Sample records for te single crystals

  1. ZnTeO{sub 3} crystal growth by a modified Bridgman technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawash, Jalal M., E-mail: nawashj@uww.edu; Lynn, Kelvin G.

    2014-12-15

    Highlights: • ZnTeO{sub 3} single crystals were grown for the first time by a modified Bridgman method. • The growth is still possible in a system that lacks congruent melting. • A growth is best when melt is exposed to a steeper axial thermal gradient. • Optical and electrical properties were investigated for the grown crystals. - Abstract: Zinc Tellurite (ZnTeO{sub 3}) crystals were grown for the first time using a modified Bridgman method with a 2.5 kHz radio frequency (RF) furnace. Single crystal growth of ZnTeO{sub 3} was hindered by many complicating factors, such as the evaporation of TeO{submore » 2} above 700 °C and the formation of more than one phase during crystal growth. While there were several successful runs that produced ZnTeO{sub 3} single crystals, it was found that large (≥10 cm{sup 3}) single ZnTeO{sub 3} crystals resulted when the crucible was exposed to a steeper vertical thermal gradient and when the temperature of the melt was raised to at least 860 °C. The results of powder X-ray diffraction (XRD) patterns were in accordance with the X-ray powder diffraction file (PDF) for ZnTeO{sub 3}. Some optical, electrical and structural properties of ZnTeO{sub 3} single crystals were reported in this paper.« less

  2. Photoluminescence of vapor and solution grown ZnTe single crystals

    NASA Astrophysics Data System (ADS)

    Biao, Y.; Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.; Su, C.-H.; Volz, M. E.; Szofran, F. R.; Gillies, D. C.

    1994-04-01

    ZnTe single crystals grown by horizontal physical vapor transport (PVT) and by vertical traveling heater method (THM) from a Te solution were characterized by photoluminescence (PL) at 10.6 K and by atomic force microscopy (AFM). Copper was identified by PL as a major impurity existing in both crystals, forming a substitutional acceptor, Cu Zn. The THM ZnTe crystals were found to contain more Cu impurity than the PVT ZnTe crystals. The formation of Cu Zn-V Te complexes and the effects of annealing, oxygen contamination and intentional Cu doping were also studied. Finally, the surface morphology analyzed by AFM was correlated to the PL results.

  3. Chalcogen (O2, S, Se, Te) atmosphere annealing induced bulk superconductivity in Fe1+yTe1-xSex single crystal

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Tsuchiya, Y.; Yamada, T.; Taen, T.; Pyon, S.; Shi, Z. X.; Tamegai, T.

    2014-09-01

    We reported a detailed study of Fe1+yTe0.6Se0.4 single crystals annealed in the atmosphere of chalcogens (O2, S, Se, Te). After annealing with appropriate amount of chalcogens, Fe1+yTe0.6Se0.4 single crystals show Tc higher than 14 K with a sharp transition width ∼1 K. Critical current density Jc for the annealed crystals reach a very high value ∼2-4 × 105 A/cm2 under zero field, and is also robust under applied field at low temperatures. Magneto-optical imaging reveal that the Jc is homogeneously distributed in the annealed crystals and isotropic in the ab-plane. Our results show that annealing in the atmosphere of chalcogens can successfully induce bulk superconductivity in Fe1+yTe0.6Se0.4.

  4. Flux free single crystal growth and characterization of FeTe1-xSx (x=0.00 and 0.10) crystals

    NASA Astrophysics Data System (ADS)

    Maheshwari, P. K.; Awana, V. P. S.

    2018-05-01

    We report synthesis of S doped FeTe1-xSx (x = 0.00 and 0.10) single crystals using flux free method via solid state reaction. Single crystal XRD patterns of FeTe1-xSx (x = 0.00 and 0.10) confirm the single crystalline property, as the crystals are grown in (00l) plane only. Powder XRD result of FeTe1-xSx (x = 0.00 and 0.10) crystals show that crystalline in tetragonal structure having P4/nmm space group. Rietveld refinement results show that both a and c lattice parameters decreases with S doping of 10% at Te site in FeTe1-xSx. Detailed scanning electron microscopy (SEM) image of FeTe0.90S0.10 shows that the growth of crystal is in slab-like morphology. Electrical resistivity measurement results onset confirm the superconductivity in S doped 10% sample at Te site and superconducting transition Tconset occurs at 9.5K and Tcoffset(ρ=0) occurs at 6.5K. ρ-T measurement has been performed under various magnetic field up to 12 Tesla down to 2K. Upper critical field Hc2(0), for x=0.10, which comes around 70Tesla, 60Tesla and 45Tesla of normal resistivity criterion ρn = 90%, 50% and 10% criterion respectively.

  5. Magnetic properties and magnetocaloric effect of a trigonal Te-rich Cr5Te8 single crystal

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Hua; Ren, Wei-Jun; Zhang, Zhi-Dong

    2018-01-01

    A trigonal Te-rich Cr5Te8 single crystal was grown by the Te-flux method. The usual and rotating magnetocaloric effects have been investigated by measuring isothermal magnetization curves on both a single crystal and polycrystalline powder. The Curie temperature and the magnetic moment of trigonal Te-rich Cr5Te8 were determined to be 250 K and 2.03 μB/Cr, respectively. The difference from the usual magnetocaloric effect, the rotating magnetocaloric effect has saturation tendency when the applied field is above the anisotropy field. The temperature, where the rotating entropy change has its maximum, decreases with increasing the magnetic field. The temperature dependence of the magnetocrystalline anisotropy is the determining factor for the rotating magnetocaloric effect.

  6. Ba 2TeO: A new layered oxytelluride

    DOE PAGES

    Besara, T.; Ramirez, D.; Sun, J.; ...

    2015-02-01

    For single crystals of the new semiconducting oxytelluride phase, Ba 2TeO, we synthesized from barium oxide powder and elemental tellurium in a molten barium metal flux. Ba 2TeO crystallizes in tetragonal symmetry with space group P4/nmm (#129), a=5.0337(1) Å, c=9.9437(4) Å, Z=2. The crystals were characterized by single crystal x-ray diffraction, heat capacity and optical measurements. Moreover, the optical measurements along with electronic band structure calculations indicate semiconductor behavior with a band gap of 2.93 eV. Resistivity measurements show that Ba 2TeO is highly insulating.

  7. Applied research on 2-6 compound materials for heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Bube, R. H.

    1975-01-01

    Several II-VI heterojunctions show promise for photovoltaic conversion of solar energy. The three of greatest interest are p-CdTe/n-CdS, p-CdTe/n-ZnSe, and p-ZnTe/n-CdSe. Several p-CdTe/n-CdS heterojunction cells have been prepared by close spaced transport deposition of p-CdTe on single crystal n-CdS, and by two source vacuum evaporation of n-CdS on single crystal p-CdTe. Both types of cells, in an experimental stage, are quite comparable, exhibiting values of quantum efficiency between 0.5 and 0.9, open circuit voltages between 0.50 and 0.66 V, fill factors between 0.4 and 0.6, and solar efficiencies up to 4 percent. Cells of p-ZnTe/n-CdSe have also been made by close spaced vapor transport deposition of n-CdSe on single crystal p-ZnTe.

  8. HRTEM Analysis of Crystallographic Defects in CdZnTe Single Crystal

    NASA Astrophysics Data System (ADS)

    Yasar, Bengisu; Ergunt, Yasin; Kabukcuoglu, Merve Pinar; Parlak, Mehmet; Turan, Rasit; Kalay, Yunus Eren

    2018-01-01

    In recent years, CdZnTe has attracted much attention due to its superior electrical and structural properties for room-temperature operable gamma and x-ray detectors. However, CdZnTe (CZT) material has often suffered from crystallographic defects encountered during the growth and post-growth processes. The identification and structural characterization of these defects is crucial to synthesize defect-free CdZnTe single crystals. In this study, Cd0.95 Zn0.05 Te single crystals were grown using a three-zone vertical Bridgman system. The single crystallinity of the material was ensured by using x-ray diffraction measurements. High-resolution electron microscopy (HRTEM) was used to characterize the nano-scale defects on the CdZnTe matrix. The linear defects oriented along the ⟨211⟩ direction were examined by transmission electron microscopy (TEM) and the corresponding HRTEM image simulations were performed by using a quantitative scanning TEM simulation package.

  9. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  10. Photorefractivity in a Titanium Doped ZnCdTe Crystal

    NASA Technical Reports Server (NTRS)

    Davis, M.; Collins, L.; Dyer, K.; Tong, J.; Ueda, A.; Chen, H.; Chen, K.-T.; Burger, A.; Pan, Z.; Morgan, S. H.

    1997-01-01

    Single crystals of Zn(.04)Cd(.96)Te was grown by horizontal physical vapor transport (PVT) method and doped by annealing with TiTe2 powder at 600 C for six days. Photorefractive two-beam coupling, along with photoluminescence and absorption spectroscopy, were used to characterize the ZnCdTe:Ti crystal. At 1.32 micrometers, the photorefractive gain has been measured as a function of the grating period. A gain of about 0.16/cm was obtained at an intensity of about 0.1 W/sq cm. The results of this titanium doped ZnCdTe crystal are compared to that of vanadium-doped CdTe crystals reported previously.

  11. Synthesis, crystal structure, and electrical and magnetic properties of BaMo{sub 6}Te{sub 6}: A novel reduced molybdenum telluride containing infinite chains of trans-face shared Mo{sub 6} octahedra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gall, Philippe; Guizouarn, Thierry; Potel, Michel

    Powder samples and single crystals of the new ternary compound BaMo{sub 6}Te{sub 6} were obtained by solid state reaction. The structure was determined by single-crystal X-ray diffraction. BaMo{sub 6}Te{sub 6} crystallizes in the hexagonal space group P6{sub 3}/m (No. 176) with unit-cell parameters a=9.3941(2) Å, c=4.5848(1) Å and Z=1. Full-matrix least-squares refinement on F{sup 2} using 452 independent reflections for 17 refinable parameters resulted in R1=0.0208 and wR2=0.0539. The structure consists of one-dimensional infinite chains of trans-face shared Mo{sub 6} octahedra capped by Se atoms. These chains that are running along the c axis are separated from each other bymore » nine-coordinate Ba atoms. Resistivity measurements on a single crystal indicated that the BaMo{sub 6}Te{sub 6} compound is metallic down to 160 K and semiconductor below. Magnetic susceptibility measurements showed that BaMo{sub 6}Te{sub 6} is weakly diamagnetic with no anomaly at the metal–semiconductor transition. - Graphical abstract: We present here the synthesis, the crystal structure, and the electrical and magnetic properties of the new compound BaMo{sub 6}Te{sub 6} containing infinite chains of trans-face shared Mo{sub 6} octahedra. - Highlights: • BaMo{sub 6}Te{sub 6} contains infinite chains of trans-face-sharing Mo{sub 6} octahedra |Mo{sub 6/2}|{sub ∞}{sup 1}. • Synthesis by solid state reaction. • Single-crystal X-ray study. • Continuous metal–nonmetal transition. • Anderson localization.« less

  12. Influence of Sn on the thermoelectric properties of (Bi{sub x}Sb{sub 1-x}){sub 2}Te{sub 3} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulbachinskii, V.A., E-mail: kulb@mig.phys.msu.ru; Kytin, V.G.; Kudryashov, A.A.

    2012-09-15

    The influence of tin on the thermoelectric properties of p-(Bi{sub x}Sb{sub 1-x}){sub 2}Te{sub 3} single crystals (x=0; 0.25; 0.5) has been investigated. The temperature dependence of the Seebeck coefficient S, the electrical conductivity {sigma}, the heat conductivity k and the thermoelectric figure of merit of p-(Bi{sub x}Sb{sub 1-x}){sub 2}Te{sub 3} single crystals were measured in the temperature range 7-300 K. By an increase the Sn content, the hole concentration increases in p-(Bi{sub x}Sb{sub 1-x}){sub 2-y}Sn{sub y}Te{sub 3}. The heat conductivity k of the p-(Bi{sub x}Sb{sub 1-x}){sub 2-y}Sn{sub y}Te{sub 3} crystals decreases due to the Sn doping, while the electrical conductivitymore » {sigma} increases in the temperature interval about 200« less

  13. Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Progress report No. 3, May 1-July 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bube, R.H.

    1981-01-01

    Preparation of the hot-wall vacuum deposition system nears completion and the first trial evaporation should take place in mid October. A UTI 100C Mass Analyzer with a 1 to 300 AMU capability has been ordered for the system. Preliminary tests indicate good temperature tracking between the furnace core and the CdTe source itself. Homojunction cells prepared by HWVE deposition of n-CdTe on p-CdTe substrates in October 1980 show no significant change in dark or light properties after open-circuit storage for the next 9 months. CdTe single crystal boules have been grown with P, As and Cs impurity. For P impuritymore » it appears from our data that the segregation coefficient is close to unity, that the value of hole density is controlled by the P and not by some unknown background acceptor, and that growth with excess Cd gives slightly higher values of hole density than growth with excess Te. CdTe:As crystals appear similar to CdTe:P crystals.« less

  14. Semiconductor-to-metal phase change in MoTe2 layers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Davydov, Albert V.; Krylyuk, Sergiy; Kalish, Irina; Meshi, Louisa; Beams, Ryan; Kalanyan, Berc; Sharma, Deepak K.; Beck, Megan; Bergeron, Hadallia; Hersam, Mark C.

    2016-09-01

    Molybdenum ditelluride (MoTe2), which can exist in a semiconducting prismatic hexagonal (2H) or a metallic distorted octahedral (1T') phases, is one of the very few materials that exhibit metal-semiconductor transition. Temperature-driven 2H - 1T' phase transition in bulk MoTe2 occurs at high temperatures (above 900 °C) and it is usually accompanied by Te loss. The latter can exacerbate the control over reversibility of the phase transition. Here, we study effects of high-temperature annealing on phase transition in MoTe2 single crystals. First, MoTe2 were grown in sealed evacuated quartz ampoules from polycrystalline MoTe2 powder in an iodine-assisted chemical vapor transport process at 1000 °C. The 2H and 1T' phases were stabilized by controlling the cooling rate after the growth. In particular, slow cooling at 10 °C/h rate yielded the 2H phase whereas the 1T' phase was stabilized by ice-water quenching. Next, the phase conversion was achieved by annealing MoTe2 single crystals in vacuum-sealed ampoules at 1000 °C with or without additional poly-MoTe2 powder followed by fast or slow cooling. Similarly to the CVT growth, slow cooling and quenching consistently produced 2H and 1T' phases, respectively, regardless of the initial MoTe2 crystal structure. We will discuss structural and optical properties of the as-grown and phase-converted MoTe2 single crystals using TEM, SEM/EDS, XRD, XPS and Raman. Electrical characteristics of two-terminal devices made from metallic 1T' and bottom-gated FETs made from 2H exfoliated crystals will also be presented.

  15. Low Temperature Photoluminescence of PVT Grown ZnSe and ZnSeTe

    NASA Technical Reports Server (NTRS)

    Wang, Ling Jun; Su, Ching-Hua; Lehoczky, S. L.

    1999-01-01

    ZnSe and ZnSeTe single crystals were grown by physical vapor transport (PVT) technique horizontally and vertically. The grown ZnSe and ZnSeTe single crystals were characterized by low temperature photoluminescence at 5 to 10 K using the 3.4 eV emission of an argon laser. The intensity of the sharp near band edge defect lines at 2.799, 2.783 eV and the intrinsic free exciton line at 2.802 eV were mapped on various crystal surfaces with different orientations to the gravitational field. The results show the effects of gravity vector orientation on the defect segregation. Comparison of the photoluminescence spectra of the ZeSe crystal before and after annealing in the Zn vapor shows that the 2.783 eV line of ZnSe crystal is related to the zinc vacancy. The photoluminescence spectra of the ternary ZnSeTe crystal were characterized by a single broad band from 2.2 to 2.4 eV, with a Full Width at Half Maximum (FWHM) of about 100 meV. The temperature dependence of the peak position and intensity were determined from 7 to 150 K.

  16. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2012-01-01

    Thermoelectric (TE) power generation is an increasingly important power generation technology. Major advantages include: no moving parts, low-weight, modularity, covertness/silence, high power density, low amortized cost, and long service life with minimum or no required maintenance. Despite low efficiency of power generation, there are many specialized needs for electrical power that TE technologies can uniquely and successfully address. Recent advances in thermoelectric materials technology have rekindled acute interest in thermoelectric power generation. We have developed single crystalline n- and p- type PbTe crystals and are also, developing PbTe bulk nanocomposites using PbTe nano powders and emerging filed assisted sintering technology (FAST). We will discuss the materials requirements for efficient thermoelectric power generation using waste heat at intermediate temperature range (6500 to 8500 K). We will present our recent results on production of n- and p- type PbTe crystals and their thermoelectric characterization. Relative characteristics and performance of PbTe bulk single crystals and nano composites for thermoelectric power generation will be discussed.

  17. Material and detector properties of cadmium manganese telluride (Cd 1-xMn xTe) crystals grown by the modified floating-zone method

    DOE PAGES

    Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; ...

    2014-12-24

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd 1-xMn xTe; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd 1-xMn xTe crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Thus, our experimental results show that CMT crystals grown by the modified floating zone method apparently are freemore » from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.« less

  18. Vertical Bridgman growth and characterization of Cd 0.95-xMn xZn 0.05Te (x=0.20, 0.30) single-crystal ingots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, A.; Kopach, V.; Kopach, O.

    Solid-liquid phase transitions in Cd 0.95-xMn xZn 0.05Te alloys with x = 0.20 and 0.30 were investigated by differential thermal analysis (DTA). The heating/cooling rates were 5 and 10 K/min with a melt dwell time of 10, 30 and 60 minutes. Cd 0.95-xMn xZn 0.05Te (x=0.20, 0.30) single-crystal ingots were grown by the vertical Bridgman method guided using the DTA results. Te inclusions (1-20 microns), typical for CdTe and Cd(Zn)Te crystals, were observed in the ingots by infrared transmission microscopy. The measured X-ray diffraction patterns showed that all compositions are found to be in a single phase. Using current-voltage (I-V)more » measurements, the resistivity of the samples from each ingot was estimated to be about 10 5 Ohm·cm. The optical transmission analysis demonstrated that the band-gap width of the investigated ingots increased from 1.77 to 1.88 eV with the increase of the MnTe content from 20 to 30 mol. %.« less

  19. Spin glass in semiconducting KFe 1.05 Ag 0.88 Te 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Hyejin; Lei, Hechang; Klobes, B.

    2015-05-01

    We report discovery of KFe 1.05 Ag 0.88 Te 2 single crystals with semiconducting spin glass ground state. Composition and structure analyses suggest nearly stoichiometric I 4 / mmm space group but allow for the existence of vacancies, absent in long-range semiconducting antiferromagnet KFe 0.85 Ag 1.15 Te 2 . The subtle change in stoichometry in Fe-Ag sublattice changes magnetic ground state but not conductivity, giving further insight into the semiconducting gap mechanism.

  20. Photoconductive and electro-optic effects in (Cd,Mg)Te single crystals measured in an experiment-on-chip configuration

    DOE PAGES

    Serafini, John; Hossain, A.; James, R. B.; ...

    2017-07-03

    We present our studies on both photoconductive (PC) and electro-optic (EO) responses of (Cd,Mg)Te single crystals. In an In-doped Cd 0.92Mg 0.08Te single crystal, subpicosecond electrical pulses were optically generated via a PC effect, coupled into a transmission line, and, subsequently, detected using an internal EO sampling scheme, all in the same (Cd,Mg)Te material. For photo-excitation and EO sampling, we used femtosecond optical pulses generated by the same Ti:sapphire laser with the wavelength 410 and 820 nm, respectively. The shortest transmission line distance between the optical excitation and EO sampling points was 75 μm. By measuring the transient waveforms atmore » different distances from the excitation point, we calculated the transmission-line complex propagation factor, as well as the THz frequency attenuation factor and the propagation velocity, all of which allowed us to reconstruct the electromagnetic transient generated directly at the excitation point, showing that the original PC transient was subpicosecond in duration with a fall time of ~500 fs. Finally, the measured EO retardation, together with the amount of the electric-field penetration, allowed us to determine the magnitude of the internal EO effect in our (Cd,Mg)Te crystal. The obtained THz-frequency EO coefficient was equal to 0.4 pm/V, which is at the lower end among the values reported for CdTe-based ternaries, due to a twinned structure and misalignment of the tested (Cd,Mg)Te crystal.« less

  1. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe 3-xGeTe 2

    DOE PAGES

    May, Andrew F.; Calder, Stuart A.; Cantoni, Claudia; ...

    2016-01-08

    The magnetic structure and phase diagram of the layered ferromagnetic compound Fe 3GeTe 2 have been investigated by a combination of synthesis, x-ray and neutron diffraction, high-resolution microscopy, and magnetization measurements. Single crystals were synthesized by self-flux reactions, and single-crystal neutron diffraction finds ferromagnetic order with moments of 1.11(5)μ B/Fe aligned along the c axis at 4 K. These flux-grown crystals have a lower Curie temperature T c ≈ 150 K than crystals previously grown by vapor transport (T c = 220 K). The difference is a reduced Fe content in the flux-grown crystals, as illustrated by the behavior observedmore » in a series of polycrystalline samples. As Fe content decreases, so do the Curie temperature, magnetic anisotropy, and net magnetization. Furthermore, Hall-effect and thermoelectric measurements on flux-grown crystals suggest that multiple carrier types contribute to electrical transport in Fe 3–xGeTe 2 and structurally similar Ni 3–xGeTe 2.« less

  2. Growth of CdZnTe Crystals for Radiation Detector Applications by Directional Solidification

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    Advances in Cadmium Zinc Telluride (Cd(sub 1-x)Zn(sub x)Te) growth techniques are needed for the production of large-scale arrays of gamma and x-ray astronomy. The research objective is to develop crystal growth recipes and techniques to obtain large, high quality CdZnTe single crystal with reduced defects, such as charge trapping, twinning, and tellurium precipitates, which degrade the performance of CdZnTe and, at the same time, to increase the yield of usable material from the CdZnTe ingot. A low gravity material experiment, "Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment", will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). One section of the flight experiment is the melt growth of CdZnTe ternary compounds. This talk will focus on the ground-based studies on the growth of Cd(sub 0.80)Zn(sub 0.20)Te crystals for radiation detector applications by directional solidification. In this investigation, we have improved the properties that are most critical for the detector applications (electrical properties and crystalline quality): a) Electrical resistivity: use high purity starting materials (with reproducible impurity levels) and controlled Cd over pressure during growth to reproducibly balance the impurity levels and Cd vacancy concentration b) Crystalline quality: use ultra-clean growth ampoule (no wetting after growth), optimized thermal profile and ampoule design, as well as a technique for supercool reduction to growth large single crystal with high crystalline quality

  3. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    DOEpatents

    Bolotnikov, Aleskey E [South Setauket, NY; James, Ralph B [Ridge, NY

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  4. Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Li, Decong; Deng, Shuping; Tang, Yu; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Yang, Peizhi; Deng, Shukang

    2018-06-01

    In this study, n-type Bi-doped single-crystal PbTe thermoelectric materials were prepared by melting and slow cooling method according to the stoichiometric ratio of Pb:Bi:Te = 1-x:x:1 (x = 0, 0.1, 0.15, 0.2, 0.25). The X-ray diffraction patterns of Pb1-xBixTe samples show that all main diffraction peaks are well matched with the PbTe matrix, which has a face-centered cubic structure with the space group Fm 3 bar m . Electron probe microanalysis reveals that Pb content decreases gradually, and Te content remains invariant basically with the increase of Bi content, indicating that Bi atoms are more likely to replace Pb atoms. Thermal analysis shows that the prepared samples possess relatively high thermal stability. Simultaneously, transmission electron microscopy and selected area electron diffraction pattern indicate that the prepared samples have typical single-crystal structures with good mechanical properties. Moreover, the electrical conductivity of the prepared samples improved significantly compared with that of the pure sample, and the maximum ZT value of 0.84 was obtained at 600 K by the sample with x = 0.2.

  5. Quartz crystal microbalance detection of DNA single-base mutation based on monobase-coded cadmium tellurium nanoprobe.

    PubMed

    Zhang, Yuqin; Lin, Fanbo; Zhang, Youyu; Li, Haitao; Zeng, Yue; Tang, Hao; Yao, Shouzhuo

    2011-01-01

    A new method for the detection of point mutation in DNA based on the monobase-coded cadmium tellurium nanoprobes and the quartz crystal microbalance (QCM) technique was reported. A point mutation (single-base, adenine, thymine, cytosine, and guanine, namely, A, T, C and G, mutation in DNA strand, respectively) DNA QCM sensor was fabricated by immobilizing single-base mutation DNA modified magnetic beads onto the electrode surface with an external magnetic field near the electrode. The DNA-modified magnetic beads were obtained from the biotin-avidin affinity reaction of biotinylated DNA and streptavidin-functionalized core/shell Fe(3)O(4)/Au magnetic nanoparticles, followed by a DNA hybridization reaction. Single-base coded CdTe nanoprobes (A-CdTe, T-CdTe, C-CdTe and G-CdTe, respectively) were used as the detection probes. The mutation site in DNA was distinguished by detecting the decreases of the resonance frequency of the piezoelectric quartz crystal when the coded nanoprobe was added to the test system. This proposed detection strategy for point mutation in DNA is proved to be sensitive, simple, repeatable and low-cost, consequently, it has a great potential for single nucleotide polymorphism (SNP) detection. 2011 © The Japan Society for Analytical Chemistry

  6. Relationship of Open-Circuit Voltage to CdTe Hole Concentration and Lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duenow, Joel N.; Burst, James M.; Albin, David S.

    We investigate the correlation of bulk CdTe and CdZnTe material properties with experimental open-circuit voltage (Voc) through fabrication and characterization of diverse single-crystal solar cells with different dopants. Several distinct crystal types reach Voc >900 mV. Correlations are in general agreement with Voc limits modeled from bulk minority-carrier lifetime and hole concentration.

  7. Synthesis, crystal structure, and properties of KSbO{sub 3}-type Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Manrong; Retuerto, Maria; Bok Go, Yong

    2013-01-15

    Single crystals of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} were prepared from NaCl+KCl flux. This compound adopts KSbO{sub 3}-type crystal structure as evidenced by electron and single crystal X-ray diffraction analysis. The three-dimensional channel structure is formed by corner-sharing octahedral (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} dimers and two identical (Bi1){sub 4}(Bi2){sub 2} interpenetrating lattices. The intra-dimer Mn/Te-Mn/Te distances in Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} are short and are consistent with weak metal-metal interactions. The mixed oxidation state of manganese and the edge-sharing octahedral features are confirmed by X-ray near edge absorption spectroscopy measurements, which indicate Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{supmore » VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}. The partial substitution of Te for Mn perturbs long-range magnetic interactions, thereby destroying the ferromagnetic ordering found in Bi{sub 3}Mn{sub 3}O{sub 11} (T{sub C}=150 K). - Graphical abstract: Single crystal of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} was grown from NaCl+KCl binary flux, suggesting that the high pressure Bi{sub 3}Mn{sub 3}O{sub 11} phase can be stabilized by partial substitution of Mn by Te at ambient pressure. Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} adopts a typical three dimensional KSbO{sub 3}-type crystal structure with three interpenetrating lattices and weak intra-dimmer metal-metal interaction caused by the d electrons of Mn. The edge-shared (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} octahedral dimer and mixed oxidation state of manganese (Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{sup VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}) features were evidenced by X-ray absorption near edge spectroscopy. Compared with Bi{sub 3}Mn{sub 3}O{sub 11}, the Te substituted Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} relaxes the crystal structure, but destroys the long-range magnetic ordering and gives short-range magnetic ordering below 5 K. Highlights: Black-Right-Pointing-Pointer High pressure Bi{sub 3}Mn{sub 3}O{sub 11} is stabilized by partial Te substitution at ambient pressure. Black-Right-Pointing-Pointer New KSbO{sub 3}-type Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} single crystal was grown from binary flux. Black-Right-Pointing-Pointer The presence of mixed oxidation state of manganese is evidenced by XANES study. Black-Right-Pointing-Pointer The Te-substitution destroys the long-range magnetic ordering and relaxes the structure.« less

  8. Defect chemistry and characterization of (Hg, Cd)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1981-01-01

    Single crystal samples of phosphorus doped Hg sub 0.8 Cd sub 0.2 Te were anneald at temperatures varying from 450 C to 600 C in various Hg atmospheres. The samples were quenched to room temperature from the annealing temperatures. Hall effect and mobility measurements were performed at 77 K on all these samples. The results indicate the crystals to be p type for a total phosphorus concentration of 10 to the 19th power/cu cm in all the samples. The hole concentration at 77 K increases with increasing Hg pressures at 450 C and 500 C contrary to the observation in undoped crystals. Also, at low Hg pressures the concentration of holes in the phosphorus doped crystals is lower than in the undoped crystals. The hole concentration in all the samples is lower than the intrinsic carrier concentration at the annealing temperatures. The hole mobility in the doped crystals is similar to that in the undoped crystals. A defect model according to which phosphorus behaves as a single acceptor interstitially, occupying Te lattice sites while it acts as a single donor occupying Hg lattice sites was established. Equilibrum constants established for the incorporation of all the phosphorus species explain the experimental results

  9. Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe

    DOE PAGES

    Burst, James M.; Farrell, Stuart B.; Albin, David S.; ...

    2016-11-01

    CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 10 16 cm -3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 10 16 cm -3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl 2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. In conclusion, this combination of long lifetime, high carrier concentration, and improved stability canmore » help overcome historic barriers for CdTe solar cell development.« less

  10. Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burst, James M.; Farrell, Stuart B.; Albin, David S.

    CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 10 16 cm -3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 10 16 cm -3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl 2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. In conclusion, this combination of long lifetime, high carrier concentration, and improved stability canmore » help overcome historic barriers for CdTe solar cell development.« less

  11. High field (up to 140 kOe) angle dependent magneto transport of Bi2Te3 single crystals

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Maheshwari, P. K.; Tiwari, Brajesh; Awana, V. P. S.

    2018-01-01

    We report the angle dependent high field (up to 140 kOe) magneto transport of Bi2Te3 single crystals, a well-known topological insulator. The crystals were grown from melt of constituent elements via solid state reaction route by self-flux method. Details of crystal growth along with their brief characterisation up to 5 Tesla applied field was reported by some of us recently (Sultana et al 2017 J. Magn. Magn. Mater. 428 213). The angle dependence of the magneto-resistance (MR) of Bi2Te3 follows the cos (θ) function i.e., MR is responsive, when the applied field is perpendicular (tilt angle θ = 0° and/or 180°) to the transport current. The low field (±10 kOe) MR showed the signatures of weak anti localisation character with typical ν-type cusp near origin at 5 K. Further, the MR is linear right up to highest applied field of 140 kOe. The large positive MR are observed up to high temperatures and are above 250% and 150% at 140 kOe in perpendicular fields at 50 K and 100 K respectively. Heat capacity C P(T) measurements revealed the value of Debye temperature (ѲD) to be 135 K. Angle resolved photoemission spectroscopy data clearly showed that the bulk Bi2Te3 single crystal consists of a single Dirac cone.

  12. Superconductivity and valence state in layered single-crystal HfAs1.67Te0.12

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Yu, Jia; Zhang, Shuai; Chen, Genfu

    2018-01-01

    We report a detailed study on single crystals of HfAs1.67Te0.12 within a PbFCl-type layered structure. The single crystals of the title compound were successfully grown using a chemical transport reaction. The temperature dependence of electrical resistivity ρ (T), AC magnetic susceptibility {χ }{AC}(T) and specific heat C(T) show a bulk superconductivity with transition temperature T c = 1.67 K. The jump of C/T at T c is comparable to the traditional BCS weak-coupling model. A full H-T phase diagram is established using the results of ρ (T,H) and C(T) under fields, suggesting a rather weak anisotropy [({H}c2\\parallel {ab}(0)/{H}c2\\parallel c(0)] of 1.8 in orbital limit dominated three-dimension-like superconducting system. The mixed-valence states of Hf and As observed in the binding energy from x-ray photoelectron spectroscopy are consistent with the single-crystal x-ray diffraction analysis, indicating that the As-Te disorder prefers to occur in the [HfAs] layer and a large amount of vacancies are present in tetragonal As layer. As compared to HfAs1.7Se0.2 (T c = 0.52 K), a positive-like vacancy effect on T c has been confirmed in HfAs1.67Te0.12. The analysis of the Hall coefficient implies that the hole-type carriers dominate the transport properties, which is in good agreement with the hole pockets at Fermi surface obtained in a band structure calculation. The detailed study of single-crystal HfAs1.67Te0.12 provides a possible candidate to discuss the non-magnetic Kondo effect.

  13. Photoconductive and electro-optic effects in (Cd,Mg)Te single crystals measured in an experiment-on-chip configuration

    NASA Astrophysics Data System (ADS)

    Serafini, John; Hossain, A.; James, R. B.; Guziewicz, M.; Kruszka, R.; Słysz, W.; Kochanowska, D.; Domagala, J. Z.; Mycielski, A.; Sobolewski, Roman

    2017-07-01

    We present our studies on both photoconductive (PC) and electro-optic (EO) responses of (Cd,Mg)Te single crystals. In an In-doped Cd0.92Mg0.08Te single crystal, subpicosecond electrical pulses were optically generated via a PC effect, coupled into a transmission line, and, subsequently, detected using an internal EO sampling scheme, all in the same (Cd,Mg)Te material. For photo-excitation and EO sampling, we used femtosecond optical pulses generated by the same Ti:sapphire laser with the wavelengths of 410 and 820 nm, respectively. The shortest transmission line distance between the optical excitation and EO sampling points was 75 μm. By measuring the transient waveforms at different distances from the excitation point, we calculated the transmission-line complex propagation factor, as well as the THz frequency attenuation factor and the propagation velocity, all of which allowed us to reconstruct the electromagnetic transient generated directly at the excitation point, showing that the original PC transient was subpicosecond in duration with a fall time of ˜500 fs. Finally, the measured EO retardation, together with the amount of the electric-field penetration, allowed us to determine the magnitude of the internal EO effect in our (Cd,Mg)Te crystal. The obtained THz-frequency EO coefficient was equal to 0.4 pm/V, which is at the lower end among the values reported for CdTe-based ternaries, apparently, due to the disorientation of the tested crystal that resulted in the non-optimal EO measurement condition.

  14. Thermoelectric properties of Ge 1-xSn xTe crystals grown by vertical Bridgman method

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; Ferng, N. J.; Gau, H. J.

    2007-06-01

    Single crystals of Ge 1-xSn xTe compounds with x=0, 0.8, 0.9 and 1.0 were grown by vertical Bridgman method. The crystalline phase and stochiometry for these crystals were investigated by X-ray diffraction, metallographic microscope as well as electron-probe microanalysis (EPMA). Electrical property of the as-grown samples was characterized using room temperature resistivity and Hall measurements. The thermoelectric behaviors for the Ge 1-xSn xTe crystals were studied by means of thermal and carrier transport measurements. Temperature dependences of resistivity, Seebeck coefficient and thermal conductivity for the various compositions of Ge 1-xSn xTe were analyzed. A two-valence band model was proposed to describe the temperature dependence of thermoelectric property of the Ge 1-xSn xTe crystals. The dimensionless thermoelectric figure of merit ZT for the alloys was evaluated and discussed.

  15. Plasticity of Cl-Te-Cl Fragments. Synthesis, Single-Crystal X-ray, and NBO Study of (1-Thia-2-tellura-1-phenyl-4-chloro)cyclopentane 2,2,2-Trichloride.

    PubMed

    Sundberg, Markku R.; Laitalainen, Tarja; Bergman, Jan; Uggla, Rolf; Matikainen, Jorma; Kaltia, Seppo

    1998-06-01

    Tellurium tetrachloride and allylphenyl sulfide react to form (1-thia-2-tellura-1-phenyl-4-chloro)cyclopentane 2,2,2-trichloride. The crystal and molecular structure were determined by single-crystal X-ray techniques. The crystals belong to the monoclinic system, space group P2(1)/c (No. 14) with a = 6.020(3) Å, b = 11.46(1) Å, c = 20.156(2) Å, beta = 97.53(2) degrees, V = 1379(1) Å(3), and Z = 4. The structure was refined to the final R value of 0.036. The coordination around Te(IV) is distorted psi octahedral with three Cl atoms in the equatorial positions. The axial Te(1)-C(1) bond opposite to the lone pair of electrons at the Te(IV) atom completes the coordination polyhedron. The intramolecular Te-S distance is 2.903(3) Å. Symmetric and asymmetric deformation modes were established to describe the plasticity of the Cl-Te-Cl fragments extracted from the Cambridge Structural Database. The hypervalency of Te(IV) manifests itself as plasticity in the equatorial plane of the coordination sphere. The NBO calculations show that all of the equatorial Te-Cl bonds are highly polarized and the electrons reside mainly on the Cl atoms.

  16. Growth, Crystal Structure, Theoretical Analysis and Properties of Te4+-Doped KTiOPO4

    NASA Astrophysics Data System (ADS)

    Liu, Lintao; Yao, Qian; Zhang, Junying; Dong, Weimin; Li, Jing; Wang, Jiyang; Boughton, Robert I.

    2018-04-01

    A single crystal of Te4+-doped KTiOPO4(Te:KTP) has been grown by the flux method. The electronic structure and density of states of KTiOPO4 (KTP) and Te:KTP were calculated from first principles. As the results reveal, there is no change in the space group or lattice structure of Te:KTP, but that some increase in lattice parameters occurred. The chemical composition of Te:KTP was analyzed using x-ray photoelectron spectroscopy (XPS). The possible existence of Ti3+ has been evaluated by measuring the electron paramagnetic resonance spectrum, and the results reveal that the ion is absent from this crystal. It was observed that Te4+ doping reduces the conductivity of the crystal from measurements of its conductivity at different temperatures and frequencies, indicating that Te:KTP has excellent electro-optical properties. The effect of Te4+ doping on the second harmonic generation in KTP was also studied. The thermal expansion, thermal diffusivity, thermal conductivity and specific heat capacity of KTP and Te:KTP were determined.

  17. Preparation of High Purity CdTe for Nuclear Detector: Electrical and Nuclear Characterization

    NASA Astrophysics Data System (ADS)

    Zaiour, A.; Ayoub, M.; Hamié, A.; Fawaz, A.; Hage-ali, M.

    High purity crystal with controllable electrical properties, however, control of the electrical properties of CdTe has not yet been fully achieved. Using the refined Cd and Te as starting materials, extremely high-purity CdTe single crystals were prepared by the traditional vertical THM. The nature of the defects involved in the transitions was studied by analyzing the position of the energy levels by TSC method. The resolution of 4.2 keV (FWHM) confirms the high quality and stability of the detectors: TSC spectrum was in coherence with detectors spectrum with a horizontal plate between 0.2 and 0.6 eV. The enhancement in resolution of detectors with a full width at half- maximum (less than 0.31 meV), lead to confirm that the combination of vacuum distillation and zone refining was very effective to obtain more purified CdTe single crystals for photovoltaic or nuclear detectors with better physical properties.

  18. Growth experiment of narrow band-gap semiconductor PbSnTe single crystals in space (M-1)

    NASA Technical Reports Server (NTRS)

    Yamada, Tomoaki

    1993-01-01

    An experiment on crystal growth of Pb(1-x)Sn(x)Te in microgravity is planned. This material is an alloy of the compound semiconductors PbTe and SnTe. It is a promising material for infrared diode lasers and detectors in the wavelength region between 6 and 30 micron. Since the electrical properties of Pb(1-x)Sn(x)Te depend greatly on the Pb/Sn ratio and crystalline defects as well as impurity concentration, homogeneous, defect-free, high-quality crystals are anticipated. Although many growth methods, such as the pulling method, the Bridgman method, the vapor growth method, etc., have been applied to the growth of Pb(1-x)Sn(x)Te, large, homogeneous, low-defect-density crystals have not yet been grown on Earth. The unsuccessful results were caused by buoyancy-driven convection in the fluids induced by the specific gravity difference between heated and cooled fluids on Earth. A crystal is grown by cooling the melt from one end of the ampoule. In crystal growth from the melt, about 30 percent of the SnTe in the melt is rejected at the solid-liquid interface during solidification. On Earth, the rejected SnTe is completely mixed with the remaining melt by convection in the melt. Therefore, SnTe concentration in the melt, and accordingly in the crystal, increases as the crystal grows. In the microgravity environment, buoyancy-driven convection is suppressed because the specific gravity difference is negligible. In that case, the rejected SnTe remains at the solid-liquid interface and its concentration increases only at the interface. If the growth rate is higher than the PbTe-SnTe interdiffusion rate, the amount of SnTe which diffuses from the interface into the melt increases as SnTe piles up at the interface, and finally it balances the amount of rejected SnTe during solidification, resulting in steady-state SnTe transportation at the interface. By using this principle, compositionally homogeneous crystals can be grown. Furthermore, low-defect-density crystals will be grown in microgravity, because convection causes crystalline defects by mising hot and cold fluids and generating temperature fluctuations in them.

  19. Electrical and Thermal Conductivity of Solid Solution Sn1- x Mn x Te (0 ≥ x ≥ 0.04)

    NASA Astrophysics Data System (ADS)

    Akhundova, N. M.

    2018-01-01

    Electrical and thermal properties of the Sn1-xMnxTe single crystals (0 ≥ x ≥ 0.04) with contacts of eutectic alloy 57Bi + 43Sn (in mass%) are investigated at temperatures from 77 to 300 K. Experimental results show that this alloy with specified single crystals forms ohmic contact with a sufficiently low contact resistance. The electronic thermal conductivity in some samples reaches about 50% of the total thermal conductivity, and structural defects contribute significantly to the thermal resistance of the crystals.

  20. Synthesis, crystal structures and luminescence properties of the Eu 3+-doped yttrium oxotellurates(IV) Y 2Te 4O 11 and Y 2Te 5O 13

    NASA Astrophysics Data System (ADS)

    Höss, Patrick; Osvet, Andres; Meister, Frank; Batentschuk, Miroslaw; Winnacker, Albrecht; Schleid, Thomas

    2008-10-01

    Y 2Te 4O 11:Eu 3+ and Y 2Te 5O 13:Eu 3+ single crystals in sub-millimeter scale were synthesized from the binary oxides (Y 2O 3, Eu 2O 3 and TeO 2) using CsCl as fluxing agent. Crystallographic structures of the undoped yttrium oxotellurates(IV) Y 2Te 4O 11 and Y 2Te 5O 13 have been determined and refined from single-crystal X-ray diffraction data. In Y 2Te 4O 11, a layered structure is present where the reticulated sheets consisting of edge-sharing [YO 8] 13- polyhedra are interconnected by the oxotellurate(IV) units, whereas in Y 2Te 5O 13 only double chains of condensed yttrium-oxygen polyhedra with coordination numbers of 7 and 8 are left, now linked in two crystallographic directions by the oxotellurate(IV) entities. The Eu 3+ luminescence spectra and the decay time from different energy levels of the doped compounds were investigated and all detected emission levels were identified. Luminescence properties of the Eu 3+ cations have been interpreted in consideration of the now accessible detailed crystallographic data of the yttrium compounds, providing the possibility to examine the influence of the local symmetry of the oxygen coordination spheres.

  1. Quench hardening of Sb0.2 Bi1.8Te3, Bi2Te2.8Se0.2 and Sn0.2 Bi1.8Te3 single crystals

    NASA Astrophysics Data System (ADS)

    Soni, P. H.

    2018-02-01

    The V2-VI3 intermetallics are narrow band gap semiconductors and well known for their thermoelectric properties. They therefore offer a convenient route to tune band gap for manipulating thermoelectric parameters. The V group element Sb can be fruitfully used to substitute Bi in various proportions thus forming a psuedobinary solid solution. The electronic in general and the thermoelectric properties in particular of this psuedobinary have been amply reported. However there are no reports found on mechanical properties. I have used Sb0.2 Bi1.8Te3, Bi2Te2.8Se0.2 and Sn0.2 Bi1.8Te3single crystals grown using Bridgman technique for the quenching treatment followed by hardness testing. Vickers hardness tests were conducted on the cleavage planes of the crystals quenched from various high temperatures and the quench hardenening coefficient values have been determined. The hardness tests were carried out at various applied loads also to explore load dependence of the measured hardness. The results are reported in the paper.

  2. In-situ crystallization of GeTe\\GaSb phase change memory stacked films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velea, A., E-mail: alin.velea@psi.ch; National Institute of Materials Physics, RO-077125 Magurele, Ilfov; Borca, C. N.

    2014-12-21

    Single and double layer phase change memory structures based on GeTe and GaSb thin films were deposited by pulsed laser deposition (PLD). Their crystallization behavior was studied using in-situ synchrotron techniques. Electrical resistance vs. temperature investigations, using the four points probe method, showed transition temperatures of 138 °C and 198 °C for GeTe and GaSb single films, respectively. It was found that after GeTe crystallization in the stacked films, Ga atoms from the GaSb layer diffused in the vacancies of the GeTe crystalline structure. Therefore, the crystallization temperature of the Sb-rich GaSb layer is decreased by more than 30 °C. Furthermore, at 210 °C,more » the antimony excess from GaSb films crystallizes as a secondary phase. At higher annealing temperatures, the crystalline Sb phase increased on the expense of GaSb crystalline phase which was reduced. Extended X-ray absorption fine structure (EXAFS) measurements at the Ga and Ge K-edges revealed changes in their local atomic environments as a function of the annealing temperature. Simulations unveil a tetrahedral configuration in the amorphous state and octahedral configuration in the crystalline state for Ge atoms, while Ga is four-fold coordinated in both as-deposited and annealed samples.« less

  3. Synthesis and temperature dependent Raman studies of large crystalline faces topological GeBi4Te7 single crystal

    NASA Astrophysics Data System (ADS)

    Mal, Priyanath; Bera, G.; Turpu, G. R.; Srivastava, Sunil K.; Das, Pradip

    2018-05-01

    We present a study of structural and vibrational properties of topological insulator GeBi4Te7. Modified Bridgeman technique is employed to synthesize the single crystal with relatively large crystalline faces. Sharp (0 0 l) reflection confirms the high crystallinity of the single crystal. We have performed temperature dependent Raman measurement for both parallel and perpendicular to crystallographic c axis geometry. In parallel configuration we have observed seven Raman modes whereas in perpendicular geometry only four of these are identified. Appearance and disappearance of Raman modes having different intensities for parallel and perpendicular to c measurement attribute to the mode polarization. Progressive blue shift is observed with lowering temperature, reflects the increase in internal stress.

  4. Broadband one-dimensional photonic crystal wave plate containing single-negative materials.

    PubMed

    Chen, Yihang

    2010-09-13

    The properties of the phase shift of wave reflected from one-dimensional photonic crystals consisting of periodic layers of single-negative (permittivity- or permeability-negative) materials are demonstrated. As the incident angle increases, the reflection phase shift of TE wave decreases, while that of TM wave increases. The phase shifts of both polarized waves vary smoothly as the frequency changes across the photonic crystal stop band. Consequently, the difference between the phase shift of TE and that of TM wave could remain constant in a rather wide frequency range inside the stop band. These properties are useful to design wave plate or retarder which can be used in wide spectral band. In addition, a broadband photonic crystal quarter-wave plate is proposed.

  5. Superconductivity induced by In substitution into the topological crystalline insulator Pb0.5Sn0.5Te

    NASA Astrophysics Data System (ADS)

    Zhong, R. D.; Schneeloch, J. A.; Liu, T. S.; Camino, F. E.; Tranquada, J. M.; Gu, G. D.

    2014-07-01

    Indium substitution turns the topological crystalline insulator (TCI) Pb0.5Sn0.5Te into a possible topological superconductor. To investigate the effect of the indium concentration on the crystal structure and superconducting properties of (Pb0.5Sn0.5)1-xInxTe, we have grown high-quality single crystals using a modified floating-zone method and have performed systematic studies for indium content in the range 0≤x≤0.35. We find that the single crystals retain the rocksalt structure up to the solubility limit of indium (x ˜0.30). Experimental dependencies of the superconducting transition temperature (Tc) and the upper critical magnetic field (Hc2) on the indium content x have been measured. The maximum Tc is determined to be 4.7 K at x =0.30, with μ0Hc2(T =0)≈5 T.

  6. Sn-doped Bi 1.1Sb 0.9Te 2S bulk crystal topological insulator with excellent properties

    DOE PAGES

    S. K. Kushwaha; Pletikosic, I.; Liang, T.; ...

    2016-04-27

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons, and be growable as large, high quality bulk single crystals. Here we show that this materials obstacle is overcome by bulk crystals of lightly Sn-doped Bi 1.1Sb 0.9Te 2S grown by the Vertical Bridgeman method.more » We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunneling microscopy, transport studies, X-ray diffraction, and Raman scattering. We present this material as a high quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.« less

  7. Toward Single Atom Chains with Exfoliated Tellurium.

    PubMed

    Churchill, Hugh O H; Salamo, Gregory J; Yu, Shui-Qing; Hironaka, Takayuki; Hu, Xian; Stacy, Jeb; Shih, Ishiang

    2017-08-10

    We demonstrate that the atom chain structure of Te allows it to be exfoliated as ultra-thin flakes and nanowires. Atomic force microscopy of exfoliated Te shows that thicknesses of 1-2 nm and widths below 100 nm can be exfoliated with this method. The Raman modes of exfoliated Te match those of bulk Te, with a slight shift (4 cm -1 ) due to a hardening of the A 1 and E modes. Polarized Raman spectroscopy is used to determine the crystal orientation of exfoliated Te flakes. These experiments establish exfoliation as a route to achieve nanoscale trigonal Te while also demonstrating the potential for fabrication of single atom chains of Te.

  8. Structural insights into the thermal decomposition sequence of barium tetrahydrogenorthotellurate(VI), Ba[H{sub 4}TeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weil, Matthias, E-mail: Matthias.Weil@tuwien.ac.at; Stöger, Berthold; Gierl-Mayer, Christian

    2016-09-15

    The compounds Ba[H{sub 4}TeO{sub 6}] (I), Ba[H{sub 2}TeO{sub 5}] (II), Ba[Te{sub 2}O{sub 6}(OH){sub 2}] (III) and Ba[TeO{sub 4}] (IV) were prepared by application of a diffusion method (I), under hydrothermal conditions (II and III) and from solid state reactions (IV), respectively. Structure analysis on the basis of single crystal X-ray diffraction data revealed novel structure types for (I), (II) and (III) and isotypism of (IV) with PrSbO{sub 4} and LaSbO{sub 4}. Common feature of the four oxotellurate(VI) structures are [TeO{sub 6}] octahedra. Whereas in the crystal structure of (I) the octahedral units are isolated, they are condensed into chains viamore » corner-sharing in (II) and via edge-sharing in (III) and (IV). The coordination numbers of the barium cations in the four structures range from seven to ten. Although hydrogen atom positions could not be located for the structures of (I) and (II), short interpolyhedral O···O contacts are evident for strong hydrogen bonding. The temperature behaviour of (I), (II) and (IV) was monitored by simultaneous thermal analysis (STA) measurements and in situ powder X-ray diffraction, revealing the decomposition sequence Ba[H{sub 4}TeO{sub 6}] → Ba[H{sub 2}TeO{sub 5}] → Ba[TeO{sub 4}]→ Ba[TeO{sub 3}] upon heating to temperatures up to 900 °C. - Graphical abstract: The crystal structures of the four oxotellurates(VI) were determined from single crystal data. The thermal decomposition of Ba[H{sub 4}TeO{sub 6}], monitored by temperature-dependent X-ray powder diffraction and simultaneous thermal analysis measurements, involves two condensation reactions according to Ba[H{sub 4}TeO{sub 6}]→Ba[H{sub 2}TeO{sub 5}]+H{sub 2}O(↑)→Ba[TeO{sub 4}]+ H{sub 2}O(↑). Display Omitted.« less

  9. Electron microscopy of iron chalcogenide FeTe(Se) films

    NASA Astrophysics Data System (ADS)

    Shchichko, I. O.; Presnyakov, M. Yu.; Stepantsov, E. A.; Kazakov, S. M.; Antipov, E. V.; Makarova, I. P.; Vasil'ev, A. L.

    2015-05-01

    The structure of Fe1 + δTe1 - x Se x films ( x = 0; 0.05) grown on single-crystal MgO and LaAlO3 substrates has been investigated by transmission and scanning transmission electron microscopy. The study of Fe1.11Te/MgO structures has revealed two crystallographic orientation relationships between the film and substrate. It is shown that the lattice mismatch between the film and substrate is compensated for by the formation of misfit dislocations. The Burgers vector projection is determined. The stresses in the film can partially be compensated for due to the formation of an intermediate disordered layer. It is shown that a FeTe0.5Se0.5 film grown on a LaAlO3 substrate is single-crystal and that the FeTe0.5Se0.5/LaAlO3 interface in a selected region is coherent. The orientation relationships between the film and substrate are also determined for this case.

  10. Heavy doping of CdTe single crystals by Cr ion implantation

    NASA Astrophysics Data System (ADS)

    Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian

    2018-03-01

    Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.

  11. Tunable Resistance or Magnetoresistance Cusp and Extremely Large Magnetoresistance in Defect-Engineered HfTe5 -δ Single Crystals

    NASA Astrophysics Data System (ADS)

    Lv, Yang-Yang; Li, Xiao; Cao, Lin; Lin, Dajun; Yao, Shu-Hua; Chen, Si-Si; Dong, Song-Tao; Zhou, Jian; Chen, Y. B.; Chen, Yan-Feng

    2018-05-01

    The electrical transport behaviors of novel materials under the external magnetic field B , especially the large or tunable magnetoresistance (MR) effect, are of broad importance in both fundamental science and applications. Here three kinds of HfTe5 crystals with varied Te-deficiency concentrations are synthesized under different growth conditions, and they demonstrate distinct electrical and magnetotransport properties. The temperatures of the resistivity cusp or MR cusp of the as-grown HfTe5 -δ (δ =0.02 , 0.08, 0.13) crystals are tuned from 25 to 90 K. The maximum MR of these three HfTe5 -δ crystals, under 2 K and 9 T B , are 1.52 ×103% , 2.63 ×104% , and 6.91 ×103% for sample SI (HfTe4.98 ), SII (HfTe4.92 ), and SIII (HfTe4.87 ), respectively. The fitting of Hall data by the two-carrier model suggests that the extremely large MR effect of sample HfTe4.92 measured at 2 K is attributed to the cooperative action of the high mobility and the coexistence of the electron and hole carriers. Our work provides a viable route to tune superior MR properties in similar compounds through defect engineering, which may be promising to develop magnetic memory sensor devices.

  12. Intrinsic Polarization and Tunable Color of Electroluminescence from Organic Single Crystal-based Light-Emitting Devices

    PubMed Central

    Ding, Ran; Feng, Jing; Zhou, Wei; Zhang, Xu-Lin; Fang, Hong-Hua; Yang, Tong; Wang, Hai-Yu; Hotta, Shu; Sun, Hong-Bo

    2015-01-01

    A single crystal-based organic light-emitting device (OLED) with intrinsically polarized and color-tunable electroluminescence (EL) has been demonstrated without any subsequent treatment. The polarization ratio of 5:1 for the transversal-electric (TE) and transversal-magnetic (TM) polarization at the emission peak of 575 nm, and 4.7:1 for the TM to TE polarization at the emission peak of 635 nm, respectively, have been obtained. The emitting color is tunable between yellow, yellow-green and orange by changing the polarization angle. The polarized EL and the polarization-induced color tunability can be attributed to the anisotropic microcavity formed by the BP3T crystal with uniaxial alignment of the molecules. PMID:26207723

  13. Spectroscopic ellipsometric studies of the dielectric function of Cd1-x-yMnxFeyTe single crystals

    NASA Astrophysics Data System (ADS)

    Hwang, Younghun; Kim, Hyekyeong; Um, Youngho; Park, Hyoyeol

    2004-06-01

    Cd1-x-yMnxFeyTe single crystals grown by the vertical Bridgman method have been studied by measuring the complex dielectric function using spectroscopic ellipsometry in the 1.5 5.5 eV photon energy range at room temperature. The CP energy parameters of the E0, E1, E1 + 1, and E2 structures were determined by fitting the second-derivative spectra (d2/d2) with a theoretical model, i.e., the standard critical point (SCP) line shapes. The E1, E1 + 1, and E2 energies decreased with increasing Fe composition y, which is due to the hybridization effect of the valence and conduction bands in Cd1-xMnxTe with Fe 3d levels.

  14. Charge-carrier mobilities in Cd(0.8)Zn(0.2)Te single crystals used as nuclear radiation detectors

    NASA Technical Reports Server (NTRS)

    Burshtein, Z.; Jayatirtha, H. N.; Burger, A.; Butler, J. F.; Apotovsky, B.; Doty, F. P.

    1993-01-01

    Charge-carrier mobilities were measured for the first time in Cd(0.8)Zn(0.2)Te single crystals using time-of-flight measurements of charge carriers produced by short (10 ns) light pulses from a frequency-doubled Nd:YAG laser (532 nm). The electron mobility displayed a T exp -1.1 dependence on the absolute temperature T in the range 200-320 K, with a room-temperature mobility of 1350 sq cm/V s. The hole mobility displayed a T exp -2.0 dependence in the same temperature range, with a room-temperature mobility of 120 sq cm/V s. Cd(0.8)Zn(0.2)Te appears to be a very favorable material for a room-temperature electronic nuclear radiation detector.

  15. Syntheses, crystal structures, and characterization of two new Tl+-Cu2+-Te6+ oxides: Tl4CuTeO6 and Tl6CuTe2O10

    NASA Astrophysics Data System (ADS)

    Yeon, Jeongho; Kim, Sang-Hwan; Green, Mark A.; Bhatti, Kanwal Preet; Leighton, C.; Shiv Halasyamani, P.

    2012-12-01

    Crystals and polycrystalline powders of two new oxide materials, Tl4CuTeO6 and Tl6CuTe2O10, have been synthesized by hydrothermal and solid-state methods. The materials were structurally characterized by single-crystal X-ray diffraction. Tl4CuTeO6 and Tl6CuTe2O10 exhibit one dimensional anionic slabs of [CuTeO6]4- and [CuTe2O10]6-, respectively. Common to both slabs is the occurrence of Cu2+O4 distorted squares and Te6+O6 octahedra. The slabs are separated by Tl+ cations. For Tl4CuTeO6, magnetic measurements indicate a maximum at ∼8 K in the temperature dependence of the susceptibility. Low temperature neutron diffraction data confirm no long-range magnetic ordering occurs and the susceptibility was adequately accounted for by fits to a Heisenberg alternating chain model. For Tl6CuTe2O10 on the other hand, magnetic measurements revealed paramagnetism with no evidence of long-range magnetic ordering. Infrared, UV-vis spectra, thermogravimetric, and differential thermal analyses are also reported. Crystal data: Tl4CuTeO6, Triclinic, space group P-1 (No. 2), a=5.8629(8) Å, b=8.7848(11) Å, c=9.2572(12) Å, α=66.0460(10), β=74.2010(10), γ=79.254(2), V=417.70(9) Å3, and Z=2; Tl6CuTe2O10, orthorhombic, space group Pnma (No. 62), a=10.8628(6) Å, b=11.4962(7) Å, c=10.7238(6) Å, V=1339.20(13) Å3, and Z=4.

  16. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, Sudhir B; Kutcher, Susan W; Palsoz, Witold

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated.more » Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.« less

  17. Selective conversion of {Mo132} Keplerate ion into 4-electron reduced crown-capped Keggin derivative [Te5Mo15O57](8-). A key intermediate to single-phase M1 multielement MoVTeO light-alkanes oxidation catalyst.

    PubMed

    Canioni, Romain; Marchal-Roch, Catherine; Leclerc-Laronze, Nathalie; Haouas, Mohamed; Taulèlle, Francis; Marrot, Jérôme; Paul, Sebastien; Lamonier, Carole; Paul, Jean-François; Loridant, Stéphane; Millet, Jean-Marc M; Cadot, Emmanuel

    2011-06-14

    {Mo(132)} Keplerate anion reacts with tellurites to give a soluble precursor to produce in hydrothermal conditions single-phase M1 MoVTeO light-alkanes oxidation catalyst. Characterization of this Te-containing intermediate by single-crystal X-ray diffraction, (125)Te NMR, UV-visible and redox titration reveals a molybdotellurite anion as a crown-capped Keggin derivative. This journal is © The Royal Society of Chemistry 2011

  18. Effect of Zn and Te beam intensity upon the film quality of ZnTe layers on severely lattice mismatched sapphire substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Nakasu, Taizo; Sun, W.; Kobayashi, M.; Asahi, T.

    2017-06-01

    Zinc telluride layers were grown on highly-lattice-mismatched sapphire substrates by molecular beam epitaxy, and their crystallographic properties were studied by means of X-ray diffraction pole figures. The crystal quality of the ZnTe thin film was further studied by scanning electron microscopy, X-ray rocking curves and low-temperature photoluminescence measurements. These methods show that high-crystallinity (111)-oriented single domain ZnTe layers with the flat surface and good optical properties are realized when the beam intensity ratio of Zn and Te beams is adjusted. The migration of Zn and Te was inhibited by excess surface material and cracks were appeared. In particular, excess Te inhibited the formation of a high-crystallinity ZnTe film. The optical properties of the ZnTe layer revealed that the exciton-related features were dominant, and therefore the film quality was reasonably high even though the lattice constants and the crystal structures were severely mismatched.

  19. Measuring Te inclusion uniformity over large areas for CdTe/CZT imaging and spectrometry sensors

    NASA Astrophysics Data System (ADS)

    Bolke, Joe; O'Brien, Kathryn; Wall, Peter; Spicer, Mike; Gélinas, Guillaume; Beaudry, Jean-Nicolas; Alexander, W. Brock

    2017-09-01

    CdTe and CZT materials are technologies for gamma and x-ray imaging for applications in industry, homeland security, defense, space, medical, and astrophysics. There remain challenges in uniformity over large detector areas (50 75 mm) due to a combination of material purity, handling, growth process, grown in defects, doping/compensation, and metal contacts/surface states. The influence of these various factors has yet to be explored at the large substrate level required for devices with higher resolution both spatially and spectroscopically. In this study, we looked at how the crystal growth processes affect the size and density distributions of microscopic Te inclusion defects. We were able to grow single crystals as large as 75 mm in diameter and spatially characterize three-dimensional defects and map the uniformity using IR microscopy. We report on the pattern of observed defects within wafers and its relation to instabilities at the crystal growth interface.

  20. Characterization of high-resistivity CdTe and Cd0.9Zn0.1Te crystals grown by Bridgman method for radiation detector applications

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Krishna, Ramesh M.; Pak, Rahmi O.; Mannan, Mohammad A.

    2014-09-01

    CdTe and Cd0.9Zn0.1Te (CZT) crystals have been studied extensively for various applications including x- and γ-ray imaging and high energy radiation detectors. The crystals were grown from zone refined ultra-pure precursor materials using a vertical Bridgman furnace. The growth process has been monitored, controlled, and optimized by a computer simulation and modeling program developed in our laboratory. The grown crystals were thoroughly characterized after cutting wafers from the ingots and processed by chemo-mechanical polishing (CMP). The infrared (IR) transmission images of the post-treated CdTe and CZT crystals showed average Te inclusion size of ~10 μm for CdTe and ~8 μm for CZT crystal. The etch pit density was ≤ 5×104 cm-2 for CdTe and ≤ 3×104 cm-2 for CZT. Various planar and Frisch collar detectors were fabricated and evaluated. From the current-voltage measurements, the electrical resistivity was estimated to be ~ 1.5×1010 Ω-cm for CdTe and 2-5×1011 Ω-cm for CZT. The Hecht analysis of electron and hole mobility-lifetime products (μτe and μτh) showed μτe = 2×10-3 cm2/V (μτh = 8×10-5 cm2/V) and 3-6×10-3 cm2/V (μτh = 4- 6×10-5 cm2/V) for CdTe and CZT, respectively. Detectors in single pixel, Frisch collar, and coplanar grid geometries were fabricated. Detectors in Frisch grid and guard-ring configuration were found to exhibit energy resolution of 1.4% and 2.6 %, respectively, for 662 keV gamma rays. Assessments of the detector performance have been carried out also using 241Am (60 keV) showing energy resolution of 4.2% FWHM.

