Sample records for teach earth science

  1. Teaching earth science

    USGS Publications Warehouse

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  2. Pilot Program for Teaching Earth Science in New York

    NASA Astrophysics Data System (ADS)

    Nadeau, Patricia A.; Flores, Kennet E.; Ustunisik, Gokce; Zirakparvar, Nasser A.; Grcevich, Jana; Pagnotta, Ashley; Sessa, Jocelyn A.; Kinzler, Rosamond J.; Macdonald, Maritza; Mathez, Edmond; Mac Low, Mordecai-Mark

    2013-06-01

    During the 2009-2010 school year, 40% of New York City (NYC) Earth science teachers were not certified to teach Earth science [New York State Education Department (NYSED), 2011]. This highlights a longstanding shortage of certified teachers, which persists today and prevents many schools from offering courses on the subject, thus diminishing student opportunities to study or embark on careers in Earth science. More generally, the paucity of qualified, effective science teachers hinders student achievement in science, technology, engineering, and mathematics (STEM), and research has consistently shown that improving the quality of teaching substantially increases achievement in STEM-related fields [National Science Board, 2007]. With only 36% of NYC 8th graders scoring at or above the basic level of proficiency in science and with even lower scores for African-American and Hispanic students [Livingston and Wirt, 2005], the need for more qualified science teachers is clear.

  3. Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability

    NASA Astrophysics Data System (ADS)

    Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.

    2016-12-01

    The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.

  4. Earth Science Teaching Strategies Used in the International Polar Year

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.

    2009-04-01

    There are many effective methods for teaching earth science education that are being successfully used during the fourth International Polar Year (IPY). Relevance of IPY and the polar regions is better understood using a systems thinking approach used in earth science education. Changes in components of the earth system have a global effect; and changes in the polar regions will affect the rest of the world regions and vice versa. Teaching strategies successfully used for primary, secondary, undergraduate and graduate student earth science education and IPY education outreach include: 1) engaging students in earth science or environmental research relevant to their locale; 2) blending lectures with research expeditions or field studies, 3) connecting students with scientists in person and through audio and video conferencing; 4) combining science and arts in teaching, learning and communicating about earth science and the polar regions, capitalizing on the uniqueness of polar regions and its inhabitants, and its sensitivity to climate change; and 5) integrating different perspectives: western science, indigenous and community knowledge in the content and method of delivery. Use of these strategies are exemplified in IPY projects in the University of the Arctic IPY Higher Education Outreach Project cluster such as the GLOBE Seasons and Biomes project, the Ice Mysteries e-Polar Books: An Innovative Way of Combining Science and Literacy project, the Resilience and Adaptation Integrative Graduate Education and Research Traineeship project, and the Svalbard Research Experience for Undergraduates project.

  5. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    ERIC Educational Resources Information Center

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  6. Implementation of small group discussion as a teaching method in earth and space science subject

    NASA Astrophysics Data System (ADS)

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  7. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    NASA Astrophysics Data System (ADS)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  8. Earth Science Contexts for Teaching Physics. Part 2: Contexts Relating to the Teaching of Energy, Earth and Beyond and Radioactivity.

    ERIC Educational Resources Information Center

    King, Chris; Kennett, Peter

    2002-01-01

    Explains how physics teaching can be more relevant for elementary and secondary students by integrating physics and earth science content that students can relate to and understand. Identifies and explains Earth contexts that can be appropriately implemented into the physics curriculum such as energy resources and radioactivity. (Author/YDS)

  9. Snow as Field-Teaching Medium for Earth Science.

    ERIC Educational Resources Information Center

    Custer, Stephan Gregory

    1991-01-01

    Snow is a widely available earth-science teaching medium which can be used to explore scientific concepts in the field, either directly or by analogy. Snow can be considered a mineral, sediment, sedimentary rock, or metamorphic rock. Natural processes such as crystal growth, melting, sedimentation, and metamorphism can be studied in practical time…

  10. Tools and Techniques to Teach Earth Sciences to Young People

    NASA Astrophysics Data System (ADS)

    Constantino, R.; Dicelis, G.; Molina, E. C.

    2010-12-01

    This study aims to identify the tools available to disseminate the Earth sciences to young people in Brazil and to propose new techniques that may help in the teaching of such subjects. The use of scientific dissemination can be a great tool for the consolidation of a scientific culture, especially for a public of young students. The starting point of this study is an important characteristic that is present in virtually all the children: curiosity. The young public tries to understand how the world is and how it works. The use of scientific dissemination and some educational experiences have shown that these students have a great ability to learn and deal with various topics within the Earth Sciences. Another relevant point is the possibility to show that the Earth sciences, e.g., geophysics, oceanography, meteorology, geology and geography, can be an educational attractive option. Several ways of disseminating Earth sciences are commonly used with the purpose of attracting and mainly teaching these subjects, such as websites, interactive museums and cultural and educational spaces. The objectives of this work are: i) Investigate the role of science centers as motivators in disseminating the scientific knowledge by examining the communication resources that are being employed, the acceptance, reaction, and interest of children to these means, and ii) From this analysis, to list suggestions of contents and new tools that could be used for obtaining better results.

  11. Common Earth Science Misconceptions in Science Teaching

    ERIC Educational Resources Information Center

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  12. How Successful Has Earth Science Education Been in Teaching Deep Time and Terminology of the Earth's Structure?

    ERIC Educational Resources Information Center

    Murphy, Phil

    2012-01-01

    A very limited questioning of undergraduate Environmental Science students at the start of their studies suggests the age of the Earth is being successfully taught in high schools. The same cannot be said for the teaching of the structure of the Earth.

  13. Supporting Inquiry-based Earth System Science Instruction with Middle and High School Earth Science Teachers

    NASA Astrophysics Data System (ADS)

    Finkel, L.; Varner, R.; Froburg, E.; Smith, M.; Graham, K.; Hale, S.; Laura, G.; Brown, D.; Bryce, J.; Darwish, A.; Furman, T.; Johnson, J.; Porter, W.; von Damm, K.

    2007-12-01

    The Transforming Earth System Science Education (TESSE) project, a partnership between faculty at the University of New Hampshire, Pennsylvania State University, Elizabeth City State University and Dillard University, is designed to enrich the professional development of in-service and pre-service Earth science teachers. One goal of this effort is to help teachers use an inquiry-based approach to teaching Earth system science in their classrooms. As a part of the TESSE project, 42 pre-service and in-service teachers participated in an intensive two-week summer institute at UNH taught by Earth scientists and science educators from TESSE partnership institutions. The institute included instruction about a range of Earth science system topics as well as an introduction to teaching Earth science using an inquiry-based approach. In addition to providing teachers with information about inquiry-based science teaching in the form of sample lesson plans and opportunities to revise traditional lessons and laboratory exercises to make them more inquiry-based, TESSE instructors modeled an inquiry- based approach in their own teaching as much as possible. By the end of the Institute participants had developed lesson plans, units, or year-long course overviews in which they were expected to explain the ways in which they would include an inquiry-based approach in their Earth science teaching over the course of the school year. As a part of the project, graduate fellows (graduate students in the earth sciences) will work with classroom teachers during the academic year to support their implementation of these plans as well as to assist them in developing a more comprehensive inquiry-based approach in the classroom.

  14. Three-Dimensional Soil Landscape Modeling: A Potential Earth Science Teaching Tool

    ERIC Educational Resources Information Center

    Schmid, Brian M.; Manu, Andrew; Norton, Amy E.

    2009-01-01

    Three-dimensional visualization is helpful in understanding soils, and three dimensional (3-D) tools are gaining popularity in teaching earth sciences. Those tools are still somewhat underused in soil science, yet soil properties such as texture, color, and organic carbon content vary both vertically and horizontally across the landscape. These…

  15. A Geograns update. New experiences to teach earth sciences to students older than 55

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Pinazo, S.

    2009-04-01

    How to teach earth science to students that have access to the university after the age of 55 is a challenge due to the different background of the students. They ranged from those with only basic education (sometimes they finished school at the age of 9) to well educate students such as university professors, physicians or engineers. Students older than 55 are enrolled in what is called the university programme NauGran project at the University of Valencia. They follow diverse topics, from health science to Arts. Since 2006 the Department of Geography and the NauGran project developed the Club for Geographers and Walkers called Geograns. The objective is to teach Earth Science in the field as a strategy to improve the knowledge of the students with a direct contact with the territory. This initiative reached a successful contribution by the students, with 70 students registered. The successful strategy we have developed since then is to base our teaching on field work. Every lecture is related to some visits to the field. A pre-excursion lecture introduces the key questions of the study site (hydrology, geology, botany, geomorphology…). During the field work we review all the topics and the students are encouraged to ask and discuss any of the topics studied. Finally, a post-excursion lecture is given to review the acquired knowledge. During the last academic year 2007-2008 the excursion focussed on: (i) energy sources: problems and solutions, with visit to nuclear, wind and hydraulic power stations; (i) human disturbances and humankind as landscaper, with visits to wetlands, river gorges and Iberian settlements; and (iii) human activities and economical resources, with visits to vineyards and wineries and orange fields devoted to organic farming. This is being a positive strategy to teach Earth Science to a wide and heterogeneous group of students, as they improve their knowledge with a direct contact with the landscape, other colleagues and teachers in the

  16. Using Copy Change with Trade Books to Teach Earth Science

    ERIC Educational Resources Information Center

    Bintz, William P.; Wright, Pam; Sheffer, Julie

    2010-01-01

    Developing and implementing relevant, challenging, integrative, and exploratory curriculum is critical at all levels of schooling. This article describes one attempt to develop and implement an instance of interdisciplinary curriculum by using copy change with trade books to teach earth science. Specifically, it introduces trade books as a way to…

  17. Impacts of an Inquiry Teaching Method on Earth Science Students' Learning Outcomes and Attitudes at the Secondary School Level.

