco, D.; Snellen, I. A. G.

    2017-05-01

    This paper describes the design, operations, and performance of the Multi-site All-Sky CAmeRA (MASCARA). Its primary goal is to find new exoplanets transiting bright stars, 4 < mV < 8, by monitoring the full sky. MASCARA consists of one northern station on La Palma, Canary Islands (fully operational since February 2015), one southern station at La Silla Observatory, Chile (operational from early 2017), and a data centre at Leiden Observatory in the Netherlands. Both MASCARA stations are equipped with five interline CCD cameras using wide field lenses (24 mm focal length) with fixed pointings, which together provide coverage down to airmass 3 of the local sky. The interline CCD cameras allow for back-to-back exposures, taken at fixed sidereal times with exposure times of 6.4 sidereal seconds. The exposures are short enough that the motion of stars across the CCD does not exceed one pixel during an integration. Astrometry and photometry are performed on-site, after which the resulting light curves are transferred to Leiden for further analysis. The final MASCARA archive will contain light curves for 70 000 stars down to mV = 8.4, with a precision of 1.5% per 5 minutes at mV = 8.

  1. Jig Aligns Shadow Mask On CCD

    NASA Technical Reports Server (NTRS)

    Matus, Carlos V.

    1989-01-01

    Alignment viewed through microscope. Alignment jig positions shadow mask on charge-coupled device (CCD) so metal film deposited on it precisely. Allows CCD package to be inserted and removed without disturbing alignment of mask. Holds CCD packages securely and isolates it electrostatically while providing electrical contact to each of its pins. When alignment jig assembled with CCD, used to move mask under micrometer control.

  2. Performance evaluation of low-cost airglow cameras for mesospheric gravity wave measurements

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Shiokawa, K.

    2016-12-01

    Atmospheric gravity waves significantly contribute to the wind/thermal balances in the mesosphere and lower thermosphere (MLT) through their vertical transport of horizontal momentum. It has been reported that the gravity wave momentum flux preferentially associated with the scale of the waves; the momentum fluxes of the waves with a horizontal scale of 10-100 km are particularly significant. Airglow imaging is a useful technique to observe two-dimensional structure of small-scale (<100 km) gravity waves in the MLT region and has been used to investigate global behaviour of the waves. Recent studies with simultaneous/multiple airglow cameras have derived spatial extent of the MLT waves. Such network imaging observations are advantageous to ever better understanding of coupling between the lower and upper atmosphere via gravity waves. In this study, we newly developed low-cost airglow cameras to enlarge the airglow imaging network. Each of the cameras has a fish-eye lens with a 185-deg field-of-view and equipped with a CCD video camera (WATEC WAT-910HX) ; the camera is small (W35.5 x H36.0 x D63.5 mm) and inexpensive, much more than the airglow camera used for the existing ground-based network (Optical Mesosphere Thermosphere Imagers (OMTI) operated by Solar-Terrestrial Environmental Laboratory, Nagoya University), and has a CCD sensor with 768 x 494 pixels that is highly sensitive enough to detect the mesospheric OH airglow emission perturbations. In this presentation, we will report some results of performance evaluation of this camera made at Shigaraki (35-deg N, 136-deg E), Japan, where is one of the OMTI station. By summing 15-images (i.e., 1-min composition of the images) we recognised clear gravity wave patterns in the images with comparable quality to the OMTI's image. Outreach and educational activities based on this research will be also reported.

  3. Cheap streak camera based on the LD-S-10 intensifier tube

    NASA Astrophysics Data System (ADS)

    Dashevsky, Boris E.; Krutik, Mikhail I.; Surovegin, Alexander L.

    1992-01-01

    Basic properties of a new streak camera and its test results are reported. To intensify images on its screen, we employed modular G1 tubes, the LD-A-1.0 and LD-A-0.33, enabling magnification of 1.0 and 0.33, respectively. If necessary, the LD-A-0.33 tube may be substituted by any other image intensifier of the LDA series, the choice to be determined by the size of the CCD matrix with fiber-optical windows. The reported camera employs a 12.5- mm-long CCD strip consisting of 1024 pixels, each 12 X 500 micrometers in size. Registered radiation was imaged on a 5 X 0.04 mm slit diaphragm tightly connected with the LD-S- 10 fiber-optical input window. Electrons escaping the cathode are accelerated in a 5 kV electric field and focused onto a phosphor screen covering a fiber-optical plate as they travel between deflection plates. Sensitivity of the latter was 18 V/mm, which implies that the total deflecting voltage was 720 V per 40 mm of the screen surface, since reversed-polarity scan pulses +360 V and -360 V were applied across the deflection plate. The streak camera provides full scan times over the screen of 15, 30, 50, 100, 250, and 500 ns. Timing of the electrically or optically driven camera was done using a 10 ns step-controlled-delay (0 - 500 ns) circuit.

  4. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    DOE PAGES

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less

  5. A New Serial-direction Trail Effect in CCD Images of the Lunar-based Ultraviolet Telescope

    NASA Astrophysics Data System (ADS)

    Wu, C.; Deng, J. S.; Guyonnet, A.; Antilogus, P.; Cao, L.; Cai, H. B.; Meng, X. M.; Han, X. H.; Qiu, Y. L.; Wang, J.; Wang, S.; Wei, J. Y.; Xin, L. P.; Li, G. W.

    2016-10-01

    Unexpected trails have been seen subsequent to relative bright sources in astronomical images taken with the CCD camera of the Lunar-based Ultraviolet Telescope (LUT) since its first light on the Moon’s surface. The trails can only be found in the serial-direction of CCD readout, differing themselves from image trails of radiation-damaged space-borne CCDs, which usually appear in the parallel-readout direction. After analyzing the same trail defects following warm pixels (WPs) in dark frames, we found that the relative intensity profile of the LUT CCD trails can be expressed as an exponential function of the distance i (in number of pixels) of the trailing pixel to the original source (or WP), i.e., {\\mathtt{\\exp }}(α {\\mathtt{i}}+β ). The parameters α and β seem to be independent of the CCD temperature, intensity of the source (or WP), and its position in the CCD frame. The main trail characteristics show evolution occurring at an increase rate of ˜(7.3 ± 3.6) × 10-4 in the first two operation years. The trails affect the consistency of the profiles of different brightness sources, which make smaller aperture photometry have larger extra systematic error. The astrometric uncertainty caused by the trails is too small to be acceptable based on LUT requirements for astrometry accuracy. Based on the empirical profile model, a correction method has been developed for LUT images that works well for restoring the fluxes of astronomical sources that are lost in trailing pixels.

  6. 41 CFR 301-11.16 - What reimbursement will I receive if I prepay my lodging expenses and my TDY is curtailed...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What reimbursement will I receive if I prepay my lodging expenses and my TDY is curtailed, canceled or interrupted for... reimbursement will I receive if I prepay my lodging expenses and my TDY is curtailed, canceled or interrupted...

  7. Aluminum/ammonia heat pipe gas generation and long term system impact for the Space Telescope's Wide Field Planetary Camera

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1983-01-01

    In the Space Telescope's Wide Field Planetary Camera (WFPC) project, eight heat pipes (HPs) are used to remove heat from the camera's inner electronic sensors to the spacecraft's outer, cold radiator surface. For proper device functioning and maximization of the signal-to-noise ratios, the Charge Coupled Devices (CCD's) must be maintained at -95 C or lower. Thermoelectric coolers (TEC's) cool the CCD's, and heat pipes deliver each TEC's nominal six to eight watts of heat to the space radiator, which reaches an equilibrium temperature between -15 C to -70 C. An initial problem was related to the difficulty to produce gas-free aluminum/ammonia heat pipes. An investigation was, therefore, conducted to determine the cause of the gas generation and the impact of this gas on CCD cooling. In order to study the effect of gas slugs in the WFPC system, a separate HP was made. Attention is given to fabrication, testing, and heat pipe gas generation chemistry studies.

  8. Space telescope optical telescope assembly/scientific instruments. Phase B: -Preliminary design and program definition study; Volume 2A: Planetary camera report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.

  9. High-Speed Camera and High-Vision Camera Observations of TLEs from Jet Aircraft in Winter Japan and in Summer US

    NASA Astrophysics Data System (ADS)

    Sato, M.; Takahashi, Y.; Kudo, T.; Yanagi, Y.; Kobayashi, N.; Yamada, T.; Project, N.; Stenbaek-Nielsen, H. C.; McHarg, M. G.; Haaland, R. K.; Kammae, T.; Cummer, S. A.; Yair, Y.; Lyons, W. A.; Ahrns, J.; Yukman, P.; Warner, T. A.; Sonnenfeld, R. G.; Li, J.; Lu, G.

    2011-12-01

    The time evolution and spatial distributions of transient luminous events (TLEs) are the key parameters to identify the relationship between TLEs and parent lightning discharges, roles of electromagnetic pulses (EMPs) emitted by horizontal and vertical lightning currents in the formation of TLEs, and the occurrence condition and mechanisms of TLEs. Since the time scales of TLEs is typically less than a few milliseconds, new imaging technique that enable us to capture images with a high time resolution of < 1ms is awaited. By courtesy of "Cosmic Shore" Project conducted by Japan Broadcasting Corporation (NHK), we have carried out optical observations using a high-speed Image-Intensified (II) CMOS camera and a high-vision three-CCD camera from a jet aircraft on November 28 and December 3, 2010 in winter Japan. Using the high-speed II-CMOS camera, it is possible to capture images with 8,300 frames per second (fps), which corresponds to the time resolution of 120 us. Using the high-vision three-CCD camera, it is possible to capture high quality, true color images of TLEs with a 1920x1080 pixel size and with a frame rate of 30 fps. During the two observation flights, we have succeeded to detect 28 sprite events, and 3 elves events totally. In response to this success, we have conducted a combined aircraft and ground-based campaign of TLE observations at the High Plains in summer US. We have installed same NHK high-speed and high-vision cameras in a jet aircraft. In the period from June 27 and July 10, 2011, we have operated aircraft observations in 8 nights, and we have succeeded to capture TLE images for over a hundred events by the high-vision camera and succeeded to acquire over 40 high-speed images simultaneously. At the presentation, we will introduce the outlines of the two aircraft campaigns, and will introduce the characteristics of the time evolution and spatial distributions of TLEs observed in winter Japan, and will show the initial results of high

  10. Fully depleted back illuminated CCD

    DOEpatents

    Holland, Stephen Edward

    2001-01-01

    A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

  11. Fast auto-acquisition tomography tilt series by using HD video camera in ultra-high voltage electron microscope.

    PubMed

    Nishi, Ryuji; Cao, Meng; Kanaji, Atsuko; Nishida, Tomoki; Yoshida, Kiyokazu; Isakozawa, Shigeto

    2014-11-01

    The ultra-high voltage electron microscope (UHVEM) H-3000 with the world highest acceleration voltage of 3 MV can observe remarkable three dimensional microstructures of microns-thick samples[1]. Acquiring a tilt series of electron tomography is laborious work and thus an automatic technique is highly desired. We proposed the Auto-Focus system using image Sharpness (AFS)[2,3] for UHVEM tomography tilt series acquisition. In the method, five images with different defocus values are firstly acquired and the image sharpness are calculated. The sharpness are then fitted to a quasi-Gaussian function to decide the best focus value[3]. Defocused images acquired by the slow scan CCD (SS-CCD) camera (Hitachi F486BK) are of high quality but one minute is taken for acquisition of five defocused images.In this study, we introduce a high-definition video camera (HD video camera; Hamamatsu Photonics K. K. C9721S) for fast acquisition of images[4]. It is an analog camera but the camera image is captured by a PC and the effective image resolution is 1280×1023 pixels. This resolution is lower than that of the SS-CCD camera of 4096×4096 pixels. However, the HD video camera captures one image for only 1/30 second. In exchange for the faster acquisition the S/N of images are low. To improve the S/N, 22 captured frames are integrated so that each image sharpness is enough to become lower fitting error. As countermeasure against low resolution, we selected a large defocus step, which is typically five times of the manual defocus step, to discriminate different defocused images.By using HD video camera for autofocus process, the time consumption for each autofocus procedure was reduced to about six seconds. It took one second for correction of an image position and the total correction time was seven seconds, which was shorter by one order than that using SS-CCD camera. When we used SS-CCD camera for final image capture, it took 30 seconds to record one tilt image. We can obtain a tilt

  12. Initial Demonstration of 9-MHz Framing Camera Rates on the FAST UV Drive Laser Pulse Trains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Edstrom Jr., D.; Ruan, J.

    2016-10-09

    We report the configuration of a Hamamatsu C5680 streak camera as a framing camera to record transverse spatial information of green-component laser micropulses at 3- and 9-MHz rates for the first time. The latter is near the time scale of the ~7.5-MHz revolution frequency of the Integrable Optics Test Accelerator (IOTA) ring and its expected synchroton radiation source temporal structure. The 2-D images are recorded with a Gig-E readout CCD camera. We also report a first proof of principle with an OTR source using the linac streak camera in a semi-framing mode.

  13. Enhanced performance CCD output amplifier

    DOEpatents

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  14. A Fixed-Pattern Noise Correction Method Based on Gray Value Compensation for TDI CMOS Image Sensor.

    PubMed

    Liu, Zhenwang; Xu, Jiangtao; Wang, Xinlei; Nie, Kaiming; Jin, Weimin

    2015-09-16

    In order to eliminate the fixed-pattern noise (FPN) in the output image of time-delay-integration CMOS image sensor (TDI-CIS), a FPN correction method based on gray value compensation is proposed. One hundred images are first captured under uniform illumination. Then, row FPN (RFPN) and column FPN (CFPN) are estimated based on the row-mean vector and column-mean vector of all collected images, respectively. Finally, RFPN are corrected by adding the estimated RFPN gray value to the original gray values of pixels in the corresponding row, and CFPN are corrected by subtracting the estimated CFPN gray value from the original gray values of pixels in the corresponding column. Experimental results based on a 128-stage TDI-CIS show that, after correcting the FPN in the image captured under uniform illumination with the proposed method, the standard-deviation of row-mean vector decreases from 5.6798 to 0.4214 LSB, and the standard-deviation of column-mean vector decreases from 15.2080 to 13.4623 LSB. Both kinds of FPN in the real images captured by TDI-CIS are eliminated effectively with the proposed method.

  15. A CCD search for distant satellites of asteroids 3 Juno and 146 Lucina

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Barker, Edwin S.

    1992-01-01

    The results of CCD searches for satellites of asteroids 146 Lucina and 3 Juno are reported. Juno is one of the largest asteroids (D = 244 km); no previous deep imaging search for satellites around it has been reported. A potential occultation detection of a small satellite orbiting 146 Lucina (D = 137 km) km was reported by Arlot et al. (1985), but has not been confirmed. Using the 2.1 m reflector at McDonald Observatory in 1990 and 1991 with a CCD camera equipped with a 2.7 arc-sec radius occulting disk, limiting magnitudes of m(sub R) = 19.5 and m(sub R) = 21.4 were achieved around these two asteroids. This corresponds to objects of 1.6 km radius at Juno's albedo and distance, and 0.6 km radius at Lucina's albedo and distance. No satellite detections were made. Unless satellites were located behind our occultation mask, these two asteroids do not have satellites larger than the radii given above.

  16. Dynamic MTF measurement

    NASA Astrophysics Data System (ADS)

    Bardoux, Alain; Gimenez, Thierry; Jamin, Nicolas; Seve, Frederic

    2017-11-01

    MTF (Modulation Transfer Frequency) of a detector is a key parameter for imagers. When image is not moving on the detector, MTF can be measured by some methods (knife edge, slanted slit,…). But with LEO satellites, image is moving on the surface of the detector, and MTF has to be measured in the same way: that is what we call "dynamic MTF". CNES (French Space Agency) has built a specific bench in order to measure dynamic MTF of detectors (CCD and CMOS), especially with component working in TDI (Time delay and integration) mode. The method is based on a moving edge, synchronized with the movement of charges inside the TDI detector. The moving part is a rotating cube, allowing a very stable movement of the image on the surface of the detector The main difficulties were: - stability of the rotating speed - synchronization between cube speed and charge transfer inside the detectors - synchronization between cube position and data acquisition. Different methods have been tested for the displacement of the knife edge: - geometrical displacement - electrical shift of the charge transfer clocks. Static MTF has been performed before dynamic measurements, in order to fix a reference measurement, Then dynamic MTF bench has been set up. The results, for a TDI CCD show a very good precision. So this bench is validated, and the dynamic MTF value of the TDI CCD is confirmed.

  17. HiPERCAM: a high-speed quintuple-beam CCD camera for the study of rapid variability in the universe

    NASA Astrophysics Data System (ADS)

    Dhillon, Vikram S.; Marsh, Thomas R.; Bezawada, Naidu; Black, Martin; Dixon, Simon; Gamble, Trevor; Henry, David; Kerry, Paul; Littlefair, Stuart; Lunney, David W.; Morris, Timothy; Osborn, James; Wilson, Richard W.

    2016-08-01

    HiPERCAM is a high-speed camera for the study of rapid variability in the Universe. The project is funded by a ɛ3.5M European Research Council Advanced Grant. HiPERCAM builds on the success of our previous instrument, ULTRACAM, with very significant improvements in performance thanks to the use of the latest technologies. HiPERCAM will use 4 dichroic beamsplitters to image simultaneously in 5 optical channels covering the u'g'r'I'z' bands. Frame rates of over 1000 per second will be achievable using an ESO CCD controller (NGC), with every frame GPS timestamped. The detectors are custom-made, frame-transfer CCDs from e2v, with 4 low noise (2.5e-) outputs, mounted in small thermoelectrically-cooled heads operated at 180 K, resulting in virtually no dark current. The two reddest CCDs will be deep-depletion devices with anti-etaloning, providing high quantum efficiencies across the red part of the spectrum with no fringing. The instrument will also incorporate scintillation noise correction via the conjugate-plane photometry technique. The opto-mechanical chassis will make use of additive manufacturing techniques in metal to make a light-weight, rigid and temperature-invariant structure. First light is expected on the 4.2m William Herschel Telescope on La Palma in 2017 (on which the field of view will be 10' with a 0.3"/pixel scale), with subsequent use planned on the 10.4m Gran Telescopio Canarias on La Palma (on which the field of view will be 4' with a 0.11"/pixel scale) and the 3.5m New Technology Telescope in Chile.

  18. The analysis on the relation between the compression method and the performance enhancement of MSC (Multi-Spectral Camera) image data

    NASA Astrophysics Data System (ADS)

    Yong, Sang-Soon; Ra, Sung-Woong

    2007-10-01

    Multi-Spectral Camera(MSC) is a main payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/ offset and on-board image data compression/ storage. The compression method on KOMPSAT-2 MSC was selected and used to match EOS input rate and PDTS output data rate on MSC image data chain. At once the MSC performance was carefully handled to minimize any degradation so that it was analyzed and restored in KGS(KOMPSAT Ground Station) during LEOP and Cal./Val.(Calibration and Validation) phase. In this paper, on-orbit image data chain in MSC and image data processing on KGS including general MSC description is briefly described. The influences on image performance between on-board compression algorithms and between performance restoration methods in ground station are analyzed, and the relation between both methods is to be analyzed and discussed.

  19. Crystallization of the C-terminal domain of the addiction antidote CcdA in complex with its toxin CcdB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buts, Lieven; De Jonge, Natalie; Loris, Remy, E-mail: reloris@vub.ac.be

    2005-10-01

    The CcdA C-terminal domain was crystallized in complex with CcdB in two crystal forms that diffract to beyond 2.0 Å resolution. CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdA{sub C36}; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 × 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 Å and diffracts to 1.8more » Å resolution. Form III belongs to space group P2{sub 1}, with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 Å, β = 96.9°, and diffracts to 1.9 Å resolution.« less

  20. A Star Image Extractor for Small Satellites

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Yamauchi, Masahiro; Gouda, Naoteru; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Yano, Taihei; Suganuma, Masahiro; Nakasuka, Shinichi; Sako, Nobutada; Inamori, Takaya

    We have developed a Star Image Extractor (SIE) which works as an on-board real-time image processor. It is a logic circuit written on an FPGA(Field Programmable Gate Array) device. It detects and extracts only an object data from raw image data. SIE will be required with the Nano-JASMINE 1) satellite. Nano-JASMINE is the small astrometry satellite that observes objects in our galaxy. It will be launched in 2010 and needs two years mission period. Nano-JASMINE observes an object with the TDI (Time Delayed Integration) observation mode. TDI is one of operation modes of CCD detector. Data is obtained, by rotating the imaging system including CCD at a rated synchronized with a vertical charge transfer of CCD. Obtained image data is sent through SIE to the Mission-controller.

  1. Design and fabrication of a CCD camera for use with relay optics in solar X-ray astronomy

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Configured as a subsystem of a sounding rocket experiment, a camera system was designed to record and transmit an X-ray image focused on a charge coupled device. The camera consists of a X-ray sensitive detector and the electronics for processing and transmitting image data. The design and operation of the camera are described. Schematics are included.

  2. CCD research. [design, fabrication, and applications

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.

    1976-01-01

    The fundamental problems encountered in designing, fabricating, and applying CCD's are reviewed. Investigations are described and results and conclusions are given for the following: (1) the development of design analyses employing computer aided techniques and their application to the design of a grapped structure; (2) the role of CCD's in applications to electronic functions, in particular, signal processing; (3) extending the CCD to silicon films on sapphire (SOS); and (4) all aluminum transfer structure with low noise input-output circuits. Related work on CCD imaging devices is summarized.

  3. The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowden, Gordon B.; Langton, Brian J.; /SLAC

    2014-05-28

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results frommore » a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)« less

  4. Digital readout for image converter cameras

    NASA Astrophysics Data System (ADS)

    Honour, Joseph

    1991-04-01

    There is an increasing need for fast and reliable analysis of recorded sequences from image converter cameras so that experimental information can be readily evaluated without recourse to more time consuming photographic procedures. A digital readout system has been developed using a randomly triggerable high resolution CCD camera, the output of which is suitable for use with IBM AT compatible PC. Within half a second from receipt of trigger pulse, the frame reformatter displays the image and transfer to storage media can be readily achieved via the PC and dedicated software. Two software programmes offer different levels of image manipulation which includes enhancement routines and parameter calculations with accuracy down to pixel levels. Hard copy prints can be acquired using a specially adapted Polaroid printer, outputs for laser and video printer extend the overall versatility of the system.

  5. Application of the CCD Fabry-Perot Annular Summing Technique to Thermospheric O(1)D.

    NASA Astrophysics Data System (ADS)

    Coakley, Monica Marie

    1995-01-01

    This work will detail the verification of the advantages of the Fabry-Perot charge coupled device (CCD) annular summing technique, the development of the technique for analysis of daysky spectra, and the implications of the resulting spectra for neutral temperature and wind measurements in the daysky thermosphere. The daysky spectral feature of interest is the bright (1 kilo-Rayleigh) thermospheric (OI) emission at 6300 A which had been observed in the nightsky in order to determine winds and temperatures in the vicinity of the altitude of 250 km. In the daysky, the emission line sits on top of a bright Rayleigh scattered continuum background which significantly complicates the observation. With a triple etalon Fabry-Perot spectrometer, the continuum background can be reduced while maintaining high throughput and high resolution. The inclusion of a CCD camera results in significant savings in integration time over the two more standard scanning photomultiplier systems that have made the same wind and temperature measurements in the past. A comparable CCD system can experience an order of magnitude savings in integration time over a PMT system. Laboratory and field tests which address the advantages and limitations of both the Fabry-Perot CCD annular summing technique and the daysky CCD imaging are included in Chap. 2 and Chap. 3. With a sufficiently large throughput associated with the spectrometer and a CCD detector, rapid observations (~4 minute integrations) can be made. Extraction of the line width and line center from the daysky near-continuum background is complicated compared to the nightsky case, but possible. Methods of fitting the line are included in Chap. 4. The daysky O ^1D temperatures are consistent with a lower average emission height than predicted by models. The data and models are discussed in Chap. 5. Although some discrepancies exist between resulting temperatures and models, the observations indicate the potential for other direct measurements

  6. Calibrating Images from the MINERVA Cameras

    NASA Astrophysics Data System (ADS)

    Mercedes Colón, Ana

    2016-01-01

    The MINiature Exoplanet Radial Velocity Array (MINERVA) consists of an array of robotic telescopes located on Mount Hopkins, Arizona with the purpose of performing transit photometry and spectroscopy to find Earth-like planets around Sun-like stars. In order to make photometric observations, it is necessary to perform calibrations on the CCD cameras of the telescopes to take into account possible instrument error on the data. In this project, we developed a pipeline that takes optical images, calibrates them using sky flats, darks, and biases to generate a transit light curve.

  7. Modeling Pluto-Charon Mutual Events. 2; CCD Observations with the 60 in. Telescope at Palomar Mountain

    NASA Technical Reports Server (NTRS)

    Buratti, B. J.; Dunbar, R. S.; Tedesco, E. F.; Gibson, J.; Marcialis, R. L.; Wong, F.; Bennett, S.; Dobrovolskis, A.

    1995-01-01

    We present observations of 15 Pluto-Charon mutual events which were obtained with the 60 in. telescope at Palomar Mountain Observatory. A CCD camera and Johnson V filter were used for the observations, except for one event that was observed with a Johnson B filter, and another event that was observed with a Gunn R filter. We observed two events in their entirety, and three pairs of complementary mutual occultation-transit events.

  8. The Zwicky Transient Facility Camera

    NASA Astrophysics Data System (ADS)

    Dekany, Richard; Smith, Roger M.; Belicki, Justin; Delacroix, Alexandre; Duggan, Gina; Feeney, Michael; Hale, David; Kaye, Stephen; Milburn, Jennifer; Murphy, Patrick; Porter, Michael; Reiley, Daniel J.; Riddle, Reed L.; Rodriguez, Hector; Bellm, Eric C.