  1. History of the "Detector Materials Engineering" Crystal Growth Process for Bulk Hg1- x Cd x Te

    NASA Astrophysics Data System (ADS)

    Higgins, W. M.; Nelson, D. A.; Roy, R. G.; Murosako, R. P.; Lancaster, R. A.; Tower, J.; Norton, P.

    2013-11-01

    This paper reviews the history and technology of a bulk Hg1- x Cd x Te crystal growth process that was developed in the early 1980s at Honeywell Electro-Optics Division (presently BAE Systems, Electronic Solutions). The crystal growth process name, DME, was an acronym for the department name: Detector Materials Engineering. This was an accelerated crucible rotation technique (ACRT) vertical traveling heater method growth process. Crystal growth occurred in the pseudobinary Hg1- x Cd x Te system. ACRT mixing allowed the lower-density, higher- x-value Hg1- x Cd x Te growth nutrient in the upper region of the ampoule to replenish the depleted melt and allowed the growth of constant- x-value, higher-density Hg1- x Cd x Te. The material grown by this research and production growth process yielded single crystals that had improved purity, compositional uniformity, precipitate density, and reproducibility in comparison with solid-state recrystallization and other bulk Hg1- x Cd x Te growth techniques. Radial and longitudinal nonuniformities in x-value for Hg1- x Cd x Te were reduced to <0.0008/cm. The net electrically active background impurities did not exceed 1 × 1014 cm-3. Electron mobilities in excess of 1.5 × 106 cm2/V-s were observed at 77 K. Structural defects of less than 104 cm-2 were measured. Te precipitates were not observed. As a result of these material improvements, long-wavelength infrared (LWIR) photoconductive devices fabricated from DME material had highly desired performance characteristics.

  2. Crystal growth and characterization of bulk Sb2Te3 topological insulator

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Gurjar, Ganesh; Patnaik, S.; Awana, V. P. S.

    2018-04-01

    The Sb2Te3 crystals are grown using the conventional self flux method via solid state reaction route, by melting constituent elements (Sb and Te) at high temperature (850 °C), followed by slow cooling (2 °C/h). As grown Sb2Te3 crystals are analysed for various physical properties by x-ray diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) coupled with Energy Dispersive x-ray Spectroscopy (EDAX) and electrical measurements under magnetic field (6 Tesla) down to low temperature (2.5 K). The XRD pattern revealed the growth of synthesized Sb2Te3 sample along (00l) plane, whereas the SEM along with EDAX measurements displayed the layered structure with near stoichiometric composition, without foreign contamination. The Raman scattering studies displayed known ({{{{A}}}1{{g}}}1, {{{{E}}}{{g}}}2 and {{{{A}}}1{{g}}}2) vibrational modes for the studied Sb2Te3. The temperature dependent electrical resistivity measurements illustrated the metallic nature of the as grown Sb2Te3 single crystal. Further, the magneto—transport studies represented linear positive magneto-resistance (MR) reaching up to 80% at 2.5 K under an applied field of 6 Tesla. The weak anti localization (WAL) related low field (±2 Tesla) magneto-conductance at low temperatures (2.5 K and 20 K) has been analysed and discussed using the Hikami—Larkin—Nagaoka (HLN) model. Summarily, the short letter reports an easy and versatile method for crystal growth of bulk Sb2Te3 topological insulator (TI) and its brief physical property characterization.

  3. Electrical properties of Pb{sub 1-x}Mn{sub x}Te single crystals with an excess of tellurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagieva, G. Z., E-mail: bagieva-gjulandam@rambler.ru; Abdinova, G. D.; Mustafayev, N. B.

    2013-03-15

    The effect of excess Te atoms (as high as 0.5 at %) and thermal treatment at 473 K for 120 h on the electrical conductivity {sigma}, the thermopower coefficient {alpha}, and the Hall coefficient R of Pb{sub 0.96}Mn{sub 0.04}Te single crystals in the temperature range {approx}77-300 K is investigated. It is shown that excess atoms of tellurium predominantly act as acceptor impurity centers at low concentrations in unannealed samples and form antisite defects at relatively high concentrations (0.05 at % or higher) being located mainly in vacancies of the lead sublattice, and decrease the hole concentration. As a result ofmore » annealing, certain lattice defects (for example, deformational) are healed, and the accommodation process for Te atoms at lead-sublattice vacancies is intensified. These processes substantially affect the values of the electrical parameters, their temperature dependences, as well as the sign of the thermopower and Hall coefficients of the samples.« less

  4. Third order nonlinear optical properties of a paratellurite single crystal

    NASA Astrophysics Data System (ADS)

    Duclère, J.-R.; Hayakawa, T.; Roginskii, E. M.; Smirnov, M. B.; Mirgorodsky, A.; Couderc, V.; Masson, O.; Colas, M.; Noguera, O.; Rodriguez, V.; Thomas, P.

    2018-05-01

    The (a,b) plane angular dependence of the third-order nonlinear optical susceptibility, χ(3) , of a c-cut paratellurite (α-TeO2) single crystal was quantitatively evaluated here by the Z-scan technique, using a Ti:sapphire femtosecond laser operated at 800 nm. In particular, the mean value Re( ⟨χ(3)⟩a,b )(α-TeO2) of the optical tensor has been extracted from such experiments via a direct comparison with the data collected for a fused silica reference glass plate. A R e (⟨χ(3)⟩(a,b )(α-TeO2)):R e (χ(3))(SiO2 glass) ratio roughly equal to 49.1 is found, and our result compares thus very favourably with the unique experimental value (a ratio of ˜50) reported by Kim et al. [J. Am. Ceram. Soc. 76, 2486 (1993)] for a pure TeO2 glass. In addition, it is shown that the angular dependence of the phase modulation within the (a,b) plane can be fully understood in the light of the strong dextro-rotatory power known for TeO2 materials. Taking into account the optical activity, some analytical model serving to estimate the diagonal and non-diagonal components of the third order nonlinear susceptibility tensor has been thus developed. Finally, Re( χxxxx(3) ) and Re( χxxyy(3) ) values of 95.1 ×10-22 m 2/V2 and 42.0 ×10-22 m2/V2 , respectively, are then deduced for a paratellurite single crystal, considering fused silica as a reference.

  5. Positron annihilation spectroscopy of vacancy-related defects in CdTe:Cl and CdZnTe:Ge at different stoichiometry deviations

    PubMed Central

    Šedivý, L.; Čížek, J.; Belas, E.; Grill, R.; Melikhova, O.

    2016-01-01

    Positron annihilation spectroscopy (PAS) was used to examine the effect of defined Cd-rich and Te-rich annealing on point defects in Cl-doped CdTe and Ge-doped CdZnTe semi-insulating single crystals. The as-grown crystals contain open-volume defects connected with Cd vacancies . It was found that the Cd vacancies agglomerate into clusters coupled with Cl in CdTe:Cl, and in CdZnTe:Ge they are coupled with Ge donors. While annealing in Cd pressure reduces of the density, subsequent annealing in Te pressure restores . The CdTe:Cl contains negatively-charged shallow traps interpreted as Rydberg states of A-centres and representing the major positron trapping sites at low temperature. Positrons confined in the shallow traps exhibit lifetime, which is shorter than the CdTe bulk lifetime. Interpretation of the PAS data was successfully combined with electrical resistivity, Hall effect measurements and chemical analysis, and allowed us to determine the principal point defect densities. PMID:26860684

  6. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    NASA Astrophysics Data System (ADS)

    Yang, Y.-B.; Seewald, L.; Mohanty, Dibyajyoti; Wang, Y.; Zhang, L. H.; Kisslinger, K.; Xie, Weiyu; Shi, J.; Bhat, I.; Zhang, Shengbai; Lu, T.-M.; Wang, G.-C.

    2017-08-01

    Single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (∼21-55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [1 bar2 1 bar]CdTe//[ 1 bar100]CdS//[010]mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. The use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.

  7. An Automated System for Accurately Tracking and Measuring Multiple Targets in Six Dimensions

    DTIC Science & Technology

    2001-08-01

    diffracted with good efficiency. The deflection medium is a crystal material TeO2 . The power of the electrical signal is 2W. The corresponding diffraction...between 50 MHz and 100 MHz. The acoustooptical deflector used a birefregent TeO2 single crystal as the ultrasonic medium where the light deflection take...pair of glass substrates with sufficient thickness (> 1 mm). The thick glass plate reduces the spatial resolution of the fiberoptic plate. To reduce

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poplawsky, Jonathan D.

    Here, the performance of CdTe solar cells — cheaper alternatives to silicon photovoltaics — is hampered by their low output voltages, which are normally well below the theoretical limit. Now, record voltages of over 1 V have been reported in single-crystal CdTe heterostructure solar cells, which are close to those of benchmark GaAs cells.

  9. The Zeeman splitting of bulk 2H-MoTe2 single crystal in high magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhang, Junpei; Ma, Zongwei; Chen, Cheng; Han, Junbo; Chen, Fangchu; Luo, Xuan; Sun, Yuping; Sheng, Zhigao

    2017-03-01

    A high magnetic field magneto-optical spectrum is utilized to study the A exciton of bulk 2H-MoTe2 single crystal. A clear Zeeman splitting of the A exciton is observed under high magnetic fields up to 41.68 T, and the g-factor (-2.09 ± 0.08) is deduced. Moreover, a high magnetic field enables us to obtain the quadratic diamagnetic shifts of the A exciton (0.486 μeV T-2). Accordingly, the binding energy, reduced mass, and radius of the A exciton were obtained by using both two and three dimensional models. Compared with other transition metal dichalcogenides (TMDs), the A exciton of bulk 2H-MoTe2 has a relatively small binding energy and larger exciton radius, which provide fundamental parameters for comprehensive understanding of excitons in TMDs as well as their future applications.

  10. Application of electrochemical method to microfabricated region in single-crystal device of FeSe1- x Te x superconductors

    NASA Astrophysics Data System (ADS)

    Okada, Kazuhiro; Takagi, Tomohiro; Kobayashi, Masahiro; Ohnuma, Haruka; Noji, Takashi; Koike, Yoji; Ayukawa, Shin-ya; Kitano, Haruhisa

    2018-04-01

    The application of an electrochemical method to the iron-based chalcogenide superconductors has great potentials in enhancing their properties such as the superconducting transition temperature. Unfortunately, this method has been limited to polycrystalline powders or thin film samples with a large surface area. Here, we demonstrate that the electrochemical method can be usefully applied to single-crystal devices of FeSe1- x Te x superconductors by combining it with the focused ion beam (FIB) microfabrication techniques. Our results open a new route to developing the high-quality superconducting devices fabricated using layered iron-based chalcogenides, whose properties are electrochemically controlled.

  11. Design of a multistep phase mask for high-energy THz pulse generation in ZnTe crystal

    NASA Astrophysics Data System (ADS)

    Avetisyan, Yuri H.; Makaryan, Armen; Tadevosyan, Vahe

    2017-08-01

    A new scheme for generating high-energy terahertz (THz) pulses by optical rectification of tilted pulse front (TPF) femtosecond laser pulses in ZnTe crystal is proposed and analyzed. The TPF laser pulses are originated due to propagation through a multistep phase mask (MSPM) attached to the entrance surface of the nonlinear crystal. Similar to the case of contacting optical grating the necessity of the imaging optics is avoided. In addition, introduction of large amounts of angular dispersion is also eliminated. The operation principle is based on the fact that the MSPM splits a single input beam into many smaller time-delayed "beamlets", which together form a discretely TPF in the nonlinear crystal. The dimensions of the mask's steps required for high-energy THz-pulse generation in ZnTe and widely used lithium niobate (LN) crystals are calculated. The optimal number of steps is estimated taking into account individual beamlet's spatial broadening and problems related to the mask fabrication. The THz field in no pump depletion approximation is analytically calculated using radiating antenna model. The analysis shows that application of ZnTe crystal allows obtaining higher THz-pulse energy than that of LN crystal, especially when long-wavelength pump sources are used. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THzpulse source.

  12. Evidence of a 2D Fermi surface due to surface states in a p-type metallic Bi2Te3

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Marinova, V.; Lorenz, B.; Chu, C. W.

    2018-05-01

    We present a systematic quantum oscillations study on a metallic, p-type Bi2Te3 topological single crystal in magnetic fields up to B  =  7 T. The maxima/minima positions of oscillations measured at different tilt angles align to one another when plotted as a function of the normal component of magnetic field, confirming the presence of the 2D Fermi surface. Additionally, the Berry phase, β  =  0.4  ±  0.05 obtained from the Landau level fan plot, is very close to the theoretical value of 0.5 for the Dirac particles, confirming the presence of topological surface states in the Bi2Te3 single crystal. Using the Lifshitz–Kosevich analyses, the Fermi energy is estimated to be meV, which is lower than that of other bismuth-based topological systems. The detection of surface states in the Bi2Te3 crystal can be explained by our previous hypothesis of the lower position of the Fermi surface that cuts the ‘M’-shaped valence band maxima. As a result, the bulk state frequency is shifted to higher magnetic fields, which allows measurement of the surface states signal at low magnetic fields.

  13. Homogeneity of CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Hermon, H.; Schieber, M.; James, R. B.; Lund, J.; Antolak, A. J.; Morse, D. H.; Kolesnikov, N. N. P.; Ivanov, Y. N.; Goorsky, M. S.; Yoon, H.; Toney, J.; Schlesinger, T. E.

    1998-02-01

    We describe the current state of nuclear radiation detectors produced from single crystals of Cd 1- xZn xTe(CZT), with 0.04 < x < 0.4, grown by the vertical high pressure Bridgman (VHPB) method. The crystals investigated were grown commercially both in the USA and at the Institute of Solid State Physics, Chernogolska, Russia. The CZT was evaluated by Sandia National Laboratories and the UCLA and CMU groups using proton-induced X-ray emission (PIXE), X-ray diffraction (XRD), photoluminescence (PL), infrared (IR) transmission microscopy, leakage current measurements and response to nuclear radiation. We discuss the homogeneity of the various CZT crystals based on the results from these measurement techniques.

  14. Thermal analysis of Bridgman-Stockbarger growth. [mercury cadmium telluride single crystals

    NASA Technical Reports Server (NTRS)

    Knopf, F. W.

    1979-01-01

    A thermal analysis of a cylindrical HgCdTe sample in a Bridgman-Stockbarger crystal growth configuration was conducted with emphasis on the thermal profile, interface shape and position, and the thermal gradients at the liquid-solid interface. Alloys of HgTe and CdTe with compositions approximating 20 percent CdTe, 80 percent HgTe were used. This composition results in a bandgap suited for the detection of 10.6 micron CO2 radiation. The sensitivity of the sample thermal characteristics to important growth parameters, such as thermal diffusivities, thermal conductivities, furnace temperature profile, ampoule dimensions, and growth velocity was assessed. Numerical techniques and associated computational models necessary to analyze the heat transfer process within the sample and the Bridgman-Stockbarger boundary conditions were developed. This thermal analysis mode was programmed in FORTRAN V, and is currently operational on the MSFC Univac 1100 system.

  15. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe 3

    DOE PAGES

    McGuire, Michael A.; Garlea, V. Ovidiu; KC, Santosh; ...

    2017-04-14

    We have investigated the crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe 3 on single-crystal and polycrystalline materials. Furthermore, the crystal structure contains layers made up of lozenge-shaped Cr 4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3 eV. The magnetic susceptibility exhibits a broad maximum near 300 K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55 K, and single-crystal neutron diffraction reveals the onset of long-range antiferromagnetic order at thismore » temperature. Strongly dispersive spin waves are observed in the ordered state. Significant magnetoelastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is evident in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first-principles calculations, which predict a cleavage energy 0.5 J / m 2 , similar to graphite. Based on our results, CrTe 3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.« less

  16. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Michael A.; Garlea, V. Ovidiu; KC, Santosh

    We have investigated the crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe 3 on single-crystal and polycrystalline materials. Furthermore, the crystal structure contains layers made up of lozenge-shaped Cr 4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3 eV. The magnetic susceptibility exhibits a broad maximum near 300 K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55 K, and single-crystal neutron diffraction reveals the onset of long-range antiferromagnetic order at thismore » temperature. Strongly dispersive spin waves are observed in the ordered state. Significant magnetoelastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is evident in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first-principles calculations, which predict a cleavage energy 0.5 J / m 2 , similar to graphite. Based on our results, CrTe 3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.« less

  17. Doping properties of cadmium-rich arsenic-doped CdTe single crystals: Evidence of metastable AX behavior

    NASA Astrophysics Data System (ADS)

    Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.

    2017-12-01

    Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 ± 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 1016 to 1017/cm3 range is achieved for measured As concentrations between 1016 and 1020/cm3 with the highest doping efficiency of 40% occurring near 1017 As/cm3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.

  18. Doping properties of cadmium-rich arsenic-doped CdTe single crystals: Evidence of metastable AX behavior

    DOE PAGES

    Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.

    2017-12-04

    Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 +/- 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 10^16 to 10^17/cm^3 range is achieved for measured As concentrations between 10^16 and 10^20/cm^3 with the highest dopingmore » efficiency of 40% occurring near 10^17 As/cm^3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.« less

  19. Doping properties of cadmium-rich arsenic-doped CdTe single crystals: Evidence of metastable AX behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.

    Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 +/- 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 10^16 to 10^17/cm^3 range is achieved for measured As concentrations between 10^16 and 10^20/cm^3 with the highest dopingmore » efficiency of 40% occurring near 10^17 As/cm^3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.« less

  20. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    DOE PAGES

    Yang, Y. -B.; Seewald, L.; Mohanty, Dibyajyoti; ...

    2017-03-31

    We report single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (~21–55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [more » $$\\overline{1}2\\overline{1}$$] CdTe//[$$\\overline{1}100$$] CdS//[010] mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. Finally, the use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.« less

  1. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y. -B.; Seewald, L.; Mohanty, Dibyajyoti

    We report single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (~21–55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [more » $$\\overline{1}2\\overline{1}$$] CdTe//[$$\\overline{1}100$$] CdS//[010] mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. Finally, the use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.« less

  2. Reproducible Crystal Growth Experiments in Microgravity Science Glovebox at the International Space Station (SUBSA Investigation)

    NASA Technical Reports Server (NTRS)

    Ostrogorsky, A.; Marin, C.; Volz, M. P.; Bonner, W. A.

    2005-01-01

    Solidification Using a Baffle in Sealed Ampoules (SUBSA) is the first investigation conducted in the Microgravity Science Glovebox (MSG) Facility at the International Space Station (ISS) Alpha. 8 single crystals of InSb, doped with Te and Zn, were directionally solidified in microgravity. The experiments were conducted in a furnace with a transparent gradient section, and a video camera, sending images to the earth. The real time images (i) helped seeding, (ii) allowed a direct measurement of the solidification rate. The post-flight characterization of the crystals includes: computed x-ray tomography, Secondary Ion Mass Spectroscopy (SIMS), Hall measurements, Atomic Absorption (AA), and 4 point probe analysis. For the first time in microgravity, several crystals having nearly identical initial transients were grown. Reproducible initial transients were obtained with Te-doped InSb. Furthermore, the diffusion controlled end-transient was demonstrated experimentally (SUBSA 02). From the initial transients, the diffusivity of Te and Zn in InSb was determined.

  3. Room temperature aluminum antimonide radiation detector and methods thereof

    DOEpatents

    Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W

    2015-03-03

    In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).

  4. Polycrystalline ZrTe 5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    DOE PAGES

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut; ...

    2018-01-24

    The transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, themore » thermal conductivity for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding zT=0.2 and 0.1 for p and n type, respectively, at 300 K, and zT=0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less

  5. Polycrystalline ZrTe5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    NASA Astrophysics Data System (ADS)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut; Peng, Lintao; Rettie, Alexander J. E.; Gorai, Prashun; Chung, Duck Young; Kanatzidis, Mercouri G.; Grayson, Matthew; Stevanović, Vladan; Toberer, Eric S.; Snyder, G. Jeffrey

    2018-01-01

    The transition-metal pentatellurides HfTe5 and ZrTe5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n -p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivity for polycrystalline samples is much lower, 1.5 Wm-1 K-1 , than previously reported for single crystals. It is found that the polycrystalline ZrTe5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n - to p -type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding z T =0.2 and 0.1 for p and n type, respectively, at 300 K, and z T =0.23 and 0.32 for p and n type at 600 K. Given the reasonably high z T that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.

  6. Polycrystalline ZrTe{sub 5} Parameterized as a Narrow Band Gap Semiconductor for Thermoelectric Performance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut

    The transition-metal pentatellurides HfTe5 and ZrTe5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivitymore » for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the twoband model, the thermoelectric performance at different doping levels is predicted, finding zT =0.2 and 0.1 for p and n type, respectively, at 300 K, and zT= 0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less

  7. Polycrystalline ZrTe 5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut

    The transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, themore » thermal conductivity for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding zT=0.2 and 0.1 for p and n type, respectively, at 300 K, and zT=0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less

  8. Fluorescence Properties of Fe2+- and Co2+-doped Hosts of CdMnTe Compositions as Potential Mid-Infrared Laser Materials

    DTIC Science & Technology

    2011-09-01

    composition also affects the Co2+ and Fe2+ dopant lifetimes and temperature dependencies. Crystal growth effort is underway in order to improve the...single-crystalline samples of Fe2+ or divalent cobalt ion (Co2+)-doped CMT crystals were produced by Brimrose Corporation using a modified vertical...Bridgman technique (18). The starting high purity ingredients Cd, Mn, and Te along with the dopants (Fe and Co) are placed in a pre-cleaned and baked

  9. Role of Precursor-Conversion Chemistry in the Crystal-Phase Control of Catalytically Grown Colloidal Semiconductor Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2017-12-26

    Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.

  10. Direct Growth of CdTe on a (211) Si Substrate with Vapor Phase Epitaxy Using a Metallic Cd Source

    NASA Astrophysics Data System (ADS)

    Iso, Kenji; Gokudan, Yuya; Shiraishi, Masumi; Murakami, Hisashi; Koukitu, Akinori

    2017-10-01

    We successfully performed epitaxial CdTe growth on a Si (211) substrate with vapor-phase epitaxy using a cost-effective metallic cadmium source as a group-II precursor. The thermodynamic data demonstrate that the combination of metallic Cd and diisopropyl-telluride (DiPTe) with a H2 carrier gas enables the growth of CdTe crystals. A CdTe single crystal with a (422) surface orientation was obtained when a growth temperature between 600°C and 650°C was employed. The surface morphology and crystalline quality were improved with increasing film thickness. The full-width at half-maximum of the x-ray rocking curves with a film thickness of 15.7 μm for the skew-symmetrical (422) and asymmetrical (111) reflection were 528 arcsec and 615 arcsec, respectively.

  11. Nanoparticles Incorporated inside Single-Crystals: Enhanced Fluorescent Properties

    DOE PAGES

    Liu, Yujing; Zang, Huidong; Wang, Ling; ...

    2016-09-25

    Incorporation of guest materials inside single-crystalline hosts leads to single-crystal composites that have become more and more frequently seen in both biogenic and synthetic crystals. The unique composite structure together with long-range ordering promises special properties that are, however, less often demonstrated. In this study, we examine the fluorescent properties of quantum dots (QDs) and polymer dots (Pdots) encapsulated inside the hosts of calcite single-crystals. Two CdTe QDs and two Pdots are incorporated into growing calcite crystals, as the QDs and Pdots are dispersed in the crystallization media of agarose gels. As a result, enhanced fluorescent properties are obtained frommore » the QDs and Pdots inside calcite single-crystals with greatly improved photostability and significantly prolonged fluorescence lifetime, compared to those in solutions and gels. Particularly, the fluorescence lifetime increases by 0.5-1.6 times after the QDs or Pdots are incorporated. The enhanced fluorescent properties indicate the advantages of encapsulation by single-crystal hosts that provide dense shells to isolate the fluorescent nanoparticles from atmosphere. As such, this work has implications for advancing the research of single-crystal composites toward their functional design.« less

  12. Pressure effects on topological crystalline insulator SnTe and derived superconductor Sn{sub 0.5}In{sub 0.5}Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurya, V. K.; Shruti,; Patnaik, S., E-mail: spatnaik@mail.jnu.ac.in

    2016-05-23

    We are reporting decrease in superconducting transition temperature accompanied by increased metallicity in indium doped SnTe superconductor. SnTe is a topological crystalline insulator and superconductivity is achieved by indium substitution in place of tin. With application of hydrostatic pressure we find negative dT{sub c}/dP of ~ -0.6K/GPa upto 2.5 GPa. The overall phenomenon is ascribed to unconventional superconductivity. Decrease in resistivity is also seen in single crystal SnTe with application of pressure but no evidence of superconductivity is observed.

  13. The structure of Na{sub 3}SbTe{sub 3}: How ionic and covalent bonding forces work together

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jianhua; Miller, G.J.

    1994-12-01

    The compound Na{sub 3}SbTe{sub 3} has been synthesized from the elements and characterized by single crystal X-ray diffraction. Na{sub 3}SbTe{sub 3} is cubic, crystallizing in the cP28 structure type (isomorphous with Na{sub 3}AsS{sub 3}); space group P2{sub 1}3 (No. 198); a=9.6114(9) {angstrom}; Z = 4; R1 = 0.0324; wR2 = 0.0561 (I {le} 2{sigma}(I)). The structure consists of isolated sodium cations and trigonal pyramidal [SbTe{sub 3}]{sup {minus}3} anions with a Sb-Te bond length of 2.787(1) {angstrom} and a Te-Sb-Te bond angle of 100.0(1){degrees}. The structure is related to both the Li{sub 3}Bi and K{sub 3}AsS{sub 4}-type structures. Both lattice energymore » and semiempirical electronic structure calculations are utilized to evaluate various local and long-range structural aspects of this Zintl phase.« less

  14. Cadmium telluride solar cells: Record-breaking voltages

    DOE PAGES

    Poplawsky, Jonathan D.

    2016-01-01

    Here, the performance of CdTe solar cells — cheaper alternatives to silicon photovoltaics — is hampered by their low output voltages, which are normally well below the theoretical limit. Now, record voltages of over 1 V have been reported in single-crystal CdTe heterostructure solar cells, which are close to those of benchmark GaAs cells.

  15. GaSe and GaTe anisotropic layered semiconductors for radiation detectors

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Choi, Michael; Kang, Sung Hoon; Rauh, R. David; Wei, Jiuan; Zhang, Hui; Zheng, Lili; Cui, Y.; Groza, M.; Burger, A.

    2007-09-01

    High quality detector grade GaSe and GaTe single crystals have been grown by a modified vertical Bridgman technique using high purity Ga (7N) and in-house zone refined (ZR) precursor materials (Se and Te). A state-of-the-art computer model, MASTRAPP, is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown crystals. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The crystals harvested from ingots of 8-10 cm length and 2.5 cm diameter, have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, low temperature photoluminescence (PL), atomic force microscopy (AFM), and optical absorption/transmission measurements. Single element devices up to 1 cm2 in area have been fabricated from the crystals and tested as radiation detectors by measuring current-voltage (I-V) characteristics and pulse height spectra using 241Am source. The crystals have shown high promise as nuclear detectors with their high dark resistivity (>=10 9 Ω .cm), good charge transport properties (μτ e ~ 1.4x10 -5 cm2/V and μτ h ~ 1.5x10 -5 cm2/V), and relatively good energy resolution (~4% energy resolution at 60 keV). Details of numerical modeling and simulation, detector fabrication, and testing using a 241Am energy source (60 keV) is presented in this paper.

  16. Thermally activated flux flow in FeSe0.5Te0.5 superconducting single crystal

    NASA Astrophysics Data System (ADS)

    Hamad, R. M.; Kayed, T. S.; Kunwar, S.; Ziq, Kh A.

    2017-07-01

    The current-voltage (J-E) isotherms of single crystal FeSe0.5Te0.5 sample have been measured at several temperatures near the transition temperature (Tc) and under applied magnetic fields (H). A power law (E ˜ Jβ ) has been used to fit the data and evaluate the activation energy Uo (T) using β = Uo/kBT. At low current density (J << Jc), the initial behaviour is associated with thermally activated flux Flow (TAFF) while at J >> Jc vortex flux flow (FF) behavior is expected. The effects of applied magnetic field on FF and TAFF also been investigated. We found that Uo(FF) was reduced with by about an order of magnitude in magnetic fields as low as ˜1.5 Tesla-the reduction in Uo(TAFF) is even faster than in Uo(FF)-hence reflecting the low pinning nature (defects, vacancies etc.) of FeSe0.5Te0.5 superconductor.

  17. Theoretical Calculations of Refractive Properties for Hg3Te2Cl2 Crystals

    NASA Astrophysics Data System (ADS)

    Bokotey, O. V.

    2016-05-01

    This paper reviews the optical properties, such as refractive index, optical dielectric constant, and reflection coefficient of the Hg3Te2Cl2 crystals. The applications of the Hg3X2Y2 crystals as electronic, optical, and optoelectronic devices are very much determined by the nature and magnitude of these fundamental material properties. The origin of chemical bonding in the crystals is very important for definition of the physical and chemical properties. The main structural feature of the Hg3X2Y2 crystals is the presence of covalent pyramids [XHg3] and linear X-Hg-X groups. Optical properties are calculated according to the model proposed by Harrison. The refractive index in the spectral region far from the absorption edge is determined within the generalized single-oscillator model. The calculated results are found to be in good agreement with experimental data.

  18. {[Ga(en){sub 3}]{sub 2}(Ge{sub 2}Te{sub 15})}n : a polymeric semiconducting polytelluride with boat-shaped Te{sub 8}{sup 4-} rings and cross-shaped Te{sub 5}{sup 6-} units.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.; Malliakas, C. D.; Kanatzidis, M. G.

    2009-11-11

    The reaction of the Zintl compound K{sub 4}Ge{sub 9} with Te and Ga{sub 2}Te{sub 3} in ethylenediamine (en) at 190 C gave the germanium polytelluride {l_brace}[Ga(en){sub 3}]{sub 2}[(GeTe){sub 2}(Te{sub 5}){sup 6-}(Te{sub 8}){sup 4-}]{r_brace}n (1). The single-crystal structure analysis revealed that 1 has two different polytelluride fragments: cross-shaped 36-e- TeTe{sub 4}{sup 6-} anions and boat-shaped 52-e- Te{sup 8}{sup 4-} rings. The new material is a p-type semiconductor at room temperature and switches to n-type at 380 K.

  19. Cryogenic Scanning Tunneling Spectroscopy of Superconducting Iron Chalcogenide Single Crystals

    NASA Astrophysics Data System (ADS)

    Wei, J. Y. T.; Fridman, Igor; Yeh, Kuo-Wei; Wu, Maw-Kuen; Hu, Rongwei; Petrovic, C.

    2011-03-01

    We report scanning tunneling spectroscopy measurements on the iron-based superconductors of the ``11'' family including Fe 1-y Te 1-x Se x and Fe 1-y Te 1-x Sx . Conductance spectra and atomically-resolved images are obtained on single crystals down to 300 mK. A gap-like structure is observed, showing an asymmetric spectral background, non-trivial spatial variation and temperature dependence. We discuss our data in terms of possible gap anisotropy and doping inhomogeneities, and in relation to other recent spectroscopic measurements on iron-based superconductors. Work supported by NSERC, CFI/OIT, CIFAR, Taiwan National Science Council, U.S. DOE and Brookhaven Science Associates (No. DE-Ac02-98CH10886), and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center.

  20. Fluid flow analysis and vertical gradient freeze crystal growth in a travelling magnetic field

    NASA Astrophysics Data System (ADS)

    Lantzsch, R.; Grants, I.; Galindo, V.; Patzold, O.; Gerbeth, G.; Stelter, M.; Croll, A.

    2006-12-01

    In bulk crystal growth of semiconductors the concept of remote flow control by means of alternating magnetic fields has attracted considerable interest (see, e.g., te{1,2,3,4,5,6}). In this way the melt flow can be tailored for growth under optimised conditions to improve the crystal properties and/or the growth yield. A promising option is to apply an axially travelling magnetic wave to the melt (Travelling Magnetic Field - TMF). It introduces a mainly axial Lorentz force, which leads to meridional flow patterns. In recent numerical studies te{3}, te{6} the TMF has been recognised to be a versatile and efficient tool to control the heat and mass transport in the melt. For the Vertical Bridgman/Vertical Gradient Freeze (VB/VGF) growth, the beneficial effect of an adequately adjusted TMF-induced flow was clearly demonstrated in te{6} in terms of the reduction of thermal shear stress at the solid-liquid interface. In this paper, we present experimental and numerical results on the TMF driven convection in an isothermal model fluid as well as first VGF-TMF crystal growth experiments. The model investigations are focused on the transition from laminar to instationary flow conditions that should be avoided in crystal growth applications. The VGF experiments were aimed at growing Ga doped germanium single crystals under the influence of the travelling field in a newly developed VGF-TMF equipment. Figs 4, Refs 10.

  1. The crystal structures of BiTeO 3I, NdTeO 3X (X=Cl, Br) and Bi 5TeO 8.5I 2: some crystal chemistry peculiarities of layered Bi(Ln)Te oxyhalides

    NASA Astrophysics Data System (ADS)

    Berdonosov, Peter S.; Charkin, Dmitry O.; Kusainova, Ardak M.; Hervoches, Charles H.; Dolgikh, Valeriy A.; Lightfoot, Philip

    2000-09-01

    Four new layered oxyhalides related to the Sillen family have been prepared and characterized by Rietveld refinement of powder X-ray and neutron diffraction data. BiTeO 3I and NdTeO 3Br both adopt tetragonal symmetry, space group P4/ nmm (for BiTeO 3I, a=4.10811(8), c=27.988(1) Å; NdTeO 3Br, a=4.06603(7), c=26.922(1) Å, at 25°C). The structures are composed of triple and double fluorite-related mixed metal oxide layers separated by single and double halogen layers, in the sequence MTe 2O 5XXMTe 2O 5XM 2O 2X, which may be represented by the symbol X 13X 13X 22, where the subscript signifies the number of halogen layers and the superscript the number of metal sublayers within the fluorite block, by analogy with Sillen's notation. The double fluorite layers are occupied exclusively by Bi, whereas there is an ordered arrangement of Bi/Te within the triple fluorite layers, with Te exclusively occupying the outer sublayers of the block. NdTeO 3Cl adopts an orthorhombically distorted form of this structure type, space group Pmmn, a=4.08096(8), b=4.03441(8), c=25.7582(7) Å at 25°C. Bi 5TeO 8.5I 2 adopts a distorted, non-centrosymmetric version of the simpler X 13 structure type, space group Cmm2, a=5.6878(3), b=5.7230(3), c=9.7260(6) Å, consisting of single halogen layers sandwiched between triple fluorite layers, in which there is partial ordering of the Bi/Te cations.

  2. Design of a Multistep Phase Mask for High-Energy Terahertz Pulse Generation by Optical Rectification

    NASA Astrophysics Data System (ADS)

    Avetisyan, Y.; Makaryan, A.; Tadevosyan, V.; Tonouchi, M.

    2017-12-01

    A new scheme for generating high-energy terahertz (THz) pulses based on using a multistep phase mask (MSPM) is suggested and analyzed. The mask is placed on the entrance surface of the nonlinear optical (NLO) crystal eliminating the necessity of the imaging optics. In contrast to the contact grating method, introduction of large amounts of angular dispersion is avoided. The operation principle of the suggested scheme is based on the fact that the MSPM splits a single input beam into many smaller time-delayed "beamlets," which together form a discretely tilted-front laser pulse in NLO crystal. The analysis of THz-pulse generation in ZnTe and lithium niobate (LN) crystals shows that application of ZnTe crystal is more preferable, especially when long-wavelength pump sources are used. The dimensions of the mask's steps required for high-energy THz-pulse generation in ZnTe and LN crystals are calculated. The optimal number of steps is estimated, taking into account individual beamlet's spatial broadening and problems related to the mask fabrication. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THz-pulse sources.

  3. Inhomogeneities and superconductivity in poly-phase Fe-Se-Te systems

    NASA Astrophysics Data System (ADS)

    Hartwig, S.; Schäfer, N.; Schulze, M.; Landsgesell, S.; Abou-Ras, D.; Blum, Ch. G. F.; Wurmehl, S.; Sokolowski, A.; Büchner, B.; Prokeš, K.

    2018-02-01

    The impact of synthesis conditions, post-preparation heating procedure, aging and influence of pressure on the superconducting properties of FeSe0.4Te0.6 crystals is reported. Two FeSe0.4Te0.6 single crystals were used in the study, prepared from stoichiometric melt but cooled down with very different cooling rates, and investigated using magnetic bulk and electrical-resistivity methods. The fast-cooled crystal contains large inclusions of Fe3Se2.1Te1.8 and exhibits bulk superconductivity in its as-prepared state, while the other is homogeneous and shows only traces of superconductivity. AC susceptibility measurements under hydrostatic pressure show that the superconducting transition temperature of the inhomogeneous crystal increases from 12.3 K at ambient pressure to Tsc = 17.9 K at 9 kbar. On the other hand, neither pressure nor mechanically-induced stress is sufficient to induce superconductivity in the homogeneous crystal. However, an additional heat treatment at 673 K followed by fast cooling down and/or long-term aging at ambient conditions leads to the appearance of bulk superconductivity also in the latter sample. This sample remains homogeneous on a scale down to few μm but shows an additional magnetic phase transition around 130 K suggesting that it must be inhomogeneous. For comparison also Fe3Se2.1Te1.8 polycrystals have been prepared and their magnetic properties have been studied. It appears that this phase is not superconducting by itself. It is concluded that nano-scale inhomogeneities that appear in the FeSexTe1-x system due to a spinodal decomposition in the solid state are necessary for bulk superconductivity, possibly due to minor changes in the crystal structure and microstructure. Macroscopic inclusions quenched by fast cooling from high temperatures lead obviously to strain and hence variations in the lattice constants, an effect that is further supported by application of pressure/stress.

  4. Antimony diffusion in CdTe

    DOE PAGES

    Colegrove, Eric; Harvey, Steven P.; Yang, Ji -Hui; ...

    2017-02-08

    Group V dopants may be used for next-generation high-voltage cadmium telluride (CdTe) solar photovoltaics, but fundamental defect energetics and kinetics need to be understood. Here, antimony (Sb) diffusion is studied in single-crystal and polycrystalline CdTe under Cd-rich conditions. Diffusion profiles are determined by dynamic secondary ion mass spectroscopy and analyzed with analytical bulk and grain-boundary diffusion models. Slow bulk and fast grain-boundary diffusion are found. Density functional theory is used to understand formation energy and mechanisms. Lastly, the theory and experimental results create new understanding of group V defect kinetics in CdTe.

  5. Doping behavior of iodine in Hg/0.8/Cd/0.2/Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.; Kroger, F. A.

    1982-01-01

    The defect state prevailing in iodine doped single-crystal samples of Hg0.8Cd0.2Te, annealed at 450-600 C in Hg vapor, has been deduced from Hall effect measurements on samples cooled to 77 K from the annealing temperature. Results are found to be similar to those previously obtained for iodine doped CdS, i.e. iodine acts as a single donor occupying Te lattice sites with a fraction paired with the native acceptor defects. The concentration of iodine on tellurium lattice sites increases with the partial pressure of Hg, whereas that of the pair species increases as the partial pressure of Hg decreases.

  6. Novel Electronically Conducting Tellurium Oxides

    NASA Astrophysics Data System (ADS)

    Subramanian, Mas; Siritanon, Theerunan; Sleight, Arthur

    2010-03-01

    Tellurium oxides seldom show measurable electronic conductivity. Tellurium oxides that appear to have Te^5+ contain Te^4+ and Te^6+ in two distinct crystallographic sites and are electronic insulators. Here we report on the synthesis and characterization of several new tellurium rich oxides of the general formula, CsMxTe2-xO6, crystallizing in modified pyrochlore structure. Most of the compounds reported here are black in color with some exhibiting good electronic conductivities (2 S/cm) and Seebeck measurements indicate all are n-type. The observation of high electronic conductivities in compounds like CsGe0.5Te1.5O6, CsAl0.33Te1.67O6 confirms that observed conductivity is arising from doping of electrons into the empty 5s orbitals of Te^6+. This reduction is apparently accompanied with some small deviation from the ideal formula: oxygen content and/or ratio of cations on octahedral sites. This is in consistent with single-crystal X-ray as well as powder neutron diffraction structure refinements and the observed sign of the Seebeck coefficient. To our knowledge, this is a first observance of high electrical conductivity in mixed valent tellurium oxides.

  7. Mobility spectrum analytical approach for the type-II Weyl semimetal Td-MoTe2

    NASA Astrophysics Data System (ADS)

    Pei, Q. L.; Luo, X.; Chen, F. C.; Lv, H. Y.; Sun, Y.; Lu, W. J.; Tong, P.; Sheng, Z. G.; Han, Y. Y.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2018-02-01

    The extreme magnetoresistance (XMR) in orthorhombic W/MoTe2 arises from the combination of the perfect electron-hole (e-h) compensation effect and the unique orbital texture topology, which have comprised an intriguing research field in materials physics. Herein, we apply a special analytical approach as a function of mobility (μ-spectrum) without any hypothesis. Based on the interpretations of longitudinal and transverse electric transport of Td-MoTe2, the types and the numbers of carriers can be obtained. There are three observations: the large residual resistivity ratio can be observed in the MoTe2 single crystal sample, which indicates that the studied crystal is of high quality; we observed three electron-pockets and three hole-ones from the μ-spectrum and that the ratio of h/e is much less than 1, which shows that MoTe2 is more e-like; different from the separated peaks obtained from the hole-like μ-spectrum, those of the electron-like one are continuous, which may indicate the topological feature of electron-pockets in Td-MoTe2. The present results may provide an important clue to understanding the mechanism of the XMR effect in Td-MoTe2.

  8. High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals

    NASA Astrophysics Data System (ADS)

    Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah; Scarpulla, Michael A.

    2018-05-01

    Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 1016 and 1020 cm-3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 1017 cm-3 is presented, while for higher-doped samples, precipitation of a second phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20-30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm2/Vs at room temperature. A doping limit in the low 1017/cm3 range is observed for samples quenched at 200-300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 1016 cm-3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 1018 cm-3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.

  9. Simulation, modeling, and crystal growth of Cd0.9Zn0.1Te for nuclear spectrometers

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Kang, Sung Hoon; Choi, Michael; Bello, Job; Zheng, Lili; Zhang, Hui; Groza, Michael; Roy, Utpal N.; Burger, Arnold; Jellison, Gerald E.; Holcomb, David E.; Wright, Gomez W.; Williams, Joseph A.

    2006-06-01

    High-quality, large (10 cm long and 2.5 cm diameter), nuclear spectrometer grade Cd0.9Zn0.1Te (CZT) single crystals have been grown by a controlled vertical Bridgman technique using in-house zone refined precursor materials (Cd, Zn, and Te). A state-of-the-art computer model, multizone adaptive scheme for transport and phase-change processes (MASTRAP), is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown CZT crystal and optimize the thermal profile. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The grown semi-insulating (SI) CZT crystals have demonstrated promising results for high-resolution room-temperature radiation detectors due to their high dark resistivity (ρ≈2.8 × 1011 Θ cm), good charge-transport properties [electron and hole mobility-life-time product, μτe≈(2 5)×10-3 and μτh≈(3 5)×10-5 respectively, and low cost of production. Spectroscopic ellipsometry and optical transmission measurements were carried out on the grown CZT crystals using two-modulator generalized ellipsometry (2-MGE). The refractive index n and extinction coefficient k were determined by mathematically eliminating the ˜3-nm surface roughness layer. Nuclear detection measurements on the single-element CZT detectors with 241Am and 137Cs clearly detected 59.6 and 662 keV energies with energy resolution (FWHM) of 2.4 keV (4.0%) and 9.2 keV (1.4%), respectively.

  10. Ultra-low thermal conductivity of TlIn5Se8 and structure of the new complex chalcogenide Tl0.98In13.12Se16.7Te2.3

    NASA Astrophysics Data System (ADS)

    Lefèvre, Robin; Berthebaud, David; Pérez, Olivier; Pelloquin, Denis; Boudin, Sophie; Gascoin, Franck

    2017-06-01

    TlIn5Se8 has been synthesized by means of solid-state reaction and densified by Spark Plasma Sintering. The compound is a semiconductor with a band gap of 1.62 eV estimated from reflectance measurements. Its thermal conductivity is about 0.45 W m-1. K-1 in the temperature range 300-673 K, an extremely low value attributed to its complex pseudo-1D structure reminiscent of the pseudo-hollandite. While attempting to dope TlIn5Se8 with Te, a new complex chalcogenide was discovered and characterized by the combination of TEM and XRD diffraction. It belongs to the A2In12X19 family, crystallizing in the R 3 ̅:H space group. Single crystal X-ray diffraction study led to a refined composition of Tl0.98In13.12Se16.7Te2.3 with cell parameters: a=13.839(5) Å and c=35.18(3) Å. A static disorder is found on one indium site situated in an octahedral environment. The single crystal XRD study is in agreement with TEM analyses in STEM-HAADF image mode that do not show any extended defects or disorder at atomic scale.

  11. Influence of interstitial Fe to the phase diagram of Fe1+yTe1-xSex single crystals

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Yamada, Tatsuhiro; Pyon, Sunseng; Tamegai, Tsuyoshi

    2016-08-01

    Superconductivity (SC) with the suppression of long-range antiferromagnetic (AFM) order is observed in the parent compounds of both iron-based and cuprate superconductors. The AFM wave vectors are bicollinear (π, 0) in the parent compound FeTe different from the collinear AFM order (π, π) in most iron pnictides. Study of the phase diagram of Fe1+yTe1-xSex is the most direct way to investigate the competition between bicollinear AFM and SC. However, presence of interstitial Fe affects both magnetism and SC of Fe1+yTe1-xSex, which hinders the establishment of the real phase diagram. Here, we report the comparison of doping-temperature (x-T) phase diagrams for Fe1+yTe1-xSex (0 ≤ x ≤ 0.43) single crystals before and after removing interstitial Fe. Without interstitial Fe, the AFM state survives only for x < 0.05, and bulk SC emerges from x = 0.05, and does not coexist with the AFM state. The previously reported spin glass state, and the coexistence of AFM and SC may be originated from the effect of the interstitial Fe. The phase diagram of Fe1+yTe1-xSex is found to be similar to the case of the “1111” system such as LaFeAsO1-xFx, and is different from that of the “122” system.

  12. New vanadium tellurites: Syntheses, structures, optical properties of noncentrosymmetric VTeO{sub 4}(OH), centrosymmetric Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ming-Li; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002; Marsh, Matthew

    Two new vanadium tellurites, VTeO{sub 4}(OH) (1) and Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10}) (2), have been synthesized successfully with the use of hydrothermal reactions. The crystal structures of the two compounds were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the polar space group Pca2{sub 1} (No. 29) while compound 2 crystallizes in the centrosymmetric space group C2/c (No. 15). The topography of compound 1 reveals a two-dimensional, layered structure comprised of VO{sub 6} octahedral chains and TeO{sub 3}(OH) zig-zag chains. Compound 2, on the contrary, features a three-dimensional [V{sub 4}O{sub 8}(Te{sub 3}O{sub 10})]{sup 4-} anionic framework withmore » Ba{sup 2+} ions filled into the 10-member ring helical tunnels. The [V{sub 4}O{sub 8}(Te{sub 3}O{sub 10})]{sup 4-} anionic network is the first 3D vanadium tellurite framework to be discovered in the alkaline-earth vanadium tellurite system. Powder second harmonic generation (SHG) measurements indicate that compound 1 shows a weak SHG response of about 0.3×KDP (KH{sub 2}PO{sub 4}) under 1064 nm laser radiation. Infrared spectroscopy, elemental analysis, thermal analysis, and dipole moment calculations have also been carried out. - Graphical abstract: VTeO{sub 4}(OH) (1) crystallizes in the noncentrosymmetric space group Pca2{sub 1} (No. 29) while Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10}) (2) crystallizes in the centrosymmetric space group C2/c (No. 15). - Highlights: • VTeO{sub 4}(OH) (1) and Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10}) (2) have been synthesized successfully with the use of hydrothermal reactions. • VTeO{sub 4}(OH) (1) crystallizes in the noncentrosymmetric space group Pca2{sub 1} and displays a weak SHG response. • VTeO{sub 4}(OH) (1) represents only the fourth SHG-active material found in vanadium tellurite systems. • Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10}) (2) exhibits a novel three-dimensional [V{sub 4}O{sub 8}(Te{sub 3}O{sub 10})]{sup 4-} anionic framework.« less

  13. Guided-Wave TeO2 Acousto-Optic Devices

    DTIC Science & Technology

    1991-01-12

    In this research program, Guided-wave TeO2 Acousto - Optic Devices, the properties of surface acoustic waves on tellurium dioxide single crystal...surfaces has been studied for its potential applications as acousto - optic signal processing devices. Personal computer based numerical method has been...interaction with laser beams. Use of the acousto - optic probe, the surface acoustic wave velocity and field distribution have been obtained and compared

  14. Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Vermeulen, Paul. A.; Momand, Jamo; Kooi, Bart J.

    2014-07-01

    The reversible amorphous-crystalline phase change in a chalcogenide material, specifically the Se1-xTex alloy, has been investigated for the first time using ultrafast differential scanning calorimetry. Heating rates and cooling rates up to 5000 K/s were used. Repeated reversible amorphous-crystalline phase switching was achieved by consecutively melting, melt-quenching, and recrystallizing upon heating. Using a well-conditioned method, the composition of a single sample was allowed to shift slowly from 15 at. %Te to 60 at. %Te, eliminating sample-to-sample variability from the measurements. Using Energy Dispersive X-ray Spectroscopy composition analysis, the onset of melting for different Te-concentrations was confirmed to coincide with the literature solidus line, validating the use of the onset of melting Tm as a composition indicator. The glass transition Tg and crystallization temperature Tc could be determined accurately, allowing the construction of extended phase diagrams. It was found that Tm and Tg increase (but Tg/Tm decrease slightly) with increasing Te-concentration. Contrarily, the Tc decreases substantially, indicating that the amorphous phase becomes progressively unfavorable. This coincides well with the observation that the critical quench rate to prevent crystallization increases about three orders of magnitude with increasing Te concentration. Due to the employment of a large range of heating rates, non-Arrhenius behavior was detected, indicating that the undercooled liquid SeTe is a fragile liquid. The activation energy of crystallization was found to increase 0.5-0.6 eV when the Te concentration increases from 15 to 30 at. % Te, but it ceases to increase when approaching 50 at. % Te.

  15. Crystal structure optimisation using an auxiliary equation of state

    NASA Astrophysics Data System (ADS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  16. Multi/demulti-plexer based on transverse mode conversion in photonic crystal waveguides.

    PubMed

    Zhou, Wen; Zhuang, Yuyang; Ji, Ke; Chen, He-ming

    2015-09-21

    A novel mode multiplexer and demultiplexer (MMUX/DEMMUX) based on 2-D photonic crystal (PC) at 1550 nm is proposed. The PC-based mode MMUX/DEMMUX including mode conversion function with a single-mode and multi-mode waveguides can be realized by quasi phase-matching TE(0) & TE(1) modes of two waveguides. 2DFinite-Difference-Time-Domain and beam propagation methods are used for simulation. The results show that PC-based mode MMUX/DEMMUX has the potential for high-capacity MDM optical communication systems with a low insertion loss (<0.36dB), low mode crosstalk (< -20.9 dB) and wide bandwidth (~100 nm).

  17. Synthesis and structure of A4V6[Te2(4+)Te6+]O24 (A = K, Rb)-two new quaternary mixed-valent tellurium oxides.

    PubMed

    Zhu, Tianxiang; Qin, Jingui; Halasyamani, P Shiv

    2011-09-14

    Two new mixed-valent tellurium oxides with vanadium(V), A(4)V(6)[Te(2)(4+)Te(6+)]O(24) (A = K and Rb), have been synthesized by hydrothermal and conventional solid state techniques. Their structures were determined by single-crystal X-ray diffraction analysis. These two iso-structural compounds exhibit layered structural topologies consisting of [V(6)Te(3)O(24)](4-) anionic units. In these anionic structural units, a Te(6+)O(6) octahedron is connected to six VO(4) tetrahedra by corner-sharing to generate a [V(6)TeO(24)] unit, and each of these [V(6)TeO(24)] units are interconnected by sharing two Te(4+)O(3) polyhedra to complete the infinite [V(6)Te(3)O(24)](4-) sheets. Infrared spectroscopy, UV-Visible diffuse reflectance spectroscopy, and thermogravimetric analysis were also performed on these two compounds. Crystal data: K(4)V(6)Te(3)O(24), trigonal, space group R ̅3c (No. 167) with a = b = 9.7075(6) Å, c = 42.701(3) Å, V = 3484.9(4) Å(3), and Z = 6; Rb(4)V(6)Te(3)O(24), trigonal, space group R ̅3c (No. 167) with a = b = 9.8399(9) Å, c = 43.012(4) Å, V = 3606.6(6) Å(3), and Z = 6. This journal is © The Royal Society of Chemistry 2011

  18. Doping effects of Co and Cu on superconductivity and magnetism in Fe1+yTe0.6Se0.4 single crystals.

    PubMed

    Zhang, Z T; Yang, Z R; Li, L; Ling, L S; Zhang, C J; Pi, L; Zhang, Y H

    2013-01-23

    We report on the investigation of Co and Cu substitution effects on superconductivity and magnetism in Fe(1+y)Te(0.6)Se(0.4) single crystals. The parent Fe(1.01)Te(0.59)Se(0.41) shows a nodeless bulk superconductivity as revealed in heat capacity measurement, which is gradually suppressed by either Co or Cu doping. It is found that the Co or Cu doping mainly serves as scatterers rather than charge carrier doping, which is in agreement with the DFT calculation (2010 Phys. Rev. Lett. 105 157004) reported by Wadati et al. In comparison with Cu doping, Co doping shows a stronger influence on magnetism while a less evident suppression effect on superconductivity. Upon substitution of Co for Fe, a Schottky heat capacity anomaly develops gradually at low temperatures, implying the existence of a paramagnetic moment in the Co-doped samples. In contrast, Cu doping may mainly serve as non-magnetic scatterers, where no Schottky anomaly is observed.

  19. Zone leveling and solution growth of complex compound semiconductors in space

    NASA Technical Reports Server (NTRS)

    Bachmann, K. J.

    1986-01-01

    A research program on complex semiconducting compounds and alloys was completed that addressed the growth of single crystals of CdSe(y)Te(1-y), Zn(x)Cd(1-x)Te, Mn(x)Cd(1-x)Te, InP(y)As(1-y) and CuInSe2 and the measurement of fundamental physico-chemical properties characterizing the above materials. The purpose of this ground based research program was to lay the foundations for further research concerning the growth of complex ternary compound semiconductors in a microgravity environment.

  20. Growth, morphological properties and pulsed photo response of MoTe2 single crystal synthesized by DVT technique

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Patel, Abhishek; Pathak, V. M.; Solanki, G. K.; Patel, K. D.

    2018-05-01

    Molybednum Di Telluride of group VI belongs to the family of layered transition metal di-chalcogenides (TMDCs). These TMDCs show good potential for applications in the field of optoelectronic devices as they are chemically inert trilayered structure of MX2 type. In the present investigation crystals of MoTe2 are grown by direct vapor transport technique in a dual zone horizontal furnace. The grown crystals were characterized by Energy Dispersive Analysis of X-rays (EDAX) to study its elemental and stoichiometric composition, Selected Area Electron Diffraction (SAED) confirms the hexagonal structure. Spot pattern of electron diffraction shows formation of single phase. Scanning Electron Microscope (SEM) shows the layer by layer growth of the crystals, Thermo Electric Power (TEP) reflects the p-type semiconducting nature of the grown crystals. As this material is photosensitive material having band gap of approximately 1.0 eV, a transient photo response against polychromatic radiation (40 mW/cm2) of photodetector is also measured which showed slow decay in generated photocurrent due to low trapping density within the active area of the prepared device. Thus, it shows that this material can be a good photovoltaic material for constructing a solar cell also.

  1. First- and second-order Raman scattering from MoTe2 single crystal

    NASA Astrophysics Data System (ADS)

    Caramazza, Simone; Collina, Arianna; Stellino, Elena; Ripanti, Francesca; Dore, Paolo; Postorino, Paolo

    2018-02-01

    We report on Raman experiments performed on a MoTe2 single crystal. The system belongs to the wide family of transition metal dichalcogenides which includes several of the most interesting two-dimensional materials for both basic and applied physics. Measurements were performed in the standard basal plane configuration, by placing the ab plane of the crystal perpendicular to the wave vector k i of the incident beam to explore the in-plane vibrational modes, and in the edge plane configuration with k i perpendicular to the crystal c axis, thus mainly exciting out-of-plane modes. For both configurations we performed a polarization-dependent study of the first-order Raman components and detailed computation of the corresponding selection rules. We were thus able to provide a complete assignment of the observed first-order Raman peaks, in agreement with previous literature results. A thorough analysis of the second-order Raman bands, as observed in both basal and edge plane configurations, provides new information and allows a precise assignment of these spectral structures. In particular, we have observed and assigned Raman active modes of the M point of the Brillouin zone previously predicted by ab initio calculations but never previously measured.

  2. Optical Characterization of Bulk ZnSeTe Solid Solutions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Zhu, Shen; Lehoczky, S. L.; Wang, Ling Jun

    2000-01-01

    Optical characterization was performed on wafers sliced from crystals of ZnSe, ZnTe, and ZnSe(1-x)Te(x)(0 less than x less than 0.4) grown by physical vapor transport. Energy band gaps at room temperature were determined from optical transmission measurements on 11 wafers. A best fit curve to the band gap versus composition x data gives a bowing parameter of 1.45. This number lies between the value of 1.23 determined previously on ZnSeTe bulk crystals and the value of 1.621 reported on ZnSeTe epilayers. Low-temperature photoluminescence (PL) spectra were measured on six samples. The spectra of ZnSe and ZnTe were dominated by near band edge emissions and no deep donor-acceptor pairs were observed. The PL spectrum exhibited a broad emission for each of the ZnSe(1-x)Te(x) samples, 0.09 less than x less than 0.39. For x=0.09, this emission energy is about 0.2 eV lower than the band gap energy measured at low temperature. As x increases the energy discrepancy gradually decreases and reduces to almost zero at x=0.4. The single broad PL emission spectra and the spectra measured as a function of temperature were interpreted as being associated with the exciton bound to Te clusters because of the high Te content in these samples.

  3. Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5.

    PubMed

    Hada, Masaki; Oba, Wataru; Kuwahara, Masashi; Katayama, Ikufumi; Saiki, Toshiharu; Takeda, Jun; Nakamura, Kazutaka G

    2015-08-28

    Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization.

  4. Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5

    PubMed Central

    Hada, Masaki; Oba, Wataru; Kuwahara, Masashi; Katayama, Ikufumi; Saiki, Toshiharu; Takeda, Jun; Nakamura, Kazutaka G.

    2015-01-01

    Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization. PMID:26314613

  5. Magneto-optical imaging of polycrystalline FeTe 1-xSe x prepared at various conditions

    NASA Astrophysics Data System (ADS)

    Ding, Q.; Taen, T.; Mohan, S.; Nakajima, Y.; Tamegai, T.

    2011-11-01

    We have prepared high-quality polycrystalline FeTe1-xSex by sintering at different temperatures and characterized their structural and magnetic properties with X-ray diffraction, magnetization measurements, and magneto-optical imaging. The intragranular Jc was estimated to be 5 × 104A/cm2, which is smaller than the single crystal, but still in the range for practical applications.

  6. Combined distillation and normal freezing to purify elements of groups II and VI

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1984-01-01

    A practical system and its application to the purification of Te and Cd is described. Single crystals are grown directly in vitreous silica ampoules subsequently used for sealed Bridgman growth of (Hg-Cd)Te. The system also prepares the ampoules by heating in high vacuum. Purification of the elements is by the combined effect of distillation and normal freezing. Transport and segregation are discussed.

  7. High-resolution (>5 800 time-bandwidth product) shear mode TeO2 deflector

    NASA Astrophysics Data System (ADS)

    Soos, Jolanta I.; Caviris, Nicholas P.; Phuvan, Sonlinh

    1992-12-01

    Acousto-optic deflectors play an important role in optical signal processing systems due to their real time processing capabilities, as well as their conversion capabilities of a function of time to a function of space and time. In this work Brimrose investigated the design and fabrication of state-of-the-art, very large time-bandwidth acousto-optic devices from TeO2 single crystals.

  8. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.

    PubMed

    Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun

    2017-08-15

    Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.

  9. Review of methods for preparatin of zinc and cadmium sulfide, selenide and telluride single cyrstals

    NASA Technical Reports Server (NTRS)

    Kucharczyk, M.; Zabludowska, K.

    1986-01-01

    The growth method of (Zn,Cd)S, (Zn,Cd)Se, (Zn,Cd)Te single crystals is reviewed. It is suggested that the method of sublimation-condensation is the most suitable to the conditions and facilities available, and should be employed in the Department of Physics of Bislystok Polytechnic.

  10. Synthesis of ZnTe dendrites on multi-walled carbon nanotubes/polyimide nanocomposite membrane by electrochemical atomic layer deposition and photoelectrical property research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yimin; Kou, Huanhuan; Li, Jiajia

    2012-10-15

    We report on the electrochemical atomic layer deposition (EC-ALD) of ZnTe dendrites on the carboxyl-functionalized multi-walled carbon nanotubes/polyimide (COOH-MWCNTs/PI) membrane. Electrochemical characteristics were studied by cyclic voltammetry (CV) and the deposition of ZnTe dendrites was completed using amperometric method (I-t). The prepared ZnTe dendrites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The growth mechanism of ZnTe dendrites was elucidated to give a deep understanding of crystal growth. The concentration of reagents and deposition cycle had a significant effect on the morphology and structure of deposits. UV-vis transmission study indicated a direct bandmore » gap of 2.26 eV. Photoelectrical measurement confirmed the p-type conductivity of ZnTe dendrites, which indicated that the dendritic ZnTe crystals may have potential practical application in optoelectronic devices. - Graphical abstract: Representative SEM images of ZnTe dendrites. (a) Panorama of ZnTe dendrites; (b) a single dendrite. The regular branches appeared like leaves and showed a parallel arrangement layer upon layer between each other. Highlights: Black-Right-Pointing-Pointer ZnTe dendrites were successfully synthesized on CNTs/PI membrane by electrodeposition. Black-Right-Pointing-Pointer The growth mechanism of ZnTe dendritic structures was investigated in detail. Black-Right-Pointing-Pointer The concentration and deposition cycle greatly affected the morphology of ZnTe. Black-Right-Pointing-Pointer OCP and I-t studies showed that ZnTe can be beneficial to photoelectric applications.« less

  11. High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah

    Here, Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 10 16 and 10 20 cm –3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 10 17 cm –3 is presented, while for higher-doped samples, precipitation of a secondmore » phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20–30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm 2/Vs at room temperature. A doping limit in the low 10 17/cm 3 range is observed for samples quenched at 200–300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 10 16 cm –3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 10 18 cm –3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.« less

  12. High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals

    DOE PAGES

    Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah; ...

    2018-05-07

    Here, Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 10 16 and 10 20 cm –3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 10 17 cm –3 is presented, while for higher-doped samples, precipitation of a secondmore » phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20–30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm 2/Vs at room temperature. A doping limit in the low 10 17/cm 3 range is observed for samples quenched at 200–300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 10 16 cm –3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 10 18 cm –3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.« less

  13. Dimensional crossover and thermoelectric properties in CeTe2-xSbx single crystals

    NASA Astrophysics Data System (ADS)

    Rhyee, Jong-Soo; Lee, Kyung Eun; Nyeong Kim, Jae; Shim, Ji Hoon; Min, Byeong Hun; Kwon, Yong Seung

    2013-03-01

    Several years before, we proposed that the charge density wave is a new pathway for high thermoelectric performance in In4Se3-x bulk crystalline materials. (Nature v.459, p. 965, 2009) Recently, from the increase of the chemical potential by halogen doped In4Se3-xH0.03 (H =Halogen elements) crystals, we achieved high ZT (maximum ZT 1.53) over a wide temperature range. (Adv. Mater. v.23, p.2191, 2011) Here we demonstrate the low dimensionality increases power factor in CeTe2-xSbx single crystals. The band structures of CeTe2 show the 2-dimensional (2D) Fermi surface nesting behavior as well as a 3-dimensional (3D) electron Fermi surface hindering the perfect charge density wave (CDW) gap opening. By hole doping with the substitution of Sb at the Te-site, the 3D-like Fermi surface disappears and the 2D perfect CDW gap opening enhances the power factor up to x = 0.1. With further hole doping, the Fermi surfaces become 3-dimensional structure with heavy hole bands. The enhancement of the power factor is observed near the dimensional crossover of CDW, at x = 0.1, where the CDW gap is maximized. This research was supported by Basic Science Research Program (2011-0021335), Mid-career Research Program (Strategy) (No. 2012R1A2A1A03005174) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, and TJ Park Junior Faculty Fellowship funded by the POSCO TJ Park Foundation.