    ERIC Educational Resources Information Center

    Mao, Song-Ling; Chang, Chun-Yen

    This paper summarizes two companion studies that were designed to investigate the impacts of an inquiry teaching method on Earth science students' achievement and attitudes towards Earth science in secondary schools. Subjects were 557 students (9th grade) enrolled in 14 Earth science classes. Two Earth science units, including topics of astronomy…

  18. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  19. Teaching Inquiry using NASA Earth-System Science: Lessons Learned for Blended, Scaffolded Professional Development

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; TeBockhorst, D.

    2013-12-01

    Teaching Inquiry using NASA Earth-System Science (TINES) is a NASA EPOESS funded program exploring blended professional development for pre- and in-service educators to learn how to conduct meaningful inquiry lessons and projects in the K-12 classroom. This project combines trainings in GLOBE observational protocols and training in the use of NASA Earth Science mission data in a backward-faded scaffolding approach to teaching and learning about scientific inquiry. It also features a unique partnership with the National Science Teachers Association Learning Center to promote cohort building and blended professional development with access to NSTA's collection of resources. In this presentation, we will discuss lessons learned in year one and two of this program and how we plan to further develop this program over the next two years.

  20. Creative Building Design for Innovative Earth Science Teaching and Outreach (Invited)

    NASA Astrophysics Data System (ADS)

    Chan, M. A.

    2009-12-01

    Earth Science departments can blend the physical “bricks and mortar” facility with programs and educational displays to create a facility that is a permanent outreach tool and a welcoming home for teaching and research. The new Frederick Albert Sutton building at the University of Utah is one of the first LEED (Leadership in Energy and Environmental Design) certified Earth Science buildings in the country. Throughout the structure, creative architectural designs are combined with sustainability, artful geologic displays, and community partnerships. Distinctive features of the building include: 1) Unique, inviting geologic designs such as cross bedding pattern in the concrete foundation; “a river runs through it” (a pebble tile “stream” inside the entrance); “confluence” lobby with spectacular Eocene Green River fossil fish and plant walls; polished rock slabs; and many natural stone elements. All displays are also designed as teaching tools. 2) Student-generated, energy efficient, sustainable projects such as: solar tube lights, xeriscape & rock monoliths, rainwater collection, roof garden, pervious cement, and energy monitoring. 3) Reinforced concrete foundation for vibration-free analytical measurements, and exposed lab ceilings for duct work and infrastructure adaptability. The spectacular displays for this special project were made possible by new partnerships within the community. Companies participated with generous, in-kind donations (e.g., services, stone flooring and slabs, and landscape rocks). They received recognition in the building and in literature acknowledging donors. A beautiful built environment creates space that students, faculty, and staff are proud of. People feel good about coming to work, and they are happy about their surroundings. This makes a strong recruiting tool, with more productive and satisfied employees. Buildings with architectural interest and displays can showcase geology as art and science, while highlighting

  1. Teaching Geologic/Earth Science Remote Sensing at the Collegiate and the Secondary School Level

    ERIC Educational Resources Information Center

    Fisher, John J.

    1977-01-01

    Describes util satellite photography, satellite remote sensing, and high altitude aircraft photography for teaching environmental and ecological aspects of earth science at the secondary or college levels. (SL)

  2. Effective and responsible teaching of climate change in Earth Science-related disciplines

    NASA Astrophysics Data System (ADS)

    Robinson, Z. P.; Greenhough, B. J.

    2009-04-01

    Climate change is a core topic within Earth Science-related courses. This vast topic covers a wide array of different aspects that could be covered, from past climatic change across a vast range of scales to environmental (and social and economic) impacts of future climatic change and strategies for reducing anthropogenic climate change. The Earth Science disciplines play a crucial role in our understanding of past, present and future climate change and the Earth system in addition to understanding leading to development of strategies and technological solutions to achieve sustainability. However, an increased knowledge of the occurrence and causes of past (natural) climate changes can lead to a lessened concern and sense of urgency and responsibility amongst students in relation to anthropogenic causes of climatic change. Two concepts integral to the teaching of climate change are those of scientific uncertainty and complexity, yet an emphasis on these concepts can lead to scepticism about future predictions and a further loss of sense of urgency. The requirement to understand the nature of scientific uncertainty and think and move between different scales in particular relating an increased knowledge of longer timescale climatic change to recent (industrialised) climate change, are clearly areas of troublesome knowledge that affect students' sense of responsibility towards their role in achieving a sustainable society. Study of the attitudes of university students in a UK HE institution on a range of Earth Science-related programmes highlights a range of different attitudes in the student body towards the subject of climate change. Students express varied amounts of ‘climate change saturation' resulting from both media and curriculum coverage, a range of views relating to the significance of humans to the global climate and a range of opinions about the relevance of environmental citizenship to their degree programme. Climate change is therefore a challenging

  3. It's Time to Stand up for Earth Science

    ERIC Educational Resources Information Center

    Schaffer, Dane L.

    2012-01-01

    This commentary paper focuses upon the loss of respect for Earth Sciences on the part of many school districts across the United States. Too many Earth Science teachers are uncertified to teach Earth Science, or hold certificates to teach the subject merely because they took a test. The Earth Sciences have faced this problem for many years…

  4. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    NASA Astrophysics Data System (ADS)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  5. The Development of Multi-Level Audio-Visual Teaching Aids for Earth Science.

    ERIC Educational Resources Information Center

    Pitt, William D.

    The project consisted of making a multi-level teaching film titled "Rocks and Minerals of the Ouachita Mountains," which runs for 25 minutes and is in color. The film was designed to be interesting to earth science students from junior high to college, and consists of dialogue combined with motion pictures of charts, sequential diagrams, outcrops,…

  6. A Comparison of Didactic and Inquiry Teaching Methods in a Rural Community College Earth Science Course

    NASA Astrophysics Data System (ADS)

    Beam, Margery Elizabeth

    The combination of increasing enrollment and the importance of providing transfer students a solid foundation in science calls for science faculty to evaluate teaching methods in rural community colleges. The purpose of this study was to examine and compare the effectiveness of two teaching methods, inquiry teaching methods and didactic teaching methods, applied in a rural community college earth science course. Two groups of students were taught the same content via inquiry and didactic teaching methods. Analysis of quantitative data included a non-parametric ranking statistical testing method in which the difference between the rankings and the median of the post-test scores was analyzed for significance. Results indicated there was not a significant statistical difference between the teaching methods for the group of students participating in the research. The practical and educational significance of this study provides valuable perspectives on teaching methods and student learning styles in rural community colleges.

  7. Teach the Earth: On-line Resources for Teachers and Teachers of Teachers

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2007-12-01

    Effective Earth science education depends on excellent teachers: teachers who not only possess a strong grasp of geoscience but are also well-versed in the pedagogic methods they need to connect with their audience. Preparing Earth science teachers is a task no less challenging that also requires strengths in both areas. The Teach the Earth website provides a variety of resources to support preparation of Earth science teachers. Here you can find collections of teaching activities addressing all aspects of the Earth system; discussions of teaching methods linked to examples of their use in geoscience courses; and the Earth Exploration Toolbook, a resource specifically designed for teachers who would like to incorporate data rich activities in their teaching. These resources are suitable for use by teachers, students in courses addressing the methodology of teaching Earth science and science, and faculty designing courses. Faculty working with current and future teachers will find a section on Preparing Teachers to Teach Earth Science with a collection of courses designed specifically to benefit future Earth Science teachers, examples of key activities in these courses, and descriptions of programs for pre-service and in-service teachers. The materials housed in this web-resource demonstrate a wide range of fruitful approaches and exciting opportunities. On the order of 25,000 individuals use the site repeatedly during the year. We estimate that 27 percent of these users are geoscience faculty and 12 percent are teachers. We invite teachers, faculty, researchers, and educators to enhance this resource by contributing descriptions of activities, courses, or programs as a mechanism for sharing their experience with others engaged in similar work.

  8. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    NASA Astrophysics Data System (ADS)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  9. Teaching Waves with Google Earth

    ERIC Educational Resources Information Center

    Logiurato, Fabrizio

    2012-01-01

    Google Earth is a huge source of interesting illustrations of various natural phenomena. It can represent a valuable tool for science education, not only for teaching geography and geology, but also physics. Here we suggest that Google Earth can be used for introducing in an attractive way the physics of waves. (Contains 9 figures.)