    2016-08-01

    The Zwicky Transient Facility Camera (ZTFC) is a key element of the ZTF Observing System, the integrated system of optoelectromechanical instrumentation tasked to acquire the wide-field, high-cadence time-domain astronomical data at the heart of the Zwicky Transient Facility. The ZTFC consists of a compact cryostat with large vacuum window protecting a mosaic of 16 large, wafer-scale science CCDs and 4 smaller guide/focus CCDs, a sophisticated vacuum interface board which carries data as electrical signals out of the cryostat, an electromechanical window frame for securing externally inserted optical filter selections, and associated cryo-thermal/vacuum system support elements. The ZTFC provides an instantaneous 47 deg2 field of view, limited by primary mirror vignetting in its Schmidt telescope prime focus configuration. We report here on the design and performance of the ZTF CCD camera cryostat and report results from extensive Joule-Thompson cryocooler tests that may be of broad interest to the instrumentation community.

  9. Tracking a Head-Mounted Display in a Room-Sized Environment with Head-Mounted Cameras

    DTIC Science & Technology

    1990-04-01

    poor resolution and a very limited working volume [Wan90]. 4 OPTOTRAK [Nor88] uses one camera with two dual-axis CCD infrared position sensors. Each...Nor88] Northern Digital. Trade literature on Optotrak - Northern Digital’s Three Dimensional Optical Motion Tracking and Analysis System. Northern Digital

  10. The Panoramic Camera (Pancam) Investigation on the NASA 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.

    2003-01-01

    The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover.

  11. An electron energy loss spectrometer based streak camera for time resolved TEM measurements.

    PubMed

    Ali, Hasan; Eriksson, Johan; Li, Hu; Jafri, S Hassan M; Kumar, M S Sharath; Ögren, Jim; Ziemann, Volker; Leifer, Klaus

    2017-05-01

    We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100ns and 10μs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Development of low-noise CCD drive electronics for the world space observatory ultraviolet spectrograph subsystem

    NASA Astrophysics Data System (ADS)

    Salter, Mike; Clapp, Matthew; King, James; Morse, Tom; Mihalcea, Ionut; Waltham, Nick; Hayes-Thakore, Chris

    2016-07-01

    World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the universe at ultraviolet wavelengths between 115 nm and 320 nm, exceeding the current capabilities of ground-based instruments. The WSO Ultraviolet Spectrograph subsystem (WUVS) is led by the Institute of Astronomy of the Russian Academy of Sciences and consists of two high resolution spectrographs covering the Far-UV range of 115-176 nm and the Near-UV range of 174-310 nm, and a long-slit spectrograph covering the wavelength range of 115-305 nm. The custom-designed CCD sensors and cryostat assemblies are being provided by e2v technologies (UK). STFC RAL Space is providing the Camera Electronics Boxes (CEBs) which house the CCD drive electronics for each of the three WUVS channels. This paper presents the results of the detailed characterisation of the WUVS CCD drive electronics. The electronics include a novel high-performance video channel design that utilises Digital Correlated Double Sampling (DCDS) to enable low-noise readout of the CCD at a range of pixel frequencies, including a baseline requirement of less than 3 electrons rms readout noise for the combined CCD and electronics system at a readout rate of 50 kpixels/s. These results illustrate the performance of this new video architecture as part of a wider electronics sub-system that is designed for use in the space environment. In addition to the DCDS video channels, the CEB provides all the bias voltages and clocking waveforms required to operate the CCD and the system is fully programmable via a primary and redundant SpaceWire interface. The development of the CEB electronics design has undergone critical design review and the results presented were obtained using the engineering-grade electronics box. A variety of parameters and tests are included ranging from general system metrics, such as the power and mass

  13. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2015-08-05

    This animation still image shows the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA).

  14. Influence of camera parameters on the quality of mobile 3D capture

    NASA Astrophysics Data System (ADS)

    Georgiev, Mihail; Boev, Atanas; Gotchev, Atanas; Hannuksela, Miska

    2010-01-01

    We investigate the effect of camera de-calibration on the quality of depth estimation. Dense depth map is a format particularly suitable for mobile 3D capture (scalable and screen independent). However, in real-world scenario cameras might move (vibrations, temp. bend) form their designated positions. For experiments, we create a test framework, described in the paper. We investigate how mechanical changes will affect different (4) stereo-matching algorithms. We also assess how different geometric corrections (none, motion compensation-like, full rectification) will affect the estimation quality (how much offset can be still compensated with "crop" over a larger CCD). Finally, we show how estimated camera pose change (E) relates with stereo-matching, which can be used for "rectification quality" measure.

  15. A four-lens based plenoptic camera for depth measurements

    NASA Astrophysics Data System (ADS)

    Riou, Cécile; Deng, Zhiyuan; Colicchio, Bruno; Lauffenburger, Jean-Philippe; Kohler, Sophie; Haeberlé, Olivier; Cudel, Christophe

    2015-04-01

    In previous works, we have extended the principles of "variable homography", defined by Zhang and Greenspan, for measuring height of emergent fibers on glass and non-woven fabrics. This method has been defined for working with fabric samples progressing on a conveyor belt. Triggered acquisition of two successive images was needed to perform the 3D measurement. In this work, we have retained advantages of homography variable for measurements along Z axis, but we have reduced acquisitions number to a single one, by developing an acquisition device characterized by 4 lenses placed in front of a single image sensor. The idea is then to obtain four projected sub-images on a single CCD sensor. The device becomes a plenoptic or light field camera, capturing multiple views on the same image sensor. We have adapted the variable homography formulation for this device and we propose a new formulation to calculate a depth with plenoptic cameras. With these results, we have transformed our plenoptic camera in a depth camera and first results given are very promising.

  16. Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector.

    PubMed

    Barnett, Patrick D; Angel, S Michael

    2017-05-01

    A spatial heterodyne Raman spectrometer (SHRS) with millimeter-sized optics has been coupled with a standard cell phone camera as a detector for Raman measurements. The SHRS is a dispersive-based interferometer with no moving parts and the design is amenable to miniaturization while maintaining high resolution and large spectral range. In this paper, a SHRS with 2.5 mm diffraction gratings has been developed with 17.5 cm -1 theoretical spectral resolution. The footprint of the SHRS is orders of magnitude smaller than the footprint of charge-coupled device (CCD) detectors typically employed in Raman spectrometers, thus smaller detectors are being explored to shrink the entire spectrometer package. This paper describes the performance of a SHRS with 2.5 mm wide diffraction gratings and a cell phone camera detector, using only the cell phone's built-in optics to couple the output of the SHRS to the sensor. Raman spectra of a variety of samples measured with the cell phone are compared to measurements made using the same miniature SHRS with high-quality imaging optics and a high-quality, scientific-grade, thermoelectrically cooled CCD.

  17. Quantification of in vitro produced wear sites on composite resins using contact profilometry and CCD microscopy: a methodological investigation.

    PubMed

    Koottathape, Natthavoot; Takahashi, Hidekazu; Finger, Wernerj; Kanehira, Masafumi; Iwasaki, Naohiko; Aoyagi, Yujin

    2012-06-01

    Although attritive and abrasive wear of recent composite resins has been substantially reduced, in vitro wear testing with reasonably simulating devices and quantitative determination of resulting wear is still needed. Three-dimensional scanning methods are frequently used for this purpose. The aim of this trial was to compare maximum depth of wear and volume loss of composite samples, evaluated with a contact profilometer and a non-contact CCD camera imaging system, respectively. Twenty-three random composite specimens with wear traces produced in a ball-on-disc sliding device, using poppy seed slurry and PMMA suspension as third-body media, were evaluated with the contact profilometer (TalyScan 150, Taylor Hobson LTD, Leicester, UK) and with the digital CCD microscope (VHX1000, KEYENCE, Osaka, Japan). The target parameters were maximum depth of the wear and volume loss.Results - The individual time of measurement needed with the non-contact CCD method was almost three hours less than that with the contact method. Both, maximum depth of wear and volume loss data, recorded with the two methods were linearly correlated (r(2) > 0.97; p < 0.01). The contact scanning method and the non-contact CCD method are equally suitable for determination of maximum depth of wear and volume loss of abraded composite resins.

  18. Three-dimensional shape measurement and calibration for fringe projection by considering unequal height of the projector and the camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Feipeng; Shi Hongjian; Bai Pengxiang

    In fringe projection, the CCD camera and the projector are often placed at equal height. In this paper, we will study the calibration of an unequal arrangement of the CCD camera and the projector. The principle of fringe projection with two-dimensional digital image correlation to acquire the profile of object surface is described in detail. By formula derivation and experiment, the linear relationship between the out-of-plane calibration coefficient and the y coordinate is clearly found. To acquire the three-dimensional (3D) information of an object correctly, this paper presents an effective calibration method with linear least-squares fitting, which is very simplemore » in principle and calibration. Experiments are implemented to validate the availability and reliability of the calibration method.« less

  19. The MVACS Robotic Arm Camera

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Hartwig, H.; Kramm, R.; Koschny, D.; Markiewicz, W. J.; Thomas, N.; Fernades, M.; Smith, P. H.; Reynolds, R.; Lemmon, M. T.; Weinberg, J.; Marcialis, R.; Tanner, R.; Boss, B. J.; Oquest, C.; Paige, D. A.

    2001-08-01

    The Robotic Arm Camera (RAC) is one of the key instruments newly developed for the Mars Volatiles and Climate Surveyor payload of the Mars Polar Lander. This lightweight instrument employs a front lens with variable focus range and takes images at distances from 11 mm (image scale 1:1) to infinity. Color images with a resolution of better than 50 μm can be obtained to characterize the Martian soil. Spectral information of nearby objects is retrieved through illumination with blue, green, and red lamp sets. The design and performance of the camera are described in relation to the science objectives and operation. The RAC uses the same CCD detector array as the Surface Stereo Imager and shares the readout electronics with this camera. The RAC is mounted at the wrist of the Robotic Arm and can characterize the contents of the scoop, the samples of soil fed to the Thermal Evolved Gas Analyzer, the Martian surface in the vicinity of the lander, and the interior of trenches dug out by the Robotic Arm. It can also be used to take panoramic images and to retrieve stereo information with an effective baseline surpassing that of the Surface Stereo Imager by about a factor of 3.

  20. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.

    PubMed

    Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  1. TADIR: a second-generation 480 x 4 TDI FLIR

    NASA Astrophysics Data System (ADS)

    Sarusi, Gabby

    1997-08-01

    'TADIR' is an El-Op's new second generation thermal imager based on 480 by 4 TDI MCT detector operated in the 8 - 10.5 micrometer spectral range. Although the prototype configuration design of TADIR is aimed toward the light weight low volume applications, TADIR is a generic modular technology of which the future El-Op second generation FLIR applications will be derived from. Beside the detector, what put the system in the second generation category are the state of the art features implemented in every component. This paper describes the system concept and design consideration have been taken during the development of its components.

  2. Optimized algorithm for the spatial nonuniformity correction of an imaging system based on a charge-coupled device color camera.

    PubMed

    de Lasarte, Marta; Pujol, Jaume; Arjona, Montserrat; Vilaseca, Meritxell

    2007-01-10

    We present an optimized linear algorithm for the spatial nonuniformity correction of a CCD color camera's imaging system and the experimental methodology developed for its implementation. We assess the influence of the algorithm's variables on the quality of the correction, that is, the dark image, the base correction image, and the reference level, and the range of application of the correction using a uniform radiance field provided by an integrator cube. The best spatial nonuniformity correction is achieved by having a nonzero dark image, by using an image with a mean digital level placed in the linear response range of the camera as the base correction image and taking the mean digital level of the image as the reference digital level. The response of the CCD color camera's imaging system to the uniform radiance field shows a high level of spatial uniformity after the optimized algorithm has been applied, which also allows us to achieve a high-quality spatial nonuniformity correction of captured images under different exposure conditions.

  3. Pulsed-neutron imaging by a high-speed camera and center-of-gravity processing

    NASA Astrophysics Data System (ADS)

    Mochiki, K.; Uragaki, T.; Koide, J.; Kushima, Y.; Kawarabayashi, J.; Taketani, A.; Otake, Y.; Matsumoto, Y.; Su, Y.; Hiroi, K.; Shinohara, T.; Kai, T.

    2018-01-01

    Pulsed-neutron imaging is attractive technique in the research fields of energy-resolved neutron radiography and RANS (RIKEN) and RADEN (J-PARC/JAEA) are small and large accelerator-driven pulsed-neutron facilities for its imaging, respectively. To overcome the insuficient spatial resolution of the conunting type imaging detectors like μ NID, nGEM and pixelated detectors, camera detectors combined with a neutron color image intensifier were investigated. At RANS center-of-gravity technique was applied to spots image obtained by a CCD camera and the technique was confirmed to be effective for improving spatial resolution. At RADEN a high-frame-rate CMOS camera was used and super resolution technique was applied and it was recognized that the spatial resolution was futhermore improved.

  4. Multiple-target tracking implementation in the ebCMOS camera system: the LUSIPHER prototype

    NASA Astrophysics Data System (ADS)

    Doan, Quang Tuyen; Barbier, Remi; Dominjon, Agnes; Cajgfinger, Thomas; Guerin, Cyrille

    2012-06-01

    The domain of the low light imaging systems progresses very fast, thanks to detection and electronic multiplication technology evolution, such as the emCCD (electron multiplying CCD) or the ebCMOS (electron bombarded CMOS). We present an ebCMOS camera system that is able to track every 2 ms more than 2000 targets with a mean number of photons per target lower than two. The point light sources (targets) are spots generated by a microlens array (Shack-Hartmann) used in adaptive optics. The Multiple-Target-Tracking designed and implemented on a rugged workstation is described. The results and the performances of the system on the identification and tracking are presented and discussed.

  5. System for photometric calibration of optoelectronic imaging devices especially streak cameras

    DOEpatents

    Boni, Robert; Jaanimagi, Paul

    2003-11-04

    A system for the photometric calibration of streak cameras and similar imaging devices provides a precise knowledge of the camera's flat-field response as well as a mapping of the geometric distortions. The system provides the flat-field response, representing the spatial variations in the sensitivity of the recorded output, with a signal-to-noise ratio (SNR) greater than can be achieved in a single submicrosecond streak record. The measurement of the flat-field response is carried out by illuminating the input slit of the streak camera with a signal that is uniform in space and constant in time. This signal is generated by passing a continuous wave source through an optical homogenizer made up of a light pipe or pipes in which the illumination typically makes several bounces before exiting as a spatially uniform source field. The rectangular cross-section of the homogenizer is matched to the usable photocathode area of the streak tube. The flat-field data set is obtained by using a slow streak ramp that may have a period from one millisecond (ms) to ten seconds (s), but may be nominally one second in duration. The system also provides a mapping of the geometric distortions, by spatially and temporarily modulating the output of the homogenizer and obtaining a data set using the slow streak ramps. All data sets are acquired using a CCD camera and stored on a computer, which is used to calculate all relevant corrections to the signal data sets. The signal and flat-field data sets are both corrected for geometric distortions prior to applying the flat-field correction. Absolute photometric calibration is obtained by measuring the output fluence of the homogenizer with a "standard-traceable" meter and relating that to the CCD pixel values for a self-corrected flat-field data set.

  6. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.

    PubMed

    Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing

    2016-09-23

    In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively.

  7. Silicide Schottky Barrier For Back-Surface-Illuminated CCD

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.

    1990-01-01

    Quantum efficiency of back-surface-illuminated charge-coupled device (CCD) increased by coating back surface with thin layer of PtSi or IrSi on thin layer of SiO2. In its interaction with positively-doped bulk Si of CCD, silicide/oxide layer forms Schottky barrier that repels electrons, promoting accumulation of photogenerated charge carriers in front-side CCD potential wells. Physical principle responsible for improvement explained in "Metal Film Increases CCD Output" (NPO-16815).

  8. Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging

    NASA Astrophysics Data System (ADS)

    Watanabe, Shigeo; Takahashi, Teruo; Bennett, Keith

    2017-02-01

    The"scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity, photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between 20 to 1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.

  9. Meteor Film Recording with Digital Film Cameras with large CMOS Sensors

    NASA Astrophysics Data System (ADS)

    Slansky, P. C.

    2016-12-01

    In this article the author combines his professional know-how about cameras for film and television production with his amateur astronomy activities. Professional digital film cameras with high sensitivity are still quite rare in astronomy. One reason for this may be their costs of up to 20 000 and more (camera body only). In the interim, however,consumer photo cameras with film mode and very high sensitivity have come to the market for about 2 000 EUR. In addition, ultra-high sensitive professional film cameras, that are very interesting for meteor observation, have been introduced to the market. The particular benefits of digital film cameras with large CMOS sensors, including photo cameras with film recording function, for meteor recording are presented by three examples: a 2014 Camelopardalid, shot with a Canon EOS C 300, an exploding 2014 Aurigid, shot with a Sony alpha7S, and the 2016 Perseids, shot with a Canon ME20F-SH. All three cameras use large CMOS sensors; "large" meaning Super-35 mm, the classic 35 mm film format (24x13.5 mm, similar to APS-C size), or full format (36x24 mm), the classic 135 photo camera format. Comparisons are made to the widely used cameras with small CCD sensors, such as Mintron or Watec; "small" meaning 12" (6.4x4.8 mm) or less. Additionally, special photographic image processing of meteor film recordings is discussed.

  10. 76 FR 43236 - Federal Travel Regulation (FTR): Temporary Duty (TDY) Travel Allowances: Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ...; Sequence 5] Federal Travel Regulation (FTR): Temporary Duty (TDY) Travel Allowances: Notice of Public... public meeting. SUMMARY: The General Services Administration (GSA) is revising the Federal Travel Regulation (FTR) in an effort to streamline travel policies, increase travel efficiency and effectiveness...

  11. Quantization error of CCD cameras and their influence on phase calculation in fringe pattern analysis.

    PubMed

    Skydan, Oleksandr A; Lilley, Francis; Lalor, Michael J; Burton, David R

    2003-09-10

    We present an investigation into the phase errors that occur in fringe pattern analysis that are caused by quantization effects. When acquisition devices with a limited value of camera bit depth are used, there are a limited number of quantization levels available to record the signal. This may adversely affect the recorded signal and adds a potential source of instrumental error to the measurement system. Quantization effects also determine the accuracy that may be achieved by acquisition devices in a measurement system. We used the Fourier fringe analysis measurement technique. However, the principles can be applied equally well for other phase measuring techniques to yield a phase error distribution that is caused by the camera bit depth.

  12. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rácz, R., E-mail: rracz@atomki.hu; Biri, S.; Pálinkás, J.

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago.more » The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.« less

  13. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  14. SCP -- A Simple CCD Processing Package

    NASA Astrophysics Data System (ADS)

    Lewis, J. R.

    This note describes a small set of programs, written at RGO, which deal with basic CCD frame processing (e.g. bias subtraction, flat fielding, trimming etc.). The need to process large numbers of CCD frames from devices such as FOS or ISIS in order to extract spectra has prompted the writing of routines which will do the basic hack-work with a minimal amount of interaction from the user. Although they were written with spectral data in mind, there are no ``spectrum-specific'' features in the software which means they can be applied to any CCD data.

  15. Follow-up study of children with cerebral coordination disturbance (CCD, Vojta).

    PubMed

    Imamura, S; Sakuma, K; Takahashi, T

    1983-01-01

    713 children (from newborn to 12-month-old) with delayed motor development were carefully examined and classified into normal, very light cerebral coordination disturbance (CCD, Vojta), light CCD, moderate CCD, severe CCD, suspected cerebral palsy (CP) and other diseases at their first visit, and were followed up carefully. Finally, 89.0% of very light CCD, 71.4% of light CCD, 56.0% of moderate CCD and 30.0% of severe CCD developed into normal. 59.5% of moderate CCD and 45.5% of severe CCD among children who were given Vojta's physiotherapy developed into normal. The classification of cases with delayed motor development into very light, light, moderate and severe CCD based on the extent of abnormality in their postural reflexes is useful and well correlated with their prognosis. Treatment by Vojta's method seems to be efficient and helpful for young children with delayed motor development.

  16. Towards fish-eye camera based in-home activity assessment.

    PubMed

    Bas, Erhan; Erdogmus, Deniz; Ozertem, Umut; Pavel, Misha

    2008-01-01

    Indoors localization, activity classification, and behavioral modeling are increasingly important for surveillance applications including independent living and remote health monitoring. In this paper, we study the suitability of fish-eye cameras (high-resolution CCD sensors with very-wide-angle lenses) for the purpose of monitoring people in indoors environments. The results indicate that these sensors are very useful for automatic activity monitoring and people tracking. We identify practical and mathematical problems related to information extraction from these video sequences and identify future directions to solve these issues.

  17. 76 FR 46216 - Federal Travel Regulation (FTR): Temporary Duty (TDY) Travel Allowances: Notice of Public Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ...; Sequence 5] Federal Travel Regulation (FTR): Temporary Duty (TDY) Travel Allowances: Notice of Public... and the general public in an effort to streamline travel policies, incorporated travel efficiency and.... Flynn, Deputy Director, Office of Travel, Transportation & Asset Management. [FR Doc. 2011-19482 Filed 8...

  18. Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting

    PubMed Central

    2014-01-01

    Background In saffron (Crocus sativus), new corms develop at the base of every shoot developed from the maternal corm, a globular underground storage stem. Since the degree of bud sprouts influences the number and size of new corms, and strigolactones (SLs) suppress growth of pre-formed axillary bud, it was considered appropriate to investigate SL involvement in physiology and molecular biology in saffron. We focused on two of the genes within the SL pathway, CCD7 and CCD8, encoding carotenoid cleavage enzymes required for the production of SLs. Results The CsCCD7 and CsCCD8 genes are the first ones isolated and characterized from a non-grass monocotyledonous plant. CsCCD7 and CsCCD8 expression showed some overlapping, although they were not identical. CsCCD8 was highly expressed in quiescent axillary buds and decapitation dramatically reduced its expression levels, suggesting its involvement in the suppression of axillary bud outgrowth. Furthermore, in vitro experiments showed also the involvement of auxin, cytokinin and jasmonic acid on the sprouting of axillary buds from corms in which the apical bud was removed. In addition, CsCCD8 expression, but not CsCCD7, was higher in the newly developed vascular tissue of axillary buds compared to the vascular tissue of the apical bud. Conclusions We showed that production and transport of auxin in saffron corms could act synergistically with SLs to arrest the outgrowth of the axillary buds, similar to the control of above-ground shoot branching. In addition, jasmonic acid seems to play a prominent role in bud dormancy in saffron. While cytokinins from roots promote bud outgrowth. In addition the expression results of CsCCD8 suggest that SLs could positively regulate procambial activity and the development of new vascular tissues connecting leaves with the mother corm. PMID:24947472

  19. Research on the electro-optical assistant landing system based on the dual camera photogrammetry algorithm

    NASA Astrophysics Data System (ADS)

    Mi, Yuhe; Huang, Yifan; Li, Lin

    2015-08-01

    Based on the location technique of beacon photogrammetry, Dual Camera Photogrammetry (DCP) algorithm was used to assist helicopters landing on the ship. In this paper, ZEMAX was used to simulate the two Charge Coupled Device (CCD) cameras imaging four beacons on both sides of the helicopter and output the image to MATLAB. Target coordinate systems, image pixel coordinate systems, world coordinate systems and camera coordinate systems were established respectively. According to the ideal pin-hole imaging model, the rotation matrix and translation vector of the target coordinate systems and the camera coordinate systems could be obtained by using MATLAB to process the image information and calculate the linear equations. On the basis mentioned above, ambient temperature and the positions of the beacons and cameras were changed in ZEMAX to test the accuracy of the DCP algorithm in complex sea status. The numerical simulation shows that in complex sea status, the position measurement accuracy can meet the requirements of the project.

  20. Report on the eROSITA camera system

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Andritschke, Robert; Bornemann, Walter; Coutinho, Diogo; Emberger, Valentin; Hälker, Olaf; Kink, Walter; Mican, Benjamin; Müller, Siegfried; Pietschner, Daniel; Predehl, Peter; Reiffers, Jonas

    2014-07-01

    The eROSITA space telescope is currently developed for the determination of cosmological parameters and the equation of state of dark energy via evolution of clusters of galaxies. Furthermore, the instrument development was strongly motivated by the intention of a first imaging X-ray all-sky survey enabling measurements above 2 keV. eROSITA is a scientific payload on the Russian research satellite SRG. Its destination after launch is the Lagrangian point L2. The observational program of the observatory divides into an all-sky survey and pointed observations and takes in total about 7.5 years. The instrument comprises an array of 7 identical and parallel aligned telescopes. Each of the seven focal plane cameras is equipped with a PNCCD detector, an enhanced type of the XMM-Newton focal plane detector. This instrumentation permits spectroscopy and imaging of X-rays in the energy band from 0.3 keV to 10 keV with a field of view of 1.0 degree. The camera development is done at the Max-Planck-Institute for extraterrestrial physics. Key component of each camera is the PNCCD chip. This silicon sensor is a back-illuminated, fully depleted and column-parallel type of charge coupled device. The image area of the 450 micron thick frame-transfer CCD comprises an array of 384 x 384 pixels, each with a size of 75 micron x 75 micron. Readout of the signal charge that is generated by an incident X-ray photon in the CCD is accomplished by an ASIC, the so-called eROSITA CAMEX. It provides 128 parallel analog signal processing channels but multiplexes the signals finally to one output which feeds the detector signals to a fast 14-bit ADC. The read noise of this system is equivalent to a noise charge of about 2.5 electrons rms. We achieve an energy resolution close to the theoretical limit given by Fano noise (except for very low energies). For example, the FWHM at an energy of 5.9 keV is approximately 140 eV. The complete camera assembly comprises the camera head with the detector as

  1. The research on calibration methods of dual-CCD laser three-dimensional human face scanning system

    NASA Astrophysics Data System (ADS)

    Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Yang, Fengting; Shi, Shendong

    2013-09-01

    In this paper, on the basis of considering the performance advantages of two-step method, we combines the stereo matching of binocular stereo vision with active laser scanning to calibrate the system. Above all, we select a reference camera coordinate system as the world coordinate system and unity the coordinates of two CCD cameras. And then obtain the new perspective projection matrix (PPM) of each camera after the epipolar rectification. By those, the corresponding epipolar equation of two cameras can be defined. So by utilizing the trigonometric parallax method, we can measure the space point position after distortion correction and achieve stereo matching calibration between two image points. Experiments verify that this method can improve accuracy and system stability is guaranteed. The stereo matching calibration has a simple process with low-cost, and simplifies regular maintenance work. It can acquire 3D coordinates only by planar checkerboard calibration without the need of designing specific standard target or using electronic theodolite. It is found that during the experiment two-step calibration error and lens distortion lead to the stratification of point cloud data. The proposed calibration method which combining active line laser scanning and binocular stereo vision has the both advantages of them. It has more flexible applicability. Theory analysis and experiment shows the method is reasonable.