  14. Optimization of the photorefractivity in II-IV semiconductors. Final report, March 1996--March 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagannathan, G.V.; Trivedi, S.B.; Kutcher, S.W.

    1998-11-01

    This work was aimed at optimization of the photorefractivity in the II-VI semiconductors CdTe, ZnTe and Cd{sub x{minus}1}Zn{sub (x)}Te for real-time optical signal processing applications at near infrared wavelengths. During this work, several crystals of ZnTe, CdTe and Cd{sub x{minus}1}Zn{sub (x)}Te were grown. Crystal growth of ZnTe and CdTe was carried out using low supersaturation nucleation and `contactless` growth by Vertical Physical Vapor Transport (PVT) in closed ampoules and the CdTe and Cd{sub x{minus}1}Zn{sub (x)}Te crystals were grown using the vertical Bridgman technique. The quality of the crystals grown during this work was evaluated based on optical, electrical and structuralmore » characterization. Infrared microscopy was used to examine the internal crystalline structure of the samples. Most of the crystals grown during this work exhibited photorefractivity and photoconductivity. The resistivity of the vanadium doped crystals under dark conditions was found to be between 10 {sup 8} to 10 {sup 10} ohms cm. The resistivity decreased significantly in the presence of illumination indicating that the crystals were highly photoconductive. The photorefractive properties of the crystals grown during this project were characterized by two beam coupling. All of the measurements revealed a strong photorefractive nonlinear effect.« less

  15. Atomic Migration Induced Crystal Structure Transformation and Core-Centered Phase Transition in Single Crystal Ge2Sb2Te5 Nanowires.

    PubMed

    Lee, Jun-Young; Kim, Jeong-Hyeon; Jeon, Deok-Jin; Han, Jaehyun; Yeo, Jong-Souk

    2016-10-12

    A phase change nanowire holds a promise for nonvolatile memory applications, but its transition mechanism has remained unclear due to the analytical difficulties at atomic resolution. Here we obtain a deeper understanding on the phase transition of a single crystalline Ge 2 Sb 2 Te 5 nanowire (GST NW) using atomic scale imaging, diffraction, and chemical analysis. Our cross-sectional analysis has shown that the as-grown hexagonal close-packed structure of the single crystal GST NW transforms to a metastable face-centered cubic structure due to the atomic migration to the pre-existing vacancy layers in the hcp structure going through iterative electrical switching. We call this crystal structure transformation "metastabilization", which is also confirmed by the increase of set-resistance during the switching operation. For the set to reset transition between crystalline and amorphous phases, high-resolution imaging indicates that the longitudinal center of the nanowire mainly undergoes phase transition. According to the atomic scale analysis of the GST NW after repeated electrical switching, partial crystallites are distributed around the core-centered amorphous region of the nanowire where atomic migration is mainly induced, thus potentially leading to low power electrical switching. These results provide a novel understanding of phase change nanowires, and can be applied to enhance the design of nanowire phase change memory devices for improved electrical performance.

  16. Defect chemistry and characterization of Hg sub 1x Cd sub x Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1982-01-01

    Single crystal samples of undoped and doped Hg sub 1-x Cd sub x Te were annealed at varying temperatures and partial pressures of Hg. Hall effect and mobility measurements were carried out on these samples after quenching to room temperature. Based on the variation of the carrier concentration and the carrier mobility as a function of the partial pressure of Hg temperature, and dopant concentration, defect models were established for the doped and the undoped crystals. These models indicate that the native acceptor defects in both Hg0.8Cd0.2Te and Hg0.6Cd0.4Te doubly ionized and the native donor defects are negligible in concentration, implying that p to n conversion in these alloys occurs due only to residual donors. Incorporation mechanism of copper, indium, iodine, and phosphorus were investigated. A large concentration of indium is found to be paired with the native acceptor defects. Results on crystals doped with phosphorus indicate that phosphorus behaves amphoterically, acting as a donor on Hg lattice sites and as an acceptor intersitially on Te lattice sites. A majority of the phosphorus is found to be present as neutral species formed from the pairing reaction between phosphorus on Hg lattice sites and phosphorus in interstitial sites. Equilibrium constants for the intrinsic excitation reaction, as well as for the incorporation of the different dopants and the native acceptor defects were established.

  17. ZnO/Sn:In2O3 and ZnO/CdTe band offsets for extremely thin absorber photovoltaics

    NASA Astrophysics Data System (ADS)

    Kaspar, T. C.; Droubay, T.; Jaffe, J. E.

    2011-12-01

    Band alignments were measured by x-ray photoelectron spectroscopy for thin films of ZnO on polycrystalline Sn:In2O3 (ITO) and single crystal CdTe. Hybrid density functional theory calculations of epitaxial zinc blende ZnO(001) on CdTe(001) were performed to compare with experiment. A conduction band (CB) offset of -0.6 eV was measured for ZnO/ITO, which is larger than desired for efficient electron injection. For ZnO/CdTe, the experimental conduction band offset of 0.25 eV is smaller than the calculated value of 0.67 eV, possibly due to the TeOx layer at the ZnO/CdTe interface. The measured conduction band offset for ZnO/CdTe is favorable for photovoltaic devices.

  18. Strong spin-lattice coupling in CrSiTe 3

    DOE PAGES

    Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; ...

    2015-03-19

    CrSiTe 3 has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe 3 is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of themore » phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. In conclusion, the Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Lastly, spin-lattice coupling constants are also extracted.« less

  19. Study of Te Inclusion and Related Point Defects in THM-Growth CdMnTe Crystal

    NASA Astrophysics Data System (ADS)

    Mao, Yifei; Zhang, Jijun; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Ling, Liwen; Li, Ming; Zhang, Ying; Wang, Linjun

    2018-02-01

    This study establishes a model for describing the interaction between Te inclusions, dislocations and point defects in CdMnTe crystals. The role of the complex environment surrounding the formation of Te inclusions was analyzed. Images of Te inclusions captured by scanning electron microscope and infrared microscope were used to observe the morphology of Te inclusions. The morphology of Te inclusions is discussed in light of crystallography, from the crystal growth temperature at 900°C to the melting temperature of Te inclusions using the traveling heater method. The dislocation nets around Te inclusions were calculated by counting lattice mismatches between the Te inclusions and the bulk CdMnTe at 470°C. The point defects of Te antisites were found to be gathered around Te inclusions, with dislocation climb during the cooling phase of crystal growth from 470°C to room temperature. The Te inclusions, dislocation nets and surrounding point defects are considered to be an entirety for evaluating the effect of Te inclusions on CdMnTe detector performance, and an effective mobility-lifetime product (μτ) was obtained.

  20. 125Te NMR Probes of Tellurium Oxide Crystals: Shielding-Structure Correlations.

    PubMed

    Garaga, Mounesha N; Werner-Zwanziger, Ulrike; Zwanziger, Josef W

    2018-01-16

    The local environments around tellurium atoms in a series of tellurium oxide crystals were probed by 125 Te solid-state NMR spectroscopy. Crystals with distinct TeO n units (n from 3 to 6), including Na 2 TeO 3 , α-TeO 2 and γ-TeO 2 , Te 2 O(PO 4 ) 2 , K 3 LaTe 2 O 9 , BaZnTe 2 O 7 , and CsYTe 3 O 8 were studied. The latter four were synthesized through a solid-state process. X-ray diffraction was used to confirm the successful syntheses. The 125 Te chemical shift was found to exhibit a strong linear correlation with the Te coordination number. The 125 Te chemical-shift components (δ 11 , δ 22 , and δ 33 ) of the TeO 4 units were further correlated to the O-Te-O-bond angles. With the aid of 125 Te NMR, it is likely that these relations can be used to estimate the coordination states of Te atoms in unknown Te crystals and glasses.

  1. Phase Change Characteristics of InxSb40-xTe60 Chalcogenide Alloy for Phase Change Random Access Memory

    NASA Astrophysics Data System (ADS)

    Yun, Jae-Jin; Lee, Won-Jong

    2011-07-01

    The InxSb40-xTe60 alloy was selected as a new alternative phase change material for Ge2Sb2Te5 (GST) for phase change random access memory (PRAM). The crystal structure of InxSb40-xTe60 was an α(Sb2Te3) rhombohedral (a=b=c, α=β=γ≠90°) single phase with identical lattice parameters in a wide composition range of In (0-28 at. %). The crystallization temperature and melting point of InxSb40-xTe60 were in the ranges of 149-219 °C and 608-614 °C, respectively, and similar to those of GST. The electric properties of InxSb40-xTe60 with a wide composition range of In contents showed the typical PRAM properties such as current-voltage (I-V), resistance-voltage (R-V), and switching behavior. The reset current of InxSb40-xTe60 decreased with increasing In content and the low power consumption and good retention can be realized by controlling In content. The ratio of the cell resistance and sheet resistance of amorphous InxSb40-xTe60 to those crystalline InxSb40-xTe60 were almost the same as or larger than those of GST. The cycling endurance test of InxSb40-xTe60 with a wide range of In contents showed the comparable results to GST. InxSb40-xTe60 was concluded to be a very promising phase change material for PRAM.

  2. Performance of Ge-Sb-Bi-Te-B Recording Media for Phase-Change Optical Disks

    NASA Astrophysics Data System (ADS)

    Lee, Chain-Ming; Yen, Wen-Shin; Liu, Ren-Haur; Chin, Tsung-Shune

    2001-09-01

    We investigated the physical properties of GeSbBiTeB materials and examined the feasibility for phase change recording. The studied compositions were Ge4Sb0.5Bi0.5Te5 and Ge2Sb1.5Bi0.5Te5 with B doping. The coexistence of Bi and B atoms into both Ge4SbTe5 and Ge2Sb2Te5 lattice maintains single fcc structure without phase separation. The Bi substitution shows benefits in decreasing crystallization temperature and activation energy, however the reflectivity is slightly reduced. 3 With small amount addition of boron about 1 at.%, the reflectivity can be increased. 2 Conventional 4-layer structure of digital versatile disk-random access memory (DVD-RAM) 2.6 GB format was used to prepare the disks for dynamic characterization and overwrite cyclability evaluations. The disk with Ge4Sb0.5Bi0.5Te5(B) recording layer shows large noise fluctuation and low overwrite erase ratio, suggesting that the crystallization speed is still insufficient. While the disk with Ge2Sb1.5Bi0.5Te5(B) recording layer shows lower writing and erasing powers, stable noise level and high overwrite erase ratio, indicating the capability for DVD-RAM applications. The effect of B doping was verified to enhance the signal amplitude and modulation.

  3. Optical Characterization of Bulk ZnSeTe Solid Solutions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Zhu, Shen; Lehoczky, S. L.; Wang, Ling Jun

    2000-01-01

    Optical characterization was performed on wafers sliced from crystals of ZnSe, ZnTe and ZnSe (sub 1-x) Te (sub x) (0 less than x less than 0.4) grown by physical vapor transport technique. The energy band gaps at room temperature were determined from optical transmission measurements on 11 wafers. The best fit to the band gap vs. composition, x, data gives a bowing parameter of 1.336 which is between the value of 1.23 determined previously on ZnSeTe bulk crystals by reflectivity and the value of 1.621 reported on epilayers by photoconductivity. Low-temperature photoluminescence (PL) spectra were measured on 6 samples. The spectra of ZnSe and ZnTe were dominated by near band edge emissions and no deep donor-acceptor pairs were observed. The PL spectrum exhibited a broad emission for each of the ZnSe (sub 1-x) Te (sub x) samples, 0.09 less than x less than 0.39. For x = 0.09, this emission energy is about 0.2eV lower than the band gap energy measured at low temperature. As x increases the energy discrepancy gradually decreases and reduces to almost zero at x = 0.4. The single broad PL emission spectra and the spectra measured as a function of temperature were interpreted to be associated with the exciton bound to Te clusters because of the high Te content in these samples.

  4. New Mechanism for Toughening Ceramic Materials

    DTIC Science & Technology

    1994-02-01

    Ferroelastic toughening, twinning, domain switching 1 17. 340.TY Q .Al MD0 .I SOWL&Nrv CLO.ASS1RC M SIS . W CASSWCAMlS 9: j"hTAfCm Of AMTLACT OF AD...crystal (Cubefaces orthogonal to (IM()) on the basis of the pseudocubic si mmetry X-ray diffraction traces using CuKa radiation were obtained show ing...Metastable Te- observed on ground or fracture surfaces of single crystals an- tragonal Zirconia Crystals." J. MAter Si . 18. 2619-28 (1983) ’T. C. Yuan

  5. Low carrier concentration crystals of the topological insulator Bi2-xSbxTe3-ySey: a magnetotransport study

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wu, D.; Angevaare, J. R.; Luigjes, H.; Frantzeskakis, E.; de Jong, N.; van Heumen, E.; Bay, T. V.; Zwartsenberg, B.; Huang, Y. K.; Snelder, M.; Brinkman, A.; Golden, M. S.; de Visser, A.

    2014-12-01

    In 3D topological insulators achieving a genuine bulk-insulating state is an important research topic. Recently, the material system (Bi,Sb)2(Te,Se)3 (BSTS) has been proposed as a topological insulator with high resistivity and a low carrier concentration (Ren et al 2011 Phys. Rev. B 84 165311). Here we present a study to further refine the bulk-insulating properties of BSTS. We have synthesized BSTS single crystals with compositions around x = 0.5 and y = 1.3. Resistance and Hall effect measurements show high resistivity and record low bulk carrier density for the composition Bi1.46Sb0.54Te1.7Se1.3. The analysis of the resistance measured for crystals with different thicknesses within a parallel resistor model shows that the surface contribution to the electrical transport amounts to 97% when the sample thickness is reduced to 1 μm. The magnetoconductance of exfoliated BSTS nanoflakes shows 2D weak antilocalization with α ≃ -1 as expected for transport dominated by topological surface states.

  6. Hyper-branched CdTe nanostructures based on the self-assembling of quantum dots and their optical properties.

    PubMed

    Pan, Ling-Yun; Pan, Gen-Cai; Zhang, Yong-Lai; Gao, Bing-Rong; Dai, Zhen-Wen

    2013-02-01

    As the priority of interconnects and active components in nanoscale optical and electronic devices, three-dimensional hyper-branched nanostructures came into focus of research. Recently, a novel crystallization route, named as "nonclassical crystallization," has been reported for three-dimensional nanostructuring. In this process, Quantum dots are used as building blocks for the construction of the whole hyper-branched structures instead of ions or single-molecules in conventional crystallization. The specialty of these nanostructures is the inheritability of pristine quantum dots' physical integrity because of their polycrystalline structures, such as quantum confinement effect and thus the luminescence. Moreover, since a longer diffusion length could exist in polycrystalline nanostructures due to the dramatically decreased distance between pristine quantum dots, the exciton-exciton interaction would be different with well dispersed quantum dots and single crystal nanostructures. This may be a benefit for electron transport in solar cell application. Therefore, it is very necessary to investigate the exciton-exciton interaction in such kind of polycrystalline nanostructures and their optical properites for solar cell application. In this research, we report a novel CdTe hyper-branched nanostructures based on self-assembly of CdTe quantum dots. Each branch shows polycrystalline with pristine quantum dots as the building units. Both steady state and time-resolved spectroscopy were performed to investigate the properties of carrier transport. Steady state optical properties of pristine quantum dots are well inherited by formed structures. While a suppressed multi-exciton recombination rate was observed. This result supports the percolation of carriers through the branches' network.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kushwaha; Pletikosic, I.; Liang, T.

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons, and be growable as large, high quality bulk single crystals. Here we show that this materials obstacle is overcome by bulk crystals of lightly Sn-doped Bi 1.1Sb 0.9Te 2S grown by the Vertical Bridgeman method.more » We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunneling microscopy, transport studies, X-ray diffraction, and Raman scattering. We present this material as a high quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.« less

  8. Coexistence of superconductivity and short-range double-stripe spin correlations in Te-vapor annealed FeTe 1–xSe x with x ≤ 0.2

    DOE PAGES

    Xu, Zhijun; Tranquada, John M.; Schneeloch, J. A.; ...

    2018-06-30

    In as-grown bulk crystals of Fe 1+yTe 1–xSe x with x ≲ 0.3, excess Fe (y > 0) is inevitable and correlates with a suppression of superconductivity. At the same time, t here remains the question as to whether the character of the antiferromagnetic correlations associated wi th the enhanced anion height above the Fe planes in Te-rich samples is compatible with superconductivity. To t est this, we have annealed as-grown crystals with x = 0.1 and 0.2 in Te vapor, effectively reducing the excess Fe and in ducing bulk superconductivity. Inelastic neutron scattering measurements reveal low-energy magnet ic excitationsmore » consistent with short-range correlations of the double-stripe type; nevertheless, cooling int o the superconducting state results in a spin gap and a spin resonance, with the extra signal in the resonance being short-range with a mixed single-stripe/double-stripe character, which is different than other iron-based superconductors. In conclusion, the mixed magnetic character of these superconducting samples does not appear to be trivially explainable by inhomogeneity.« less

  9. Ion-beam-induced damage formation in CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rischau, C. W.; Schnohr, C. S.; Wendler, E.

    2011-06-01

    Damage formation in <111>- and <112>-oriented CdTe single crystals irradiated at room temperature and 15 K with 270 keV Ar or 730 keV Sb ions was investigated in situ using Rutherford backscattering spectroscopy (RBS) in channeling configuration. Defect profiles were calculated from the RBS spectra using the computer code DICADA and additional energy-dependent RBS measurements were performed to identify the type of defects. At both temperatures no formation of a buried amorphous layer was detected even after prolonged irradiation with several 10{sup 16} ions/cm{sup 2}. The fact that CdTe is not rendered amorphous even at 15 K suggests that themore » high resistance to amorphization is caused by the high ionicity of CdTe rather than thermal effects. The calculated defect profiles show the formation of a broad defect distribution that extends much deeper into the crystal than the projected range of the implanted ions at both temperatures. The post-range defects in CdTe thus do not seem to be of thermal origin either, but are instead believed to result from migration driven by the electronic energy loss.« less

  10. Coexistence of superconductivity and short-range double-stripe spin correlations in Te-vapor annealed FeTe 1–xSe x with x ≤ 0.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijun; Tranquada, John M.; Schneeloch, J. A.

    In as-grown bulk crystals of Fe 1+yTe 1–xSe x with x ≲ 0.3, excess Fe (y > 0) is inevitable and correlates with a suppression of superconductivity. At the same time, t here remains the question as to whether the character of the antiferromagnetic correlations associated wi th the enhanced anion height above the Fe planes in Te-rich samples is compatible with superconductivity. To t est this, we have annealed as-grown crystals with x = 0.1 and 0.2 in Te vapor, effectively reducing the excess Fe and in ducing bulk superconductivity. Inelastic neutron scattering measurements reveal low-energy magnet ic excitationsmore » consistent with short-range correlations of the double-stripe type; nevertheless, cooling int o the superconducting state results in a spin gap and a spin resonance, with the extra signal in the resonance being short-range with a mixed single-stripe/double-stripe character, which is different than other iron-based superconductors. In conclusion, the mixed magnetic character of these superconducting samples does not appear to be trivially explainable by inhomogeneity.« less

  11. Synthesis and characteristics of PbTe1-xSex thin films formed via electrodeposition

    NASA Astrophysics Data System (ADS)

    Bae, Sangwoo; Lee, Sangwon; Sohn, Ho-Sang; Lee, Ho Seong

    2017-09-01

    PbTe1-xSex films were grown using electrodeposition and their microstructural and electrical properties were investigated. The Se content incorporated in the PbTe1-xSex films increased with the Se content in the electrolyte. X-ray diffraction peaks of the PbTe1-xSex films shifted to higher angles according to Vegard's law. For the sample with a small Se content, the PbTe1-xSex films showed a characteristic feather-like dendrite, while PbTe1-xSex films with a higher Se content showed faceted particles. Transmission electron microscopy results showed that the feather-like dendritic PbTe1-xSex grew like a single crystal and a growing twinning was formed in some dendrites. With an increase in the Se content in the PbTe1-xSex thin films, the carrier concentrations increased but the mobility reduced. Electrical conductivity of the PbTe1-xSex thin films increased and then slightly decreased with increasing Se content.

  12. Growth of Solid Solution Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.; Holland, L. R.

    1985-01-01

    The major objective of this program is to determine the conditions under which single crystals of solid solutions can be grown from the melt in a Bridgman configuration with a high degree of chemical homogeneity. The central aim is to assess the role of gravity in the growth process and to explore the possible advantages for growth in the absence of gravity. The alloy system being investigated is the solid solution semiconductor with x-values appropriate for infrared detector applications in Hg sub (1-x) Cd sub x Te the 8 to 14 micro m wavelength region. Both melt and Te-solvent growth are being considered. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. Experimental facilities have been established for the purification, casting, and crystal growth of the alloy system. Facilities have been also established for the metallurgical, compositional, electric and optical characterization of the alloys. Crystals are being grown by the Bridgman-Stockbarger method and are analyzed by various experimental techniques to evaluate the effects of growth conditions on the longitudinal and radial compositional variations and defect densities in the crystals.

  13. The composition effect on the thermal and optical properties across CdZnTe crystals

    NASA Astrophysics Data System (ADS)

    Strzałkowski, K.

    2016-11-01

    Cd1-x Zn x Te mixed crystals investigated in this work were grown from the melt using the vertical Bridgman-Stockbarger method in the whole range of composition 0  <  x  <  1 that is from one binary crystal (CdTe) to another (ZnTe). The real composition of grown crystals was measured with the SEM/EDS method along the growth axis. The segregation coefficient of Zn in a CdTe matrix has been evaluated as being close to unity. The energy gap as a function of the composition was determined from transmission spectroscopy. Thanks to that, the bowing parameter of this ternary alloy was found to be 0.458. In this work the systematical study of thermal properties of Cd1-x Zn x Te alloys from one binary crystal (CdTe) to another (ZnTe) grown by the vertical Bridgman technique were undertaken for the first time. The thermal diffusivity and effusivity of the investigated crystals were derived from the experimental data and allowed the thermal conductivity to be calculated. Diagrams of the thermal conductivity versus composition were analyzed applying the model for mixed semiconducting crystals given by Sadao Adachi. Thanks to that, the contribution of the thermal resistivity arising from the lattice disorder to the total resistivity of the crystal has been determined.

  14. Thermophysical and Optical Properties of Semiconducting Ga2Te3 Melt

    NASA Technical Reports Server (NTRS)

    Li, Chao; Su, Ching-Hua; Lehoczky, Sandor L.; Scripa, Rosalie N.; Ban, Heng

    2005-01-01

    The majority of bulk semiconductor single crystals are presently grown from their melts. The thermophysical and optical properties of the melts provide a fundamental understanding of the melt structure and can be used to optimize the growth conditions to obtain higher quality crystals. In this paper, we report several thermophysical and optical properties for Ga2Te3 melts, such as electrical conductivity, viscosity, and optical transmission for temperatures ranging from the melting point up to approximately 990 C. The conductivity and viscosity of the melts are determined using the transient torque technique. The optical transmission of the melts is measured between the wavelengths of 300 and 2000 nm by an dual beam reversed-optics spectrophotometer. The measured properties are in good agreement with the published data. The conductivities indicate that the Ga2Te3 melt is semiconductor-like. The anomalous behavior in the measured properties are used as an indication of a structural transformation in the Ga2Te3 melt and discussed in terms of Eyring's and Bachinskii's predicted behaviors for homogeneous melts.

  15. On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI{sub 3} and CuI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulbachinskii, Vladimir A., E-mail: kulb@mig.phys.msu.ru; Kytin, Vladimir G.; Kudryashov, Alexey A.

    The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin-orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. The optimized crystal structures show a tendency for the Bi-X (X=Br, I) bond elongation compared to the Bi-Te one. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within themore » frames of the acoustic phonons scattering model. Because of larger thermopower BiTeBr exhibits a twice higher thermoelectric figure-of-merit near room temperature, ZT=0.17, compared to BiTeI. The addition of 1 mass% of BiI{sub 3} or CuI to BiTeI decreases the mobility of electrons by two orders of magnitude, leading to significantly lower electrical conductivity, but at the same time effectively reduces the thermal conductivity. The prospects of further enhancing the thermoelectric efficiency are briefly discussed. - Graphical abstract: View of the crystal structure of BiTeBr is shown in the figure The optimized crystal structures show a tendency for the Bi-X (X=Br, I) bond elongation compared to the Bi-Te one. The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin-orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within the frames of the acoustic phonons scattering model. The addition of 1 mass% of BiI{sub 3} or CuI to BiTeI effectively reduces the thermal conductivity. The prospects of further enhancing the thermoelectric efficiency are briefly discussed. Highlights: Black-Right-Pointing-Pointer BiTeBr and BiTeI feature mixing of p states of Bi, Te, and halogen near Fermi level. Black-Right-Pointing-Pointer BiTeBr has thermoelectric figure-of-merit ZT=0.17, two times that of BiTeI. Black-Right-Pointing-Pointer 1% CuI or BiI{sub 3} decrease dramatically electron mobility in BiTeI. Black-Right-Pointing-Pointer 1% CuI decreases thermal conductivity of BiTeI by a factor of 4, reaching 0.5 W m{sup -1} K.« less

  16. Ge K-Edge Extended X-Ray Absorption Fine Structure Study of the Local Structure of Amorphous GeTe and the Crystallization

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshihito; Wakagi, Masatoshi

    1991-01-01

    The local structure and crystallization of amorphous GeTe (a-GeTe) were examined by means of Ge K-edge EXAFS. In a-GeTe, both Ge-Ge and Ge-Te bonds were observed to exist in nearest neighbors of Ge. The average coordination number around Ge is 3.7, which is close to the tetrahedral structure. A random covalent network (RCN) model seems to be suitable for the local Structure. After a-GeTe crystallizes at 129°C, the Ge-Ge bond disappears and the Ge-Te bond length increases considerably. As temperature rises, in a-GeTe the Debye-Waller factor of the Ge-Te bond increases greatly, while that of the Ge-Ge bond increases only slightly. At the crystallization, it is found that the fluctuation of the Ge-Te bond length plays a major role in the change of the local structure and bonding state around Ge.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahrnbauer, Felix; Urban, Philipp; Welzmiller, Simon

    Antimony in germanium antimony tellurides (GeTe){sub n}(Sb{sub 2}Te{sub 3}) can be substituted by indium. Homogeneous bulk samples of GeSbInTe{sub 4} (R3-bar m, Z=3, a=4.21324(5) Å, c=41.0348(10) Å) and Ge{sub 2}SbInTe{sub 5} (P3-bar m1, Z=1, a=4.20204(6) Å, c=17.2076(4) Å) were obtained; their structures were refined with the Rietveld method. Single-crystal X-ray diffraction using synchrotron radiation at the K edges of Sb and Te (exploiting anomalous dispersion) yields precise information on the element distribution in the trigonal layered structure of Ge{sub 3}SbInTe{sub 6} (R3-bar m, Z=3, a=4.19789(4) Å, c=62.1620(11) Å). The structure is characterized by van der Waals gaps between distorted rocksalt-typemore » slabs of alternating cation and anion layers. The cation concentration is commensurately modulated with Sb preferring the positions near the gaps. In contrast to unsubstituted Ge{sub 3}Sb{sub 2}Te{sub 6}, quenching the NaCl-type high-temperature phase (stable above ∼510 °C) easily yields a pseudocubic modification that is metastable at ambient conditions. Temperature-dependent powder diffraction reveals a broader stability range of the cubic high-temperature modification of Ge{sub 3}SbInTe{sub 6} compared to the ternary phases. In-containing samples partially decompose at ca. 300 °C but become homogeneous again when the high-temperature phase is formed. - Graphical abstract: Crystal structure of 33R-Ge{sub 3}SbInTe{sub 6} as determined by resonant X-ray diffraction, one example of the (GeTe){sub n}SbInTe{sub 3} series of compounds investigated. - Highlights: • The new compounds 21R-GeSbInTe{sub 4}, 9P-Ge{sub 2}SbInTe{sub 5} and 33R-Ge{sub 3}SbInTe are described. • The element distribution in 33R-Ge{sub 3}SbInTe{sub 6} was determined by resonant scattering. • The cation concentration in the crystal structure is strongly modulated. • The Sb substitution by In has a significant impact on phase transitions. • Results may be relevant for thermoelectrics and thin-film phase-change materials.« less

  18. In situ electron microscope study of the phase transformation, structure and growth of thin Te1-xSex films

    NASA Astrophysics Data System (ADS)

    Vermaak, J. S.; Raubenheimer, D.

    1988-01-01

    An in-situ electron microscope technique was utilized to observe directly the amorphous-to-crystalline phase transformation, the isothermal growth rates, as well as the orientation and structure of the recrystallized films for the Te1-xSex alloy system for x=0.2, 0.3 and 0.4. Activation energies of E=0.91, 0.93 and 0.96 eV and crystallization temperatures of Tc=-14, 81.5 and 85°C for the three alloys, respectively, were found. In all three cases the crystallization process originated from single crystalline nuclei with a hexagonal structure and with the c-axis in general parallel to the substrate surface.

  19. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Dudley, M.; Ramachandran, N.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. The following are the research progress in the past two years. In-situ monitoring of partial pressure by optical absorption technique and visual observation of the growing crystal were performed during vapor growth of ZnSe. Low-temperature photoluminescence (PL) spectra and glow discharge mass spectroscopy (GDMS) were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during crystal growth process. Optical characterization was performed on wafers sliced from the grown crystals of ZnSe, ZnTe and ZnSe(1-x),Te(x), (0

  20. London penetration depth and superfluid density of single-crystalline Fe1+y(Te1-xSex) and Fe1+y(Te1-xSx)

    NASA Astrophysics Data System (ADS)

    Kim, H.; Martin, C.; Gordon, R. T.; Tanatar, M. A.; Hu, J.; Qian, B.; Mao, Z. Q.; Hu, Rongwei; Petrovic, C.; Salovich, N.; Giannetta, R.; Prozorov, R.

    2010-05-01

    The in-plane London penetration depth, λ(T) , was measured in single crystals of the iron-chalcogenide superconductors Fe1.03(Te0.63Se0.37) and Fe1.06(Te0.88S0.14) by using a radio-frequency tunnel diode resonator. Similar to the iron-arsenides and in stark contrast to the iron-phosphides, iron-chalcogenides exhibit a nearly quadratic temperature variation of λ(T) at low temperatures. The absolute value of the penetration depth in the T→0 limit was determined for Fe1.03(Te0.63Se0.37) by using an Al coating technique, giving λ(0)≈560±20nm . The superfluid density ρs(T)=λ2(0)/λ2(T) was fitted with a self-consistent two-gap γ model. While two different gaps are needed to describe the full-range temperature variation in ρs(T) , a nonexponential low-temperature behavior requires pair-breaking scattering, and therefore an unconventional (e.g., s± or nodal) order parameter.

  1. III-V semiconductor solid solution single crystal growth

    NASA Technical Reports Server (NTRS)

    Gertner, E. R.

    1982-01-01

    The feasibility and desirability of space growth of bulk IR semiconductor crystals for use as substrates for epitaxial IR detector material were researched. A III-V ternary compound (GaInSb) and a II-VI binary compound were considered. Vapor epitaxy and quaternary epitaxy techniques were found to be sufficient to permit the use of ground based binary III-V crystals for all major device applications. Float zoning of CdTe was found to be a potentially successful approach to obtaining high quality substrate material, but further experiments were required.

  2. Generic Superconducting Inhomogeneity in Single Crystal Fe(Te1-xSex) Probed by Nanostructure-transport

    NASA Astrophysics Data System (ADS)

    Yue, Chunlei; Hu, Jin; Liu, Xue; Mao, Zhiqiang; Wei, Jiang

    2015-03-01

    We have investigated the nano-scale electronic properties of the iron-based unconventional superconductor Fe(Te1-xSex) with optimal Se content x = 0.5. Using the microexfoliation method and ion milling thinning, we successfully produced Fe(Te1-xSex) devices with thickness varying from 90nm down to 12nm. Our transport measurements revealed a suppression of superconductivity coinciding with the loss of normal state metallicity. Through the simulation of the formation of superconducting region in nano-scale thin flakes, we show that our observation is in line with the nano-scale inhomogeneity proposed for this material; therefore it provides a more direct evidence for the nano-scale inhomogeneous superconductivity in Fe(Te1-xSex) .

  3. Properties of p-n-junctions formed by a laser irradiation of a surface of n-Cd1-xZnxTe single crystal

    NASA Astrophysics Data System (ADS)

    Khomyak, V. V.; Ilashchuk, M. I.; Shtepliuk, I. I.

    2015-03-01

    Photosensitive barrier structures were fabricated by high-power pulsed laser irradiation of a freshly-cleaved surface of п-type bulk Cd1-xZnxTe substrates. Their electrical properties were investigated and discussed. Dominant carrier mechanisms at a forward and a reverse bias in terms of a recombination and tunnel-recombination model were analyzed. At the illumination reaching 100 mW · cm-2, these surface-barrier р-Cd1-хZnхTe/п-Cd1-хZnхTe structures were possessed by the following photoelectric parameters: open-circuit voltage Voc = 0.61 V, short-circuit current Isc = 0.21 mА and fill factor FF = 0.49, respectively.

  4. Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics

    DOE PAGES

    Li, C. W.; Ma, J.; Cao, H. B.; ...

    2014-12-29

    The structure and lattice dynamics of rock-salt thermoelectric materials SnTe and PbTe are investigated with single crystal and powder neutron diffraction, inelastic neutron scattering (INS), and first-principles simulations. Our first-principles calculations of the radial distribution function (RDF) in both SnTe and PbTe show a clear asymmetry in the first nearest-neighbor (1NN) peak, which increases with temperature, in agreement with experimental reports (Ref. 1,2). We show that this peak asymmetry for the 1NN Sn–Te or Pb–Te bond results from large-amplitude anharmonic vibrations (phonons). No atomic off-centering is found in our simulations. In addition, the atomic mean square displacements derived from ourmore » diffraction data reveal stiffer bonding at the anion site, in good agreement with the partial phonon densities of states from INS, and first-principles calculations. In conclusion, these results provide clear evidence for large-amplitude anharmonic phonons associated with the resonant bonding leading to the ferroelectric instability.« less

  5. Effect of Te inclusions in CdZnTe crystals at different temperatures

    NASA Astrophysics Data System (ADS)

    Hossain, A.; Bolotnikov, A. E.; Camarda, G. S.; Gul, R.; Kim, K.-H.; Cui, Y.; Yang, G.; Xu, L.; James, R. B.

    2011-02-01

    CdZnTe crystals often exhibit nonuniformities due to the presence of Te inclusions and dislocations. High concentrations of such defects in these crystals generally entail severe charge-trapping, a major problem in ensuring the device's satisfactory performance. In this study, we employed a high-intensity, high-spatial-resolution synchrotron x-ray beam as the ideal tool to generate charges by focusing it over the large Te inclusions, and then observing the carrier's response at room- and at low-temperatures. A high spatial 5-μm resolution raster scan revealed the fine details of the presence of extended defects, like Te inclusions and dislocations in the CdZnTe crystals. A noticeable change was observed in the efficiency of electron charge collection at low temperature (1 °C), but it was hardly altered at room-temperature.

  6. Local structural environments of Ge doped in eutectic Sb-Te film before and after crystallization

    NASA Astrophysics Data System (ADS)

    Shin, Sang Yeol; Cheong, Byung-ki; Choi, Yong Gyu

    2018-06-01

    Electrical phase change device using the Ge-doped eutectic Sb-Te (e.g., Ge1Sb8Te2) film is known to exhibit improved energy efficiency thanks to lowered threshold voltage as well as decreased power consumption for the reset operation, as compared with Ge2Sb2Te5 film. Ge K-edge EXAFS analysis is employed in this study in an effort to elucidate such merits of Ge1Sb8Te2 film in connection with its local atomic arrangements. It is then verified that a Ge atom is four-fold coordinated in its nearest-neighboring shell both in the as-deposited and in the annealed films. It needs to be highlighted that approximately two Sb atoms constitute the Ge tetrahedral units in its amorphous state; however, after being crystallized, heteropolar Ge-Sb bonds hardly exist in this Ge1Sb8Te2 film. It has been known that crystallization temperature and activation energy for crystallization of this Ge1Sb8Te2 composition are greater than those of Ge2Sb2Te5 composition. In addition, these two phase change materials exhibit distinctly different crystallization mechanisms, i.e., nucleation-dominant for Ge2Sb2Te5 film but growth-dominant for Ge1Sb8Te2 film. These discrepancies in the crystallization-related properties are delineated in terms of the local structural changes verified from the present EXAFS analysis.

  7. Effect of thallium doping on the mobility of electrons in Bi{sub 2}Se{sub 3} and holes in Sb{sub 2}Te{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryashov, A. A.; Kytin, V. G.; Lunin, R. A.

    2016-07-15

    The Shubnikov–de Haas effect and the Hall effect in n-Bi{sub 2–x}Tl{sub x}Se{sub 3} (x = 0, 0.01, 0.02, 0.04) and p-Sb{sub 2–x}Tl{sub x}Te{sub 3} (x = 0, 0.005, 0.015, 0.05) single crystals are studied. The carrier mobilities and their changes upon Tl doping are calculated by the Fourier spectra of oscillations. It is found shown that Tl doping decreases the electron concentration in n-Bi{sub 2–x}Tl{sub x}Se{sub 3} and increases the electron mobility. In p-Sb{sub 2–x}Tl{sub x}Te{sub 3}, both the hole concentration and mobility decrease upon Tl doping. The change in the crystal defect concentration, which leads to these effects, ismore » discussed.« less

  8. Controllable crystal growth and fast reversible crystallization-to-amorphization in Sb2Te-TiO2 films

    PubMed Central

    Wang, Guoxiang; Li, Chao; Shi, Daotian; Nie, Qiuhua; Wang, Hui; Shen, Xiang; Lu, Yegang

    2017-01-01

    The structure evolution and crystallization processes of Sb2Te-TiO2 films have been investigated. The Sb2Te-rich nanocrystals, surrounded by TiO2 amorphous phases, are observed in the annealed Sb2Te-TiO2 composite films. The segregated domains exhibit obvious chalcogenide/TiOx interfaces, which elevate crystallization temperature, impede the grain growth and increase crystalline resistance. Compared with that in conventional Ge2Sb2Te5 film, the shorter time for onset crystallization (25 ns) and amorphization (100 ns) has been achieved in as-deposited (Sb2Te)94.7(TiO2)5.3 film under 60 mW laser irradiation. The corresponding recrystallization and re-amorphization can also be realized in the film. From Johnson-Mehl-Avrami (JMA) analysis, it is further found that the one-dimensional grain growth with controlled interface is dominant for the film during the fast phase-change process. Therefore, (Sb2Te)94.7(TiO2)5.3 film with improved crystallization mechanism is promising for high-stable and fast-speed memory applications. PMID:28397858

  9. Controllable crystal growth and fast reversible crystallization-to-amorphization in Sb2Te-TiO2 films.

    PubMed

    Wang, Guoxiang; Li, Chao; Shi, Daotian; Nie, Qiuhua; Wang, Hui; Shen, Xiang; Lu, Yegang

    2017-04-11

    The structure evolution and crystallization processes of Sb 2 Te-TiO 2 films have been investigated. The Sb 2 Te-rich nanocrystals, surrounded by TiO 2 amorphous phases, are observed in the annealed Sb 2 Te-TiO 2 composite films. The segregated domains exhibit obvious chalcogenide/TiO x interfaces, which elevate crystallization temperature, impede the grain growth and increase crystalline resistance. Compared with that in conventional Ge 2 Sb 2 Te 5 film, the shorter time for onset crystallization (25 ns) and amorphization (100 ns) has been achieved in as-deposited (Sb 2 Te) 94.7 (TiO 2 ) 5.3 film under 60 mW laser irradiation. The corresponding recrystallization and re-amorphization can also be realized in the film. From Johnson-Mehl-Avrami (JMA) analysis, it is further found that the one-dimensional grain growth with controlled interface is dominant for the film during the fast phase-change process. Therefore, (Sb 2 Te) 94.7 (TiO 2 ) 5.3 film with improved crystallization mechanism is promising for high-stable and fast-speed memory applications.

  10. Electronic transport properties of single-crystal bismuth nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Sun, Xiangzhong; Dresselhaus, M. S.; Ying, Jackie Y.; Heremans, J.

    2000-02-01

    We present here a detailed study of the electrical transport properties of single-crystal bismuth nanowire arrays embedded in a dielectric matrix. Measurements of the resistance of Bi nanowire arrays with different wire diameters (60-110 nm) have been carried out over a wide range of temperatures (2.0-300 K) and magnetic fields (0-5.4 T). The transport properties of a heavily Te-doped Bi nanowire array have also been studied. At low temperatures, we show that the wire boundary scattering is the dominant scattering process for carriers in the undoped single-crystal Bi nanowires, while boundary scattering is less important for a heavily Te-doped sample, consistent with general theoretical considerations. The temperature dependences of the zero-field resistivity and of the longitudinal magneto-coefficient of the Bi nanowires were also studied and were found to be sensitive to the wire diameter. The quantum confinement of carriers is believed to play an important role in determining the overall temperature dependence of the zero-field resistivity. Theoretical considerations of the quantum confinement effects on the electronic band structure and on the transport properties of Bi nanowires are discussed. Despite the evidence for localization effects and diffusive electron interactions at low temperatures (T<=4.0 K), localization effects are not the dominant mechanisms affecting the resistivity or the magnetoresistance in the temperature range of this study.

  11. Large-scale synthesis and growth habit of 3-D flower-like crystal of PbTe

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Chen, Gang; Yang, Xi; Zhang, Xiaosong

    2012-02-01

    In this paper, 3-D flower-like crystal of PbTe was successfully synthesized using Pb(CH3COO)2·3H2O and Na2TeO3 as precursors under hydrothermal conditions, and characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction pattern (XRD). The reaction parameters that influenced the evolution of PbTe synthesis and morphology were investigated. It was shown that the flower-like crystal of PbTe was composed of a nucleus with eight pods. A possible growth mechanism was proposed based on the calculation of the surface energies of PbTe and the SEM observation. Furthermore, the temperature-dependent transport properties of 3-D flower-like crystal of PbTe specimen have been evaluated with an average thermoelectric power of 120 S cm-1 and electrical conductivity of 220 μV K-1 at 740 K.

  12. Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te

    DOE PAGES

    Stock, C.; Rodriguez, E. E.; Bourges, P.; ...

    2017-04-07

    The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less

  13. Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stock, C.; Rodriguez, E. E.; Bourges, P.

    The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less

  14. Competing spin density wave, collinear, and helical magnetism in Fe1 +xTe

    NASA Astrophysics Data System (ADS)

    Stock, C.; Rodriguez, E. E.; Bourges, P.; Ewings, R. A.; Cao, H.; Chi, S.; Rodriguez-Rivera, J. A.; Green, M. A.

    2017-04-01

    The Fe1 +xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. We use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe1 +xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture. We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe1 +xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (˜0.45 , 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H ,K ) plane. The excitations preserve the C4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. While the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.

  15. Large magnetoresistance and Fermi surface study of Sb2Se2Te single crystal

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Marinova, V.; Graf, D.; Lorenz, B.; Chu, C. W.

    2017-09-01

    We have studied the magnetotransport properties of a Sb2Se2Te single crystal. Magnetoresistance (MR) is maximum when the magnetic field is perpendicular to the sample surface and reaches a value of 1100% at B = 31 T with no sign of saturation. MR shows Shubnikov de Haas (SdH) oscillations above B = 15 T. The frequency spectrum of SdH oscillations consists of three distinct peaks at α = 32 T, β = 80 T, and γ = 117 T indicating the presence of three Fermi surface pockets. Among these frequencies, β is the prominent peak in the frequency spectrum of SdH oscillations measured at different tilt angles of the sample with respect to the magnetic field. From the angle dependence β and Berry phase calculations, we have confirmed the trivial topology of the β-pocket. The cyclotron masses of charge carriers, obtained by using the Lifshitz-Kosevich formula, are found to be mβ*=0.16mo and m γ*=0.63 mo for the β and γ bands, respectively. The Large MR of Sb2Se2Te is suitable for utilization in electronic instruments such as computer hard discs, high field magnetic sensors, and memory devices.

  16. Research support for cadmium telluride crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    The growth of single crystals of zinc selenide was carried out by both closed ampoule physical vapor transport and effusive ampoule physical vapor transport (EAPVT). The latter technique was shown to be a much more efficient method for the seeded growth of zinc selenide, resulting in higher transport rates. Furthermore, EAPVT work on CdTe has shown that growth onto (n 11) seeds is advantageous for obtaining reduced twinning and defect densities in II-VI sphalerite materials.

  17. Luminescence properties of ZnxMg1-xSe layers

    NASA Astrophysics Data System (ADS)

    Bala, Waclaw; Firszt, Franciszek; Dzik, Janusz; Gapinski, Adam; Glowacki, Grzegorz

    1995-10-01

    This work deals with the study of luminescence properties of ZnxMg1-xSe layers prepared by different methods. ZnxMg1-xSe mixed crystal layers were obtained by: (a) thermal diffusion of Mg metal in the temperature range 1050 K - 1200 K into ZnSe single crystal grown by Bridgman method, and (b) epitaxial growth on (001) GaAs and (111) ZnTe substrates by MBE using elemental Zn, Se and Mg sources. The luminescence spectra of ZnxMg1-xSe layers grown on (001) GaAs and (111) ZnTe substrates are dominated by narrow blue and violet emission bands with maxima positioned at about 3.05 - 3.28 eV, 2.88 - 3.04 eV, and 2.81 - 2.705 eV.

  18. Crystallization processes in Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svoboda, Roman, E-mail: roman.svoboda@upce.cz; Bezdička, Petr; Gutwirth, Jan

    2015-01-15

    Highlights: • Crystallization kinetics of Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass was studied in dependence on particle size by DSC. • All studied fractions were described in terms of the SB autocatalytic model. • Relatively high amount of Te enhances manifestation of bulk crystallization mechanisms. • XRD analysis of samples crystallized under different conditions showed correlation with DSC data. • XRD analysis revealed a new crystallization mechanism indistinguishable by DSC. - Abstract: Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis were used to study crystallization in Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass under non-isothermal conditions as a function of the particlemore » size. The crystallization kinetics was described in terms of the autocatalytic Šesták–Berggren model. An extensive discussion of all aspects of a full-scale kinetic study of a crystallization process was undertaken. Dominance of the crystallization process originating from mechanically induced strains and heterogeneities was confirmed. Substitution of Se by Te was found to enhance the manifestation of the bulk crystallization mechanisms (at the expense of surface crystallization). The XRD analysis showed significant dependence of the crystalline structural parameters on the crystallization conditions (initial particle size of the glassy grains and applied heating rate). Based on this information, a new microstructural crystallization mechanism, indistinguishable by DSC, was proposed.« less

  19. Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition

    PubMed Central

    Huang, Ruomeng; Benjamin, Sophie L.; Gurnani, Chitra; Wang, Yudong; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. (Kees)

    2016-01-01

    Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the <1 1 0> orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition. PMID:27283116

  20. Nanotwin Detection and Domain Polarity Determination via Optical Second Harmonic Generation Polarimetry.

    PubMed

    Ren, Ming-Liang; Agarwal, Rahul; Nukala, Pavan; Liu, Wenjing; Agarwal, Ritesh

    2016-07-13

    We demonstrate that optical second harmonic generation (SHG) can be utilized to determine the exact nature of nanotwins in noncentrosymmetric crystals, which is challenging to resolve via conventional transmission electron or scanned probe microscopies. Using single-crystalline nanotwinned CdTe nanobelts and nanowires as a model system, we show that SHG polarimetry can distinguish between upright (Cd-Te bonds) and inverted (Cd-Cd or Te-Te bonds) twin boundaries in the system. Inverted twin boundaries are generally not reported in nanowires due to the lack of techniques and complexity associated with the study of the nature of such defects. Precise characterization of the nature of defects in nanocrystals is required for deeper understanding of their growth and physical properties to enable their application in future devices.

  1. Prospects of In/CdTe X- and γ-ray detectors with MoO Ohmic contacts

    NASA Astrophysics Data System (ADS)

    Maslyanchuk, Olena L.; Solovan, Mykhailo M.; Maistruk, Eduard V.; Brus, Viktor V.; Maryanchuk, Pavlo D.; Gnatyuk, Volodymyr A.; Aoki, Toru

    2018-01-01

    The present paper analyzes the charge transport mechanisms and spectrometric properties of In/CdTe/MoOx heterojunctions prepared by magnetron sputtering of indium and molybdenum oxide thin films onto semi-insulating p-type single-crystal CdTe semiconductor, produced by Acrorad Co. Ltd. Current-voltage characteristics of the detectors at different temperatures were investigated. The charge transport mechanisms in the heterostructures under investigation were determined: the generation-recombination in the space charge region (SCR) at relatively low voltages and the space charge limited currents at high voltages. The spectra of 137Cs and 241Am isotopes taken at different applied bias voltages are presented. It is shown that the In/CdTe/MoOx structures can be used as X/γ-ray detectors in the spectrometric mode.

  2. Fabrication and investigation of photosensitive MoOx/n-CdTe heterojunctions

    NASA Astrophysics Data System (ADS)

    Solovan, M. M.; Gavaleshko, N. M.; Brus, V. V.; Mostovyi, A. I.; Maryanchuk, P. D.; Tresso, E.

    2016-10-01

    MoOx/n-CdTe photosensitive heterostructures were prepared by the deposition of molybdenum oxide thin films onto n-type single-crystal CdTe substrates by DC reactive magnetron sputtering. The obtained heterojunctions possessed sharply defined rectifying properties with the rectification ration RR ˜ 106. The temperature dependences of the height of the potential barrier and series resistance of the MoOx/CdTe heterojunctions were investigated. The dominating current transport mechanisms through the heterojunctions were determined at forward and reverse biases. The analysis of capacitance-voltage (C-V) characteristics, measured at different frequencies of the small amplitude AC signal and corrected by the effect of the series resistance, provided evidence of the presence of electrically charged interface states, which significantly affect the measured capacitance.

  3. Fabrication and characterization of anisotype heterojunctions n-TiN/p-CdTe

    NASA Astrophysics Data System (ADS)

    Solovan, M. M.; Brus, V. V.; Maryanchuk, P. D.; Ilashchuk, M. I.; Rappich, J.; Nickel, N.; Abashin, S. L.

    2014-01-01

    Photosensitive heterojunctions n-TiN/p-CdTe were fabricated for the first time by means of titanium nitride thin film deposition (n-type conductivity) by the reactive magnetron sputtering onto freshly etched single crystal substrates CdTe (1 1 0) of p-type conductivity. The temperature dependences of the height of the potential barrier and series resistance of the n-TiN/p-CdTe heterojunction were investigated. The dominating current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage Voc = 0.35 V, short-circuit current Isc = 1.88 mA см-2 and fill factor FF = 0.51 under illumination 80 mW сm-2.

  4. Critical behavior of the van der Waals bonded ferromagnet Fe3 -xGeTe2

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Ivanovski, V. N.; Petrovic, C.

    2017-10-01

    The critical properties of the single-crystalline van der Waals bonded ferromagnet Fe3 -xGeTe2 were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic (FM) phase transition. The Fe3 -xGeTe2 single crystals grown by self-flux method with Fe deficiency x ≈0.36 exhibit bulk FM ordering below Tc=152 K. The Mössbauer spectroscopy was used to provide information on defects and local atomic environment in such crystals. Critical exponents β =0.372 (4 ) with a critical temperature Tc=151.25 (5 ) K and γ =1.265 (15 ) with Tc=151.17 (12 ) K are obtained by the Kouvel-Fisher method, whereas δ =4.50 (1 ) is obtained by a critical isotherm analysis at Tc=151 K. These critical exponents obey the Widom scaling relation δ =1 +γ /β , indicating self-consistency of the obtained values. With these critical exponents the isotherm M (H ) curves below and above the critical temperatures collapse into two independent universal branches, obeying the single scaling equation m =f±(h ) , where m and h are renormalized magnetization and field, respectively. The exponents determined in this study are close to those calculated from the results of the renormalization group approach for a heuristic model of three-dimensional Heisenberg (d =3 ,n =3 ) spins coupled with the attractive long-range interactions between spins that decay as J (r ) ≈r-(3 +σ ) with σ =1.89 .

  5. Fabrication of large-scale single-crystal bismuth telluride (Bi2Te3) nanosheet arrays by a single-step electrolysis process

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Wei; Wang, Tsang-Hsiu; Chan, Tsung-Cheng; Chen, Pei-Ju; Chung, Chih-Chun; Yaghoubi, Alireza; Liao, Chien-Neng; Diau, Eric Wei-Guang; Chueh, Yu-Lun

    2014-06-01

    Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1.12% efficiency of quantum dot-sensitized solar cells with Bi2Te3 NSAs for counter electrode has been demonstrated, indicating that Bi2Te3 NSAs from top-down processing with a high ratio of surface area to volume are a promising candidate for possible applications such as thermoelectrics, dye-sensitized solar cells (DSSCs), and lithium-ion batteries.Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1.12% efficiency of quantum dot-sensitized solar cells with Bi2Te3 NSAs for counter electrode has been demonstrated, indicating that Bi2Te3 NSAs from top-down processing with a high ratio of surface area to volume are a promising candidate for possible applications such as thermoelectrics, dye-sensitized solar cells (DSSCs), and lithium-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00184b

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malliakas, Christos D.; Chung, Duck Young; Claus, Helmut

    Superconductivity was discovered in the layered compound RbBi 11/3Te 6, featuring Bi vacancies and a narrow band gap of 0.25(2) eV at room temperature. In addition, a sharp superconducting transition at similar to 3.2 K was observed in polycrystalline ingots. The superconducting volume fraction of oriented single crystals is almost 100%, confirming bulk superconductivity. Systematic Se and Sb substitutions in RbBi 11/3-ySb ySe xTe 6-x, revealed a dependence of the superconducting transition on composition that can increase the T c up to similar to 10%. The RbBi 11/3Te 6 system is the first member of the new homologous series Rb[Bimore » 2n+11/3Te 3n+6] with infinite Bi 2Te 3-like layers. Lastly, the large degree of chemical tunability of the electronic structure of the homology via doping and/or substitution gives rise to a new family of superconductors.« less

  7. Ultrathin nanosheets of CrSiTe 3. A semiconducting two-dimensional ferromagnetic material

    DOE PAGES

    Lin, Ming -Wei; Zhung, Houlong L.; Yan, Jiaqiang; ...

    2015-11-27

    Finite range ferromagnetism and antiferromagnetism in two-dimensional (2D) systems within an isotropic Heisenberg model at non-zero temperature were originally proposed to be impossible. However, recent theoretical studies using an Ising model have recently shown that 2D magnetic crystals can exhibit magnetism. Experimental verification of existing 2D magnetic crystals in this system has remained elusive. In this work we for the first time exfoliate the CrSiTe 3, a bulk ferromagnetic semiconductor, to mono- and few-layer 2D crystals onto a Si/SiO 2 substrate. The Raman spectra show the good stability and high quality of the exfoliated flakes, consistent with the computed phononmore » spectra of 2D CrSiTe 3, giving a strong evidence for the existence of 2D CrSiTe 3 crystals. When the thickness of the CrSiTe 3 crystals is reduced to few-layers, we observed a clear change in resistivity at 80~120 K, consistent with the theoretical calculations on the Curie temperature (Tc) of ~80 K for the magnetic ordering of 2D CrSiTe 3 crystals. As a result, the ferromagnetic mono- and few-layer 2D CrSiTe 3 indicated here should enable numerous applications in nano-spintronics.« less

  8. Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography.

    PubMed

    Tao, Li; Daghighian, Henry M; Levin, Craig S

    2017-01-01

    We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A larger resistivity is favorable for reducing the dark current (noise) in the detector crystal, and thus the higher resistivity BSO crystal has a lower (50% lower on average) noise level than CdTe. The CdTe and BSO crystals can achieve the same sensitivity under laser diode illumination at the same crystal bias voltage condition while the BSO crystal is not as sensitive to 511-keV photons as the CdTe crystal under the same crystal bias voltage. The amplitude of the modulation signal induced by 511-keV photons in BSO crystal is around 30% of that induced in CdTe crystal under the same bias condition. In addition, we have found that the optical modulation strength increases linearly with crystal bias voltage before saturation. The modulation signal with CdTe tends to saturate at bias voltages higher than 1500 V due to its lower resistivity (thus larger dark current) while the modulation signal strength with BSO still increases after 3500 V. Further increasing the bias voltage for BSO could potentially further enhance the modulation strength and thus, the sensitivity.

  9. Crystallinity of tellurium capping and epitaxy of ferromagnetic topological insulator films on SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel

    2015-06-30

    Thin films of topological insulators are often capped with an insulating layer since topological insulators are known to be fragile to degradation. However, capping can hinder the observation of novel transport properties of the surface states. To understand the influence of capping on the surface states, it is crucial to understand the crystal structure and the atomic arrangement at the interfaces. Here, we use x-ray diffraction to establish the crystal structure of magnetic topological insulator Cr-doped (Bi,Sb) 2Te 3 (CBST) films grown on SrTiO 3 (1 1 1) substrates with and without a Te capping layer. We find that bothmore » the film and capping layer are single crystal and that the crystal quality of the film is independent of the presence of the capping layer, but that x-rays cause sublimation of the CBST film, which is prevented by the capping layer. Our findings show that the different transport properties of capped films cannot be attributed to a lower crystal quality but to a more subtle effect such as a different electronic structure at the interface with the capping layer. Our results on the crystal structure and atomic arrangements of the topological heterostructure will enable modelling the electronic structure and design of topological heterostructures.« less

  10. 1x3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides.

    PubMed

    Zhang, Min; Malureanu, Radu; Krüger, Asger Christian; Kristensen, Martin

    2010-07-05

    Based on inspiration from multi-mode interference self-imaging and theoretical FDTD simulations, a 1x3 beam splitter was designed, fabricated and characterized. Measurements show that for TE-polarized incident light the power is distributed equally between the output ports within 1dB in the range from 1541nm to 1552nm, and the total transmission of the 1x3 splitter is equal to the corresponding length of a single-line-defect PhCW within the measurement uncertainty.

  11. Optical contrast and laser-induced phase transition in GeCu2Te3 thin film

    NASA Astrophysics Data System (ADS)

    Saito, Yuta; Sutou, Yuji; Koike, Junichi

    2013-02-01

    Fast crystallization and low power amorphization are essential to achieve rapid data recording and low power consumption in phase-change memory. This work investigated the laser-induced phase transition behaviors of GeCu2Te3 film based on the reflectance of amorphous and crystalline states. The GeCu2Te3 film showed a reflectance decrease upon crystallization, which was the opposite behavior in Ge2Sb2Te5 film. The crystallization starting time of the as-deposited GeCu2Te3 film was as fast as that of the as-deposited Ge2Sb2Te5 film. Furthermore, the GeCu2Te3 crystalline film was found to be reamorphized by laser irradiation at lower power and shorter pulse width than the Ge2Sb2Te5.

  12. Local structure of Ge2Sb2Te5 during crystallization under pressure

    NASA Astrophysics Data System (ADS)

    Roscioni, O. M.; Branicio, P. S.; Kalikka, J.; Zhou, X.; Simpson, R. E.

    2018-04-01

    The role of stress on the crystallization process of the phase change data storage material, Ge2Sb2Te5, is studied. When thin Ge2Sb2Te5 films are capped with Si3N4, stress is generated in the Ge2Sb2Te5 layer which causes the crystallization temperature to increase. Si3N4 films of 25 nm thickness increase the crystallization temperature from 446 K to 464 K. We show that stress predominantly destabilizes voids and increases the number of Ge-Sb and homopolar bonds in the vicinity of Ge atoms, and this makes the crystallization less probable, thus resulting in the increase in the measured temperature.

  13. Growth of zinc selenide crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    The growth of single crystals of zinc selenide was carried out by both closed ampoule physical vapor transport and effusive ampoule physical vapor transport (EAPVT). The latter technique was shown to be a much more efficient method for the seeded growth of zinc selenide, resulting in higher transport rates. Furthermore, EAPVT work on CdTe has shown that growth onto /n11/ seeds is advantageous for obtaining reduced twinning and defect densities in II-VI sphalerite materials.

  14. Ce{sub 2}AgYb{sub 5/3}Se{sub 6}, La{sub 2}CuErTe{sub 5}, and Ce{sub 2}CuTmTe{sub 5}: Three new quaternary interlanthanide chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E., E-mail: talbrec1@nd.edu

    2013-01-15

    Three new ordered quaternary interlanthanide chalcogenides, Ce{sub 2}AgYb{sub 5/3}Se{sub 6}, La{sub 2}CuErTe{sub 5}, and Ce{sub 2}CuTmTe{sub 5}, have been prepared by direct reaction of the elements in molten NaBr at 900 Degree-Sign C. Each compound forms a new structure-type. The Ce{sub 2}AgYb{sub 5/3}Se{sub 6} structure consists of {infinity}{sup 2}{l_brace} [AgYb{sub 5/6}Se{sub 6}]{sup 6-}{r_brace} layers intercalated by Ce{sup 3+} cations. These layers are composed of {infinity}{sup 1}{l_brace} [Yb{sub 5/3}Se{sub 6}]{sup 7-}{r_brace} quadruplet ribbons of [YbSe{sub 6}]{sup 9-} octahedra and infinite {infinity}{sup 1}{l_brace} [AgSe{sub 6}]{sup 11-}{r_brace} double chains of [AgSe{sub 5}]{sup 9-}. The La{sub 2}CuErTe{sub 5} structure is made of one-dimensional {infinity}{supmore » 1}{l_brace} [CuErTe{sub 5}]{sup 6-}{r_brace} ribbons separated by La{sup 3+} cations. These ribbons are formed by cis-edge sharing {infinity}{sup 1}{l_brace} [CuTe{sub 2}]{sup 3-}{r_brace} tetrahedral chains and trans-edge sharing {infinity}{sup 1}{l_brace} [ErTe{sub 4}]{sup 5-}{r_brace} chains. While La{sub 2}CuErTe{sub 5} crystallizes in the orthorhombic space group Pnma, Ce{sub 2}CuTmTe{sub 5} crystallizes in the monoclinic space group C2/m. The latter crystal structure is assembled from {infinity}{sup 2}{l_brace} [CuTmTe{sub 5}]{sup 6-}{r_brace} layers intercalated by Ce{sup 3+} cations. These layers consist of single {infinity}{sup 1}{l_brace} [TmTe{sub 4}]{sup 5-}{r_brace} chains connected to each other through dimers or pseudo-double chains. - Graphical abstract: [CuTe{sub 4}]{sup 7-} tetrahedra sharing cis-edges to yield chains in the La{sub 2}CuErTe{sub 5}. Highlights: Black-Right-Pointing-Pointer New ordered interlanthanide tellurides. Black-Right-Pointing-Pointer New quaternary chalcogenides. Black-Right-Pointing-Pointer Low-dimensional lanthanide chalcogenide substructures. Black-Right-Pointing-Pointer Flux synthesis of new chalcogenides.« less

  15. A numerical study of steady crystal growth in a vertical Bridgman device

    NASA Astrophysics Data System (ADS)

    Jalics, Miklos Kalman

    Electronics based on semiconductors creates an enormous demand for high quality semiconductor single crystals. The vertical Bridgman device is commonly used for growing single crystals for a variety of materials such as GaAs, InP and HgCdTe. A mathematical model is presented for steady crystal growth under conditions where crystal growth is determined strictly by heat transfer. The ends of the ampoule are chosen far away from the insulation zone to allow for steady growth. A numerical solution is sought for this mathematical model. The equations are transformed into a rectangular geometry and appropriate finite difference techniques are applied on the transformed equations. Newton's method solves the nonlinear problem. To improve efficiency GMRES with preconditioning is used to compute the Newton iterates. The numerical results are used to compare with two current asymptotic theories that assume small Biot numbers. Results indicate that one of the asymptotic theories is accurate for even moderate Biot numbers.