  10. Teach and Touch the Earth and Sky

    NASA Astrophysics Data System (ADS)

    Florina Tendea, Camelia

    2017-04-01

    My name is Camelia Florina Tendea. I am primary school teacher at "Horea, Closca and Crisan" Secondary School, in Brad, a town in the west side of Transylvania. I am permanently interested to develop my knowledge and teaching skills about space sciences (Earth and Sky) because the new generations of students are very well informed and couriouse about these topics. In this context the teachers must be prepared to deal with such requests in school. Introducing of activity: For a primary school teacher is a real challenge teaching about Earth and Sky, so I consider that a collaboration with science teachers, engineers and other specialists in the sciences is absolutely essential and beneficial in the educational design. In my opinion, the contents about Earth ans Sky-Space in a single word- are very attractive for students and they are a permanent source of discoveries and provide a multidisciplinary vision, so required in the education. Possible contents to teach in primary school: about Earth: -Terra -the third Planet from the Sun; How Earth spins; Land and water; The Earth seen from space, Trip between Earth and Moon,Weather Phenomena; the Poles; about Sky: Solar System, Asteroids, Comets, Meteorites; Rosetta Mission or rendez-vous with a comet; Sun.Moon. Earth. Eclipse;Light Pollution and protection of the night sky; Life in Space. Astronauts and experiences; Mission X:- Train Like an Astronaut;About ISS. For teachers it is important to know from the beginning how they teach, a viable support is the teaching of STEM subjects, which provides access to careers in astronomy, science/technology space. We could teach about earth and sky using different kinds of experiments, simulations, hands-on activities, competitions, exhibitions, video presentations. Competences developed in primary school through these contents: Comunication, individual studying, understanding and valorisation of scientific information, relating to the natural environment. In addition, they are

  11. Ivestigating Earth Science in Urban Schoolyards

    ERIC Educational Resources Information Center

    Endreny, Anna; Siegel, Donald I.

    2009-01-01

    The Urban Schoolyards project is a two year partnership with a university Earth Science Department and the surrounding urban elementary schools. The goal of the project was to develop the capacity of elementary teachers to teach earth science lessons using their schoolyards and local parks as field sites. The university personnel developed lessons…

  12. DIG Texas Blueprints - Pathways for Teaching a Rigorous Earth Science Course

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Pennington, D. D.; Fox, S.; Larsen, K.; Ledley, T. S.; Stocks, E.; Mosher, S.; Miller, K. C.

    2013-12-01

    The DIG (Diversity and Innovation for Geosciences) Texas Instructional Blueprint project supports the development of five online instructional blueprints that document what to teach in a yearlong high school-level Earth science course. Each blueprint stitches together units that contain approximately 10 well-vetted, curated educational resources and learning activities. Units may focus on specific geoscience content, place-based concerns, features or ideas, or other specific conceptual threads. Five regional teams composed of Earth scientists, pedagogy specialists, and practicing science teachers are creating the blueprints. The cross-disciplinary collaboration among blueprint team members provides opportunities for them to develop knowledge in new areas and to share their own discipline-based knowledge and perspectives. Team members also learn where to find and how to evaluate high quality geoscience educational resources, using a web-based resource review tool. Blueprint development is guided by the Next Generation Science Standards and selected educational resources are aligned with the Texas state standards (Texas Essential Knowledge and Skills) for Earth and Space Science and the Earth Science Literacy Principles. The Science Education Resource Center (SERC) serves as the repository for the DIG Texas blueprint web pages. The Cyber-ShARE Center of Excellence at UTEP and SERC are engaged in the development of automated tools to allow educators to compile resources into customized instructional blueprints by reshuffling units within an existing blueprint, by mixing and matching units from other blueprints, or creating new units and blueprints. These innovations are intended to provide access to the blueprints in such a way that enhances their use by secondary Earth science educators. In this presentation, we provide an overview of the project, showcase examples of the blueprints, report on the preliminary results of classroom implementation, and consider

  13. The Texas Earth and Space Science (TXESS) Revolution: A Model for the Delivery of Earth Science Professional Development to Minority-Serving Teachers

    ERIC Educational Resources Information Center

    Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.

    2013-01-01

    The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…

  14. Teaching Earth Sciences as an interdisciplinary subject: Novel module design involving research literature

    NASA Astrophysics Data System (ADS)

    Tong, Vincent C. H.

    2010-05-01

    The study of Earth Sciences requires an interdisciplinary approach as it involves understanding scientific knowledge originating from a wide spectrum of research areas. Not only does it include subjects ranging from, for instance, hydrogeology to deep crustal seismology and from climate science to oceanography, but it also has many direct applications in closely related disciplines such as environmental engineering and natural resources management. While research crossing traditional disciplinary boundaries in geosciences is becoming increasingly common, there is only limited integration of interdisciplinary research in the teaching of the subject. Given that the transition from undergraduate education based on subject modules to postgraduate interdisciplinary research is never easy, such integration is a highly desirable pedagogical approach at both undergraduate and postgraduate levels. My presentation is based on a recent teaching project involving novel design of an undergraduate course. The course is implemented in order to address the synergy between research and teaching (Tong, 2009). This project has been shown to be effective and successful in teaching geosciences undergraduates at the University of London. The module consists of studying core geophysical principles and linking them directly to a selection of recently published research papers in a wide range of interdisciplinary applications. Research reviewing and reporting techniques are systematically developed, practised and fully integrated into teaching of the core scientific theories. A fully-aligned assignment with a feedback website invites the students to reflect on the scientific knowledge and the study skills related to research literature they have acquired in the course. This teaching project has been recognized by a teaching award (http://www.clpd.bbk.ac.uk/staff/BETA). In this presentation, I will discuss how undergraduate teaching with a focus on research literature in Earth Sciences can

  15. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    ERIC Educational Resources Information Center

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  16. Using NASA Space Imaging Technology to Teach Earth and Sun Topics

    NASA Astrophysics Data System (ADS)

    Verner, E.; Bruhweiler, F. C.; Long, T.

    2011-12-01

    We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.

  17. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  18. Incorporating Earth Science into Other High School Science Classes

    NASA Astrophysics Data System (ADS)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  19. An Analysis of Misconceptions in Science Textbooks: Earth science in England and Wales

    NASA Astrophysics Data System (ADS)

    King, Chris John Henry

    2010-03-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one earth science error/misconception per page. Science syllabuses and examinations surveyed also showed errors/misconceptions. More than 500 instances of misconception were identified through the surveys. These were analysed for frequency, indicating that those areas of the earth science curriculum most prone to misconception are sedimentary processes/rocks, earthquakes/Earth's structure, and plate tectonics. For the 15 most frequent misconceptions, examples of quotes from the textbooks are given, together with the scientific consensus view, a discussion, and an example of a misconception of similar significance in another area of science. The misconceptions identified in the surveys are compared with those described in the literature. This indicates that the misconceptions found in college students and pre-service/practising science teachers are often also found in published materials, and therefore are likely to reinforce the misconceptions in teachers and their students. The analysis may also reflect the prevalence earth science misconceptions in the UK secondary (high school) science-teaching population. The analysis and discussion provide the opportunity for writers of secondary science materials to improve their work on earth science and to provide a platform for improved teaching and learning of earth science in the future.

  20. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  1. The effect of an STC orientation to teaching on student academic performance and motivation in secondary earth science

    NASA Astrophysics Data System (ADS)

    Corbin, Robert Arthur

    Student achievement gaps among subgroups remain a prevalent and critical issue in urban education systems. In many classes these students remain the target---and often the victims---of test-driven curriculum. Missing from their urban education is one of the most important aspects of a true education: a sense of place within that education. Science educators and educational researchers might consider the benefits of Sociotransformative Constructivism (STC) as a means of creating a more meaningful education for urban youth. This study examined the impact of an STC teaching orientation on student motivation and academic performance in secondary earth science students. The mixed methodology employed used both qualitative and quantitative data. Data collection consisted of STC activities, survey data, classroom observations, studentgenerated work and threaded discussions. Statistical analysis included independent t-tests of pre- and post-instruction concept maps. The results showed that the adaptation of an STC teaching orientation has a positive impact on student motivation and performance in secondary earth science.

  2. Teaching Planetary Sciences in Bilingual Classrooms

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops

  3. Earth Science Education Plan: Inspire the Next Generation of Earth Explorers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.

  4. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  5. Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction

    NASA Astrophysics Data System (ADS)

    Pottinger, James E.

    With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space science courses are different than typical online courses in that they need to incorporate an inquiry-based component to ensure students fully understand the course concepts and science principles in the Earth and Space sciences. Studies have addressed the barriers in other inquiry-based online science courses, including biology, physics, and chemistry. This holistic, multiple-case qualitative study investigated perceived barriers and strategies to effective online Earth and Space science instruction through in-depth interviews with six experienced post-secondary online science instructors. Data from this study was analyzed using a thematic analysis approach and revealed four common themes when teaching online Earth and Space science. A positive perception and philosophy of online teaching is essential, the instructor-student interaction is dynamic, course structure and design modification will occur, and online lab activities must make science operational and relevant. The findings in this study demonstrated that online Earth and Space science instructors need institutional support in the form of a strong faculty development program and support staff in order to be as effective as possible. From this study, instructors realize that the instructor-student relationship and course structure is paramount, especially when teaching online science with labs. A final understanding from this study was that online Earth and Space science lab activities must incorporate the use and application of scientific skills and knowledge. Recommendations for future research include (a) qualitative research conducted in specific areas within the

  6. Graduate students teaching elementary earth science through interactive classroom lessons

    NASA Astrophysics Data System (ADS)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  7. The EarthLabs Approach to Curriculum and Professional Development: Earth Science Education in the 21st Century

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Ellins, K. K.; Haddad, N.