  2. A Motionless Camera

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Omniview, a motionless, noiseless, exceptionally versatile camera was developed for NASA as a receiving device for guiding space robots. The system can see in one direction and provide as many as four views simultaneously. Developed by Omniview, Inc. (formerly TRI) under a NASA Small Business Innovation Research (SBIR) grant, the system's image transformation electronics produce a real-time image from anywhere within a hemispherical field. Lens distortion is removed, and a corrected "flat" view appears on a monitor. Key elements are a high resolution charge coupled device (CCD), image correction circuitry and a microcomputer for image processing. The system can be adapted to existing installations. Applications include security and surveillance, teleconferencing, imaging, virtual reality, broadcast video and military operations. Omniview technology is now called IPIX. The company was founded in 1986 as TeleRobotics International, became Omniview in 1995, and changed its name to Interactive Pictures Corporation in 1997.

  3. Radiation imaging with a new scintillator and a CMOS camera

    NASA Astrophysics Data System (ADS)

    Kurosawa, S.; Shoji, Y.; Pejchal, J.; Yokota, Y.; Yoshikawa, A.

    2014-07-01

    A new imaging system consisting of a high-sensitivity complementary metal-oxide semiconductor (CMOS) sensor, a microscope and a new scintillator, Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG) grown by the Czochralski process, has been developed. The noise, the dark current and the sensitivity of the CMOS camera (ORCA-Flash4.0, Hamamatsu) was revised and compared to a conventional CMOS, whose sensitivity is at the same level as that of a charge coupled device (CCD) camera. Without the scintillator, this system had a good position resolution of 2.1 ± 0.4 μm and we succeeded in obtaining the alpha-ray images using 1-mm thick Ce:GAGG crystal. This system can be applied for example to high energy X-ray beam profile monitor, etc.

  4. Measurement of marine picoplankton cell size by using a cooled, charge-coupled device camera with image-analyzed fluorescence microscopy.

    PubMed Central

    Viles, C L; Sieracki, M E

    1992-01-01

    Accurate measurement of the biomass and size distribution of picoplankton cells (0.2 to 2.0 microns) is paramount in characterizing their contribution to the oceanic food web and global biogeochemical cycling. Image-analyzed fluorescence microscopy, usually based on video camera technology, allows detailed measurements of individual cells to be taken. The application of an imaging system employing a cooled, slow-scan charge-coupled device (CCD) camera to automated counting and sizing of individual picoplankton cells from natural marine samples is described. A slow-scan CCD-based camera was compared to a video camera and was superior for detecting and sizing very small, dim particles such as fluorochrome-stained bacteria. Several edge detection methods for accurately measuring picoplankton cells were evaluated. Standard fluorescent microspheres and a Sargasso Sea surface water picoplankton population were used in the evaluation. Global thresholding was inappropriate for these samples. Methods used previously in image analysis of nanoplankton cells (2 to 20 microns) also did not work well with the smaller picoplankton cells. A method combining an edge detector and an adaptive edge strength operator worked best for rapidly generating accurate cell sizes. A complete sample analysis of more than 1,000 cells averages about 50 min and yields size, shape, and fluorescence data for each cell. With this system, the entire size range of picoplankton can be counted and measured. Images PMID:1610183

  5. Spectral analysis using the CCD Chirp Z-transform

    NASA Technical Reports Server (NTRS)

    Eversole, W. L.; Mayer, D. J.; Bosshart, P. W.; Dewit, M.; Howes, C. R.; Buss, D. D.

    1978-01-01

    The charge coupled device (CCD) Chirp Z transformation (CZT) spectral analysis techniques were reviewed and results on state-of-the-art CCD CZT technology are presented. The CZT algorithm was examined and the advantages of CCD implementation are discussed. The sliding CZT which is useful in many spectral analysis applications is described, and the performance limitations of the CZT are studied.

  6. Mars Exploration Rover Navigation Camera in-flight calibration

    USGS Publications Warehouse

    Soderblom, J.M.; Bell, J.F.; Johnson, J. R.; Joseph, J.; Wolff, M.J.

    2008-01-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies. Copyright 2008 by the American Geophysical Union.

  7. Mars Exploration Rover Navigation Camera in-flight calibration

    NASA Astrophysics Data System (ADS)

    Soderblom, Jason M.; Bell, James F.; Johnson, Jeffrey R.; Joseph, Jonathan; Wolff, Michael J.

    2008-06-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies.

  8. Wide field/planetary camera optics study. [for the large space telescope

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design feasibility of the baseline optical design concept was established for the wide field/planetary camera (WF/PC) and will be used with the space telescope (ST) to obtain high angular resolution astronomical information over a wide field. The design concept employs internal optics to relay the ST image to a CCD detector system. Optical design performance predictions, sensitivity and tolerance analyses, manufacturability of the optical components, and acceptance testing of the two mirror Cassegrain relays are discussed.

  9. Absolute calibration of a charge-coupled device camera with twin beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meda, A.; Ruo-Berchera, I., E-mail: i.ruoberchera@inrim.it; Degiovanni, I. P.

    2014-09-08

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  10. Study of atmospheric discharges caracteristics using with a standard video camera

    NASA Astrophysics Data System (ADS)

    Ferraz, E. C.; Saba, M. M. F.

    In this study is showed some preliminary statistics on lightning characteristics such as: flash multiplicity, number of ground contact points, formation of new and altered channels and presence of continuous current in the strokes that form the flash. The analysis is based on the images of a standard video camera (30 frames.s-1). The results obtained for some flashes will be compared to the images of a high-speed CCD camera (1000 frames.s-1). The camera observing site is located in São José dos Campos (23°S,46° W) at an altitude of 630m. This observational site has nearly 360° field of view at a height of 25m. It is possible to visualize distant thunderstorms occurring within a radius of 25km from the site. The room, situated over a metal structure, has water and power supplies, a telephone line and a small crane on the roof. KEY WORDS: Video images, Lightning, Multiplicity, Stroke.

  11. Time-dependent inhibition (TDI) of CYP3A4 and CYP2C9 by noscapine potentially explains clinical noscapine-warfarin interaction.

    PubMed

    Fang, Zhong-Ze; Zhang, Yan-Yan; Ge, Guang-Bo; Huo, Hong; Liang, Si-Cheng; Yang, Ling

    2010-02-01

    To investigate the inhibition potential and kinetic information of noscapine to seven CYP isoforms and extrapolate in vivo noscapine-warfarin interaction magnitude from in vitro data. The activities of seven CYP isoforms (CYP3A4, CYP1A2, CYP2A6, CYP2E1, CYP2D6, CYP2C9, CYP2C8) in human liver microsomes were investigated following co- or preincubation with noscapine. A two-step incubation method was used to examine in vitro time-dependent inhibition (TDI) of noscapine. Reversible and TDI prediction equations were employed to extrapolate in vivo noscapine-warfarin interaction magnitude from in vitro data. Among seven CYP isoforms tested, the activities of CYP3A4 and CYP2C9 were strongly inhibited with an IC(50) of 10.8 +/- 2.5 microm and 13.3 +/- 1.2 microm. Kinetic analysis showed that inhibition of CYP2C9 by noscapine was best fit to a noncompetitive type with K(i) value of 8.8 microm, while inhibition of CYP3A4 by noscapine was best fit to a competitive manner with K(i) value of 5.2 microm. Noscapine also exhibited TDI to CYP3A4 and CYP2C9. The inactivation parameters (K(I) and k(inact)) were calculated to be 9.3 microm and 0.06 min(-1) for CYP3A4 and 8.9 microm and 0.014 min(-1) for CYP2C9, respectively. The AUC of (S)-warfarin and (R)-warfarin was predicted to increase 1.5% and 1.1% using C(max) or 0.5% and 0.4% using unbound C(max) with reversible inhibition prediction equation, while the AUC of (S)-warfarin and (R)-warfarin was estimated to increase by 110.9% and 48.9% using C(max) or 41.8% and 32.7% using unbound C(max) with TDI prediction equation. TDI of CYP3A4 and CYP2C9 by noscapine potentially explains clinical noscapine-warfarin interaction.

  12. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring.

    PubMed

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-20

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA.

  13. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring

    PubMed Central

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-01-01

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA. PMID:26308017

  14. Easily Transported CCD Systems for Use in Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Meisel, D.

    1992-12-01

    Relatively inexpensive CCD cameras and portable computers are now easily obtained as commercially available products. I will describe a prototype system that can be used by introductory astronomy students, even urban enviroments, to obtain useful observations of the night sky. It is based on the ST-4 CCDs made by Santa Barbara Instruments Group and Macintosh Powerbook145 computers. Students take outdoor images directly from the college campus, bring the exposures back into the lab and download the images into our networked server. These stored images can then be processed (at a later time) using a variety of image processing programs including a new astronomical version of the popular "freeware" NIH Image package that is currently under development at Geneseo. The prototype of this system will be demonstrated and available for hands-on use during the meeting. This work is supported by NSF ILI Demonstration Grant USE9250493 and Grants from SUNY-GENESEO.

  15. Robotic CCD microscope for enhanced crystal recognition

    DOEpatents

    Segelke, Brent W.; Toppani, Dominique

    2007-11-06

    A robotic CCD microscope and procedures to automate crystal recognition. The robotic CCD microscope and procedures enables more accurate crystal recognition, leading to fewer false negative and fewer false positives, and enable detection of smaller crystals compared to other methods available today.

  16. Delta-doped CCD's as low-energy particle detectors and imagers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor); Hecht, Michael H. (Inventor)

    2002-01-01

    The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to detect very low-energy particles that penetrate less than 1.0 nm into the CCD, including electrons having energies less than 1000 eV and protons having energies less than 10 keV.

  17. Development of two-framing camera with large format and ultrahigh speed

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoguo; Wang, Yuan; Wang, Yi

    2012-10-01

    High-speed imaging facility is important and necessary for the formation of time-resolved measurement system with multi-framing capability. The framing camera which satisfies the demands of both high speed and large format needs to be specially developed in the ultrahigh speed research field. A two-framing camera system with high sensitivity and time-resolution has been developed and used for the diagnosis of electron beam parameters of Dragon-I linear induction accelerator (LIA). The camera system, which adopts the principle of light beam splitting in the image space behind the lens with long focus length, mainly consists of lens-coupled gated image intensifier, CCD camera and high-speed shutter trigger device based on the programmable integrated circuit. The fastest gating time is about 3 ns, and the interval time between the two frames can be adjusted discretely at the step of 0.5 ns. Both the gating time and the interval time can be tuned to the maximum value of about 1 s independently. Two images with the size of 1024×1024 for each can be captured simultaneously in our developed camera. Besides, this camera system possesses a good linearity, uniform spatial response and an equivalent background illumination as low as 5 electrons/pix/sec, which fully meets the measurement requirements of Dragon-I LIA.

  18. In-camera video-stream processing for bandwidth reduction in web inspection

    NASA Astrophysics Data System (ADS)

    Jullien, Graham A.; Li, QiuPing; Hajimowlana, S. Hossain; Morvay, J.; Conflitti, D.; Roberts, James W.; Doody, Brian C.

    1996-02-01

    Automated machine vision systems are now widely used for industrial inspection tasks where video-stream data information is taken in by the camera and then sent out to the inspection system for future processing. In this paper we describe a prototype system for on-line programming of arbitrary real-time video data stream bandwidth reduction algorithms; the output of the camera only contains information that has to be further processed by a host computer. The processing system is built into a DALSA CCD camera and uses a microcontroller interface to download bit-stream data to a XILINXTM FPGA. The FPGA is directly connected to the video data-stream and outputs data to a low bandwidth output bus. The camera communicates to a host computer via an RS-232 link to the microcontroller. Static memory is used to both generate a FIFO interface for buffering defect burst data, and for off-line examination of defect detection data. In addition to providing arbitrary FPGA architectures, the internal program of the microcontroller can also be changed via the host computer and a ROM monitor. This paper describes a prototype system board, mounted inside a DALSA camera, and discusses some of the algorithms currently being implemented for web inspection applications.

  19. Mosad and Stream Vision For A Telerobotic, Flying Camera System

    NASA Technical Reports Server (NTRS)

    Mandl, William

    2002-01-01

    Two full custom camera systems using the Multiplexed OverSample Analog to Digital (MOSAD) conversion technology for visible light sensing were built and demonstrated. They include a photo gate sensor and a photo diode sensor. The system includes the camera assembly, driver interface assembly, a frame stabler board with integrated decimeter and Windows 2000 compatible software for real time image display. An array size of 320X240 with 16 micron pixel pitch was developed for compatibility with 0.3 inch CCTV optics. With 1.2 micron technology, a 73% fill factor was achieved. Noise measurements indicated 9 to 11 bits operating with 13.7 bits best case. Power measured under 10 milliwatts at 400 samples per second. Nonuniformity variation was below noise floor. Pictures were taken with different cameras during the characterization study to demonstrate the operable range. The successful conclusion of this program demonstrates the utility of the MOSAD for NASA missions, providing superior performance over CMOS and lower cost and power consumption over CCD. The MOSAD approach also provides a path to radiation hardening for space based applications.

  20. Transport and installation of the Dark Energy Survey CCD imager

    NASA Astrophysics Data System (ADS)

    Derylo, Greg; Chi, Edward; Diehl, H. Thomas; Estrada, Juan; Flaugher, Brenna; Schultz, Ken

    2012-09-01

    The Dark Energy Survey CCD imager was constructed at the Fermi National Accelerator Laboratory and delivered to the Cerro Tololo Inter-American Observatory in Chile for installation onto the Blanco 4m telescope. Several efforts are described relating to preparation of the instrument for transport, development and testing of a shipping crate designed to minimize transportation loads transmitted to the camera, and inspection of the imager upon arrival at the observatory. Transportation loads were monitored and are described. For installation of the imager at the telescope prime focus, where it mates with its previously-installed optical corrector, specialized tooling was developed to safely lift, support, and position the vessel. The installation and removal processes were tested on the Telescope Simulator mockup at FNAL, thus minimizing technical and schedule risk for the work performed at CTIO. Final installation of the imager is scheduled for August 2012.

  1. Pixel-based characterisation of CMOS high-speed camera systems

    NASA Astrophysics Data System (ADS)

    Weber, V.; Brübach, J.; Gordon, R. L.; Dreizler, A.

    2011-05-01

    Quantifying high-repetition rate laser diagnostic techniques for measuring scalars in turbulent combustion relies on a complete description of the relationship between detected photons and the signal produced by the detector. CMOS-chip based cameras are becoming an accepted tool for capturing high frame rate cinematographic sequences for laser-based techniques such as Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) and can be used with thermographic phosphors to determine surface temperatures. At low repetition rates, imaging techniques have benefitted from significant developments in the quality of CCD-based camera systems, particularly with the uniformity of pixel response and minimal non-linearities in the photon-to-signal conversion. The state of the art in CMOS technology displays a significant number of technical aspects that must be accounted for before these detectors can be used for quantitative diagnostics. This paper addresses these issues.

  2. Explosive Transient Camera (ETC) Program

    NASA Technical Reports Server (NTRS)

    Ricker, George

    1991-01-01

    Since the inception of the ETC program, a wide range of new technologies was developed to support this astronomical instrument. The prototype unit was installed at ETC Site 1. The first partially automated observations were made and some major renovations were later added to the ETC hardware. The ETC was outfitted with new thermoelectrically-cooled CCD cameras and a sophisticated vacuum manifold, which, together, made the ETC a much more reliable unit than the prototype. The ETC instrumentation and building were placed under full computer control, allowing the ETC to operate as an automated, autonomous instrument with virtually no human intervention necessary. The first fully-automated operation of the ETC was performed, during which the ETC monitored the error region of the repeating soft gamma-ray burster SGR 1806-21.

  3. Applications of iQID cameras

    NASA Astrophysics Data System (ADS)

    Han, Ling; Miller, Brian W.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2017-09-01

    iQID is an intensified quantum imaging detector developed in the Center for Gamma-Ray Imaging (CGRI). Originally called BazookaSPECT, iQID was designed for high-resolution gamma-ray imaging and preclinical gamma-ray single-photon emission computed tomography (SPECT). With the use of a columnar scintillator, an image intensifier and modern CCD/CMOS sensors, iQID cameras features outstanding intrinsic spatial resolution. In recent years, many advances have been achieved that greatly boost the performance of iQID, broadening its applications to cover nuclear and particle imaging for preclinical, clinical and homeland security settings. This paper presents an overview of the recent advances of iQID technology and its applications in preclinical and clinical scintigraphy, preclinical SPECT, particle imaging (alpha, neutron, beta, and fission fragment), and digital autoradiography.

  4. Application of phase matching autofocus in airborne long-range oblique photography camera

    NASA Astrophysics Data System (ADS)

    Petrushevsky, Vladimir; Guberman, Asaf

    2014-06-01

    The Condor2 long-range oblique photography (LOROP) camera is mounted in an aerodynamically shaped pod carried by a fast jet aircraft. Large aperture, dual-band (EO/MWIR) camera is equipped with TDI focal plane arrays and provides high-resolution imagery of extended areas at long stand-off ranges, at day and night. Front Ritchey-Chretien optics is made of highly stable materials. However, the camera temperature varies considerably in flight conditions. Moreover, a composite-material structure of the reflective objective undergoes gradual dehumidification in dry nitrogen atmosphere inside the pod, causing some small decrease of the structure length. The temperature and humidity effects change a distance between the mirrors by just a few microns. The distance change is small but nevertheless it alters the camera's infinity focus setpoint significantly, especially in the EO band. To realize the optics' resolution potential, the optimal focus shall be constantly maintained. In-flight best focus calibration and temperature-based open-loop focus control give mostly satisfactory performance. To get even better focusing precision, a closed-loop phase-matching autofocus method was developed for the camera. The method makes use of an existing beamsharer prism FPA arrangement where aperture partition exists inherently in an area of overlap between the adjacent detectors. The defocus is proportional to an image phase shift in the area of overlap. Low-pass filtering of raw defocus estimate reduces random errors related to variable scene content. Closed-loop control converges robustly to precise focus position. The algorithm uses the temperature- and range-based focus prediction as an initial guess for the closed-loop phase-matching control. The autofocus algorithm achieves excellent results and works robustly in various conditions of scene illumination and contrast.

  5. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera

    PubMed Central

    Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei

    2016-01-01

    High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023

  6. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera.

    PubMed

    Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei

    2016-03-04

    High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera.

  7. CCD Detects Two Images In Quick Succession

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Collins, Andy

    1996-01-01

    Prototype special-purpose charge-coupled device (CCD) designed to detect two 1,024 x 1,024-pixel images in rapid succession. Readout performed slowly to minimize noise. CCD operated in synchronism with pulsed laser, stroboscope, or other pulsed source of light to form pairs of images of rapidly moving objects.

  8. Volumetric particle image velocimetry with a single plenoptic camera

    NASA Astrophysics Data System (ADS)

    Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.

    2015-11-01

    A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera

  9. Signal-to-noise ratio for the wide field-planetary camera of the Space Telescope

    NASA Technical Reports Server (NTRS)

    Zissa, D. E.

    1984-01-01

    Signal-to-noise ratios for the Wide Field Camera and Planetary Camera of the Space Telescope were calculated as a function of integration time. Models of the optical systems and CCD detector arrays were used with a 27th visual magnitude point source and a 25th visual magnitude per arc-sq. second extended source. A 23rd visual magnitude per arc-sq. second background was assumed. The models predicted signal-to-noise ratios of 10 within 4 hours for the point source centered on a signal pixel. Signal-to-noise ratios approaching 10 are estimated for approximately 0.25 x 0.25 arc-second areas within the extended source after 10 hours integration.

  10. Measuring Beam Sizes and Ultra-Small Electron Emittances Using an X-ray Pinhole Camera.

    PubMed

    Elleaume, P; Fortgang, C; Penel, C; Tarazona, E

    1995-09-01

    A very simple pinhole camera set-up has been built to diagnose the electron beam emittance of the ESRF. The pinhole is placed in the air next to an Al window. An image is obtained with a CCD camera imaging a fluorescent screen. The emittance is deduced from the size of the image. The relationship between the measured beam size and the electron beam emittance depends upon the lattice functions alpha, beta and eta, the screen resolution, pinhole size and photon beam divergence. The set-up is capable of measuring emittances as low as 5 pm rad and is presently routinely used as both an electron beam imaging device and an emittance diagnostic.

  11. Imaging with organic indicators and high-speed charge-coupled device cameras in neurons: some applications where these classic techniques have advantages.

    PubMed

    Ross, William N; Miyazaki, Kenichi; Popovic, Marko A; Zecevic, Dejan

    2015-04-01

    Dynamic calcium and voltage imaging is a major tool in modern cellular neuroscience. Since the beginning of their use over 40 years ago, there have been major improvements in indicators, microscopes, imaging systems, and computers. While cutting edge research has trended toward the use of genetically encoded calcium or voltage indicators, two-photon microscopes, and in vivo preparations, it is worth noting that some questions still may be best approached using more classical methodologies and preparations. In this review, we highlight a few examples in neurons where the combination of charge-coupled device (CCD) imaging and classical organic indicators has revealed information that has so far been more informative than results using the more modern systems. These experiments take advantage of the high frame rates, sensitivity, and spatial integration of the best CCD cameras. These cameras can respond to the faster kinetics of organic voltage and calcium indicators, which closely reflect the fast dynamics of the underlying cellular events.

  12. Time From the Beginning of the Right Ventricle Isovolumetric Contraction to the Peak of the S Wave: A New TDI Indicator for the Non-Invasive Estimation of Pulmonary Hypertension.

    PubMed

    Parsaee, Mozhgan; Ghaderi, Fereshteh; Alizadehasl, Azin; Bakhshandeh, Hooman

    2016-08-01

    Echocardiography is a key screening tool in the diagnostic algorithm of pulmonary hypertension (PH). In addition, tissue doppler imaging (TDI) is a promising method for the noninvasive estimation of pulmonary artery pressure (PAP). The aim of this study was to validate the accuracy of measuring the time from the beginning of the right ventricular isovolumetric contraction time (RV IVRT) to the peak of the S wave in the TDI of the base of the RV free wall (time to peak or TTP), as an indicator for the non-invasive estimation of pulmonary hypertension. In this diagnostic test study, 60 consecutive patients referred for right heart catheterization (RHC) were enrolled. A pulse-wave TDI was performed before the cardiac catheterization, with a mean interval of 1 hour between the two measurements. The TDI variables, such as the RV IVRT, myocardial performance index (MPI), and the new "time to peak" parameter, were measured at the lateral basal RV free wall. The patients were divided into two sub-groups according to the RHC findings: no-PH (mean PAP < 25 mmHg) and PH (mean PAP ≥ 25 mmHg) groups. Then, we calculated the specificity and sensitivity of the TDI parameters (including the TTP) for the diagnosis of PH. In our study, the TTP showed a significant inverse relationship with the PAP. Based on our results, a TTP of less than 127 ms could be used to predict PH, with a sensitivity and specificity of about 70% (AUC = 0.746 ± 0.064). Based on the results of this study, we suggest the use of a novel "time from the beginning of isovolumetric contraction to the peak of the S wave" (TTP) parameter in the TDI of the base of the RV free wall to predict PH with acceptable accuracy in comparison with RHC.

  13. CCD filter and transform techniques for interference excision

    NASA Technical Reports Server (NTRS)

    Borsuk, G. M.; Dewitt, R. N.

    1976-01-01

    The theoretical and some experimental results of a study aimed at applying CCD filter and transform techniques to the problem of interference excision within communications channels were presented. Adaptive noise (interference) suppression was achieved by the modification of received signals such that they were orthogonal to the recently measured noise field. CCD techniques were examined to develop real-time noise excision processing. They were recursive filters, circulating filter banks, transversal filter banks, an optical implementation of the chirp Z transform, and a CCD analog FFT.

  14. High-Voltage Clock Driver for Photon-Counting CCD Characterization

    NASA Technical Reports Server (NTRS)

    Baker, Robert

    2013-01-01

    A document discusses the CCD97 from e2v technologies as it is being evaluated at Goddard Space Flight Center's Detector Characterization Laboratory (DCL) for possible use in ultra-low background noise space astronomy applications, such as Terrestrial Planet Finder Coronagraph (TPF-C). The CCD97 includes a photoncounting mode where the equivalent output noise is less than one electron. Use of this mode requires a clock signal at a voltage level greater than the level achievable by the existing CCD (charge-coupled-device) electronics. A high-voltage waveform generator has been developed in code 660/601 to support the CCD97 evaluation. The unit generates required clock waveforms at voltage levels from -20 to +50 V. It deals with standard and arbitrary waveforms and supports pixel rates from 50 to 500 kHz. The system is designed to interface with existing Leach CCD electronics.

  15. CCD sensors in synchrotron X-ray detectors

    NASA Astrophysics Data System (ADS)

    Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.

    1988-04-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.

  16. Toward a digital camera to rival the human eye

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2011-07-01

    All things considered, electronic imaging systems do not rival the human visual system despite notable progress over 40 years since the invention of the CCD. This work presents a method that allows design engineers to evaluate the performance gap between a digital camera and the human eye. The method identifies limiting factors of the electronic systems by benchmarking against the human system. It considers power consumption, visual field, spatial resolution, temporal resolution, and properties related to signal and noise power. A figure of merit is defined as the performance gap of the weakest parameter. Experimental work done with observers and cadavers is reviewed to assess the parameters of the human eye, and assessment techniques are also covered for digital cameras. The method is applied to 24 modern image sensors of various types, where an ideal lens is assumed to complete a digital camera. Results indicate that dynamic range and dark limit are the most limiting factors. The substantial functional gap, from 1.6 to 4.5 orders of magnitude, between the human eye and digital cameras may arise from architectural differences between the human retina, arranged in a multiple-layer structure, and image sensors, mostly fabricated in planar technologies. Functionality of image sensors may be significantly improved by exploiting technologies that allow vertical stacking of active tiers.