  16. Observation of high-spin mixed oxidation state of cobalt in ceramic Co3TeO6

    NASA Astrophysics Data System (ADS)

    Singh, Harishchandra; Ghosh, Haranath; Chandrasekhar Rao, T. V.; Sinha, A. K.; Rajput, Parasmani

    2014-12-01

    We report coexistence of high spin Co3+ and Co2+ in ceramic Co3TeO6 using X-ray Absorption Near Edge Structure (XANES), DC magnetization, and first principles ab-initio calculations. The main absorption line of cobalt Co K-edge XANES spectra, along with a linear combination fit, led us to estimate relative concentration of Co2+ and Co3+as 60:40. The pre edge feature of XANES spectrum shows crystal field splitting of ˜1.26 eV between eg and t2g states, suggesting a mixture of high spin states of both Co2+ and Co3+. Temperature dependent high field DC magnetization measurements reveal dominant antiferromagnetic order with two Neel temperatures (TN1 ˜ 29 K and TN2 ˜ 18 K), consistent with single crystal study. A larger effective magnetic moment is observed in comparison to that reported for single crystal (which contains only Co2+), supports our inference that Co3+ exists in high spin state. Furthermore, we show that both Co2+ and Co3+ being in high spin states constitute a favorable ground state through first principles ab-initio calculations, where Rietveld refined synchrotron X-ray diffraction data are used as input.

  17. Thermal and Electrical Transport Study on Thermoelectric Materials Through Nanostructuring and Magnetic Field

    NASA Astrophysics Data System (ADS)

    Yao, Mengliang

    Thermoelectric (TE) materials are of great interest to contemporary scientists because of their ability to directly convert temperature differences into electricity, and are regarded as a promising mode of alternative energy. The TE conversion efficiency is determined by the Carnot efficiency, eta C and is relevant to a commonly used figure of merit ZT of a material. Improving the value of ZT is presently a core mission within the TE field. In order to advance our understanding of thermoelectric materials and improve their efficiency, this dissertation investigates the low-temperature behavior of the p-type thermoelectric Cu 2Se through chemical doping and nanostructuring. It demonstrates a method to separate the electronic and lattice thermal conductivities in single crystal Bi2Te3, Cu, Al, Zn, and probes the electrical transport of quasi 2D bismuth textured thin films. Cu2Se is a good high temperature TE material due to its phonon-liquid electron-crystal (PLEC) properties. It shows a discontinuity in transport coefficients and ZT around a structural transition. The present work on Cu2Se at low temperatures shows that it is a promising p-type TE material in the low temperature regime and investigates the Peierls transition and charge-density wave (CDW) response to doping [1]. After entering the CDW ground state, an oscillation (wave-like fluctuation) was observed in the dc I-V curve near 50 K; this exhibits a periodic negative differential resistivity in an applied electric field due to the current. An investigation into the doping effect of Zn, Ni, and Te on the CDW ground state shows that Zn and Ni-doped Cu2Se produces an increased semiconducting energy gap and electron-phonon coupling constant, while the Te doping suppresses the Peierls transition. A similar fluctuating wave-like dc I-V curve was observed in Cu1.98Zn 0.02Se near 40 K. This oscillatory behavior in the dc I-V curve was found to be insensitive to magnetic field but temperature dependent [2]. Understanding reducing thermal conductivity in TE materials is an important facet of increasing TE efficiency and potential applications. In this dissertation, a magnetothermal (MTR) resistance method is used to measure the lattice thermal conductivity, kappaph of single crystal Bi2Te 3 from 5 to 60 K. A large transverse magnetic field is applied to suppress the electronic thermal conduction while measuring thermal conductivity and electrical resistivity. The lattice thermal conductivity is then calculated by extrapolating the thermal conductivity versus electrical conductivity curve to a zero electrical conductivity value. The results show that the measured phonon thermal conductivity follows the eDeltamin/T temperature dependence and the Lorenz ratio corresponds to the modified Sommerfeld value in the intermediate temperature range. These low-temperature experimental data and analysis on Bi2Te3 are important compliments to previous measurements and theoretical calculations at higher temperatures, 100 - 300 K. The MTR method on Bi2Te3 provides data necessary for first-principles calculations [4]. A parallel study on single crystal Cu, Al and Zn shows the applicability of the MTR method for separating kappae and kappaph in metals and indicates a significant deviation of the Lorenz ratio between 5 K and 60 K [3]. Elemental bismuth is a component of many TE compounds and in this dissertation magnetoresistance measurements are used investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Textured and non-textured bismuth thin films are examined by measuring their angle-dependent magnetoresistance at different temperatures (3 - 300 K) and applied magnetic fields (0 - 90 kOe). Experimental evidence shows that the anisotropic conduction is due to the large mass anisotropy of bismuth and is confirmed by a parallel study on an antimony thin film [5].

  18. Structural and spectroscopic properties of the polar antiferromagnet N i2MnTe O6

    NASA Astrophysics Data System (ADS)

    Retuerto, Maria; Skiadopoulou, Stella; Borodavka, Fedir; Kadlec, Christelle; Kadlec, Filip; Prokleška, Jan; Deng, Zheng; Alonso, Jose A.; Fernandez-Diaz, Maria T.; Saouma, Felix O.; Jang, Joon I.; Legut, Dominik; Kamba, Stanislav; Greenblatt, Martha

    2018-04-01

    We present a structural and spectroscopic study of the compound N i2MnTe O6 , closely related to the polar antiferromagnet N i3Te O6 known to show a colossal magnetoelectric effect and pronounced elementary magnetoelectric excitations. We prepared single crystals and polycrystalline samples of N i2MnTe O6 showing the same polar structure as N i3Te O6 from room temperature down to 4 K with the R 3 space-group symmetry. Magnetic and dielectric measurements have indicated an antiferromagnetic phase transition at TN≈70 K , almost 20 K higher than that of N i3Te O6 . Extensive infrared, Raman, and terahertz spectroscopy experiments were employed for investigating lattice and spin excitations, revealing all phonons predicted by the factor group analysis. Terahertz spectra below TN reveal one new excitation, which is strongly influenced by external magnetic field, thus assigned to a magnon.

  19. Superconductivity in the Narrow Gap Semiconductor RbBi 11/3Te 6

    DOE PAGES

    Malliakas, Christos D.; Chung, Duck Young; Claus, Helmut; ...

    2016-10-16

    Superconductivity was discovered in the layered compound RbBi 11/3Te 6, featuring Bi vacancies and a narrow band gap of 0.25(2) eV at room temperature. In addition, a sharp superconducting transition at similar to 3.2 K was observed in polycrystalline ingots. The superconducting volume fraction of oriented single crystals is almost 100%, confirming bulk superconductivity. Systematic Se and Sb substitutions in RbBi 11/3-ySb ySe xTe 6-x, revealed a dependence of the superconducting transition on composition that can increase the T c up to similar to 10%. The RbBi 11/3Te 6 system is the first member of the new homologous series Rb[Bimore » 2n+11/3Te 3n+6] with infinite Bi 2Te 3-like layers. Lastly, the large degree of chemical tunability of the electronic structure of the homology via doping and/or substitution gives rise to a new family of superconductors.« less

  20. Photoluminescence characteristics of ZnTe bulk crystal and ZnTe epilayer grown on GaAs substrate by MOVPE

    NASA Astrophysics Data System (ADS)

    Lü, Hai-Yan; Mu, Qi; Zhang, Lei; Lü, Yuan-Jie; Ji, Zi-Wu; Feng, Zhi-Hong; Xu, Xian-Gang; Guo, Qi-Xin

    2015-12-01

    Excitation power and temperature-dependent photoluminescence (PL) spectra of the ZnTe epilayer grown on (100) GaAs substrate and ZnTe bulk crystal are investigated. The measurement results show that both the structures are of good structural quality due to their sharp bound excitonic emissions and absence of the deep level structural defect-related emissions. Furthermore, in contrast to the ZnTe bulk crystal, although excitonic emissions for the ZnTe epilayer are somewhat weak, perhaps due to As atoms diffusing from the GaAs substrate into the ZnTe epilayer and/or because of the strain-induced degradation of the crystalline quality of the ZnTe epilayer, neither the donor-acceptor pair (DAP) nor conduction band-acceptor (e-A) emissions are observed in the ZnTe epilayer. This indicates that by further optimizing the growth process it is possible to obtain a high-crystalline quality ZnTe heteroepitaxial layer that is comparable to the ZnTe bulk crystal. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120131110006), the Key Science and Technology Program of Shandong Province, China (Grant No. 2013GGX10221), the Key Laboratory of Functional Crystal Materials and Device (Shandong University, Ministry of Education), China (Grant No. JG1401), the National Natural Science Foundation of China (Grant No. 61306113), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91433112), and the Partnership Project for Fundamental Technology Researches of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  1. Thermoelectric properties, Shubnikov-de Haas effect and mobility of charge carriers in bismuth antimony tellurides and selenides and nanocomposite based on these materials

    NASA Astrophysics Data System (ADS)

    Kulbachinskii, V. A.; Kytin, V. G.; Kudryashov, A. A.; Lunin, R. A.; Banerjee, A.

    2017-04-01

    We describe here the study of the Shubnikov-de Haas effect and thermoelectric properties of p-(Bi0.5Sb0.5)2Te3 single crystals doped with Ga, n-Bi2-xTlxSe3 and p-Sb2-xTlxTe3. Using Fourier spectra of the oscillations we calculated the mobility of charge carriers and its variation upon doping. We found that Ga has a donor effect in p-(Bi0.5Sb0.5)2Te3, Tl is an acceptor in n-Bi2-xTlxSe3 and increases the mobility of electrons, while in p-Sb2-xTlxTe3, Tl is a donor and decreases the mobility of holes. We consider the evolution of the defectiveness of crystals that leads to the observed effects. We also synthesized and investigated nanocomposites of solid solutions Sb2Te3-xSex (0 < x < 1). When Se concentration increases in Sb2Te3-xSex, the concentration of holes decreases. At the same time the Seebeck coefficient decreases. This is not typical for semiconductors but correlates with the earlier data. A theoretical model was developed to calculate simultaneously the dependences of the Seebeck coefficient, Hall coefficient and conductivity on the selenium concentration x. Calculations showed that for a simultaneous quantitative description of the thermoelectric and galvanomagnetic data it is necessary to take into consideration both the evolution of the band structure of Sb2Te3-xSex and partial localization of holes.

  2. Cryomagnetic Point-Contact Andreev Reflection Spectroscopy on Single Crystal Iron-Chalcogenide Superconductors

    NASA Astrophysics Data System (ADS)

    Yen, Y. T.; Hu, Rongwei; Petrovic, C.; Yeh, K. W.; Wu, M. K.; Wei, J. Y. T.

    2012-02-01

    We report on cryomagnetic point-contact Andreev reflection spectroscopy performed on single crystals of superconducting FeTe1-xSx and FeTe1-xSex. The samples are cleaved in-situ and the measurements are carried out at temperatures down to 4.2K and in a field up to 9T. At base temperature and zero field, we observe a cone-shaped hump at lower voltages in the conductance spectra with no dips at zero bias and a linear background at higher voltages. The spectral evolution of gap size, zero-bias conductance, and excess spectral area are analyzed as a function of temperature and field. Further spectral analysis is carried out using theoretical models of conductance spectra in multiband superconductors [1,2] and of gap symmetry in Fe-based superconductors [3]. The role of interstitial iron is also considered, by comparison with atomically-resolved scanning tunneling spectroscopy data.[4pt] [1] V. Lukic and E.J. Nicol, PRB 76, 144508 (2007) [2] A. Golubov et al., PRL 103, 077003 (2009) [3] P.J. Hirschfeld et al., RPP 74, 124508 (2011)

  3. Electron Reconfiguration and Enhanced Phonon Activation in the Superconducting State of a FeSe0.3Te0.7 Single Crystal, as Evidenced by Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Greculeasa, Simona; Miu, Lucica; Badica, Petre; Nie, Jiacai; Tolea, Mugurel; Kuncser, Victor

    2015-01-01

    The Mössbauer spectra of a FeSe0.3Te0.7 single crystal grown by the Bridgman method were analysed across the superconducting transition by considering the interplay between the structure and electron configuration of the transition metal. The magnetically determined superconducting critical temperature is TC ˜ 14 K. The 57Fe Mössbauer spectra collected in the temperature range from 5 to 200 K mainly have an asymmetric doublet pattern, which was conveniently fitted by the full Hamiltonian method. No effective magnetic moment ascribed to the superconducting phase was observed down to 5 K. The unusual behaviour observed below ˜17 K for the chemical isomer shift and quadrupole splitting may be associated with an electron reconfiguration process intimately related to an unusual lattice distortion accompanying the superconducting transition. The decreasing trend of the total absorption spectral area and second-order Doppler shift during cooling the sample below the critical temperature, point to enhanced phonon activation in the superconducting state.

  4. Surface crystallization behavior and physical properties of (GeTe4)85(AgI)15 chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Zhu, Erwei; Wu, Bo; Zhao, Xuhao; Wang, Jingsong; Lin, Changgui; Wang, Xunsi; Li, Xing; Tian, Peijing

    2017-11-01

    Glass-ceramics embedded Te and α-GeTe particles were fabricated from (GeTe4)85(AgI)15 chalcohalide glass using an appropriate heat-treatment at fairly low temperatures ranging from 160 to 190 °C for different times. The crystallization behavior and physical properties of the obtained samples were studied in detail. The glass transition temperature of crystallized samples increases with the elongation of crystallization times. And the results of mechanical properties show that, compared with the base glass, the crystallized samples present improved thermal shock resistance and fracture toughness, and meanwhile still remain its good IR transmittance. This study could provide an initial observation of crystallization in telluride glasses, and be of good guidance to fabricate novel telluride glass-ceramics that operating in far-IR spectral region ranging from 2.5 μm to 25 μm.

  5. X-ray photoelectron spectroscopy and atomic force microscopy characterization of the effects of etching Zn xCd 1- xTe surfaces

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Burger, A.; Collins, W. E.; Silberman, E.

    1993-10-01

    X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was used for the first time to characterize the chemical composition of modified surfaces of Zn xCd 1- xTe single crystals. These surface treatments were selected for their relevance to device preparation procedures. The XPS peaks indicated an increase of the tellurium and a depletion of the cadmium concentrations upon etching in bromine methanol solution. AFM revealed the formation of pronounced Te inclusions. Higher x values correlated with a decrease in residual bromine left on the surface, while cut and polished samples had higher oxide concentrations and increased bromination of the surface than cleaved samples.

  6. Tunable (δπ, δπ)-Type Antiferromagnetic Order in α-Fe(Te,Se) Superconductors

    NASA Astrophysics Data System (ADS)

    Bao, Wei; Qiu, Y.; Huang, Q.; Green, M. A.; Zajdel, P.; Fitzsimmons, M. R.; Zhernenkov, M.; Chang, S.; Fang, Minghu; Qian, B.; Vehstedt, E. K.; Yang, Jinhu; Pham, H. M.; Spinu, L.; Mao, Z. Q.

    2009-06-01

    The new α-Fe(Te,Se) superconductors share the common iron building block and ferminology with the LaFeAsO and BaFe2As2 families of superconductors. In contrast with the predicted commensurate spin-density-wave order at the nesting wave vector (π, 0), a completely different magnetic order with a composition tunable propagation vector (δπ, δπ) was determined for the parent compound Fe1+yTe in this powder and single-crystal neutron diffraction study. The new antiferromagnetic order survives as a short-range one even in the highest TC sample. An alternative to the prevailing nesting Fermi surface mechanism is required to understand the latest family of ferrous superconductors.

  7. Superconducting FeSe0.1Te0.9 thin films integrated on Si-based substrates

    NASA Astrophysics Data System (ADS)

    Huang, Jijie; Chen, Li; Li, Leigang; Qi, Zhimin; Sun, Xing; Zhang, Xinghang; Wang, Haiyan

    2018-05-01

    With the goal of integrating superconducting iron chalcogenides with Si-based electronics, superconducting FeSe0.1Te0.9 thin films were directly deposited on Si and SiOx/Si substrates without any buffer layer by a pulsed laser deposition (PLD) method. Microstructural characterization showed excellent film quality with mostly c-axis growth on both types of substrates. Superconducting properties (such as superconducting transition temperature T c and upper critical field H c2) were measured to be comparable to that of the films on single crystal oxide substrates. The work demonstrates the feasibility of integrating superconducting iron chalcogenide (FeSe0.1Te0.9) thin films with Si-based microelectronics.

  8. Critical behavior of the van der Waals bonded ferromagnet Fe 3 - x GeTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Ivanovski, V. N.; Petrovic, C.

    The critical properties of the single-crystalline van der Waals bonded ferromagnet Fe 3-xGeTe 2 were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic (FM) phase transition. The Fe 3-xGeTe 2 single crystals grown by self-flux method with Fe deficiency x ≈ 0.36 exhibit bulk FM ordering below T c = 152 K. The Mössbauer spectroscopy was used to provide information on defects and local atomic environment in such crystals. Critical exponents β = 0.372(4) with a critical temperature T c= 151.25(5) K and γ = 1.265(15) with T c = 151.17(12) K are obtained by the Kouvel-Fisher method,more » whereas δ = 4.50 ( 1 ) is obtained by a critical isotherm analysis at T c = 151 K. These critical exponents obey the Widom scaling relation δ = 1 + γ / β , indicating self-consistency of the obtained values. With these critical exponents the isotherm M(H) curves below and above the critical temperatures collapse into two independent universal branches, obeying the single scaling equation m = f±(h), where m and h are renormalized magnetization and field, respectively. The exponents determined in this study are close to those calculated from the results of the renormalization group approach for a heuristic model of three-dimensional Heisenberg (d = 3,n = 3) spins coupled with the attractive long-range interactions between spins that decay as J(r) ≈ r -(3+σ) with σ = 1.89.« less

  9. Critical behavior of the van der Waals bonded ferromagnet Fe 3 - x GeTe 2

    DOE PAGES

    Liu, Yu; Ivanovski, V. N.; Petrovic, C.

    2017-10-29

    The critical properties of the single-crystalline van der Waals bonded ferromagnet Fe 3-xGeTe 2 were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic (FM) phase transition. The Fe 3-xGeTe 2 single crystals grown by self-flux method with Fe deficiency x ≈ 0.36 exhibit bulk FM ordering below T c = 152 K. The Mössbauer spectroscopy was used to provide information on defects and local atomic environment in such crystals. Critical exponents β = 0.372(4) with a critical temperature T c= 151.25(5) K and γ = 1.265(15) with T c = 151.17(12) K are obtained by the Kouvel-Fisher method,more » whereas δ = 4.50 ( 1 ) is obtained by a critical isotherm analysis at T c = 151 K. These critical exponents obey the Widom scaling relation δ = 1 + γ / β , indicating self-consistency of the obtained values. With these critical exponents the isotherm M(H) curves below and above the critical temperatures collapse into two independent universal branches, obeying the single scaling equation m = f±(h), where m and h are renormalized magnetization and field, respectively. The exponents determined in this study are close to those calculated from the results of the renormalization group approach for a heuristic model of three-dimensional Heisenberg (d = 3,n = 3) spins coupled with the attractive long-range interactions between spins that decay as J(r) ≈ r -(3+σ) with σ = 1.89.« less

  10. W-Sb-Te phase-change material: A candidate for the trade-off between programming speed and data retention

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Wu, Liangcai; Rao, Feng; Song, Zhitang; Yang, Pingxiong; Song, Hongjia; Ren, Kun; Zhou, Xilin; Zhu, Min; Liu, Bo; Chu, Junhao

    2012-09-01

    W-Sb-Te phase-change material has been proposed to improve the performance of phase-change memory (PCM). Crystallization temperature, crystalline resistance, and 10-year data retention of Sb2Te increase markedly by W doping. The Wx(Sb2Te)1-x films crystallize quickly into a stable hexagonal phase with W uniformly distributing in the crystal lattice, which ensures faster SET speed and better operation stability for the application in practical device. PCM device based on W0.07(Sb2Te)0.93 shows ultrafast SET operation (6 ns) and good endurance (1.8 × 105 cycles). W-Sb-Te material is a promising candidate for the trade-off between programming speed and data retention.

  11. Modeling of axial vibrational control technique for CdTe VGF crystal growth under controlled cadmium partial pressure

    NASA Astrophysics Data System (ADS)

    Avetissov, I.; Kostikov, V.; Meshkov, V.; Sukhanova, E.; Grishechkin, M.; Belov, S.; Sadovskiy, A.

    2014-01-01

    A VGF growth setup assisted by axial vibrations of baffle submerged into CdTe melt with controlled Cd partial pressure was designed. An influence of baffle shape on flow velocity map, temperature distribution in CdTe melt and interface shape of growing crystal was analyzed by numerical simulation and physical modeling. To produce the desirable shape of crystal melt interface we slant under different angles vertical generatrix in a cylindrical disk and made chasing on faceplates of a disk. It was ascertained that a disk with conical generatrix formed more intensive convective flows from a faceplate with larger diameter. It was shown that at CdTe VGF crystal growth rate about 10 mm/h application of AVC technique made it possible to produce convex interface for 2 in. crystal diameter.

  12. An observation of nanotwin lamellae in Cd 0.6Mn 0.4Te crystal by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Collins, W. E.; Burger, A.; Silberman, E.

    1993-05-01

    Atomic force microscopy (AFM) is used to examine the structure of freshly cleaved Cd 0.6Mn 0.4Te surfaces. The present report complements previous results obtained with X-ray diffraction and optical microscopy which showed the existence of microtwins. The AFM analysis was performed under ambient conditions and yielded nanometer scale resolution images of single twin lamellae that ranged between 20 and 100 nm in width. This is a first observation using AFM of such a substructure, which we interpret as evidence for the presence of nonotwins.

  13. Thermoelectric Properties and Hall Effect of Bi2Te3-xSex Polycrystalline Materials Prepared by a Hot Press Method

    NASA Astrophysics Data System (ADS)

    Yashima, Isamu; Watanave, Hiroshi; Ogisu, Takayasu; Tsukuda, Ryouma; Sato, Susumu

    1998-05-01

    Bi2Te3-xSex (0≦x<1) polycrystalline solids are prepared by a hot press method and their thermoelectric properties are studied. The samples show the maximum value of Z = 2.3×10-3 K-1 at x=0.22. The lattice thermal conductivity is smaller than that of a single crystal. The lattice constant and power factor decrease upon increasing the selenium substitution while thermal conductivity decreases for x values up to 0.33 and becomes constant for x values greater than 0.33.

  14. Experimental determination of the bulk Rashba parameters in BiTeBr

    NASA Astrophysics Data System (ADS)

    Martin, C.; Suslov, A. V.; Buvaev, S.; Hebard, A. F.; Bugnon, P.; Berger, H.; Magrez, A.; Tanner, D. B.

    2016-12-01

    Shubnikov-de Haas (SdH) oscillations, Hall effect, and optical reflectance (R(ω)) measurements have been performed on single crystals of BiTeBr. Under magnetic fields up to 32 tesla and at temperatures as low as 0.4 K, the SdH data shows a single oscillation frequency F = 102 +/- 5 \\text{tesla} . The combined transport and optical studies establish that the SdH effect originates from the Rashba spin-split bulk conduction band, with the chemical potential situated about 13 meV below the crossing (Dirac) point. The bulk carrier concentration was ne≈5×1018 \\text{cm}-3 and the effective mass m1*= 0.16m0 . Combining SdH and optical data, we reliably determine the Rashba parameters for the bulk conduction band of BiTeBr: the Rashba energy ER = 28 \\text{meV} and the momentum spin-split kR = 0.033 \\unicode{8491}-1 . Hence, the bulk Rashba coupling strength αR = 2ER/kR is found to be 1.7 eVÅ.

  15. High-Temperature Formation Phases and Crystal Structure of Hot-Pressed Thermoelectric CuGaTe2 with Chalcopyrite-Type Structure

    NASA Astrophysics Data System (ADS)

    Fujii, Yosuke; Kosuga, Atsuko

    2017-11-01

    Polycrystalline CuGaTe2 with a chalcopyrite-type structure consolidated by hot-pressing is a potential candidate as a medium-temperature thermoelectric (TE) material. However, its high-temperature formation phases have rarely been reported to date. Here, we investigated the temperature-dependent formation phases and crystal structure at 300-800 K of hot-pressed CuGaTe2. From synchrotron x-ray diffraction data and crystal structure analysis of the heating and cooling processes, it was clarified that a certain amount of impurity phases, such as Te and CuTe, precipitated from the CuGaTe2 matrix when the temperature was increased (to 500-650 K). This is the temperature range where CuGaTe2 has been reported to show high TE performance. After CuGaTe2 was heated to 800 K, such impurity phases remained, even when cooled to room temperature. They also affected the tetragonal distortion and the x-coordinate of Te in the CuGaTe2 matrix, probably due to deficiencies of Cu and Te in the matrix. Our results reveal detailed information on the formation phases of CuGaTe2 at high temperature and thus provide insight for evaluation of its high-temperature stability and transport properties.

  16. High-Temperature Formation Phases and Crystal Structure of Hot-Pressed Thermoelectric CuGaTe2 with Chalcopyrite-Type Structure

    NASA Astrophysics Data System (ADS)

    Fujii, Yosuke; Kosuga, Atsuko

    2018-06-01

    Polycrystalline CuGaTe2 with a chalcopyrite-type structure consolidated by hot-pressing is a potential candidate as a medium-temperature thermoelectric (TE) material. However, its high-temperature formation phases have rarely been reported to date. Here, we investigated the temperature-dependent formation phases and crystal structure at 300-800 K of hot-pressed CuGaTe2. From synchrotron x-ray diffraction data and crystal structure analysis of the heating and cooling processes, it was clarified that a certain amount of impurity phases, such as Te and CuTe, precipitated from the CuGaTe2 matrix when the temperature was increased (to 500-650 K). This is the temperature range where CuGaTe2 has been reported to show high TE performance. After CuGaTe2 was heated to 800 K, such impurity phases remained, even when cooled to room temperature. They also affected the tetragonal distortion and the x-coordinate of Te in the CuGaTe2 matrix, probably due to deficiencies of Cu and Te in the matrix. Our results reveal detailed information on the formation phases of CuGaTe2 at high temperature and thus provide insight for evaluation of its high-temperature stability and transport properties.

  17. Purification, crystallization and preliminary X-ray diffraction studies of D-tagatose 3-epimerase from Pseudomonas cichorii.

    PubMed

    Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2007-02-01

    D-Tagatose 3-epimerase (D-TE) from Pseudomonas cichorii catalyzes the epimerization of various ketohexoses at the C3 position. The epimerization of D-psicose has not been reported with epimerases other than P. cichorii D-TE and D-psicose 3-epimerase from Agrobacterium tumefaciens. Recombinant P. cichorii D-TE has been purified and crystallized. Crystals of P. cichorii D-TE were obtained by the sitting-drop method at room temperature. The crystal belongs to the monoclinic space group P2(1), with unit-cell parameters a = 76.80, b = 94.92, c = 91.73 A, beta = 102.82 degrees . Diffraction data were collected to 2.5 A resolution. The asymmetric unit is expected to contain four molecules.

  18. the Cryogenic Underground Observatory for Rare Events: Status and Prospects

    DOE PAGES

    Alduino, C.; Alfonso, K.; Artusa, D. R.; ...

    2017-05-09

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a large-scale double beta decay experiment utilizing cryogenic bolometers that is currently being commissioned at the Gran Sasso National Laboratory (LNGS) in Italy. Its primary focus is to search for the neutrinoless double beta decay of 130Te with a projected sensitivity to Majorana neutrino masses near the inverted mass hierarchy region. The detector is composed of 988 5x5x5-cm 3 TeO 2 crystals of natural isotopic composition arranged in 19 towers of 52 crystals each, all housed in a common dilution refrigerator. A single CUORE-like tower, CUORE-0, was assembled and operated asmore » a stand-alone detector for a period of approximately two years. In this report, the results from CUORE-0 and the current status and physics potential of CUORE are presented.« less

  19. Hierarchical microstructures in CZT

    NASA Astrophysics Data System (ADS)

    Sundaram, S. K.; Henager, C. H.; Edwards, D. J.; Schemer-Kohrn, A. L.; Bliss, M.; Riley, B. R.; Toloczko, M. B.; Lynn, K. G.

    2011-10-01

    Advanced characterization tools, such as electron backscatter diffraction and transmitted IR microscopy, are being applied to study critical microstructural features and orientation relations in as-grown CZT crystals to aid in understanding the relation between structure and properties in radiation detectors. Even carefully prepared single crystals of CZT contain regions of slight misorientation, Te-particles, and dislocation networks that must be understood for more accurate models of detector response. This paper describes initial research at PNNL into the hierarchy of microstructures observed in CZT grown via the vertical gradient freeze or vertical Bridgman method at PNNL and WSU.

  20. High-energy-resolution monochromator for nuclear resonant scattering of synchrotron radiation by Te-125 at 35.49 keV

    NASA Astrophysics Data System (ADS)

    Imai, Yasuhiko; Yoda, Yoshitaka; Kitao, Shinji; Masuda, Ryo; Higashitaniguchi, Satoshi; Inaba, Chika; Seto, Makoto

    2007-09-01

    We have developed a high-resolution monochromator (HRM) for the measurement of nuclear resonant scattering (NRS) of synchrotron radiation by Te-125 at 35.49 keV using the backscattering of sapphire (9 1 -10 68). HRMs for nuclei with excitation energies less than 30 keV have been successfully developed using high angle diffractions by silicon crystals. Nearly perfect silicon crystal, however, is not suitable for high efficient HRMs at higher energy regions because the symmetry of the crystal structure is high and the Debye-temperature is low. Therefore, we used high quality synthetic sapphire crystal, which has low symmetry of crystal structure and high Debye-temperature. The temperature of the crystal was precisely controlled around 218 K to diffract synchrotron radiation with a Bragg angle of π/2 - 0.52 mrad. Energy was tuned by changing the crystal temperature under the condition of constant diffraction angle. Energy resolution was measured by detecting nuclear forward scattering by Te-125 in enriched TeO II. The relative energy resolution of 2.1×10 -7 is achieved, that is 7.5 meV in energy bandwidth. This HRM opens studies on element-specific dynamics and electronic state of substances containing Te-125.

  1. [Ag2M(Te2O5)2]SO4 (M = CeIV or ThIV): A New Purely Inorganic d/f-Heterometallic Cationic Material.

    PubMed

    Poe, Todd N; White, Frankie D; Proust, Vanessa; Villa, Eric M; Polinski, Matthew J

    2018-05-07

    Two new isotypic d/f-heterometallic purely inorganic cationic materials, [Ag 2 M(Te 2 O 5 ) 2 ]SO 4 (M = Ce IV or Th IV ), were synthesized using the metal oxides (MO 2 and TeO 2 ), silver nitrate, and sulfuric acid under mild hydrothermal conditions. The prepared materials were characterized via single-crystal X-ray diffraction, which revealed that the materials possess a 3D framework of corner-sharing Te 2 O 5 2- units. The tellurite framework creates four unique pores, three of which are occupied by the M IV and Ag I metal centers. The tellurite network, metal coordination, and total charge yield a cationic framework, which is charge-balanced by electrostatically bound sulfate anions residing in the largest of the four framework pores. These materials also possess Ag I in a ligand-imposed linear geometry.

  2. Pressure-induced superconductivity in semimetallic 1 T -TiTe2 and its persistence upon decompression

    NASA Astrophysics Data System (ADS)

    Dutta, U.; Malavi, P. S.; Sahoo, S.; Joseph, B.; Karmakar, S.

    2018-02-01

    Pristine 1 T -TiTe2 single crystal has been studied for resistance and magnetoresistance behavior under quasihydrostatic and nonhydrostatic compressions. While the semimetallic state is retained in nearly hydrostatic pressures, small nonhydrostatic compression leads to an abrupt change in low-temperature resistance, a signature of possible charge density wave (CDW) ordering, that eventually collapses above 6.2 GPa. Superconductivity emerges at ˜5 GPa, rapidly increasing to a critical temperature (Tc) of 5.3 K at 12 GPa, irrespective of pressure condition. Pressure studies thus evidence that 1 T -TiTe2 exhibits superconductivity irrespective of the formation of the CDW-like state, implying the existence of phase-separated domains. Most surprisingly, the superconducting state persists upon decompression, establishing a novel phase diagram with suppressed P scale. The pressure quenchable superconductivity, of multiband nature and relatively high upper critical field, makes 1 T -TiTe2 unique among other layered dichalcogenides.

  3. In vitro inhibition of calcium oxalate crystallization and crystal adherence to renal tubular epithelial cells by Terminalia arjuna.

    PubMed

    Mittal, A; Tandon, S; Singla, S K; Tandon, C

    2016-04-01

    Urolithiasis is a multifactorial disease and remains a public health problem around the world. Of all types of renal stones, calcium oxalate (CaOx) is the most common composition formed in the urinary system of the patients with urolithiasis. The present study is aimed at evaluating the antiurolithiatic properties of the Tris-Cl extract (TE) of Terminalia arjuna (T. arjuna). The antilithiatic activity of TE of T. arjuna was investigated on nucleation, aggregation, and growth of the CaOx crystals, as well as its protective potency was tested on oxalate-induced cell injury of NRK-52E renal epithelial cells. Also, in vitro antioxidant activity of TE T. arjuna bark was also determined. The TE of T. arjuna exhibited a concentration-dependent inhibition of nucleation and growth of CaOx crystals. Inhibition of aggregation of CaOx crystals remains constant. When NRK-52E cells were injured by exposure to oxalate for 48 h, the TE prevented the cells from injury and CaOx crystal adherence resulting in increased cell viability in a dose-dependent manner. The TE also scavenged the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals with an IC50 at 51.72 µg/mL. The results indicated that T. arjuna is a potential candidate for phytotherapy against urolithiasis as it attains the ability to inhibit CaOx crystallization and scavenge DPPH free radicals in vitro along with a cytoprotective role.

  4. Crystal growth of Bi{sub 2}Te{sub 3} and noble cleaved (0001) surface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru; Functional Electronics Laboratory, Tomsk State University, Tomsk 634050; Golyashov, V.A.

    2016-04-15

    A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field. The phase purity and bulk structural quality of the crystal have been verified by XRD analysis and rocking curve observation. The atomically smooth Bi{sub 2}Te{sub 3}(0001) surface with an excellent crystallographic quality is formed by cleavage in the air. The chemical and microstructural properties of the surface have been evaluated with RHEED, AFM, STM, SE and XPS. The Bi{sub 2}Te{sub 3}(0001) cleaved surface is formed by atomically smooth terraces with the height of the elemental step of ~1.04±0.1 nm, asmore » estimated by AFM. There is no surface oxidation process detected over a month keeping in the air at normal conditions, as shown by comparative core level photoelectron spectroscopy. - Graphical abstract: A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field and the Bi{sub 2}Te{sub 3}(0001) cleaved surface has been evaluated with RHEED, AFM, STM, SE and XPS. - Highlights: • High-quality Bi{sub 2}Te{sub 3} crystal of 10 mm in diameter and 50 mm long have been grown. • The high-purity cleaved Bi{sub 2}Te{sub 3}(0001) surface has been evaluated by RHEED, AFM, STM and XPS methods. • The Bi{sub 2}Te{sub 3} surface covered by atomically smooth (0001) terraces is chemically stable for a long time.« less

  5. Pb1-xMnxTe Crystals as a New Thermoelectric Material

    NASA Astrophysics Data System (ADS)

    Osinniy, V.; Jędrzejczak, A.; Domuchowski, W.; Dybko, K.; Witkowska, B.; Story, T.

    2006-11-01

    We studied experimentally thermoelectric properties of p-type bulk crystals of Pb1-xMnxTe and Pb1-x-yAgyMnxTe (0≤ x≤ 0.083 and y≤0.017) at room and liquid nitrogen temperatures. Model calculations of the thermoelectric figure of merit parameter (Z) involved the analysis of carrier concentration, carrier mobility, density of states as well as electronic and lattice contributions to the thermal conductivity of PbMnTe. In the analysis we took into account the main effect of Mn concentration on the band structure parameters of PbMnTe, i.e. the increase of the energy gap. The analysis of electrical, thermoelectric, and thermal properties of Pb1-xMnxTe crystals showed that, at room temperature, the maximum values of the parameter Z occur in crystals with Mn content 0.05≤ x≤0.07 and are comparable with a maximal value of Z observed in PbTe. At T=400 K the increase in the parameter Z by 10% is expected in Pb1-xMnxTe crystal (as compared to PbTe) for a very high concentration of holes of about p=5×1019 cm-3. The experimental data correctly reproduce the theoretical Z(p) dependence.

  6. Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe 3–xSe x

    DOE PAGES

    Cui, Shan; He, Lan -Po; Hong, Xiao -Chen; ...

    2016-06-09

    It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe 3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe 3–x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe 3–x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependencemore » of κ 0/T manifests a multigap behavior. Lastly, these results demonstrate multiple nodeless superconducting gaps in ZrTe 3–x Se x, which indicates conventional superconductivity despite of the existence of a CDW QCP.« less

  7. Aqueous synthesis of ZnTe/dendrimer nanocomposites and their antimicrobial activity: implications in therapeutics

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Ghosh, D.; Bag, P. K.; Bhattacharya, S. C.; Saha, A.

    2011-03-01

    The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they have a good degree of crystallinity with a hexagonal crystal phase. The antibacterial activities of the ZnTe/dendrimer nanocomposites (ZnTe DNCs) as well other semiconductor nanocomposites were evaluated against enteropathogenic bacteria including multi-drug resistant Vibrio cholerae serogroup O1 and enterotoxigenic Escherichia coli (ETEC). ZnTe DNCs had significant antibacterial activity against strains of V. cholerae and ETEC with minimum inhibitory concentrations ranging from 64 to 512 μg ml-1 and minimum bactericidal concentrations ranging from 128 to 1000 μg ml-1. Thus, the observed results suggest that these water-soluble active nanocomposites have potential for the treatment of enteric diseases like diarrhoea and cholera.The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they have a good degree of crystallinity with a hexagonal crystal phase. The antibacterial activities of the ZnTe/dendrimer nanocomposites (ZnTe DNCs) as well other semiconductor nanocomposites were evaluated against enteropathogenic bacteria including multi-drug resistant Vibrio cholerae serogroup O1 and enterotoxigenic Escherichia coli (ETEC). ZnTe DNCs had significant antibacterial activity against strains of V. cholerae and ETEC with minimum inhibitory concentrations ranging from 64 to 512 μg ml-1 and minimum bactericidal concentrations ranging from 128 to 1000 μg ml-1. Thus, the observed results suggest that these water-soluble active nanocomposites have potential for the treatment of enteric diseases like diarrhoea and cholera. Electronic supplementary information (ESI) available: Dynamic light scattering, atomic force microscopy and hemolytic activity of the nanocomposites. See DOI: 10.1039/c0nr00610f

  8. Defect levels of semi-insulating CdMnTe:In crystals

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Bolotinikov, A. E.; Camarda, G. S.; Hossain, A.; Gul, R.; Yang, G.; Cui, Y.; Prochazka, J.; Franc, J.; Hong, J.; James, R. B.

    2011-06-01

    Using photoluminescence (PL) and current deep-level transient spectroscopy (I-DLTS), we investigated the electronic defects of indium-doped detector-grade CdMnTe:In (CMT:In) crystals grown by the vertical Bridgman method. We similarly analyzed CdZnTe:In (CZT:In) and undoped CdMnTe (CMT) crystals grown under the amount of same level of excess Te and/or indium doping level to detail the fundamental properties of the electronic defect structure more readily. Extended defects, existing in all the samples, were revealed by synchrotron white beam x-ray diffraction topography and scanning electron microscopy. The electronic structure of CMT is very similar to that of CZT, with shallow traps, A-centers, Cd vacancies, deep levels, and Te antisites. The 1.1-eV deep level, revealed by PL in earlier studies of CZT and CdTe, were attributed to dislocation-induced defects. In our I-DLTS measurements, the 1.1-eV traps showed different activation energies with applied bias voltage and an exponential dependence on the trap-filling time, which are typical characteristics of dislocation-induced defects. We propose a new defect-trap model for indium-doped CMT crystals.

  9. Textured Na x CoO2 Ceramics Sintered from Hydrothermal Platelet Nanocrystals: Growth Mechanism and Transport Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Pengcheng; Wang, Yifeng; Zhu, Kongjun; Tai, Guoan; Liu, Jinsong; Wang, Jing; Yan, Kang; Zhang, Jianhui

    2018-05-01

    Nanostructuring is an effective approach to improve thermoelectric (TE) performance, which is caused by the interface and quantum effects on electron and phonon transport. For a typical layered structure such as sodium cobalt (NCO), a highly textured ceramic with nanostructure is beneficial for the carrier transport properties due to the strong anisotropy. In this paper, we established a textured NCO ceramic with highly oriented single crystals in nanoscale. The Na0.6CoO2 platelet crystals were prepared by a one-step hydrothermal method. The growth mechanism was revealed to involve dissolution-recrystallization and exchange reactions. NCO TE ceramics fabricated by a press-aided spark plasma sintering method showed a high degree of texturing, with the platelet crystals basically lying along the in-plane direction perpendicular to the press direction. TE properties of the textured NCO ceramics showed a strong anisotropic behavior. The in-plane electrical conductivity was considerably larger than the out-of-plane data because of fewer grain boundaries and interfaces that existed in the in-plane direction. Moreover, the in-plane Seebeck coefficient was higher because of the anisotropic electronic nature of NCO. Although the in-plane thermal conductivity was high, a prior ZT value was enabled for these NCO ceramics along this direction because of the dominant electrical transport. This finding provides a new approach to prepare highly oriented ceramics.

  10. Purification, crystallization and preliminary X-ray diffraction studies of d-tagatose 3-epimerase from Pseudomonas cichorii

    PubMed Central

    Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2007-01-01

    d-Tagatose 3-epimerase (D-TE) from Pseudomonas cichorii catalyzes the epimerization of various ketohexoses at the C3 position. The epimerization of d-­psicose has not been reported with epimerases other than P. cichorii D-­TE and d-psicose 3-epimerase from Agrobacterium tumefaciens. Recombinant P. cichorii D-TE has been purified and crystallized. Crystals of P. cichorii D-TE were obtained by the sitting-drop method at room temperature. The crystal belongs to the monoclinic space group P21, with unit-cell parameters a = 76.80, b = 94.92, c = 91.73 Å, β = 102.82°. Diffraction data were collected to 2.5 Å resolution. The asymmetric unit is expected to contain four molecules. PMID:17277456

  11. Characterization of Cadmium-Zinc Telluride Crystals Grown by 'Contactless' PVT Using Synchrotron White Beam Topography

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Gillies, D.; Grasza, K.; Chung, H.; Raghothamachar, B.; Dudley, M.

    1997-01-01

    Crystals of Cd(1-x)Zn(x)Te grown by Physical Vapor Transport (PVT) using self-seeding 'contactless' techniques were characterized using synchrotron radiation (reflection, transmission, and Laue back-reflection X-ray topography). Crystals of low (x = 0.04) and high (up to x approx. = 0.4) ZnTe content were investigated. Twins and defects such as dislocations, precipitates, and slip bands were identified. Extensive inhomogeneous strains present in some samples were found to be generated by interaction (sticking) with the pedestal and by composition gradients in the crystals. Large (up to about 5 mm) oval strain fields were observed around some Te precipitates. Low angle grain boundaries were found only in higher ZnTe content (x greater than or equal to 0.2) samples.

  12. Synthesis and characterization of electron doped La{sub 0.85}Te{sub 0.15}MnO{sub 3} thin film grown on LaAlO{sub 3} substrate by pulsed laser deposition technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Irshad, E-mail: bhat.amu85@gmail.com; Husain, Shahid; Patil, S. I.

    2015-06-24

    We report the structural, morphological and magneto-transport properties of electron doped La{sub 0.85}Te{sub 0.15}MnO{sub 3} (LTMO) thin film grown on (001) LaAlO{sub 3} single crystal substrate by pulsed laser deposition (PLD). X-ray diffraction (XRD) results confirm that the film has good crystalline quality, single phase, and c-axis orientation. The atomic force microscopy (AFM) results have revealed that the film consists of grains with the average size in a range of 20–30 nm and root-mean square (rms) roughness of 0.27nm. The resistivity versus temperature measurement exhibits an insulator to metal transition (MIT). We have noticed a huge value of magnetoresistance (∼93%)more » close to MIT in presence of 8T field. X-ray photoemission spectroscopy confirms the electron doping and suggests that Te ions could be in the Te{sup 4+} state, while the Mn ions stay in the Mn{sup 2+} and Mn{sup 3+} valence state.« less

  13. Very High Quality Crystals of Wide-Gap II-VI Semiconductors: What for?

    DTIC Science & Technology

    2001-01-01

    the reciprocal space mapping , by the etch pit density (EPD) measurements (to determine the density of dislocations) and by the measurement of the width...crystals. The EPD was in the range 5 x 1 + 104 cmn2 for Cdl.,ZnxTe crystals and about 104 cmz for ZnTe. The reciprocal space mapping of the crystals

  14. Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi2Te3-based thermoelectrics

    NASA Astrophysics Data System (ADS)

    Korobeinikov, Igor V.; Morozova, Natalia V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kulbachinskii, Vladimir A.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.

    2018-01-01

    We propose a model of a thermoelectric module in which the performance parameters can be controlled by applied tuneable stress. This model includes a miniature high-pressure anvil-type cell and a specially designed thermoelectric module that is compressed between two opposite anvils. High thermally conductive high-pressure anvils that can be made, for instance, of sintered technical diamonds with enhanced thermal conductivity, would enable efficient heat absorption or rejection from a thermoelectric module. Using a high-pressure cell as a prototype of a stress-controlled thermoelectric converter, we investigated the effect of applied high pressure on the power factors of several single-crystalline thermoelectrics, including binary p-type Bi2Te3, and multi-component (Bi,Sb)2Te3 and Bi2(Te,Se,S)3 solid solutions. We found that a moderate applied pressure of a few GPa significantly enhances the power factors of some of these thermoelectrics. Thus, they might be more efficiently utilized in stress-controlled thermoelectric modules. In the example of one of these thermoelectrics crystallizing in the same rhombohedral structure, we examined the crystal lattice stability under moderate high pressures. We uncovered an abnormal compression of the rhombohedral lattice of (Bi0.25,Sb0.75)2Te3 along the c-axis in a hexagonal unit cell, and detected two phase transitions to the C2/m and C2/c monoclinic structures above 9.5 and 18 GPa, respectively.

  15. Visualizing ferromagnetic domains in magnetic topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenbo; Gu, G. D.; Yang, Fang

    2015-05-13

    We report a systematic study of ferromagnetic domains in both single-crystal and thin-film specimens of magnetic topological insulators Cr doped (Bi 0.1Sb 0.9) 2Te 3 using magnetic force microscopy (MFM). The temperature and field dependences of MFM and in situ resistance data are consistent with previous bulk transport and magnetic characterization. Bubble-like ferromagnetic domains were observed in both single crystals and thin films. Significantly, smaller domain size (~500 nm) with narrower domain wall (~150 – 300 nm) was observed in thin films of magnetic topological insulators, likely due to vertical confinement effect. As a result, these results suggest that thinmore » films are more promising for visualization of chiral edge states.« less

  16. Native point defects in GaSb

    NASA Astrophysics Data System (ADS)

    Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J.

    2014-10-01

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.

  17. Investigation of Cd1-xMgxTe as possible materials for X and gamma ray detectors

    NASA Astrophysics Data System (ADS)

    Mycielski, Andrzej; Kochanowska, Dominika M.; Witkowska-Baran, Marta; Wardak, Aneta; Szot, Michał; Domagała, Jarosław; Witkowski, Bartłomiej S.; Jakieła, Rafał; Kowalczyk, Leszek; Witkowska, Barbara

    2018-06-01

    In recent years, a series of investigations has been devoted to a possibility of using crystals based on CdTe with addition of magnesium (Mg) for X and gamma radiation detectors. Since we have had wide technological possibilities of preparing crystals and investigating their properties, we performed crystallizations of the crystals mentioned above. Thereafter, we investigated selected properties of the obtained materials. The crystallization processes were performed by using the Low Pressure Bridgman (LPB) method. The elements used: Cd, Te, Mg were of the highest purity available at present. In order to obtain reliable conclusions the crystallization processes were carried out at identical technological conditions. The details of our technological method and the results of the investigation of physical properties of the samples are presented below.

  18. Synthesis and characterization of colloidal CdTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Semendy, Fred; Jaganathan, Gomatam; Dhar, Nibir; Trivedi, Sudhir; Bhat, Ishwara; Chen, Yuanping

    2008-08-01

    We synthesized CdTe nano crystals (NCs) in uniform sizes and in good quality as characterized by photoluminescence (PL), AFM, and X-ray diffraction. In this growth procedure, CdTe nano-crystal band gap is strongly dependent on the growth time and not on the injection temperature or organic ligand concentration. This is very attractive because of nano-crystal size can be easily controlled by the growth time only and is very attractive for large scale synthesis. The color of the solution changes from greenish yellow to light orange then to deep orange and finally grayish black to black over a period of one hour. This is a clear indication of the gradual growth of different size (and different band gap) of CdTe nano-crystals as a function of the growth time. In other words, the size of the nano-crystal and its band gap can be controlled by adjusting the growth time after injection of the tellurium. The prepared CdTe NCs were characterized by absorption spectra, photoluminescence (PL), AFM and X-ray diffraction. Measured absorption maxima are at 521, 560, 600 and 603 nm corresponding to band gaps of 2.38, 2.21,2,07 and 2.04 eV respectively for growth times of 15, 30, 45 and 60 minutes. From the absorption data nano-crystal growth size saturates out after 45 minutes. AFM scanning of these materials indicate that the size of these particles is between 4 - 10 nm in diameter for growth time of 45 minutes. XD-ray diffraction indicates that these nano crystals are of cubic zinc blende phase. This paper will present growth and characterization data on CdTe nano crystals for various growth times.

  19. Strain-engineered diffusive atomic switching in two-dimensional crystals

    PubMed Central

    Kalikka, Janne; Zhou, Xilin; Dilcher, Eric; Wall, Simon; Li, Ju; Simpson, Robert E.

    2016-01-01

    Strain engineering is an emerging route for tuning the bandgap, carrier mobility, chemical reactivity and diffusivity of materials. Here we show how strain can be used to control atomic diffusion in van der Waals heterostructures of two-dimensional (2D) crystals. We use strain to increase the diffusivity of Ge and Te atoms that are confined to 5 Å thick 2D planes within an Sb2Te3–GeTe van der Waals superlattice. The number of quintuple Sb2Te3 2D crystal layers dictates the strain in the GeTe layers and consequently its diffusive atomic disordering. By identifying four critical rules for the superlattice configuration we lay the foundation for a generalizable approach to the design of switchable van der Waals heterostructures. As Sb2Te3–GeTe is a topological insulator, we envision these rules enabling methods to control spin and topological properties of materials in reversible and energy efficient ways. PMID:27329563

  20. Growth of ZnMgTe/ZnTe waveguide structures on ZnTe (0 0 1) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kumagai, Y.; Imada, S.; Baba, T.; Kobayashi, M.

    2011-05-01

    ZnMgTe/ZnTe/ZnMgTe layered structures were grown on (0 0 1) ZnTe substrates by molecular beam epitaxy. This structure was designed to apply to waveguides in various optoelectronic devices to reduce light loss. Since the lattice mismatch between ZnTe and ZnMgTe was not negligible, the critical layer thickness (CLT) was theoretically derived. Structures with varying Mg composition and layer thickness of ZnMgTe cladding layer were grown and examined for crystal quality with respect to theoretical data. The crystal quality was investigated by means of cross sectional transmission electron microscopy (TEM) and reciprocal space mapping (RSM). Optical confinements were observed by irradiating a laser beam from one end of the sample and monitoring the transmitted light from the other end.

  1. Focus on superconducting properties of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2012-10-01

    Since the discovery of iron-based superconductors, much attention has been given to the exploration of new superconducting compounds. Numerous superconducting iron compounds have been found and categorized into five groups: LnFeAsO (Ln = lanthanide), BaFe2As2, KFeAs, FeSe and FeAs with perovskite blocking layers. Among them, FeSe has the simplest crystal structure. Since the crystal structure is composed of only superconducting Fe layers, the FeSe family must be the best material to investigate the mechanism of iron-based superconductivity. FeSe shows very strong pressure effects. The superconducting transition temperature (Tc) of FeSe is approximately 8 K at ambient pressure. However Tc dramatically increases up to 37 K under applied pressure of 4-6 GPa. This is the third highest Tc value among binary superconductors, surpassed only by CsC60 under pressure (Tc = 38 K) and MgB2 (Tc = 39 K). On the other hand, despite FeTe having a crystal structure analogous to that of FeSe, FeTe shows antiferromagnetic properties without superconductivity. Doping of small ions, either Se or S, however, can induce superconductivity in FeTe1-xSex or FeTe1-xSx . The superconductivity is very weak for small x values, and annealing under certain conditions is required to obtain strong superconductivity, for instance annealing in oxygen or alcoholic beverages such as red wine. The following selection of papers describe many important experimental and theoretical studies on iron chalcogenide superconductors including preparation of single crystals, bulk samples and thin films; NMR measurements; photoemission spectroscopy; high-pressure studies; annealing effects and research on new BiS2-based superconductors. I hope this focus issue will help researchers understand the frontiers of iron chalcogenide superconductors and assist in the discovery of new phenomena related to iron-based superconductivity.

  2. Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.

    2018-05-01

    The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.

  3. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe3 -xGeTe2

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus; Petrovic, C.

    2018-04-01

    We report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe3 -xGeTe2 (x ≈0.36 ) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρx y/μ0Heff and longitudinal resistivity ρxx 2M /μ0Heff implies that the AHE in Fe3 -xGeTe2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear-M Hall conductivity σxy A below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.

  4. Coexistent three-component and two-component Weyl phonons in TiS, ZrSe, and HfTe

    NASA Astrophysics Data System (ADS)

    Li, Jiangxu; Xie, Qing; Ullah, Sami; Li, Ronghan; Ma, Hui; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2018-02-01

    In analogy to various fermions of electrons in topological semimetals, topological mechanical states with two types of bosons, Dirac and Weyl bosons, were reported in some macroscopic systems of kHz frequency, and those with a type of doubly-Weyl phonons in atomic vibrational framework of THz frequency of solid crystals were recently predicted. Here, through first-principles calculations, we have reported that the phonon spectra of the WC-type TiS, ZrSe, and HfTe commonly host the unique triply degenerate nodal points (TDNPs) and single two-component Weyl points (WPs) in THz frequency. Quasiparticle excitations near TDNPs of phonons are three-component bosons, beyond the conventional and known classifications of Dirac, Weyl, and doubly-Weyl phonons. Moreover, we have found that both TiS and ZrSe have five pairs of type-I Weyl phonons and a pair of type-II Weyl phonons, whereas HfTe only has four pairs of type-I Weyl phonons. They carry nonzero topological charges. On the (10 1 ¯0 ) crystal surfaces, we observe topological protected surface arc states connecting two WPs with opposite charges, which host modes that propagate nearly in one direction on the surface.

  5. Hydrostatic pressure-induced huge enhancement of critical current density and flux pinning in Fe1-x Co x Se0.5Te0.5 single crystals

    NASA Astrophysics Data System (ADS)

    Sang, Lina; Shabbir, Babar; Maheshwari, Pankaj; Qiu, Wenbin; Ma, Zongqing; Dou, Shixue; Cai, Chuanbing; Awana, V. P. S.; Wang, Xiaolin

    2018-07-01

    We performed a systematic study of the hydrostatic pressure (HP) effect on the supercon-ducting transition temperature (T c), critical current density (J c), irreversibility field (H irr), upper critical field (H c2), and flux pinning mechanism in un-doped and 3 at.% Co-doped FeSe0.5Te0.5 crystals. We found that T c is increased from 11.5 to 17 K as HP increases from 0 to 1.2 GPa. Remarkably, the J c is significantly enhanced by a factor of 3 to 100 for low and high temperature and field, and the H irr line is shifted to higher fields by HP up to 1.2 GPa. Based on the collective pinning model, the δl pinning associated with charge-carrier mean free path fluctuation is responsible for the pinning mechanism of Fe1-x Co x Se0.5Te0.5 samples with or without pressure. A comprehensive vortex phase diagram in the mixed state is constructed and analysed for the 3 at.% Co-doped sample.

  6. Thermoelectric properties of the electron-doped perovskites Sr1-xCaxTi1-yNbyO3

    NASA Astrophysics Data System (ADS)

    Fukuyado, J.; Narikiyo, K.; Akaki, M.; Kuwahara, H.; Okuda, T.

    2012-02-01

    We have investigated thermoelectric (TE) properties for single crystals of perovskites Sr1-xCaxTi1-yNbyO3 for 0 ⩽ x ⩽ 0.4 and 0 ⩽ y ⩽ 0.03 below room temperature (RT). We found that SrTi0.99Nb0.01O3 shows a large power factor at low temperature (PF=50 μW/K2 cm at 100 K ˜ 90 μW/K2 cm at 50 K) and the largest dimensionless TE figure-of-merit below 40 K (ZT ˜ 0.07) among the ever-reported materials. Such a large low-temperature TE response around a carrier concentration of 1020 cm-3 is due to a distinct electron-phonon interaction, which could relate to the superconducting state. We also found that the Ca2+ substitution for Sr2+ increases ZT at 300 K for Sr1-xCaxTi0.97Nb0.03O3 from 0.08 to 0.105. The enhancement of ZT around RT originates both in a large reduction of a thermal conductivity due to an introduced randomness into the crystal structure and in an unexpected enhancement of a Seebeck coefficient.

  7. Electronic spectrum of non-tetrahedral acceptors in CdTe:Cl and CdTe:Bi,Cl single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivobok, V. S., E-mail: krivobok@lebedev.ru; Moscow Institute of Physics and Technology; Nikolaev, S. N.

    2016-02-07

    The electronic spectra of complex acceptors in compensated CdTe:Cl, CdTe:Ag,Cl, and CdTe:Bi,Cl single crystals are studied using low-temperature photoluminescence (PL) measurements under both nonresonant and resonant excitation of distant donor–acceptor pairs (DAP). The wavelength modulation of the excitation source combined with the analysis of the differential PL signal is used to enhance narrow spectral features obscured because of inhomogeneous line broadening and/or excitation transfer for selectively excited DAPs. For the well-known tetrahedral (T{sub D}) Ag{sub Cd} acceptor, the energies of four excited states are measured, and the values obtained are shown to be in perfect agreement with the previous data.more » Moreover, splitting between the 2P{sub 3/2} (Γ{sub 8}) and 2S{sub 3/2} (Γ{sub 8}) states is clearly observed for Ag{sub Cd} centers located at a short distance (5–7 nm) from a hydrogen-like donor (Cl{sub Te}). This splitting results from the reduction of the T{sub D} symmetry taking place when the acceptor is a member of a donor–acceptor pair. For the Cl-related complex acceptor with an activation energy of ∼121 meV (A-center), the energies of eight excited states are measured. It is shown that this defect produces low-symmetry central-cell correction responsible for the strong splitting of S-like T{sub D} shells. The energy spectrum of the Bi-related shallow acceptor with an activation energy of ∼36 meV is measured as well. The spectrum obtained differs drastically from the hydrogen-like set of levels, which indicates the existence of repulsive low-symmetry perturbation of the hydrogen-like Coulomb potential. It is also shown that the spectra of selectively excited PL recorded for a macroscopic ensemble of distant donor–acceptor pairs allow one to detect the low symmetry of acceptors of a given type caused by their complex nature or by the Jahn–Teller distortion. This method does not require any additional (external) field and is applicable to acceptors in diverse zinc-blende compound semiconductors.« less

  8. Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumata, Y.; Morita, T.; Morimoto, Y.

    A self-organized fringe pattern in a single amorphous mark of a GeTe thin film was formed by multiple femtosecond pulse amorphization. Micro Raman measurement indicates that the fringe is a periodic alternation between crystalline and amorphous phases. The period of the fringe is smaller than the irradiation wavelength and the direction is parallel to the polarization direction. Snapshot observation revealed that the fringe pattern manifests itself via a complex but coherent process, which is attributed to crystallization properties unique to a nonthermally amorphized phase and the distinct optical contrast between crystalline and amorphous phases.

  9. The crystallization behavior of amorphous Ge2Sb2Te5 films induced by a multi-pulsed nanosecond laser

    NASA Astrophysics Data System (ADS)

    Fan, T.; Liu, F. R.; Li, W. Q.; Guo, J. C.; Wang, Y. H.; Sun, N. X.; Liu, F.

    2017-09-01

    In this paper, accumulated crystallization of amorphous Ge2Sb2Te5 (a-GST) films induced by a multi-pulsed nanosecond (ns) excimer laser was investigated by x-ray diffraction (XRD), atomic force microscopy, field-emission scanning electron microscopy, x-ray photoelectron spectroscopy (XPS) and a spectrophotometer. XRD analyses revealed that detectable crystallization was firstly observed in the preferred orientation (200), followed by the orientations (220) and (111) after two pulses. Optical contrast, determined by crystallinity as well as surface roughness, was found to retain a linear relation within the first three pulses. A layered growth mechanism from the top surface to the interior of a-GST films was used to explain the crystallization behavior induced by the multi-pulse ns laser. XPS analyses for bond rearrangement and electronic structure further suggested that the crystallization process was performed by generating new bonds of Ge-Te and Sb-Te after laser irradiations. This paper presents the potential of multi-level devices and tunable thermal emitters based on controllable crystallization of phase-change materials.

  10. Sb2Te3 and Its Superlattices: Optimization by Statistical Design.

    PubMed

    Behera, Jitendra K; Zhou, Xilin; Ranjan, Alok; Simpson, Robert E

    2018-05-02

    The objective of this work is to demonstrate the usefulness of fractional factorial design for optimizing the crystal quality of chalcogenide van der Waals (vdW) crystals. We statistically analyze the growth parameters of highly c axis oriented Sb 2 Te 3 crystals and Sb 2 Te 3 -GeTe phase change vdW heterostructured superlattices. The statistical significance of the growth parameters of temperature, pressure, power, buffer materials, and buffer layer thickness was found by fractional factorial design and response surface analysis. Temperature, pressure, power, and their second-order interactions are the major factors that significantly influence the quality of the crystals. Additionally, using tungsten rather than molybdenum as a buffer layer significantly enhances the crystal quality. Fractional factorial design minimizes the number of experiments that are necessary to find the optimal growth conditions, resulting in an order of magnitude improvement in the crystal quality. We highlight that statistical design of experiment methods, which is more commonly used in product design, should be considered more broadly by those designing and optimizing materials.

  11. Benzothiazolium Single Crystals: A New Class of Nonlinear Optical Crystals with Efficient THz Wave Generation.

    PubMed

    Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil

    2017-08-01

    Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. First demonstration of an all-solid-state optical cryocooler

    DOE PAGES

    Hehlen, Markus P.; Meng, Junwei; Albrecht, Alexander R.; ...

    2018-06-06

    Solid-state optical refrigeration uses anti-Stokes fluorescence to cool macroscopic objects to cryogenic temperatures without vibrations. Crystals such as Yb 3+-doped YLiF 4 (YLF:Yb) have previously been laser-cooled to 91 K. In this study, we show for the first time laser cooling of a payload connected to a cooling crystal. A YLF:Yb crystal was placed inside a Herriott cell and pumped with a 1020-nm laser (47 W) to cool a HgCdTe sensor that is part of a working Fourier Transform Infrared (FTIR) spectrometer to 135 K. This first demonstration of an all-solid-state optical cryocooler was enabled by careful control of themore » various desired and undesired heat flows. Fluorescence heating of the payload was minimized by using a single-kink YLF thermal link between the YLF:Yb cooling crystal and the copper coldfinger that held the HgCdTe sensor. The adhesive-free bond between YLF and YLF:Yb showed excellent thermal reliability. This laser-cooled assembly was then supported by silica aerogel cylinders inside a vacuum clamshell to minimize undesired conductive and radiative heat loads from the warm surroundings. Our structure can serve as a baseline for future optical cryocooler devices.« less

  13. First demonstration of an all-solid-state optical cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hehlen, Markus P.; Meng, Junwei; Albrecht, Alexander R.