    2011-12-01

    Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions

  8. ACCESS Earth: Promoting Accessibility to Earth System Science for Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Locke, S. M.; Cohen, L.; Lightbody, N.

    2001-05-01

    ACCESS Earth is an intensive summer institute for high school students with disabilities and their teachers that is designed to encourage students with disabilities to consider careers in earth system science. Participants study earth system science concepts at a Maine coastal estuary, using Geographic Information Systems, remote sensing, and field observations to evaluate the impacts of climate change, sea level rise, and development on coastal systems. Teachers, students, and scientists work together to adapt field and laboratory activities for persons with disabilities, including those with mobility and visual impairments. Other sessions include demonstrations of assistive technology, career discussions, and opportunities for students to meet with successful scientists with disabilities from throughout the U.S. The summer institute is one of several programs in development at the University of Southern Maine to address the problem of underrepresentation of people with disabilities in the earth sciences. Other projects include a mentoring program for high school students, a web-based clearinghouse of resources for teaching earth sciences to students with disabilities, and guidebooks for adaptation of popular published earth system science curricula for disabled learners.

  9. Earth Science Education in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin L.

    1999-05-01

    Zimbabwe is a mineral-rich country with a long history of Earth Science Education. The establishment of a University Geology Department in 1960 allowed the country to produce its own earth science graduates. These graduates are readily absorbed by the mining industry and few are without work. Demand for places at the University is high and entry standards reflect this. Students enter the University after GCE A levels in three science subjects and most go on to graduate. Degree programmes include B.Sc. General in Geology (plus another science), B.Sc. Honours in Geology and M.Sc. in Exploration Geology and in Geophysics. The undergraduate curriculum is broad-based and increasingly vocationally orientated. A well-equipped building caters for relatively large student numbers and also houses analytical facilities used for research and teaching. Computers are used in teaching from the first year onwards. Staff are on average poorly qualified compared to other universities, but there is an impressive research element. The Department has good links with many overseas universities and external funding agencies play a strong supporting role. That said, financial constraints remain the greatest barrier to future development, although increasing links with the mining industry may cushion this.

  10. Fun and Games: using Games and Immersive Exploration to Teach Earth and Space Science

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.

    2011-12-01

    We have been using games to teach Earth and Space Science for over 15 years. Our software "TicTacToe" has been used continuously at the Houston Museum of Natural Science since 2002. It is the single piece of educational software in the "Earth Forum" suite that holds the attention of visitors the longest - averaging over 10 minutes compared to 1-2 minutes for the other software kiosks. We now have question sets covering solar system, space weather, and Earth science. In 2010 we introduced a new game technology - that of immersive interactive explorations. In our "Tikal Explorer", visitors use a game pad to navigate a three-dimensional environment of the Classic Maya city of Tikal. Teams of students climb pyramids, look for artifacts, identify plants and animals, and site astronomical alignments that predict the annual return of the rains. We also have a new 3D exploration of the International Space Station, where students can fly around and inside the ISS. These interactive explorations are very natural to the video-game generation, and promise to bring educational objectives to experiences that had previously been used strictly for gaming. If space permits, we will set up our portable Discovery Dome in the poster session for a full immersive demonstration of these game environments.

  11. Earth System Science Education Interdisciplinary Partnerships

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  12. Studies on attitude toward teaching science and anxiety about teaching science in preservice elementary teachers

    NASA Astrophysics Data System (ADS)

    Westerback, Mary E.

    These studies examined attitude toward teaching science (ATTS) using an adaptation of the Bratt Attitude Test (M-BAT); anxiety about teaching science (ANX-TS), as measured by the State-Trait Anxiety Inventory (STAI A-State); and selected demographic variables in preservice elementary teachers for the 1977-1978 and 1978-1979 academic years and a follow-up of those students who completed their student teaching in May 1979. The M-BAT and STAI were administered in September at the beginning of Science 6 (earth science and biology course), in December on the next to last day of Science 6, in May on the next to the last day of Science 5 (physical science), and in May 1979 after student teaching. In the two academic years, both ATTS and ANX-TS became more positive during the sequence Science 6-5. Both changes in ATTS and ANX-TS continued to change in a positive direction after completion of Science 6-5, after student teaching. There were differences in the times that the greatest changes in ATTS and ANX-TS occurred. In both studies, the greatest change in ATTS took place between September and December, during Science 6. The greatest change in ANX-TS, however, took place during Science 5 between December and May in the 1977-1978 study. In the 1978-1979 study, the greatest changes in ANX-TS occurred in Science 6, between September and December. The delayed reduction of ANX-TS in the 1977-1978 study may be explained by differences in teaching patterns. In 1977-1978, two teachers taught only their academic specialty, biology or earth science, to students who switched teachers midsemester. In 1978-1979, the same two instructors taught both biology and earth science to the same students. Correlation coefficients for successive and corresponding administrations of both the M-BAT and STAI suggest these variables are related. Students with more positive ATTS tended to have reduced ANX-TS. Neither the number of high school or college science and math courses completed nor the level

  13. Preservice elementary teachers' alternative conceptions of science and their self-efficacy beliefs about science teaching

    NASA Astrophysics Data System (ADS)

    Koc, Isil

    The present study was conducted to investigate the extent to which preservice elementary teachers held alternative conceptions in fundamental elementary science concepts from earth/space science, life science, and physical science along with their self-efficacy beliefs about science teaching and to determine the relationship between these two issues. Eighty-six preservice elementary education majors enrolled in the four sections of the course titled "07E:162 Methods Elementary School Science" offered in the Science Education Center, College of Education, the University of Iowa during the 2005-2006 academic year participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions in Science Instrument constructed by Schoon and Boone (1998), Science Teaching Efficacy Belief Instrument (STEBI-B) constructed by Enochs and Riggs (1990), a participant information form, and through utilization of interviews. The results from the alternative conception instrument indicated that the majority of preservice elementary teachers held a number of alternative conceptions with most being in the physical sciences followed by earth/space, and then life science. Various sources of alternative conceptions emerged during the interview sessions. Participants mainly cited science teachers, science textbooks, and previous science experiences as sources of their alternative conceptions. On the other hand, the analysis of the self-efficacy instrument and follow-up interviews revealed generally positive self-efficacy beliefs. Findings from the study also confirmed that science courses completed in high school and college do not seem to have influenced participants' number and types of alternative conceptions regarding earth/space science, life science, and physical science and self-efficacy beliefs about science teaching. The results also indicate that participants with the lowest number of

  14. The Earth Science for Tomorrows Classroom

    NASA Astrophysics Data System (ADS)

    Shanskiy, Merrit

    2015-04-01

    The Earth sciences comprises many fascinating topics that is teached to different age level pupils/students in order to bring hard core science closer to their daily life. With developing possibilities in IT, multimedia overall electronic sector the teachers/lecturers have continuous possibilities to accomplish novel approaches and utilize new ideas to make science more interesting for students in all ages. Emerging, from personal experiences, the teaching of our surrounding Environment can be very enjoyable. In our everyday life the SOIL remains invisible. The soil is covered by plant cover which makes the topic somewhat in distant that is not "visible" to an eye and its importance is underestimated. In other hand, the SOIL is valuable primary resource for food production and basis of life for healthy environment. From several studies have found that because its complications, SOIL related topics are not very often chosen topic for course or diploma works by students. The lower-school students are very open to environmental topics accordingly to the grades. Here, the good results can be obtained through complimentary materials creation, like story telling and drawing books and puzzles. The middle/ and upper/school students will experience "real science" being able to learn what the science is about which often can play a important role on making choices for future curriculum completion at university level. Current presentation shares the ideas of selected methods that had showed successful results on different Earth Science topics teaching (biodiversity, growing substrates, green house gas emissions). For some ideas the presentation introduces also the further developmental possibilities to be used in teaching at Tomorrows Classroom.

  15. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    ERIC Educational Resources Information Center

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  16. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    NASA Astrophysics Data System (ADS)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  17. Design, Development and Preliminary Student Evaluation of Virtual Field Guides as aids to teaching and learning in the Earth sciences

    NASA Astrophysics Data System (ADS)

    Stott, Tim

    2010-05-01

    In Universities the benefits of teaching and learning through fieldwork has been brought under closer examination in recent years (e.g. Andrews et al., 2003) and the notion of supporting fieldwork in the Geography, Earth and Environmental Science (GEES) disciplines has been gathering momentum over the past decade as evidenced by conferences on ‘Supporting fieldwork using information technology' (Maskall et al., 2007) and a Higher Education Academy GEES Virtual Fieldwork Conference at University of Worcester (May 2007). Virtual environments and e-learning resources have been shown to help students become active rather than passive learners by appealing to their multi-sensory learning ability with interactive media (Fletcher et al., 2002; 2007). Research on glacial and fluvial processes has been conducted since 2003 by Liverpool John Moores University (LJMU) staff, sometimes in collaboration with other Universities, at field sites in the French Alps, Swiss Alps and Cariboo Mountains in British Columbia. A virtual field guide (VFG) (www.virtualalps.co.uk) has been developed which uses maps, site photos, panorama movies, video clips, a google earth tour, student exercises using hydrological and glacial datasets collected in the field and revision exercises. A preliminary evaluation of this learning resource has been carried out with two groups of LJMU students and an article written (Stott et al. 2009a). The Ingleton Waterfalls VFG (http://www.ljmu.ac.uk/BIE/ingleton/) was developed by LJMU staff to meet the needs of Foundation degree and undergraduate students. A workshop was presented at the Earth Science Teachers Association 2008 Annual Conference at LJMU, and a subsequent article written (Stott et al. 2009b). The final section of this presentation will summarise some staff perspectives and raises some questions and issues concerned with development and accessibility of VFGs in the light of new developments of a ‘semantic web' at LJMU (Carmichael, 2009). Andrews

  18. Issue-centered Earth Science undergraduate instruction in U.S. colleges and universities

    NASA Astrophysics Data System (ADS)

    Liddicoat, J. C.