  17. A 128K-bit CCD buffer memory system

    NASA Technical Reports Server (NTRS)

    Siemens, K. H.; Wallace, R. W.; Robinson, C. R.

    1976-01-01

    A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. 8K-bit CCD shift register memories were used to construct a feasibility model 128K-bit buffer memory system. Peak power dissipation during a data transfer is less than 7 W., while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. Descriptions are provided of both the buffer memory system and a custom tester that was used to exercise the memory. The testing procedures and testing results are discussed. Suggestions are provided for further development with regards to the utilization of advanced versions of CCD memory devices to both simplified and expanded memory system applications.

  18. 1920x1080 pixel color camera with progressive scan at 50 to 60 frames per second

    NASA Astrophysics Data System (ADS)

    Glenn, William E.; Marcinka, John W.

    1998-09-01

    For over a decade, the broadcast industry, the film industry and the computer industry have had a long-range objective to originate high definition images with progressive scan. This produces images with better vertical resolution and much fewer artifacts than interlaced scan. Computers almost universally use progressive scan. The broadcast industry has resisted switching from interlace to progressive because no cameras were available in that format with the 1920 X 1080 resolution that had obtained international acceptance for high definition program production. The camera described in this paper produces an output in that format derived from two 1920 X 1080 CCD sensors produced by Eastman Kodak.

  19. Comparing light sensitivity, linearity and step response of electronic cameras for ophthalmology.

    PubMed

    Kopp, O; Markert, S; Tornow, R P

    2002-01-01

    To develop and test a procedure to measure and compare light sensitivity, linearity and step response of electronic cameras. The pixel value (PV) of digitized images as a function of light intensity (I) was measured. The sensitivity was calculated from the slope of the P(I) function, the linearity was estimated from the correlation coefficient of this function. To measure the step response, a short sequence of images was acquired. During acquisition, a light source was switched on and off using a fast shutter. The resulting PV was calculated for each video field of the sequence. A CCD camera optimized for the near-infrared (IR) spectrum showed the highest sensitivity for both, visible and IR light. There are little differences in linearity. The step response depends on the procedure of integration and read out.

  20. Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy

    DOE PAGES

    Wei, Wanchun; Broussard, Leah J.; Hoffbauer, Mark Arles; ...

    2016-05-16

    Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15μm has been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE=m 0gδx. Here, the symbols δE, δx, m 0 and g are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. Asmore » a result, this method allows different types of UCN spectroscopy and other applications.« less

  1. Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Wanchun; Broussard, Leah J.; Hoffbauer, Mark Arles

    Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15μm has been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE=m 0gδx. Here, the symbols δE, δx, m 0 and g are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. Asmore » a result, this method allows different types of UCN spectroscopy and other applications.« less

  2. KWFC: four square degrees camera for the Kiso Schmidt Telescope

    NASA Astrophysics Data System (ADS)

    Sako, Shigeyuki; Aoki, Tsutomu; Doi, Mamoru; Ienaka, Nobuyuki; Kobayashi, Naoto; Matsunaga, Noriyuki; Mito, Hiroyuki; Miyata, Takashi; Morokuma, Tomoki; Nakada, Yoshikazu; Soyano, Takao; Tarusawa, Ken'ichi; Miyazaki, Satoshi; Nakata, Fumiaki; Okada, Norio; Sarugaku, Yuki; Richmond, Michael W.

    2012-09-01

    The Kiso Wide Field Camera (KWFC) is a facility instrument for the 105-cm Schmidt telescope being operated by the Kiso Observatory of the University of Tokyo. This camera has been designed for wide-field observations by taking advantage of a large focal-plane area of the Schmidt telescope. Eight CCD chips with a total of 8k x 8k pixels cover a field-of-view of 2.2 degrees x 2.2 degrees on the sky. The dewar window works as a field flattener lens minimizing an image distortion across the field of view. Two shutter plates moving in parallel achieve uniform exposures on all the CCD pixels. The KWFC is equipped with a filter exchanger composed of an industrial robotic arm, a filter magazine capable of storing 12 filters, and a filter holder at the focal plane. Both the arm and the magazine are installed inside the tube framework of the telescope but without vignetting the beam. Wide-field survey programs searching for supernovae and late-type variable stars have begun in April 2012. The survey observations are performed with a management software system for facility instruments including the telescope and the KWFC. This system automatically carries out observations based on target lists registered in advance and makes appropriate decisions for implementation of observations by referring to weather conditions and status of the instruments. Image data obtained in the surveys are processed with pipeline software in real time to search for candidates of time-variable sources.

  3. Cooling the dark energy camera instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, R.L.; Cease, H.; /Fermilab

    2008-06-01

    DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been usedmore » when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.« less

  4. Active Pixel Sensors: Are CCD's Dinosaurs?

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  5. CCD imaging sensors

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor); Elliott, Stythe T. (Inventor)

    1989-01-01

    A method for promoting quantum efficiency (QE) of a CCD imaging sensor for UV, far UV and low energy x-ray wavelengths by overthinning the back side beyond the interface between the substrate and the photosensitive semiconductor material, and flooding the back side with UV prior to using the sensor for imaging. This UV flooding promotes an accumulation layer of positive states in the oxide film over the thinned sensor to greatly increase QE for either frontside or backside illumination. A permanent or semipermanent image (analog information) may be stored in a frontside SiO.sub.2 layer over the photosensitive semiconductor material using implanted ions for a permanent storage and intense photon radiation for a semipermanent storage. To read out this stored information, the gate potential of the CCD is biased more negative than that used for normal imaging, and excess charge current thus produced through the oxide is integrated in the pixel wells for subsequent readout by charge transfer from well to well in the usual manner.

  6. Six-degrees-of-freedom sensing based on pictures taken by single camera.

    PubMed

    Zhongke, Li; Yong, Wang; Yongyuan, Qin; Peijun, Lu

    2005-02-01

    Two six-degrees-of-freedom sensing methods are presented. In the first method, three laser beams are employed to set up Descartes' frame on a rigid body and a screen is adopted to form diffuse spots. In the second method, two superimposed grid screens and two laser beams are used. A CCD camera is used to take photographs in both methods. Both approaches provide a simple and error-free method to record the positions and the attitudes of a rigid body in motion continuously.

  7. Indoor space 3D visual reconstruction using mobile cart with laser scanner and cameras

    NASA Astrophysics Data System (ADS)

    Gashongore, Prince Dukundane; Kawasue, Kikuhito; Yoshida, Kumiko; Aoki, Ryota

    2017-02-01

    Indoor space 3D visual reconstruction has many applications and, once done accurately, it enables people to conduct different indoor activities in an efficient manner. For example, an effective and efficient emergency rescue response can be accomplished in a fire disaster situation by using 3D visual information of a destroyed building. Therefore, an accurate Indoor Space 3D visual reconstruction system which can be operated in any given environment without GPS has been developed using a Human-Operated mobile cart equipped with a laser scanner, CCD camera, omnidirectional camera and a computer. By using the system, accurate indoor 3D Visual Data is reconstructed automatically. The obtained 3D data can be used for rescue operations, guiding blind or partially sighted persons and so forth.

  8. Speed of sound and photoacoustic imaging with an optical camera based ultrasound detection system

    NASA Astrophysics Data System (ADS)

    Nuster, Robert; Paltauf, Guenther

    2017-07-01

    CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution <50 μm, it is necessary to incorporate variations of the speed of sound (SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.

  9. Securing quality of camera-based biomedical optics

    NASA Astrophysics Data System (ADS)

    Guse, Frank; Kasper, Axel; Zinter, Bob

    2009-02-01

    As sophisticated optical imaging technologies move into clinical applications, manufacturers need to guarantee their products meet required performance criteria over long lifetimes and in very different environmental conditions. A consistent quality management marks critical components features derived from end-users requirements in a top-down approach. Careful risk analysis in the design phase defines the sample sizes for production tests, whereas first article inspection assures the reliability of the production processes. We demonstrate the application of these basic quality principles to camera-based biomedical optics for a variety of examples including molecular diagnostics, dental imaging, ophthalmology and digital radiography, covering a wide range of CCD/CMOS chip sizes and resolutions. Novel concepts in fluorescence detection and structured illumination are also highlighted.

  10. Advances in CCD detector technology for x-ray diffraction applications

    NASA Astrophysics Data System (ADS)

    Thorson, Timothy A.; Durst, Roger D.; Frankel, Dan; Bordwell, Rex L.; Camara, Jose R.; Leon-Guerrero, Edward; Onishi, Steven K.; Pang, Francis; Vu, Paul; Westbrook, Edwin M.

    2004-01-01

    Phosphor-coupled CCDs are established as one of the most successful technologies for x-ray diffraction. This application demands that the CCD simultaneously achieve both the highest possible sensitivity and high readout speeds. Recently, wafer-scale, back illuminated devices have become available which offer significantly higher quantum efficiency than conventional devices (the Fairchild Imaging CCD 486 BI). However, since back thinning significantly changes the electrical properties of the CCD the high speed operation of wafer-scale, back-illuminated devices is not well understood. Here we describe the operating characteristics (including noise, linearity, full well capacity and CTE) of the back-illuminated CCD 486 at readout speeds up to 4 MHz.

  11. Development of the focal plane PNCCD camera system for the X-ray space telescope eROSITA

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Andritschke, Robert; Ebermayer, Stefanie; Elbs, Johannes; Hälker, Olaf; Hartmann, Robert; Herrmann, Sven; Kimmel, Nils; Schächner, Gabriele; Schopper, Florian; Soltau, Heike; Strüder, Lothar; Weidenspointner, Georg

    2010-12-01

    A so-called PNCCD, a special type of CCD, was developed twenty years ago as focal plane detector for the XMM-Newton X-ray astronomy mission of the European Space Agency ESA. Based on this detector concept and taking into account the experience of almost ten years of operation in space, a new X-ray CCD type was designed by the ‘MPI semiconductor laboratory’ for an upcoming X-ray space telescope, called eROSITA (extended Roentgen survey with an imaging telescope array). This space telescope will be equipped with seven X-ray mirror systems of Wolter-I type and seven CCD cameras, placed in their foci. The instrumentation permits the exploration of the X-ray universe in the energy band from 0.3 up to 10 keV by spectroscopic measurements with a time resolution of 50 ms for a full image comprising 384×384 pixels. Main scientific goals are an all-sky survey and investigation of the mysterious ‘Dark Energy’. The eROSITA space telescope, which is developed under the responsibility of the ‘Max-Planck-Institute for extraterrestrial physics’, is a scientific payload on the new Russian satellite ‘Spectrum-Roentgen-Gamma’ (SRG). The mission is already approved by the responsible Russian and German space agencies. After launch in 2012 the destination of the satellite is Lagrange point L2. The planned observational program takes about seven years. We describe the design of the eROSITA camera system and present important test results achieved recently with the eROSITA prototype PNCCD detector. This includes a comparison of the eROSITA detector with the XMM-Newton detector.

  12. A new method to calibrate the absolute sensitivity of a soft X-ray streak camera

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali

    2016-12-01

    In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.

  13. Cranz-Schardin camera with a large working distance for the observation of small scale high-speed flows.

    PubMed

    Skupsch, C; Chaves, H; Brücker, C

    2011-08-01

    The Cranz-Schardin camera utilizes a Q-switched Nd:YAG laser and four single CCD cameras. Light pulse energy in the range of 25 mJ and pulse duration of about 5 ns is provided by the laser. The laser light is converted to incoherent light by Rhodamine-B fluorescence dye in a cuvette. The laser beam coherence is intentionally broken in order to avoid speckle. Four light fibers collect the fluorescence light and are used for illumination. Different light fiber lengths enable a delay of illumination between consecutive images. The chosen interframe time is 25 ns, corresponding to 40 × 10(6) frames per second. Exemplarily, the camera is applied to observe the bow shock in front of a water jet, propagating in air at supersonic speed. The initial phase of the formation of a jet structure is recorded.

  14. Concordia CCD - A Geoscope station in continental Antarctica

    NASA Astrophysics Data System (ADS)

    Maggi, A.; Lévêque, J.; Thoré, J.; Bes de Berc, M.; Bernard, A.; Danesi, S.; Morelli, A.; Delladio, A.; Sorrentino, D.; Stutzmann, E.; Geoscope Team

    2010-12-01

    Concordia (Dome C, Antarctica) has had a permanent seismic station since 2005. It is run by EOST and INGV in collaboration with the French and Italian polar institutes (IPEV and PNRA). It is installed in an ice-vault, at 12m depth, distant 1km from the permanent scientific base at Concordia. The temperature in the vault is a constant -55°C. The data quality at the station has improved continuously since its installation. In 2007, the station was declared at ISC as an open station with station code CCD (ConCorDia), with data available upon request. It is only the second permanent station in the Antarctic continent, after South Pole. In 2010, CCD was included in the Geoscope network. Data from CCD starting in 2007 are now freely available from the Geoscope Data Center and IRIS. We present an analysis of the data quality at CCD, and describe the technical difficulties of operating an observatory-quality seismic station in the extreme environmental conditons present in continental Antarctica.

  15. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging.

    PubMed

    Andreozzi, Jacqueline M; Zhang, Rongxiao; Glaser, Adam K; Jarvis, Lesley A; Pogue, Brian W; Gladstone, David J

    2015-02-01

    To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary cost than the EM-ICCD. The

  16. 41 CFR 301-30.4 - When an illness or injury occurs on TDY, what expenses may be allowed?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false When an illness or... TRAVEL EXPENSES 30-EMERGENCY TRAVEL § 301-30.4 When an illness or injury occurs on TDY, what expenses may... incapacitating illness or injury for a reasonable period of time (generally 14 calendar days). However, your...

  17. 41 CFR 301-30.4 - When an illness or injury occurs on TDY, what expenses may be allowed?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false When an illness or... TRAVEL EXPENSES 30-EMERGENCY TRAVEL § 301-30.4 When an illness or injury occurs on TDY, what expenses may... incapacitating illness or injury for a reasonable period of time (generally 14 calendar days). However, your...

  18. 41 CFR 301-30.4 - When an illness or injury occurs on TDY, what expenses may be allowed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false When an illness or... TRAVEL EXPENSES 30-EMERGENCY TRAVEL § 301-30.4 When an illness or injury occurs on TDY, what expenses may... incapacitating illness or injury for a reasonable period of time (generally 14 calendar days). However, your...

  19. 41 CFR 301-30.4 - When an illness or injury occurs on TDY, what expenses may be allowed?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false When an illness or... TRAVEL EXPENSES 30-EMERGENCY TRAVEL § 301-30.4 When an illness or injury occurs on TDY, what expenses may... incapacitating illness or injury for a reasonable period of time (generally 14 calendar days). However, your...

  20. The TESS camera: modeling and measurements with deep depletion devices

    NASA Astrophysics Data System (ADS)

    Woods, Deborah F.; Vanderspek, Roland; MacDonald, Robert; Morgan, Edward; Villasenor, Joel; Thayer, Carolyn; Burke, Barry; Chesbrough, Christian; Chrisp, Michael; Clark, Kristin; Furesz, Gabor; Gonzales, Alexandria; Nguyen, Tam; Prigozhin, Gregory; Primeau, Brian; Ricker, George; Sauerwein, Timothy; Suntharalingam, Vyshnavi

    2016-07-01

    The Transiting Exoplanet Survey Satellite, a NASA Explorer-class mission in development, will discover planets around nearby stars, most notably Earth-like planets with potential for follow up characterization. The all-sky survey requires a suite of four wide field-of-view cameras with sensitivity across a broad spectrum. Deep depletion CCDs with a silicon layer of 100 μm thickness serve as the camera detectors, providing enhanced performance in the red wavelengths for sensitivity to cooler stars. The performance of the camera is critical for the mission objectives, with both the optical system and the CCD detectors contributing to the realized image quality. Expectations for image quality are studied using a combination of optical ray tracing in Zemax and simulations in Matlab to account for the interaction of the incoming photons with the 100 μm silicon layer. The simulations include a probabilistic model to determine the depth of travel in the silicon before the photons are converted to photo-electrons, and a Monte Carlo approach to charge diffusion. The charge diffusion model varies with the remaining depth for the photo-electron to traverse and the strength of the intermediate electric field. The simulations are compared with laboratory measurements acquired by an engineering unit camera with the TESS optical design and deep depletion CCDs. In this paper we describe the performance simulations and the corresponding measurements taken with the engineering unit camera, and discuss where the models agree well in predicted trends and where there are differences compared to observations.

  1. Optomechanical System Development of the AWARE Gigapixel Scale Camera

    NASA Astrophysics Data System (ADS)

    Son, Hui S.

    Electronic focal plane arrays (FPA) such as CMOS and CCD sensors have dramatically improved to the point that digital cameras have essentially phased out film (except in very niche applications such as hobby photography and cinema). However, the traditional method of mating a single lens assembly to a single detector plane, as required for film cameras, is still the dominant design used in cameras today. The use of electronic sensors and their ability to capture digital signals that can be processed and manipulated post acquisition offers much more freedom of design at system levels and opens up many interesting possibilities for the next generation of computational imaging systems. The AWARE gigapixel scale camera is one such computational imaging system. By utilizing a multiscale optical design, in which a large aperture objective lens is mated with an array of smaller, well corrected relay lenses, we are able to build an optically simple system that is capable of capturing gigapixel scale images via post acquisition stitching of the individual pictures from the array. Properly shaping the array of digital cameras allows us to form an effectively continuous focal surface using off the shelf (OTS) flat sensor technology. This dissertation details developments and physical implementations of the AWARE system architecture. It illustrates the optomechanical design principles and system integration strategies we have developed through the course of the project by summarizing the results of the two design phases for AWARE: AWARE-2 and AWARE-10. These systems represent significant advancements in the pursuit of scalable, commercially viable snapshot gigapixel imaging systems and should serve as a foundation for future development of such systems.

  2. SO2 camera measurements at Lastarria volcano and Lascar volcano in Chile

    NASA Astrophysics Data System (ADS)

    Lübcke, Peter; Bobrowski, Nicole; Dinger, Florian; Klein, Angelika; Kuhn, Jonas; Platt, Ulrich

    2015-04-01

    The SO2 camera is a remote-sensing technique that measures volcanic SO2 emissions via the strong SO2 absorption structures in the UV using scattered solar radiation as a light source. The 2D-imagery (usually recorded with a frame rate of up to 1 Hz) allows new insights into degassing processes of volcanoes. Besides the large advantage of high frequency sampling the spatial resolution allows to investigate SO2 emissions from individual fumaroles and not only the total SO2 emission flux of a volcano, which is often dominated by the volcanic plume. Here we present SO2 camera measurements that were made during the CCVG workshop in Chile in November 2014. Measurements were performed at Lastarria volcano, a 5700 m high stratovolcano and Lascar volcano, a 5600 m high stratovolcano both in northern Chile on 21 - 22 November, 2014 and on 26 - 27 November, 2014, respectively. At both volcanoes measurements were conducted from a distance of roughly 6-7 km under close to ideal conditions (low solar zenith angle, a very dry and cloudless atmosphere and an only slightly condensed plume). However, determination of absolute SO2 emission rates proves challenging as part of the volcanic plume hovered close to the ground. The volcanic plume therefore is in front of the mountain in our camera images. An SO2 camera system consisting of a UV sensitive CCD and two UV band-pass filters (centered at 315 nm and 330 nm) was used. The two band-pass filters are installed in a rotating wheel and images are taken with both filter sequentially. The instrument used a CCD with 1024 x 1024 pixels and an imaging area of 13.3 mm x 13.3 mm. In combination with the focal length of 32 mm this results in a field-of-view of 25° x 25°. The calibration of the instrument was performed with help of a DOAS instrument that is co-aligned with the SO2 camera. We will present images and SO2 emission rates from both volcanoes. At Lastarria gases are emitted from three different fumarole fields and we will attempt

  3. Digital X-ray camera for quality evaluation three-dimensional topographic reconstruction of single crystals of biological macromolecules

    NASA Technical Reports Server (NTRS)

    Borgstahl, Gloria (Inventor); Lovelace, Jeff (Inventor); Snell, Edward Holmes (Inventor); Bellamy, Henry (Inventor)

    2008-01-01

    The present invention provides a digital topography imaging system for determining the crystalline structure of a biological macromolecule, wherein the system employs a charge coupled device (CCD) camera with antiblooming circuitry to directly convert x-ray signals to electrical signals without the use of phosphor and measures reflection profiles from the x-ray emitting source after x-rays are passed through a sample. Methods for using said system are also provided.

  4. Development, characterization, and modeling of a tunable filter camera

    NASA Astrophysics Data System (ADS)

    Sartor, Mark Alan

    1999-10-01

    This paper describes the development, characterization, and modeling of a Tunable Filter Camera (TFC). The TFC is a new multispectral instrument with electronically tuned spectral filtering and low-light-level sensitivity. It represents a hybrid between hyperspectral and multispectral imaging spectrometers that incorporates advantages from each, addressing issues such as complexity, cost, lack of sensitivity, and adaptability. These capabilities allow the TFC to be applied to low- altitude video surveillance for real-time spectral and spatial target detection and image exploitation. Described herein are the theory and principles of operation for the TFC, which includes a liquid crystal tunable filter, an intensified CCD, and a custom apochromatic lens. The results of proof-of-concept testing, and characterization of two prototype cameras are included, along with a summary of the design analyses for the development of a multiple-channel system. A significant result of this effort was the creation of a system-level model, which was used to facilitate development and predict performance. It includes models for the liquid crystal tunable filter and intensified CCD. Such modeling was necessary in the design of the system and is useful for evaluation of the system in remote-sensing applications. Also presented are characterization data from component testing, which included quantitative results for linearity, signal to noise ratio (SNR), linearity, and radiometric response. These data were used to help refine and validate the model. For a pre-defined source, the spatial and spectral response, and the noise of the camera, system can now be predicted. The innovation that sets this development apart is the fact that this instrument has been designed for integrated, multi-channel operation for the express purpose of real-time detection/identification in low- light-level conditions. Many of the requirements for the TFC were derived from this mission. In order to provide

  5. Astrometric Calibration and Performance of the Dark Energy Camera

    DOE PAGES

    Bernstein, G. M.; Armstrong, R.; Plazas, A. A.; ...

    2017-05-30

    We characterize the ability of the Dark Energy Camera (DECam) to perform relative astrometry across its 500 Mpix, 3more » $deg^2$ science field of view, and across 4 years of operation. This is done using internal comparisons of $~ 4 x 10^7$ measurements of high-S/N stellar images obtained in repeat visits to fields of moderate stellar density, with the telescope dithered to move the sources around the array. An empirical astrometric model includes terms for: optical distortions; stray electric fields in the CCD detectors; chromatic terms in the instrumental and atmospheric optics; shifts in CCD relative positions of up to $$\\approx 10 \\mu m$$ when the DECam temperature cycles; and low-order distortions to each exposure from changes in atmospheric refraction and telescope alignment. Errors in this astrometric model are dominated by stochastic variations with typical amplitudes of 10-30 mas (in a 30 s exposure) and $$5^{\\prime}-10^{\\prime}$$ arcmin coherence length, plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of these atmospheric distortions is not closely related to the seeing. Given an astrometric reference catalog at density $$\\approx 0.7$$ $$arcmin^{-2}$$, e.g. from Gaia, the typical atmospheric distortions can be interpolated to $$\\approx$$ 7 mas RMS accuracy (for 30 s exposures) with $$1^{\\prime}$$ arcmin coherence length for residual errors. Remaining detectable error contributors are 2-4 mas RMS from unmodelled stray electric fields in the devices, and another 2-4 mas RMS from focal plane shifts between camera thermal cycles. Thus the astrometric solution for a single DECam exposure is accurate to 3-6 mas ( $$\\approx$$ 0.02 pixels, or $$\\approx$$ 300 nm) on the focal plane, plus the stochastic atmospheric distortion.« less

  6. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Dunham, E. W.; Wei, M. Z.; Robinson, L. B.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 105. Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  7. CCD centroiding analysis for Nano-JASMINE observation data

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshito; Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Tazawa, Seiichi; Hanada, Hideo

    2010-07-01

    Nano-JASMINE is a very small satellite mission for global space astrometry with milli-arcsecond accuracy, which will be launched in 2011. In this mission, centroids of stars in CCD image frames are estimated with sub-pixel accuracy. In order to realize such a high precision centroiding an algorithm utilizing a least square method is employed. One of the advantages is that centroids can be calculated without explicit assumption of the point spread functions of stars. CCD centroiding experiment has been performed to investigate whether this data analysis is available, and centroids of artificial star images on a CCD are determined with a precision of less than 0.001 pixel. This result indicates parallaxes of stars within 300 pc from Sun can be observed in Nano-JASMINE.

  8. CCD charge collection efficiency and the photon transfer technique

    NASA Technical Reports Server (NTRS)

    Janesick, J.; Klaasen, K.; Elliott, T.

    1985-01-01

    The charge-coupled device (CCD) has shown unprecendented performance as a photon detector in the areas of spectral response, charge transfer, and readout noise. Recent experience indicates, however, that the full potential for the CCD's charge collection efficiency (CCE) lies well beyond that which is realized in currently available devices. A definition of CCE performance is presented and a standard test tool (the photon transfer technique) for measuring and optimizing this important CCD parameter is introduced. CCE characteristics for different types of CCDs are compared; the primary limitations in achieving high CCE performance are discussed, and the prospects for future improvement are outlined.

  9. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2015-08-05

    This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA). Read more: www.nasa.gov/feature/goddard/from-a-million-miles-away-na... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2017-12-08

    This animation still image shows the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA). Read more: www.nasa.gov/feature/goddard/from-a-million-miles-away-na... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. CCD radiation damage in ESA Cosmic Visions missions: assessment and mitigation

    NASA Astrophysics Data System (ADS)

    Lumb, David H.