    Solid-state optical refrigeration uses anti-Stokes fluorescence to cool macroscopic objects to cryogenic temperatures without vibrations. Crystals such as Yb 3+-doped YLiF 4 (YLF:Yb) have previously been laser-cooled to 91 K. In this study, we show for the first time laser cooling of a payload connected to a cooling crystal. A YLF:Yb crystal was placed inside a Herriott cell and pumped with a 1020-nm laser (47 W) to cool a HgCdTe sensor that is part of a working Fourier Transform Infrared (FTIR) spectrometer to 135 K. This first demonstration of an all-solid-state optical cryocooler was enabled by careful control of themore » various desired and undesired heat flows. Fluorescence heating of the payload was minimized by using a single-kink YLF thermal link between the YLF:Yb cooling crystal and the copper coldfinger that held the HgCdTe sensor. The adhesive-free bond between YLF and YLF:Yb showed excellent thermal reliability. This laser-cooled assembly was then supported by silica aerogel cylinders inside a vacuum clamshell to minimize undesired conductive and radiative heat loads from the warm surroundings. Our structure can serve as a baseline for future optical cryocooler devices.« less

  14. Crystal growth and analysis of ohmic contact and magneto-optical isolator properties of cadmium manganese telluride

    NASA Astrophysics Data System (ADS)

    Prakasam, Mythili; Viraphong, Oudomsack; Teulé-Gay, Lionel; Decourt, Rodolphe; Veber, Philippe; Víllora, Encarnación G.; Shimamura, Kiyoshi

    2011-03-01

    Cd1-xMnxTe (x=0.1, 0.3, 0.5, 0.7 and 0.9) (CMT) single crystals were grown by the vertical Bridgman method. The optical studies reveal that with the increase in Mn concentration, the band gap values increase, which is attributed to s, p-d exchange interaction between the band carriers and Mn ions. Faraday rotation angle of the grown CMT (x=0.5) crystals were measured at the following wavelengths: 825, 1060 and 1575 nm. It was inferred that CMT exhibit larger Faraday effect (3-6 times larger than terbium-gallium garnet (TGG) currently used for optical isolators) making it as an efficient material for optical isolator at longer wavelengths. Field-cooled and zero field-cooled magnetizations of CMT were measured as a function of temperature and magnetic field. The spin-glass like behavior of CMT and their tendency to decrease in magnitude with increasing Mn concentration have been analyzed. The metal contacts on the Cd1-xMnxTe (x=0.1, 0.5, 0.7 and 0.9) crystals have been made with various metals and metal alloys to establish the ohmic contact. The detector characteristics of CMT have been tested using γ-rays with 511 keV (22 Na) and 59.5 keV (241 Am).

  15. Thermal conductivity studies of CdZnTe with varying Te excess

    DOE PAGES

    Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin; ...

    2016-08-28

    Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated bymore » modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Lastly, the thermal conductivity decreased with increasing Te concentration.« less

  16. Thermal conductivity studies of CdZnTe with varying Te excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin

    Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated bymore » modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Lastly, the thermal conductivity decreased with increasing Te concentration.« less

  17. A general route for the rapid synthesis of one-dimensional nanostructured single-crystal Te, Se and Se Te alloys directly from Te or/and Se powders

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Zhu, Jun-Jie

    2006-03-01

    A general and template-free 'disproportionation and reversal' route was developed to synthesize one-dimensional (1D) nanostructures of Te, Se and Se-Te alloys directly from Te or/and Se powders. The products were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and scanning electron microscopy (SEM). Te nanorods and nanowires with a width varying from about 40 nm to about 300 nm, Se nanowires with a width of 60-100 nm and a length of 4-6 µm, and SexTe100-x alloy nanorods with x in a wide range, and with a width of 30-70 nm and an aspect ratio of three to five, were prepared. The mechanism of formation of the nanorods and nanowires and the effects of the experimental conditions, such as solution concentration, cooling rate, solvent nature and heating process, on the morphology and size of the products have been discussed. We believe that this general route and some other proper reversible processes between solid state and solution state can be extended to the transformations from various bulk materials into nanosized materials with various morphologies.

  18. Spherical crystals of Pb 1 - xSn xTe grown in microgravity

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kyoichi; Yamada, Tomoaki

    1996-07-01

    Pb 1- xSn xTe spherical crystals were unintentionally obtained along with a cylindrical Pb 1 - xSn xTe crystal grown during the {SL-J}/{FMPT} mission on board the space shuttle "Endeavor". About 25 spherical crystals ranged from 0.5 to 11 mm in diameter. Melt leaked from the melt reservoir into the spring that plays the role of pushing the melt toward a seed crystal and eliminating free surface areas of the melt. Because of the surface tension of the melt, spherical melt drops formed in the hollow of the spring, then solidified into spherical crystals during the cooling process. Some of the crystals had lower dislocation densities, in the order of 10 4 cm -2, two orders smaller than those of terrestrially grown crystals from a melt. The experiment showed a way of stably positioning a large volume of liquid in microgravity without touching the crucible wall and a way of reducing crystalline defects by such growth.

  19. Crystallization kinetics of the phase change material GeSb 6Te measured with dynamic transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winseck, M. M.; Cheng, H. -Y.; Campbell, G. H.

    2016-03-30

    GeSb 6Te is a chalcogenide-based phase change material that has shown great ptoential for use in solid-state memory devices. The crystallization kinetics of amorphous thin films of GeSb 6Te during laser crystallization were followed with dynamic transmission electron microscopy, a photo-emission electron microscopy technique with nanosecond-scale time resolution. Nine-frame movies of crystal growth were taken during laser crystallization. The nucleation rate is observed to be very low and the growth rates are very high, up to 10.8 m s –1 for amorphous as-deposited films and significantly higher for an amorphous film subject to sub-threshold laser annealing before crystallization. The measuredmore » growth rates exceed any directly measured growth rate of a phase change material. Here, the crystallization is reminiscent of explosive crystallization of elemental semiconductors both in the magnitude of the growth rate and in the resulting crystalline microstructures.« less

  20. Carrier Transport, Recombination, and the Effects of Grain Boundaries in Polycrystalline Cadmium Telluride Thin Films for Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tuteja, Mohit

    Cadmium Telluride (CdTe), a chalcogenide semiconductor, is currently used as the absorber layer in one of the highest efficiency thin film solar cell technologies. Current efficiency records are over 22%. In 2011, CdTe solar cells accounted for 8% of all solar cells installed. This is because, in part, CdTe has a low degradation rate, high optical absorption coefficient, and high tolerance to intrinsic defects. Solar cells based on polycrystalline CdTe exhibit a higher short-circuit current, fill factor, and power conversion efficiency than their single crystal counterparts. This is despite the fact that polycrystalline CdTe devices exhibit lower open-circuit voltages. This is contrary to the observation for silicon and III-V semiconductors, where material defects cause a dramatic drop in device performance. For example, grain boundaries in covalently-bonded semiconductors (a) act as carrier recombination centers, and (b) lead to localized energy states, causing carrier trapping. Despite significant research to date, the mechanism responsible for the superior current collection properties of polycrystalline CdTe solar cells has not been conclusively answered. This dissertation focuses on the macro-scale electronic band structure, and micro scale electronic properties of grains and grain boundaries in device-grade CdTe thin films to answer this open question. My research utilized a variety of experimental techniques. Samples were obtained from leading groups fabricating the material and devices. A CdCl 2 anneal is commonly performed as part of this fabrication and its effects were also investigated. Photoluminescence (PL) spectroscopy was employed to study the band structure and defect states in CdTe polycrystals. Cadmium vacancy- and chlorine-related states lead to carrier recombination, as in CdTe films grown by other methods. Comparing polycrystalline and single crystal CdTe, showed that the key to explaining the improved performance of polycrystalline CdTe does not lie in macroscopic analysis. The nanoscale majority carrier concentration was studied using scanning microwave impedance microscopy, which revealed an existence of majority carrier depletion along the grain boundaries, independent of the growth process used, which was absent in films that were not subjected to CdCl2 annealing. This effect promotes carrier separation and collection. Conductive atomic force microscopy showed enhanced conduction of electrons along the grain boundaries in samples subjected to the CdCl2 anneal treatment while holes were shown to move through the grain bulk. The separation of conduction channels minimizes recombination while simultaneously reducing series resistance and hence enhancing fill factor. Several technical capabilities demonstrated in this work can be easily extended to other semiconductor materials.

  1. Live-monitoring of Te inclusions laser-induced thermo-diffusion and annealing in CdZnTe crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zappettini, A.; Zambelli, N.; Benassi, G.

    2014-06-23

    The presence of Te inclusions is one of the main factors limiting performances of CdZnTe crystals as X-ray detectors. We show that by means of infrared laser radiation it is possible to move and anneal tellurium inclusions exploiting a thermo-diffusion mechanism. The process is studied live during irradiation by means of an optical microscope equipment. Experimental conditions, and, in particular, energy laser fluence, for annealing inclusions of different dimensions are determined.

  2. Low Temperature Photoluminescence Characterization of Orbitally Grown CdZnTe

    NASA Technical Reports Server (NTRS)

    Ritter, Timothy M.; Larson, D. J.

    1998-01-01

    The II-VI ternary alloy CdZnTe is a technologically important material because of its use as a lattice matched substrate for HgCdTe based devices. The increasingly stringent requirements on performance that must be met by such large area infrared detectors also necessitates a higher quality substrate. Such substrate material is typically grown using the Bridgman technique. Due to the nature of bulk semiconductor growth, gravitationally dependent phenomena can adversely affect crystalline quality. The most direct way to alleviate this problem is by crystal growth in a reduced gravity environment. Since it requires hours, even days, to grow a high quality crystal, an orbiting space shuttle or space station provides a superb platform on which to conduct such research. For well over ten years NASA has been studying the effects of microgravity semiconductor crystal growth. This paper reports the results of photoluminescence characterization performed on an arbitrary grown CdZnTe bulk crystal.

  3. Crystal Growth of CdTe by Gradient Freeze in Universal Multizone Crystallizator (UMC)

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, S. L.; Li, C.; Knuteson, D.; Raghothamachar, B.; Dudley, M.; Szoke, J.; Barczy, P.

    2004-01-01

    In the case of unsealed melt growth of an array of II-VI compounds, namely, CdTe, CdZnTe and ZnSe, there is a tremendous amount of experimental data describing the correlations between melt conditions and crystal quality. The results imply that the crystallinity quality can be improved if the melt was markedly superheated or long-time held before growth. It is speculated that after high superheating the associated complex dissociate and the spontaneous nucleation is retarded. In this study, crystals of CdTe were grown from melts which have undergone different thermal history by the unseeded gradient freeze method using the Universal Multizone Crystallizator (UMC). The effects of melt conditions on the quality of grown crystal were studied by various characterization techniques, including Synchrotron White Beam X-ray Topography (SWSXT), infrared microscopy, chemical analysis by glow discharge mass spectroscopy (GDMS), electrical conductivity and Hall measurements.

  4. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Jian; Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Ye, Zhenhua

    2014-05-14

    An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infraredmore » focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.« less

  5. Structural, electrical, and photoelectric properties of p-NiO/n-CdTe heterojunctions

    NASA Astrophysics Data System (ADS)

    Parkhomenko, Hryhorii; Solovan, Mykhaylo; Brus, Viktor; Maystruk, Eduard; Maryanchuk, Pavlo

    2018-01-01

    p-NiO/n-CdTe-photosensitive heterojunctions were prepared by the deposition of nickel oxide thin films onto n-type single-crystal CdTe substrates by DC reactive magnetron sputtering. The analysis of capacitance-voltage (C-V) characteristics, measured at different frequencies of the small amplitude AC signal and corrected by the effect of the series resistance, provided evidence of the presence of electrically charged interface states, which significantly affect the measured capacitance. The dominant current transport mechanisms in the heterojunctions were determined at forward and reverse biases. Using "light" I-V characteristics, we determined the open-circuit voltage Voc=0.42 V, the short-circuit current Isc=57.5 μA/cm2, and the fill factor FF=0.24 under white light illumination with the intensity of 80 mW.

  6. Characterization of Etch Pit Formation via the Everson-Etching Method on CdZnTe Crystal Surfaces from the Bulk to the Nano-Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teague, L.; Duff, M.; Cadieux, J.

    2010-09-24

    A combination of atomic force microscopy, optical microscopy, and mass spectrometry was employed to study CdZnTe crystal surface and used etchant solution following exposure of the CdZnTe crystal to the Everson etch solution. We discuss the results of these studies in relationship to the initial surface preparation methods, the performance of the crystals as radiation spectrometers, the observed etch pit densities, and the chemical mechanism of surface etching. Our results show that the surface features that are exposed to etchants result from interactions with the chemical components of the etchants as well as pre-existing mechanical polishing.

  7. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2015-07-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ~21% and 3-4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications.

  8. Compositional homogeneity and X-ray topographic analyses of CdTe xSe 1-x grown by the vertical Bridgman technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.

    2015-02-01

    We grew CdTe xSe 1-x crystals with nominal Se concentrations of 5%, 7%, and 10% by the vertical Bridgman technique, and evaluated their compositional homogeneity and structural quality at the NSLS’ X-ray fluorescence and white beam X-ray topography beam lines. Both X-ray fluorescence and photoluminescence mapping revealed very high compositional homogeneity of the CdTe xSe 1-x crystals. Here, we noted that those crystals with higher concentrations of Se were more prone to twinning than those with a lower content. The crystals were fairly free from strains and contained low concentrations of sub-grain boundaries and their networks.

  9. Native point defects in GaSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kujala, J.; Segercrantz, N.; Tuomisto, F.

    2014-10-14

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude.more » We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.« less

  10. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    NASA Astrophysics Data System (ADS)

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2/Ge/(211)Si was achieved by block co-polymer (BCP) lithography. Conditions for selective CdTe epitaxy was achieved and results showed different defect propagation mechanism at the patterned interface compared to the films grown on blanket Si. In another study, patterning of ˜360 nm holes in SiO2/(211)Si was done by molecular transfer lithography (MxL). Conditions for selective Ge and CdTe epitaxy were achieved which was the most challenging part of this work. Thin CdTe films were characterized to check the effect of nanopatterning. Certain results invariably showed that CdTe grown on nanopatterned substrates demonstrated promise of defect reduction and blocking close to the growth interface. But presently, nanopatterning also offers some serious challenges such as uniformity of patterns and substrate cleaning prior to growth for successful implementation of epitaxy on very large areas. Such factors resulted in degradation of overall crystal quality and will be discussed in this work. This is the first successful demonstration of selective (211)B CdTe epitaxy on Si by MOVPE using some of the relatively novel and promising nanopatterning techniques.

  11. Solidification Using the Baffle in Sealed Ampoules

    NASA Technical Reports Server (NTRS)

    Ostrogorsky, A.; Marin, C.; Churilov, A.; Volz, M. P.; Bonner, W. A.; Spivey, R. A.; Smith, G.

    2003-01-01

    Solidification Using a Baffle in Sealed Ampoules (SUBSA) is the first investigation conducted in the Microgravity Science Glovebox (MSG) Facility at the International Space Station (ISS) Alpha. In July, August and September of 2002, 8 single crystals of InSb, doped with Te and Zn, were directionally solidified in microgravity. Ground based tests, related numerical modeling and images of the growth process obtained in microgravity are presented.

  12. Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb) 2 (Se,Te) 3

    DOE PAGES

    Jeffries, J. R.; Butch, N. P.; Vohra, Y. K.; ...

    2015-03-18

    The group V-VI compounds|like Bi 2Se 3, Sb 2Te 3, or Bi 2Te 3|have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and crystal structure of a pseudobinary (Bi,Sb) 2(Te,Se) 3 compound. Similar to some ofmore » its sister compounds, the (Bi,Sb) 2(Te,Se) 3 pseudobinary compound undergoes multiple, pressure-induced phase transformations that result in metallization, the onset of a close-packed crystal structure, and the development of distinct superconducting phases.« less

  13. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing

    NASA Astrophysics Data System (ADS)

    Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan

    2017-12-01

    Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge2Sb2Te5). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc0.2Sb2Te3) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.

  14. Temperature-driven massless Kane fermions in HgCdTe crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teppe, F.; Marcinkiewicz, M.; Krishtopenko, S. S.

    2016-08-30

    It has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously tailored by modifying cadmium content or temperature. At critical concentration or temperature, the bandgap collapses as the system undergoes a semimetal-to-semiconductor topological phase transition between the inverted and normal alignments. Here, using far-infrared magneto-spectroscopy we explore the continuous evolution of band structure of bulk HgCdTe as temperature is tuned across the topological phasemore » transition. We demonstrate that the rest mass of Kane fermions changes sign at critical temperature, whereas their velocity remains constant. The velocity universal value of (1.07±0.05) × 106 m s -1 remains valid in a broad range of temperatures and Cd concentrations, indicating a striking universality of the pseudo-relativistic description of the Kane fermions in HgCdTe.« less

  15. Charge Density Wave and Narrow Energy Gap at Room Temperature in 2D Pb 3–xSb 1+xS 4Te 2-δ with Square Te Sheets

    DOE PAGES

    Chen, Haijie; Malliakas, Christos D.; Narayan, Awadhesh; ...

    2017-07-17

    We report a new two-dimensional compound Pb 3–xSb 1+xS 4Te 2-δ has a charge density wave (CDW) at room temperature. The CDW is incommensurate with q-vector of 0.248(6)a* + 0.246(8)b* + 0.387(9)c* for x = 0.29(2) and d = 0.37(3) due to positional and occupational long range ordering of Te atoms in the sheets. The modulated structure was refined from the single crystal X-ray diffraction data with a superspace group Pmore » $$\\bar{1}$$(αβγ)0 using (3 + 1)-dimensional crystallography. The resistivity increases with decreasing temperature, suggesting semiconducting behavior. The transition temperature (T CDW) of the CDW is ~ 345 K above which the Te square sheets become disordered with no q-vector. Lastly, first-principles density functional theory calculations on the undistorted structure and an approximate commensurate supercell reveal that the gap is due to the structure modulation.« less

  16. Charge Density Wave and Narrow Energy Gap at Room Temperature in 2D Pb 3–xSb 1+xS 4Te 2-δ with Square Te Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haijie; Malliakas, Christos D.; Narayan, Awadhesh

    We report a new two-dimensional compound Pb 3–xSb 1+xS 4Te 2-δ has a charge density wave (CDW) at room temperature. The CDW is incommensurate with q-vector of 0.248(6)a* + 0.246(8)b* + 0.387(9)c* for x = 0.29(2) and d = 0.37(3) due to positional and occupational long range ordering of Te atoms in the sheets. The modulated structure was refined from the single crystal X-ray diffraction data with a superspace group Pmore » $$\\bar{1}$$(αβγ)0 using (3 + 1)-dimensional crystallography. The resistivity increases with decreasing temperature, suggesting semiconducting behavior. The transition temperature (T CDW) of the CDW is ~ 345 K above which the Te square sheets become disordered with no q-vector. Lastly, first-principles density functional theory calculations on the undistorted structure and an approximate commensurate supercell reveal that the gap is due to the structure modulation.« less

  17. Copper chalcogenide clusters stabilized with ferrocene-based diphosphine ligands.

    PubMed

    Khadka, Chhatra B; Najafabadi, Bahareh Khalili; Hesari, Mahdi; Workentin, Mark S; Corrigan, John F

    2013-06-17

    The redox-active diphosphine ligand 1,1'-bis(diphenylphosphino)ferrocene (dppf) has been used to stabilize the copper(I) chalcogenide clusters [Cu12(μ4-S)6(μ-dppf)4] (1), [Cu8(μ4-Se)4(μ-dppf)3] (2), [Cu4(μ4-Te)(μ4-η(2)-Te2)(μ-dppf)2] (3), and [Cu12(μ5-Te)4(μ8-η(2)-Te2)2(μ-dppf)4] (4), prepared by the reaction of the copper(I) acetate coordination complex (dppf)CuOAc (5) with 0.5 equiv of E(SiMe3)2 (E = S, Se, Te). Single-crystal X-ray analyses of complexes 1-4 confirm the presence of {Cu(2x)E(x)} cores stabilized by dppf ligands on their surfaces, where the bidentate ligands adopt bridging coordination modes. The redox chemistry of cluster 1 was examined using cyclic voltammetry and compared to the electrochemistry of the free ligand dppf and the corresponding copper(I) acetate coordination complex 5. Cluster 1 shows the expected consecutive oxidations of the ferrocene moieties, Cu(I) centers, and phosphine of the dppf ligand.

  18. Charge Density Wave and Narrow Energy Gap at Room Temperature in 2D Pb3-xSb1+xS4Te2-δ with Square Te Sheets.

    PubMed

    Chen, Haijie; Malliakas, Christos D; Narayan, Awadhesh; Fang, Lei; Chung, Duck Young; Wagner, Lucas K; Kwok, Wai-Kwong; Kanatzidis, Mercouri G

    2017-08-16

    We report a new two-dimensional compound, Pb 3-x Sb 1+x S 4 Te 2-δ , that has a charge density wave (CDW) at room temperature. The CDW is incommensurate with q-vector of 0.248(6)a* + 0.246(8)b* + 0.387(9)c* for x = 0.29(2) and δ = 0.37(3) due to positional and occupational long-range ordering of Te atoms in the sheets. The modulated structure was refined from the single-crystal X-ray diffraction data with a superspace group P1̅(αβγ)0 using (3 + 1)-dimensional crystallography. The resistivity increases with decreasing temperature, suggesting semiconducting behavior. The transition temperature (T CDW ) of the CDW is ∼345 K, above which the Te square sheets become disordered with no q-vector. First-principles density functional theory calculations on the undistorted structure and an approximate commensurate supercell reveal that the gap is due to the structure modulation.

  19. Femtosecond optical characterization and applications in cadmium(manganese) telluride diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Daozhi

    This thesis is devoted to the optical characterization of Cd(Mn)Te single crystals. I present the studies of free-carrier dynamics and generation and detection of coherent acoustic phonons (CAPS) using time-resolved femtosecond pump-probe spectroscopy. The giant Faraday effect and ultrafast responsivity of Cd(Mn)Te to sub-picosecond electromagnetic transients are also demonstrated and discussed in detail. The first, few-picosecond-long electronic process after the initial optical excitation exhibits very distinct characteristic dependence on the excitation condition, and in case of Cd(Mn)Te, it has been attributed to the collective effects of band filling, band renormalization, and two-photon absorption. A closed-form, analytic expression for the differential reflectivity induced by the CAPs is derived based on the propagating-strain-pulse model and it accounts very well for our experimental observations. The accurate values of the Mn concentration and longitudinal sound velocity nu s in Cd(Mn)Te were obtained by fitting the data of the refractive index dependence on the probe wavelength to the Schubert model. In Cd 0.91Mn0.09Te, nus was found to be 3.6x103 m/s. Our comparison studies from the one-color and two-color experiments reveal that the intrinsic phonon lifetime in Cd(Mn)Te was at least on the order of nanoseconds, and the observed exponential damping of the CAP oscillations was due to the finite absorption depth of the probe light. Optically-induced electronic stress has been demonstrated to be the main generation mechanism of CAPs. We also present the giant Faraday effect in the Cd(Mn)Te and the spectra of the Verdet constant, which is mainly due to the exchange interaction between the Mn ions and band electrons. The spectral characteristics of the Verdet constant in Cd(Mn)Te exhibit very unique features compared to that in pure semiconductors. In our time-resolved sampling experiments at the room temperature, the response of the Cd(Mn)Te, particularly with low Mn concentrations, to the sub-picosecond electromagnetic pulses has been demonstrated for the first time and studied in detail. The physical origin of the ultrafast responsivity is shown to be the electro-optic (Pockels) effect, simultaneously excluding the magneto-optical (Faraday) effect due to the Mn-ion spin dynamics. The discrepancy between the absence of the low-frequency Pockels effect and the ultrafast sampling results, suggests that in Cd(Mn)Te crystals at low frequencies, the electric field component of the external electromagnetic transients is screened by the free carriers (holes). At very high (THz) frequencies, tested by our sampling experiment, Mn spins are too slow to respond and we observe the very large Pockels effect in Cd(Mn)Te crystals.

  20. Growth of Compound Semiconductors in a Low Gravity Environment: Microgravity Growth of PbSnTe

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, William J.; Rosch, William R.; Baker, N. R.; Narayanan, R.

    1999-01-01

    The growth of the alloy compound semiconductor lead tin telluride (PbSnTe) was chosen for a microgravity flight experiment in the Advanced Automated Directional Solidification Furnace (AADSF), on the United States Microgravity Payload-3 (USMP-3) and on USMP-4 Space Shuttle flights in February, 1996, and November, 1997. The objective of these experiments was to determine the effect of the reduction in convection, during the growth process, brought about by the microgravity environment. The properties of devices made from PbSnTe are dependent on the ratio of the elemental components in the starting crystal. Compositional uniformity in the crystal is only obtained if there is no significant mixing in the liquid during growth. Lead tin telluride is an alloy of PbTe and SnTe. The technological importance of PbSnTe lies in its band gap versus composition diagram which has a zero energy crossing at approximately 40% SnTe. This facilitates the construction of long wavelength (>6 micron) infrared detectors and lasers. Observations and experimental methods of crystal growth of PbSnTe on both Space Shuttle Flights are presented.

  1. Effects of dry etching processes on exciton and polariton characteristics in ZnTe

    NASA Astrophysics Data System (ADS)

    Sun, J. H.; Xie, W. B.; Shen, W. Z.; Ogawa, H.; Guo, Q. X.

    2003-12-01

    We have employed temperature-dependent reflection spectra to study the effects of reactive ion etching (RIE) on the exciton and polariton characteristics in ZnTe crystals exposed to CH4/H2 gases under different rf plasma powers. Classic exciton-polariton theory has been used to calculate the reflection spectra. By comparing with an as-grown ZnTe crystal and the temperature-dependent behavior, we are able to identify the excitons and RIE-induced polariton structures in these dry etched ZnTe crystals. An increase of the rf plasma power will lead to an increase of defect density in the surface damage layers, resulting in a decrease of the photon energies of the observed exciton and polariton structures.

  2. On the Role of Boron in CdTe and CdZnTe Crystals

    NASA Astrophysics Data System (ADS)

    Pavesi, M.; Marchini, L.; Zha, M.; Zappettini, A.; Zanichelli, M.; Manfredi, M.

    2011-10-01

    It is well known that group III elements act as donors if they play a substitutional role at the metallic site in II-tellurides; nevertheless, several studies report both on the creation of complexes with vacancies, named A-centers, and on the involvement in self-compensation mechanisms, especially for indium. The boron concentration in II-tellurides is negligible, and its contribution to transport mechanisms has not been studied yet. For the last few years the authors have been developing a new technique to grow CdZnTe by the vertical Bridgman technique, taking advantage of encapsulation by means of boron oxide. In this way, crystals characterized by large single grains, low etch pit density, and high resistivity have been obtained. Recently, x-ray detectors with state-of-the-art performance have been produced from such crystals. Boron contamination, as a consequence of this growth method, is quite low but at least one order of magnitude above values obtained with other growth techniques. Besides being a low-cost technique which is also suitable for large-scale mass production, the encapsulated vertical Bridgman technique is quite useful to prevent dislocations, grain boundaries, and stacking faults; for these reasons, careful characterization was performed to understand the effect of boron both on the electrical properties and on the spectroscopic performance of the final crystals. Our characterization is mainly based on low-temperature photoluminescence in addition to electrical current-voltage measurements, photostimulated current, and x-ray spectroscopy. The results indicate that boron behaves like other group III elements; in fact, boron forms a complex that does not affect the good performance of our x-ray detectors, even if it shows some properties which are typical of A-centers.

  3. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe 2

    DOE PAGES

    Das, Pranab Kumar; Di Sante, D.; Vobornik, I.; ...

    2016-02-29

    The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe 2 have attracted considerable interest. We report angle- and spin-resolved photoemission spectroscopy of WTe 2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spinmore » and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we also reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe 2 is not strictly two dimensional.« less

  4. Sn-doped Bi1.1Sb0.9Te2S: An ideal bulk topological insulator

    NASA Astrophysics Data System (ADS)

    Kushwaha, Sk; Pletikosic, I.; Liang, T.; Gyenis, A.; Lapidus, Sh; Tian, Y.; Zhao, H.; Burch, Ks; Lin, J.; Wang, W.; Ji, H.; Fedorov, Av; Yazdani, A.; Ong, Np; Valla, T.; Cava, Rj

    In the recent decade the topological insulators have been of significant importance for the condensed matter community. However, so far no real materials could fulfill all the requirements. Here, we present the Bridgman growth of slightly Sn-doped Bi1.1Sb0.9Te2S (with bulk band gap of 350) single crystals and characterization by electronic transport, STM and ARPES. The results on the crystals exhibit an intrinsic semiconducting behavior with the Fermi level and Dirac energies lie in bulk gap and high quality 2D surface states are detangled from the bulk states, and it fulfils all the requirements to be an ideal topological insulator. ARO MURI W911NF-12-1-0461; ARO W911NF-12-1-0461; MRSEC NSF-DMR-1420541; LBNL & BNL DE-AC02-05CH11231 & DE-SC0012704; DOE Office of Science DE-AC02-06CH11357; NSF DMR-1410846.

  5. Two-dimensional wide-band-gap nitride semiconductors: Single-layer 1 T -X N2 (X =S ,Se , and Te )

    NASA Astrophysics Data System (ADS)

    Lin, Jia-He; Zhang, Hong; Cheng, Xin-Lu; Miyamoto, Yoshiyuki

    2016-11-01

    Recently, the two-dimensional (2D) semiconductors arsenene and antimonene, with band gaps larger than 2.0 eV, have attracted tremendous interest, especially for potential applications in optoelectronic devices with a photoresponse in the blue and UV range. Motivated by this exciting discovery, types of highly stable wide-band-gap 2D nitride semiconductors were theoretically designed. We propose single-layer 1 T -X N2 (X =S , Se, and Te) via first-principles simulations. We compute 1 T -X N2 (X =S , Se, and Te) with indirect band gaps of 2.825, 2.351, and 2.336 eV, respectively. By applying biaxial strain, they are able to induce the transition from a wide-band-gap semiconductor to a metal, and the range of absorption spectra of 1 T -X N2 (X =S , Se, and Te) obviously extend from the ultraviolet region to the blue-purple light region. With an underlying graphene, we find that 1 T -X N2 can completely shield the light absorption of graphene in the range of 1-1.6 eV. Our research paves the way for optoelectronic devices working under blue or UV light, and mechanical sensors based on these 2D crystals.

  6. Integrated micro thermoelectric cooler: Theory, fabrication and characterization

    NASA Astrophysics Data System (ADS)

    da Silva, Luciana Wasnievski

    The flows of heat and electricity in a column-type micro thermoelectric (TE) cooler that uses telluride compounds for the n- and p-type elements, are analyzed by modeling the various interfacial resistances. Electron (barrier tunneling) and phonon (diffuse mismatch) boundary resistances at the TE/metal interface, and thermal non-equilibrium between electrons and phonons adjacent to this interface (cooling length), increase the thermal conduction resistance and decrease the Seebeck coefficient of the TE elements. These in turn reduce the device cooling performance, which is also affected by the thermal and electrical contact resistances at the TE/metal and the metal/electrical-insulator interfaces. From the device optimization, it is predicted (for an available voltage of 3 V) that a micro TE cooler with 50 TE pairs (Bi2Te3 and Sb2Te3 high performance TE films), column thickness of 4 mum (limited by the current fabrication process), and column cross-section area of 7 mum x 7 mum, should produce a temperature drop of 10 K with a cooling load of 10 mW. This device will operate with a current of 11 mA and will require a power of 34 mW. The coefficient of performance is 0.3. Co-evaporated Bi-Te and Sb-Te films were fabricated at various deposition conditions (evaporation rate of individual species and substrate temperature), and their TE properties (Seebeck coefficient, electrical resistivity, and carrier concentration) were measured, in search of optimal TE performance. The deposition rates were controlled such that the tellurium atomic composition changed from 48 to 74%, and the substrate temperature ranged from 130 to 300°C. The chemical composition and crystal structure of the films were recorded (using a microprobe and a X-ray diffractomer, respectively), analyzed, and compared with standard Bi2Te3 and Sb2Te 3 single crystal samples. High performance TE films had a tellurium atomic concentration around 60% and were deposited at a substrate temperature between 260 and 270°C. Due to degradation of the photoresist used for patterning the TE films, in the first-generation device, they were deposited with a maximum substrate temperature of 130°C. The TE columns were connected using Cr/Au/Ti/Pt layers at the hot junctions, and Cr/Au layers at the cold junctions. A device with 60 TE pairs and column width of 40 mum (finer device structures had limited yield) was tested using infrared thermometry. The average cooling achieved was about 1 K, which was close to the predicted value. A future-generation device is proposed, where high performance TE films can be patterned with optimized geometries (high density micro TE coolers), allowing these devices to fulfill the requirements for a wireless environmental monitor application.

  7. Advanced methods for preparation and characterization of infrared detector materials. [crystallization and phase diagrams of Hg sub 1-x Cd sub x Te

    NASA Technical Reports Server (NTRS)

    Lehoczy, S. L.

    1979-01-01

    Crystal growth of Hg sub 1-x Cd sub x Te and density measurements of ingot slices are discussed. Radial compositional variations are evaluated from the results of infrared transmission edge mapping. The pseudo-binary HgTe-CdTe phase diagram is examined with reference to differential thermal analysis measurements. The phase equilibria calculations, based on the 'regular association solution' theory (R.A.S.) are explained and, using the obtained R.A.S. parameters, the activities of Hg, Cd, and Te vapors and their partial pressures over the pseudo-binary melt are calculated.

  8. Effect of Sn addition on glassy Si-Te bulk sample

    NASA Astrophysics Data System (ADS)

    Babanna, Jagannatha K.; Roy, Diptoshi; Varma, Sreevidya G.; Asokan, Sundarrajan; Das, Chandasree

    2018-05-01

    Bulk Si20Te79Sn1 glass is prepared by melt-quenching method, amorphous nature of the as-quenched glass is confirmed by XRD. I-V characteristics reveals that Si20Te79Sn1 bulk sample exhibits threshold type electrical switching behavior. The thermal parameters such as crystallization temperature, glass transition temperature are obtained using differential scanning calorimetry. The crystalline peak study of the sample annealed at crystallization temperature for 2 hr shows that the Sn atom interact with Si or Te but do not interact with the Si-Te matrix in a greater extent and it forms a separate phase network individually.

  9. A numerical study of zone-melting process for the thermoelectric material of Bi2Te3

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Wu, Y. C.; Hwang, W. S.; Hsieh, H. L.; Huang, J. Y.; Huang, T. K.

    2015-06-01

    In this study, a numerical model has been established by employing a commercial software; ProCAST, to simulate the variation/distribution of temperature and the subsequent microstructure of Bi2Te3 fabricated by zone-melting technique. Then an experiment is conducted to measure the temperature variation/distribution during the zone-melting process to validate the numerical system. Also, the effects of processing parameters on crystallization microstructure such as moving speed and temperature of heater are numerically evaluated. In the experiment, the Bi2Te3 powder are filled into a 30mm diameter quartz cylinder and the heater is set to 800°C with a moving speed 12.5 mm/hr. A thermocouple is inserted in the Bi2Te3 powder to measure the temperature variation/distribution of the zone-melting process. The temperature variation/distribution measured by experiment is compared to the results of numerical simulation. The results show that our model and the experiment are well matched. Then the model is used to evaluate the crystal formation for Bi2Te3 with a 30mm diameter process. It's found that when the moving speed is slower than 17.5 mm/hr, columnar crystal is obtained. In the end, we use this model to predict the crystal formation of zone-melting process for Bi2Te3 with a 45 mm diameter. The results show that it is difficult to grow columnar crystal when the diameter comes to 45mm.

  10. High-Q/V Monolithic Diamond Microdisks Fabricated with Quasi-isotropic Etching.

    PubMed

    Khanaliloo, Behzad; Mitchell, Matthew; Hryciw, Aaron C; Barclay, Paul E

    2015-08-12

    Optical microcavities enhance light-matter interactions and are essential for many experiments in solid state quantum optics, optomechanics, and nonlinear optics. Single crystal diamond microcavities are particularly sought after for applications involving diamond quantum emitters, such as nitrogen vacancy centers, and for experiments that benefit from diamond's excellent optical and mechanical properties. Light-matter coupling rates in experiments involving microcavities typically scale with Q/V, where Q and V are the microcavity quality-factor and mode-volume, respectively. Here we demonstrate that microdisk whispering gallery mode cavities with high Q/V can be fabricated directly from bulk single crystal diamond. By using a quasi-isotropic oxygen plasma to etch along diamond crystal planes and undercut passivated diamond structures, we create monolithic diamond microdisks. Fiber taper based measurements show that these devices support TE- and TM-like optical modes with Q > 1.1 × 10(5) and V < 11(λ/n) (3) at a wavelength of 1.5 μm.

  11. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications

    NASA Astrophysics Data System (ADS)

    Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.

    2016-12-01

    Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.

  12. Superconductivity at 5 K in quasi-one-dimensional Cr-based KCr3As3 single crystals

    NASA Astrophysics Data System (ADS)

    Mu, Qing-Ge; Ruan, Bin-Bin; Pan, Bo-Jin; Liu, Tong; Yu, Jia; Zhao, Kang; Chen, Gen-Fu; Ren, Zhi-An

    2017-10-01

    Recently a new family of Cr-based A2Cr3As3 (A =K , Rb, Cs) superconductors was reported, which own a rare quasi-one-dimensional (Q1D) crystal structure with infinite (Cr3As3) 2 - chains and exhibit intriguing superconducting characteristics possibly derived from spin-triplet electron pairing. The crystal structure of A2Cr3As3 is actually a slight variation of the hexagonal TlFe3Te3 prototype, although they have different lattice symmetry. Here we report superconductivity in a 133-type KCr3As3 compound that belongs to the latter structure. The single crystals of KCr3As3 were prepared by the deintercalation of K ions from K2Cr3As3 crystals which were grown from a high-temperature solution growth method, and it owns a centrosymmetric lattice in contrast to the noncentrosymmetric K2Cr3As3 . After annealing at a moderate temperature, the KCr3As3 crystals show superconductivity at 5 K revealed by electrical resistivity, magnetic susceptibility, and heat capacity measurements. The discovery of this KCr3As3 superconductor provides a different structural instance to study the exotic superconductivity in these Q1D Cr-based superconductors.

  13. Molecular beam epitaxy grown long wavelength infrared HgCdTe on compliant Si substrates

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.; Chen, Yuanping; Brill, Gregory; Dhar, Nibir K.; Carmody, Michael; Bailey, Robert; Arias, Jose

    2006-05-01

    At the Army Research Laboratory (ARL), a new ternary semiconductor system CdSe xTe 1-x/Si(211) is being investigated as an alternative substrate to bulk-grown CdZnTe substrates for HgCdTe growth by molecular beam epitaxy. Under optimized conditions, best layers show surface defect density less than 400 cm -2 and full width at half maximum of X-ray double crystal rocking curve as low as 100 arc-sec with excellent uniformity over 3 inch area. LW-HgCdTe layers on these compliant substrates exhibit comparable electrical properties to those grown on bulk CZT substrates. Photovoltaic devices fabricated on these LWIR material shows diffusion limited performance at 78K indicating high quality material. Measured R °A at 78K on λ co = 10 μm material is on the order of 340 Ω-cm II. In addition to single devices, we have fabricated 256x256 2-D arrays with 40 μm pixel pitch on LW-HgCdTe grown on Si compliant substrates. Data shows excellent QE operability of 99% at 78K under a tactical background flux of 6.7x10 15 ph/cm2sec. Most probable dark current at the peak distribution is 5.5 x 10 9 e-/sec and is very much consistent with the measured R °A values from single devices. Initial results indicate NETD of 33 mK for a cut-off wavelength of 10 μm with 40 micron pixels size. This work demonstrates CdSe xTe 1-x/Si(211) substrates provides a potential road map to more affordable, robust 3 rd generation FPAs.

  14. Energy scavenging based on a single-crystal PMN-PT nanobelt

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-03-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

  15. Energy scavenging based on a single-crystal PMN-PT nanobelt.

    PubMed

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-03-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

  16. Concentration and structure inhomogeneities in GaSb(Si) single crystals grown at different heat and mass transfer conditions

    NASA Astrophysics Data System (ADS)

    Serebryakov, Yu. A.; Prokhorov, I. A.; Vlasov, V. N.; Korobeynikova, E. N.; Zakharov, B. G.; Shul'pina, I. L.; Marchenko, M. P.; Fryazinov, I. V.

    2007-06-01

    Results of ground-based experiments on crystallization of gallium antimonide on the POLIZON facility carried out within the framework of space experiment preparation aboard FOTON satellite are submitted. Technical and technological opportunities of suppression of disturbing factors for improvement of quality of grown crystals in space are substantiated. Features of formation of concentration and structure inhomogeneities in GaSb:Si crystals grown under non-stationary and stationary convection conditions are investigated. Experimental data about structure and dopant distribution inhomogeneities are discussed taking into account results of numerical researches of GaSb:Si crystallization. Also earlier received results of modeling of GaSb:Te crystallization under close temperature conditions are used. Correlation between computational and experimental data is shown. The data on intensity of flows close to crystallization front are received at which non-stationary or stationary conditions of crystallization are realized. The forecast for space conditions is made. The influence of a rotating magnetic field on convection in melt for application in space experiment projected is investigated.

  17. Low-temperature thermoelectric properties of the electron-doped perovskites SrTi1-xNbxO3

    NASA Astrophysics Data System (ADS)

    Okuda, Tetsuji; Fukuyado, Junichi; Narikiyo, Kuraihito; Akaki, Mitsuru; Kuwahara, Hideki

    2014-03-01

    Electron-doped perovskite SrTiO3 is one of the candidates of the n-type oxide thermoelectric materials. In this study, we have investigated thermoelectric (TE) properties for single crystals of SrTi1-xNbxO3 for 0 <= x <= 0.03 below room temperature. We found that SrTi0.99Nb0.01O3 shows a large power factor at low temperature (PF = 50 μW/K2 cm at 100 K - 90 μW/K2 cm at 50 K) and the largest dimensionless TE figure-of-merit below 40 K (ZT ~ 0.07) among the reported materials. Such a large low-temperature TE response around a carrier concentration of 1020 cm-3 is due to a distinct phonon drag effect, i.e., a distinct electron-phonon interaction, which could relate to the superconducting state.

  18. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe 3 − x GeTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus

    2018-04-09

    Here, we report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe 3–xGeTe 2 (x ≈ 0.36) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρxy/μ0Heff and longitudinal resistivity ρ 2 xxM/μ 0H eff impliesmore » that the AHE in Fe 3–xGeTe 2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear- M Hall conductivity σ A xy below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.« less

  19. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe 3 - x GeTe 2

    DOE PAGES

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus; ...

    2018-04-09

    Here, we report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe 3–xGeTe 2 (x ≈ 0.36) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρxy/μ0Heff and longitudinal resistivity ρ 2 xxM/μ 0H eff impliesmore » that the AHE in Fe 3–xGeTe 2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear- M Hall conductivity σ A xy below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.« less

  20. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe 3 - x GeTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus

    Here, we report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe 3–xGeTe 2 (x ≈ 0.36) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρxy/μ0Heff and longitudinal resistivity ρ 2 xxM/μ 0H eff impliesmore » that the AHE in Fe 3–xGeTe 2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear- M Hall conductivity σ A xy below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.« less

  1. Low-temperature thermoelectric properties of the electron-doped perovskites Sr1- x Ca x Ti1- y Nb y O3

    NASA Astrophysics Data System (ADS)

    Okuda, Tetsuji; Fukuyado, Junichi; Narikiyo, Kurahito; Akaki, Mitsuru; Kuwahara, Hideki

    2013-08-01

    We have investigated the thermoelectric (TE) properties for single crystals of the perovskites Sr1- x Ca x Ti1- y Nb y O3 for 0 ≤ x ≤ 0.4 and 0 ≤ y ≤ 0.03 at temperatures below room temperature (RT). We found that SrTi0.99Nb0.01O3 showed a large power factor at low temperatures ( PF = 50 µW/K2cm at 100 K ˜ 90 µW/K2cm at 50 K) and the largest dimensionless TE figure-ofmerit at temperatures below 40 K ( ZT ˜ 0.07) among the reported materials. Such a large low-temperature TE response around a carrier concentration of 1020 cm-3 is due to a distinct phonon drag effect. We also found that the Ca2+ substitution for Sr2+ increased the ZT at 300 K for Sr1- x Ca x Ti0.97Nb0.03O3 from 0.08 to 0.105. The enhancement of the ZT around RT originates both from a large reduction of a thermal conductivity due to a randomness introduced into the crystal structure and from an unexpected enhancement of a Seebeck coefficient.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assoud, Abdeljalil; Soheilnia, Navid; Kleinke, Holger

    The title compounds were prepared from the elements in the stoichiometric ratio at 800deg. C under exclusion of air. Tl{sub 6}Si{sub 2}Te{sub 6} crystallizes in the space group P1-bar , isostructural with Tl{sub 6}Ge{sub 2}Te{sub 6}, with a=9.4235(6)A, b=9.6606(7)A, c=10.3889(7)A, {alpha}=89.158(2){sup o}, {beta}=96.544(2){sup o}, {gamma}=100.685(2){sup o}, V=923.3(1)A{sup 3} (Z=2). Its structure is composed of dimeric [Si{sub 2}Te{sub 6}]{sup 6-} units with a Si-Si single bond, while the Tl atoms are irregularly coordinated by five to six Te atoms. Numerous weakly bonding Tl-Tl contacts exist. Both title compounds are black semiconductors with small band gaps, calculated to be 0.9eV for Tl{submore » 6}Si{sub 2}Te{sub 6} and 0.5eV for Tl{sub 6}Ge{sub 2}Te{sub 6}. The Seebeck coefficients are +65{mu}VK{sup -1} in case of Tl{sub 6}Si{sub 2}Te{sub 6} and +150{mu}VK{sup -1} in case of Tl{sub 6}Ge{sub 2}Te{sub 6} at 300K, and the electrical conductivities are 5.5 and 3{omega}{sup -1}cm{sup -1}, respectively.« less

  3. CdZnTe Background Measurements at Balloon Altitudes with PoRTIA

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Barthelmy, S.; Bartlett, L.; Gehrels, N.; Naya, J.; Stahle, C. M.; Tueller, J.; Teegarden, B.

    2003-01-01

    Measurements of the CdZnTe internal background at balloon altitudes are essential to determine which physical processes make the most important background contributions. We present results from CdZnTe background measurements made by PoRTIA, a small CdZnTe balloon instrument that was flown three times in three different shielding configurations. PoRTIA was passively shielded during its first flight from Palestine, Texas and actively shielded as a piggyback instrument on the GRIS balloon experiment during its second and third flights from Alice Springs, Australia, using the thick GRIS Nal anticoincidence shield. A significant CdZnTe background reduction was achieved during the third flight with PoRTIA placed completely inside the GRIS shield and blocking crystal, and thus completely surrounded by 15 cm of Nal. A unique balloon altitude background data set is provided by CdZnTe and Ge detectors simultaneously surrounded by the same thick anticoincidence shield; the presence of a single coxial Ge detector inside the shield next to PoRTIA allowed a measurement of the ambient neutron flux inside the shield throughout the flight. These neutrons interact with the detector material to produce isomeric states of the Cd, Zn and Te nuclei that radiatively decay; calculations are presented that indicate that these decays may explain most of the fully shielded CdZnTe background.

  4. Large Area Cd0.9Zn0.1Te Pixelated Detector: Fabrication and Characterization

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sandeep K.; Nguyen, Khai; Pak, Rahmi O.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Mandal, Krishna C.

    2014-04-01

    Cd0.9Zn0.1Te (CZT) based pixelated radiation detectors have been fabricated and characterized for gamma ray detection. Large area CZT single crystals has been grown using a tellurium solvent method. A 10 ×10 guarded pixelated detector has been fabricated on a 19.5 ×19.5 ×5 mm3 crystal cut out from the grown ingot. The pixel dimensions were 1.3 ×1.3 mm2 and were pitched at 1.8 mm. A guard grid was used to reduce interpixel/inter-electrode leakage. The crystal was characterized in planar configuration using electrical, optical and optoelectronic methods prior to the fabrication of pixelated geometry. Current-voltage (I-V) measurements revealed a leakage current of 27 nA at an operating bias voltage of 1000 V and a resistivity of 3.1 ×1010 Ω-cm. Infrared transmission imaging revealed an average tellurium inclusion/precipitate size less than 8 μm. Pockels measurement has revealed a near-uniform depth-wise distribution of the internal electric field. The mobility-lifetime product in this crystal was calculated to be 6.2 ×10 - 3 cm2/V using alpha ray spectroscopic method. Gamma spectroscopy using a 137Cs source on the pixelated structure showed fully resolved 662 keV gamma peaks for all the pixels, with percentage resolution (FWHM) as high as 1.8%.

  5. Effect of adding Te to layered GaSe crystals to increase the van der Waals bonding force

    NASA Astrophysics Data System (ADS)

    Tanabe, Tadao; Zhao, Shu; Sato, Yohei; Oyama, Yutaka

    2017-10-01

    The interplanar binding strength of layered GaSe1-xTex crystals was directly measured using a tensile testing machine. The GaSe1-xTex crystals were grown by a low temperature liquid phase solution method under a controlled Se vapor pressure. The stoichiometry-controlled GaSe1-xTex crystal has the ɛ-polytype structure of GaSe, where the Te atoms are substituted for some of the Se atoms in the GaSe crystal. The effect of adding Te on the bonding strength between the GaSe layers was determined from direct measurements of the van der Waals bonding energy. The bonding energy was increased from 0.023 × 106 N/m2 for GaSe to 0.16 × 106 N/m2 for GaSe1-xTex (x = 0.106).

  6. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films

    PubMed Central

    Bouška, M.; Pechev, S.; Simon, Q.; Boidin, R.; Nazabal, V.; Gutwirth, J.; Baudet, E.; Němec, P.

    2016-01-01

    Pulsed laser deposition technique was used for the fabrication of Ge-Te rich GeTe-Sb2Te3 (Ge6Sb2Te9, Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15) amorphous thin films. To evaluate the influence of GeTe content in the deposited films on physico-chemical properties of the GST materials, scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction and reflectometry, atomic force microscopy, Raman scattering spectroscopy, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (crystalline) layers. Upon crystallization, optical functions and electrical resistance of the films change drastically, leading to large optical and electrical contrast between amorphous and crystalline phases. Large changes of optical/electrical properties are accompanied by the variations of thickness, density, and roughness of the films due to crystallization. Reflectivity contrast as high as ~0.21 at 405 nm was calculated for Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15 layers. PMID:27199107

  7. The synthesis and crystal structure of α-Ca 3UO 6

    NASA Astrophysics Data System (ADS)

    Holc, J.; Golic̆, L.

    1983-07-01

    Single crystals of α-Ca 3UO 6 were grown from a UO 3CaCl 2CaO melt by the slow cooling method from 950°C. The crystal structure was determined by means of X-ray diffraction with R = 0.032 and Rw = 0.019. The structure of α-Ca 3UO 6 is of Mg 3TeO 6 type. α-Ca 3UO 6 is rhombohedral with a = 6.729 (1)Å, α = 90.30 (1)°, Z = 2, Dc = 4.955 g/cm 3, Dm = 4.79 g/cm 3, space group R overline3. Uranium and calcium atoms are six-coordinated. At 1200°C rhombohedral α-Ca 3UO 6 irreversibly transforms to monoclinic β-Ca 3UO 6.

  8. Study of tellurium precipitates in CdTe crystals

    NASA Technical Reports Server (NTRS)

    Jayatirtha, H. N.; Henderson, D. O.; Burger, A.; Volz, M. P.

    1993-01-01

    The effect of tellurium precipitates was studied in medium resistivity (10 exp 3-10 exp 6 ohm cm) undoped and Cl-doped CdTe using differential scanning calorimetry (DSC) and mid-infrared spectroscopy and the results were correlated with near-infrared microscopy photographs. When present in a significant quantity (about 0.25 wt pct), we show that Te precipitates are detectable using DSC measurements. In the mid-infrared, the contribution of the absorption by free-carriers is negligible, and therefore, the effect of the Te precipitates in these crystals can be considered uncoupled from the effects of Cd vacancies.

  9. Studies on Se75Te25-x In x chalcogenide glasses; a material for phase change memory

    NASA Astrophysics Data System (ADS)

    Srivastava, Archana; Tiwari, S. N.; Alvi, M. A.; Khan, Shamshad A.

    2018-01-01

    This research paper describes the non-isothermal crystallization during phase transformation in Se75Te25-x In x glasses synthesized by melt quenching method. For crystallization studies in these glasses, non-isothermal differential scanning calorimetry (DSC) measurements was done at constant heating rates of 5, 10, 15, 20 and 25 K min-1 in air atmosphere. The glass transition temperature (T g), on-set crystallization temperature (T c), peak crystallization temperature (T p) and melting temperatures (T m) were derived by DSC thermograms. Using various thermal parameters the activation energy of glass transition and crystallization were determined by using Kissinger, Moynihan and Ozawa approaches and found to be in good agreement. The value of the activation energy of glass transition (ΔE t) was found to be minimum for Se75Te19In6 alloys confirming its maximum probability of transition in a metastable state. Thermal stability parameters of Se75Te25-x In x were determined and found to be increased with indium content. High resolution x-ray diffraction and field emission scanning electron microscopy studies were employed for the study of phase transformation in Se75Te25-x In x glasses. The outcome of these studies shows that the investigated materials may be suitable for phase change memory devices.

  10. Integration of a photonic crystal polarization beam splitter and waveguide bend.

    PubMed

    Zheng, Wanhua; Xing, Mingxin; Ren, Gang; Johnson, Steven G; Zhou, Wenjun; Chen, Wei; Chen, Lianghui

    2009-05-11

    In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60 degrees waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20 dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future.

  11. Femtosecond laser pulse induced phase transition of Cr-doped Sb2Te1 films studied with a pump-probe system

    NASA Astrophysics Data System (ADS)

    Jiang, Minghui; Wang, Qing; Lei, Kai; Wang, Yang; Liu, Bo; Song, Zhitang

    2016-10-01

    The Femtosecond laser pulse induced phase transition dynamics of Cr-doped Sb2Te1 films was studied by real-time reflectivity measurements with a pump-probe system. It was found that crystallization of the as-deposited CrxSb2Te1 phase-change thin films exhibits a multi-stage process lasting for about 40ns.The time required for the multi-stage process seems to be not related to the contents of Cr element. The durations of the crystallization and amorphization processes are approximately the same. Doping Cr into Sb2Te1 thin film can improve its photo-thermal stability without obvious change in the crystallization rate. Optical images and image intensity cross sections are used to visualize the transformed regions. This work may provide further insight into the phase-change mechanism of CrxSb2Te1 under extra-non-equilibrium conditions and aid to develop new ultrafast phase-change memory materials.

  12. Charge transport properties in CdZnTe detectors grown by the vertical Bridgman technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auricchio, N.; Caroli, E.; Marchini, L.

    2011-12-15

    Presently, a great amount of effort is being devoted to the development of CdTe and CdZnTe (CZT) detectors for a large variety of applications such as medical, industrial, and space research. We present the spectroscopic properties of some CZT crystals grown by the standard vertical Bridgman method and by the boron oxide encapsulated vertical Bridgman method, which has been recently implemented at IMEM-CNR (Parma, Italy). In this technique, the crystal is grown in an open quartz crucible fully encapsulated by a thin layer of liquid boron oxide. This method prevents contact between the crystal and the crucible, thereby allowing largermore » single grains with a lower dislocation density to be obtained. Several mono-electrode detectors were realized, with each having two planar gold contacts. The samples are characterized by an active area of about 7 mm x 7 mm and thicknesses ranging from 1 to 2 mm. The charge transport properties of the detectors have been studied by mobility-lifetime ({mu} x {tau}) product measurements, carried out at the European Synchrotron Radiation Facility (Grenoble, France) in the planar transverse field configuration, where the impinging beam direction is orthogonal to the collecting electric field. We have performed several fine scans between the electrodes with a beam spot of 10 {mu}m x 10 {mu}m at various energies from 60 to 400 keV. In this work, we present the test results in terms of the ({mu} x {tau}) product of both charge carriers.« less

  13. Exploiting nonlinear properties of pure and Sn-doped Bi2Te2Se for passive Q-switching of all-polarization maintaining ytterbium- and erbium-doped fiber lasers.

    PubMed

    Bogusławski, Jakub; Kowalczyk, Maciej; Iwanowski, Przemysław; Hruban, Andrzej; Diduszko, Ryszard; Piotrowski, Kazimierz; Dybko, Krzysztof; Wojciechowski, Tomasz; Aleszkiewicz, Marta; Sotor, Jarosław

    2017-08-07

    Due to their broadband nonlinear optical properties, low-dimensional materials are widely used for pulse generation in fiber and solid-state lasers. Here we demonstrate novel materials, Bi 2 Te 2 Se (BTS) and Sn-doped Bi 2 Te 2 Se (BSTS), which can be used as a universal saturable absorbers for distinct spectral regimes. The material was mechanically exfoliated from a bulk single-crystal and deposited onto a side-polished fiber. We have performed characterization of the fabricated devices and employed them in polarization-maintaining ytterbium- and erbium-doped fiber lasers. This enabled us to obtain self-starting passively Q-switched regime at 1 µm and 1.56 µm. The oscillators emitted stable, linearly polarized radiation with the highest single pulse energy approaching 692 nJ. Both lasers are characterized by the best performance observed in all-polarization maintaining Q-switched fiber lasers with recently investigated new saturable absorbers, which was enabled by a very high damage threshold of the devices. This demonstrates the great potential of the investigated materials for the ultrafast photonics community.

  14. Understanding the evolution of anomalous anharmonicity in Bi 2 Te 3 - x Se x

    DOE PAGES

    Tian, Yao; Jia, Shuang; Cava, R. J.; ...

    2017-03-08

    The anharmonic effect in thermoelectrics has been a central topic for decades in both condensed matter physics and material science. However, despite the long-believed strong and complex anharmonicity in the Bi 2Te 3-xSe x series, experimental verification of anharmonicity and its evolution with doping remains elusive. We fill this important gap with high-resolution, temperature-dependent Raman spectroscopy in high-quality single crystals of Bi 2Te, Bi 2Te 2Se , and Bi 2Se 3 over the temperature range from 4 to 293 K. Klemens's model was employed to explain the renormalization of their phonon linewidths. The phonon energies of Bi 2Se 3 andmore » Bi 2Te 3 are analyzed in detail from three aspects: lattice expansion, cubic anharmonicity, and quartic anharmonicity. For the first time, we explain the evolution of anharmonicity in various phonon modes and across the series. Lastly, in particular, we find that the interplay between cubic and quartic anharmonicity is governed by their distinct dependence on the phonon density of states, providing insights into anomalous anharmonicity designing of new thermoelectrics.« less

  15. Ground-based research of crystal growth of II-VI compound semiconductors by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Su, Ching-Hua; Sha, Yi-Gao; Zhou, W.; Dudley, M.; Liu, Hao-Chieh; Brebrick, R. F.; hide

    1994-01-01

    Ground-based investigation of the crystal growth of II-VI semiconductor compounds, including CdTe, CdS, ZnTe, and ZnSe, by physical vapor transport in closed ampoules was performed. The crystal growth experimental process and supporting activities--preparation and heat treatment of starting materials, vapor partial pressure measurements, and transport rate measurements are reported. The results of crystal characterization, including microscopy, microstructure, optical transmission photoluminescence, synchrotron radiation topography, and chemical analysis by spark source mass spectrography, are also discussed.

  16. Development of 4-Sides Buttable CdTe-ASIC Hybrid Module for X-ray Flat Panel Detector

    NASA Astrophysics Data System (ADS)

    Tamaki, Mitsuru; Mito, Yoshio; Shuto, Yasuhiro; Kiyuna, Tatsuya; Yamamoto, Masaya; Sagae, Kenichi; Kina, Tooru; Koizumi, Tatsuhiro; Ohno, Ryoichi

    2009-08-01

    A 4-sides buttable CdTe-ASIC hybrid module suitable for use in an X-ray flat panel detector (FPD) has been developed by applying through silicon via (TSV) technology to the readout ASIC. The ASIC has 128 times 256 channels of charge integration type readout circuitry and an area of 12.9 mm times 25.7 mm. The CdTe sensor of 1 mm thickness, having the same area and pixel of 100 mum pitch, was fabricated from the Cl-doped CdTe single crystal grown by traveling heater method (THM). Then the CdTe pixel sensor was hybridized with the ASIC using the bump-bonding technology. The basic performance of this 4-sides buttable module was evaluated by taking X-ray images, and it was compared with that of a commercially available indirect type CsI(Tl) FPD. A prototype CdTe FPD was made by assembling 9 pieces of the 4-sides buttable modules into 3 times 3 arrays in which the neighboring modules were mounted on the interface board. The FPD covers an active area of 77 mm times 39 mm. The results showed the great potential of this 4-sides buttable module for the new real time X-ray FPD with high spatial resolution.

  17. Avalanche atomic switching in strain engineered Sb2Te3-GeTe interfacial phase-change memory cells

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Behera, Jitendra K.; Lv, Shilong; Wu, Liangcai; Song, Zhitang; Simpson, Robert E.

    2017-09-01

    By confining phase transitions to the nanoscale interface between two different crystals, interfacial phase change memory heterostructures represent the state of the art for energy efficient data storage. We present the effect of strain engineering on the electrical switching performance of the {{Sb}}2{{Te}}3-GeTe superlattice van der Waals devices. Multiple Ge atoms switching through a two-dimensional Te layer reduces the activation barrier for further atoms to switch; an effect that can be enhanced by biaxial strain. The out-of-plane phonon mode of the GeTe crystal remains active in the superlattice heterostructures. The large in-plane biaxial strain imposed by the {{Sb}}2{{Te}}3 layers on the GeTe layers substantially improves the switching speed, reset energy, and cyclability of the superlattice memory devices. Moreover, carefully controlling residual stress in the layers of {{Sb}}2{{Te}}3-GeTe interfacial phase change memories provides a new degree of freedom to design the properties of functional superlattice structures for memory and photonics applications.

  18. Mercury-cadmium-telluride - Technical significance and microgravity relevance related to crystal growth

    NASA Astrophysics Data System (ADS)

    Walcher, H.; Diehl, R.; Baars, J.

    The technical importance of the mixed-crystal system Hg(1-x)Cd(x)Te (MCT) is related to a growing interest in detector devices for the infrared spectral ranges of the two atmospheric 'windows'. Applications are not restricted to the military sector, but are also related to astronomy, archeology, medicine, construction engineering, fire fighting, and the determination of pollutants in the atmosphere. It is found that MCT is uniquely qualified for the considered applications, because no other material combines, in the same way, all the required characteristics. However, problems arise in connection with the need for pure, homogeneous, single crystals of adequate size, which are free of any defects. The best results in attempts to grow such crystals have been obtained in experiments utilizing the traveling heater method (THM). Remaining difficulties are caused by effects of gravity. It is, therefore, expected that the crystals needed can be produced under conditions of microgravity. Suitable experiments for exploring this possibility are discussed.

  19. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  20. Landau-level spectroscopy of massive Dirac fermions in single-crystalline ZrTe5 thin flakes

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Dun, Z. L.; Zhou, H. D.; Lu, Z.; Chen, K.-W.; Moon, S.; Besara, T.; Siegrist, T. M.; Baumbach, R. E.; Smirnov, D.; Jiang, Z.

    2017-07-01

    We report infrared magnetospectroscopy studies on thin crystals of an emerging Dirac material ZrTe5 near the intrinsic limit. The observed structure of the Landau-level transitions and zero-field infrared absorption indicate a two-dimensional Dirac-like electronic structure, similar to that in graphene but with a small relativistic mass corresponding to a 9.4-meV energy gap. Measurements with circularly polarized light reveal a significant electron-hole asymmetry, which leads to splitting of the Landau-level transitions at high magnetic fields. Our model, based on the Bernevig-Hughes-Zhang effective Hamiltonian, quantitatively explains all observed transitions, determining the values of the Fermi velocity, Dirac mass (or gap), electron-hole asymmetry, and electron and hole g factors.