    2011-12-01

    Semester-long introductory courses in Earth Science at U.S. colleges and universities often contain astronomy, meteorology, oceanography, and geology taught as single entities. My experience teaching Earth Science that way and using a trade Earth Science textbook results in cursory knowledge and poor retention of each topic area. This seems to be especially true for liberal arts students who take Earth Science to satisfy a distribution requirement in the sciences. Instead, my method of teaching Earth Science at the State University of New York is to use two books that together explore consequences of global warming caused by the combustion of fossil fuels by humans. In this way, students who do not intend to major in science are given in-depth information about how and why this challenge to the well-being of life on Earth in the present century and beyond must be addressed in a thoughtful way. The books, Tyler Volk's CO2 Rising - The World's Greatest Environmental Challenge and James Edinger's Watching for the Wind, are inexpensive paperbacks that the students read in their entirety. Besides supplemental information I provide in the lectures, students have weekly examinations that are narrative in form, and there are written assignments for exhibits at science and other museums in NYC that complement some of the topics. The benefit of teaching Earth Science in this non-traditional way is that students seem more interested in the subject because it is relevant to everyday experience and news accounts about a serious global science problem for which an informed public must take a positive role to solve.

  19. Teaching "Digital Earth" technologies in Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Griffiths, J. A.

    2014-04-01

    As part of a review process for a module entitled "Digital Earth" which is currently taught as part of a BSc in Environmental Sciences program, research into the current provision of Geographical Information Science and Technology (GIS&T) related modules on UKbased Environmental Science degrees is made. The result of this search is used with DiBiase et al. (2006) "Body of Knowledge of GIS&T" to develop a foundation level module for Environmental Sciences. Reference is also made to the current provision geospatial analysis techniques in secondary and tertiary education in the UK, US and China, and the optimal use of IT and multimedia in geo-education.

  20. Museum-Based Teacher Professional Development: Peabody Fellows in Earth Science

    ERIC Educational Resources Information Center

    Pickering, Jane; Ague, Jay J.; Rath, Kenneth A.; Heiser, David M.; Sirch, James N.

    2012-01-01

    The Peabody Fellows in Earth Science program was a professional development opportunity for middle and high school teachers to enhance their knowledge of, and teaching skills in, the Earth sciences. It combined a summer institute and academic year workshops with the production of new curricular resources on the interpretation of landforms in…

  1. Progress and Setbacks in K-12 Earth and Space Science Education During the Past Decade

    NASA Astrophysics Data System (ADS)

    Geary, E.; Hoffman, M.; Stevermer, A.; Barstow, D.

    2005-12-01

    Since publication of the National Science Education Standards in 1996, key Earth and space science concepts have been incorporated into the science education standards in virtually every state. However, the degree to which Earth and space science standards have been implemented in actual classroom curriculum and state science assessments varies greatly from state to state. In a similar vein, the No Child Left Behind legislation calls for a highly qualified teacher in every classroom: in Idaho over 96 percent of high school teachers are certified to teach Earth science, while in Illinois, less than 42 percent of teachers are certified. Furthermore, in some states, like New York, approximately 20 percent of high school students will take introductory Earth science each year, while in other states, like Texas, less than 1 percent of high school students will take introductory Earth science each year. Why do we have this high degree of variability with respect to the teaching and learning of Earth science across the United States? The answer is complex, as there are many institutional, attitudinal, budgetary, and policy factors affecting the teaching of Earth and space sciences. This presentation will summarize data on the current status of Earth and space science education in the United States, discuss where progress has been made and where setbacks have occurred during the past decade, and provide some suggestions and ideas for improving access to high quality Earth and space science education courses, curricula, assessments, and teachers at the state and local level.

  2. BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…

  3. The Revolution in Earth and Space Science Education.

    ERIC Educational Resources Information Center

    Barstow, Daniel; Geary, Ed; Yazijian, Harvey

    2002-01-01

    Explains the changing nature of earth and space science education such as using inquiry-based teaching, how technology allows students to use satellite images in inquiry-based investigations, the consideration of earth and space as a whole system rather than a sequence of topics, and increased student participation in learning opportunities. (YDS)

  4. Using the earth system for integrating the science curriculum

    NASA Astrophysics Data System (ADS)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  5. The Transforming Earth System Science Education (TESSE) program

    NASA Astrophysics Data System (ADS)

    Graham, K. J.; Bryce, J. G.; Brown, D.; Darwish, A.; Finkel, L.; Froburg, E.; Furman, T.; Guertin, L.; Hale, S. R.; Johnson, J.; Porter, W.; Smith, M.; Varner, R.; von Damm, K.

    2007-12-01

    A partnership between the University of New Hampshire (UNH), Dillard University, Elizabeth City State University, and Pennsylvania State University has been established to prepare middle and high school teachers to teach Earth and environmental sciences from a processes and systems approach. Specific project goals include: providing Earth system science content instruction; assisting teachers in implementing Earth system science in their own classrooms; and creating opportunities for pre-service teachers to experience authentic research with Earth scientists. TESSE programmatic components comprise (1) a two-week intensive summer institutes for current and future teachers; (2) eight-week research immersion experiences that match preservice teachers with Earth science faculty mentors; and (3) a science liaison program involving the pairing of inservice teachers with graduate students or future teachers. The first year of the program supported a total of 49 participants (42 inservice and preservice teachers, as well as 7 graduate fellows). All participants in the program attended an intensive two-week summer workshop at UNH, and the academic-year science liaison program is underway. In future summers, all partnering institutions will hold similar two-week summer institutes. UNH will offer a more advanced course geared towards "hot topics" and research techniques in the Earth and environmental sciences.

  6. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    NASA Technical Reports Server (NTRS)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  7. Collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Flores, K.; Nadeau, P. A.; Sessa, J.; Ustunisik, G.; Zirakparvar, N.; Ebel, D.; Harlow, G.; Webster, J. D.; Kinzler, R.; MacDonald, M. B.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Zachowski, M.

    2014-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The lack of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and a teaching residency in local urban classrooms. The MAT program targets high-needs schools with diverse student populations and therefore has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of candidates entered the MAT program in June of 2012 and finished in August of 2013. Nineteen new Regents-qualified Earth Science teachers are now in full-time teaching positions at high-needs schools in New York State. We report on the experience of the first cohort as well as the continuation of the program for current and future cohorts of teacher candidates.

  8. The Effect of an Integrated Science and Mathematics Content-Based Course on Science and Mathematics Teaching Efficacy of Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Moseley, Christine; Utley, Juliana

    2006-01-01

    The purpose of this study was to determine the effect of an earth systems science course (integrated mathematics and science content) on preservice elementary teachers' mathematics and science teaching efficacy. Paired t-tests revealed that the personal mathematics and science teaching efficacy and science teaching outcome expectancy significantly…

  9. Assessing Teachers' Comprehension of What Matters in Earth Science

    NASA Astrophysics Data System (ADS)

    Penuel, W. R.; Kreikemeier, P.; Venezky, D.; Blank, J. G.; Davatzes, A.; Davatzes, N.

    2006-12-01

    Curricular standards developed for individual U.S. States tell teachers what they should teach. Most sets of standards are too numerous to be taught in a single year, forcing teachers to make decisions about what to emphasize in their curriculum. Ideally, such decisions would be based on what matters most in Earth science, namely, the big ideas that anchor scientific inquiry in the field. A measure of teachers' ability to associate curriculum standards with fundamental concepts in Earth science would help K-12 program and curriculum developers to bridge gaps in teachers' knowledge in order to help teachers make better decisions about what is most important to teach and communicate big ideas to students. This paper presents preliminary results of an attempt to create and validate a measure of teachers' comprehension of what matters in three sub-disciplines of Earth science. This measure was created as part of an experimental study of teacher professional development in Earth science. It is a task that requires teachers to take their state's curriculum standards and identify which standards are necessary or supplemental to developing students' understanding of fundamental concepts in the target sub-disciplines. To develop the task, a team of assessment experts and educational researchers asked a panel of four Earth scientists to identify key concepts embedded within middle school standards for the state of Florida. The Earth science panel reached a consensus on which standards needed to be taught in order to develop understanding of those concepts; this was used as a basis for comparison with teacher responses. Preliminary analysis of the responses of 44 teachers who participated in a pilot validation study identified differences between teachers' and scientists' maps of standards to big ideas in the sub-disciplines. On average, teachers identified just under one-third of the connections seen by expert Earth scientists between the concepts and their state standards

  10. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  11. Earth Science. Developing an Early Interest in Science: A Preschool Science Curriculum. (4-Year-Olds).