    2009-08-01

    Charge Coupled Device (CCD) imagers have been widely used in space-borne astronomical instruments. A frequent concern has been the radiation damage effects on the CCD charge transfer properties. We review some methods for assessing the Charge Transfer Inefficiency (CTI) in CCDs. Techniques to minimise degradation using background charge injection and p-channel CCD architectures are discussed. A critical review of the claims for p-channel architectures is presented. The performance advantage for p-channel CCD performance is shown to be lower than claimed previously. Finally we present some projections for the performance in the context of some future ESA missions.

  12. Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

    PubMed

    Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo

    2013-04-02

    In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.

  13. SHOK—The First Russian Wide-Field Optical Camera in Space

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.; Gorbovskoy, E. S.; Kornilov, V. G.; Panasyuk, M. I.; Amelushkin, A. M.; Petrov, V. L.; Yashin, I. V.; Svertilov, S. I.; Vedenkin, N. N.

    2018-02-01

    Onboard the spacecraft Lomonosov is established two fast, fixed, very wide-field cameras SHOK. The main goal of this experiment is the observation of GRB optical emission before, synchronously, and after the gamma-ray emission. The field of view of each of the cameras is placed in the gamma-ray burst detection area of other devices located onboard the "Lomonosov" spacecraft. SHOK provides measurements of optical emissions with a magnitude limit of ˜ 9-10m on a single frame with an exposure of 0.2 seconds. The device is designed for continuous sky monitoring at optical wavelengths in the very wide field of view (1000 square degrees each camera), detection and localization of fast time-varying (transient) optical sources on the celestial sphere, including provisional and synchronous time recording of optical emissions from the gamma-ray burst error boxes, detected by the BDRG device and implemented by a control signal (alert trigger) from the BDRG. The Lomonosov spacecraft has two identical devices, SHOK1 and SHOK2. The core of each SHOK device is a fast-speed 11-Megapixel CCD. Each of the SHOK devices represents a monoblock, consisting of a node observations of optical emission, the electronics node, elements of the mechanical construction, and the body.

  14. A wide bandwidth CCD buffer memory system

    NASA Technical Reports Server (NTRS)

    Siemens, K.; Wallace, R. W.; Robinson, C. R.

    1978-01-01

    A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. CCD shift register memories (8K bit) were used to construct a feasibility model 128 K-bit buffer memory system. Serial data that can have rates between 150 kHz and 4.0 MHz can be stored in 4K-bit, randomly-accessible memory blocks. Peak power dissipation during a data transfer is less than 7 W, while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. System expansion to accommodate parallel inputs or a greater number of memory blocks can be performed in a modular fashion. Since the control logic does not increase proportionally to increase in memory capacity, the power requirements per bit of storage can be reduced significantly in a larger system.

  15. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    NASA Astrophysics Data System (ADS)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  16. CICADA, CCD and Instrument Control Software

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Brooks, Mick; Meatheringham, Stephen J.; Roberts, William H.

    Computerised Instrument Control and Data Acquisition (CICADA) is a software system for control of telescope instruments in a distributed computing environment. It is designed using object-oriented techniques and built with standard computing tools such as RPC, SysV IPC, Posix threads, Tcl, and GUI builders. The system is readily extensible to new instruments and currently supports the Astromed 3200 CCD controller and MSSSO's new tip-tilt system. Work is currently underway to provide support for the SDSU CCD controller and MSSSO's Double Beam Spectrograph. A core set of processes handle common communication and control tasks, while specific instruments are ``bolted'' on using C++ inheritance techniques.

  17. CCD and photon-counting photometric observations of peculiar asteroids

    NASA Astrophysics Data System (ADS)

    Fulvio, D.; Blanco, C.; Cigna, M.; Gandolfi, D.

    The photometric observational programme of main-belt asteroids undertaken, since 1980, at the Physics and Astronomy Department of Catania University, mainly by using photoelectric acquisition, has been extended to the Near-Earth Objects, because of the importance of their study to improve the knowledge of the mechanics and the physics of the inner Solar System. The wideness of the observational programme was pursued by using an expressly built CCD camera having a Kodak 4200 detector 2048x2048 pixel class 1, front-illuminated chip with 9 mu m pixel-size, equipped with BVRI Johnson filters. New observations of 4 Vesta, 27 Euterpe, 173 Ino, 182 Elsa, 849 Ara (carried out at M.G. Fracastoro Station of Catania Astrophysical Observatory), 984 Gretia, 3199 Nefertiti and 2004 UE (carried out at Asiago Station of Padova Astronomical Observatory) are presented. The improvement of the rotational period value (for 182 Elsa and 2004 UE it is the first determination), of the lightcurve amplitude and of the B-V colour index was obtained. For 4 Vesta indications on surface mineralogic morphology are deduced from the UBV photometric behaviour while for 182 Elsa, the H-G magnitude relation was carried out.

  18. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Robinson, L. B.; Wei, M. Z.; Borucki, W. J.; Dunham, E. W.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 10(exp 5). Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  19. Software design of control system of CCD side-scatter lidar

    NASA Astrophysics Data System (ADS)

    Kuang, Zhiqiang; Liu, Dong; Deng, Qian; Zhang, Zhanye; Wang, Zhenzhu; Yu, Siqi; Tao, Zongming; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Because of the existence of blind zone and transition zone, the application of backscattering lidar in near-ground is limited. The side-scatter lidar equipped with the Charge Coupled Devices (CCD) can separate the transmitting and receiving devices to avoid the impact of the geometric factors which is exited in the backscattering lidar and, detect the more precise near-ground aerosol signals continuously. Theories of CCD side-scatter lidar and the design of control system are introduced. The visible control of laser and CCD and automatic data processing method of the side-scatter lidar are developed by using the software of Visual C #. The results which are compared with the calibration of the atmospheric aerosol lidar data show that signals from the CCD side- scatter lidar are convincible.

  20. 41 CFR 301-70.507 - May we authorize per diem if an employee discontinues a TDY assignment because of a personal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approval of an appropriate agency official, for return travel from the point of interruption to the... Section 301-70.507 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES AGENCY RESPONSIBILITIES 70-INTERNAL POLICY AND PROCEDURE REQUIREMENTS...

  1. Characterization of Electrically Active Defects in Si Using CCD Image Sensors

    DTIC Science & Technology

    1978-02-01

    63 35 Dislocation Segments in CCD Imager . . . . . . . . . . . . . 64 36 422 Reflection Topograph of Dislocation Loop ir... Loops . . . . . 3 39 422 Reflection Topograph of Scratch on CCD Imager, . . . 69 40 Dark Current Display of a CCD Imager with 32 ms integration Time...made of each slice using the elon -asoorbio aold developer described in Appendix D. The inagers were then thinned using the procedure at Appendix taor

  2. Performance of the STIS CCD Dark Rate Temperature Correction

    NASA Astrophysics Data System (ADS)

    Branton, Doug; STScI STIS Team

    2018-06-01

    Since July 2001, the Space Telescope Imaging Spectrograph (STIS) onboard Hubble has operated on its Side-2 electronics due to a failure in the primary Side-1 electronics. While nearly identical, Side-2 lacks a functioning temperature sensor for the CCD, introducing a variability in the CCD operating temperature. Previous analysis utilized the CCD housing temperature telemetry to characterize the relationship between the housing temperature and the dark rate. It was found that a first-order 7%/°C uniform dark correction demonstrated a considerable improvement in the quality of dark subtraction on Side-2 era CCD data, and that value has been used on all Side-2 CCD darks since. In this report, we show how this temperature correction has performed historically. We compare the current 7%/°C value against the ideal first-order correction at a given time (which can vary between ~6%/°C and ~10%/°C) as well as against a more complex second-order correction that applies a unique slope to each pixel as a function of dark rate and time. At worst, the current correction has performed ~1% worse than the second-order correction. Additionally, we present initial evidence suggesting that the variability in pixel temperature-sensitivity is significant enough to warrant a temperature correction that considers pixels individually rather than correcting them uniformly.

  3. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology

    PubMed Central

    Traynor, Kirsten S.; Andree, Michael; Lichtenberg, Elinor M.; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L.

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  4. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology.

    PubMed

    vanEngelsdorp, Dennis; Traynor, Kirsten S; Andree, Michael; Lichtenberg, Elinor M; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  5. Deep and wide photometry of the two open clusters NGC 1245 and NGC 2506: CCD observation and physical properties

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kang, Y.-W.; Ann, H. B.

    2012-09-01

    We have conducted VI CCD photometry of the two open clusters NGC 1245 and NGC 2506 using the CFH12K CCD camera. Our photometry covers a sky area of 84 × 82 and 42 × 81 arcmin2 for the two clusters, respectively, and reaches down to V ≈ 23. We derived the physical parameters using detailed theoretical isochrone fittings using χ2 minimization. The derived cluster parameters are E(B - V) = 0.24 ± 0.05 and 0.03 ± 0.04, (V - MV)0 = 12.25 ± 0.12 and 12.47 ± 0.08, age (Gyr) = 1.08 ± 0.09 and 2.31 ± 0.16, and [Fe/H] = -0.08 ± 0.06 and -0.24 ± 0.06, respectively, for NGC 1245 and NGC 2506. We present the luminosity functions of the two clusters, which reach down to MV ≈ 10, and derive mass functions with slopes of Γ = -1.29 for NGC 1245 and Γ = -1.26 for NGC 2506. The slopes are slightly shallower than that of the solar neighbourhood, implying the existence of dynamical evolution that drives the evaporation of the low-mass stars in the clusters.

  6. Research on Geometric Calibration of Spaceborne Linear Array Whiskbroom Camera

    PubMed Central

    Sheng, Qinghong; Wang, Qi; Xiao, Hui; Wang, Qing

    2018-01-01

    The geometric calibration of a spaceborne thermal-infrared camera with a high spatial resolution and wide coverage can set benchmarks for providing an accurate geographical coordinate for the retrieval of land surface temperature. The practice of using linear array whiskbroom Charge-Coupled Device (CCD) arrays to image the Earth can help get thermal-infrared images of a large breadth with high spatial resolutions. Focusing on the whiskbroom characteristics of equal time intervals and unequal angles, the present study proposes a spaceborne linear-array-scanning imaging geometric model, whilst calibrating temporal system parameters and whiskbroom angle parameters. With the help of the YG-14—China’s first satellite equipped with thermal-infrared cameras of high spatial resolution—China’s Anyang Imaging and Taiyuan Imaging are used to conduct an experiment of geometric calibration and a verification test, respectively. Results have shown that the plane positioning accuracy without ground control points (GCPs) is better than 30 pixels and the plane positioning accuracy with GCPs is better than 1 pixel. PMID:29337885

  7. QuadCam - A Quadruple Polarimetric Camera for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Skuljan, J.

    A specialised quadruple polarimetric camera for space situational awareness, QuadCam, has been built at the Defence Technology Agency (DTA), New Zealand, as part of collaboration with the Defence Science and Technology Laboratory (Dstl), United Kingdom. The design was based on a similar system originally developed at Dstl, with some significant modifications for improved performance. The system is made up of four identical CCD cameras looking in the same direction, but in a different plane of polarisation at 0, 45, 90 and 135 degrees with respect to the reference plane. A standard set of Stokes parameters can be derived from the four images in order to describe the state of polarisation of an object captured in the field of view. The modified design of the DTA QuadCam makes use of four small Raspberry Pi computers, so that each camera is controlled by its own computer in order to speed up the readout process and ensure that the four individual frames are taken simultaneously (to within 100-200 microseconds). In addition, a new firmware was requested from the camera manufacturer so that an output signal is generated to indicate the state of the camera shutter. A specialised GPS unit (also developed at DTA) is then used to monitor the shutter signals from the four cameras and record the actual time of exposure to an accuracy of about 100 microseconds. This makes the system well suited for the observation of fast-moving objects in the low Earth orbit (LEO). The QuadCam is currently mounted on a Paramount MEII robotic telescope mount at the newly built DTA space situational awareness observatory located on Whangaparaoa Peninsula near Auckland, New Zealand. The system will be used for tracking satellites in low Earth orbit and geostationary belt as well. The performance of the camera has been evaluated and a series of test images have been collected in order to derive the polarimetric signatures for selected satellites.

  8. Evaluation of a novel laparoscopic camera for characterization of renal ischemia in a porcine model using digital light processing (DLP) hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Olweny, Ephrem O.; Tan, Yung K.; Faddegon, Stephen; Jackson, Neil; Wehner, Eleanor F.; Best, Sara L.; Park, Samuel K.; Thapa, Abhas; Cadeddu, Jeffrey A.; Zuzak, Karel J.

    2012-03-01

    Digital light processing hyperspectral imaging (DLP® HSI) was adapted for use during laparoscopic surgery by coupling a conventional laparoscopic light guide with a DLP-based Agile Light source (OL 490, Optronic Laboratories, Orlando, FL), incorporating a 0° laparoscope, and a customized digital CCD camera (DVC, Austin, TX). The system was used to characterize renal ischemia in a porcine model.

  9. Multimodal optical setup based on spectrometer and cameras combination for biological tissue characterization with spatially modulated illumination

    NASA Astrophysics Data System (ADS)

    Baruch, Daniel; Abookasis, David

    2017-04-01

    The application of optical techniques as tools for biomedical research has generated substantial interest for the ability of such methodologies to simultaneously measure biochemical and morphological parameters of tissue. Ongoing optimization of optical techniques may introduce such tools as alternative or complementary to conventional methodologies. The common approach shared by current optical techniques lies in the independent acquisition of tissue's optical properties (i.e., absorption and reduced scattering coefficients) from reflected or transmitted light. Such optical parameters, in turn, provide detailed information regarding both the concentrations of clinically relevant chromophores and macroscopic structural variations in tissue. We couple a noncontact optical setup with a simple analysis algorithm to obtain absorption and scattering coefficients of biological samples under test. Technically, a portable picoprojector projects serial sinusoidal patterns at low and high spatial frequencies, while a spectrometer and two independent CCD cameras simultaneously acquire the reflected diffuse light through a single spectrometer and two separate CCD cameras having different bandpass filters at nonisosbestic and isosbestic wavelengths in front of each. This configuration fills the gaps in each other's capabilities for acquiring optical properties of tissue at high spectral and spatial resolution. Experiments were performed on both tissue-mimicking phantoms as well as hands of healthy human volunteers to quantify their optical properties as proof of concept for the present technique. In a separate experiment, we derived the optical properties of the hand skin from the measured diffuse reflectance, based on a recently developed camera model. Additionally, oxygen saturation levels of tissue measured by the system were found to agree well with reference values. Taken together, the present results demonstrate the potential of this integrated setup for diagnostic and

  10. Computer-controlled impalement of cells in retinal wholemounts visualized by infrared CCD imaging on an inverted microscope.

    PubMed

    Reitsamer, H; Groiss, H P; Franz, M; Pflug, R

    2000-01-31

    We present a computer-guided microelectrode positioning system that is routinely used in our laboratory for intracellular electrophysiology and functional staining of retinal neurons. Wholemount preparations of isolated retina are kept in a superfusion chamber on the stage of an inverted microscope. Cells and layers of the retina are visualized by Nomarski interference contrast using infrared light in combination with a CCD camera system. After five-point calibration has been performed the electrode can be guided to any point inside the calibrated volume without moving the retina. Electrode deviations from target cells can be corrected by the software further improving the precision of this system. The good visibility of cells avoids prelabeling with fluorescent dyes and makes it possible to work under completely dark adapted conditions.

  11. Using a delta-doped CCD to determine the energy of a low-energy particle

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Croley, Donald R. (Inventor); Murphy, Gerald B. (Inventor)

    2001-01-01

    The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to determine the energy of a very low-energy particle that penetrates less than 1.0 nm into the CCD, such as a proton having energy less than 10 keV.

  12. Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array

    NASA Astrophysics Data System (ADS)

    Demro, James C.; Hartshorne, Richard; Woody, Loren M.; Levine, Peter A.; Tower, John R.

    1995-06-01

    The next generation Wedge Imaging Spectrometer (WIS) instruments currently in integration at Hughes SBRD incorporate advanced features to increase operation flexibility for remotely sensed hyperspectral imagery collection and use. These features include: a) multiple linear wedge filters to tailor the spectral bands to the scene phenomenology; b) simple, replaceable fore-optics to allow different spatial resolutions and coverages; c) data acquisition system (DAS) that collects the full data stream simultaneously from both WIS instruments (VNIR and SWIR/MWIR), stores the data in a RAID storage, and provides for down-loading of the data to MO disks; the WIS DAS also allows selection of the spectral band sets to be stored; d) high-performance VNIR camera subsystem based upon a 512 X 512 CCD area array and associated electronics.

  13. Observations of the Perseids 2012 using SPOSH cameras

    NASA Astrophysics Data System (ADS)

    Margonis, A.; Flohrer, J.; Christou, A.; Elgner, S.; Oberst, J.

    2012-09-01

    The Perseids are one of the most prominent annual meteor showers occurring every summer when the stream of dust particles, originating from Halley-type comet 109P/Swift-Tuttle, intersects the orbital path of the Earth. The dense core of this stream passes Earth's orbit on the 12th of August producing the maximum number of meteors. The Technical University of Berlin (TUB) and the German Aerospace Center (DLR) organize observing campaigns every summer monitoring the Perseids activity. The observations are carried out using the Smart Panoramic Optical Sensor Head (SPOSH) camera system [0]. The SPOSH camera has been developed by DLR and Jena-Optronik GmbH under an ESA/ESTEC contract and it is designed to image faint, short-lived phenomena on dark planetary hemispheres. The camera features a highly sensitive backilluminated 1024x1024 CCD chip and a high dynamic range of 14 bits. The custom-made fish-eye lens offers a 120°x120° field-of-view (168° over the diagonal). Figure 1: A meteor captured by the SPOSH cameras simultaneously during the last 2011 observing campaign in Greece. The horizon including surrounding mountains can be seen in the image corners as a result of the large FOV of the camera. The observations will be made on the Greek Peloponnese peninsula monitoring the post-peak activity of the Perseids during a one-week period around the August New Moon (14th to 21st). Two SPOSH cameras will be deployed in two remote sites in high altitudes for the triangulation of meteor trajectories captured at both stations simultaneously. The observations during this time interval will give us the possibility to study the poorly-observed postmaximum branch of the Perseid stream and compare the results with datasets from previous campaigns which covered different periods of this long-lived meteor shower. The acquired data will be processed using dedicated software for meteor data reduction developed at TUB and DLR. Assuming a successful campaign, statistics, trajectories

  14. Measuring the effective pixel positions for the HARPS3 CCD

    NASA Astrophysics Data System (ADS)

    Hall, Richard D.; Thompson, Samantha; Queloz, Didier

    2016-07-01

    We present preliminary results from an experiment designed to measure the effective pixel positions of a CCD to sub-pixel precision. This technique will be used to characterise the 4k x 4k CCD destined for the HARPS-3 spectrograph. The principle of coherent beam interference is used to create intensity fringes along one axis of the CCD. By sweeping the physical parameters of the experiment, the geometry of the fringes can be altered which is used to probe the pixel structure. We also present the limitations of the current experimental set-up and suggest what will be implemented in the future to vastly improve the precision of the measurements.

  15. Modeling the impact of preflushing on CTE in proton irradiated CCD-based detectors

    NASA Astrophysics Data System (ADS)

    Philbrick, R. H.

    2002-04-01

    A software model is described that performs a "real world" simulation of the operation of several types of charge-coupled device (CCD)-based detectors in order to accurately predict the impact that high-energy proton radiation has on image distortion and modulation transfer function (MTF). The model was written primarily to predict the effectiveness of vertical preflushing on the custom full frame CCD-based detectors intended for use on the proposed Kepler Discovery mission, but it is capable of simulating many other types of CCD detectors and operating modes as well. The model keeps track of the occupancy of all phosphorous-silicon (P-V), divacancy (V-V) and oxygen-silicon (O-V) defect centers under every CCD electrode over the entire detector area. The integrated image is read out by simulating every electrode-to-electrode charge transfer in both the vertical and horizontal CCD registers. A signal level dependency on the capture and emission of signal is included and the current state of each electrode (e.g., barrier or storage) is considered when distributing integrated and emitted signal. Options for performing preflushing, preflashing, and including mini-channels are available on both the vertical and horizontal CCD registers. In addition, dark signal generation and image transfer smear can be selectively enabled or disabled. A comparison of the charge transfer efficiency (CTE) data measured on the Hubble space telescope imaging spectrometer (STIS) CCD with the CTE extracted from model simulations of the STIS CCD show good agreement.

  16. The NASA 2003 Mars Exploration Rover Panoramic Camera (Pancam) Investigation

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Morris, R. V.; Athena Team

    2002-12-01

    The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360o of azimuth and from zenith to nadir, providing a complete view of the scene around the rover. Pancam utilizes two 1024x2048 Mitel frame transfer CCD detector arrays, each having a 1024x1024 active imaging area and 32 optional additional reference pixels per row for offset monitoring. Each array is combined with optics and a small filter wheel to become one "eye" of a multispectral, stereoscopic imaging system. The optics for both cameras consist of identical 3-element symmetrical lenses with an effective focal length of 42 mm and a focal ratio of f/20, yielding an IFOV of 0.28 mrad/pixel or a rectangular FOV of 16o\\x9D 16o per eye. The two eyes are separated by 30 cm horizontally and have a 1o toe-in to provide adequate parallax for stereo imaging. The cameras are boresighted with adjacent wide-field stereo Navigation Cameras, as well as with the Mini-TES instrument. The Pancam optical design is optimized for best focus at 3 meters range, and allows Pancam to maintain acceptable focus from infinity to within 1.5 meters of the rover, with a graceful degradation (defocus) at closer ranges. Each eye also contains a small 8-position filter wheel to allow multispectral sky imaging, direct Sun imaging, and surface mineralogic studies in the 400-1100 nm wavelength region. Pancam has been designed and calibrated to operate within specifications from -55oC to +5oC. An onboard calibration target and fiducial marks provide

  17. Video camera system for locating bullet holes in targets at a ballistics tunnel

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Rummler, D. R.; Goad, W. K.

    1990-01-01

    A system consisting of a single charge coupled device (CCD) video camera, computer controlled video digitizer, and software to automate the measurement was developed to measure the location of bullet holes in targets at the International Shooters Development Fund (ISDF)/NASA Ballistics Tunnel. The camera/digitizer system is a crucial component of a highly instrumented indoor 50 meter rifle range which is being constructed to support development of wind resistant, ultra match ammunition. The system was designed to take data rapidly (10 sec between shoots) and automatically with little operator intervention. The system description, measurement concept, and procedure are presented along with laboratory tests of repeatability and bias error. The long term (1 hour) repeatability of the system was found to be 4 microns (one standard deviation) at the target and the bias error was found to be less than 50 microns. An analysis of potential errors and a technique for calibration of the system are presented.

  18. TH-CD-201-10: Highly Efficient Synchronized High-Speed Scintillation Camera System for Measuring Proton Range, SOBP and Dose Distributions in a 2D-Plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddu, S; Sun, B; Grantham, K

    2016-06-15

    Purpose: Proton therapy (PT) delivery is complex and extremely dynamic. Therefore, quality assurance testing is vital, but highly time-consuming. We have developed a High-Speed Scintillation-Camera-System (HS-SCS) for simultaneously measuring multiple beam characteristics. Methods: High-speed camera was placed in a light-tight housing and dual-layer neutron shield. HS-SCS is synchronized with a synchrocyclotron to capture individual proton-beam-pulses (PBPs) at ∼504 frames/sec. The PBPs from synchrocyclotron trigger the HS-SCS to open its shutter for programmed exposure-time. Light emissions within 30×30×5cm3 plastic-scintillator (BC-408) were captured by a CCD-camera as individual images revealing dose-deposition in a 2D-plane with a resolution of 0.7mm for range andmore » SOBP measurements and 1.67mm for profiles. The CCD response as well as signal to noise ratio (SNR) was characterized for varying exposure times, gains for different light intensities using a TV-Optoliner system. Software tools were developed to analyze ∼5000 images to extract different beam parameters. Quenching correction-factors were established by comparing scintillation Bragg-Peaks with water scanned ionization-chamber measurements. Quenching corrected Bragg-peaks were integrated to ascertain proton-beam range (PBR), width of Spared-Out-Bragg-Peak (MOD) and distal.« less

  19. Application of PLZT electro-optical shutter to diaphragm of visible and mid-infrared cameras

    NASA Astrophysics Data System (ADS)

    Fukuyama, Yoshiyuki; Nishioka, Shunji; Chonan, Takao; Sugii, Masakatsu; Shirahata, Hiromichi

    1997-04-01

    Pb0.9La0.09(Zr0.65,Ti0.35)0.9775O3 9/65/35) commonly used as an electro-optical shutter exhibits large phase retardation with low applied voltage. This shutter features as follows; (1) high shutter speed, (2) wide optical transmittance, and (3) high optical density in 'OFF'-state. If the shutter is applied to a diaphragm of video-camera, it could protect its sensor from intense lights. We have tested the basic characteristics of the PLZT electro-optical shutter and resolved power of imaging. The ratio of optical transmittance at 'ON' and 'OFF'-states was 1.1 X 103. The response time of the PLZT shutter from 'ON'-state to 'OFF'-state was 10 micro second. MTF reduction when putting the PLZT shutter in from of the visible video- camera lens has been observed only with 12 percent at a spatial frequency of 38 cycles/mm which are sensor resolution of the video-camera. Moreover, we took the visible image of the Si-CCD video-camera. The He-Ne laser ghost image was observed at 'ON'-state. On the contrary, the ghost image was totally shut out at 'OFF'-state. From these teste, it has been found that the PLZT shutter is useful for the diaphragm of the visible video-camera. The measured optical transmittance of PLZT wafer with no antireflection coating was 78 percent over the range from 2 to 6 microns.