  1. Dewetting During the Crystal Growth of (Cd,Zn)Te:In Under Microgravity

    NASA Astrophysics Data System (ADS)

    Sylla, Lamine; Fauler, Alex; Fiederle, Michael; Duffar, Thierry; Dieguez, Ernesto; Zanotti, Lucio; Zappettini, Andrea; Roosen, GÉrald

    2009-08-01

    The phenomenon of ldquodewettingrdquo associated with the Vertical Bridgman (VB) crystal growth technique leads to the growth of a crystal without contact with the crucible. One dramatic consequence of this modified VB process is the reduction of structural defects within the crystal. It has been observed in several microgravity experiments for different semiconductor crystals. This work is concentrated on the growth of high resistivity (Cd,Zn)Te:In (CZT) crystals by achieving the phenomenon of dewetting under microgravity condition and its application in the processing of CZT detectors. Two Cd0.9Zn0.1Te:In crystals were grown in space on the Russian FOTON satellite in the POLIZON-M facility in September 2007 (mission M3). At the end of the preliminary melting phase of one crystal, a Rotating Magnetic Field (RMF) was applied in order to reduce the typical tellurium clusters within the melt before the pulling. The other crystal was superheated with 20 K above the melting point before the pulling. A third reference crystal has been grown on the ground in similar thermal conditions. Profiles measurements of the space grown crystals surface gave the evidence of a successful dewetting during the crystal growth. Characterization methods such as IR microscopy and CoReMa have been performed on the three crystals. CZT detectors have been processed from the grown part of the different crystals. The influence of the dewetting on the material quality and the detector properties completes the study.

  2. The Role of Adaptive Photorefractive Power Limiting on Acousto-Optic Radio Frequency (RF) Signal Excision

    DTIC Science & Technology

    2001-12-01

    using TeO2 , A-O cell, slow acoustic wave). Beam deflection is a continuous function of the input voltage power spectrum; however, the spot width...than for isotropic crystals. Thus, anisotropic, A-O materials, such as TeO2 , have advantages for high RF bandwidth; slow acoustic speeds give better...112 Unfortunately, signal resolution worsened because the new TeO2 crystal was designed to operate in the longitudinal acoustic mode, ua = 5.5 Km

  3. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    NASA Astrophysics Data System (ADS)

    Krishna, Ramesh M.

    In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of crystal homogeneity of other modern CZT growth techniques. However, information about crystals grown with this method has not been undertaken in a comprehensive way thus far. In this work, Cd0.9Zn0.1Te is grown using the solvent-growth method using zone-refined precursor materials loaded into carbon-coated quartz ampoules. Ampoules were sealed and crystal growth was performed using crystal growth furnaces built in-house at USC. Ingots 1-2" in diameter produced using the solvent-growth method were wafered, processed, and polished for characterization. Semiconductor characterization is performed on the CZT crystals to determine band gap, elemental stoichiometry, and electrical resistivity. Surface modification studies were undertaken to determine if surface leakage current can be reduced using sulfur passivation. XPS studies were used to confirm the effects of passivation on the surface states, and electrical characterization was performed to measure the effects of passivation on the CZT crystals. Deep-level and surface defect studies were conducted on the CZT samples to determine the type and intensity of defects present in the crystals which may affect detector performance. Finally, nuclear detectors were fabricated and characterized using analog and digital radiation detection systems to measure their performance and energy resolution.

  4. Synthesis, crystal structure and electrical properties of the tetrahedral quaternary chalcogenides CuM{sub 2}InTe{sub 4} (M=Zn, Cd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolas, George S., E-mail: gnolas@usf.edu; Hassan, M. Shafiq; Dong, Yongkwan

    Quaternary chalcogenides form a large class of materials that continue to be of interest for energy-related applications. Certain compositions have recently been identified as possessing good thermoelectric properties however these materials typically have the kesterite structure type with limited variation in composition. In this study we report on the structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} which crystallize in the modified zinc-blende crystal structure, and compare their properties with that of CuZn{sub 2}InSe{sub 4}. These p-type semiconductors have direct band gaps of about 1 eV resulting in relatively high Seebeck coefficientmore » and resistivity values. This work expands on the research into quaternary chalcogenides with new compositions and structure types in order to further the fundamental investigation of multinary chalcogenides for potential thermoelectrics applications. - Graphical abstract: The structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. The unique crystal structure allows for relatively good electrical transports and therefore potential for thermoelectric applications. - Highlights: • The physical properties of CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. • These materials have potential for thermoelectric applications. • Their direct band gaps also suggest potential for photovoltaics applications.« less

  5. Study on accumulated crystallization characteristics of amorphous Ge2Sb2Te5 induced by multi-pulsed laser irradiations with different fluences

    NASA Astrophysics Data System (ADS)

    Fan, T.; Liu, F. R.; Li, W. Q.; Guo, J. C.; Wang, Y. H.; Sun, N. X.; Liu, F.

    2018-07-01

    Accumulated crystallization characteristics of amorphous Ge2Sb2Te5 (a-GST) films induced by multi-pulsed laser irradiations with different fluences were investigated by x-ray diffraction (XRD), Raman spectroscopy and spectrophotometer. Solid-state transformation was performed at low fluence (LF, 30.5 mJ cm‑2), whereas melting-cooling transformation dominated at medium and high fluence (MF, 45.7 and HF, 61 mJ cm‑2). Solid-state transformation induced by subsequent LF pulses promoted the growth and coalescence of grains, linearly increasing the average grain size, accordingly causing blue-shifts of the Raman spectral peaks. For MF/HF pulse irradiated films, the relatively high laser fluence increased the melting depth and reduced the volume fraction of the crystalline state induced by individual pulses, thereby increasing the threshold of laser pulse numbers for XRD detectable crystallization. However, the remelting depth induced by subsequent MF/HF laser pulse progressively decreased. The remelting-recrystallization process refined grain sizes, which improved the red-shifts of Raman spectral peaks. Moreover, optical contrast increased dramatically compared to single laser irradiation and five-level storage could be realized for a linear increase of optical contrast. The present study is fundamental for realizing the potential of multi-level devices.

  6. Enhanced thermoelectric performance driven by high-temperature phase transition in the phase change material Ge 4SbTe 5

    DOE PAGES

    Williams, Jared B.; Lara-Curzio, Edgar; Cakmak, Ercan; ...

    2015-05-15

    Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe) 1-x(Sb 2Te 3) x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge 4SbTe 5, a single phase compound just off of the (GeTe) 1-x(Sb 2Te 3) xmore » tie-line, that forms in a stable rocksalt crystal structure at room temperature. We find that stoichiometric and undoped Ge 4SbTe 5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.« less

  7. A multinuclear solid-state NMR study of the dimethyltin chalcogenides ((CH 3) 2SnE) 3, E  S,Se,Te

    NASA Astrophysics Data System (ADS)

    Gay, Ian D.; Jones, C. H. W.; Sharma, R. D.

    The solid-state NMR spectra, measured using MAS, are reported for 13C, 119Sn, 77Se, and 125Te in the compounds (Me 2SnE) 3, E  S, Se, or Te. For ((CH 3) 2SnS) 3, tetragonal, three inequivalent carbons and two inequivalent tins are observed consistent with a reinterpretation of the crystal structure data of this compound which shows a twofold axis through opposing tin and sulfur atoms, the molecule being in a twisted-boat conformation. For the monoclinic form six inequivalent carbons and three inequivalent tins were observed. Chemical shifts for 13C and 119Sn and the magnitudes of the 2JSn Sn coupling constants are reported. The tetragonal forms of ((CH 3) 2SnSe) 3 and ((CH 3) 2SnTe) 3 show the presence of two inequivalent tin and chalcogen atoms and three inequivalent carbons, again consistent with a twofold axis. In these compounds it is possible to identify the three different observed single-bond coupling constants with the distinct crystallographically determined tin-chalcogen bonds. The 13C, 119Sn, 77Se, and 125Te chemical shifts are reported, together with the magnitude of 1JSn E (E  Se or Te). In addition to isotropic shifts and couplings, chemical-shift anisotropies are reported for Sn, Se, and Te.

  8. Synthesis of Multishell Nanoplates by Consecutive Epitaxial Growth of Bi2Se3 and Bi2Te3 Nanoplates and Enhanced Thermoelectric Properties.

    PubMed

    Min, Yuho; Park, Gyeongbae; Kim, Bongsoo; Giri, Anupam; Zeng, Jie; Roh, Jong Wook; Kim, Sang Il; Lee, Kyu Hyoung; Jeong, Unyong

    2015-07-28

    We herein demonstrate the successive epitaxial growth of Bi2Te3 and Bi2Se3 on seed nanoplates for the scalable synthesis of heterostructured nanoplates (Bi2Se3@Bi2Te3) and multishell nanoplates (Bi2Se3@Bi2Te3@Bi2Se3, Bi2Se3@Bi2Te3@Bi2Se3@Bi2Te3). The relative dimensions of the constituting layers are controllable via the molar ratios of the precursors added to the seed nanoplate solution. Reduction of the precursors produces nanoparticles that attach preferentially to the sides of the seed nanoplates. Once attached, the nanoparticles reorganize epitaxially on the seed crystal lattices to form single-crystalline core-shell nanoplates. The nanoplates, initially 100 nm wide, grew laterally to 620 nm in the multishell structure, while their thickness increased more moderately, from 5 to 20 nm. The nanoplates were pelletized into bulk samples by spark plasma sintering and their thermoelectric properties are compared. A peak thermoelectric figure of merit (ZT) ∼0.71 was obtained at 450 K for the bulk of Bi2Se3@Bi2Te3 nanoplates by simultaneous modulation of electronic and thermal transport in the presence of highly dense grain and phase boundaries.

  9. Self-compensation in arsenic doping of CdTe

    DOE PAGES

    Ablekim, Tursun; Swain, Santosh K.; Yin, Wan -Jian; ...

    2017-07-04

    Efficient p-type doping in CdTe has remained a critical challenge for decades, limiting the performance of CdTe-based semiconductor devices. Arsenic is a promising p-type dopant; however, reproducible doping with high concentration is difficult and carrier lifetime is low. We systematically studied defect structures in As-doped CdTe using high-purity single crystal wafers to investigate the mechanisms that limit p-type doping. Two As-doped CdTe with varying acceptor density and two undoped CdTe were grown in Cd-rich and Te-rich environments. The defect structures were investigated by thermoelectric-effect spectroscopy (TEES), and first-principles calculations were used for identifying and assigning the experimentally observed defects. Measurementsmore » revealed activation of As is very low in both As-doped samples with very short lifetimes indicating strong compensation and the presence of significant carrier trapping defects. Defect studies suggest two acceptors and one donor level were introduced by As doping with activation energies at ~88 meV, ~293 meV and ~377 meV. In particular, the peak shown at ~162 K in the TEES spectra is very prominent in both As-doped samples, indicating a signature of AX-center donors. In conclusion, the AX-centers are believed to be responsible for most of the compensation because of their low formation energy and very prominent peak intensity in TEES spectra.« less

  10. Self-compensation in arsenic doping of CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablekim, Tursun; Swain, Santosh K.; Yin, Wan -Jian

    Efficient p-type doping in CdTe has remained a critical challenge for decades, limiting the performance of CdTe-based semiconductor devices. Arsenic is a promising p-type dopant; however, reproducible doping with high concentration is difficult and carrier lifetime is low. We systematically studied defect structures in As-doped CdTe using high-purity single crystal wafers to investigate the mechanisms that limit p-type doping. Two As-doped CdTe with varying acceptor density and two undoped CdTe were grown in Cd-rich and Te-rich environments. The defect structures were investigated by thermoelectric-effect spectroscopy (TEES), and first-principles calculations were used for identifying and assigning the experimentally observed defects. Measurementsmore » revealed activation of As is very low in both As-doped samples with very short lifetimes indicating strong compensation and the presence of significant carrier trapping defects. Defect studies suggest two acceptors and one donor level were introduced by As doping with activation energies at ~88 meV, ~293 meV and ~377 meV. In particular, the peak shown at ~162 K in the TEES spectra is very prominent in both As-doped samples, indicating a signature of AX-center donors. In conclusion, the AX-centers are believed to be responsible for most of the compensation because of their low formation energy and very prominent peak intensity in TEES spectra.« less

  11. Thermal annealing effect on structural and thermoelectric properties of hexagonal Bi2Te3 nanoplate thin films by drop-casting technique

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yuichi; Wada, Kodai; Tanaka, Masaki; Tomita, Koji; Takashiri, Masayuki

    2018-02-01

    High-purity hexagonal bismuth telluride (Bi2Te3) nanoplates were prepared by a solvothermal synthesis method, followed by the fabrication of nanoplate thin films by the drop-casting technique. The Bi2Te3 nanoplates exhibited a single-crystalline phase with a rhombohedral crystal structure. The nanoplates had a flat surface with edge sizes ranging from 500 to 2000 nm (average size of 1000 nm) and a thickness of less than 50 nm. The resulting Bi2Te3 nanoplate thin films were composed of well-aligned hexagonal nanoplates along the surface direction with an approximate film thickness of 40 µm. To tightly connect the nanoplates together within the thin films, thermal annealing was performed at different temperatures. We found that the thermoelectric properties, especially the Seebeck coefficient, were very sensitive to the annealing temperature. Finally, the optimum annealing temperature was determined to be 250 °C and the Seebeck coefficient and power factor were -300 µV/K and 3.5 µW/(cm·K2), respectively.

  12. Single layer of MX3(M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics

    NASA Astrophysics Data System (ADS)

    Jin, Yingdi; Li, Xingxing; Yang, Jinlong

    A serial of two dimensional titanium and zirconium trichalcogenides nanosheets MX3 (M=Ti, Zr; X=S, Se, Te) are investigated based on first-principles calculations. The evaluated low cleavage energy indicates that stable two dimensional monolayers can be exfoliated from their bulk crystals in experiment. Electronic studies reveal very rich electronic properties in these monolayers, including metallic TiTe3 and ZrTe3, direct band gap semiconductor TiS3 and indirect band gap semiconductors TiSe3, ZrS3 and ZrSe3. The band gaps of all the semiconductors are between 0.57~1.90 eV, which implies their potential applications in nano-electronics. And the calculated effective masses demonstrate highly anisotropic conduction properties for all the semiconductors. Optically, TiS3 and TiSe3 monolayers exhibit good light absorption in the visible and near-infrared region respectively, indicating their potential applications in optical devices. In particular, the highly anisotropic optical absorption of TiS3 monolayer suggests it could be used in designing nano optical waveguide polarizers.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charkin, Dmitri O.; Black, Cameron; Downie, Lewis J.

    Two new rare-earth – alkali – tellurium oxide halides were synthesized by a salt flux technique and characterized by single-crystal X-ray diffraction. The structures of the new compounds Cs{sub 7}Sm{sub 11}[TeO{sub 3}]{sub 12}Cl{sub 16} (I) and Rb{sub 7}Nd{sub 11}[TeO{sub 3}]{sub 12}Br{sub 16} (II) (both tetragonal, space group I4/mcm) correspond to the sequence of [MLn{sub 11}(TeO{sub 3}){sub 12}] and [M{sub 6}X{sub 16}] layers and bear very strong similarities to those of known selenite analogs. We discuss the trends in similarities and differences in compositions and structural details between the Se and Te compounds; more members of the family are predicted. -more » Graphical abstract: Two new rare-earth – alkali – tellurium oxide halides were predicted and synthesized. - Highlights: • Two new rare-earth – alkali – tellurium oxide halides were synthesized. • They adopt slab structure of rare earth-tellurium-oxygen and CsCl-like slabs. • The Br-based CsCl-like slabs have been observed first in this layered family.« less

  14. In situ observation of the impact of surface oxidation on the crystallization mechanism of GeTe phase-change thin films by scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Berthier, R.; Bernier, N.; Cooper, D.; Sabbione, C.; Hippert, F.; Noé, P.

    2017-09-01

    The crystallization mechanisms of prototypical GeTe phase-change material thin films have been investigated by in situ scanning transmission electron microscopy annealing experiments. A novel sample preparation method has been developed to improve sample quality and stability during in situ annealing, enabling quantitative analysis and live recording of phase change events. Results show that for an uncapped 100 nm thick GeTe layer, exposure to air after fabrication leads to composition changes which promote heterogeneous nucleation at the oxidized surface. We also demonstrate that protecting the GeTe layer with a 10 nm SiN capping layer prevents nucleation at the surface and allows volume nucleation at a temperature 50 °C higher than the onset of crystallization in the oxidized sample. Our results have important implications regarding the integration of these materials in confined memory cells.

  15. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density

    DOE PAGES

    Teplitsky, Ella; Joshi, Karan; Ericson, Daniel L.; ...

    2015-07-01

    We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using thismore » system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. Moreover, a fragment mini-library was screened to observe two known lysozyme We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme ligands using both co-crystallization and soaking. A similar approach was used to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.ds using both co-crystallization and soaking. We used a A similar approach to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.« less

  16. Numerical Modeling of Physical Vapor Transport in Contactless Crystal Growth Geometry

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Lowry, S.; Krishnam, A.; Przekwas, A.; Grasza, K.

    1998-01-01

    Growth from the vapor under conditions of limited contact with the walls of the growth ampoule is beneficial for the quality of the growing crystal due to reduced stress and contamination which may be caused by interactions with the growth container. The technique may be of a particular interest for studies on crystal growth under microgravity conditions: elimination of some factors affecting the crystal quality may make interpretation of space-conducted processes more conclusive and meaningful. For that reason, and as a part of our continuing studies on 'contactless' growth technique, we have developed a computational model of crystal growth process in such system. The theoretical model was built, and simulations were performed using the commercial computational fluid dynamics code, (CFD) ACE. The code uses an implicit finite volume formulation with a gray discrete ordinate method radiation model which accounts for the diffuse absorption and reflection of radiation throughout the furnace. The three-dimensional model computes the heat transfer through the crystal, quartz, and gas both inside and outside the ampoule, and mass transport from the source to the crystal and the sink. The heat transport mechanisms by conduction, natural convection, and radiation, and mass transport by diffusion and convection are modeled simultaneously and include the heat of the phase transition at the solid-vapor interfaces. As the thermal boundary condition, temperature profile along the walls of the furnace is used. For different thermal profiles and furnace and ampoule dimensions, the crystal growth rate and development of the crystal-vapor and source-vapor interfaces (change of the interface shape and location with time) are obtained. Super/under-saturation in the ampoule is determined and critical factors determining the 'contactless' growth conditions are identified and discussed. The relative importance of the ampoule dimensions and geometry, the furnace dimensions and its temperature, and the properties of the grown material are analyzed. The results of the simulations are compared with related experimental results on growth of CdTe, CdZnTe, ZnTe, PbTe, and PbSnTe crystals by this technique.

  17. Thermal annealing studies of GeTe-Sb2Te3 alloys with multiple interfaces

    NASA Astrophysics Data System (ADS)

    Bragaglia, Valeria; Mio, Antonio M.; Calarco, Raffaella

    2017-08-01

    A high degree of vacancy ordering is obtained by annealing amorphous GeTe-Sb2Te3 (GST) alloys deposited on a crystalline substrate, which acts as a template for the crystallization. Under annealing the material evolves from amorphous to disordered rocksalt, to ordered rocksalt with vacancies arranged into (111) oriented layers, and finally converts into the stable trigonal phase. The role of the interface in respect to the formation of an ordered crystalline phase is studied by comparing the transformation stages of crystalline GST with and without a capping layer. The capping layer offers another crystallization interface, which harms the overall crystalline quality.

  18. Influence of Si and N additions on structure and phase stability of Ge(2)Sb(2)Te(5) thin films.

    PubMed

    Kölpin, Helmut; Music, Denis; Laptyeva, Galyna; Ghadimi, Reza; Merget, Florian; Richter, Silvia; Mykhaylonka, Ruslàn; Mayer, Joachim; Schneider, Jochen M

    2009-10-28

    The influence of Si and N in Ge(2)Sb(2)Te(5) (space group [Formula: see text]) on structure and phase stability thereof was studied experimentally by thin film growth and characterization as well as theoretically by ab initio calculations. It was found that Si and N most probably accumulate in the amorphous matrix embedding Ge(2)Sb(2)Te(5) grains. The incorporation of Si and N in these samples causes an increase of the crystallization temperature and the formation of finer grains. N is more efficient in increasing the crystallization temperature and in reducing the grain size than Si which can be understood based on the bonding analysis. The incorporation of both Si and N in Ge(2)Sb(2)Te(5) is energetically unfavourable, leading to finer grains and larger crystallization temperatures. While in the case of Si additions no significant changes in bonding are observed, N additions appear to enable the formation of strong Te-N bonds in the amorphous matrix, which are shown to be almost twice as strong as the strongest bonds in unalloyed Ge(2)Sb(2)Te(5).

  19. Rich structural chemistry in new alkali metal yttrium tellurites: three-dimensional frameworks of NaYTe4O10, KY(TeO3)2, RbY(TeO3)2, and a novel variant of hexagonal tungsten bronze, CsYTe3O8.

    PubMed

    Kim, Youngkwon; Lee, Dong Woo; Ok, Kang Min

    2015-01-05

    Pure polycrystalline phases and single crystals of four new quaternary alkali metal yttrium tellurites, NaYTe4O10, KY(TeO3)2, RbY(TeO3)2, and CsYTe3O8, have been prepared by solid-state and hydrothermal reactions using A2CO3 (A = Na, K, Rb, and Cs), Y(NO3)3·6H2O, Y2O3, and TeO2 as starting reagents. X-ray diffraction analyses suggest that NaYTe4O10 exhibits a highly symmetric three-dimensional (3D) framework consisting of YO8 square antiprisms and chains of TeO4 polyhedra. Within the framework, six- (6-) and eight-membered ring (8-MR) channels are observed. KY(TeO3)2 and RbY(TeO3)2 are isostructural to each other and reveal another 3D framework with structures containing YO6 octahedra and TeO3 trigonal pyramids with 4-MR and 12-MR channels. CsYTe3O8 shows a hexagonal tungsten bronze (HTB)-like topology composed of hexagonal tungsten oxide-like layers of TeO4 polyhedra and YO6 octahedral linkers with 3-MR and 6-MR channels. Thermal analyses, elemental analyses, and spectroscopic characterizations, such as UV-vis diffuse reflectance and infrared spectra, are presented, as are local dipole moment calculations for the constituent asymmetric polyhedra TeO3 and TeO4.

  20. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing.

    PubMed

    Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan

    2017-12-15

    Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge 2 Sb 2 Te 5 ). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc 0.2 Sb 2 Te 3 ) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. ZnSe(Te)-based crystals and detectors for nondestructive testing and cargo inspection

    NASA Astrophysics Data System (ADS)

    Seminozhenko, V. P.; Ryzhikov, V. D.; Opolonin, A. D.; Lisetska, O. K.; Galkin, S. N.; Voronkin, E. F.; Kostyukevich, S. A.

    2006-08-01

    Due to disadvantages of scintillator ZnSe(Te) - poor transparence to own emission (10 -1 cm -1), long decay time, low density and Z eff-this material had no practical applications in the ranges of X-ray energies about 120-140 keV. After the development of dual energy X-ray inspection scanners, CT and digital radiography situation changed on the contrary at whole. Both theory and experiments show that now it is the best material for low energy array detectors. The pilot-industrial production of ZnSe(Te) crystals is organized, their usage in CT and inspection X-rays scanners being already started. It has become possible to get tomography imaging simultaneously with automatic recognition of dangerous objects and substances, which is due to the unique parameters of ZnSe(Te). Presently several leading western companies look for possibilities to use ZnSe(Te) for medical X-ray CT. Our aim was to unveil the nature of luminescence centers and the emission mechanism in crystals of ZnSe(Te) compounds with isovalent dopants from the results of our studies of optical, spectroscopic and kinetic characteriestics of these crystals. Basing on the obtained understanding of the emission centers, we aimed at creation of a reproducible production technology of scintillators for application in inspection and medical equipment. The research described in this publication was made possible in part by INTAS Project Ref. Nr. 05-104-7519.

  2. Can high pressure I-II transitions in semiconductors be affected by plastic flow and nanocrystal precipitation in phase I?

    NASA Astrophysics Data System (ADS)

    Weinstein, B. A.; Lindberg, G. P.

    Pressure-Raman spectroscopy in ZnSe and ZnTe single crystals reveals that Se and Te nano-crystals (NCs) precipitate in these II-VI hosts for pressures far below their I-II phase transitions. The inclusions are evident from the appearance and negative pressure-shift of the A1 Raman peaks of Se and Te (trigonal phase). The Se and Te NCs nucleate at dislocations and grain boundaries that arise from pressure-induced plastic flow. This produces chemical and structural inhomogeneities in the zincblende phase of the host. At substantially higher pressures, the I-II transition proceeds in the presence of these inhomogenities. This can affect the transition's onset pressure Pt and width ΔPt, and the occurrence of metastable phases along the transition path. Precipitation models in metals show that nucleation of inclusions depends on the Peierls stress τp and a parameter α related to the net free energy gained on nucleation. For favorable values of τp and α, NC precipitation at pressures below the I-II transition could occur in other compounds. We propose criteria to judge whether this is likely based on the observed ranges of τp in the hosts, and estimates of α derived from the cohesive energy densities of the NC materials. One finds trends that can serve as a useful guide, both to test the proposed criteria, and to decide when closer scrutiny of phase transition experiments is warranted, e.g., in powders where high dislocation densities are initially created

  3. How grain boundaries affect the efficiency of poly-CdTe solar-cells: A fundamental atomic-scale study of grain boundary dislocation cores using CdTe bi-crystal thin films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klie, Robert

    It is now widely accepted that grain boundaries in poly-crystalline CdTe thin film devices have a detrimental effect on the minority carrier lifetimes, the open circuit voltage and therefore the overall solar-cell performance. The goal of this project was to develop a fundamental understanding of the role of grain boundaries in CdTe on the carrier life-time, open-circuit voltage, Voc, and the diffusion of impurities. To achieve this goal, i) CdTe bi-crystals were fabricated with various misorientation angels, ii) the atomic- and electronic structures of the grain boundaries were characterized using scanning transmission electron microscopy (STEM), and iii) first-principles density functionalmore » theory modeling was performed on the structures determined by STEM to predict the grain boundary potential. The transport properties and minority carrier lifetimes of the bi-crystal grain boundaries were measured using a variety of approaches, including TRPL, and provided feedback to the characterization and modeling effort about the effectiveness of the proposed models.« less

  4. Channeling technique to make nanoscale ion beams

    NASA Astrophysics Data System (ADS)

    Biryukov, V. M.; Bellucci, S.; Guidi, V.

    2005-04-01

    Particle channeling in a bent crystal lattice has led to an efficient instrument for beam steering at accelerators [Biryukov et al., Crystal Channeling and its Application at High Energy Accelerators, Springer, Berlin, 1997], demonstrated from MeV to TeV energies. In particular, crystal focusing of high-energy protons to micron size has been demonstrated at IHEP with the results well in match with Lindhard (critical angle) prediction. Channeling in crystal microstructures has been proposed as a unique source of a microbeam of high-energy particles [Bellucci et al., Phys. Rev. ST Accel. Beams 6 (2003) 033502]. Channeling in nanostructures (single-wall and multi-wall nanotubes) offers the opportunities to produce ion beams on nanoscale. Particles channeled in a nanotube (with typical diameter of about 1 nm) are trapped in two dimensions and can be steered (deflected, focused) with the efficiency similar to that of crystal channeling or better. This technique has been a subject of computer simulations, with experimental efforts under way in several high-energy labs, including IHEP. We present the theoretical outlook for making channeling-based nanoscale ion beams and report the experience with crystal-focused microscale proton beams.

  5. Understanding the crystallization behavior of as-deposited Ti-Sb-Te alloys through real-time radial distribution functions.

    PubMed

    Zhu, Min; Xia, Mengjiao; Song, Zhitang; Cheng, Yan; Wu, Liangcai; Rao, Feng; Song, Sannian; Wang, Miao; Lu, Yegang; Feng, Songlin

    2015-06-07

    Phase change materials, successfully used in optical data-storage and non-volatile electronic memory, are well-known for their ultrafast crystallization speed. However, the fundamental understanding of their crystallization behavior, especially the nucleation process, is limited by present experimental techniques. Here, real-time radial distribution functions (RDFs), derived from the selected area electron diffractions, are employed as structural probes to comprehensively study both nucleation and subsequent growth stages of Ti-doped Sb2Te3 (TST) materials in the electron-irradiation crystallization process. It can be found that the incorporation of Ti atoms in Sb2Te3 forms wrong bonds such as Ti-Te, Ti-Sb, breaks the originally ordered atomic arrangement and diminishes the initial nucleus size of the as-deposited films, which results in better thermal stability. But these nuclei hardly grow until their sizes exceed a critical value, and then a rapid growth period starts. This means that an extended nucleation time is required to form the supercritical nuclei of TST alloys with higher concentration. Also, the increasing formation of four-membered rings, which served as nucleation sites, after doping excessive Ti is responsible for the change of the crystallization behavior from growth-dominated to nucleation-dominated.

  6. Convective Influence on Radial Segregation During Unidirectional Solidification of the Binary Alloy HgCdTe

    NASA Technical Reports Server (NTRS)

    Watring, D. A.; Gillies, D. C.; Lehoczky, S. L.; Szofran, F. R.; Alexander, H.

    1996-01-01

    In order to simulate the space environment for basic research into the crystal growth mechanism, Hg(0.8)Cd(0.2)Te crystals were grown by the vertical Bridgman-Stockbarger method in the presence of an applied axial magnetic field. The influence of convection, by magneto hydrodynamic damping, on mass transfer in the melt and segregation at the solid-liquid interface was investigated by measuring the axial and radial compositional variations in the grown samples. The reduction of convective mixing in the melt through the application of the magnetic field is found to have a large effect on radial segregation and interface morphology in the grown crystals. Direct comparisons are made with a Hg(0.8)Cd(0.2)Te crystal grown without field and also in the microgravity environment of space during the second United States Microgravity Payload Mission (USMP-2).

  7. Intrinsic Topological Insulator Bi1.5Sb0.5Te3-xSex Thin Crystals

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Li; Zou, Wenqin; He, Liang; Song, Fengqi; Zhang, Rong; Wu, Xiaoshan; Zhang, Fengming

    2015-01-01

    The quaternary topological insulator (Bi,Sb)2(Te,Se)3 has demonstrated topological surface states with an insulating bulk. Scientists have identified an optimized composition of Bi1.5Sb0.5Te1.7Se1.3 with the highest resistivity reported. But the physics that drive to this composition remains unclear. Here we report the crystal structure and the magneto-transport properties of Bi1.5Sb0.5Te3-xSex (BSTS) series. A correlation between the structure and the physical properties has been revealed. We found out that within the rhombohedral structure, the composition with most Te substituting Se has the highest resistivity. On the other hand, segregation of other composition phases will introduce much higher bulk concentration.

  8. Superconducting, magnetic and magnetotransport properties of FeTe1-xSex single crystals

    NASA Astrophysics Data System (ADS)

    Kumar, Rohit; Sudesh, Varma, G. D.

    2018-05-01

    The single crystalline samples with compositions FeTe1-xSex (0.25 ≤ x ≤ 0.50) have been prepared via self-flux method and the superconducting, magnetic and magnetotransport properties of the grown crystals were investigated. The superconducting onset temperatures have been determined from the measurements of zero field cooled magnetization and resistance with temperatures. In the present case, highest superconducting transition temperature TC (onset) ˜ 15 K has been obtained for x=0.5. The HC2 (T=0 K) values have been estimated by fitting the experimental HC2 - T plots with WHH model. The highest HC2(0) has been obtained for x=0.5. The activation energy of the thermally activated flux flow has been found from the broadening of superconducting transition in an applied magnetic field using the Arrhenius law. Our results show that the activation energy (U0) decreases with the increasing magnetic field. Furthermore, the magnetization measurements for x=0.4 and 0.5 samples have been performed at T=5 K in the magnetic field range ±7 T to estimate critical current density at different applied magnetic fields using Bean formula. We see that the sample x=0.5 has higher values of JC as compared to that of x=0.4 at all magnetic fields. This is in conformity with the behavior of U0-H plots.

  9. Crystallization kinetics and Avrami index of Sb-doped Se-Te-Sn chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Dwivedi, D. K.; Rao, Vandita; Mehta, N.; Chandel, N.

    2018-05-01

    Bulk amorphous samples of Sb-substituted Se78-xTe20Sn2Sbx (0 < x < 6) have been prepared using melt quench technique. The structure of Se78-xTe20Sn2Sbx (x = 0, 2, 4, 6) glassy alloys has been investigated using X-ray diffraction technique. Calorimetric studies of the prepared samples have been performed under non-isothermal conditions using differential scanning calorimetry (DSC) and glass transition temperature as well as crystallization temperature has been evaluated using DSC scans. The activation energy of crystallization kinetics (Ec) has been determined using model-free approaches such as Kissinger, Ozawa, Tang and Starink methods. The Avrami index (n) and frequency factor (Ko) have been calculated by Matusita and Augis-Benett method.

  10. A Study of the Crystal Structure of Co40Fe40B20 Epitaxial Films on a Bi2Te3 Topological Insulator

    NASA Astrophysics Data System (ADS)

    Kaveev, A. K.; Suturin, S. M.; Sokolov, N. S.; Kokh, K. A.; Tereshchenko, O. E.

    2018-03-01

    Laser molecular-beam epitaxy has been used to form Co40Fe40B20 layers on Bi2Te3 topological insulator substrates, and their growth conditions have been studied. The possibility of growing epitaxial ferromagnetic layers on the surface of a topological insulator is demonstrated for the first time. The CoFeB layers have a body-centered cubic crystal structure with the (111) crystal plane parallel to the (0001) plane of Bi2Te3. 3D mapping in the reciprocal space of high-energy electron-diffraction patterns made it possible to determine the epitaxial relationships between the film and the substrate.

  11. Initial development of a high-pressure crystal growth facility: Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Lehoczky, S. L.; Cobb, S. D.; Gillies, D. C.

    1993-01-01

    A low-cost, flexible, high-pressure (600 psi) system for crystal growth and related thermophysical properties measurements was designed, assembled, and tested. The furnace system includes a magnetically coupled translation mechanism that eliminates the need for a high-pressure mechanical feedthru. The system is currently being used for continuing crystal growth experiments and thermophysical properties measurements on several material systems including Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te, and Hg(1-x)Zn(x)Se.

  12. Seeded Physical Vapor Transport of Cadmium-Zinc Telluride Crystals: Growth and Characterization

    NASA Technical Reports Server (NTRS)

    Palosz, W.; George, M. A.; Collins, E. E.; Chen, K.-T.; Zhang, Y.; Burger, A.

    1997-01-01

    Crystals of Cd(1-x)Zn(x)Te with x = 0.2 and 40 g in weight were grown on monocrystalline cadmium-zinc telluride seeds by closed-ampoule physical vapor transport with or without excess (Cd + Zn) in the vapor phase. Two post-growth cool-down rates were used. The crystals were characterized using low temperature photoluminescence, atomic force microscopy, chemical etching, X-ray diffraction and electrical measurements. No formation of a second, ZnTe-rich phase was observed.

  13. Shuttle Mission STS-50: Orbital Processing of High-Quality CdTe Compound Semiconductors Experiment: Final Flight Sample Characterization Report

    NASA Technical Reports Server (NTRS)

    Larson, David J.; Casagrande, Luis G.; DiMarzio, Don; Alexander, J. Iwan D.; Carlson, Fred; Lee, Taipo; Dudley, Michael; Raghathamachar, Balaji

    1998-01-01

    The Orbital Processing of High-Quality Doped and Alloyed CdTe Compound Semiconductors program was initiated to investigate, quantitatively, the influences of gravitationally dependent phenomena on the growth and quality of bulk compound semiconductors. The objective was to improve crystal quality (both structural and compositional) and to better understand and control the variables within the crystal growth production process. The empirical effort entailed the development of a terrestrial (one-g) experiment baseline for quantitative comparison with microgravity (mu-g) results. This effort was supported by the development of high-fidelity process models of heat transfer, fluid flow and solute redistribution, and thermo-mechanical stress occurring in the furnace, safety cartridge, ampoule, and crystal throughout the melting, seeding, crystal growth, and post-solidification processing. In addition, the sensitivity of the orbital experiments was analyzed with respect to the residual microgravity (mu-g) environment, both steady state and g-jitter. CdZnTe crystals were grown in one-g and in mu-g. Crystals processed terrestrially were grown at the NASA Ground Control Experiments Laboratory (GCEL) and at Grumman Aerospace Corporation (now Northrop Grumman Corporation). Two mu-g crystals were grown in the Crystal Growth Furnace (CGF) during the First United States Microgravity Laboratory Mission (USML-1), STS-50, June 24 - July 9, 1992.

  14. Differential Thermal Analysis of Hg(1-x)Mn(x)Te Alloys in the X=0 to 0.3 Range

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Szofran, F. R.; Lehoczky, S. L.; Su, C-H

    1998-01-01

    Understanding the experimental conditions necessary for the development of radial and axial compositional homogeneity in directionally solidified Hg(0.89)Mn(0.11)Te(MMT) crystals has been difficult due to the lack of segregation coefficient data on the Hg(1-x)Mn(x)Te alloy system in the X = 0 to 0.3 composition range. Determining segregation coefficient data from the available Hg(1-x)Mn(x)Te alloy phase equilibria data is not practical due to discrepancies in the shape of the reported solidus and liquidus curves in the X = 0 to 0.3 range. To resolve these discrepancies and to obtain segregation coefficient data which can be used to understand homogeneity in directionally solidified MMT crystals, the solidus and liquidus temperatures of seven Hg(1-x)Mn(x)Te alloys in the X = 0 to 0.3 range were determined using differential thermal analysis (DTA). The Hg(1-x)Mn(x)Te phase diagram constructed for the X = 0 to 0.3 range of this alloy system from the DTA measurements clarifies the shape of the solidus and liquidus curves in this range. The segregation coefficient for the Hg(1-x)Mn(x)Te system was found to vary from 5 to 4.4 as the solidus composition increased from 0-30 atomic percent MnTe. This information will be useful in the analysis of axial and radial homogeneity of directionally solidified MMT crystals.

  15. Exploratory Solid-State Synthesis of Uranium Chalcogenides and Mixed Anion Uranium Chalcogenides

    NASA Astrophysics Data System (ADS)

    Ward, Matthew David

    Several uranium chalcogenides and mixed anion uranium chalcogenides have been synthesized by solid-state synthetic methods. Structural determinations were carried out via single-crystal X-ray diffraction. Some of these compounds have been further characterized by magnetic measurements, optical properties measurements, Raman spectroscopy, resistivity measurements, XANES and XPS. Eight compounds of the composition MU8Q17 were synthesized and characterized by single-crystal X-ray diffraction. All of these compounds crystallize in the CrU8S17 structure type. XANES measurements indicate that ScU8S17 contains Sc3+ and must be charge balanced with some amount of U 3+. Two compounds of the composition ATiU3Te9 crystallize as black rectangular plates. From single-crystal magnetic measurements, CsTiU 3Te9 is consistent with antiferromagnetic coupling between magnetic U atoms. The uranium chalcogenide compounds NiUS3 and Cr4US 8 were synthesized from reaction of the elements in various fluxes. NiUS3 crystallizes in the GdFeO3 structure type. Cr 4US8 crystallizes in the orthorhombic space group D - Pnma and its structure is related to that of Li4UF 8. The compounds Rh2U6S15, Cs 2Ti2U6Se15, and Cs2Cr 2U6Se15 crystallize as black prisms in the cubic space group O-Im3m. Magnetic measurements on Cs 2Cr2U6Se15 give a value for the Weiss temperature, θWeiss, of 57.59 K, indicative of ferromagnetic coupling. Black plates of CsScU(Se2)Se3 were synthesized from the reaction of the elements in a CsCl flux. CsScU(Se2)Se 3 crystallizes in the orthorhombic space group D- Cmcm . Magnetic susceptibility measurements on CsScU(Se2)Se 3 indicate three regions of magnetic response. The uranium double salt Cs5[U2(μ-S 2)2Cl8]I crystallizes as red plates. Cs 5[U2(μ-S2)2Cl 8]I displays optical anisotropy with band gap energies of 1.99 eV and 2.08 eV along the [001] and [100] polarizations. The uranium oxychalcogenides U7O2Se12 and Na2Ba2(UO2)S4 were synthesized by intentional oxygen contamination. The structure of U7O 2Se12 is related to the previously reported U7Q 12. Na2Ba2(UO2)S4 contains isolated uranyl polyhedra in which each uranium atom may be assigned an oxidation state of +6. The four uranium(IV) chlorophosphates, UCl4(POCl3), [U2Cl9][PCl4], UCl3(PO2Cl 2), and U2Cl8(POCl3) were synthesized in an effort to synthesize new novel uranyl sulfides. All are unstable, but UCl4(POCl3) is the thermodynamically favorable phase.

  16. Synthesis and crystal structure of Fe[(Te1.5Se0.5)O5]Cl, the first iron compound with selenate(IV) and tellurate(IV) groups

    NASA Astrophysics Data System (ADS)

    Akhrorov, Akhmad Yu; Kuznetsova, Elena S.; Aksenov, Sergey M.; Berdonosov, Peter S.; Kuznetsov, Alexey N.; Dolgikh, Valery A.

    2017-12-01

    During the search for selenium analogues of FeTe2O5Cl, the new iron (III) tellurate(IV) selenate(IV) chloride with the composition Fe[(Te1.5Se0.5)O5]Cl was synthesized by chemical vapor transport (CVT) reaction and characterized by TGA-, EDX-,SCXRD-analysis, as well as IR and Raman spectroscopy. It was found that Fe[(Te1.5Se0.5)O5]Cl crystallizes in the monoclinic space group P21/c with unitcell parameters a = 5.183(3) Å, b = 15.521(9) Å, c = 7.128(5) Å and β = 107.16(1)°. The crystal structure of Fe[(Te1.5Se0.5)O5]Cl represents a new structure type and contains electroneutral heteropolyhedral layers formed by dimers of the [FeO5Cl]8- octahedra, linked via common O-O edges, and mixed [Te3SeO10]4- tetramers. Adjacent layers are stacked along the b axis and linked by weak residual bonds. The new compound is stable up to 420 °C. DFT calculations predict Fe[(Te1.5Se0.5)O5]Cl to be a wide-gap semiconductor with the band gap of ca. 2.7 eV.

  17. Y{sub 2}MoSe{sub 3}O{sub 12} and Y{sub 2}MoTe{sub 3}O{sub 12}: Solid-state synthesis, structure determination, and characterization of two new quaternary mixed metal oxides containing asymmetric coordination environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, Seong-eun; Pan, Zhi; Kim, Yeong Hun

    Two new quaternary yttrium molybdenum selenium/tellurium oxides, Y{sub 2}MoSe{sub 3}O{sub 12} and Y{sub 2}MoTe{sub 3}O{sub 12} have been prepared by standard solid-state reactions using Y{sub 2}O{sub 3}, MoO{sub 3}, and SeO{sub 2} (or TeO{sub 2}) as reagents. Single-crystal X-ray diffraction was used to determine the crystal structures of the reported materials. Although both of the materials contain second-order Jahn–Teller (SOJT) distortive cations and are stoichiometrically similar, they reveal different structural features: while Y{sub 2}MoSe{sub 3}O{sub 12} shows a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} groups, Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed ofmore » YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} polyhedra. With the Mo{sup 6+} cations in Y{sub 2}MoSe{sub 3}O{sub 12}, a C{sub 3}-type intraoctahedral distortion toward a face is observed, in which the direction of the out-of-center distortion for Mo{sup 6+} is away from the oxide ligand linked to a Se{sup 4+} cation. The Se{sup 4+} and Te{sup 4+} cations in both materials are in asymmetric coordination environment attributed to the lone pairs. Elemental analyses, infrared spectroscopy, thermal analyses, intraoctahedral distortions, and dipole moment calculations for the compounds are also presented. - Graphical abstract: Y{sub 2}MoSe{sub 3}O{sub 12} reveals a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} polyhedra, whereas Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed of YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} groups. - Highlights: • Two new selenite and tellurite (Y{sub 2}MoQ{sub 3}O{sub 12}; Q=Se and Te) are synthesized. • Y{sub 2}MoQ{sub 3}O{sub 12} contain second-order Jahn–Teller distortive cations in asymmetric environments. • The intra-octahedral distortion of the Mo{sup 6+} is influenced by the Se{sup 4+}.« less

  18. Bulk Fermi surface of the Weyl type-II semimetallic candidate γ - MoTe 2

    DOE PAGES

    Rhodes, D.; Schönemann, R.; Aryal, N.; ...

    2017-10-17

    The electronic structure of semi-metallic transition-metal dichalcogenides, such as WTemore » $$_2$$ and orthorhombic $$\\gamma-$$MoTe$$_2$$, are claimed to contain pairs of Weyl points or linearly touching electron and hole pockets associated with a non-trivial Chern number. For this reason, these compounds were recently claimed to conform to a new class, deemed type-II, of Weyl semi-metallic systems. A series of angle resolved photoemission experiments (ARPES) claim a broad agreement with these predictions detecting, for example, topological Fermi arcs at the surface of these crystals. We synthesized single-crystals of semi-metallic MoTe$$_2$$ through a Te flux method to validate these predictions through measurements of its bulk Fermi surface (FS) via quantum oscillatory phenomena. We find that the superconducting transition temperature of $$\\gamma-$$MoTe$$_2$$ depends on disorder as quantified by the ratio between the room- and low-temperature resistivities, suggesting the possibility of an unconventional superconducting pairing symmetry. Similarly to WTe$$_2$$, the magnetoresistivity of $$\\gamma-$$MoTe$$_2$$ does not saturate at high magnetic fields and can easily surpass $$10^{6}$$ \\%. Remarkably, the analysis of the de Haas-van Alphen (dHvA) signal superimposed onto the magnetic torque, indicates that the geometry of its FS is markedly distinct from the calculated one. The dHvA signal also reveals that the FS is affected by the Zeeman-effect precluding the extraction of the Berry-phase. A direct comparison between the previous ARPES studies and density-functional-theory (DFT) calculations reveals a disagreement in the position of the valence bands relative to the Fermi level $$\\varepsilon_F$$. Here in this paper, we show that a shift of the DFT valence bands relative to $$\\varepsilon_F$$, in order to match the ARPES observations, and of the DFT electron bands to explain some of the observed dHvA frequencies, leads to a good agreement between the calculations and the angular dependence of the FS cross-sectional areas observed experimentally. However, this relative displacement between electron- and hole-bands eliminates their crossings and, therefore, the Weyl type-II points predicted for $$\\gamma-$$MoTe$$_2$$« less

  19. Bulk Fermi surface of the Weyl type-II semimetallic candidate γ -MoTe2

    NASA Astrophysics Data System (ADS)

    Rhodes, D.; Schönemann, R.; Aryal, N.; Zhou, Q.; Zhang, Q. R.; Kampert, E.; Chiu, Y.-C.; Lai, Y.; Shimura, Y.; McCandless, G. T.; Chan, J. Y.; Paley, D. W.; Lee, J.; Finke, A. D.; Ruff, J. P. C.; Das, S.; Manousakis, E.; Balicas, L.

    2017-10-01

    The electronic structure of semimetallic transition-metal dichalcogenides, such as WTe2 and orthorhombic γ -MoTe2 , are claimed to contain pairs of Weyl points or linearly touching electron and hole pockets associated with a nontrivial Chern number. For this reason, these compounds were recently claimed to conform to a new class, deemed type-II, of Weyl semimetallic systems. A series of angle-resolved photoemission experiments (ARPES) claim a broad agreement with these predictions detecting, for example, Fermi arcs at the surface of these crystals. We synthesized single crystals of semimetallic MoTe2 through a Te flux method to validate these predictions through measurements of its bulk Fermi surface (FS) via quantum oscillatory phenomena. We find that the superconducting transition temperature of γ -MoTe2 depends on disorder as quantified by the ratio between the room- and low-temperature resistivities, suggesting the possibility of an unconventional superconducting pairing symmetry. Similarly to WTe2, the magnetoresistivity of γ -MoTe2 does not saturate at high magnetic fields and can easily surpass 106%. Remarkably, the analysis of the de Haas-van Alphen (dHvA) signal superimposed onto the magnetic torque indicates that the geometry of its FS is markedly distinct from the calculated one. The dHvA signal also reveals that the FS is affected by the Zeeman effect precluding the extraction of the Berry phase. A direct comparison between the previous ARPES studies and density-functional-theory (DFT) calculations reveals a disagreement in the position of the valence bands relative to the Fermi level ɛF. Here, we show that a shift of the DFT valence bands relative to ɛF, in order to match the ARPES observations, and of the DFT electron bands to explain some of the observed dHvA frequencies, leads to a good agreement between the calculations and the angular dependence of the FS cross-sectional areas observed experimentally. However, this relative displacement between electron and hole bands eliminates their crossings and, therefore, the Weyl type-II points predicted for γ -MoTe2 .

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teplitsky, Ella; Joshi, Karan; Ericson, Daniel L.

    We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using thismore » system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. Moreover, a fragment mini-library was screened to observe two known lysozyme We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme ligands using both co-crystallization and soaking. A similar approach was used to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.ds using both co-crystallization and soaking. We used a A similar approach to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.« less

  1. Understanding Growth Rate Limitations in Production of Single-Crystal Cadmium Zinc Telluride (CZT) by the Traveling Heater Method (THM)

    NASA Astrophysics Data System (ADS)

    Peterson, Jeffrey H.

    Cadmium telluride (CdTe) and cadmium zinc telluride (CZT) are important optoelectronic materials with applications ranging from medical imaging to nuclear materials monitoring. However, CZT and CdTe have long been plagued by second-phase particles, inhomogeneity, and other defects. The traveling heater method (THM) is a promising approach for growing CZT and other compound semiconductors that has been shown to grow detector-grade crystals. In contrast to traditional directional solidification, the THM consists of a moving melt zone that simultaneously dissolves a polycrystalline feed while producing a single-crystal of material. Additionally, the melt is highly enriched in tellurium, which allows for growth at lower temperatures, limiting the presence of precipitated tellurium second-phase particles in the final crystal. Unfortunately, the THM growth of CZT is limited to millimeters per day when other growth techniques can grow an order of magnitude faster. To understand these growth limits, we employ a mathematical model of the THM system that is formulated to realistically represent the interactions of heat and species transport, fluid flow, and interfacial dissolution and growth under conditions of local thermodynamic equilibrium and steady-state growth. We examine the complicated interactions among zone geometry, continuum transport, phase change, and fluid flow driven by buoyancy. Of particular interest and importance is the formation of flow structures in the liquid zone of the THM that arise from the same physical mechanism as lee waves in atmospheric flows and demonstrate the same characteristic Brunt-Vaisala scaling. We show that flow stagnation and reversal associated with lee-wave formation are responsible for the accumulation of tellurium and supercooled liquid near the growth interface, even when the lee-wave vortex is not readily apparent in the overall flow structure. The supercooled fluid is posited to result in morphological instability at growth rates far below the limit predicted by the classical criterion by Tiller et al. for constitutional supercooling.

  2. Electronic Correlation and Magnetism in the Ferromagnetic Metal Fe 3GeTe 2

    DOE PAGES

    Zhu, Jian-Xin; Janoschek, Marc; Chaves, D. S.; ...

    2016-04-05

    Motivated by the search for design principles of rare-earth-free strong magnets, we present a study of electronic structure and magnetic properties of the ferromagnetic metal Fe3GeTe2 within local density approximation (LDA) of the density functional theory, and its combination with dynamical mean-field theory (DMFT). For comparison to these calculations, we have measured magnetic and thermodynamic properties as well as X-ray magnetic circular dichroism and the photoemission spectrum of single crystal Fe3GeTe2. We find that the experimentally determined Sommerfeld coefficient is enhanced by an order of magnitude with respect to the LDA value. This enhancement can be partially explained by LDA+DMFT.more » Additionally, the inclusion of dynamical electronic correlation effects provides the experimentally observed magnetic moments, and the spectral density is in better agreement with photoemission data. Lastly, these results establish the importance of electronic correlations in this ferromagnet.« less

  3. Bulk contribution to magnetotransport properties of low-defect-density Bi2Te3 topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Ngabonziza, P.; Wang, Y.; Brinkman, A.

    2018-04-01

    An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.

  4. Thermoelectric properties of nanocrystalline Sb2Te3 thin films: experimental evaluation and first-principles calculation, addressing effect of crystal grain size.

    PubMed

    Morikawa, Satoshi; Inamoto, Takuya; Takashiri, Masayuki

    2018-02-16

    The effect of crystal grain size on the thermoelectric properties of nanocrystalline antimony telluride (Sb 2 Te 3 ) thin films was investigated by experiments and first-principles studies using a developed relaxation time approximation. The Sb 2 Te 3 thin films were deposited on glass substrates using radio-frequency magnetron sputtering. To change the crystal grain size of the Sb 2 Te 3 thin films, thermal annealing was performed at different temperatures. The crystal grain size, lattice parameter, and crystal orientation of the thin films were estimated using XRD patterns. The carrier concentration and in-plane thermoelectric properties of the thin films were measured at room temperature. A theoretical analysis was performed using a first-principles study based on density functional theory. The electronic band structures of Sb 2 Te 3 were calculated using different lattice parameters, and the thermoelectric properties were predicted based on the semi-classical Boltzmann transport equation in the relaxation time approximation. In particular, we introduced the effect of carrier scattering at the grain boundaries into the relaxation time approximation by estimating the group velocities from the electronic band structures. Finally, the experimentally measured thermoelectric properties were compared with those obtained by calculation. As a result, the calculated thermoelectric properties were found to be in good agreement with the experimental results. Therefore, we can conclude that introducing the effect of carrier scattering at the grain boundaries into the relaxation time approximation contributes to enhance the accuracy of a first-principles calculation relating to nanocrystalline materials.

  5. Thermoelectric properties of nanocrystalline Sb2Te3 thin films: experimental evaluation and first-principles calculation, addressing effect of crystal grain size

    NASA Astrophysics Data System (ADS)

    Morikawa, Satoshi; Inamoto, Takuya; Takashiri, Masayuki

    2018-02-01

    The effect of crystal grain size on the thermoelectric properties of nanocrystalline antimony telluride (Sb2Te3) thin films was investigated by experiments and first-principles studies using a developed relaxation time approximation. The Sb2Te3 thin films were deposited on glass substrates using radio-frequency magnetron sputtering. To change the crystal grain size of the Sb2Te3 thin films, thermal annealing was performed at different temperatures. The crystal grain size, lattice parameter, and crystal orientation of the thin films were estimated using XRD patterns. The carrier concentration and in-plane thermoelectric properties of the thin films were measured at room temperature. A theoretical analysis was performed using a first-principles study based on density functional theory. The electronic band structures of Sb2Te3 were calculated using different lattice parameters, and the thermoelectric properties were predicted based on the semi-classical Boltzmann transport equation in the relaxation time approximation. In particular, we introduced the effect of carrier scattering at the grain boundaries into the relaxation time approximation by estimating the group velocities from the electronic band structures. Finally, the experimentally measured thermoelectric properties were compared with those obtained by calculation. As a result, the calculated thermoelectric properties were found to be in good agreement with the experimental results. Therefore, we can conclude that introducing the effect of carrier scattering at the grain boundaries into the relaxation time approximation contributes to enhance the accuracy of a first-principles calculation relating to nanocrystalline materials.

  6. Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating.

    PubMed

    Agarwal, Rahul; Krook, Nadia M; Ren, Ming-Liang; Tan, Liang Z; Liu, Wenjing; Rappe, Andrew M; Agarwal, Ritesh

    2018-03-14

    Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion-exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.

  7. Formation of randomly distributed nano-tubes, -rods and -plates of n-type and p-type bismuth telluride via molecular legation

    NASA Astrophysics Data System (ADS)

    Ram, Jasa; Ghosal, Partha

    2015-08-01

    Randomly distributed nanotubes, nanorods and nanoplates of Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 ternary compounds have been synthesized via a high yield solvo-thermal process. Prior to solvo-thermal heating at 230 °C for crystallization, we ensured molecular legation in room temperature reaction by complete reduction of precursor materials, dissolved in ethylene glycol and confirmed it by replicating Raman spectra of amorphous and crystalline materials. These nanomaterials have also been characterized using XRD, FE-SEM, EDS and TEM. Possible formation mechanism is also discussed. This single process will enable development of thermoelectric modules and random distribution of diverse morphology will be beneficial in retaining nano-crystallite sizes.

  8. Effect of chemical etching on the surface roughness of CdZnTe and CdMnTe gamma radiation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain,A.; Babalola, S.; Bolotnikov, A.E.

    2008-08-11

    Generally, mechanical polishing is performed to diminish the cutting damage followed by chemical etching to remove the remaining damage on crystal surfaces. In this paper, we detail the findings from our study of the effects of various chemical treatments on the roughness of crystal surfaces. We prepared several CdZnTe (CZT) and CdMnTe (CMT) crystals by mechanical polishing with 5 {micro}m and/or lower grits of Al{sub 2}O{sub 3} abrasive papers including final polishing with 0.05-{micro}m particle size alumina powder and then etched them for different periods with a 2%, 5% Bromine-Methanol (B-M) solution, and also with an E-solution (HNO{sub 3}:H{sub 2}O:Cr{submore » 2}O{sub 7}). The material removal rate (etching rate) from the crystals was found to be 10 {micro}m, 30 {micro}m, and 15 {micro}m per minute, respectively. The roughness of the resulting surfaces was determined by the Atomic Force Microscopy (AFM) to identify the most efficient surface processing method by combining mechanical and chemical polishing.« less

  9. Structure and Chemistry in Halide Lead-Tellurite Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Riley, Brian J.; Lipton, Andrew S.

    2013-02-11

    A series of TeO2-PbO glasses were fabricated with increasing fractions of mixed alkali, alkaline earth, and lanthanide chlorides. The glass and crystal structure was studied with Raman spectroscopy, nuclear magnetic resonance (NMR), X-ray diffraction, and electron microscopy. As the chloride fraction increased, the medium-range order in the glass decreased up to a critical point (~14 mass% of mixed chlorides), above which the glasses became phase-separated. Resulting phases are a TeO2/PbO-rich phase and a crystalline phase rich in alkali chlorides. The 125Te NMR indicates, contrary to previous studies, that Te site distribution did not change with increased concentrations of M+, M2+,more » and M3+ cations, but rather is controlled by the Te/Pb molar ratio. The 207Pb NMR shows that two Pb species exist and their relative concentration changes nearly linearly with addition of the mixed chlorides, indicating that the additives to the TeO2-PbO glass are accommodated by changing the Pb species. The 23Na and 35Cl NMR indicate that Na and Cl are distributed in the single-phase glass phase up to the critical point, and at higher concentrations partition to crystalline phases. Transmission electron microscopy shows that the sample at the critical point contains ~10 nm seed nuclei that increase in size and concentration with exposure to the electron beam.« less

  10. Structural Channels and Atomic-Cluster Insertion in CsxBi4Te6 (1 ≤ x ≤ 1.25) As Observed by Aberration-Corrected Scanning Transmission Electron Microscopy.

    PubMed

    Zhang, Ruixin; Yang, Huaixin; Guo, Cong; Tian, Huanfang; Shi, Honglong; Chen, Genfu; Li, Jianqi

    2016-12-19

    Microstructural analyses based on aberration-corrected scanning transmission electron microscopy (STEM) observations demonstrate that low-dimensional Cs x Bi 4 Te 6 materials, known to be a novel thermoelectric and superconducting system, contain notable structural channels that go directly along the b axis, which can be partially filled by atom clusters depending on the thermal treatment process. We successfully prepared two series of Cs x Bi 4 Te 6 single-crystalline samples using two different sintering processes. The Cs x Bi 4 Te 6 samples prepared using an air-quenching method show superconductivity at approximately 4 K, while the Cs x Bi 4 Te 6 with the same nominal compositions prepared by slowly cooling are nonsuperconductors. Moreover, atomic structural investigations of typical samples reveal that the structural channels are often empty in superconducting materials; thus, we can represent the superconducting phase as Cs 1-y Bi 4 Te 6 with considering the point defects in the Cs layers. In addition, the channels in the nonsuperconducting crystals are commonly partially occupied by triplet Bi clusters. Moreover, the average structures for these two phases are also different in their monoclinic angles (β), which are estimated to be 102.3° for superconductors and 100.5° for nonsuperconductors.

  11. Radio frequency surface resistance of Tl-Ba-Ca-Cu-O films on metal and single-crystal substrates

    NASA Astrophysics Data System (ADS)

    Arendt, P. N.; Reeves, G. A.; Elliott, N. E.; Cooke, D. W.; Gray, E. R.; Houlton, R. J.; Brown, D. R.

    1990-01-01

    Films of Tl-Ba-Ca-Cu were dc magnetron sputtered from a single multielement target. The films were deposited onto substrates of: (1) magnesium oxide, (2) a silver based alloy (Consil 995), (3) a nickel based alloy (Haynes 230), and (4) buffer layers of barium fluoride or copper oxide on Consil. To form superconducting phases, post-deposition anneals were made on these films using an alumina crucible with an over pressure of thallium and flowing oxygen. After annealing, the film phases were determined using x-ray diffraction. The film surface resistances (Rs) were measured at 22 GHz in a TE011 cavity.

  12. Advanced methods for preparation and characterization of infrared detector materials. [mercury cadmium tellurides

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.; Martin, B. G.

    1980-01-01

    Mercury cadmium telluride crystals were prepared by the Bridgman method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of the crystal growth kinetics for the Hg(i-x)CdxTe alloys, and measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential thermal analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge carrier concentrations, charge carrier mobilities, Hall coefficient, optical absorptance, and Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  13. Effect of Te doping on FeSe superconductor synthesized by powder-in-tube

    NASA Astrophysics Data System (ADS)

    Imaduddin, A.; Nisa, K.; Yudanto, S. D.; Nugraha, H.; Siswayanti, B.

    2017-04-01

    FeSe is a superconducting material, which has the simplest crystal structure among the Fe-based superconductors. It has no arsenic element, which is very harmful to the human body. In this study, we analyzed the effects of milling time and Te doping on FeSe superconductors. The synthesis of the samples were carried out using powder-in-tube method in a SS304 stainless steel tube. After the pressing process, followed by the sintering process at 500° C for 20 hours, the samples were removed from the tubes. Later, we analyzed its crystal structures, surfaces morphology and the superconductivity properties. Δ-FeSe phase (hexagonal, non-superconductor) and β-FeSe (tetragonal, superconductor) were formed in the samples, including minor phases of Fe and Fe3Se4. Te doping changed the crystal structure from β-FeSe and Δ-FeSe into FeSe0.5Te0.5. In addition, the onset critical temperature (TC, onset) shifted to higher temperature.

  14. Visible light driven multifunctional photocatalysis in TeO2-based semiconductor glass ceramics

    NASA Astrophysics Data System (ADS)

    Kushwaha, Himmat Singh; Thomas, Paramanandam; Vaish, Rahul

    2017-01-01

    Photocatalytic xCaCu3Ti4O12-(100-x)TeO2 (x=0.25 mol% to 3 mol%), glass nanocomposites were fabricated and investigated for wastewater treatment, self-cleaning surfaces, and photocatalytic hydrogen evolution. Visible light active crystals of Cu-doped TiO2 and TiTe3O8 were grown by optimized crystallization of as-quenched glasses. The visible light photocatalytic activity of glass samples was investigated for estrogenic pharmaceutical pollutants, and the degradation rate was obtained as 168.56 min-1 m-2. A higher photocatalytic H2 production rate was observed (135 μmole h-1 g-1) for the crystallized CaCu3Ti4O12-TeO2 (x=3. 0) glass plate under visible light. The self-cleaning performance was observed using contact angle measurements for water under dark and light conditions. These visible light active glass ceramics are a cost effective sustainable solution for water treatment and self-cleaning applications.

  15. Radiation hardness studies of CdTe thin films for clinical high-energy photon beam detectors

    NASA Astrophysics Data System (ADS)

    Shvydka, Diana; Parsai, E. I.; Kang, J.