    ERIC Educational Resources Information Center

    Summer, Gail L.; Giovannini, Kathleen

    This teaching guide on earth sciences for 4-year-olds is based on a modification of the "Plan, Do, Review" approach to education devised by High Scope in Ypsilanti, Michigan. First implemented as an outreach early childhood program in North Carolina, the science activities described in this guide can be adapted to various early childhood…

  12. Earth Science. Developing an Early Interest in Science: A Preschool Science Curriculum. (3-Year-Olds).

    ERIC Educational Resources Information Center

    Summer, Gail L.; Giovannini, Kathleen

    This teaching guide on earth sciences for 3-year-old children is based on a modification of the "Plan, Do, Review" approach to education devised by High Scope in Ypsilanti, Michigan. First implemented as an outreach early childhood program in North Carolina, the science activities described in this guide can be adapted to various early childhood…

  13. Earth Sciences as a Vehicle for Gifted Education--The Hong Kong Experience

    ERIC Educational Resources Information Center

    Murphy, Phillip J.; Chan, Lung Sang; Murphy, Elizabeth

    2012-01-01

    The development and delivery of an Earth-science-focused short course designed to prepare Hong Kong students for university level study is described. Earth sciences provide an inspirational and challenging context for learning and teaching in Hong Kong's increasingly skills-based curriculum. (Contains 3 figures and 4 online resources.)

  14. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  15. Implications of the Next Generation Science Standards for Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  16. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    NASA Astrophysics Data System (ADS)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  17. Advance the Earth Science Education in China by Using New Technology

    NASA Astrophysics Data System (ADS)

    Qian, R.; Wang, X.; Sun, L.

    2013-12-01

    With the development of Chinese economy, science and technology, as well as the increasing demand of the persons with knowledge and experience in earth science and geological exploration, the higher education of earth science has been boosted in recent years. There are 2,000 to 3,000 students studying earth science every year and many of them will take part in scientific research and engineering technology work around the world after graduation, which increased the demand of educators, both in quantity and quality. However, the fact is that there is a huge gap between the demand and the current number of educators due to the explosion of students, which makes the reform of traditional education methods inevitable. There is great significance in doing research on the teaching methods catering to a large number of students. Some research contents and result based on the reform of education methods has been conducted. We integrate the teaching contents with the cutting-edge research projects and stress significance of earth science, which will greatly enhance the student's enthusiasm of it. Moreover. New technology will be applied to solve the problem that every teacher are responsible for 100~150 students in one courses. For instance, building the Internet platform where teachers and the students can discuss the courses contents, read the latest scientific articles. With the numerical simulation technology, the internal structure of the Earth, geological phenomena, characteristics of ore body, geophysical and hydrological fields, etc. can be simulated and the experiments and teaching practice can be demonstrated via video technology. It can also be used to design algorithm statistics and assessment and monitor teaching effect. Students are separated into small groups to take research training with their personal tutor at the beginning of the first semester, which will increase the opportunities for students to communicate with educators and solve the problem that the

  18. NAGT: Partnering to Expand and Improve the Teaching of Earth Sciences at all Levels of Instruction while Increasing Earth Literacy to the General Public

    NASA Astrophysics Data System (ADS)

    Herbstrith, K. G.

    2016-12-01

    Now more than ever, we need an Earth literate public and a workforce that can develop and be engaged in viable solutions to current and future environmental and resource challenges. The National Association of Geoscience Teachers (NAGT) is a member driven organization dedicated to fostering improvement in the teaching of the Earth Sciences at all levels of formal and informal instruction, to emphasizing the cultural significance of the Earth sciences and to disseminating knowledge in this field to the general public. NAGT offers a number of ways to partner and collaborate including our sponsored sessions, events and programs; two publications; workshop programming; three topical focused divisions; educational advocacy; and website offerings hosted through the Science Education Resource Center (SERC). A growing number of associations, institutions, projects, and individual educators are strengthening their professional networks by partnering with NAGT. Locating and connecting members of the Earth education community with shared values and interest is an important part of collaborating and NAGT's topical divisions assist community members who wish to work on the topics of 2-year college faculty, geoscience education research, and teacher preparation. The NAGT website and the linked websites of its collaborating partners provides a peer reviewed venue for educators to showcase their pedagogy and to learn best practices of others. The annual Earth Educators' Rendezvous is an opportunity to network face-to-face with the Earth education community, strengthening our relationships while working with those who share our interests and challenges while also learning from those who have divergent experiences. NAGT is a non-profit organization that advocates for the advancement of the geosciences and supports the work of Earth educators and geoscience education researchers. For more information about NAGT, visit our website at www.nagt.org

  19. The inclusion of Science Technology Society topics in junior high school earth science textbooks

    NASA Astrophysics Data System (ADS)

    Fadhli, Fathi Ali

    2000-10-01

    The Science Technology Society (STS) approach is a major science education reform through which a scientifically literate citizen could be produced. The teaching of science through STS approach is centered on science and technology related issues and problems. The purpose of this study was to analyze five earth science textbooks published in the 1990's for their inclusion of twelve sciences and technology related issues and problems and for their inclusion of activities focused on STS. The selected earth science textbooks were; Scott Foresman, Heath, Holt, Merrill and Prentice-Hall. The targeted twelve issues and problems were identified by Bybee (1987), as the most important global science and technology related issues and problems. The numbers of full text pages devoted to each topic were determined by classifying each segment to one of the targeted topics. In addition, the numbers of STS activities were also determined by using criteria developed for this study. ANOVA statistical analyses and t-tests showed that the analyzed earth science textbooks treated the studied STS issues and problems and treated the STS activities differently. It was found that six of the studied issues and problems were constantly receiving more attention in all the analyzed earth science textbooks than the rest of the topics. These topics were; Air Quality and Atmosphere, Energy Shortages, Water Resources, Land Use, Hazardous Substances, and Mineral Resources. The overall results revealed that only an average of 8.82% of the text pages in all the analyzed earth science textbooks were devoted to STS topics and 5.49% of the activities in all the analyzed earth science textbooks were focused on STS topics. However, none of the activities focused on STS topics were presented in STS approach as defined by NSTA. The percentage of STS topics inclusion and the percentage of activities focused on STS topics were considered to be very low. Accordingly, the objectives and goals of STS approach

  20. Providing Elementary Teachers in South Texas with Professional Development to Improve Earth Science Instruction

    NASA Astrophysics Data System (ADS)

    Borrego, H.; Ellins, K. K.

    2011-12-01

    Through three years of participation in the TeXas Earth and Space Science (TXESS) Revolution, an NSF-sponsored teacher professional development program, my knowledge of earth science, new pedagogical approaches, and confidence has improved dramatically. I have also received instructional materials and learned how to access high quality online resources and use a variety of web-based tools. In this session, I will share my experiences and report on how I used my own learning to help both teachers and students to become more earth science literate individuals. Earth Science test scores at the elementary level throughout South Texas are consistently low in comparison to other regions in the state. The majority of the teachers lack the content-knowledge, confidence, or experience to teach Earth Sciences. My TXESS Revolution experience helped me to understand the needs of these teachers and to identify teaching resources that would be useful to them. Particularly noteworthy are TERC's EarthLabs: Earth System Science and GLOBE activities. Although these Earthlab investigations are designed for high schools students, I demonstrated how they could be adapted for elementary students. As a result, I have provided professional development in the Earth Sciences to about 300 South Texas elementary teachers. TXESS Revolution has also equipped me to empower the students I teach. My students this past year presented their challenge Legacy Cycle Project to the community. The TXESS Revolution teamed up with the Texas Water Development Board to deliver training on the implementation of a new online challenged-based curriculum called the Water Exploration Legacy Cycles. This training gave me the tools to guide my students learning through authentic scientific research. To carry out their challenge, students researched an area of interest, read literature, consulted with experts in the field, consider different prospective, and presented their final products via PowerPoint, poster

  1. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.

    2009-12-01

    Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new

  2. Integrating Earth System Science Data Into Tribal College and University Curricula

    NASA Astrophysics Data System (ADS)

    Tilgner, P. J.; Perkey, D. J.

    2007-12-01

    Universities Space Research Association and Sinte Gleska University (SGU) have teamed with eight Tribal Colleges and Universities (TCUs) to participate in a NASA Earth Science funded project, TRibal Earth Science and Technology Education (TRESTE) project which focuses on TCU faculty teaching undergraduate Earth science courses to non-science and science students, with particular attention to TCU faculty teaching K-12 pre- and in- service teachers. The eight partner TCUs are: Blackfeet Community College (BCC), Browning, MT, Fond du Lac Tribal and Community College, Cloquet, MN, Fort Berthold Community College, New Town, ND, Little Priest Tribal College, Winnebago, NE, Oglala Lakota College, Pine Ridge, SD, Sitting Bull College, Fort Yates, ND, Turtle Mountain Community College, Belcourt, ND, United Tribes Technical College (UTTC), Bismarck, ND. The goal of this 3-year project is to promote the use of NASA Earth science data and products in the classroom thereby enabling faculty to inspire undergraduate students to careers in Earth system science, the physical sciences, and related fields of science and engineering. To accomplish this goal we are targeting three areas: (1) course content - enhance the utilization of Earth system science and physical science concepts, (2) teaching methodology - develop problem-based learning (PBL) methods, and (3) tools and technology - increase the utilization of GIS and remote sensing in the classroom. We also have enlisted ESRI, NativeView and the USGS as collaborators. To date we have held an introductory "needs" workshop at the USGS EROS Data Center and two annual workshops, one at UTTC and the second at BCC. During these annual workshops we have divided our time among the three areas. We have modeled the workshops using the PBL or Case Study approach by starting with a story or current event. Topics for the annual workshops have been Drought and Forest and Grassland Fires. These topics led us into the solar radiation budget

  3. FAST, Foundational Approaches in Science Teaching. Instructional Guide. Second Edition.

    ERIC Educational Resources Information Center

    Young, Donald B.; Pottenger, Francis M., III

    The Foundational Approaches in Science Teaching (FAST) project, which began under the sponsorship of the Hawaii Science Curriculum Council, contains a series of interdisciplinary science courses that emphasize the foundational concepts and methods of the physical, biological, and earth sciences. By directly involving students in investigating…

  4. Earth Science Activities: A Guide to Effective Elementary School Science Teaching.

    ERIC Educational Resources Information Center

    Kanis, Ira B.; Yasso, Warren E.