  20. Sentinel lymph node detection in gynecologic malignancies by a handheld fluorescence camera

    NASA Astrophysics Data System (ADS)

    Hirsch, Ole; Szyc, Lukasz; Muallem, Mustafa Zelal; Ignat, Iulia; Chekerov, Radoslav; Macdonald, Rainer; Sehouli, Jalid; Braicu, Ioana; Grosenick, Dirk

    2017-02-01

    Near-infrared fluorescence imaging using indocyanine green (ICG) as a tracer is a promising technique for mapping the lymphatic system and for detecting sentinel lymph nodes (SLN) during cancer surgery. In our feasibility study we have investigated the application of a custom-made handheld fluorescence camera system for the detection of lymph nodes in gynecological malignancies. It comprises a low cost CCD camera with enhanced NIR sensitivity and two groups of LEDs emitting at wavelengths of 735 nm and 830 nm for interlaced recording of fluorescence and reflectance images of the tissue, respectively. With the help of our system, surgeons can observe fluorescent tissue structures overlaid onto the anatomical image on a monitor in real-time. We applied the camera system for intraoperative lymphatic mapping in 5 patients with vulvar cancer, 5 patients with ovarian cancer, 3 patients with cervical cancer, and 3 patients with endometrial cancer. ICG was injected at four loci around the primary malignant tumor during surgery. After a residence time of typically 15 min fluorescence images were taken in order to visualize the lymph nodes closest to the carcinomas. In cases with vulvar cancer about half of the lymph nodes detected by routinely performed radioactive SLN mapping have shown fluorescence in vivo as well. In the other types of carcinomas several lymph nodes could be detected by fluorescence during laparotomy. We conclude that our low cost camera system has sufficient sensitivity for lymphatic mapping during surgery.

  1. Noise analysis for CCD-based ultraviolet and visible spectrophotometry.

    PubMed

    Davenport, John J; Hodgkinson, Jane; Saffell, John R; Tatam, Ralph P

    2015-09-20

    We present the results of a detailed analysis of the noise behavior of two CCD spectrometers in common use, an AvaSpec-3648 CCD UV spectrometer and an Ocean Optics S2000 Vis spectrometer. Light sources used include a deuterium UV/Vis lamp and UV and visible LEDs. Common noise phenomena include source fluctuation noise, photoresponse nonuniformity, dark current noise, fixed pattern noise, and read noise. These were identified and characterized by varying light source, spectrometer settings, or temperature. A number of noise-limiting techniques are proposed, demonstrating a best-case spectroscopic noise equivalent absorbance of 3.5×10(-4)  AU for the AvaSpec-3648 and 5.6×10(-4)  AU for the Ocean Optics S2000 over a 30 s integration period. These techniques can be used on other CCD spectrometers to optimize performance.

  2. Note: Optics design of a periscope for the KSTAR visible inspection system with mitigated neutron damages on the camera

    NASA Astrophysics Data System (ADS)

    Lee, Kyuhang; Ko, Jinseok; Wi, Hanmin; Chung, Jinil; Seo, Hyeonjin; Jo, Jae Heung

    2018-06-01

    The visible TV system used in the Korea Superconducting Tokamak Advanced Research device has been equipped with a periscope to minimize the damage on its CCD pixels from neutron radiation. The periscope with more than 2.3 m in overall length has been designed for the visible camera system with its semi-diagonal field of view as wide as 30° and its effective focal length as short as 5.57 mm. The design performance of the periscope includes the modulation transfer function greater than 0.25 at 68 cycles/mm with low distortion. The installed periscope system has confirmed the image qualities as designed and also as comparable as those from its predecessor but with far less probabilities of neutral damages on the camera.

  3. MUSIC - Multifunctional stereo imaging camera system for wide angle and high resolution stereo and color observations on the Mars-94 mission

    NASA Astrophysics Data System (ADS)

    Oertel, D.; Jahn, H.; Sandau, R.; Walter, I.; Driescher, H.

    1990-10-01

    Objectives of the multifunctional stereo imaging camera (MUSIC) system to be deployed on the Soviet Mars-94 mission are outlined. A high-resolution stereo camera (HRSC) and wide-angle opto-electronic stereo scanner (WAOSS) are combined in terms of hardware, software, technology aspects, and solutions. Both HRSC and WAOSS are push-button instruments containing a single optical system and focal plates with several parallel CCD line sensors. Emphasis is placed on the MUSIC system's stereo capability, its design, mass memory, and data compression. A 1-Gbit memory is divided into two parts: 80 percent for HRSC and 20 percent for WAOSS, while the selected on-line compression strategy is based on macropixel coding and real-time transform coding.

  4. Strategy for the development of a smart NDVI camera system for outdoor plant detection and agricultural embedded systems.

    PubMed

    Dworak, Volker; Selbeck, Joern; Dammer, Karl-Heinz; Hoffmann, Matthias; Zarezadeh, Ali Akbar; Bobda, Christophe

    2013-01-24

    The application of (smart) cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI) for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR) and the red channel optical frequency band. Two aligned charge coupled device (CCD) chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed.

  5. Strategy for the Development of a Smart NDVI Camera System for Outdoor Plant Detection and Agricultural Embedded Systems

    PubMed Central

    Dworak, Volker; Selbeck, Joern; Dammer, Karl-Heinz; Hoffmann, Matthias; Zarezadeh, Ali Akbar; Bobda, Christophe

    2013-01-01

    The application of (smart) cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI) for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR) and the red channel optical frequency band. Two aligned charge coupled device (CCD) chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed. PMID:23348037

  6. Comparative analysis of data quality and applications in vegetation of HJ-1A CCD images

    NASA Astrophysics Data System (ADS)

    Wei, Hongwei; Tian, Qingjiu; Huang, Yan; Wang, Yan

    2014-05-01

    To study the data quality and to find the differences in vegetation monitoring applications, the same region at Chuzhou Lai 'an, the data of HJ-1A CCD1 on the April 1st, 2012 and the data of HJ-1A CCD2 on the March 31, 2012 have being comparative analysis by the method of objective quality (image)assessment which selecting over five spectral image evaluation parameters: radiation precision (mean, variance, inclination, steepness), information entropy, signal-to-noise ratio, sharpness, contrast, and normalized differential vegetation index. The results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality except radiation precision conform to their design theory, so the conclusion is that the difference of them without considering on the usual unless continuation;and Combination of field observation data Lai'an spectral data and GPS data (each point),selecting the normalized difference vegetation index as CCD1, CCD2 in vegetation monitoring application on the evaluation of the differences, and the specific process is based on GPS data is divided into nine small plots of spectral data ,and image data of nine one-to-one correspondence plots, and their normalized difference vegetation index values were calculated ,and measured spectra data resampling HJ-1A CCD1, CCD2 spectral response function calculated NDVI, and the results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality, and, the differences of wheat `s reflection and normalized vegetation index is mainly due to calibration coefficients of CCD1 and CCD2, the differences of the solar elevation angle when obtaining the image and atmospheric conditions, so it has to consider the performance indicators as well as access conditions of CCD1 and CCD2, and to be take the normalization techniques for processing for the comparison analysis in the use of HJ-1A CCD Data to surface dynamic changes; Finally, in

  7. The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.

    2017-02-01

    Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.

  8. A stroboscopic technique for using CCD cameras in flow visualization systems for continuous viewing and stop action photography

    NASA Technical Reports Server (NTRS)

    Franke, John M.; Rhodes, David B.; Jones, Stephen B.; Dismond, Harriet R.

    1992-01-01

    A technique for synchronizing a pulse light source to charge coupled device cameras is presented. The technique permits the use of pulse light sources for continuous as well as stop action flow visualization. The technique has eliminated the need to provide separate lighting systems at facilities requiring continuous and stop action viewing or photography.

  9. Intercomparison of SO2 camera systems for imaging volcanic gas plumes

    NASA Astrophysics Data System (ADS)

    Kern, Christoph; Lübcke, Peter; Bobrowski, Nicole; Campion, Robin; Mori, Toshiya; Smekens, Jean-François; Stebel, Kerstin; Tamburello, Giancarlo; Burton, Mike; Platt, Ulrich; Prata, Fred

    2015-07-01

    SO2 camera systems are increasingly being used to image volcanic gas plumes. The ability to derive SO2 emission rates directly from the acquired imagery at high time resolution allows volcanic process studies that incorporate other high time-resolution datasets. Though the general principles behind the SO2 camera have remained the same for a number of years, recent advances in CCD technology and an improved understanding of the physics behind the measurements have driven a continuous evolution of the camera systems. Here we present an intercomparison of seven different SO2 cameras. In the first part of the experiment, the various technical designs are compared and the advantages and drawbacks of individual design options are considered. Though the ideal design was found to be dependent on the specific application, a number of general recommendations are made. Next, a time series of images recorded by all instruments at Stromboli Volcano (Italy) is compared. All instruments were easily able to capture SO2 clouds emitted from the summit vents. Quantitative comparison of the SO2 load in an individual cloud yielded an intra-instrument precision of about 12%. From the imagery, emission rates were then derived according to each group's standard retrieval process. A daily average SO2 emission rate of 61 ± 10 t/d was calculated. Due to differences in spatial integration methods and plume velocity determination, the time-dependent progression of SO2 emissions varied significantly among the individual systems. However, integration over distinct degassing events yielded comparable SO2 masses. Based on the intercomparison data, we find an approximate 1-sigma precision of 20% for the emission rates derived from the various SO2 cameras. Though it may still be improved in the future, this is currently within the typical accuracy of the measurement and is considered sufficient for most applications.

  10. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD

    NASA Astrophysics Data System (ADS)

    Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien

    2017-09-01

    We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e- rms /pixel . This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.

  11. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD.

    PubMed

    Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien

    2017-09-29

    We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068  e^{-} rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.

  12. ESA's CCD test bench for the PLATO mission

    NASA Astrophysics Data System (ADS)

    Beaufort, Thierry; Duvet, Ludovic; Bloemmaert, Sander; Lemmel, Frederic; Prod'homme, Thibaut; Verhoeve, Peter; Smit, Hans; Butler, Bart; van der Luijt, Cornelis; Heijnen, Jerko; Visser, Ivo

    2016-08-01

    PLATO { PLAnetary Transits and Oscillations of stars { is the third medium-class mission to be selected in the European Space Agency (ESA) Science and Robotic Exploration Cosmic Vision programme. Due for launch in 2025, the payload makes use of a large format (8 cm x 8 cm) Charge-Coupled Devices (CCDs), the e2v CCD270 operated at 4 MHz and at -70 C. To de-risk the PLATO CCD qualification programme initiated in 2014 and support the mission definition process, ESA's Payload Technology Validation section from the Future Missions Office has developed a dedicated test bench.

  13. Flat field anomalies in an x-ray charge coupled device camera measured using a Manson x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugh, M. J.; Schneider, M. B.

    2008-10-15

    The static x-ray imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the x rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The charge coupled device (CCD) chip is an x-ray sensitive silicon sensor, with a large format array (2kx2k), 24 {mu}m square pixels, and 15 {mu}mmore » thick. A multianode Manson x-ray source, operating up to 10 kV and 10 W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/{delta}E{approx_equal}10. The x-ray beam intensity was measured using an x-ray photodiode that has an accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The x-ray beam provides full CCD illumination and is flat, within {+-}1% maximum to minimum. The spectral efficiency was measured at ten energy bands ranging from 930 to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an x-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less

  14. First Light with a 67-Million-Pixel WFI Camera

    NASA Astrophysics Data System (ADS)

    1999-01-01

    optical astronomical instruments - the "Charge-Coupled Devices (CCD's)" - are currently restricted to about 4000 x 4000 pixels. For the time being, the only possible way towards even larger detector areas is by assembling mosaics of CCD's. ESO , MPI-A and OAC have therefore undertaken a joint project to build a new and large astronomical camera with a mosaic of CCD's. This new Wide Field Imager (WFI) comprises eight CCD's with high sensitivity from the ultraviolet to the infrared spectral domain, each with 2046 x 4098 pixels. Mounted behind an advanced optical system at the Cassegrain focus of the 2.2-m telescope of the Max-Planck-Gesellschaft (MPG) at ESO's La Silla Observatory in Chile, the combined 8184 x 8196 = 67,076,064 pixels cover a square field-of-view with an edge of more than half a degree (over 30 arcmin) [1]. Compared to the viewing field of the human eye, this may still appear small, but in the domain of astronomical instrumentation, it is indeed a large step forward. For comparison, the largest field-of-view with the FORS1 instrument at the VLT is about 7 arcmin. Moreover, the level of detail detectable with the WFI (theoretical image sharpness) exceeds what is possible with the naked eye by a factor of about 10,000. The WFI project was completed in only two years in response to a recommendation to ESO by the "La Silla 2000" Working Group and the Scientific-Technical Committee (STC) to offer this type of instrument to the community. The MPI-A proposed to build such an instrument for the MPG/ESO 2.2-m telescope and a joint project was soon established. A team of astronomers from the three institutions is responsible for the initial work with the WFI at La Silla. A few other Cameras of this size are available, e.g. at Hawaii, Kitt Peak (USA) and Cerro Tololo (Chile), but this is the first time that a telescope this large has been fully dedicated to wide-field imaging with an 8kx8k CCD. The first WFI images Various exposures were obtained during the early

  15. Research of optical coherence tomography microscope based on CCD detector

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Xu, Zhongbao; Zhang, Shuomo

    2008-12-01

    The reference wave phase was modulated with a sinusoidal vibrating mirror attached to a Piezoelectric Transducer (PZT), the integration was performed by a CCD, and the charge storage period of the CCD image sensor was one-quarter period of the sinusoidal phase modulation. With the frequency- synchronous detection technique, four images (four frames of interference pattern) were recorded during one period of the phase modulation. In order to obtain the optimum modulation parameter, the values of amplitude and phase of the sinusoidal phase modulation were determined by considering the measurement error caused by the additive noise contained in the detected values. The PZT oscillation was controlled by a closed loop control system based on PID controller. An ideal discrete digital sine function at 50Hz with adjustable amplitude was used to adjust the vibrating of PZT, and a digital phase shift techniques was used to adjust vibrating phase of PZT so that the phase of the modulation could reach their optimum values. The CCD detector was triggered with software at 200Hz. Based on work above a small coherent signal masked by the preponderant incoherent background with a CCD detector was obtained.

  16. DQE analysis for CCD imaging arrays

    NASA Astrophysics Data System (ADS)

    Shaw, Rodney

    1997-05-01

    By consideration of the statistical interaction between exposure quanta and the mechanisms of image detection, the signal-to-noise limitations of a variety of image acquisition technologies are now well understood. However in spite of the growing fields of application for CCD imaging- arrays and the obvious advantages of their multi-level mode of quantum detection, only limited and largely empirical approaches have been made to quantify these advantages on an absolute basis. Here an extension is made of a previous model for noise-free sequential photon-counting to the more general case involving both count-noise and arbitrary separation functions between count levels. This allows a basic model to be developed for the DQE associated with devices which approximate to the CCD mode of operation, and conclusions to be made concerning the roles of the separation-function and count-noise in defining the departure from the ideal photon counter.

  17. Ultrahigh sensitivity endoscopic camera using a new CMOS image sensor: providing with clear images under low illumination in addition to fluorescent images.

    PubMed

    Aoki, Hisae; Yamashita, Hiromasa; Mori, Toshiyuki; Fukuyo, Tsuneo; Chiba, Toshio

    2014-11-01

    We developed a new ultrahigh-sensitive CMOS camera using a specific sensor that has a wide range of spectral sensitivity characteristics. The objective of this study is to present our updated endoscopic technology that has successfully integrated two innovative functions; ultrasensitive imaging as well as advanced fluorescent viewing. Two different experiments were conducted. One was carried out to evaluate the function of the ultrahigh-sensitive camera. The other was to test the availability of the newly developed sensor and its performance as a fluorescence endoscope. In both studies, the distance from the endoscopic tip to the target was varied and those endoscopic images in each setting were taken for further comparison. In the first experiment, the 3-CCD camera failed to display the clear images under low illumination, and the target was hardly seen. In contrast, the CMOS camera was able to display the targets regardless of the camera-target distance under low illumination. Under high illumination, imaging quality given by both cameras was quite alike. In the second experiment as a fluorescence endoscope, the CMOS camera was capable of clearly showing the fluorescent-activated organs. The ultrahigh sensitivity CMOS HD endoscopic camera is expected to provide us with clear images under low illumination in addition to the fluorescent images under high illumination in the field of laparoscopic surgery.

  18. Status and performance of HST/Wide Field Camera 3

    NASA Astrophysics Data System (ADS)

    Kimble, Randy A.; MacKenty, John W.; O'Connell, Robert W.

    2006-06-01

    Wide Field Camera 3 (WFC3) is a powerful UV/visible/near-infrared camera currently in development for installation into the Hubble Space Telescope. WFC3 provides two imaging channels. The UVIS channel features a 4096 x 4096 pixel CCD focal plane covering 200 to 1000 nm wavelengths with a 160 x 160 arcsec field of view. The UVIS channel provides unprecedented sensitivity and field of view in the near ultraviolet for HST. It is particularly well suited for studies of the star formation history of local galaxies and clusters, searches for Lyman alpha dropouts at moderate redshift, and searches for low surface brightness structures against the dark UV sky background. The IR channel features a 1024 x 1024 pixel HgCdTe focal plane covering 800 to 1700 nm with a 139 x 123 arcsec field of view, providing a major advance in IR survey efficiency for HST. IR channel science goals include studies of dark energy, galaxy formation at high redshift, and star formation. The instrument is being prepared for launch as part of HST Servicing Mission 4, tentatively scheduled for late 2007, contingent upon formal approval of shuttle-based servicing after successful shuttle return-to-flight. We report here on the status and performance of WFC3.

  19. Observations of the Perseids 2007 with SPOSH cameras

    NASA Astrophysics Data System (ADS)

    Oberst, J.; Flohrer, J.; Tost, W.; Elgner, S.; Koschny, D.; McAuliffe, J.

    2008-09-01

    A large number of Perseid meteors were captured during a 2007 campaign carried out in Germany and Austria using SPOSH (Smart Panoramic Optical Sensor Head) cameras. The SPOSH camera (developed at DLR and Jena Optronik under contract to ESA/ESTEC) has a custom-made optical system with a field of view of 120 x 120° (170° x 170° over the image diagonal) and features a back-illuminated 1024 x 1024 CCD, which warrants high sensitivity as well as high geometric and photometric accuracy. Images are taken at a rate of one every two seconds. While currently 4 SPOSH cameras are available, two of the cameras are equipped with rotating shutters for meteor speed information. The 4 SPOSH cameras were deployed at locations at Neustrelitz and Liebenhof (near Berlin, Germany), as well as Gahberg and Kanzelhöhe (Austria). Two more commercial cameras (Canon EOS) at separate locations were included in our campaign to warrant multiple observations of the meteors in the case of bad weather. Images were taken during the nights from August 10- 14, with excellent viewing conditions during the night of the Perseid maximum, Aug 12/13 at all stations. Following the campaign, geometric calibrations of the images and comprehensive searches for meteors in the data were carried out. We recorded more than 3300 meteors, among which there were 400 double station observations. During the peak of the shower, 180 meteors were recorded within 30 minutes from Kanzelhöhe (the Observatory at an altitude of 1500 m had extremely clear sky) alone. Hence, we have an unusually large data set, which includes meteors as faint as m=+6, as we estimate. Besides Perseids, a number of sporadic meteors and members of other showers were identified. A full trajectory analysis has been performed for a good number of meteors so far, with most data still awaiting further analysis. This poster presentation will give a full account on the scientific results of the campaign. Furthermore we will report lessons learned from

  20. Detection of pointing errors with CMOS-based camera in intersatellite optical communications

    NASA Astrophysics Data System (ADS)

    Yu, Si-yuan; Ma, Jing; Tan, Li-ying

    2005-01-01

    For very high data rates, intersatellite optical communications hold a potential performance edge over microwave communications. Acquisition and Tracking problem is critical because of the narrow transmit beam. A single array detector in some systems performs both spatial acquisition and tracking functions to detect pointing errors, so both wide field of view and high update rate is required. The past systems tend to employ CCD-based camera with complex readout arrangements, but the additional complexity reduces the applicability of the array based tracking concept. With the development of CMOS array, CMOS-based cameras can employ the single array detector concept. The area of interest feature of the CMOS-based camera allows a PAT system to specify portion of the array. The maximum allowed frame rate increases as the size of the area of interest decreases under certain conditions. A commercially available CMOS camera with 105 fps @ 640×480 is employed in our PAT simulation system, in which only part pixels are used in fact. Beams angle varying in the field of view can be detected after getting across a Cassegrain telescope and an optical focus system. Spot pixel values (8 bits per pixel) reading out from CMOS are transmitted to a DSP subsystem via IEEE 1394 bus, and pointing errors can be computed by the centroid equation. It was shown in test that: (1) 500 fps @ 100×100 is available in acquisition when the field of view is 1mrad; (2)3k fps @ 10×10 is available in tracking when the field of view is 0.1mrad.

  1. Setup for testing cameras for image guided surgery using a controlled NIR fluorescence mimicking light source and tissue phantom

    NASA Astrophysics Data System (ADS)

    Georgiou, Giota; Verdaasdonk, Rudolf M.; van der Veen, Albert; Klaessens, John H.

    2017-02-01

    In the development of new near-infrared (NIR) fluorescence dyes for image guided surgery, there is a need for new NIR sensitive camera systems that can easily be adjusted to specific wavelength ranges in contrast the present clinical systems that are only optimized for ICG. To test alternative camera systems, a setup was developed to mimic the fluorescence light in a tissue phantom to measure the sensitivity and resolution. Selected narrow band NIR LED's were used to illuminate a 6mm diameter circular diffuse plate to create uniform intensity controllable light spot (μW-mW) as target/source for NIR camera's. Layers of (artificial) tissue with controlled thickness could be placed on the spot to mimic a fluorescent `cancer' embedded in tissue. This setup was used to compare a range of NIR sensitive consumer's cameras for potential use in image guided surgery. The image of the spot obtained with the cameras was captured and analyzed using ImageJ software. Enhanced CCD night vision cameras were the most sensitive capable of showing intensities < 1 μW through 5 mm of tissue. However, there was no control over the automatic gain and hence noise level. NIR sensitive DSLR cameras proved relative less sensitive but could be fully manually controlled as to gain (ISO 25600) and exposure time and are therefore preferred for a clinical setting in combination with Wi-Fi remote control. The NIR fluorescence testing setup proved to be useful for camera testing and can be used for development and quality control of new NIR fluorescence guided surgery equipment.

  2. CNES developments of key detection technologies to prepare next generation focal planes for high resolution Earth observation

    NASA Astrophysics Data System (ADS)

    Materne, A.; Virmontois, C.; Bardoux, A.; Gimenez, T.; Biffi, J. M.; Laubier, D.; Delvit, J. M.

    2014-10-01

    This paper describes the activities managed by CNES (French National Space Agency) for the development of focal planes for next generation of optical high resolution Earth observation satellites, in low sun-synchronous orbit. CNES has launched a new programme named OTOS, to increase the level of readiness (TRL) of several key technologies for high resolution Earth observation satellites. The OTOS programme includes several actions in the field of detection and focal planes: a new generation of CCD and CMOS image sensors, updated analog front-end electronics and analog-to-digital converters. The main features that must be achieved on focal planes for high resolution Earth Observation, are: readout speed, signal to noise ratio at low light level, anti-blooming efficiency, geometric stability, MTF and line of sight stability. The next steps targeted are presented in comparison to the in-flight measured performance of the PLEIADES satellites launched in 2011 and 2012. The high resolution panchromatic channel is still based upon Backside illuminated (BSI) CCDs operated in Time Delay Integration (TDI). For the multispectral channel, the main evolution consists in moving to TDI mode and the competition is open with the concurrent development of a CCD solution versus a CMOS solution. New CCDs will be based upon several process blocks under evaluation on the e2v 6 inches BSI wafer manufacturing line. The OTOS strategy for CMOS image sensors investigates on one hand custom TDI solutions within a similar approach to CCDs, and, on the other hand, investigates ways to take advantage of existing performance of off-the-shelf 2D arrays CMOS image sensors. We present the characterization results obtained from test vehicles designed for custom TDI operation on several CIS technologies and results obtained before and after radiation on snapshot 2D arrays from the CMOSIS CMV family.

  3. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD

    DOE PAGES

    Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; ...

    2017-09-26

    Here, we have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e - rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime.more » Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.« less

  4. A Refrigerated Web Camera for Photogrammetric Video Measurement inside Biomass Boilers and Combustion Analysis

    PubMed Central

    Porteiro, Jacobo; Riveiro, Belén; Granada, Enrique; Armesto, Julia; Eguía, Pablo; Collazo, Joaquín

    2011-01-01

    This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD) web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes. PMID:22319349

  5. A refrigerated web camera for photogrammetric video measurement inside biomass boilers and combustion analysis.

    PubMed

    Porteiro, Jacobo; Riveiro, Belén; Granada, Enrique; Armesto, Julia; Eguía, Pablo; Collazo, Joaquín

    2011-01-01

    This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD) web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes.

  6. [Techniques for pixel response nonuniformity correction of CCD in interferential imaging spectrometer].

    PubMed

    Yao, Tao; Yin, Shi-Min; Xiangli, Bin; Lü, Qun-Bo

    2010-06-01

    Based on in-depth analysis of the relative radiation scaling theorem and acquired scaling data of pixel response nonuniformity correction of CCD (charge-coupled device) in spaceborne visible interferential imaging spectrometer, a pixel response nonuniformity correction method of CCD adapted to visible and infrared interferential imaging spectrometer system was studied out, and it availably resolved the engineering technical problem of nonuniformity correction in detector arrays for interferential imaging spectrometer system. The quantitative impact of CCD nonuniformity on interferogram correction and recovery spectrum accuracy was given simultaneously. Furthermore, an improved method with calibration and nonuniformity correction done after the instrument is successfully assembled was proposed. The method can save time and manpower. It can correct nonuniformity caused by other reasons in spectrometer system besides CCD itself's nonuniformity, can acquire recalibration data when working environment is changed, and can also more effectively improve the nonuniformity calibration accuracy of interferential imaging

  7. Non-invasive Florentine Renaissance Panel Painting Replica Structures Investigation by Using Terahertz Time-Domain Imaging (THz-TDI) Technique

    NASA Astrophysics Data System (ADS)

    Koch Dandolo, Corinna L.; Picollo, Marcello; Cucci, Costanza; Jepsen, Peter Uhd

    2016-11-01

    The potentials of the Terahertz Time-Domain Imaging (THz-TDI) technique for a non-invasive inspection of panel paintings have been considered in detail. The THz-TD data acquired on a replica of a panel painting made in imitation of Italian Renaissance panel paintings were processed in order to provide insights as to the limits and potentials of the technique in detecting different kinds of underdrawings and paint layers. Constituent layers, construction techniques, and anomalies were identified and localized by interpreting the extracted THz dielectric stratigraphy.