    2008-02-01

    In radiation oncology applications, the need for higher-quality images has been driven by recent advances in radiation delivery systems that require online imaging. The existing electronic imaging devices commonly used to acquire portal images implement amorphous silicon (a-Si) detector, which exhibits poor image quality. Efforts for improvement have mostly been in the areas of noise and scatter reduction through software. This has not been successful due to inherent shortcomings of a-Si material. Cadmium telluride (CdTe) semiconductor has long been recognized as highly suitable for use in X-ray detectors in both spectroscopic and imaging applications. Development of such systems has mostly concentrated on single crystal CdTe. Recent advances in thin-film deposition technology suggest replacement of crystalline material with its polycrystalline counterpart, offering ease of large-area device fabrication and achievement of higher resolution as well as a favorable cost difference. While bulk CdTe material was found to have superior radiation hardness, thin films have not been evaluated from that prospective, in particular under high-energy photon beam typical of radiation treatment applications. We assess the performance of thin-film CdTe devices utilizing 6 MeV photon beam and find no consistent trend for material degradation under doses far exceeding the typical radiation therapy detector lifetime dose.

  16. TePtFe Nanotubes as High-Performing Bifunctional Electrocatalysts for the Oxygen Reduction Reaction and Hydrogen Evolution Reaction.

    PubMed

    Li, Wenqiang; Amiinu, Ibrahim Saana; Ye, Bei; Wang, Zhe; Zhu, Jiawei; Kou, Zongkui; Mu, Shichun

    2018-04-25

    Currently, a multicomponent platinum-based alloy has been applied as a promising electrocatalyst to improve catalysis and lower the usage of the noble metal platinum. Herein, a tellurium nanowire (NW)-derived ternary TePtFe nanotube (NT) electrocatalyst has been prepared by the Kirkendall effect. The TePtFe NT formed consists of small single-crystal nanoparticles and voids with an open-end and hollow structure. The TePtFe NT electrocatalyst presents an impressive catalytic activity and stability for both the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). Its ORR specific activity and mass activity are 8.5 and 2.4 times, respectively, improved relative to those of commercial platinum catalysts. It is also impressive that, for the HER, a very low overpotential of 28.1 mV at 10 mA cm -2 can be achieved; this is lower than that of platinum (51.8 mV) catalysts in 0.1 m HClO 4 , and the activity is improved, even after 5000 cycles. This work reveals that TePtFe NTs can be employed as nanocatalysts with an impressive catalytic activity and stability for application in fuel cells and hydrogen production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. X-ray powder diffraction, spectroscopic study, dielectric properties and thermal analysis of new doped compound TiGa0.67Te2.33O8

    NASA Astrophysics Data System (ADS)

    Smaoui, S.; Ben Aribia, W.; Kabadou, A.; Abdelmouleh, M.

    2017-04-01

    A novel mixed valence tellurium oxide, TiGa0.67Te2.33O8, was synthesized and its crystal structure determined using the X-ray powder diffraction technique. The obtained oxide was found to crystallize in a cubic unit-cell, Ia 3 bar space group, with the lattice parameter a = 10.9557(1) Å. Rietveld refinement of the structure led to ultimate confidence factors Rp = 7.63 and Rwp = 6.71. This structure was based on slabs containing groups of (Te/Ga)O4 joined by the metal cations Ti4+. The structure analysis showed a cation ordering of Te4+ and Te6+ yielding a TiGa2/3Te7/3O8 formula. The IR and RAMAN spectra confirmed the presence of the TiO6 and (Te/Ga)O4 groups. The dielectric anomalies observed at 500 K were attributed to the mixed valence structure, arising from the mixed-valence Te6+/Te4+. We detected only one peak in thermal behavior by the DTA/TG analysis; which implied a melting reaction.

  18. Few-layer nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with highly tunable chemical potential.

    PubMed

    Kong, Desheng; Dang, Wenhui; Cha, Judy J; Li, Hui; Meister, Stefan; Peng, Hailin; Liu, Zhongfan; Cui, Yi

    2010-06-09

    A topological insulator (TI) represents an unconventional quantum phase of matter with insulating bulk band gap and metallic surface states. Recent theoretical calculations and photoemission spectroscopy measurements show that group V-VI materials Bi(2)Se(3), Bi(2)Te(3), and Sb(2)Te(3) are TIs with a single Dirac cone on the surface. These materials have anisotropic, layered structures, in which five atomic layers are covalently bonded to form a quintuple layer, and quintuple layers interact weakly through van der Waals interaction to form the crystal. A few quintuple layers of these materials are predicted to exhibit interesting surface properties. Different from our previous nanoribbon study, here we report the synthesis and characterizations of ultrathin Bi(2)Te(3) and Bi(2)Se(3) nanoplates with thickness down to 3 nm (3 quintuple layers), via catalyst-free vapor-solid (VS) growth mechanism. Optical images reveal thickness-dependent color and contrast for nanoplates grown on oxidized silicon (300 nm SiO(2)/Si). As a new member of TI nanomaterials, ultrathin TI nanoplates have an extremely large surface-to-volume ratio and can be electrically gated more effectively than the bulk form, potentially enhancing surface state effects in transport measurements. Low-temperature transport measurements of a single nanoplate device, with a high-k dielectric top gate, show decrease in carrier concentration by several times and large tuning of chemical potential.

  19. Graphene Substrate for van der Waals Epitaxy of Layer-Structured Bismuth Antimony Telluride Thermoelectric Film.

    PubMed

    Kim, Eun Sung; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Ohta, Hiromichi; Lee, Young Hee; Kim, Sung Wng

    2017-02-01

    Graphene as a substrate for the van der Waals epitaxy of 2D layered materials is utilized for the epitaxial growth of a layer-structured thermoelectric film. Van der Waals epitaxial Bi 0.5 Sb 1.5 Te 3 film on graphene synthesized via a simple and scalable fabrication method exhibits good crystallinity and high thermoelectric transport properties comparable to single crystals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Laser ultrasonic investigations of vertical Bridgman crystal growth

    NASA Astrophysics Data System (ADS)

    Queheillalt, Douglas Ted

    The many difficulties associated with the growth of premium quality CdTe and (Cd,Zn)Te alloys has stimulated an interest in the development of a non-invasive ultrasonic approach to monitor critical growth parameters such as the solid-liquid interface position and shape during vertical Bridgman growth. This sensor methodology is based upon the recognition that in most materials, the ultrasonic velocity (and the elastic stiffness constants that control it) of the solid and liquid phases are temperature dependent and an abrupt increase of the longitudinal wave velocity occurs upon solidification. The laser ultrasonic approach has also been used to measure the ultrasonic velocity of solid and liquid Cd0.96Zn0.04Te as a function of temperature up to 1140°C. Using longitudinal and shear wave velocity values together with data for the temperature dependent density allowed a complete evaluation of the temperature dependent single crystal elastic stiffness constants for solid and the adiabatic bulk modulus for liquid Cd0.96Zn0.04 Te. It was found that the ultrasonic velocities exhibited a strong monotonically decreasing function of temperature in the solid and liquid phases and the longitudinal wave indicated an abrupt almost 50% decrease upon melting. Because ray propagation in partially solidified bodies is complex and defines the sensing methodology, a ray tracing algorithm has been developed to analyze two-dimensional wave propagation in the diametral plane of cylindrical solid-liquid interfaces. Ray path, wavefront and time-of-flight (TOF) projections for rays that travel from a source to an arbitrarily positioned receiver on the diametral plane have been calculated and compared to experimentally measured data on a model liquid-solid interface. The simulations and the experimental results reveal that the interfacial region can be identified from transmission TOF data and when used in conjunction with a nonlinear least squares reconstruction algorithm, the interface geometry (i.e. axial location and shape) can be precisely recovered and the ultrasonic velocities of both solid and liquid phases obtained. To gain insight into the melting and solidification process, a single zone VB growth furnace was integrated with the laser ultrasonic sensor system and used to monitor the melting-solidification and directional solidification characteristics of Cd0.96Zn 0.04Te.

  1. Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi.

    PubMed

    Srinivasan, Bhuvanesh; Boussard-Pledel, Catherine; Dorcet, Vincent; Samanta, Manisha; Biswas, Kanishka; Lefèvre, Robin; Gascoin, Franck; Cheviré, François; Tricot, Sylvain; Reece, Michael; Bureau, Bruno

    2017-03-23

    Chalcogenide semiconducting systems are of growing interest for mid-temperature range (~500 K) thermoelectric applications. In this work, Ge 20 Te 77 Se₃ glasses were intentionally crystallized by doping with Cu and Bi. These effectively-crystallized materials of composition (Ge 20 Te 77 Se₃) 100- x M x (M = Cu or Bi; x = 5, 10, 15), obtained by vacuum-melting and quenching techniques, were found to have multiple crystalline phases and exhibit increased electrical conductivity due to excess hole concentration. These materials also have ultra-low thermal conductivity, especially the heavily-doped (Ge 20 Te 77 Se₃) 100- x Bi x ( x = 10, 15) samples, which possess lattice thermal conductivity of ~0.7 Wm -1 K -1 at 525 K due to the assumable formation of nano-precipitates rich in Bi, which are effective phonon scatterers. Owing to their high metallic behavior, Cu-doped samples did not manifest as low thermal conductivity as Bi-doped samples. The exceptionally low thermal conductivity of the Bi-doped materials did not, alone, significantly enhance the thermoelectric figure of merit, zT. The attempt to improve the thermoelectric properties by crystallizing the chalcogenide glass compositions by excess doping did not yield power factors comparable with the state of the art thermoelectric materials, as these highly electrically conductive crystallized materials could not retain the characteristic high Seebeck coefficient values of semiconducting telluride glasses.

  2. Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi

    PubMed Central

    Srinivasan, Bhuvanesh; Boussard-Pledel, Catherine; Dorcet, Vincent; Samanta, Manisha; Biswas, Kanishka; Lefèvre, Robin; Gascoin, Franck; Cheviré, François; Tricot, Sylvain; Reece, Michael; Bureau, Bruno

    2017-01-01

    Chalcogenide semiconducting systems are of growing interest for mid-temperature range (~500 K) thermoelectric applications. In this work, Ge20Te77Se3 glasses were intentionally crystallized by doping with Cu and Bi. These effectively-crystallized materials of composition (Ge20Te77Se3)100−xMx (M = Cu or Bi; x = 5, 10, 15), obtained by vacuum-melting and quenching techniques, were found to have multiple crystalline phases and exhibit increased electrical conductivity due to excess hole concentration. These materials also have ultra-low thermal conductivity, especially the heavily-doped (Ge20Te77Se3)100−xBix (x = 10, 15) samples, which possess lattice thermal conductivity of ~0.7 Wm−1 K−1 at 525 K due to the assumable formation of nano-precipitates rich in Bi, which are effective phonon scatterers. Owing to their high metallic behavior, Cu-doped samples did not manifest as low thermal conductivity as Bi-doped samples. The exceptionally low thermal conductivity of the Bi-doped materials did not, alone, significantly enhance the thermoelectric figure of merit, zT. The attempt to improve the thermoelectric properties by crystallizing the chalcogenide glass compositions by excess doping did not yield power factors comparable with the state of the art thermoelectric materials, as these highly electrically conductive crystallized materials could not retain the characteristic high Seebeck coefficient values of semiconducting telluride glasses. PMID:28772687

  3. Measuring Refractive Index Using the Focal Displacement Method (Postprint)

    DTIC Science & Technology

    2014-05-01

    refractive in- dex data at wavelengths longer than 1.8 μm [19] (2.5 μm [20]). The CdMgTe and CdMnTe crystals were obtained from Brimrose Technology...increase its accuracy. The authors gratefully acknowledge Dr. Sudhir Trivedi ( Brimrose Corp.) for providing the CdMgTe and CdMnTe samples, Dr. Jonathan

  4. Influence of Surrounding Dielectrics on the Data Retention Time of Doped Sb2Te Phase Change Material

    NASA Astrophysics Data System (ADS)

    Jedema, Friso; in `t Zandt, Micha; Wolters, Rob; Gravesteijn, Dirk

    2011-02-01

    The crystallization properties of as-deposited and laser written amorphous marks of doped Sb2Te phase change material are found to be only dependent on the top dielectric layer. A ZnS:SiO2 top dielectric layer yields a higher crystallization temperature and a larger crystal growth activation energy as compared to a SiO2 top dielectric layer, leading to superior data retention times at ambient temperatures. The observed correlation between the larger crystallization temperatures and larger crystal growth activation energies indicates that the viscosity of the phase change material in the amorphous state is dependent on the interfacial energy between the phase change material and the top dielectric layer.

  5. Method for surface passivation and protection of cadmium zinc telluride crystals

    DOEpatents

    Mescher, Mark J.; James, Ralph B.; Schlesinger, Tuviah E.; Hermon, Haim

    2000-01-01

    A method for reducing the leakage current in CZT crystals, particularly Cd.sub.1-x Zn.sub.x Te crystals (where x is greater than equal to zero and less than or equal to 0.5), and preferably Cd.sub.0.9 Zn.sub.0.1 Te crystals, thereby enhancing the ability of these crystal to spectrally resolve radiological emissions from a wide variety of radionuclides. Two processes are disclosed. The first method provides for depositing, via reactive sputtering, a silicon nitride hard-coat overlayer which provides significant reduction in surface leakage currents. The second method enhances the passivation by oxidizing the CZT surface with an oxygen plasma prior to silicon nitride deposition without breaking the vacuum state.

  6. Investigation of angular dependence on photonic bandgap for 1-D photonic crystal

    NASA Astrophysics Data System (ADS)

    Nigam, Anjali; Suthar, B.; Bhargava, A.; Vijay, Y. K.

    2018-05-01

    In the present communication, we study the one-dimensional photonic crystal structure. The photonic band structure has been obtained using Plane Wave Expansion Method (PWEM). The studied has been extended to investigate the angular dependence on photonic bandgap for 1-D photonic crystal. The photonic bandgap is same both for TE and TM mode for normal incidence, while both mode move separate with an incidence angle. The photonic bandgap is almost unaffected with angle for TE mode while the bandgap decreases with an incidence angle for TM mode.

  7. Binary photonic crystal for refractometric applications (TE case)

    NASA Astrophysics Data System (ADS)

    Taya, Sofyan A.; Shaheen, Somaia A.

    2018-04-01

    In this work, a binary photonic crystal is proposed as a refractometric sensor. The dispersion relation and the sensitivity are derived for transverse electric (TE) mode. In our analysis, the first layer is considered to be the analyte layer and the second layer is assumed to be left-handed material (LHM), dielectric or metal. It is found that the sensitivity of the LHM structure is the highest among other structures. It is possible for LHM photonic crystal to achieve a sensitivity improvement of 412% compared to conventional slab waveguide sensor.

  8. Semiconductor electrolyte photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  9. Investigation of Artificial Forced Cooling in the Bridgman Crystal Growth of Cadmium Zinc Telluride

    NASA Astrophysics Data System (ADS)

    Liu, Juncheng; Li, Jiao; Zhang, Guodong; Li, Changxing; Lennon, Craig; Sivananthan, Siva

    2007-08-01

    The effects of artificial forced cooling on the solid liquid interface and on solute segregation were investigated by modeling the vertical Bridgman method for the single-crystal growth of CdZnTe, taking into consideration effects such as increasing the axial outward heat flux from the crucible bottom, the radial outward heat flux from the crucible wall, and the carbon film thickness on the crucible inner wall. Axial artificially forced cooling noticeably increases convection and the temperature gradient in the melt next to the solid liquid interface, and substantially reduces interface concavity at the initial solidification stage. Interface concavity increases a little when the solidification proceeds further, however. Axial artificially forced cooling reduces radial solute segregation of the initial segment of the grown crystal and slightly increases the solute iso-concentration segment. Radial artificially forced cooling enhances melt convection substantially, affects solid liquid interface concavity only slightly, and hardly affects solute segregation in the grown crystal. Doubling the carbon film thickness weakens convection of the melt in front of the interface, substantially increases interface concavity, and hardly affects solute segregation in the grown crystal.

  10. Optical Characterization of Lead Monoxide Films Grown by Laser-Assisted Deposition

    NASA Astrophysics Data System (ADS)

    Baleva, M.; Tuncheva, V.

    1994-05-01

    The Raman spectra of PbO films, grown by laser-assisted deposition (LAD) at different substrate temperatures are investigated. The spectra of the films, deposited on amorphous, single crystal quartz and polycrystal PbTe substrates, are compared with the Raman spectra of tetragonal and orthorhombic powder samples. The phonon frequencies determined in our experiment with powder samples coincide fairly well with those obtained by Adams and Stevens, J. Chem. Soc., Dalton Trans., 1096 (1977). Thus the Raman spectra of the powder samples presented in this paper can be considered as unambiguous characteristics of the two different PbO crystal phases. It was concluded that the Raman scattering may serve as a tool for identification of PbO films and their crystal modifications. On the basis of this investigation it was concluded that the film structure changes from orthorhombic to tetragonal with increased substrate temperature, and that the nature of the substrate influences the crystal structure of the films. On the basis of the Raman spectra of the β-PbO films with prevailing (001) orientation of crystallization, an assignment of the modes is proposed.

  11. Elastic, vibration and thermodynamic properties of Cu1‑x Ag x InTe2 (x = 0, 0.25, 0.5, 0.75 and 1) chalcopyrite compounds via first principles

    NASA Astrophysics Data System (ADS)

    Zhong, Yuhan; Wang, Peida; Mei, Huayue; Jia, Zhenyuan; Cheng, Nanpu

    2018-06-01

    CuInTe2 chalcopyrite compound is widely used in the fields of optoelectronics and pyroelectricity, and doping atoms can further improve the physical properties of the CuInTe2 compound. For all we know, this is the first time that the elastic behaviors and lattice dynamical properties of Ag-doped CuInTe2 compounds with the tetragonal system are determined theoretically. The elastic, lattice dynamical and thermal properties of Cu1‑x Ag x InTe2 (x = 0, 0.25, 0.5, 0.75 and 1) compounds have been investigated by using density functional theory. The obtained elastic constants of Cu1‑x Ag x InTe2 compounds indicate that these compounds are mechanically stable and elastic anisotropic. The anisotropy of the {001} plane is more obvious than those of the {100} and {010} planes. Additionally, with increasing Ag doping concentrations, the bulk and shear moduli of Cu1‑x Ag x InTe2 compounds decrease and their toughness improves. The phonon spectra and density of states reveal that Cu (or Ag) atoms in Cu1‑x Ag x InTe2 compounds form chemical bonds with Te atoms, and Cu-Te bonds are gradually replaced by Ag-Te bonds with increasing Ag doping concentration. Vibration modes of Cu1‑x Ag x InTe2 compounds at the {{Γ }} point in the Brillouin zone show that each Cu1‑x Ag x InTe2 (x = 0 and 1) crystal includes five irreducible representations (A1, A2, B1, B2 and E). As for Cu1‑x Ag x InTe2 (x = 0.25, 0.5 and 0.75) compounds, each crystal has three irreducible representations (A, B and E). The atomic displacements of several typical phonon modes in CuInTe2 crystals have been analyzed to deepen the understanding of lattice vibrations in Cu1‑x AgxInTe2 compounds. With increasing Ag doping concentration, the Debye temperatures of Cu1‑x Ag x InTe2 compounds decrease, while their heat capacities increase.

  12. In-situ characterization of the optical and electronic properties in GeTe and GaSb thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velea, A.; Popescu, M.; Galca, A. C., E-mail: ac-galca@infim.ro

    2015-10-07

    GeTe and GaSb thin films obtained by pulsed laser deposition were investigated by spectroscopic ellipsometry at controlled temperatures. The GeTe films were fully amorphous, while the GaSb films were partially crystalized in the as-deposited state. The Tauc-Lorentz model was employed to fit the experimental data. From the temperature study of the optical constants, it was observed the crystallization in the 150–160 °C range of GeTe amorphous films and between 230 and 240 °C of GaSb amorphous phase. A second transition in the resonance energy and the broadening parameter of the Lorentz oscillator was observed due to the crystallization of Sb after 250 °C.more » The temperatures of 85 °C and 130 °C are noticed as the start of the relaxation of the amorphous GeTe phase and as-deposited GaSb. The peaks of the imaginary part of the dielectric function red shifted after the phase change, while the variation with temperature of the crystalline phase follows the Varshni law. The electron-phonon coupling constants are 2.88 and 1.64 for c-GeTe and c-GaSb, respectively. An optical contrast up to 60% was obtained for GeTe films and a maximum value of 7.5% is revealed in the case GaSb, which is altered by the partial crystallinity of the as-deposited films.« less

  13. Effect of cadmium telluride quantum dots on the dielectric and electro-optical properties of ferroelectric liquid crystals.

    PubMed

    Kumar, A; Biradar, A M

    2011-04-01

    We present here the dielectric and electro-optical studies of cadmium telluride quantum dots (CdTe QDs) doped ferroelectric liquid crystals (FLCs). It has been observed that the doping of CdTe QDs not only induced a pronounced memory effect but also affected the physical parameters of FLC material (LAHS19). The modifications in the physical parameters and memory effect of LAHS19 are found to depend on the concentration ratio of CdTe QDs. The lower concentration of CdTe QDs (1-3 wt%) enhanced the values of spontaneous polarization and rotational viscosity of LAHS19 material but did not favor the memory effect, whereas a higher concentration of CdTe QDs (>5 wt%) degraded the alignment of LAHS19 material. The doping of ∼5 wt% of CdTe QDs is found to be the most suitable for achieving good memory effect without significantly affecting the material parameters. ©2011 American Physical Society

  14. MoSbTe for high-speed and high-thermal-stability phase-change memory applications

    NASA Astrophysics Data System (ADS)

    Liu, Wanliang; Wu, Liangcai; Li, Tao; Song, Zhitang; Shi, Jianjun; Zhang, Jing; Feng, Songlin

    2018-04-01

    Mo-doped Sb1.8Te materials and electrical devices were investigated for high-thermal-stability and high-speed phase-change memory applications. The crystallization temperature (t c = 185 °C) and 10-year data retention (t 10-year = 112 °C) were greatly enhanced compared with those of Ge2Sb2Te5 (t c = 150 °C, t 10-year = 85 °C) and pure Sb1.8Te (t c = 166 °C, t 10-year = 74 °C). X-ray diffraction and transmission electron microscopy results show that the Mo dopant suppresses crystallization, reducing the crystalline grain size. Mo2.0(Sb1.8Te)98.0-based devices were fabricated to evaluate the reversible phase transition properties. SET/RESET with a large operation window can be realized using a 10 ns pulse, which is considerably better than that required for Ge2Sb2Te5 (∼50 ns). Furthermore, ∼1 × 106 switching cycles were achieved.

  15. Fabrication of Te@Au core-shell hybrids for efficient ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Jin, Huile; Wang, Demeng; Zhao, Yuewu; Zhou, Huan; Wang, Shun; Wang, Jichang

    2012-10-01

    Using Au nanoparticles to catalyze the oxidation of alcohols has garnered increasing attention due to its potential application in direct alcohol fuel cells. In this research Te@Au core-shell hybrids were fabricated for the catalytic oxidation of ethanol, where the preparation procedure involved the initial production of Te crystals with different microstructures and the subsequent utilization of the Te crystal as a template and reducing agent for the production of Te@Au hybrids. The as-prepared core-shell hybrids were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. Electrochemical measurements illustrate that the hybrids have great electrocatalytic activity and stability toward ethanol oxidation in alkaline media. The enhanced electrocatalytic property may be attributed to the cooperative effects between the metal and semiconductor and the presence of a large number of active sites on the hybrids surface.

  16. Pressure induced Ag 2Te polymorphs in conjunction with topological non trivial to metal transition

    DOE PAGES

    Zhu, J.; Oganov, A. R.; Feng, W. X.; ...

    2016-08-01

    Silver telluride (Ag 2Te) is well known as superionic conductor and topologica insulator with polymorphs. Pressure induced three phase transitions in Ag 2Te hav been reported in previous. Here, we experimentally identified high pressure phas above 13 GPa of Ag 2Te by using high pressure synchrotron x ray diffraction metho in combination with evolutionary crystal structure prediction, showing it crystallize into a monoclinic structure of space group C2/m with lattice parameters a = 6.081Å b = 5.744Å, c = 6.797 Å, β = 105.53°. The electronic properties measurements of Ag 2Te reveal that the topologically non-trivial semiconducting phase I andmore » semimetalli phase II previously predicated by theory transformed into bulk metals fo high pressure phases in consistent with the first principles calculations« less

  17. Nanocrystal growth and morphology of PbTeSe-ZnSe composite thin films prepared by one-step synthesis method

    NASA Astrophysics Data System (ADS)

    Sato, Kazuhisa; Abe, Seishi

    2016-10-01

    The microstructure of polycrystalline PbTe1-xSex-ZnSe composite thin films has been studied by scanning transmission electron microscopy and electron diffraction. The films were prepared by the one-step synthesis method using simultaneous evaporation of PbTe and ZnSe. The nanocrystals of PbTe1-xSex are formed in a ZnSe matrix. Tellurium concentration can be tuned by controlling the PbTe evaporation source temperatures between 753 K and 793 K. Binary PbSe nanocrystals were formed at 753 K, while ternary PbTe1-xSex nanocrystals were formed at 793 K. The nanocrystals grow in a granular shape at the initial stage of film growth, and the morphology changes to nanowire-shape as the film grows, irrespective of the Te concentration. The ternary PbTe1-xSex nanocrystals were composed of two phases with different Te concentration; Te-rich (Se-poor) granular crystals were formed near the bottom half parts of the film and Te-poor (Se-rich) nanowires were formed at the upper half parts of the film. Columnar ZnSe crystals contain high-density {111} stacking faults due to the low stacking fault energy of ZnSe. A balance of deposition and re-evaporation on the substrate during the film growth will be responsible for the resultant nanocrystal morphology.

  18. Characterization of p-Type CdTe Electrodes in Acetonitrile/Electrolyte Solutions. Nearly Ideal Behavior from Reductive Surface Pretreatments.

    DTIC Science & Technology

    1983-06-30

    using Ag conductive palnt and the entire assembly was mounted in glass tubing with ordinary epoxy leaving only the front crystal face, ...energy set, several eV higher than either Te2- or Teo (as measured for sputtered CdTe and Te, respectively) is assigned to TeO2 , the lowest stable...binding energy reported for TeO2 (575.9 eV). 33 The lower binding energy set of bands, lying midway between Teo and Te2 - , results from both Teo and

  19. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    NASA Astrophysics Data System (ADS)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  20. Synthesis and Characterization of Potassium Aryl- and Alkyl-Substituted Silylchalcogenolate Salts

    DOE PAGES

    Brown, Jessica Lynn; Montgomery, Ashley C.; Samaan, Christopher A.; ...

    2016-02-23

    Treatment of either triphenyl(chloro)silane or tert-butyldiphenyl(chloro)silane with potassium metal in THF, followed by addition of 18-crown-6, affords [K(18-crown-6)][SiPh 3] (1) and [K(18-crown-6)][SiPh 2 tBu] (2), respectively, as the reaction products in high yield. Compounds 1 and 2 were fully characterized including by multi-nuclear NMR and IR spectroscopies. Addition of elemental chalcogen to either 1 or 2, results in facile chalcogen insertion into the potassium-silicon bond to afford the silylchalcogenolates, [K(18-crown-6)][E– SiPh2R] (E = S, R = Ph (3); Se, R = Ph (4); E = Te, R = Ph (5); E = S, R = tBu (6); E = Se,more » R = tBu (7); E = Te, R = tBu (8)), in moderate to good yield. The silylchalcogenolates reported herein were characterized by multi-nuclear NMR and IR spectroscopies, and their solid-state molecular structures were determined by single-crystal X-ray crystallography. Importantly, the reported compounds crystallize as discrete monomers in the solid-state, a structural feature not previously observed in silylchalcogenolates, providing well-defined access routes into systematic metal complexation studies.« less

  1. Numerical methods for industrial vertical Bridgman growth of (Cd,Zn)Te

    NASA Astrophysics Data System (ADS)

    Lin, K.; Boschert, S.; Dold, P.; Benz, K. W.; Kriessl, O.; Schmidt, A.; Siebert, K. G.; Dziuk, G.

    2002-04-01

    This paper presents efficient numerical methods—the "inverse modeling" method and the adaptive finite element method—for optimizing the heat transport as well as for investigating the heat and mass transport under the influence of convection during crystal growth, especially near the liquid/solid interface. These methods have been applied to industrial Bridgman-furnaces for the growth of 65-75 mm diameter (Cd,Zn)Te crystals.

  2. Natural nanostructure and superlattice nanodomains in AgSbTe{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlton, Christopher E.; De Armas, Ricardo; Shao-Horn, Yang, E-mail: delaireoa@ornl.gov, E-mail: shaohorn@mit.edu

    2014-04-14

    AgSbTe{sub 2} has long been of interest for thermoelectric applications because of its favorable electronic properties and its low lattice thermal conductivity of ∼0.7 W/mK. In this work, we report new findings from a high-resolution transmission electron microscopy study revealing two nanostructures in single crystal Ag{sub 1−x}Sb{sub 1+x}Sb{sub 2+x} (with x = 0, 0.1, 0.2); (i) a rippled natural nanostructure with a period of ∼2.5–5 nm and (ii) superlattice ordered nanodomains consistent with cation ordering predicted in previous density functional theory studies. These nanostructures, combined with point-defects, probably serve as sources of scattering for phonons, thereby yielding a low lattice thermal conductivity over amore » wide temperature range.« less

  3. Small influence of magnetic ordering on lattice dynamics in TaFe 1.25 Te 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opačić, M.; Lazarević, N.; Tanasković, D.

    2017-11-16

    Raman scattering spectra of zigzag spin chain TaFe 1.25Te 3 single crystal are presented in a temperature range from 80 to 300 K. Nine Raman active modes of A g and B g symmetry are clearly observed and assigned by probing different scattering channels, which is confirmed by lattice dynamics calculations. Temperature dependence of the Raman modes linewidth is mainly governed by the lattice anharmonicity. The only deviation from the conventional behavior is observed for A g symmetry modes in a vicinity of the magnetic phase transition at T N ≈ 200 K. This implies that the electron-phonon interaction weaklymore » changes with temperature and magnetic ordering, whereas small changes in the spectra near the critical temperature can be ascribed to spin fluctuations.« less

  4. Tellurium(0) as a ligand: synthesis and characterization of 2-pyridyltellurolates of platinum(II) and structures of [Pt{2-Te-3-(R)C5H3N}2Te(PR'3)] (R = H or Me).

    PubMed

    Chauhan, Rohit Singh; Kedarnath, G; Wadawale, Amey; Muñoz-Castro, Alvaro; Arratia-Perez, Ramiro; Jain, Vimal K; Kaim, Wolfgang

    2010-05-03

    Treatment of toluene solutions of the ditellurides [Te(2){C(5)H(3)N(R)-3}(2)] (R = H or Me) with [Pt(PPh(3))(4)] yielded two types of complexes, [Pt{2-Te-3-(R)C(5)H(3)N}(2)(PPh(3))(2)] (1a-d) as the major products and [Pt{2-Te-3-(R)C(5)H(3)N}(2)Te(PPh(3))] (2a-d) as minor products. The above complexes can also be obtained by the reaction of [PtCl(2)(PR'(3))(2)] (PR'(3) = PPh(3) or PPh(2)(2-C(5)H(4)N)) with 2 equiv of Na(2-Te-C(5)H(3)R). The complexes were characterized by elemental analyses and UV-vis, NMR ((1)H and (31)P), and (in part) XPS spectroscopy. The molecular structures of [Pt(2-Te-C(5)H(4)N)(2)Te(PPh(3))] (2a) and [Pt{2-Te-C(5)H(3)(Me)N}(2)Te(PPh(3))] (2b) were established by single crystal X-ray diffraction. Both complexes exhibit a distorted square-planar configuration at the platinum(II) centers. The two mutually trans positioned 2-pyridinetellurolate ligands [2-Te-C(5)H(3)(R)N] coordinate to the central platinum atom in a monodentate fashion through the tellurium atoms. The tellurium(0) atom adopts a "bent T" configuration as it is bridging the 2-Te- C(5)H(3)(R)N molecules via N-Te-N bonds (166 degrees angle) and coordinates to Pt(II) in the trans position to PPh(3). The novel bis(pyridine)tellurium(0) arrangement resembles the bis(pyridine)iodonium structure. The calculated NICS indices and ELF functions clearly show that the compounds 2a and 2b are aromatic in the region defined by the Te-C-N-Te-Pt five-membered rings.

  5. Precipitation of anion inclusions and plasticity under hydrostatic pressure in II-VI crystals

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Weinstein, B. A.

    2016-10-01

    Precipitation of anion nanocrystals (NCs) in initially stoichiometric II-VI crystals under hydrostatic pressure and light exposure is explored by Raman spectroscopy, and the mechanism for this effect is analyzed by model calculations. ZnSe, ZnTe, and CdSe crystals are studied in bulk and/or epitaxial-film forms. Se and Te NCs in the trigonal (t) phase precipitate in ZnSe and ZnTe, but the effect is absent or minimal in CdSe. The precipitation is induced by pressure and assisted by sub-band-gap light. In ZnSe, t-Se NCs appear for pressure exceeding 4.8 GPa and light flux above 50 -70 W /m m2 . In ZnTe, the precipitation of t-Te NCs requires less pressure to initiate, and there is a clear upper-pressure limit for t-Te nuclei to form. We find also that ZnTe samples with cleavage damage or elevated zinc-vacancy content are more prone to form t-Te NCs at lower pressures (even 1 atm in some cases) and lower flux. The precipitation seen in ZnSe and ZnTe occurs at pressures far below their phase transitions, and cannot be due to those transitions. Rather, we propose that the NCs nucleate on dislocations that arise from hydrostatic-pressure induced plastic flow triggered by noncubic defect sites. Calculations of the kinetic barrier for growth of an optimally shaped nucleus are performed, including hydrostatic pressure in the energy minimization scheme. Using sensible values for the model parameters related to the cohesive energies of Se and Te, the calculations account for our main observations, including the existence of an upper pressure limit for precipitation, and the absence of precipitation in CdSe. We consider the effects of pressure-induced precipitate formation on the I-II phase transitions in a variety of binary semiconductors and make predictions of when this effect should be important.

  6. Advanced methods for preparation and characterization of infrared detector materials

    NASA Technical Reports Server (NTRS)

    Broerman, J. G.; Morris, B. J.; Meschter, P. J.

    1983-01-01

    Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  7. In-Situ Optical Determination of Thermomechanical Properties of ZnSe and ZnTe Crystals

    NASA Technical Reports Server (NTRS)

    Burger, A.; Ndap, J.-O.; Chattopadhyay, K.; Ma, X.; Silberman, E.; Feth, S.; Palosz, W.; Su, C.-H.

    1999-01-01

    At temperatures above 1/2 T(sub m), the generation and movement of dislocations may result due to the load created by the weight of the crystal itself The deformation may be expected to increase the line defect density and may result in generation of low angle grain boundaries, especially in the regions of the crystal attached to the ampule. It has often been suspected that elimination of this effect in space can improve crystallinity of crystals grown under microgravity conditions, however, a direct experimental proof of such relation is still missing. In this work we have designed and built a system of in-situ optical detection and measurement of the mechanical deformations of a crystal wafer under its own weight, and studied the deformation effects as a function of temperature. The results of the measurements for ZnSe and ZnTe crystal wafers will be presented.

  8. Phase transition and equation of state of paratellurite (TeO2) under high pressure

    NASA Astrophysics Data System (ADS)

    Liu, Xun; Mashimo, Tsutomu; Kawai, Nobuaki; Sekine, Toshimori; Zeng, Zhaoyi; Zhou, Xianming

    2016-07-01

    The Hugoniot data for TeO2 single crystals were obtained for pressures up to ˜85 GPa along both the <100> (a-axis) and <001> (c-axis) directions using a velocity interferometer system for any reflector and inclined-mirror method combined with a powder gun or two-stage light gas gun. The Hugoniot-elastic limit of TeO2 was determined to be 3.3-4.3 GPa along the c-axes. The shock velocity (U s) versus particle velocity (U p) relation for TeO2 shows a kink around U p = 1.0 km s-1, which suggests a phase transition completes at ˜26 ± 2 GPa. The Hugoniot relations of the low and high pressure phase are given by U s = 3.13(5) + 1.10(6)U p for U p < 1.0 km s-1 and U s = 2.73(9) + 1.49(5)U p for U p > 1.0 km s-1, respectively. First-principles geometry optimizations based on the generalized gradient approximation after Perdew, Burke and Ernzerhof method were also performed on TeO2. It suggested that a continuous structure distortion occurs up to 22 GPa, and the lattice parameters b and c abruptly increase and decrease at 22 GPa, respectively, indicating a first-order phase transition to the cotunnite structure phase. The equation of state of the cotunnite phase TeO2 is discussed based on the experimental and simulation results.

  9. Stimulation of respiratory changes in alae nasi length by chemoreceptor activation.

    PubMed

    Van Lunteren, E; Haxhiu, M A; Cherniack, N S

    1986-03-01

    Respiratory-related changes in length of the nasal dilator muscle, the alae nasi muscle, were measured using sonomicrometry in ten anesthetized (pentobarbital), tracheostomized, spontaneously breathing dogs. Piezoelectric crystals were inserted 7-25 mm apart along the direction of the alae nasi muscle fibers, and the effects of progressive hyperoxic hypercapnia and a peripheral and central chemoreceptor stimulant, nicotine (10-500 micrograms intravenously), were ascertained. The alae nasi shortened during inspiration in all animals, started to lengthen again towards the end of inspiration, returned to resting length during the first portion of expiration (Te-1), and remained at resting length for the remainder of expiration (Te-2). The amount of alae nasi inspiratory shortening was increased by occluding the airway for a single breath. Progressive hypercapnia caused progressive increases in the amount and velocity of nasal muscle inspiratory shortening during both unoccluded and occluded breaths; similar stimulatory effects on inspiratory shortening were seen following nicotine administration. Furthermore, both chemoreceptor stimulants caused a delay in the return of the muscle to its resting length during expiration, resulting in a significant increase in Te-1 relative to Te (Te-1/Te), and a greater amount of nasal muscle shortening to be present during Te-1. In some animals these agents also caused tonic shortening of the alae nasi, so that the muscle never returned to its resting length. These results suggest that inspiratory shortening of the alae nasi is inhibited by vagal inputs, but that chemoreceptor activation increases the amount of muscle shortening during both inspiration and early expiration.

  10. Correlating optical infrared and electronic properties of low tellurium doped GaSb bulk crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roodenko, K., E-mail: kroodenko@intelliepi.com; Liao, P.-K.; Lan, D.

    2016-04-07

    Control over the Te doping concentration is especially challenging in the mass-production of optically transparent, high-resistivity Te-doped GaSb crystals. Driven by the necessity to perform fast, robust, and non-destructive quality control of the Te doping homogeneity of the optically transparent large-diameter GaSb wafers, we correlated electronic and optical infrared properties of Te-doped GaSb crystals. The study was based on the experimental Hall and Fourier-Transform Infrared (FTIR) data collected from over 50 samples of the low-doped n-type material (carrier concentration of 6 × 10{sup 16} cm{sup −3} to 7 × 10{sup 17} cm{sup −3}) and the Te-doped p-type GaSb (4.6 ×more » 10{sup 15} cm{sup −3} to 1 × 10{sup 16} cm{sup −3}). For the n-type GaSb, the analysis of the FTIR data was performed using free carrier absorption model, while for the p-type material, the absorption was modeled using inter-valence band absorption mechanism. Using the correlation between the Hall and the IR data, FTIR maps across the wafers allow a fast and reliable way to estimate carrier concentration profile within the wafer.« less

  11. The transport phenomena during the growth of ZnTe crystal by the temperature gradient solution growth technique

    NASA Astrophysics Data System (ADS)

    Yin, Liying; Jie, Wanqi; Wang, Tao; Zhou, Boru; Yang, Fan

    2017-03-01

    A numerical model is developed to simulate the temperature field, the thermosolutal convection, the solute segregation and the growth interface morphology during the growth of ZnTe crystal from Te rich solution by the temperature gradient solution growth (TGSG) technique. Effects of the temperature gradient on the transport phenomena, the growth interface morphology and the growth rate are examined. The influences of the latent heat and the thermal conductivity of ZnTe crystal on the transport phenomena and the growth interface are also discussed. We find that the mass transfer of ZnTe in the solution is very slow because of the low diffusion coefficient and the lack of mixing in the lower part of the solution. During the growth, dilute solution with high density and low growth temperature accumulates in the central region of the growth interface, making the growth interface change into two distinct parts. The inner part is very concave, while the outer part is relatively flat. Growth conditions in front of the two parts of the growth interface are different. The crystalline quality of the inner part of the ingot is predicted to be worse than that of the outer part. High temperature gradient can significantly increase the growth rate, and avoid the diffusion controlled growth to some extent.

  12. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields.

    PubMed

    Noe, G Timothy; Katayama, Ikufumi; Katsutani, Fumiya; Allred, James J; Horowitz, Jeffrey A; Sullivan, David M; Zhang, Qi; Sekiguchi, Fumiya; Woods, Gary L; Hoffmann, Matthias C; Nojiri, Hiroyuki; Takeda, Jun; Kono, Junichiro

    2016-12-26

    We have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers in the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.

  13. Four-wave mixing in CdMnTeSe: In crystals

    NASA Astrophysics Data System (ADS)

    Koziarska-Glinka, B.; Wojtowicz, T.; Miotkowski, I.; Furdyna, J. K.; Suchocki, A.

    1998-02-01

    It is shown that the four-wave mixing technique can be used as a spectroscopic tool for studying the properties of bistable centers in semiconductors. Two metastable centers with different lattice relaxation energy have been identified in the Cd 1- xMn xTe 1- ySe x: In crystal. The power dependence of the FWM signal provides additional support for the "negative-U" model of metastable centers in this material.

  14. Melt-growth dynamics in CdTe crystals

    DOE PAGES

    Zhou, X. W.; Ward, D. K.; Wong, B. M.; ...

    2012-06-01

    We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt growth dynamics and fine scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt → crystal transformation. Here, we demonstrate successful molecular dynamics simulations of melt growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during themore » melt growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical methods.« less

  15. Investigation of temperature and concentration oscillations in the directional solidification of Pb-Sn-Te

    NASA Technical Reports Server (NTRS)

    Anderson, T. J.; Narayanan, R.

    1987-01-01

    Directional solidification of the pseudobinary compound semiconductor material Pb sub 1-x Sn sub x Te by the Bridgman crystal growth process will be studied. Natural convection in the molten sample will be visualized with a novel electrochemical cell technique that employs the solid electrolyte material yttria-stabilized zirconia. Mass transfer by both diffusion and convection will be measured by detecting the motion of oxygen tracer in the liquid. Additional applications for electrochemical cells in semiconductor crystal growth are suggested. Unsteady convection in the melt will also be detected by the appearance of temperature oscillations. The purpose of this study is to experimentally characterize the overstable conditions for a Pb sub 1-x Sn sub x Te melt in the vertical Bridgman crystal growth technique and use a linear analysis to predict the onset of convection for this system.

  16. Catalyst- and template-free low-temperature in situ growth of n-type CdS nanowire on p-type CdTe film and p-n heterojunction properties

    PubMed Central

    Ma, Ligang; Liu, Wenchao; Cai, Hongling; Zhang, Fengming; Wu, Xiaoshan

    2016-01-01

    CdS is an important semiconductor used in optoelectronic devices. Simple techniques for growing CdS nanostructures are thus essential at a low cost. This study presents a novel method for growing single-crystal n-type CdS nanowires on p-type CdTe films by thermal annealing in an H2S/N2 mixed gas flow, which does not require the help of a catalyst or template. The formation process and growth mechanism of the nanowires are investigated. Well-dispersed whiskerlike CdS nanostructures are obtained at an appropriate annealing temperature and duration. We suggest that the stress-driving mechanism of nanowire formation may contribute to the growth of CdS nanowires, and that the evaporation of Te through the boundaries of the CdS grain seeds plays an important role in the sustainable growth of nanowire. In addition, CdS/CdTe heterojunction device is fabricated on Mo glass. The I-V characteristic of the heterojunction in dark shows typical rectifying diode behavior. The turn-on voltage can be regulated by annealing conditions. Meanwhile, the obvious photovoltaic effect is obtained on the in situ growth heterojunction prepared at low annealing temperature. Hence, this is a new fabricated method for CdTe-based materials in the field of energy conversion. PMID:27958306

  17. Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-x Se x

    NASA Astrophysics Data System (ADS)

    Shan, Cui; Lan-Po, He; Xiao-Chen, Hong; Xiang-De, Zhu; Cedomir, Petrovic; Shi-Yan, Li

    2016-07-01

    It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe3-x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe3-x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ 0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe3-x Se x , which indicates conventional superconductivity despite of the existence of a CDW QCP. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China (Grant Nos. 91421101, 11422429, and 11204312), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and STCSM of China (Grant No. 15XD1500200). Work at Brookhaven National Laboratory was supported by the US DOE under Contract No. DESC00112704.

  18. Structural, electronic, magnetic and optical properties of semiconductor Zn1-xMoxTe compound

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Ying; Zhang, Jian-Min

    2018-03-01

    The structural, electronic, magnetic and optical properties of the Zn1-xMoxTe (x = 0.00, 0.25, 0.50, 0.75, 1.00) have been investigated by the spin-polarized first-principles calculations. The Zn0.50Mo0.50Te has tetragonal structure while the Zn1-xMoxTe (x = 0.00, 0.25, 0.75, 1.00) crystallize in cubic structures. For Zn1-xMoxTe (x = 0.25, 0.50, 0.75, 1.00) alloys, the lattice constant and the volume are found larger than those of pure ZnTe alloy. The Zn1-xMoxTe (x = 0.25, 0.50, 0.75, 1.00) is magnetic and the Mo element is found dominant in the bands crossing the Fermi level in the spin-up channel. The Zn0.75Mo0.25Te and MoTe have half-metallic (HM) behavior. In spin-down channel of the Zn0.75Mo0.25Te, the Zn atom mainly contributed to the conduction band minimum (CBM), while the valence band maximum (VBM) appears mainly due to contribution of Te element. A positive spin splitting and crystal field splitting of d-states of Mo atom has been observed for Zn0.75Mo0.25Te alloy. The maximum values of the absorption coefficients αMAX(ω) of the Zn0.50Mo0.50Te alloy along a or b axes are smaller than the absorption coefficient along c axis. The first absorption peak appearing in the energy range of 0.000-1.000 eV for Zn1-xMoxTe (x = 0.25, 0.50, 0.75 or 1.00) alloys is the new peak which is not observed in ZnTe.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zuocheng; Wei, Wei; Yang, Fangyuan

    In this paper, we report quantum oscillation studies on the Bi 2Te 3-xS x topological insulator single crystals in pulsed magnetic fields up to 91 T. For the x = 0.4 sample with the lowest bulk carrier density, the surface and bulk quantum oscillations can be disentangled by combined Shubnikov–de Haas and de Hass–van Alphen oscillations, as well as quantum oscillations in nanometer-thick peeled crystals. At high magnetic fields beyond the bulk quantum limit, our results suggest that the zeroth Landau level of topological surface states is shifted due to the Zeeman effect. The g factor of the topological surfacemore » states is estimated to be between 1.8 and 4.5. Lastly, these observations shed new light on the quantum transport phenomena of topological insulators in ultrahigh magnetic fields.« less

  20. Enhanced linearly polarized lasing emission from nanoimprinted surface-emitting distributed feedback laser based on polymeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Soon Moon; Ha, Na Young; Chee, Mu Guen; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo; Nishimura, Suzushi; Suzaki, Goro

    2008-12-01

    The authors have demonstrated the enhancement of linearly polarized lasing emission intensity using a structure made by a simple fabrication process. The enhanced lasing is achieved using a nanoimprinted distributed feedback structure together with spin-coated polymeric liquid crystals. The backward linearly TE-polarized lasing emission is transformed to left-handed circularly polarized light (L-CPL) by employing a dye-doped polymeric nematic liquid crystal (PNLC) film as a (-1/4)λ[=(3/4)λ] plate. The L-CPL is effectively reflected by a L-polymeric cholesteric liquid crystal film as a reflector and transformed back to TE-polarized light by the PNLC film; as a result one-directional emission intensity is enhanced.

  1. The Ni and Co substitutions in iron chalcogenide single crystals

    NASA Astrophysics Data System (ADS)

    Bezusyy, V. L.; Gawryluk, D. J.; Malinowski, A.; Berkowski, M.; Cieplak, Marta Z.

    2015-03-01

    We study the ab-plane resistivity and Hall effect in Fe1-yMyTe0.65Se0.35 single crystals with M =Co or Ni, and y up to 0.2. The crystals are grown by Bridgman's method. The low-temperature Hall coefficient RH changes sign to negative for crystals with y exceeding 0.135 (Co) and 0.06 (Ni), consistent with the electron doping induced by these impurities. However, the RH remains positive for all samples at high T, suggesting that remnant hole pockets survive the doping, but the holes become localized at low T in heavily doped crystals. Superconducting transition temperature (Tc) approaches zero for y = 0.14 (Co), and 0.03 (Ni), while the resistivity at the Tc onset is only weakly affected by Co doping, but it increases strongly for the Ni. These results suggest that in case of Co impurity the Tc suppression may be attributed to electron doping. On the other hand, the Ni substitution, in addition to electron doping, induces strong localization effects at small impurity contents. Using two-band conduction model we argue that the localization of electron carriers is responsible for strong superconductivity suppression by Ni impurity. Supported by EC through the FunDMS Advanced Grant of the ERC (FP7 Ideas), by the Polish NCS Grant 2011/01/B/ST3/00462, and by the French-Polish Program PICS 2012. Performed in the laboratories co-financed by NanoFun Project POIG.02.02.00-00-025/09.

  2. Crystal structure and magnetic properties of FeTe2O5X (X=Cl, Br): a frustrated spin cluster compound with a new Te(IV) coordination polyhedron.

    PubMed

    Becker, Richard; Johnsson, Mats; Kremer, Reinhard K; Klauss, Hans-Henning; Lemmens, Peter

    2006-12-06

    A new layered transition metal oxohalide, FeTe2O5ClxBr1-x, has been identified. It crystallizes in the monoclinic space group P21/c. The unit cell for FeTe2O5Br is a = 13.3964(8), b = 6.5966(4), c = 14.2897(6) A, beta=108.118(6) degrees, and Z=8. The layers are built of edge sharing [FeO6] octahedra forming [Fe4O16]20- units that are linked by [Te4O10X2]6- groups. The layers have no net charge and are only weakly connected via van der Waals forces to adjacent layers. There are four crystallographically different Te atoms, and one of them displays a unique [TeO2X] coordination polyhedron (X=Cl, Br). Magnetic susceptibility measurements show a broad maximum typical for 4-spin clusters of coupled Fe(III) ions in the high-spin state. Evidence for magnetic instabilities exists at low temperatures, which have been confirmed with specific heat experiments. A theoretical modeling of the susceptibility concludes a frustration of the intra-tetramer anti-ferromagnetic exchange interaction.

  3. Morphological analysis of GeTe in inline phase change switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Matthew R., E-mail: matthew.king2@ngc.com; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695; El-Hinnawy, Nabil

    2015-09-07

    Crystallization and amorphization phenomena in indirectly heated phase change material-based devices were investigated. Scanning transmission electron microscopy was utilized to explore GeTe phase transition processes in the context of the unique inline phase change switch (IPCS) architecture. A monolithically integrated thin film heating element successfully converted GeTe to ON and OFF states. Device cycling prompted the formation of an active area which sustains the majority of structural changes during pulsing. A transition region on both sides of the active area consisting of polycrystalline GeTe and small nuclei (<15 nm) in an amorphous matrix was also observed. The switching mechanism, determined bymore » variations in pulsing parameters, was shown to be predominantly growth-driven. A preliminary model for crystallization and amorphization in IPCS devices is presented.« less

  4. Local structure of the SnTe topological crystalline insulator: Rhombohedral distortions emerging from the rocksalt phase

    NASA Astrophysics Data System (ADS)

    Mitrofanov, K. V.; Kolobov, A. V.; Fons, P.; Krbal, M.; Shintani, T.; Tominaga, J.; Uruga, T.

    2014-10-01

    AIVBVI crystals are believed to possess a rhombohedral (ferroelectric) structure at low temperature that changes to the rocksalt (paraelectric) structure above the Curie temperature. For GeTe it has been recently demonstrated that locally the structure retains the subsets of the shorter and longer bonds across the ferroelectric-to-paraelectric transition despite acquiring the cubic structure on average. Nothing is known about the existence of local distortions in SnTe, a prototypical topological crystalline insulator, where the crystal symmetry plays a crucial role. In this work we report the results of x-ray absorption measurements. We find that the structure is locally rhombohedrally distorted, and the distortions increase at T >100K, breaking the rocksalt average symmetry. Our density functional theory simulations performed at 0 K indicate that the role of spin-orbit coupling in the formation of the local structure of SnTe at low temperature is negligibly small. The small stochastic distortions do not affect the intrinsic band inversion of SnTe.

  5. Thermoelectric materials ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  6. Thermoelectric materials: ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  7. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.

    PubMed

    Crisp, Ryan W; Panthani, Matthew G; Rance, William L; Duenow, Joel N; Parilla, Philip A; Callahan, Rebecca; Dabney, Matthew S; Berry, Joseph J; Talapin, Dmitri V; Luther, Joseph M

    2014-09-23

    We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.

  8. High compositional homogeneity of CdTe{sub x}Se{sub 1−x} crystals grown by the Bridgman method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.

    2015-02-01

    We obtained high-quality CdTe{sub x}Se{sub 1−x} (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ∼1.0. This high uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing highermore » efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional Cd{sub x}Zn{sub 1−x}Te (CdZnTe or CZT)« less

  9. High Compositional Homogeneity of CdTe xSe 1-x Crystals Grown by the Bridgman Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.

    2015-02-03

    We obtained high-quality CdTe xSe 1-x (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The resulting compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ~1.0. This uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing highermore » efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional Cd xZn 1-xTe (CdZnTe or CZT).« less

  10. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te)

    PubMed Central

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J. C. Séamus; Ghigo, Gianluca; Gu, Genda D.; Kwok, Wai-Kwong

    2015-01-01

    Maximizing the sustainable supercurrent density, JC, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because JC amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSexTe1−x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or “columnar defects,” plus a higher density of single atomic site “point” defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180

  11. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te).

    PubMed

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J C Séamus; Ghigo, Gianluca; Gu, Genda D; Kwok, Wai-Kwong

    2015-05-01

    Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields.

  12. Effect of laser irradiation on Ag4In12Sb56Te28

    NASA Astrophysics Data System (ADS)

    Chinnusamy, Rangasami

    2018-04-01

    Ag4In12Sb56Te28 has been synthesized by melt-quench method. Phase homogeneity, crystal structure and effect of laser irradiation have been investigated using X-ray diffraction (XRD) and Raman spectroscopy. Rietveld refinement of crystal structure revealed that Ag4In12Sb56Te28 is a multiphase system with AgIn3Te5, Sb8Te3 and Sb phases. Combined optical microscopy and Raman spectroscopy have been used to understand the distribution of different phases on the surface of the samples, which substantiated the results of Rietveld analysis. Interaction of 20 mW laser beam with samples has been investigated using Raman measurements. The results have shown that regions with large phase fraction of AgIn3Te5 become amorphous during laser-sample interaction, but the starting phase remains nearly same after the interaction. Regions with AgIn3Te5 and nearly equal or larger amount of Sb8Te3 have shown significant growth of α-Sb2O3 during and after laser-sample interaction. Regions rich in Sb have shown formation of AgIn3Te5 and growth of α-Sb2O3 during and after interaction. These observations have been explained based on the maximum temperature rise at different regions during laser-sample interaction.

  13. Effects of europium substitution for In on structure and photoelectric properties of CuIn{sub 1−x}Eu{sub x}Te{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Xiaomeng; Guo, Yongquan

    2016-01-15

    The structures and optical and electric properties of europium doped CuIn{sub 1−x}Eu{sub x}Te{sub 2} have been studied systematically using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectrum (EDS), ultraviolet and visible spectrophotometer (UV–vis), and standard four-probe method. The studies reveal that the minor europium doping into CuIn{sub 1−x}Eu{sub x}Te{sub 2} could still stabilize the chalcopyrite structure in a solid solution of x=0.1. The lattice parameters are going up with increasing the content of europium in CuIn{sub 1−x}Eu{sub x}Te{sub 2} due to the size effect at In site. The structural refinement confirms that Eu partly substitutes formore » In and occupies the 4b crystal position. SEM morphologies show that the europium doping into CuIn{sub 1−x}Eu{sub x}Te{sub 2} can fine the grains from the largely agglomerated state to the uniformly separated state. The electrical resistivities of single phase CuIn{sub 1−x}Eu{sub x}Te{sub 2} follow a mixture model of hopping conductivity and variable range hopping conductivity. The absorption band-gaps of CuIn{sub 1−x}Eu{sub x}Te{sub 2} at room temperature tend to increase with increasing Eu content. CuIn{sub 1−x}Eu{sub x}Te{sub 2} might be a good candidate for photovoltaic cell. - Graphical abstract: CuIn{sub 0.9}Eu{sub 0.1}Te{sub 2} follows a mixture of hopping conductivity and variable range hopping conductivity mechanism. - Highlights: • Novel europium doped CuIn{sub 1−x}Eu{sub x}Te{sub 2}. • Potential application for devices and solar cells. • A mixture of hopping and variable range hopping conductivity mechanism.« less

  14. The Influence of Low Frequency Mechanical Vibrations on the Growth of Single Crystals

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Elwell, D.

    1985-01-01

    The optimum conditions for crystal growth are usually achieved either by suppressing convective fluid flows (e.g., by the use of a low-gravity environment) or by over-riding thermal and solutal convection by the use of a strong stirring action. A novel stirring technique has been developed which involves subjecting a vertical crucible to a circle in a horizontal plane (without rotation). Use of an amplitude of 3 mm at a frequency of approx 6 Hz produced complete mixing of a non-uniform aqueous liquid in a few seconds. The mixing action involved the downward flow of liquid in the outer annulus of the liquid, driven by surface waves. When the downward flowing liquid reaches the bottom of the crucible, it is reflected in a central, upward flowing spiral. This flow pattern should be beneficial for crystal growth by the Bridgman method since it will sweep impurities away from the walls and produce a more convex solid-liquid interface. Initial attempts to apply the new stirring technique to CdTe crystal growth did not show significant improvement in the number of crystals nucleated, but the interface shape appeared to be close to that predicted.

  15. Atomic-scale distortions and temperature-dependent large pseudogap in thin films of the parent iron-chalcogenide superconductor Fe1+y Te

    NASA Astrophysics Data System (ADS)

    Gerbi, Andrea; Buzio, Renato; Kawale, Shrikant; Bellingeri, Emilio; Martinelli, Alberto; Bernini, Cristina; Tresca, Cesare; Capone, Massimo; Profeta, Gianni; Ferdeghini, Carlo

    2017-12-01

    We investigate with scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) calculations the surface structures and the electronic properties of Fe1+y Te thin films grown by pulsed laser deposition. Contrary to the regular arrangement of antiferromagnetic nanostripes previously reported on cleaved single-crystal samples, the surface of Fe1+y Te thin films displays a peculiar distribution of spatially inhomogeneous nanostripes. Both STM and DFT calculations show the bias-dependent nature of such features and support the interpretation of spin-polarized tunneling between the FeTe surface and an unintentionally magnetized tip. In addition, the spatial inhomogeneity is interpreted as a purely electronic effect related to changes in hybridization and Fe-Fe bond length driven by local variations in the concentration of excess interstitial Fe cations. Unexpectedly, the surface density of states measured by STS strongly evolves with temperature in close proximity to the antiferromagnetic-paramagnetic first-order transition, and reveals a large pseudogap of 180-250 meV at about 50-65 K. We believe that in this temperature range a phase transition takes place, and the system orders and locks into particular combinations of orbitals and spins because of the interplay between excess interstitial magnetic Fe and strongly correlated d-electrons.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hong-Sub; Park, Hyung-Ho, E-mail: hhpark@yonsei.ac.kr

    The resistive switching (RS) phenomenon in transition metal oxides (TMOs) has received a great deal of attention for non-volatile memory applications. Various RS mechanisms have been suggested as to explain the observed RS characteristics. Many reports suggest that changes of interface and the role of oxygen vacancies originate in RS phenomena; therefore, in this study, we use a liquid drop of mercury as the top electrode (TE), epitaxial Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3} (PCMO) (110) film of the perovskite manganite family for RS material, and an Nb-doped (0.7 at. %) SrTiO{sub 3} (100) single crystal as the substrate to observe changes inmore » the interface between the TE and TMOs. The use of removable liquid electrode Hg drop as TE not only enables observation of the RS characteristic as a bipolar RS curve (counterclockwise) but also facilitates analysis of the valence band of the PCMO surface after resistive switching via photoelectron spectroscopy. The observed I-V behaviors of the low and high resistance states (HRS) are explained with an electrochemical migration model in PCMO film where accumulated oxygen vacancies at the interface between the Hg TE and PCMO (110) surface induce the HRS. The interpreted RS mechanism is directly confirmed via valence band spectrum analysis.« less

  17. Identifying Au-based Te alloys for optical data storage

    NASA Astrophysics Data System (ADS)

    Wamwangi, D.; Detemple, R.; Woeltgens, H.-W.; Wuttig, M.; Zhang, X.

    2004-06-01

    Au18Sb23Te59 and Au19In26Te55 have been investigated to determine their suitability as phase change recording alloys. Recrystallization experiments identify Au18Sb23Te59 as a suitable phase change material with a recrystallization time of 110 ns and high optical contrast. Coupled to the high optical contrast is a considerable density increase of 4% upon crystallization which allows phase change recording for the Au18Sb23Te59 alloy. On the other hand no recrystallization has been observed optically for Au19In26Te55 due to its low optical contrast of less than 1%. This is related to a lower density contrast of 2%. The crystallization for the Au18Sb23Te59 and Au19In26Te55 alloys observed from temperature-dependent sheet resistance measurements have yielded transition temperatures of 113 and 175 °C, and activation barriers of 1.61±0.01 eV and 2.42±0.02 eV, respectively. We report a cubic structure (a=2.99±0.002 Å) for the Au18Sb23Te59 alloy and a chalcopyrite structure (a=6.50±0.018 Å and 12.27±0.025 Å) for the Au19In26Te55 material. These results confirm that suitable phase change alloys possess cubic structures rather than the chalcopyrite structure typical for sp3 bonded semiconductors.

  18. Short range ferromagnetic, magneto-electric, and magneto-dielectric effect in ceramic Co{sub 3}TeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harishchandra, E-mail: singh85harish@gmail.com, E-mail: singh85harish@rrcat.gov.in; Ghosh, Haranath; Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013

    2016-01-28

    We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co{sub 3}TeO{sub 6}, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ∼17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable tomore » single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.« less

  19. Crystal phase-controlled synthesis of rod-shaped AgInTe2 nanocrystals for in vivo imaging in the near-infrared wavelength region

    NASA Astrophysics Data System (ADS)

    Kameyama, Tatsuya; Ishigami, Yujiro; Yukawa, Hiroshi; Shimada, Taisuke; Baba, Yoshinobu; Ishikawa, Tetsuya; Kuwabata, Susumu; Torimoto, Tsukasa

    2016-03-01

    Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region.Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region. Electronic supplementary information (ESI) available: A detailed synthesis procedure of DSPC-AgInTe2 and analytical data of AgInTe2 NCs. See DOI: 10.1039/c5nr07532g

  20. Synthesis, Transport, and Thermoelectric Studies of Topological Dirac Semimetal Cd3As2 for Room Temperature Waste Heat Recovery and Energy Conversion

    NASA Astrophysics Data System (ADS)

    Hosseini, Tahereh A.