    The primary emphasis of this book is on new or revised earth science activities that promote concept development rather than mere verification of concepts learned by passive means. Chapter 2 describes philosophies, strategies, methods, and techniques to guide preservice and inservice teachers, school building administrators, and curriculum…

  5. Diversity of Approaches to Structuring University-Based Earth System Science Education

    NASA Astrophysics Data System (ADS)

    Aron, J.; Ruzek, M.; Johnson, D. R.

    2004-12-01

    Over the past quarter century, the "Earth system science" paradigm has emerged among the interdisciplinary science community, emphasizing interactions among components hitherto considered within separate disciplines: atmosphere (air); hydrosphere (water); biosphere (life); lithosphere (land); anthroposphere (human dimension); and exosphere (solar system and beyond). How should the next generation of Earth system scientists learn to contribute to this interdisciplinary endeavor? There is no one simple answer. The Earth System Science Education program, funded by NASA, has addressed this question by supporting faculty at U.S. universities who develop new courses, curricula and degree programs in their institutional contexts. This report demonstrates the diversity of approaches to structuring university-based Earth system science education, focusing on the 18 current grantees of the Earth System Science Education Program for the 21st Century (ESSE21). One of the most fundamental characteristics is the departmental structure for teaching Earth system science. The "home" departments of the Earth system science faculty range from Earth sciences and physics to agronomy and social work. A brand-new institution created an interdisciplinary Institute for Earth Systems Science and Policy without traditional "parent" departments. Some institutions create new degree programs as majors or as minors while others work within existing degree programs to add or revise courses. A university may also offer multiple strands, such as a degree in the Science of the Earth System and a degree in the Human Dimensions of the Earth System. Defining a career path is extremely important to students considering Earth system science programs and a major institutional challenge for all programs in Earth system science education. How will graduate programs assess prospective students? How will universities and government agencies assess prospective faculty and scientists? How will government

  6. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  7. An alternative path to improving university Earth science teaching and developing the geoscience workforce: Postdoctoral research faculty involvement in clinical teacher preparation

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. A.; Sessa, J.; Ustunisik, G. K.; Nadeau, P. A.; Flores, K. E.; Ebel, D. S.

    2013-12-01

    It is estimated that by the year 2020 relative to 2009, there will be 28% more Earth Science jobs paying ≥ $75,000/year1 in the U.S.A. These jobs will require advanced degrees, but compared to all arts and science advanced degrees, the number of physical science M.S. and Ph.D. awarded per year decreased from 2.5% in 1980 to 1.5% in 20092. This decline is reflected on a smaller scale and at a younger age: in the New York City school system only 36% of all 8th graders have basic proficiency in science 3. These figures indicate that the lack achievement in science starts at a young age and then extends into higher education. Research has shown that students in grades 7 - 12 4,5 and in university level courses 6 both respond positively to high quality science teaching. However, much attention is focused on improving science teaching in grades 7- 12, whereas at many universities lower level science courses are taught by junior research and contingent faculty who typically lack formal training, and sometimes interest, in effective teaching. The danger here is that students might enter university intending to pursue geoscience degrees, but then encounter ineffective instructors, causing them to lose interest in geoscience and thus pursue other disciplines. The crux of the matter becomes how to improve the quality of university-level geoscience teaching, without losing sight of the major benchmark of success for research faculty - scholarly publications reporting innovative research results. In most cases, it would not be feasible to sidetrack the research goals of early career scientists by placing them into a formal teacher preparation program. But what happens when postdoctoral research scientists take an active role in clinical teacher preparation as part of their research appointments? The American Museum of Natural History's Masters of Arts in Teaching (AMNH-MAT) urban residency pilot program utilizes a unique approach to grade 7 - 12 Earth Science teacher

  8. Earth and Life Science: Eighth Grade. Curriculum Guide.

    ERIC Educational Resources Information Center

    Harlandale Independent School District, San Antonio, TX. Career Education Center.

    The guide is arranged in vertical columns relating curriculum concepts in earth science to curriculum performance objectives, career concepts and career performance objectives, suggested teaching methods, and resource materials. The course for eighth graders attempts to place the curriculum concepts in order of increasing difficulty. Occupational…

  9. A Comparison of Student Outcomes in Various Earth Science Courses Taught by Seventeen Iowa Teachers.

    ERIC Educational Resources Information Center

    Schirner, Silas Wesley

    The effects of the type of earth science course (Earth Science Curriculum Project (ESCP) and non-ESCP), the directness or indirectness of teacher-pupil interaction in various teaching activities (I/D ratio), and the teacher's philosophical orientation (T/NT ratio) on various student outcomes such as understanding of science and scientists;…

  10. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  11. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    NASA Astrophysics Data System (ADS)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  12. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  13. Wisconsin Earth and Space Science Education

    NASA Technical Reports Server (NTRS)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  14. Teachers' Perspectives of the New Western Australian Earth and Environmental Science Course: Lessons for the Australian Curriculum

    ERIC Educational Resources Information Center

    Dawson, Vaille; Moore, Leah

    2011-01-01

    In 2007, a new upper secondary course, Earth and Environmental Science (EES) was introduced in Western Australia. The development and implementation of the course was supported by Earth Science Western Australia (ESWA), a consortium of universities, the CSIRO and other organisations. The role of ESWA is to support the teaching of earth science in…

  15. Re-Examining the Way We Teach: The Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J. A.; Myers, R. J.

    2003-12-01

    Science education reform has skyrocketed over the last decade thanks in large part to the technology of the Internet, opening up dynamic new online communities of learners. It has allowed educators worldwide to share thoughts about Earth system science and reexamine the way science is taught. The Earth System Science Education Alliance (ESSEA) is one positive offshoot of this reform effort. This developing partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA semester-long courses are open to elementary, middle school, and high school educators. After three weeks of introductory content, teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. The middle school course stresses the effects of real-world events-volcanic eruptions, hurricanes, rainforest destruction-on Earth's lithosphere, atmosphere, biosphere, and hydrosphere, using "jigsaw" to study the interactions between events, spheres, and positive and negative feedback loops. The high school course uses problem-based learning to examine critical areas of global change, such as coral reef degradation, ozone depletion, and climate change. This ESSEA presentation provides examples of learning environments from each of the three courses.

  16. Earth Science Outreach: A Move in the Right Direction

    NASA Astrophysics Data System (ADS)

    McLarty Halfkenny, B.; Schröder Adams, C.

    2009-05-01

    science and global issues such as climate science and stewardship of our natural resources. A new initiative for Science and Technology Week, 'Explore Geoheritage Day' introduced the public to the geological history of the National Capital Region. We have found collaborations with other agencies very effective. We work with PDAC's "Mining Matters", LTS, the Ottawa Gatineau Geoheritage Project, Ottawa Heritage, STAO, local school boards, naturalist groups, and other community organizations to promote Earth Science education. Our efforts over the last 5 years have brought tangible results in: a) a considerable increase in student enrolment at the university level in our department; b) increased teaching of the Grade 12 Earth and Space Sciences course at local high schools through teachers who were inspired by our workshops; c) a flourishing network of enthusiastic earth science educators sharing ideas with us to define each other's needs; and d) a growing interaction with the general public. Future initiatives need to consider lobbying for curriculum changes to give Earth Science a prominent place in the public education system. As well, only few university education departments currently allow Earth Science graduates into their programs, requiring them to first take additional courses in other "teachable" subjects. This must change. University graduates with an Earth Science degree and an interest in teaching must be permitted direct entry into these programs so that their skills will be passed on to the next generation of science students.

  17. A Course in Earth System Science: Developed for Teachers by Teachers

    NASA Astrophysics Data System (ADS)

    Wong, K.; Read, K.; Charlevoix, D.; Tomkin, J.; Hug, B.; Williams, M.; Pianfetti, E.