  8. LSST camera readout chip ASPIC: test tools

    NASA Astrophysics Data System (ADS)

    Antilogus, P.; Bailly, Ph; Jeglot, J.; Juramy, C.; Lebbolo, H.; Martin, D.; Moniez, M.; Tocut, V.; Wicek, F.

    2012-02-01

    The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.

  9. Nano-JASMINE: cosmic radiation degradation of CCD performance and centroid detection

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Shimura, Yuki; Niwa, Yoshito; Yano, Taihei; Gouda, Naoteru; Yamada, Yoshiyuki

    2012-09-01

    Nano-JASMINE (NJ) is a very small astrometry satellite project led by the National Astronomical Observatory of Japan. The satellite is ready for launch, and the launch is currently scheduled for late 2013 or early 2014. The satellite is equipped with a fully depleted CCD and is expected to perform astrometry observations for stars brighter than 9 mag in the zw-band (0.6 µm-1.0 µm). Distances of stars located within 100 pc of the Sun can be determined by using annual parallax measurements. The targeted accuracy for the position determination of stars brighter than 7.5 mag is 3 mas, which is equivalent to measuring the positions of stars with an accuracy of less than one five-hundredth of the CCD pixel size. The position measurements of stars are performed by centroiding the stellar images taken by the CCD that operates in the time and delay integration mode. The degradation of charge transfer performance due to cosmic radiation damage in orbit is proved experimentally. A method is then required to compensate for the effects of performance degradation. One of the most effective ways of achieving this is to simulate observed stellar outputs, including the effect of CCD degradation, and then formulate our centroiding algorithm and evaluate the accuracies of the measurements. We report here the planned procedure to simulate the outputs of the NJ observations. We also developed a CCD performance-measuring system and present preliminary results obtained using the system.

  10. Low temperature multi-alkali photocathode processing technique for sealed intensified CCD tubes

    NASA Technical Reports Server (NTRS)

    Doliber, D. L.; Dozier, E. E.; Wenzel, H.; Beaver, E. A.; Hier, R. G.

    1989-01-01

    A low temperature photocathode process has been used to fabricate an intensified CCD visual photocathode image tube, by incorporating a thinned, backside-illumined CCD as the target anode of a digicon tube of Hubble Space Telescope (HST) design. The CCD digicon tube employs the HST's sodium bialkali photocathode and MgF2 substrate, thereby allowing a direct photocathode quantum efficiency comparison between photocathodes produced by the presently employed low temperature process and those of the conventional high temperature process. Attention is given to the processing chamber used, as well as the details of gas desorption and photocathode processing.

  11. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter

    NASA Technical Reports Server (NTRS)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with 10 e-/pixel/second dark current, 25 e- read noise, a gain of 2.0 +/- 0.5 and 1.0 percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  12. Design and realization of 144 x 7 TDI ROIC with hybrid integrated test structure

    NASA Astrophysics Data System (ADS)

    Ceylan, Omer; Kayahan, Huseyin; Yazici, Melik; Baran, Muhammet Burak; Gurbuz, Yasar

    2012-06-01

    Design and realization of a 144x7 silicon readout integrated circuit (ROIC) based on switched capacitor TDI for MCT LWIR scanning type focal plane arrays (FPAs) and its corresponding hybrid integrated test circuits are presented. TDI operation with 7 detectors improves the SNR of the system by a factor of √7, while oversampling rate of 3 improves the spatial resolution of the system. ROIC supports bidirectional scan, 5 adjustable gain settings, bypass operation, automatic gain adjustment in case of mulfunctioning pixels and pixel select/deselect properties. Integration time of the system can be determined by the help of an external clock. Programming of ROIC can be done in parallel or serial mode according to the needs of the system. All properties except pixel select/deselect property can be performed in parallel mode, while pixel select/deselect property can be performed only in serial mode. ROIC can handle up to 3.75V dynamic range with a load of 25pF and output settling time of 80ns. Input referred noise of the ROIC is less than 750 rms electrons, while the power consumption is less than 100mW. To test ROIC in absence of detector array, a process and temperature compensated current reference array, which supplies uniform input current in range of 1-50nA to ROIC, is designed and measured both in room and cryogenic (77ºK) temperatures. Standard deviations of current reference arrays are measured 3.26% for 1nA and 0.99% for 50nA. ROIC and current reference array are fabricated seperately, and then flip-chip bonded for the test of the system. Flip-chip bonded system including ROIC and current reference test array is successfully measured both in room and cryogenic temperatures, and measurement results are presented. The manufacturing technology is 0.35μm, double poly-Si, four metal, 5V CMOS process.

  13. A CCD experimental platform for large telescope in Antarctica based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhu, Yuhua; Qi, Yongjun

    2014-07-01

    The CCD , as a detector , is one of the important components of astronomical telescopes. For a large telescope in Antarctica, a set of CCD detector system with large size, high sensitivity and low noise is indispensable. Because of the extremely low temperatures and unattended, system maintenance and software and hardware upgrade become hard problems. This paper introduces a general CCD controller experiment platform, using Field programmable gate array FPGA, which is, in fact, a large-scale field reconfigurable array. Taking the advantage of convenience to modify the system, construction of driving circuit, digital signal processing module, network communication interface, control algorithm validation, and remote reconfigurable module may realize. With the concept of integrated hardware and software, the paper discusses the key technology of building scientific CCD system suitable for the special work environment in Antarctica, focusing on the method of remote reconfiguration for controller via network and then offering a feasible hardware and software solution.

  14. Correcting STIS CCD Point-Source Spectra for CTE Loss

    NASA Technical Reports Server (NTRS)

    Goudfrooij, Paul; Bohlin, Ralph C.; Maiz-Apellaniz, Jesus

    2006-01-01

    We review the on-orbit spectroscopic observations that are being used to characterize the Charge Transfer Efficiency (CTE) of the STIS CCD in spectroscopic mode. We parameterize the CTE-related loss for spectrophotometry of point sources in terms of dependencies on the brightness of the source, the background level, the signal in the PSF outside the standard extraction box, and the time of observation. Primary constraints on our correction algorithm are provided by measurements of the CTE loss rates for simulated spectra (images of a tungsten lamp taken through slits oriented along the dispersion axis) combined with estimates of CTE losses for actual spectra of spectrophotometric standard stars in the first order CCD modes. For point-source spectra at the standard reference position at the CCD center, CTE losses as large as 30% are corrected to within approx.1% RMS after application of the algorithm presented here, rendering the Poisson noise associated with the source detection itself to be the dominant contributor to the total flux calibration uncertainty.

  15. Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system

    NASA Astrophysics Data System (ADS)

    Doran, S. J.; Krstajic, N.; Adamovics, J.; Jenneson, P. M.

    2004-01-01

    This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGETM (Heuris Pharma, Skillman, NJ).

  16. A Pipeline Tool for CCD Image Processing

    NASA Astrophysics Data System (ADS)

    Bell, Jon F.; Young, Peter J.; Roberts, William H.; Sebo, Kim M.

    MSSSO is part of a collaboration developing a wide field imaging CCD mosaic (WFI). As part of this project, we have developed a GUI based pipeline tool that is an integrated part of MSSSO's CICADA data acquisition environment and processes CCD FITS images as they are acquired. The tool is also designed to run as a stand alone program to process previously acquired data. IRAF tasks are used as the central engine, including the new NOAO mscred package for processing multi-extension FITS files. The STScI OPUS pipeline environment may be used to manage data and process scheduling. The Motif GUI was developed using SUN Visual Workshop. C++ classes were written to facilitate launching of IRAF and OPUS tasks. While this first version implements calibration processing up to and including flat field corrections, there is scope to extend it to other processing.

  17. Force Limited Random Vibration Test of TESS Camera Mass Model

    NASA Technical Reports Server (NTRS)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  18. Effects of biomechanical forces on signaling in the cortical collecting duct (CCD)

    PubMed Central

    Carrisoza-Gaytan, Rolando; Liu, Yu; Flores, Daniel; Else, Cindy; Lee, Heon Goo; Rhodes, George; Sandoval, Ruben M.; Kleyman, Thomas R.; Lee, Francis Young-In; Molitoris, Bruce; Satlin, Lisa M.

    2014-01-01

    An increase in tubular fluid flow rate (TFF) stimulates Na reabsorption and K secretion in the cortical collecting duct (CCD) and subjects cells therein to biomechanical forces including fluid shear stress (FSS) and circumferential stretch (CS). Intracellular MAPK and extracellular autocrine/paracrine PGE2 signaling regulate cation transport in the CCD and, at least in other systems, are affected by biomechanical forces. We hypothesized that FSS and CS differentially affect MAPK signaling and PGE2 release to modulate cation transport in the CCD. To validate that CS is a physiological force in vivo, we applied the intravital microscopic approach to rodent kidneys in vivo to show that saline or furosemide injection led to a 46.5 ± 2.0 or 170 ± 32% increase, respectively, in distal tubular diameter. Next, murine CCD (mpkCCD) cells were grown on glass or silicone coated with collagen type IV and subjected to 0 or 0.4 dyne/cm2 of FSS or 10% CS, respectively, forces chosen based on prior biomechanical modeling of ex vivo microperfused CCDs. Cells exposed to FSS expressed an approximately twofold greater abundance of phospho(p)-ERK and p-p38 vs. static cells, while CS did not alter p-p38 and p-ERK expression compared with unstretched controls. FSS induced whereas CS reduced PGE2 release by ∼40%. In conclusion, FSS and CS differentially affect ERK and p38 activation and PGE2 release in a cell culture model of the CD. We speculate that TFF differentially regulates biomechanical signaling and, in turn, cation transport in the CCD. PMID:24872319

  19. Effects of biomechanical forces on signaling in the cortical collecting duct (CCD).

    PubMed

    Carrisoza-Gaytan, Rolando; Liu, Yu; Flores, Daniel; Else, Cindy; Lee, Heon Goo; Rhodes, George; Sandoval, Ruben M; Kleyman, Thomas R; Lee, Francis Young-In; Molitoris, Bruce; Satlin, Lisa M; Rohatgi, Rajeev

    2014-07-15

    An increase in tubular fluid flow rate (TFF) stimulates Na reabsorption and K secretion in the cortical collecting duct (CCD) and subjects cells therein to biomechanical forces including fluid shear stress (FSS) and circumferential stretch (CS). Intracellular MAPK and extracellular autocrine/paracrine PGE2 signaling regulate cation transport in the CCD and, at least in other systems, are affected by biomechanical forces. We hypothesized that FSS and CS differentially affect MAPK signaling and PGE2 release to modulate cation transport in the CCD. To validate that CS is a physiological force in vivo, we applied the intravital microscopic approach to rodent kidneys in vivo to show that saline or furosemide injection led to a 46.5 ± 2.0 or 170 ± 32% increase, respectively, in distal tubular diameter. Next, murine CCD (mpkCCD) cells were grown on glass or silicone coated with collagen type IV and subjected to 0 or 0.4 dyne/cm(2) of FSS or 10% CS, respectively, forces chosen based on prior biomechanical modeling of ex vivo microperfused CCDs. Cells exposed to FSS expressed an approximately twofold greater abundance of phospho(p)-ERK and p-p38 vs. static cells, while CS did not alter p-p38 and p-ERK expression compared with unstretched controls. FSS induced whereas CS reduced PGE2 release by ∼40%. In conclusion, FSS and CS differentially affect ERK and p38 activation and PGE2 release in a cell culture model of the CD. We speculate that TFF differentially regulates biomechanical signaling and, in turn, cation transport in the CCD. Copyright © 2014 the American Physiological Society.

  20. Documentation to the 2015-16 Common Core of Data (CCD) Universe Files. NCES 2017-074

    ERIC Educational Resources Information Center

    Glander, Mark

    2017-01-01

    The Common Core of Data (CCD) is a national statistical program that collects and compiles administrative data from SEAs covering the universe of all public elementary and secondary schools and school districts in the United States. The first CCD collection was for SY 1986-87. The predecessor to CCD was the Elementary and Secondary General…

  1. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO{sub 2}) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations ofmore » the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  2. TADIR: ElOp's high-resolution second-generation 480 x 4 TDI thermal imager

    NASA Astrophysics Data System (ADS)

    Sarusi, Gabby; Ziv, Natan; Zioni, O.; Gaber, J.; Shechterman, Mark S.; Wiess, I.; Friedland, Igor V.; Lerner, M.; Friedenberg, Abraham

    1998-10-01

    'TADIR' is a new high-end thermal imager, developed in El-Op under contract with the Israeli MOD during the last three years. This new second generation thermal imager is based on 480 X 4 TDI MCT detector operated in the 8 - 12 micrometer spectral range. Although the prototype configuration of TADIR was design for the highly demanded light weight low volume and low power air applications, TADIR can be considered as a generic modular technology of which the future El-Op's FLIR applications such as ground fire control system and surveillance systems will be derived from. Besides the detector, what puts the system in the high-end category are the state of the art features implemented in each system's components. This paper describes the system concept and design considerations as well as the anticipated performances. TADIRs fist prototype was demonstrated at the beginning of 1998 and is currently under evaluation.

  3. Performance characteristics of CCDs for the ACIS experiment. [Advanced X-ray Astrophysics Facility CCD Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Garmire, Gordon P.; Nousek, John; Burrows, David; Ricker, George; Bautz, Mark; Doty, John; Collins, Stewart; Janesick, James

    1988-01-01

    The search for the optimum CCD to be used at the focal surface of the Advanced X-ray Astrophysics Facility (AXAF) is described. The physics of the interaction of X-rays in silicon through the photoelectric effect is reviewed. CCD technology at the beginning of the AXAF definition phase is summarized, and the results of the CCD enhancement program are discussed. Other sources of optimum CCDs are examined, and CCD enhancements made at MIT Lincoln Laboratory are addressed.

  4. 24/7 security system: 60-FPS color EMCCD camera with integral human recognition

    NASA Astrophysics Data System (ADS)

    Vogelsong, T. L.; Boult, T. E.; Gardner, D. W.; Woodworth, R.; Johnson, R. C.; Heflin, B.

    2007-04-01

    An advanced surveillance/security system is being developed for unattended 24/7 image acquisition and automated detection, discrimination, and tracking of humans and vehicles. The low-light video camera incorporates an electron multiplying CCD sensor with a programmable on-chip gain of up to 1000:1, providing effective noise levels of less than 1 electron. The EMCCD camera operates in full color mode under sunlit and moonlit conditions, and monochrome under quarter-moonlight to overcast starlight illumination. Sixty frame per second operation and progressive scanning minimizes motion artifacts. The acquired image sequences are processed with FPGA-compatible real-time algorithms, to detect/localize/track targets and reject non-targets due to clutter under a broad range of illumination conditions and viewing angles. The object detectors that are used are trained from actual image data. Detectors have been developed and demonstrated for faces, upright humans, crawling humans, large animals, cars and trucks. Detection and tracking of targets too small for template-based detection is achieved. For face and vehicle targets the results of the detection are passed to secondary processing to extract recognition templates, which are then compared with a database for identification. When combined with pan-tilt-zoom (PTZ) optics, the resulting system provides a reliable wide-area 24/7 surveillance system that avoids the high life-cycle cost of infrared cameras and image intensifiers.

  5. NAOMI instrument: a product line of compact and versatile cameras designed for HR and VHR missions in Earth observation

    NASA Astrophysics Data System (ADS)

    Luquet, Ph.; Brouard, L.; Chinal, E.

    2017-11-01

    Astrium has developed a product line of compact and versatile instruments for HR and VHR missions in Earth Observation. These cameras consist on a Silicon Carbide Korsch-type telescope, a focal plane with one or several retina modules - including five lines CCD, optical filters and front end electronics - and the instrument main electronics. Several versions have been developed with a telescope pupil diameter from 200 mm up to 650 mm, covering a large range of GSD (from 2.5 m down to sub-metric) and swath (from 10km up to 30 km) and compatible with different types of platform. Nine cameras have already been manufactured for five different programs: ALSAT2 (Algeria), SSOT (Chile), SPOT6 & SPOT7 (France), KRS (Kazakhstan) and VNREDSat (Vietnam). Two of them have already been launched and are delivering high quality images.

  6. The Acquisition of Development of Advanced Processing Techniques for CCD Arrays.

    DTIC Science & Technology

    1981-01-01

    E57B 96 x 2048 TDI imager production run. A minor change was incorporated on wafers #1-3; an in situ doped-polysilicon technique was used instead of the...2047, - 10 - Ab-A~ and 2048 . In some cases charge collection extends beyond these pixels. The excess signal is measured here as a percentage (Table...amount of spurious charge in pixels #2047 and 2048 is always greater than for pixels #2 and 1, respectively. This is because there is more unshielded area

  7. Southern Clusters for Standardizing CCD Photometry

    NASA Astrophysics Data System (ADS)

    Moon, T. T.

    2017-06-01

    Standardizing photometric measurements typically involves undertaking all-sky photometry. This can be laborious and time-consuming and, for CCD photometry, particularly challenging. Transforming photometry to a standard system is, however, a crucial step when routinely measuring variable stars, as it allows photoelectric measurements from different observers to be combined. For observers in the northern hemisphere, standardized UBVRI values of stars in open clusters such as M67 and NGC 7790 have been established, greatly facilitating quick and accurate transformation of CCD measurements. Recently the AAVSO added the cluster NGC 3532 for southern hemisphere observers to similarly standardize their photometry. The availability of NGC 3532 standards was announced on the AAVSO Variable Star Observing, Photometry forum on 27 October 2016. Published photometry, along with some new measurements by the author, provide a means of checking these NGC 3532 standards which were determined through the AAVSO's Bright Star Monitor (BSM) program (see: https://www.aavso.org/aavsonet-epoch-photometry-database). New measurements of selected stars in the open clusters M25 and NGC 6067 are also included.

  8. Miniature self-contained vacuum compatible electronic imaging microscope

    DOEpatents

    Naulleau, Patrick P.; Batson, Phillip J.; Denham, Paul E.; Jones, Michael S.

    2001-01-01

    A vacuum compatible CCD-based microscopic camera with an integrated illuminator. The camera can provide video or still feed from the microscope contained within a vacuum chamber. Activation of an optional integral illuminator can provide light to illuminate the microscope subject. The microscope camera comprises a housing with a objective port, modified objective, beam-splitter, CCD camera, and LED illuminator.

  9. Imaging the Moon II: Webcam CCD Observations and Analysis (a Two-Week Lab for Non-Majors)

    NASA Astrophysics Data System (ADS)

    Sato, T.

    2014-07-01

    Imaging the Moon is a successful two-week lab involving real sky observations of the Moon in which students make telescopic observations and analyze their own images. Originally developed around the 35 mm film camera, a common household object adapted for astronomical work, the lab now uses webcams as film photography has evolved into an obscure specialty technology and increasing numbers of students have little familiarity with it. The printed circuit board with the CCD is harvested from a commercial webcam and affixed to a tube to mount on a telescope in place of an eyepiece. Image frames are compiled to form a lunar mosaic, and crater sizes are measured. Students also work through the logistical steps of telescope time assignment and scheduling. They learn to keep a schedule and work with uncertainties of weather in ways paralleling research observations. Because there is no need for a campus observatory, this lab can be replicated at a wide variety of institutions.

  10. Intercomparison of SO2 camera systems for imaging volcanic gas plumes

    USGS Publications Warehouse

    Kern, Christoph; Lübcke, Peter; Bobrowski, Nicole; Campion, Robin; Mori, Toshiya; Smekens, Jean-Francois; Stebel, Kerstin; Tamburello, Giancarlo; Burton, Mike; Platt, Ulrich; Prata, Fred

    2015-01-01

    SO2 camera systems are increasingly being used to image volcanic gas plumes. The ability to derive SO2 emission rates directly from the acquired imagery at high time resolution allows volcanic process studies that incorporate other high time-resolution datasets. Though the general principles behind the SO2 camera have remained the same for a number of years, recent advances in CCD technology and an improved understanding of the physics behind the measurements have driven a continuous evolution of the camera systems. Here we present an intercomparison of seven different SO2 cameras. In the first part of the experiment, the various technical designs are compared and the advantages and drawbacks of individual design options are considered. Though the ideal design was found to be dependent on the specific application, a number of general recommendations are made. Next, a time series of images recorded by all instruments at Stromboli Volcano (Italy) is compared. All instruments were easily able to capture SO2 clouds emitted from the summit vents. Quantitative comparison of the SO2 load in an individual cloud yielded an intra-instrument precision of about 12%. From the imagery, emission rates were then derived according to each group's standard retrieval process. A daily average SO2 emission rate of 61 ± 10 t/d was calculated. Due to differences in spatial integration methods and plume velocity determination, the time-dependent progression of SO2 emissions varied significantly among the individual systems. However, integration over distinct degassing events yielded comparable SO2 masses. Based on the intercomparison data, we find an approximate 1-sigma precision of 20% for the emission rates derived from the various SO2 cameras. Though it may still be improved in the future, this is currently within the typical accuracy of the measurement and is considered sufficient for most applications.

  11. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    NASA Technical Reports Server (NTRS)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtin, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30%) quantum efficiency at the Lyman-$\\alpha$ line. The CLASP cameras were designed to operate with =10 e- /pixel/second dark current, = 25 e- read noise, a gain of 2.0 and =0.1% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  12. WE-DE-BRA-11: A Study of Motion Tracking Accuracy of Robotic Radiosurgery Using a Novel CCD Camera Based End-To-End Test System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L; M Yang, Y; Nelson, B

    Purpose: A novel end-to-end test system using a CCD camera and a scintillator based phantom (XRV-124, Logos Systems Int’l) capable of measuring the beam-by-beam delivery accuracy of Robotic Radiosurgery (CyberKnife) was developed and reported in our previous work. This work investigates its application in assessing the motion tracking (Synchrony) accuracy for CyberKnife. Methods: A QA plan with Anterior and Lateral beams (with 4 different collimator sizes) was created (Multiplan v5.3) for the XRV-124 phantom. The phantom was placed on a motion platform (superior and inferior movement), and the plans were delivered on the CyberKnife M6 system using four motion patterns:more » static, Sine- wave, Sine with 15° phase shift, and a patient breathing pattern composed of 2cm maximum motion with 4 second breathing cycle. Under integral recording mode, the time-averaged beam vectors (X, Y, Z) were measured by the phantom and compared with static delivery. In dynamic recording mode, the beam spots were recorded at a rate of 10 frames/second. The beam vector deviation from average position was evaluated against the various breathing patterns. Results: The average beam position of the six deliveries with no motion and three deliveries with Synchrony tracking on ideal motion (sinewave without phase shift) all agree within −0.03±0.00 mm, 0.10±0.04, and 0.04±0.03 in the X, Y, and X directions. Radiation beam width (FWHM) variations are within ±0.03 mm. Dynamic video record showed submillimeter tracking stability for both regular and irregular breathing pattern; however the tracking error up to 3.5 mm was observed when a 15 degree phase shift was introduced. Conclusion: The XRV-124 system is able to provide 3D and 4D targeting accuracy for CyberKnife delivery with Synchrony. The experimental results showed sub-millimeter delivery in phantom with excellent correlation in target to breathing motion. The accuracy was degraded when irregular motion and phase shift was

  13. Quantum efficiency measurement of the Transiting Exoplanet Survey Satellite (TESS) CCD detectors

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, A.; Villasenor, J.; Thayer, C.; Kissel, S.; Ricker, G.; Seager, S.; Lyle, R.; Deline, A.; Morgan, E.; Sauerwein, T.; Vanderspek, R.

    2016-07-01

    Very precise on-ground characterization and calibration of TESS CCD detectors will significantly assist in the analysis of the science data from the mission. An accurate optical test bench with very high photometric stability has been developed to perform precise measurements of the absolute quantum efficiency. The setup consists of a vacuum dewar with a single MIT Lincoln Lab CCID-80 device mounted on a cold plate with the calibrated reference photodiode mounted next to the CCD. A very stable laser-driven light source is integrated with a closed-loop intensity stabilization unit to control variations of the light source down to a few parts-per-million when averaged over 60 s. Light from the stabilization unit enters a 20 inch integrating sphere. The output light from the sphere produces near-uniform illumination on the cold CCD and on the calibrated reference photodiode inside the dewar. The ratio of the CCD and photodiode signals provides the absolute quantum efficiency measurement. The design, key features, error analysis, and results from the test campaign are presented.

  14. HST/WFC3: Understanding and Mitigating Radiation Damage Effects in the CCD Detectors

    NASA Astrophysics Data System (ADS)

    Baggett, S.; Anderson, J.; Sosey, M.; MacKenty, J.; Gosmeyer, C.; Noeske, K.; Gunning, H.; Bourque, M.

    2015-09-01

    At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel resides a 4096x4096 pixel e2v CCD array. While these detectors are performing extremely well after more than 5 years in low-earth orbit, the cumulative effects of radiation damage cause a continual growth in the hot pixel population and a progressive loss in charge transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. Several mitigation options exist, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low background images for a relatively small noise penalty. Currently all WFC3 observers are encouraged to post-flash images with low backgrounds. Another powerful option in mitigating CTE losses is the pixel-based CTE correction. Analagous to the CTE correction software currently in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an empirical observationally-constrained model of how much charge is captured and released in order to reconstruct the image. Applied to images (with or without post-flash) after they are acquired, the software is currently available as a standalone routine. The correction will be incorporated into the standard WFC3 calibration pipeline.

  15. Development of CCD imaging sensors for space applications, phase 1

    NASA Technical Reports Server (NTRS)

    Antcliffe, G. A.

    1975-01-01

    The results of an experimental investigation to develop a large area charge coupled device (CCD) imager for space photography applications are described. Details of the design and processing required to achieve 400 X 400 imagers are presented together with a discussion of the optical characterization techniques developed for this program. A discussion of several aspects of large CCD performance is given with detailed test reports. The areas covered include dark current, uniformity of optical response, square wave amplitude response, spectral responsivity and dynamic range.