    Rising rates of the energy consumption and growing concerns over the climate change worldwide have made energy efficiency an urgent problem to address. Nowadays, almost two-thirds of the energy produced by burning fossil fuels to generate electrical power is lost in the form of the heat. On this front, increasing electrical power generation through a waste heat recovery remains one of the highly promising venues of the energy research. Thermo-electric generators (TEGs) directly convert thermal energy into electrical and are the prime candidates for application in low-grade thermal energy/ waste heat recovery. The key commercial TE materials, e.g. PbTe and Bi2Te 3, have room temperature ZT of less than 1, whereas ZT exceeding 3 is required for a TEG to be economically viable. With the thermoelectric efficiency typically within a few percent range and a low efficiency-to-cost ratio of TEGs, there has been a resurgence in the search for new class of thermo-electric materials for developing high efficiency thermo-to-electric energy conversion systems, with phonon-glass electron-crystal materials holding the most promise. Herein, we focus on synthesis, characterization and investigation of electrical, thermo-electrical and thermal characteristics of crystalline Cd 3As2, a high performance 3D topological Dirac semimetal with Dirac fermions dispersing linearly in k3-space and possessing one of the largest electron mobilities known for crystalline materials, i.e. 104-105cm2V-1 s-1. Suppression of carrier backscattering, ultra-high charge carrier mobility, and inherently low thermal conductivity make this semimetal a key candidate for demonstrating high, device-favorable S and in turn ZT. In this work, a low-temperature vapor-based crystallization pathway was developed and optimized to produce free standing 2D cm-size crystals in Cd 3As2. Compared to the bulk crystals produced in previous studies, e.g. Piper-Polich, Bridgman, or flux method, Cd3As 2 samples were synthesized over a considerably shorter time ( only a few hours), were single crystals and highly stochiometric. A high thermopower of up to 613 microV K-1 and the electrical conductivity of 105 S/m were registered within the temperature range of 300-400 K. A 1o-method based on the transfer function was applied to probe a thermal conductivity, k of Cd3As2 platelets. The results yield k of 2.4 W/m.K in the confirmation that the thermal conductivity of Cd3As2 crystals is to approach the amorphous limit at the room temperature. With its peak thermopower attained at the low temperature range of 300-400 K, high electrical conductivity and amorphous limit thermal conductivity, crystalline Cd3As2 grown via a low-T vapor based method demonstrates ZT > 3; the results confirm that as-produced Cd 3As2 platelets hold a high promise and is another phonon-glass electron-crystal TE material for the development of next generation, high efficiency thermo-electric generators and refrigerators operating under normal conditions.

  1. Defect chemistry and characterization Hg(1-x)Cd(x)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.; Donovan, J. C.

    1981-01-01

    Iodine doped single crystal samples of mercury cadmium telluride were annealed at temperatures varying from 450 C to 600 C in Hg vapor and quenched to room temperature. Hall effect measurements at 77 K on the crystals cooled to room temperature indicate the samples to be n-type after anneals at high Hg pressures whereas they turn p-type after anneals at low Hg pressures; the electron concentration increases with increase in Hg pressure. The results are explained on the basis that the crystals are saturated with (Hg,Cd)I2, with a fraction of the iodine being present as donor occupying tellurium lattice sites and a fraction being present as acceptors resulting from the iodine on tellurium lattice sites pairing with the doubly ionized native acceptor defects. The solubility of the donor species increases with increase in Hg pressure, whereas that of the acceptor species increases with decrease in Hg pressure. Equilibrium constants for the incorporation of the iodine species as well as the pairing reaction were established.

  2. Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J.; Akutagawa, W.

    1982-01-01

    Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.

  3. Error Measurements in an Acousto-Optic Tunable Filter Fiber Bragg Grating Sensor System

    DTIC Science & Technology

    1994-05-01

    for an ideal AOTF, at 833 and 838 nm using a TeO2 crystal ............................ 33 Figure 3.12. Frequency characteristics of Equation (3.43...multiple channels in an AOTF requires the presence of multiple RF frequencies to establish the complex grating. Since the crystal used in the AOTF ( TeO2 ) is...in germano- silicate glass . This index modulation, Bragg grating, acts as an optical band rejection filter for those wavelengths that meet the Bragg

  4. The Origin and Time Dependence of the Amount and Composition of Non-Constituent Gases Present in Crystal Growth Systems

    NASA Technical Reports Server (NTRS)

    Palosz, Witold

    1998-01-01

    Presence of different, non-constituent gases may be a critical factor in crystal growth systems. In Physical Vapor Transport processes the cras(es) can be used intentionally (to prevent excessively high, unstable growth conditions), or can evolve unintentionally during the course of the process (which may lead to undesired reduction in the -rowth rate). In melt growth, particularly under low gravity conditions (reduced hydrostatic pressure) the gas present in the system may contribute to formation of voids in the growing crystals and even to a separation of the crystal and the liquid phase [1]. On the other hand, some amount of gas may facilitate 'contactless' crystal growth particularly under reduced gravity conditions [2 - 6]. Different non-constituent gases may be present in growth ampoules, and their amount and composition may change during the crystallization process. Some gases can appear even in empty ampoules sealed originally under high vacuum: they may diffuse in from the outside, and/or desorb from the ampoule walls. Residual gases can also be generated by the source materials: even very high purity commercial elements and compounds may contain trace amounts of impurities, particularly oxides. The oxides may have low volatilities themselves but their reaction with other species, particularly carbon and hydrogen, may produce volatile compounds like water or carbon oxides. The non-constituent gases, either added initially to the system or evolved during the material processing, may diffuse out of the ampoule during the course of the experiment. Gases present outside (e.g. as a protective atmosphere or thermal conductor) may diffuse into the ampoule. In either case the growth conditions and the quality of the crystals may be affected. The problem is of a particular importance in sealed systems where the amount of the gases cannot be directly controlled. Therefore a reasonable knowledge and understanding of the origin, composition, magnitude, and change with time of gases present in sealed ampoules may be important for a meaningful control and interpretation of crystal growth processes. This problem is of a particular importance for processing of electronic materials in space because (i) safety considerations require using sealed systems only, and (ii) high cost of crystal growth experiments in microgravity calls for a throughout, accurate description of the processing conditions necessary for a meaningful, efficient, and conclusive interpretation of the space results. In this paper we present the results of our extensive studies on gases in closed crystal growth systems which include: (a) Degassing properties of fused silica; (b) Generation of inert gases by source materials (CdTe, ZnTe, CdZnTe, ZnSe, PbTe, PbSe, PbSeTe); (c) Diffusive cas losses from silica glass ampoules.

  5. Physical properties of the heterojunction MoOx/n-CdTe as a function of the parameters of CdTe crystals

    NASA Astrophysics Data System (ADS)

    Mostovyi, Andrii I.; Solovan, Mykhailo M.; Brus, Viktor V.; Pullerits, Toǧnu; Maryanchuk, Pavlo D.

    2018-01-01

    MoOx/n-CdTe photosensitive heterostructures were prepared by the deposition of molybdenum oxide thin films onto three different n-type CdTe substrates (ρ1=0.4 Ωṡcm, ρ2=10 Ωṡcm, ρ3=40 Ωṡcm) by DC reactive magnetron sputtering. The height of the potential barrier and series resistance of the MoOx/CdTe heterojunctions were investigated. The dominating current transport mechanisms through the heterojunctions were determined at forward and reverse biases.

  6. New oxyfluorotellurates(IV): MTeO3F (M = FeIII, GaIII and CrIII).

    PubMed

    Laval, Jean Paul; Jennene Boukharrata, Nefla; Thomas, Philippe

    2008-02-01

    The crystal structures of the new isomorphous compounds iron(III) oxyfluorotellurate(IV), FeTeO(3)F, gallium(III) oxyfluorotellurate(IV), GaTeO(3)F, and chromium(III) oxyfluorotellurate(IV), CrTeO(3)F, consist of zigzag chains of MO(4)F(2) distorted octahedra alternately sharing O-O and F-F edges and connected via TeO(3) trigonal pyramids. A full O/F anionic ordering is observed and the electronic lone pair of the Te(IV) cation is stereochemically active.

  7. ARPES Study on the Strongly Correlated Iron Chalcogenides Fe1+ySexTe1-x

    NASA Astrophysics Data System (ADS)

    Liu, Zhongkai

    2014-03-01

    The level of electronic correlation has been one of the key questions in understanding the nature of iron-based superconductivity. Using Angle Resolved Photoemission Spectroscopy (ARPES), we systematically investigated the correlation level in the iron chalcogenide family Fe1+ySexTe1-x. For the parent compound Fe1.02Te, we discovered ``peak-dip-hump'' spectra with heavily renormalized quasiparticles in the low temperature antiferromagnetic (AFM) state, characteristic of coherent polarons seen in other correlated materials with complex electronic and lattice interactions. As the temperature (or Se ratio x) increases and Fe1.02SexTe1-x is in the paramagnetic (PM) phase, we observed dissociation behavior of polarons, suggestive of connection between the weakening electron-phonon coupling and AFM. Further increase of x leads to an incoherent to coherent crossover in the electronic structure, indicating a reduction in the electronic correlation as the superconductivity emerges. Furthermore, the reduction of the electronic correlation in Fe1+ySexTe1-x evolves in an orbital-dependent way, where the dxy orbital is influenced most significantly. At the other end of the phase diagram (FeSe) where the single crystal is not stable, we have studied the MBE-grown thin film which also reveals orbital-dependent strong correlation in the electronic structure. Our findings provide a quantitative comprehension on the correlation level and its evolution on the phase diagram of Fe1+ySexTe1-x. We discuss the physical scenarios leading to strong correlations and its connection to superconductivity.

  8. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya

    Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less

  9. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields

    DOE PAGES

    Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya; ...

    2016-12-22

    Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less

  10. Low-temperature high-Z gamma-detectors with very high energy resolution

    NASA Astrophysics Data System (ADS)

    Pobes, Carlos; Brofferio, Chiara; Bucci, Carlo; Cremonesi, Oliviero; Fiorini, Ettore; Giuliani, Andrea; Nucciotti, Angelo; Pavan, Maura; Pedretti, Marisa; Pessina, Gianluigi; Pirro, Stefano; Previtali, Ezio; Sisti, Monica; Vanzini, Marco; Zanotti, Luigi

    2001-12-01

    High-Z low-temperature calorimeters are developed by an Italian collaboration (Milano-Como-Gran Sasso Underground Laboratories) in order to search for rare nuclear events and Dark Matter massive candidates. They exhibit an excellent energy resolution, close to that of Ge-diodes, but a much higher efficiency. Different high-Z materials were initially employed . A many-years optimisation work on tellurium oxide (TeO2) lead to impressive results: devices with total masses around 750 g present FWHM energy resolutions on gamma-ray peaks ranging from 1 KeV (close to the 5 KeV energy threshold) to 2.6 KeV at 2615 KeV (208Tl gamma line). A 3.2 KeV FWHM energy resolution was obtained at 5.4 MeV (210Po alpha line), which is by far the best one ever achieved with any alpha detector. These devices, operated at about 10 mK, consist of a TeO2 single crystal thermally coupled to a 50 mg Neutron Transmutation Doped (NTD) Ge crystal working as a temperature sensor. Special care was devoted to methods for response linearization and temporal stabilisation. Devices based on the same principle and specifically optimised could find applications in several fields like gamma-ray astrophysics, nuclear physics searches, environmental monitoring and radiation metrology.

  11. Clusters of Point Defects Near Dislocations as a Tool to Control CdZnTe Electrical Parameters by Ultrasound

    NASA Astrophysics Data System (ADS)

    Olikh, Ya. M.; Tymochko, M. D.; Olikh, O. Ya.; Shenderovsky, V. A.

    2018-05-01

    We studied the temperature dependence (77-300 K) of the electron concentration and mobility using the Hall method under ultrasound (the acoustic Hall method) to determine the mechanisms by which ultrasound influences the electrical activity of near-dislocation clusters in n-type low-ohmic Cd1-x Zn x Te single crystals (N Cl ≈ 1024 m-3; x = 0; 0.04) with different dislocation density (0.4-5.1) × 1010 m-2. Changes in electrophysical parameters were found to occur as a function of temperature and ultrasound intensity. To evaluate the relative contribution of different charge carrier scattering mechanisms (lattice scattering, ionized impurity scattering, neutral impurity scattering, and dislocation scattering) and their change under ultrasound, a differential evolution method was used. This method made it possible to analyze experimental mobility μ H(T) by its nonlinear approximation with characteristic temperature dependence for each mechanism. An increase in neutral impurity scattering and a decrease in ionized impurity and dislocation scattering components were observed under ultrasound. The character and the amount of these acoustically induced changes correlate with particular sample dislocation characteristics. It was concluded that the observed effects are related to the acoustically induced transformation of the point-defect structure, mainly in the near dislocation crystal regions.

  12. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors

    DOE PAGES

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander; ...

    2015-02-11

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an ordermore » of 10 2. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10 -5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10 -5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.« less

  13. Growth of Cadmium-Zinc Telluride Crystals by Controlled Seeding Contactless Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Gillies, D.; Jerman, G.

    1996-01-01

    Bulk crystals of cadmium-zinc telluride, 23 mm in diameter and up to 45 grams in weight were grown. Controlled seed formation procedure was used to limit the number of grains in the crystal. Most uniform distribution of ZnTe in the crystals was obtained using excess (Cd + Zn) pressure in the ampoule.

  14. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    NASA Astrophysics Data System (ADS)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation therapy.

  15. Effect of potassium doping on electronic structure and thermoelectric properties of topological crystalline insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roychowdhury, Subhajit; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in; Sandhya Shenoy, U.

    2016-05-09

    Topological crystalline insulator (TCI), Pb{sub 0.6}Sn{sub 0.4}Te, exhibits metallic surface states protected by crystal mirror symmetry with negligibly small band gap. Enhancement of its thermoelectric performances needs tuning of its electronic structure particularly through engineering of its band gap. While physical perturbations tune the electronic structure of TCI by breaking of the crystal mirror symmetry, chemical means such as doping have been more attractive recently as they result in better thermoelectric performance in TCIs. Here, we demonstrate that K doping in TCI, Pb{sub 0.6}Sn{sub 0.4}Te, breaks the crystal mirror symmetry locally and widens electronic band gap, which is confirmed bymore » direct electronic absorption spectroscopy and electronic structure calculations. K doping in Pb{sub 0.6}Sn{sub 0.4}Te increases p-type carrier concentration and suppresses the bipolar conduction via widening a band gap, which collectively boosts the thermoelectric figure of merit (ZT) to 1 at 708 K.« less

  16. The microstructural changes of Ge2Sb2Te5 thin film during crystallization process

    NASA Astrophysics Data System (ADS)

    Xu, Jingbo; Qi, Chao; Chen, Limin; Zheng, Long; Xie, Qiyun

    2018-05-01

    Phase change memory is known as the most promising candidate for the next generation nonvolatile memory technology. In this paper, the microstructural changes of Ge2Sb2Te5 film, which is the most common choice of phase change memory material, has been carefully studied by the combination of several characterization techniques. The combination of resistance measurements, X-ray diffraction, Raman spectroscopy and X-ray reflectivity allows us to simultaneously extract the characteristics of microstructural changes during crystallization process. The existence of surface/interface Ge2Sb2Te5 layer has been proposed here based on X-ray reflectivity measurements. Although the total film thickness decreases, as a result of the phase transition from amorphous to metastable crystalline cubic and then to the stable hexagonal phase, the surface/interface thickness increases after crystallization. Moreover, the increase of average grain size, density and surface roughness has been confirmed during thermal annealing process.

  17. Point defects in CdTe xSe 1-x crystals grown from a Te-rich solution for applications in detecting radiation

    DOE PAGES

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; ...

    2015-04-15

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  18. Creation and Analysis of Atomic Structures for CdTe Bi-crystal Interfaces by the Grain Boundary Genie

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buurma, Christopher; Sen, Fatih G.; Paulauskas, Tadas

    2015-01-01

    Grain boundaries (GB) in poly-CdTe solar cells play an important role in species diffusion, segregation, defect formation, and carrier recombination. While the creation of specific high-symmetry interfaces can be straight forward, the creation of general GB structures in many material systems is difficult if periodic boundary conditions are to be enforced. Here we describe a novel algorithm and implementation to generate initial general GB structures for CdTe in an automated way, and we investigate some of these structures using density functional theory (DFT). Example structures include those with bi-crystals already fabricated for comparison, and those planning to be investigated inmore » the future.« less

  19. Interface shapes during vertical Bridgman growth of (Pb, Sn)Te crystals

    NASA Technical Reports Server (NTRS)

    Huang, YU; Debnam, William J.; Fripp, Archibald L.

    1990-01-01

    Melt-solid interfaces obtained during vertical Bridgman growth of (Pb, Sn)Te crystals were investigated with a quenching technique. The shapes of these interfaces, revealed by etching longitudinally cut sections, were correlated with the composition variations determined by EMPA. These experiments demonstrated that the interface shape can be changed from concave to convex by moving its location from the edge of the cold zone into the hot zone. The metallography and microsegregation near the melt-solid interface were analyzed in detail. A sharp change in composition above the interface indicated the existence of a diffusion boundary layer 40-90 microns thick. This small diffusion boundary layer is consistent with strong convective mixing in the (Pb, Sn)Te melt.

  20. Experimental study of THz electro-optical sampling crystals ZnSe, ZnTe and GaP

    NASA Astrophysics Data System (ADS)

    Zhukova, M.; Makarov, E.; Putilin, S.; Tsypkin, A.; Chegnov, V.; Chegnova, O.; Bespalov, V.

    2017-11-01

    The application of optoelectronic techniques to the generation and detection of THz radiation is now well established. Wide gap semiconductor crystals of groups II-VI, III-V and III-VI are abundantly used. However, some limitations are occurred while using powerful laser systems. In this paper we introduce experimental results of two-photon absorption (2PA) in ZnSe, ZnTe and GaP studied with femtosecond pump-probe supercontinuum spectroscopy. Using of supercontinuum helps us to measure 2PA absorption dynamics and nonlinear index of refraction in wide frequency ranges. Besides influence of Fe concentration in ZnSe:Fe crystals on transmitted THz radiation is described.

  1. Crystallization and preliminary X-ray crystallographic analysis of latent isoform PPO4 mushroom (Agaricus bisporus) tyrosinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauracher, Stephan Gerhard; Molitor, Christian; Al-Oweini, Rami

    Polyphenol oxidase 4 (PPO4) from the natural source A. bisporus was crystallized in its latent precursor form (pro-tyrosinase; Ser2–Thr565) using the 6-tungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}]·22H{sub 2}O as a crystallization additive. Tyrosinase exhibits catalytic activity for the ortho-hydroxylation of monophenols to diphenols as well as their subsequent oxidation to quinones. Owing to polymerization of these quinones, brown-coloured high-molecular-weight compounds called melanins are generated. The latent precursor form of polyphenol oxidase 4, one of the six tyrosinase isoforms from Agaricus bisporus, was purified to homogeneity and crystallized. The obtained crystals belonged to space group C121 (two molecules per asymmetric unit)more » and diffracted to 2.78 Å resolution. The protein only formed crystals under low-salt conditions using the 6-tungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}]·22H{sub 2}O as a co-crystallization agent.« less

  2. SAW propagation characteristics of TeO3/3C-SiC/LiNbO3 layered structure

    NASA Astrophysics Data System (ADS)

    Soni, Namrata D.

    2018-04-01

    Surface acoustic wave (SAW) devices based on Lithium Niobate (LiNbO3) single crystal are advantageous because of its high SAW phase velocity, electromechanical coupling coefficient and cost effectiveness. In the present work a new multi-layered TeO3/3C-SiC/128° Y-X LiNbO3 SAW device has been proposed. SAW propagation properties such as phase velocity, coupling coefficient and temperature coefficient of delay (TCD) of the TeO3/SiC/128° Y-X LiNbO3 multi layered structure is examined using theoretical calculations. It is found that the integration of 0.09λ thick 3C-SiC over layer on 128° Y-X LiNbO3 increases its electromechanical coupling coefficient from 5.3% to 9.77% and SAW velocity from 3800 ms‑1 to 4394 ms‑1. The SiC/128° Y-X LiNbO3 bilayer SAW structure exhibits a high positive TCD value. A temperature stable layered SAW device could be obtained with introduction of 0.007λ TeO3 over layer on SiC/128° Y-X LiNbO3 bilayer structure without sacrificing the efficiency of the device. The proposed TeO3/3C-SiC/128° Y-X LiNbO3 multi-layered SAW structure is found to be cost effective, efficient, temperature stable and suitable for high frequency application in harsh environment.

  3. Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes.

    PubMed

    Yin, Xingyu; Scalia, Alexander; Leroy, Ludmila; Cuttitta, Christina M; Polizzo, Gina M; Ericson, Daniel L; Roessler, Christian G; Campos, Olven; Ma, Millie Y; Agarwal, Rakhi; Jackimowicz, Rick; Allaire, Marc; Orville, Allen M; Sweet, Robert M; Soares, Alexei S

    2014-05-01

    Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component.

  4. Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes

    PubMed Central

    Yin, Xingyu; Scalia, Alexander; Leroy, Ludmila; Cuttitta, Christina M.; Polizzo, Gina M.; Ericson, Daniel L.; Roessler, Christian G.; Campos, Olven; Ma, Millie Y.; Agarwal, Rakhi; Jackimowicz, Rick; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2014-01-01

    Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component. PMID:24816088

  5. Magnetic properties of the layered III-VI diluted magnetic semiconductor Ga{sub 1−x}Fe{sub x}Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pekarek, T. M.; Edwards, P. S.; Olejniczak, T. L.

    2016-05-15

    Magnetic properties of single crystalline Ga{sub 1−x}Fe{sub x}Te (x = 0.05) have been measured. GaTe and related layered III-VI semiconductors exhibit a rich collection of important properties for THz generation and detection. The magnetization versus field for an x = 0.05 sample deviates from the linear response seen previously in Ga{sub 1−x}Mn{sub x}Se and Ga{sub 1−x}Mn{sub x}S and reaches a maximum of 0.68 emu/g at 2 K in 7 T. The magnetization of Ga{sub 1−x}Fe{sub x}Te saturates rapidly even at room temperature where the magnetization reaches 50% of saturation in a field of only 0.2 T. In 0.1 T atmore » temperatures between 50 and 400 K, the magnetization drops to a roughly constant 0.22 emu/g. In 0 T, the magnetization drops to zero with no hysteresis present. The data is consistent with Van-Vleck paramagnetism combined with a pronounced crystalline anisotropy, which is similar to that observed for Ga{sub 1−x}Fe{sub x}Se. Neither the broad thermal hysteresis observed from 100-300 K in In{sub 1−x}Mn{sub x}Se nor the spin-glass behavior observed around 10.9 K in Ga{sub 1−x}Mn{sub x}S are observed in Ga{sub 1−x}Fe{sub x}Te. Single crystal x-ray diffraction data yield a rhombohedral space group bearing hexagonal axes, namely R3c. The unit cell dimensions were a = 5.01 Å, b = 5.01 Å, and c = 17.02 Å, with α = 90°, β = 90°, and γ = 120° giving a unit cell volume of 369 Å{sup 3}.« less

  6. Local structure of amorphous Ag5In5Sb60Te30 and In3SbTe2 phase change materials revealed by X-ray photoelectron and Raman spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Sahu, Smriti; Manivannan, Anbarasu; Shaik, Habibuddin; Mohan Rao, G.

    2017-07-01

    Reversible switching between highly resistive (binary "0") amorphous phase and low resistive (binary "1") crystalline phase of chalcogenide-based Phase Change Materials is accredited for the development of next generation high-speed, non-volatile, data storage applications. The doped Sb-Te based materials have shown enhanced electrical/optical properties, compared to Ge-Sb-Te family for high-speed memory devices. We report here the local atomic structure of as-deposited amorphous Ag5In5Sb60Te30 (AIST) and In3SbTe2 (IST) phase change materials using X-ray photoelectron and Raman spectroscopic studies. Although AIST and IST materials show identical crystallization behavior, they differ distinctly in their crystallization temperatures. Our experimental results demonstrate that the local environment of In remains identical in the amorphous phase of both AIST and IST material, irrespective of its atomic fraction. In bonds with Sb (˜44%) and Te (˜56%), thereby forming the primary matrix in IST with a very few Sb-Te bonds. Sb2Te constructs the base matrix for AIST (˜63%) along with few Sb-Sb bonds. Furthermore, an interesting assimilation of the role of small-scale dopants such as Ag and In in AIST, reveals rare bonds between themselves, while showing selective substitution in the vicinity of Sb and Te. This results in increased electronegativity difference, and consequently, the bond strength is recognized as the factor rendering stability in amorphous AIST.

  7. Recent Developments in Neutrino Science: A Whole Lot About Almost Nothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, E B

    2005-08-22

    Results from Super-K, SNO, and KamLAND provide strong evidence that neutrinos undergo flavor-changing oscillations and therefore have non-zero mass. The {nu}-disappearance observations by KamLAND, assuming CPT conservation, point to matter enhanced (MSW) oscillations with large mixing angles as the solution to the solar neutrino problem--a result consistent with the MSW parameters recently defined by these experiments. This requires that the observed neutrino flavors (e, {mu}, and tau) are not mass eigenstates, but are linear combinations of the mass eigenstates of the neutrino. However, such oscillation experiments can only determine the differences in the masses of the neutrinos, not the absolutemore » scale of neutrino mass. What can be inferred from these experiments is that at least one species of neutrino has a mass greater than 55 meV. In fact, the WMAP observations of large-scale structure point to a sum-neutrino mass of {approx} 0.7 eV (roughly 0.25 eV/species assuming democracy between the flavors). Furthermore, there is still the important issue of whether the neutrino and anti-neutrino are distinct particles (i.e. Dirac type) or not (Majorana type). The only way to answer both of these questions is through neutrinoless double beta decay (DBD) experiments. CUORE (Cryogenic Underground Observatory for Rare Events) is a proposed next generation experiment designed to search for the neutrinoless DBD of {sup 130}Te using a bolometric technique. The source/detector will be composed of 988 5 x 5 x 5-cm single crystals of TeO{sub 2} all housed in a common dilution refrigerator and operated at a temperature of 8-10 mK. The total mass of {sup 130}Te contained in CUORE will be approximately 203 kg. Attached to each crystal will be one or more neutron-transmutation doped (NTD) germanium thermistors that will measure the small temperature rise produced in a crystal when radiation is absorbed. A schematic illustration of the CUORE detector is shown in Figure 1. Details about the TeO{sub 2} cryogenic detector are contained in a NIM A paper and the physics potential of CUORE is described in a recent article in Astroparticle Physics. A complete description of the CUORE project is also available online. The estimated sensitivity of CUORE illustrated in Figure 2 is sufficient to cover essentially all of the so-called inverted mass hierarchy region deduced from the oscillation experiments. There are several compelling reasons to study {sup 130}Te DBD. The {beta}{beta} decay of {sup 130}Te has been observed in geo-chemical experiments. Thus, a direct laboratory measurement of the 2{nu} {beta}{beta} decay rate will provide an excellent calibration for 0{nu}-DBD. Second, because of its large decay energy and large expected nuclear matrix element, the half-life of {sup 130}Te is predicted to be shorter than that of a number of other candidate isotopes. Third, based on the sensitivity needed to reach the mass scales inferred from the above-mentioned oscillation experiments, the {sup 130}Te experiment can be done utilizing the natural abundance of {sup 130}Te (34%), without the time and expense of obtaining separated isotopes. Of all the proposed next generation DBD experiments, only CUORE can reach the needed sensitivity without isotopic enrichment.« less

  8. Thermocapillary flow stability in floating zone under low gravity

    NASA Astrophysics Data System (ADS)

    Bouizi, O.; Dang Vu-Delcarte, C.; Kasperski, G.

    The floating zone is a crucible-free process used to produce high-quality crystals. A molten zone is created by a lateral heating between a feed and a single crystal rod, and helds by capillary forces. The translation of the material through the heat flux induces the solidification of the crystal. Temperature gradients induce surface tension variations which are the source of thermocapillary convection. In order to reduce buoyancy effects, experiments have been performed in a low gravity environment te{Croll} and have demonstrated that thermocapillary convection alone can induce defects in the product due to flow instabilities. A major goal is to identify the mechanisms leading to the growth of those instabilities. The experimental difficulty comes from the fact that measurements in the core of the flow are usually limited to transparent fluids, that is having a Prandtl number value (Pr), ratio of the characteristic thermal to dynamical diffusion times, larger than 6 or so. However, it has been shown that, just as well in real experiments as in numerical experiences, performed on the simplified half-zone model, the transitions thresholds strongly depend on the Prandtl number value te{Carotenuto}, te{Levenstam}. It is thus interesting to study the nature and thresholds of the instabilities of the thermocapillary flow in a full liquid bridge as a function of the Prandtl number. In that case, a 2D study te{kasper1} has shown an important variation of the thresholds with Pr. The considered model consists of a vertical cylindrical liquid bridge, between two isothermal parallel concentric rigid disks, %of radius Rwhich are separated by a distance H and presenting a non-deformable free surface. This surface is submitted to a steady heating flux symmetrical about the horizontal mid-plane. The parameters of the model are the Prandtl number, the Marangoni number (Ma) which characterises the thermal convective regime and the aspect ratio A=H/2R fixed here to 1. Gravity is absent. The capillary convective flow is governed by the Navier-Stokes and energy equations associated to boundary conditions which include the source of the flow. The mathematical system is solved with a spectral collocation code using a projection-diffusion method te{Batoul_94a} in order to uncouple the pressure and velocity fields. The steady flows are calculated with a Newton method, the first unstable eigenmodes using an Arnoldi method te{chenier-Stability}. These tools, in addition to direct numerical simulation, are necessary to observe transitions related to the mid-plane symmetry breaking of the 2D flow te{chenier-mult}, due to the low values of the growth rates of the instabilities. The sensitivity of the solutions to the treatment of a vorticity singularity at the junction free surface/solid boundaries was studied in te{kasper4}. An first analysis of the most sensitive regions of the flow to local thermal perturbations with the adjoint technique has been initiated te{Bouizi}. In the present contribution, we study the perturbation of the 2-D axisymmetric steady state through azimuthal modes as a function of the Prandtl and Marangoni number values. We will show that the critical Marangoni values are lower for 3D than for 2D perturbations for all Prandtl numbers but the azimutal Fourier modes, the bifurcation types and the threshold Ma_c values highly depend on the Prandtl number.

  9. Advantages of a Special Post-Growth THM Program for the Reduction of Inclusions in CdTe Crystals

    NASA Astrophysics Data System (ADS)

    Fochuk, P.; Zakharuk, Z.; Nykonyuk, Ye.; Rarenko, A.; Kolesnik, M.; Bolotnikov, A. E.; Yang, G.; James, R. B.

    2016-06-01

    CdTe crystals are used widely for manufacturing gamma-ray radiation sensors, and we can improve their properties if we eliminate as many as possible of their Te inclusions. In this paper, we describe our two modes of removing them; first, we used the traveling heater method for growing them, and then we applied post-growth cooling, for which we used a special slow-cooling program. Here, we placed the CdTe ingot, containing inclusions, into a quartz container, and moved a narrow heater zone along it. The molten inclusions moved together with the hot zone, and, at end of the process, they were concentrated heavily at the ingot's surface. Consequently, very few inclusions were observed in much of the CdTe ingot. Hall effect measurements showed that after such annealing the value of the carrier mobility was increased significantly, and the concentration of ionized centers was reduced. One major advantage of this treatment, compared to thermal annealing alone, is that both the inclusions and impurities are eliminated simultaneously.

  10. Center for the Integration of Optical Computing

    DTIC Science & Technology

    1992-03-15

    their photorefractive properties, calculating the possible interconnect capacities, and collaborating with industry( Brimrose Corp. and Hughes Research...cooperation with Hughes Research Laboratories and Brimrose Corporation we have proceeded with a basic study of CdTe, ZnTe, and the mixed crystals Cd

  11. Transmission properties of one-dimensional ternary plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiveshwari, Laxmi; Awasthi, S. K.

    2015-09-15

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system,more » which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.« less

  12. Photochemical Water Splitting by Bismuth Chalcogenide Topological Insulators.

    PubMed

    Rajamathi, Catherine R; Gupta, Uttam; Pal, Koushik; Kumar, Nitesh; Yang, Hao; Sun, Yan; Shekhar, Chandra; Yan, Binghai; Parkin, Stuart; Waghmare, Umesh V; Felser, Claudia; Rao, C N R

    2017-09-06

    As one of the major areas of interest in catalysis revolves around 2D materials based on molybdenum sulfide, we have examined the catalytic properties of bismuth selenides and tellurides, which are among the first chalcogenides to be proven as topological insulators (TIs). We find significant photochemical H 2 evolution activity with these TIs as catalysts. H 2 evolution increases drastically in nanosheets of Bi 2 Te 3 compared to single crystals. First-principles calculations show that due to the topology, surface states participate and promote the hydrogen evolution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Diffraction of three-colour radiation on an acoustic wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotov, V M

    We study acousto-optic Bragg diffraction of three-colour radiation having wavelengths of 488, 514 and 633 nm on a single acoustic wave propagating in a TeO{sub 2} crystal. A technique is developed that allows one to find diffraction regimes with a proportional change in the intensity of all radiations by varying the acoustic power. According to the technique, radiation with a maximum wavelength has to be in strict Bragg synchronism with the acoustic wave, while other radiations diffract during the synchronism detuning. The results obtained using this technique are experimentally confirmed. (diffraction of light)

  14. Effect of rare-earth doping on the thermoelectric and electrical transport properties of the transition metal pentatelluride hafnium pentatelluride

    NASA Astrophysics Data System (ADS)

    Lowhorn, Nathan Dane

    The transition metal pentatellurides HfTe5 and ZrTe5 have been observed to possess interesting electrical transport properties. High thermopower and low resistivity values result in high thermoelectric power factors. In addition, they possess anomalous transport behavior. The temperature dependence of the resistivity is semimetallic except for a large resistive peak as a function of temperature at around 75 K for HfTe5 and 145 K for ZrTe5. At a temperature corresponding to this peak, the thermopower crosses zero as it moves from large positive values to large negative values. This behavior has been found to be extremely sensitive to changes in the energetics of the system through influences such as magnetic field, stress, pressure, microwave radiation, and substitutional doping. This behavior has yet to be fully explained. Previous doping studies have shown profound and varied effects on the anomalous transport behavior. In this study we investigate the effect on the electrical resistivity, thermopower, and magnetoresistance of doping HfTe5 with rare-earth elements. We have grown single crystals of nominal Hf0.75RE 0.25Te5 where RE = Ce, Pr, Nd, Sm, Gd, Tb, Dy, and Ho. Electrical resistivity and thermopower data from about 10 K to room temperature are presented and discussed in terms of the thermoelectric properties. Doping with rare-earth elements of increasing atomic number leads to a systematic suppression of the anomalous transport behavior. Rare-earth doping also leads to an enhancement of the thermoelectric power factor over that of previously studied pentatellurides and the commonly used thermoelectric material Bi2Te3. For nominal Hf0.75Nd0.25Te5 and Hf0.75 Sm0.25Te5, values more than a factor of 2 larger than that Bi2Te3 are observed. In addition, suppression of the anomalous transport behavior leads to a suppression of the large magnetoresistive effect observed in the parent compounds. Rare-earth doping of HfTe5 has a profound impact on the anomalous electrical transport properties of the parent pentatellurides and produces enhanced thermoelectric properties.

  15. The structural phases and vibrational properties of Mo1-xWxTe2 alloys

    NASA Astrophysics Data System (ADS)

    Oliver, Sean M.; Beams, Ryan; Krylyuk, Sergiy; Kalish, Irina; Singh, Arunima K.; Bruma, Alina; Tavazza, Francesca; Joshi, Jaydeep; Stone, Iris R.; Stranick, Stephan J.; Davydov, Albert V.; Vora, Patrick M.

    2017-12-01

    The structural polymorphism in transition metal dichalcogenides (TMDs) provides exciting opportunities for developing advanced electronics. For example, MoTe2 crystallizes in the 2H semiconducting phase at ambient temperature and pressure, but transitions into the 1T‧ semimetallic phase at high temperatures. Alloying MoTe2 with WTe2 reduces the energy barrier between these two phases, while also allowing access to the T d Weyl semimetal phase. The \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloy system is therefore promising for developing phase change memory technology. However, achieving this goal necessitates a detailed understanding of the phase composition in the MoTe2-WTe2 system. We combine polarization-resolved Raman spectroscopy with x-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) to study bulk \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys over the full compositional range x from 0 to 1. We identify Raman and XRD signatures characteristic of the 2H, 1T‧, and T d structural phases that agree with density-functional theory (DFT) calculations, and use them to identify phase fields in the MoTe2-WTe2 system, including single-phase 2H, 1T‧, and T d regions, as well as a two-phase 1T‧  +  T d region. Disorder arising from compositional fluctuations in \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys breaks inversion and translational symmetry, leading to the activation of an infrared 1T‧-MoTe2 mode and the enhancement of a double-resonance Raman process in \\text{2H-M}{{\\text{o}}1-\\text{x}} WxTe2 alloys. Compositional fluctuations limit the phonon correlation length, which we estimate by fitting the observed asymmetric Raman lineshapes with a phonon confinement model. These observations reveal the important role of disorder in \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys, clarify the structural phase boundaries, and provide a foundation for future explorations of phase transitions and electronic phenomena in this system.

  16. Thermodynamics of post-growth annealing of cadmium zinc telluride nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Adams, Aaron Lee

    Nuclear Radiation Detectors are used for detecting, tracking, and identifying radioactive materials which emit high-energy gamma and X-rays. The use of Cadmium Zinc Telluride (CdZnTe) detectors is particularly attractive because of the detector's ability to operate at room temperature and measure the energy spectra of gamma-ray sources with a high resolution, typically less than 1% at 662 keV. While CdZnTe detectors are acceptable imperfections in the crystals limit their full market potential. One of the major imperfections are Tellurium inclusions generated during the crystal growth process by the retrograde solubility of Tellurium and Tellurium-rich melt trapped at the growth interface. Tellurium inclusions trap charge carriers generated by gamma and X-ray photons and thus reduce the portion of generated charge carriers that reach the electrodes for collection and conversion into a readable signal which is representative of the ionizing radiation's energy and intensity. One approach in resolving this problem is post-growth annealing which has the potential of removing the Tellurium inclusions and associated impurities. The goal of this project is to use experimental techniques to study the thermodynamics of Tellurium inclusion migration in post-growth annealing of CdZnTe nuclear detectors with the temperature gradient zone migration (TGZM) technique. Systematic experiments will be carried out to provide adequate thermodynamic data that will inform the engineering community of the optimum annealing parameters. Additionally, multivariable correlations that involve the Tellurium diffusion coefficient, annealing parameters, and CdZnTe properties will be analyzed. The experimental approach will involve systematic annealing experiments (in Cd vapor overpressure) on different sizes of CdZnTe crystals at varying temperature gradients ranging from 0 to 60°C/mm (used to migrate the Tellurium inclusion to one side of the crystal), and at annealing temperatures ranging from 500 to 800°C. The characterization techniques that will be used to quantify the effects of the post-growth annealing experiments include: 1) 3D infrared transmission microscopy to measure the size, distribution, and concentration of Tellurium inclusions; 2) current-voltage measurements to determine the effect of post-growth annealing on the resistivity of CdZnTe crystals; and 3) X-ray diffraction topography, available at the National Synchrotron Light Source (NSLS) facilities at Brookhaven National Laboratory (BNL), to measure the correlation between device performance and annealing conditions

  17. Dispersion interactions between neighboring Bi atoms in (BiH3 )2 and Te(BiR2 )2.

    PubMed

    Haack, Rebekka; Schulz, Stephan; Jansen, Georg

    2018-03-13

    Triggered by the observation of a short Bi⋯Bi distance and a BiTeBi bond angle of only 86.6° in the crystal structure of bis(diethylbismuthanyl)tellurane quantum chemical computations on interactions between neighboring Bi atoms in Te(BiR 2 ) 2 molecules (R = H, Me, Et) and in (BiH 3 ) 2 were undertaken. Bi⋯Bi distances atoms were found to significantly shorten upon inclusion of the d shells of the heavy metal atoms into the electron correlation treatment, and it was confirmed that interaction energies from spin component-scaled second-order Møller-Plesset theory (SCS-MP2) agree well with coupled-cluster singles and doubles theory including perturbative triples (CCSD(T)). Density functional theory-based symmetry-adapted perturbation theory (DFT-SAPT) was used to study the anisotropy of the interplay of dispersion attraction and steric repulsion between the Bi atoms. Finally, geometries and relative stabilities of syn-syn and syn-anti conformers of Te(BiR 2 ) 2 (R = H, Me, Et) and interconversion barriers between them were computed. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  18. Unexpected (π , π) order in Fe1.1Te

    NASA Astrophysics Data System (ADS)

    Fobes, David; Zaliznyak, Igor; Xu, Zhijun; Gu, Genda; Tranquada, John M.; Singh, Deepak

    2013-03-01

    We have studied the evolution of the magnetic and crystal structure in single crystalline Fe1.1Te, an iron-rich parent of the chalcogenide superconductor family. While a structural transition to a monoclinic symmetry occurs at ~ 60 K, magnetic peaks at 2 π . (0 . 48 , 0) only arise below TN ~ 58 K, and can be understood as bicollinear magnetism with discommensuration defects. [2] Unexpectedly, we have also observed resolution limited peaks at approximately (π , π) , arising at the same temperature TN, and exhibiting temperature hysteresis similar to that seen in magnetic susceptibility, perhaps indicating that these peaks are of magnetic origin. Additionally, the position of these peaks is nearly the same as in the parent compounds of the iron pnictide family of superconductors, where magnetic order is simple collinear commensurate antiferromagnetism. The origin of these new peaks near (π , π) and their relationship to the dominant bicollinear magnetic order observed in Fe1.1Te presents a puzzle. Work at BNL supported by Office of Basic Energy Sciences, US DOE, under Contract No. DE-AC02-98CH10886. We acknowledge the support of NIST, US Department of Commerce, in providing the neutron research facilities used in this work.

  19. Crystal collimator systems for high energy frontier

    NASA Astrophysics Data System (ADS)

    Sytov, A. I.; Tikhomirov, V. V.; Lobko, A. S.

    2017-07-01

    Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simulated and compared for different crystal numbers and materials at the energy of 50 TeV. To enhance also the efficiency of use of the first crystal of the suggested double crystal-based scheme, we propose: the method of increase of the probability of particle capture into the channeling regime at the first crystal passage by means of fabrication of a crystal cut and the method of the amplification of nonchanneled particle deflection through the multiple volume reflection in one bent crystal, accompanying the particle channeling by a skew plane. We simulate both of these methods for the 50 TeV FCC energy.

  20. Accuracy of existing atomic potentials for the CdTe semiconductor compound

    NASA Astrophysics Data System (ADS)

    Ward, D. K.; Zhou, X. W.; Wong, B. M.; Doty, F. P.; Zimmerman, J. A.

    2011-06-01

    CdTe and CdTe-based Cd1-xZnxTe (CZT) alloys are important semiconductor compounds that are used in a variety of technologies including solar cells, radiation detectors, and medical imaging devices. Performance of such systems, however, is limited due to the propensity of nano- and micro-scale defects that form during crystal growth and manufacturing processes. Molecular dynamics simulations offer an effective approach to study the formation and interaction of atomic scale defects in these crystals, and provide insight on how to minimize their concentrations. The success of such a modeling effort relies on the accuracy and transferability of the underlying interatomic potential used in simulations. Such a potential must not only predict a correct trend of structures and energies of a variety of elemental and compound lattices, defects, and surfaces but also capture correct melting behavior and should be capable of simulating crystalline growth during vapor deposition as these processes sample a variety of local configurations. In this paper, we perform a detailed evaluation of the performance of two literature potentials for CdTe, one having the Stillinger-Weber form and the other possessing the Tersoff form. We examine simulations of structures and the corresponding energies of a variety of elemental and compound lattices, defects, and surfaces compared to those obtained from ab initio calculations and experiments. We also perform melting temperature calculations and vapor deposition simulations. Our calculations show that the Stillinger-Weber parameterization produces the correct lowest energy structure. This potential, however, is not sufficiently transferrable for defect studies. Origins of the problems of these potentials are discussed and insights leading to the development of a more transferrable potential suitable for molecular dynamics simulations of defects in CdTe crystals are provided.

  1. Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage.

    PubMed

    Guerin, Samuel; Hayden, Brian; Hewak, Daniel W; Vian, Chris

    2017-07-10

    A combinatorial synthetic methodology based on evaporation sources under an ultrahigh vacuum has been used to directly synthesize compositional gradient thin film libraries of the amorphous phases of GeSbTe alloys at room temperature over a wide compositional range. An optical screen is described that allows rapid parallel mapping of the amorphous-to-crystalline phase transition temperature and optical contrast associated with the phase change on such libraries. The results are shown to be consistent with the literature for compositions where published data are available along the Sb 2 Te 3 -GeTe tie line. The results reveal a minimum in the crystallization temperature along the Sb 2 Te 3 -Ge 2 Te 3 tie line, and the method is able to resolve subsequent cubic-to-hexagonal phase transitions in the GST crystalline phase. HT-XRD has been used to map the phases at sequentially higher temperatures, and the results are reconciled with the literature and trends in crystallization temperatures. The results clearly delineate compositions that crystallize to pure GST phases and those that cocrystallize Te. High-throughput measurement of the resistivity of the amorphous and crystalline phases has allowed the compositional and structural correlation of the resistivity contrast associated with the amorphous-to-crystalline transition, which range from 5-to-8 orders of magnitude for the compositions investigated. The results are discussed in terms of the compromises in the selection of these materials for phase change memory applications and the potential for further exploration through more detailed secondary screening of doped GST or similar classes of phase change materials designed for the demands of future memory devices.

  2. CdZnTe substrate impurities and their effects on liquid phase epitaxy HgCdTe

    NASA Astrophysics Data System (ADS)

    Tower, J. P.; Tobin, S. P.; Kestigian, M.; Norton, P. W.; Bollong, A. B.; Schaake, H. F.; Ard, C. K.

    1995-05-01

    Impurity levels were tracked through the stages of substrate and liquid phase epitaxy (LPE) layer processing to identify sources of elements which degrade infrared photodetector performance. Chemical analysis by glow discharge mass spectrometry and Zeeman corrected graphite furnace atomic absorption effectively showed the levels of impurities introduced into CdZnTe substrate material from the raw materials and the crystal growth processes. A new purification process (in situ distillation zone refining) for raw materials was developed, resulting in improved CdZnTe substrate purity. Substrate copper contamination was found to degrade the LPE layer and device electrical properties, in the case of lightly doped HgCdTe. Anomalous HgCdTe carrier type conversion was correlated to certain CdZnTe and CdTe substrate ingots.

  3. Infrared studies of topological insulator systems

    NASA Astrophysics Data System (ADS)

    Post, Kirk; Chapler, Brian; Schafgans, Alex; Liu, Mengkun; Wu, Jih-Sheng; Richardella, Anthony; Lee, Joon Sue; Reijnders, Anjan; Lee, Yun Sang; He, Liang; Kou, Xufeng; Novak, Mario; Taskin, Alexey; Segawa, Kouji; Goldflam, Michael; Stinson, H. Theodore; Qi, Xiao Liang; Burch, Kenneth; Wang, Kang; Fogler, Michael; Samarth, Nitin; Ando, Yoichi; Basov, Dimitri

    The theoretical prediction, and subsequent experimental realization, of topological insulator (TI) systems, has vaulted this new class of materials to the vanguard of condensed matter physics. Since their discovery, we have carried out a number of infrared studies on various TI systems, including Bi2Se3, Bi1-xSbx, and Bi2-xSbxTe3-ySey crystals as well as Bi2Se3 and (Bi,Sb)2Te3 thin films. A key element of these works is the revelation that the infrared response of Bi1-xSbx crystals and (Bi,Sb)2Te3 thin films possess a significant, or even dominant, component from the topologically protected surface states. I will review these works and discuss future prospects of measuring the surface state response through optical spectroscopy techniques

  4. Rashba effect in single-layer antimony telluroiodide SbTeI

    DOE PAGES

    Zhuang, Houlong L.; Cooper, Valentino R.; Xu, Haixuan; ...

    2015-09-04

    Exploring spin-orbit coupling (SOC) in single-layer materials is important for potential spintronics applications. In this paper, using first-principles calculations, we show that single-layer antimony telluroiodide SbTeI behaves as a two-dimensional semiconductor exhibiting a G 0W 0 band gap of 1.82 eV. More importantly, we observe the Rashba spin splitting in the SOC band structure of single-layer SbTeI with a sizable Rashba coupling parameter of 1.39 eV Å, which is significantly larger than that of a number of two-dimensional systems including surfaces and interfaces. The low formation energy and real phonon modes of single-layer SbTeI imply that it is stable. Finally,more » our study suggests that single-layer SbTeI is a candidate single-layer material for applications in spintronics devices.« less

  5. Solidification and crystal growth of solid solution semiconducting alloys

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.

  6. Structure of Profiled Crystals Based on Solid Solutions of Bi2Te3 and Their X-Ray Diagnostics

    NASA Astrophysics Data System (ADS)

    Voronin, A. I.; Bublik, V. T.; Tabachkova, N. Yu.; Belov, Yu. M.

    2011-05-01

    In this work, we used x-ray structural diagnostic data to reveal the formation of structural regularities in profiled polycrystalline ingots based on Bi and Sb chalcogenide solid solutions. In Bi2Te3 lattice crystals, the solid phase grows such that the cleavage surfaces are perpendicular to the crystallization front. The crystallization singularity determines the nature of the growth texture. Because texture is an important factor determining the anisotropy of properties, which in turn determines the suitability of an ingot for production of modules and the possibility of figure of merit improvement, its diagnostics is an important issue for technology testing. Examples of texture analysis using the method of straight pole figure (SPF) construction for profiled crystals are provided. The structure of the surface layers in the profiled ingots was studied after electroerosion cutting. In addition, the method of estimation of the disturbed layer depth based on the nature of texture changes was used.

  7. Resolving glass transition in Te-based phase-change materials by modulated differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Chen, Yimin; Mu, Sen; Wang, Guoxiang; Shen, Xiang; Wang, Junqiang; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua; Wang, Rongping

    2017-10-01

    Glass transitions of Te-based phase-change materials (PCMs) were studied by modulated differential scanning calorimetry. It was found that both Ge2Sb2Te5 and GeTe are marginal glass formers with ΔT (= T x - T g) less than 2.1 °C when the heating rate is below 3 °C min-1. The fragilities of Ge2Sb2Te5 and GeTe can be estimated as 46.0 and 39.7, respectively, around the glass transition temperature, implying that a fragile-to-strong transition would be presented in such Te-based PCMs. The above results provide direct experimental evidence to support the investigation of crystallization kinetics in supercooled liquid PCMs.

  8. A new oxytelluride: Perovskite and CsCl intergrowth in Ba 3Yb 2O 5Te

    DOE PAGES

    Whalen, J. B.; Besara, T.; Vasquez, R.; ...

    2013-04-27

    The new oxytelluride Ba 3Yb 2O 5Te was obtained from an alkaline earth flux. Ba3Yb2O5Te crystallizes in the tetragonal space group P4/ mmm (#123), with a=4.3615(3) Å and c=11.7596(11) angstrom, Z=1. The structure combines two distinct building blocks, a Ba 2Yb 2O 5 perovskite-like double layer with square bipyramidal coordination of the ytterbium ions, and a CsCl-type BaTe layer. Short range magnetic order is apparent at below 5 K, with the magnetic behavior above this temperature dominated by crystal field effects. The structure may be considered as an analog to the Ruddlesden-Popper phases, where the NaCl-type layer has been replacedmore » by the CsCl-type layer. Finally, the two-dimensional magnetic behavior is expected based on the highly anisotropic nature of the structure.« less

  9. Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lingyan; Jie, Wanqi, E-mail: jwq@nwpu.edu.cn; Zha, Gangqiang, E-mail: zha-gq@hotmail.com

    2014-06-09

    The effects of sub-bandgap illumination on electrical properties of CdZnTe:In crystals and spectroscopic performances of the fabricated detectors were discussed. The excitation process of charge carriers through thermal and optical transitions at the deep trap could be described by the modified Shockley-Read-Hall model. The ionization probability of the deep donor shows an increase under illumination, which should be responsible for the variation of electrical properties within CdZnTe bulk materials with infrared (IR) irradiation. By applying Ohm's law, diffusion model and interfacial layer-thermionic-diffusion theory, we obtain the decrease of bulk resistivity and the increase of space charge density in the illuminatedmore » crystals. Moreover, the illumination induced ionization will further contribute to improving carrier transport property and charge collection efficiency. Consequently, the application of IR irradiation in the standard working environment is of great significance to improve the spectroscopic characteristics of CdZnTe radiation detectors.« less

  10. Mechanisms of the passage of dark currents through Cd(Zn)Te semi-insulating crystals

    NASA Astrophysics Data System (ADS)

    Sklyarchuk, V.; Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O.; Nykoniuk, Ye.; Rybka, A.; Kutny, V.; Bolotnikov, A. E.; James, R. B.

    2014-09-01

    We investigated the passage of dark currents through semi-insulating crystals of Cd(Zn)Te with weak n-type conductivity that are used widely as detectors of ionizing radiation. The crystals were grown from a tellurium solution melt at 800 оС by the zone-melting method, in which a polycrystalline rod in a quartz ampoule was moved through a zone heater at a rate of 2 mm per day. The synthesis of the rod was carried out at ~1150 оС. We determined the important electro-physical parameters of this semiconductor, using techniques based on a parallel study of the temperature dependence of current-voltage characteristics in both the ohmic and the space-charge-limited current regions. We established in these crystals the relationship between the energy levels and the concentrations of deep-level impurity states, responsible for dark conductivity and their usefulness as detectors.

  11. Low temperature thermoelectric properties of Bi2-xSbxTeSe2 crystals near the n-p crossover

    NASA Astrophysics Data System (ADS)

    Fuccillo, M. K.; Charles, M. E.; Hor, Y. S.; Jia, Shuang; Cava, R. J.

    2012-07-01

    Seebeck coefficients, electrical resistivities, thermal conductivities and figure of merit ZT of Bi2-xSbxTeSe2 crystals (x=0.8, 0.9, 1.0, 1.1, and 1.2) measured along the hexagonal basal plane are presented. The crystals gradually change from n- to p-type with increasing Sb content, with the crossover lying in the region between x=1.0 and 1.1. The crossover is accounted for by a simple (p-n) electron-hole compensation model, as supported by carrier concentrations determined from Hall measurements. ZT was found to be maximized near the crossover on the p-type side, with the high electrical resistance of the Se-rich crystals apparently the limiting factor in the performance. These materials may serve as a basis for future nanostructuring or doping studies.

  12. Zeeman effect of the topological surface states revealed by quantum oscillations up to 91 Tesla

    DOE PAGES

    Zhang, Zuocheng; Wei, Wei; Yang, Fangyuan; ...

    2015-12-01

    In this paper, we report quantum oscillation studies on the Bi 2Te 3-xS x topological insulator single crystals in pulsed magnetic fields up to 91 T. For the x = 0.4 sample with the lowest bulk carrier density, the surface and bulk quantum oscillations can be disentangled by combined Shubnikov–de Haas and de Hass–van Alphen oscillations, as well as quantum oscillations in nanometer-thick peeled crystals. At high magnetic fields beyond the bulk quantum limit, our results suggest that the zeroth Landau level of topological surface states is shifted due to the Zeeman effect. The g factor of the topological surfacemore » states is estimated to be between 1.8 and 4.5. Lastly, these observations shed new light on the quantum transport phenomena of topological insulators in ultrahigh magnetic fields.« less

  13. Synthesis and Physical Properties of the Oxofluoride Cu2(SeO3)F2.

    PubMed

    Mitoudi-Vagourdi, Eleni; Papawassiliou, Wassilios; Müllner, Silvia; Jaworski, Aleksander; Pell, Andrew J; Lemmens, Peter; Kremer, Reinhard K; Johnsson, Mats

    2018-04-16

    Single crystals of the new compound Cu 2 (SeO 3 )F 2 were successfully synthesized via a hydrothermal method, and the crystal structure was determined from single-crystal X-ray diffraction data. The compound crystallizes in the orthorhombic space group Pnma with the unit cell parameters a = 7.066(4) Å, b = 9.590(4) Å, and c = 5.563(3) Å. Cu 2 (SeO 3 )F 2 is isostructural with the previously described compounds Co 2 TeO 3 F 2 and CoSeO 3 F 2 . The crystal structure comprises a framework of corner- and edge-sharing distorted [CuO 3 F 3 ] octahedra, within which [SeO 3 ] trigonal pyramids are present in voids and are connected to [CuO 3 F 3 ] octahedra by corner sharing. The presence of a single local environment in both the 19 F and 77 Se solid-state MAS NMR spectra supports the hypothesis that O and F do not mix at the same crystallographic positions. Also the specific phonon modes observed with Raman scattering support the coordination around the cations. At high temperatures the magnetic susceptibility follows the Curie-Weiss law with Curie temperature of Θ = -173(2) K and an effective magnetic moment of μ eff ∼ 2.2 μ B . Antiferromagnetic ordering below ∼44 K is indicated by a peak in the magnetic susceptibility. A second though smaller peak at ∼16 K is tentatively ascribed to a magnetic reorientation transition. Both transitions are also confirmed by heat capacity measurements. Raman scattering experiments propose a structural phase instability in the temperature range 6-50 K based on phonon anomalies. Further changes in the Raman shift of modes at ∼46 K and ∼16 K arise from transitions of the magnetic lattice in accordance with the susceptibility and heat capacity measurements.

  14. Synthesis, structure, and characterization of two new bismuth(III) selenite/tellurite nitrates: [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and [Bi(TeO{sub 3})](NO{sub 3})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Chang-Yu; Wei, Ming-Fang; Geng, Lei, E-mail: lgeng.cn@gmail.com

    Two new bismuth(III) selenite/tellurite nitrates, [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and [Bi(TeO{sub 3})](NO{sub 3}), have been synthesized by conventional facile hydrothermal method at middle temperature 200 °C and characterized by single-crystal X-ray diffraction, powder diffraction, UV–vis–NIR optical absorption spectrum, infrared spectrum and thermal analylsis. Both [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and [Bi(TeO3)](NO3) crystallize in the monoclinic centronsymmetric space group P2{sub 1}/c with a=9.9403(4) Å, b=9.6857(4) Å, c=10.6864(5) Å, β=93.1150(10)° for [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and a=8.1489(3) Å, b=9.0663(4) Å, c=7.4729(3) Å, β=114.899(2)° for Bi(TeO3)(NO3), respectively. The two compounds, whose structures are composed of three different asymmetricmore » building units, exhibit two different types of structures. The structure of [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) features a three-dimensional (3D) bismuth(III) selenite cationic tunnel structure [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}] {sup 3}{sub ∞} with NO{sub 3}{sup −} anion group filling in the 1D tunnel along b axis. The structure of [Bi(TeO{sub 3})](NO{sub 3}) features 2D bismuth(III) tellurite [Bi(TeO{sub 3}){sub 2}]{sup 2}{sub ∞} layers separated by NO{sub 3}{sup −} anion groups. The results of optical diffuse-reflectance spectrum measurements and electronic structure calculations based on density functional theory methods show that the two compounds are wide band-gap semiconductors. - Graphical abstract: Two novel bismuth{sup III} selenite/tellurite nitrates [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) with 3D tunnel structure and [Bi(TeO{sub 3})](NO{sub 3}) with 2D layer structure have been firstly synthesized and characterized. Display Omitted - Highlights: • Two novel bismuth{sup III} nitrates [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and [Bi(TeO{sub 3})](NO{sub 3}) were firstly synthesized. • The two compounds were wide band-gap semiconductors.« less

  15. Vanadium doped Sb{sub 2}Te{sub 3} material with modified crystallization mechanism for phase-change memory application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Xinglong; Zheng, Yonghui; Zhou, Wangyang

    2015-06-15

    In this paper, V{sub 0.21}Sb{sub 2}Te{sub 3} (VST) has been proposed for phase-change memory applications. With vanadium incorporating, VST has better thermal stability than Sb{sub 2}Te{sub 3} and can maintain in amorphous phase at room temperature. Two resistance steps were observed in temperature dependent resistance measurements. By real-time observing the temperature dependent lattice structure evolution, VST presents as a homogenous phase throughout the whole thermal process. Combining Hall measurement and transmission electron microscopy results, we can ascribe the two resistance steps to the unique crystallization mechanism of VST material. Then, the amorphous thermal stability enhancement can also be rooted inmore » the suppression of the fast growth crystallization mechanism. Furthermore, the applicability of VST is demonstrated by resistance-voltage measurement, and the phase transition of VST can be triggered by a 15 ns electric pulse. In addition, endurance up to 2.7×10{sup 4} cycles makes VST a promising candidate for phase-change memory applications.« less

  16. Effect of Dielectric Material Films on Crystallization Characteristics of Ge2Sb2Te5 Phase-Change Memory Film

    NASA Astrophysics Data System (ADS)

    Nishiuchi, Kenichi; Yamada, Noboru; Kawahara, Katsumi; Kojima, Rie

    2007-11-01

    Reduction of the film thickness of phase-change film and the adoption of GeN- or ZrO2-based dielectric films are both effective in achieving good thermal stability in phase-change optical disks. It was experimentally confirmed that, at a heating rate of 10 °C/min, the crystallization temperature Tx of the Ge2Sb2Te5 amorphous film when sandwiched by ZnS-SiO2 films markedly increases from 162 to 197 °C, while the thickness of the Ge2Sb2Te5 film decreases from 10 to 3 nm. Tx also slightly increases when ZnS-SiO2 films are substituted for GeN-based films (from 162 to 165 °C) and ZrO2-based films (from 162 to 167 °C). At the same time, the activation energy of crystallization is 2.4 eV for both GeN- and ZrO2-based films, and is higher than 2.2 eV for ZnS-SiO2 films.

  17. Enriched TeO 2 bolometers with active particle discrimination: Towards the CUPID experiment

    DOE PAGES

    Artusa, D. R.; Avignone, F. T.; Beeman, J. W.; ...

    2017-04-01

    We present the performances of two 92% enriched 130TeO2 crystals operated as thermal bolometers in view of a next generation experiment to search for neutrinoless double beta decay of 130Te. The crystals, 435 g each, show an energy resolution, evaluated at the 2615 keV γ-line of 208Tl, of 6.5 and 4.3 keV FWHM. The only observable internal radioactive contamination arises from 238U (15 and 8 μBq/kg, respectively). The internal activity of the most problematic nuclei for neutrinoless double beta decay, 226Ra and 228Th, are both evaluated as <3.1 μBq/kg for one crystal and <2.3 μBq/kg for the second. Thanks tomore » the readout of the weak Cherenkov light emitted by β/γ particles by means of Neganov–Luke bolometric light detectors we were able to perform an event-by-event identification of β/γ events with a 95% acceptance level, while establishing a rejection factor of 98.21% and 99.99% for α particles.« less

  18. Effect of scanning velocity on femtosecond laser-induced periodic surface structures on HgCdTe crystal

    NASA Astrophysics Data System (ADS)

    Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong

    2017-12-01

    In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.

  19. Enriched TeO 2 bolometers with active particle discrimination: Towards the CUPID experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artusa, D. R.; Avignone, F. T.; Beeman, J. W.

    We present the performances of two 92% enriched 130TeO2 crystals operated as thermal bolometers in view of a next generation experiment to search for neutrinoless double beta decay of 130Te. The crystals, 435 g each, show an energy resolution, evaluated at the 2615 keV γ-line of 208Tl, of 6.5 and 4.3 keV FWHM. The only observable internal radioactive contamination arises from 238U (15 and 8 μBq/kg, respectively). The internal activity of the most problematic nuclei for neutrinoless double beta decay, 226Ra and 228Th, are both evaluated as <3.1 μBq/kg for one crystal and <2.3 μBq/kg for the second. Thanks tomore » the readout of the weak Cherenkov light emitted by β/γ particles by means of Neganov–Luke bolometric light detectors we were able to perform an event-by-event identification of β/γ events with a 95% acceptance level, while establishing a rejection factor of 98.21% and 99.99% for α particles.« less

  20. Post-growth annealing of Bridgman-grown CdZnTe and CdMnTe crystals for room-temperature nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander A.; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Giuseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-06-01

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an order of 102. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10-5 mbar, we observed the diffusion of Te from the sample, so causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10-5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 μm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on the conditions in local regions, such as composition and structure, as well as on the annealing conditions.

Top