  16. Asteroid detection using a single multi-wavelength CCD scan

    NASA Astrophysics Data System (ADS)

    Melton, Jonathan

    2016-09-01

    Asteroid detection is a topic of great interest due to the possibility of diverting possibly dangerous asteroids or mining potentially lucrative ones. Currently, asteroid detection is generally performed by taking multiple images of the same patch of sky separated by 10-15 minutes, then subtracting the images to find movement. However, this is time consuming because of the need to revisit the same area multiple times per night. This paper describes an algorithm that can detect asteroids using a single CCD camera scan, thus cutting down on the time and cost of an asteroid survey. The algorithm is based on the fact that some telescopes scan the sky at multiple wavelengths with a small time separation between the wavelength components. As a result, an object moving with sufficient speed will appear in different places in different wavelength components of the same image. Using image processing techniques we detect the centroids of points of light in the first component and compare these positions to the centroids in the other components using a nearest neighbor algorithm. The algorithm was used on a test set of 49 images obtained from the Sloan telescope in New Mexico and found 100% of known asteroids with only 3 false positives. This algorithm has the advantage of decreasing the amount of time required to perform an asteroid scan, thus allowing more sky to be scanned in the same amount of time or freeing a telescope for other pursuits.

  17. Analysis of smear in high-resolution remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Wahballah, Walid A.; Bazan, Taher M.; El-Tohamy, Fawzy; Fathy, Mahmoud

    2016-10-01

    High-resolution remote sensing satellites (HRRSS) that use time delay and integration (TDI) CCDs have the potential to introduce large amounts of image smear. Clocking and velocity mismatch smear are two of the key factors in inducing image smear. Clocking smear is caused by the discrete manner in which the charge is clocked in the TDI-CCDs. The relative motion between the HRRSS and the observed object obliges that the image motion velocity must be strictly synchronized with the velocity of the charge packet transfer (line rate) throughout the integration time. During imaging an object off-nadir, the image motion velocity changes resulting in asynchronization between the image velocity and the CCD's line rate. A Model for estimating the image motion velocity in HRRSS is derived. The influence of this velocity mismatch combined with clocking smear on the modulation transfer function (MTF) is investigated by using Matlab simulation. The analysis is performed for cross-track and along-track imaging with different satellite attitude angles and TDI steps. The results reveal that the velocity mismatch ratio and the number of TDI steps have a serious impact on the smear MTF; a velocity mismatch ratio of 2% degrades the MTFsmear by 32% at Nyquist frequency when the TDI steps change from 32 to 96. In addition, the results show that to achieve the requirement of MTFsmear >= 0.95 , for TDI steps of 16 and 64, the allowable roll angles are 13.7° and 6.85° and the permissible pitch angles are no more than 9.6° and 4.8°, respectively.

  18. Characterization of a fully depleted CCD on high-resistivity silicon

    NASA Astrophysics Data System (ADS)

    Stover, Richard J.; Wei, Mingzhi; Lee, Y.; Gilmore, David K.; Holland, S. E.; Groom, D. E.; Moses, William W.; Perlmutter, Saul; Goldhaber, G.; Pennypacker, C.; Wang, N. W.; Palaio, N.

    1997-04-01

    Most scientific CCD imagers are fabricated on 30-50 (Omega) - cm epitaxial silicon. When illuminated form the front side of the device they generally have low quantum efficiency in the blue region of the visible spectrum because of strong absorption in the polycrystalline silicon gates as well as poor quantum efficiency in the far red and near infrared region of the spectrum because of the shallow depletion depth of the low-resistivity silicon. To enhance the blue response of scientific CCDs they are often thinned and illuminated from the back side. While blue response is greatly enhanced by this process, it is expensive and it introduces additional problems for the red end of the spectrum. A typical thinned CCD is 15 to 25 micrometers thick, and at wavelengths beyond about 800 nm the absorption depth becomes comparable to the thickness of the device, leading to interference fringes from reflected light. Because these interference fringes are of high order, the spatial pattern of the fringes is extremely sensitive to small changes in the optical illumination of the detector. Calibration and removal of the effects of the fringes is one of the primary limitations on the performance of astronomical images taken at wavelengths of 800 nm or more. In this paper we present results from the characterization of a CCD which promises to address many of the problems of typical thinned CCDs. The CCD reported on here was fabricated at Lawrence Berkeley National Laboratory (LBNL) on a 10-12 K$OMega-cm n-type silicon substrate.THe CCD is a 200 by 200 15-micrometers square pixel array, and due to the very high resistivity of the starting material, the entire 300 micrometers substrate is depleted. Full depletion works because of the gettering technology developed at LBNL which keeps leakage current down. Both front-side illuminated and backside illuminated devices have been tested. We have measured quantum efficiency, read-noise, full-well, charge-transfer efficiency, and leakage

  19. Quantitative assessment of image motion blur in diffraction images of moving biological cells

    NASA Astrophysics Data System (ADS)

    Wang, He; Jin, Changrong; Feng, Yuanming; Qi, Dandan; Sa, Yu; Hu, Xin-Hua

    2016-02-01

    Motion blur (MB) presents a significant challenge for obtaining high-contrast image data from biological cells with a polarization diffraction imaging flow cytometry (p-DIFC) method. A new p-DIFC experimental system has been developed to evaluate the MB and its effect on image analysis using a time-delay-integration (TDI) CCD camera. Diffraction images of MCF-7 and K562 cells have been acquired with different speed-mismatch ratios and compared to characterize MB quantitatively. Frequency analysis of the diffraction images shows that the degree of MB can be quantified by bandwidth variations of the diffraction images along the motion direction. The analytical results were confirmed by the p-DIFC image data acquired at different speed-mismatch ratios and used to validate a method of numerical simulation of MB on blur-free diffraction images, which provides a useful tool to examine the blurring effect on diffraction images acquired from the same cell. These results provide insights on the dependence of diffraction image on MB and allow significant improvement on rapid biological cell assay with the p-DIFC method.

  20. CCD Times of Minima of Selected Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Zejda, Miloslav

    2004-12-01

    682 CCD minima observations of 259 eclipsing binaries made mainly by author are presented. The observed stars were chosen mainly from catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.

  1. Automatic inference of geometric camera parameters and inter-camera topology in uncalibrated disjoint surveillance cameras

    NASA Astrophysics Data System (ADS)

    den Hollander, Richard J. M.; Bouma, Henri; Baan, Jan; Eendebak, Pieter T.; van Rest, Jeroen H. C.

    2015-10-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short configuration time, and the use of video analytics in a wider range of scenarios, including ad-hoc crisis situations and large scale surveillance systems. We show an autocalibration method entirely based on pedestrian detections in surveillance video in multiple non-overlapping cameras. In this paper, we show the two main components of automatic calibration. The first shows the intra-camera geometry estimation that leads to an estimate of the tilt angle, focal length and camera height, which is important for the conversion from pixels to meters and vice versa. The second component shows the inter-camera topology inference that leads to an estimate of the distance between cameras, which is important for spatio-temporal analysis of multi-camera tracking. This paper describes each of these methods and provides results on realistic video data.

  2. The Beagle 2 Stereo Camera System: Scientific Objectives and Design Characteristics

    NASA Astrophysics Data System (ADS)

    Griffiths, A.; Coates, A.; Josset, J.; Paar, G.; Sims, M.

    2003-04-01

    The Stereo Camera System (SCS) will provide wide-angle (48 degree) multi-spectral stereo imaging of the Beagle 2 landing site in Isidis Planitia with an angular resolution of 0.75 milliradians. Based on the SpaceX Modular Micro-Imager, the SCS is composed of twin cameras (with 1024 by 1024 pixel frame transfer CCD) and twin filter wheel units (with a combined total of 24 filters). The primary mission objective is to construct a digital elevation model of the area in reach of the lander’s robot arm. The SCS specifications and following baseline studies are described: Panoramic RGB colour imaging of the landing site and panoramic multi-spectral imaging at 12 distinct wavelengths to study the mineralogy of landing site. Solar observations to measure water vapour absorption and the atmospheric dust optical density. Also envisaged are multi-spectral observations of Phobos &Deimos (observations of the moons relative to background stars will be used to determine the lander’s location and orientation relative to the Martian surface), monitoring of the landing site to detect temporal changes, observation of the actions and effects of the other PAW experiments (including rock texture studies with a close-up-lens) and collaborative observations with the Mars Express orbiter instrument teams. Due to be launched in May of this year, the total system mass is 360 g, the required volume envelope is 747 cm^3 and the average power consumption is 1.8 W. A 10Mbit/s RS422 bus connects each camera to the lander common electronics.

  3. Chromatic Modulator for a High-Resolution CCD or APS

    NASA Technical Reports Server (NTRS)

    Hartley, Frank; Hull, Anthony

    2008-01-01

    A chromatic modulator has been proposed to enable the separate detection of the red, green, and blue (RGB) color components of the same scene by a single charge-coupled device (CCD), active-pixel sensor (APS), or similar electronic image detector. Traditionally, the RGB color-separation problem in an electronic camera has been solved by use of either (1) fixed color filters over three separate image detectors; (2) a filter wheel that repeatedly imposes a red, then a green, then a blue filter over a single image detector; or (3) different fixed color filters over adjacent pixels. The use of separate image detectors necessitates precise registration of the detectors and the use of complicated optics; filter wheels are expensive and add considerably to the bulk of the camera; and fixed pixelated color filters reduce spatial resolution and introduce color-aliasing effects. The proposed chromatic modulator would not exhibit any of these shortcomings. The proposed chromatic modulator would be an electromechanical device fabricated by micromachining. It would include a filter having a spatially periodic pattern of RGB strips at a pitch equal to that of the pixels of the image detector. The filter would be placed in front of the image detector, supported at its periphery by a spring suspension and electrostatic comb drive. The spring suspension would bias the filter toward a middle position in which each filter strip would be registered with a row of pixels of the image detector. Hard stops would limit the excursion of the spring suspension to precisely one pixel row above and one pixel row below the middle position. In operation, the electrostatic comb drive would be actuated to repeatedly snap the filter to the upper extreme, middle, and lower extreme positions. This action would repeatedly place a succession of the differently colored filter strips in front of each pixel of the image detector. To simplify the processing, it would be desirable to encode information on

  4. Experimental research on thermal conductive fillers for CCD module in space borne optical remote sensor

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Han, Xue-bing; Yang, Dong-shang; Gui, Li-jia; Zhao, Xiao-xiang; Si, Fu-qi

    2016-03-01

    A space-borne differential optical absorption spectrometer is a high precision aerospace optical remote sensor. It obtains the hyper-spectral,high spatial resolution radiation information by using the spectrometer with CCD(Charge Coupled Device)array detectors. Since a few CCDs are used as the key detector, the performance of the entire instrument is greatly affected by working condition of CCDs. The temperature of CCD modules has a great impact on the instrument measurement accuracy. It requires strict temperature control. The selection of the thermal conductive filler sticking CCD to the radiator is important in the CCD thermal design. Besides,due tothe complex and compact structure, it needs to take into account the anti-pollution of the optical system. Therefore, it puts forward high requirements on the selection of the conductive filler. In this paper, according to the structure characteristics of the CCD modules and the distribution of heat consumption, the thermal analysis tool I-DEAS/TMG is utilized to compute and simulate the temperature level of the CCD modules, while filling in thermal grease and thermal pad respectively. The temperature distribution of CCD heat dissipation in typical operating conditions is obtained. In addition, the heat balance test was carried out under the condition of two kinds of thermal conductive fillers. The thermal control of CCD was tested under various conditions, and the results were compared with the results of thermal analysis. The results show that there are some differences in thermal performance between the two kinds of thermal conductive fillers. Although they both can meet the thermal performance requirements of the instrument, either would be chosen taking account of other conditions and requirements such as anti-pollution and insulation. The content and results of this paper will be a good reference for the thermal design of the CCD in the aerospace optical payload.

  5. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter

    NASA Technical Reports Server (NTRS)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtain, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro- polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with a gain of 2.0 +/- 0.5, less than or equal to 25 e- readout noise, less than or equal to 10 e-/second/pixel dark current, and less than 0.1percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; system gain, dark current, read noise, and residual non-linearity.

  6. Analysis of Dark Current in BRITE Nanostellite CCD Sensors †

    PubMed Central

    Popowicz, Adam

    2018-01-01

    The BRightest Target Explorer (BRITE) is the pioneering nanosatellite mission dedicated for photometric observations of the brightest stars in the sky. The BRITE charge coupled device (CCD) sensors are poorly shielded against extensive flux of energetic particles which constantly induce defects in the silicon lattice. In this paper we investigate the temporal evolution of the generation of the dark current in the BRITE CCDs over almost four years after launch. Utilizing several steps of image processing and employing normalization of the results, it was possible to obtain useful information about the progress of thermal activity in the sensors. The outcomes show a clear and consistent linear increase of induced damage despite the fact that only about 0.14% of CCD pixels were probed. By performing the analysis of temperature dependencies of the dark current, we identified the observed defects as phosphorus-vacancy (PV) pairs, which are common in proton irradiated CCD matrices. Moreover, the Meyer-Neldel empirical rule was confirmed in our dark current data, yielding EMN=24.8 meV for proton-induced PV defects. PMID:29415471

  7. Thinning and mounting a Texas Instruments 3-phase CCD

    NASA Technical Reports Server (NTRS)

    Lesser, M. P.; Leach, R. W.; Angel, J. R. P.

    1986-01-01

    Thin CCDs with precise control of thickness and surface quality allow astronomers to optimize chips for specific applications. A means of mechanically thinning a TI 800 x 800 CCD with an abrasive slurry of aluminum oxide is presented. Using the same techniques, the abrasives can be replaced with a chemical solution to eliminate subsurface damage. A technique of mounting the CCD which retains the high quality surface generated during thinning is also demonstrated. This requires the backside of the chip to be bonded to a glass window which closely matches silicon's thermal expansion properties. Thinned CCDs require backside treatment to enhance blue and UV quantum efficiency. Two methods are discussed which may be effective with this mounting system.

  8. A study of astrometric distortions due to “tree rings” in CCD sensors using LSST Photon Simulator

    DOE PAGES

    Beamer, Benjamin; Nomerotski, Andrei; Tsybychev, Dmitri

    2015-05-22

    Imperfections in the production process of thick CCDs lead to circularly symmetric dopant concentration variations, which in turn produce electric fields transverse to the surface of the fully depleted CCD that displace the photogenerated charges. We use PhoSim, a Monte Carlo photon simulator, to explore and examine the likely impacts these dopant concentration variations will have on astrometric measurements in LSST. The scale and behavior of both the astrometric shifts imparted to point sources and the intensity variations in flat field images that result from these doping imperfections are similar to those previously observed in Dark Energy Camera CCDs, givingmore » initial confirmation of PhoSim's model for these effects. In addition, the organized shape distortions were observed as a result of the symmetric nature of these dopant variations, causing nominally round sources to be imparted with a measurable ellipticity either aligned with or transverse to the radial direction of this dopant variation pattern.« less

  9. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    NASA Astrophysics Data System (ADS)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  10. Automated Meteor Fluxes with a Wide-Field Meteor Camera Network

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Campbell-Brown, M. D.; Cooke, W.; Weryk, R. J.; Gill, J.; Musci, R.

    2013-01-01

    Within NASA, the Meteoroid Environment Office (MEO) is charged to monitor the meteoroid environment in near ]earth space for the protection of satellites and spacecraft. The MEO has recently established a two ]station system to calculate automated meteor fluxes in the millimeter ]size ]range. The cameras each consist of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 16.3 degree field of view. This configuration has a red ]sensitive limiting meteor magnitude of about +5. The stations are located in the South Eastern USA, 31.8 kilometers apart, and are aimed at a location 90 km above a point 50 km equidistant from each station, which optimizes the common volume. Both single station and double station fluxes are found, each having benefits; more meteors will be detected in a single camera than will be seen in both cameras, producing a better determined flux, but double station detections allow for non ]ambiguous shower associations and permit speed/orbit determinations. Video from the cameras are fed into Linux computers running the ASGARD (All Sky and Guided Automatic Real ]time Detection) software, created by Rob Weryk of the University of Western Ontario Meteor Physics Group. ASGARD performs the meteor detection/photometry, and invokes the MILIG and MORB codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for the approximate shower identification in single station meteors. The ASGARD output is used in routines to calculate the flux in units of #/sq km/hour. The flux algorithm employed here differs from others currently in use in that it does not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the radiant of active shower or sporadic source. The flux per height interval is summed to obtain the total meteor flux. As ASGARD also

  11. Binary/Analog CCD Correlator Development.

    DTIC Science & Technology

    1981-07-01

    architecture , design and performance of a general purpose, 1,024-stage, programmable transversal filter implemented in CCD/NMOS technology is described. The device features programmability of the reference signal, the filter length and weighting coefficient resolution. Off-ship circuitry is minimized by incorporating both analog and digital support circuitry, on-chip. This results in a monolithic analog signal processing system that has the flexibility to be operated in nine programmable configurations, from 1,024-stages by 1-bit, to 128-stages by 8-bits. The versatility

  12. Calibration and Testing of Digital Zenith Camera System Components

    NASA Astrophysics Data System (ADS)

    Ulug, Rasit; Halicioglu, Kerem; Tevfik Ozludemir, M.; Albayrak, Muge; Basoglu, Burak; Deniz, Rasim

    2017-04-01

    Starting from the beginning of the new millennium, thanks to the Charged-Coupled Device (CCD) technology, fully or partly automatic zenith camera systems are designed and used in order to determine astro-geodetic deflections of the vertical components in several countries, including Germany, Switzerland, Serbia, Latvia, Poland, Austria, China and Turkey. The Digital Zenith Camera System (DZCS) of Turkey performed successful observations yet it needs to be improved in terms of automating the system and increasing observation accuracy. In order to optimize the observation time and improve the system, some modifications have been implemented. Through the modification process that started at the beginning of 2016, some DZCS components have been replaced with the new ones and some new additional components have been installed. In this presentation, the ongoing calibration and testing process of the DZCS are summarized in general. In particular, one of the tested system components is the High Resolution Tiltmeter (HRTM), which enable orthogonal orientation of DZCS to the direction of plump line, is discussed. For the calibration of these components, two tiltmeters with different accuracies (1 nrad and 0.001 mrad) were observed nearly 30 days. The data recorded under different environmental conditions were divided into hourly, daily, and weekly subsets. In addition to the effects of temperature and humidity, interoperability of two tiltmeters were also investigated. Results show that with the integration of HRTM and the other implementations, the modified DZCS provides higher accuracy for the determination of vertical deflections.

  13. Very-large-area CCD image sensors: concept and cost-effective research

    NASA Astrophysics Data System (ADS)

    Bogaart, E. W.; Peters, I. M.; Kleimann, A. C.; Manoury, E. J. P.; Klaassens, W.; de Laat, W. T. F. M.; Draijer, C.; Frost, R.; Bosiers, J. T.

    2009-01-01

    A new-generation full-frame 36x48 mm2 48Mp CCD image sensor with vertical anti-blooming for professional digital still camera applications is developed by means of the so-called building block concept. The 48Mp devices are formed by stitching 1kx1k building blocks with 6.0 µm pixel pitch in 6x8 (hxv) format. This concept allows us to design four large-area (48Mp) and sixty-two basic (1Mp) devices per 6" wafer. The basic image sensor is relatively small in order to obtain data from many devices. Evaluation of the basic parameters such as the image pixel and on-chip amplifier provides us statistical data using a limited number of wafers. Whereas the large-area devices are evaluated for aspects typical to large-sensor operation and performance, such as the charge transport efficiency. Combined with the usability of multi-layer reticles, the sensor development is cost effective for prototyping. Optimisation of the sensor design and technology has resulted in a pixel charge capacity of 58 ke- and significantly reduced readout noise (12 electrons at 25 MHz pixel rate, after CDS). Hence, a dynamic range of 73 dB is obtained. Microlens and stack optimisation resulted in an excellent angular response that meets with the wide-angle photography demands.

  14. 3CCD image segmentation and edge detection based on MATLAB

    NASA Astrophysics Data System (ADS)

    He, Yong; Pan, Jiazhi; Zhang, Yun

    2006-09-01

    This research aimed to identify weeds from crops in early stage in the field operation by using image-processing technology. As 3CCD images offer greater binary value difference between weed and crop section than ordinary digital images taken by common cameras. It has 3 channels (green, red, ifred) which takes a snap-photo of the same area, and the three images can be composed into one image, which facilitates the segmentation of different areas. By the application of image-processing toolkit on MATLAB, the different areas in the image can be segmented clearly. As edge detection technique is the first and very important step in image processing, The different result of different processing method was compared. Especially, by using the wavelet packet transform toolkit on MATLAB, An image was preprocessed and then the edge was extracted, and getting more clearly cut image of edge. The segmentation methods include operations as erosion, dilation and other algorithms to preprocess the images. It is of great importance to segment different areas in digital images in field real time, so as to be applied in precision farming, to saving energy and herbicide and many other materials. At present time Large scale software as MATLAB on PC was used, but the computation can be reduced and integrated into a small embed system, which means that the application of this technique in agricultural engineering is feasible and of great economical value.

  15. CCD Measurements of Double and Multiple Stars at NAO Rozhen and ASV in 2015

    NASA Astrophysics Data System (ADS)

    Cvetković, Z.; Pavlović, R.; Boeva, S.

    2017-04-01

    Results of CCD observations of 154 double or multiple stars, made with the 2 m telescope of the Bulgarian National Astronomical Observatory at Rozhen over five nights in 2015, are presented. This is the ninth series of measurements of CCD frames obtained at Rozhen. We also present results of CCD observations of 323 double or multiple stars made with the 0.6 m telescope of the Serbian Astronomical Station on the mountain of Vidojevica over 23 nights in 2015. This is the fourth series of measurements of CCD frames obtained at this station. This paper contains the results for the position angle and angular separation for 801 pairs and residuals for 127 pairs with published orbital elements or linear solutions. The angular separations are in the range from 1.″52 to 201.″56, with a median angular separation of 8.″26. We also present eight pairs that are measured for the first time and linear elements for five pairs.

  16. High-performance visible/UV CCD focal plane technology for spacebased applications

    NASA Technical Reports Server (NTRS)

    Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.

    1993-01-01

    We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.

  17. 7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA INSIDE CAMERA CAR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  18. Caught on Camera.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Describes the benefits of and rules to be followed when using surveillance cameras for school security. Discusses various camera models, including indoor and outdoor fixed position cameras, pan-tilt zoom cameras, and pinhole-lens cameras for covert surveillance. (EV)

  19. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation

    USGS Publications Warehouse

    Bell, J.F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.N.; Arneson, H.M.; Brown, D.; Collins, S.A.; Dingizian, A.; Elliot, S.T.; Hagerott, E.C.; Hayes, A.G.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.; Lemmon, M.T.; Morris, R.V.; Scherr, L.; Schwochert, M.; Shepard, M.K.; Smith, G.H.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Sullivan, W.T.; Wadsworth, M.

    2003-01-01

    The Panoramic Camera (Pancam) investigation is part of the Athena science payload launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The scientific goals of the Pancam investigation are to assess the high-resolution morphology, topography, and geologic context of each MER landing site, to obtain color images to constrain the mineralogic, photometric, and physical properties of surface materials, and to determine dust and aerosol opacity and physical properties from direct imaging of the Sun and sky. Pancam also provides mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high-resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach products. The Pancam optical, mechanical, and electronics design were optimized to achieve these science and mission support goals. Pancam is a multispectral, stereoscopic, panoramic imaging system consisting of two digital cameras mounted on a mast 1.5 m above the Martian surface. The mast allows Pancam to image the full 360?? in azimuth and ??90?? in elevation. Each Pancam camera utilizes a 1024 ?? 1024 active imaging area frame transfer CCD detector array. The Pancam optics have an effective focal length of 43 mm and a focal ratio f/20, yielding an instantaneous field of view of 0.27 mrad/pixel and a field of view of 16?? ?? 16??. Each rover's two Pancam "eyes" are separated by 30 cm and have a 1?? toe-in to provide adequate stereo parallax. Each eye also includes a small eight position filter wheel to allow surface mineralogic studies, multispectral sky imaging, and direct Sun imaging in the 400-1100 nm wavelength region. Pancam was designed and calibrated to operate within specifications on Mars at temperatures from -55?? to +5??C. An onboard calibration target and fiducial marks provide the capability

  20. Rethinking CCD's Significance in Estimating Late Neogene Whole Ocean Carbonate Budget

    NASA Astrophysics Data System (ADS)

    Si, W.; Rosenthal, Y.

    2017-12-01

    The global averaged calcite compensation depth (CCD) record is conventionally used to reconstruct two correlatable parameters of the carbonate system - the alkalinity budget of the ocean and/or the saturation state of the ocean. Accordingly, the available CCD reconstructions have been interpreted to suggest either relative stable (Pearson and Palmer, 2000) or increased alkalinity of the ocean over the past 15 Ma (Tyrrell and Zeebe, 2004; Pälike et al., 2012). However, CCD alone is insufficient to constrain the carbonate system because the weathering flux of alkalinity into the ocean is not only balanced by CaCO3 dissolution on the seafloor but also by the biologic production in the euphotic zone and, the CCD records cannot be readily interpreted as changes in either process. Here, we present evidence of the co-evolution of surface CaCO3 production and deepsea dissolution through the late Neogene. By examining separately the mass accumulation rates (MAR) of coccoliths, planktonic foraminifera, and quantifying dissolution (using a proxy revised from Broecker et al., 1999) in seventeen deepsea cores from multiple depth-transects, we find that 1) MAR of dissolution-resistant coccoliths was substantially higher in the mid Miocene and declining on a global scale towards the present; 2) unlike coccoliths, MAR of planktonic foraminifera, shows no apparent secular trend through that time; 3) the revised dissolution index, shows significantly improved preservation of planktonic foraminiferal shells over that time, particularly at intermediate water depth and exhibits close association between changes in preservation with key climatic events. Our new records have two immediate implications. First, the substantially weakened pelagic biogenic carbonate production from mid Miocene to present alone could account for the improved preservation of deepsea carbonates without calling for a scenario of increased weathering input. Second, with the constrain of global averaged CCD