    2008-12-01

    ESES 202 is a new general education course in physical science at the University of Illinois's School of Earth, Society and Environment, designed for pre-service K-8 teachers. The goal of the course is to help future classroom teachers become confident with teaching earth science content. The designers of this course include a faculty expert in earth system science, a pre-service teacher and a former middle school science teacher. The goal of the in the curriculum design was to utilize the unique perspectives and experiences of our team. Our poster will highlight the unique nature of the curriculum development outlining the challenges and successes of designing the course. The general format of the class will be a combination of discussions, hands on experiences, and opportunities for students to design their own lessons. Class meetings will be once per week in a three-hour block, allowing students to immediately transfer new content knowledge into classroom activities. The end goal is that they can use these same activities with their students once they are practicing teachers. The content of the course shall be taught using an earth systems approach by showing the relationships among the four spheres: biosphere, hydrosphere, atmospheric, and anthrosphere. There are five units in the course: Introduction to Earth Systems, Carbon Cycle, Water Quality, El Niño and Climate Change. In addition to the science portion of the course, students will spend time reflecting on the classroom activities from the perspective of future educators. Activities will be presented at a late elementary school level; however, time will be devoted to discussing methods to adapt the lesson to different grade levels and differentiation needs within a classroom. Additionally, students in this course will be instructed on how to utilize a multitude of resources from stream tables to science education databases to prepare them for the dynamic nature of the classroom. By the end of the class

  18. Improving Early Career Science Teachers' Ability to Teach Space Science

    NASA Astrophysics Data System (ADS)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  19. Science teacher orientations and PCK across science topics in grade 9 earth science

    NASA Astrophysics Data System (ADS)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-07-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade 9 earth science course. Through interviews and observations of one teacher's classroom across two sequentially taught, this research contests the notion that teachers hold a single way of conceptualising science teaching and learning. In this, we consider if multiple ontologies can provide potential explanatory power for characterising instructional enactments. In earlier work with the teacher in this study, using generic interview prompts and general discussions about science teaching and learning, we accepted the existence of a unitary STO and its promise of consistent reformed instruction in the classroom. However, upon close examination of instruction focused on different science topics, evidence was found to demonstrate the explanatory power of multiple ontologies for shaping characteristically different epistemological constructions across science topics. This research points to the need for care in generalising about teacher practice, as it reveals that a teacher's practice, and orientation, can vary, dependent on the context and science topics taught.

  20. "Teaching What I Learned": Exploring Students' Earth and Space Science Learning Experiences in Secondary School with a Particular Focus on Their Comprehension of the Concept of "Geologic Time"

    ERIC Educational Resources Information Center

    Yoon, Sae Yeol; Peate, David W.

    2015-01-01

    According to the national survey of science education, science educators in the USA currently face many challenges such as lack of qualified secondary Earth and Space Science (ESS) teachers. Less qualified teachers may have difficulty teaching ESS because of a lack of conceptual understanding, which leads to diminished confidence in content…

  1. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    NASA Astrophysics Data System (ADS)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  2. Earth Science Education in Sudan

    NASA Astrophysics Data System (ADS)

    Abdullatif, Osman M.; Farwa, Abdalla G.

    1999-05-01

    This paper describes Earth Science Education in Sudan, with particular emphasis on the University of Khartoum. The first geological department in Sudan was founded in 1958 in the University of Khartoum. In the 1980s, six more geological departments have been added in the newer universities. The types of courses offered include Diploma, B.Sc. (General), B.Sc. (Honours), M.Sc. and Ph.D. The Geology programmes are strongly supported by field work training and mapping. Final-year students follow specialised training in one of the following topics: hydrogeology, geophysics, economic geology, sedimentology and engineering geology. A graduation report, written in the final year, represents 30-40% of the total marks. The final assessment and grading are decided with the help of internal and external examiners. Entry into the Geology programmes is based on merit and performance. The number of students who graduate with Honours and become geologists is between 20% to 40% of the initial intake at the beginning of the second year. Employment opportunities are limited and are found mainly in the Government's geological offices, the universities and research centres, and private companies. The Department of Geology at the University of Khartoum has long-standing internal and external links with outside partners. This has been manifested in the training of staff members, the donation of teaching materials and laboratory facilities. The chief problems currently facing Earth Science Education in Sudan are underfunding, poor equipment, laboratory facilities and logistics. Other problems include a shortage of staff, absence of research, lack of supervision and emigration of staff members. Urgent measures are needed to assess and evaluate the status of Earth Science Education in terms of objectives, needs and difficulties encountered. Earth Science Education is expected to contribute significantly to the exploitation of mineral resources and socio-economic development in the Sudan.

  3. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  4. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  5. Teaching planetary sciences to elementary school teachers: Programs that work

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are

  6. A program wide framework for evaluating data driven teaching and learning - earth analytics approaches, results and lessons learned

    NASA Astrophysics Data System (ADS)

    Wasser, L. A.; Gold, A. U.

    2017-12-01

    There is a deluge of earth systems data available to address cutting edge science problems yet specific skills are required to work with these data. The Earth analytics education program, a core component of Earth Lab at the University of Colorado - Boulder - is building a data intensive program that provides training in realms including 1) interdisciplinary communication and collaboration 2) earth science domain knowledge including geospatial science and remote sensing and 3) reproducible, open science workflows ("earth analytics"). The earth analytics program includes an undergraduate internship, undergraduate and graduate level courses and a professional certificate / degree program. All programs share the goals of preparing a STEM workforce for successful earth analytics driven careers. We are developing an program-wide evaluation framework that assesses the effectiveness of data intensive instruction combined with domain science learning to better understand and improve data-intensive teaching approaches using blends of online, in situ, asynchronous and synchronous learning. We are using targeted online search engine optimization (SEO) to increase visibility and in turn program reach. Finally our design targets longitudinal program impacts on participant career tracts over time.. Here we present results from evaluation of both an interdisciplinary undergrad / graduate level earth analytics course and and undergraduate internship. Early results suggest that a blended approach to learning and teaching that includes both synchronous in-person teaching and active classroom hands-on learning combined with asynchronous learning in the form of online materials lead to student success. Further we will present our model for longitudinal tracking of participant's career focus overtime to better understand long-term program impacts. We also demonstrate the impact of SEO optimization on online content reach and program visibility.

  7. Transfer of New Earth Science Understandings to Classroom Teaching: Lessons Learned From Teachers on the Leading Edge

    NASA Astrophysics Data System (ADS)

    Butler, R.; Ault, C.; Bishop, E.; Southworth-Neumeyer, T.; Magura, B.; Hedeen, C.; Groom, R.; Shay, K.; Wagner, R.

    2006-05-01

    Teachers on the Leading Edge (TOTLE) provided a field-based teacher professional development program that explored the active continental margin geology of the Pacific Northwest during a two-week field workshop that traversed Oregon from the Pacific Coast to the Snake River. The seventeen teachers on this journey of geological discovery experienced regional examples of subduction-margin geology and examined the critical role of geophysics in connecting geologic features with plate tectonic processes. Two examples of successful transfer of science content learning to classroom teaching are: (1) Great Earthquakes and Tsunamis. This topic was addressed through instruction on earthquake seismology; field observations of tsunami geology; examination of tsunami preparedness of a coastal community; and interactive learning activities for children at an Oregon Museum of Science and Industry (OMSI) Science Camp. Teachers at Sunnyside Environmental School in Portland developed a story line for middle school students called "The Tsunami Hotline" in which inquiries from citizens serve as launch points for studies of tsunamis, earthquakes, and active continental margin geology. OMSI Science Camps is currently developing a new summer science camp program entitled "Tsunami Field Study" for students ages 12-14, based largely on TOTLE's Great Earthquakes and Tsunamis Day. (2) The Grand Cross Section. Connecting regional geologic features with plate tectonic processes was addressed many times during the field workshop. This culminated with teachers drawing cross sections from the Juan de Fuca Ridge across the active continental margin to the accreted terranes of northeast Oregon. Several TOTLE teachers have successfully transferred this activity to their classrooms by having student teams relate earthquakes and volcanoes to plate tectonics through artistic renderings of The Grand Cross Section. Analysis of program learning transfer to classroom teaching (or lack thereof) clearly

  8. Teaching Inquiry using NASA Earth-System Science: Preparing Pre- and Inservice K-12 Educators to Use Authentic Inquiry in the Classroom

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Tebockhorst, D.

    2012-12-01

    Teaching Inquiry using NASA Earth-System Science (TINES) is a comprehensive program to train and support pre-service and in-service K-12 teachers, and to provide them with an opportunity to use NASA Earth Science mission data and Global Learning and Observations to Benefit the Environment (GLOBE) observations to incorporate scientific inquiry-based learning in the classroom. It uses an innovative blended-learning professional development approach that combines a peer-reviewed pedagogical technique called backward-faded scaffolding (BFS), which provides a more natural entry path to understanding the scientific process, with pre-workshop online content learning and in-situ and online data resources from NASA and GLOBE. This presentation will describe efforts to date, share our impressions and evaluations, and discuss the effectiveness of the BFS approach to both professional development and classroom pedagogy.

  9. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  10. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  11. Evaluation of an Inservice Program for Earth Science Teachers

    ERIC Educational Resources Information Center

    Mayer, Victor J.; And Others

    1975-01-01

    Reports on the evaluation of an earth science inservice program designed to (1) improve teachers' understandings of principles and concepts, (2) assist teachers in the use of investigatory techniques for teaching, (3) assist teachers in developing and implementing laboratory-oriented courses and (4) instruct teachers in techniques of self…

  12. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  13. Innovations in making EarthScope science and data accessible (Invited)

    NASA Astrophysics Data System (ADS)

    Pratt-Sitaula, B. A.; Butler, R. F.; Whitman, J. M.; Granshaw, F. D.; Lillie, R. J.; Hunter, N.; Cronin, V. S.; Resor, P. G.; Olds, S. E.; Miller, M. S.; Walker, R.; Douglas, B. B.

    2013-12-01

    EarthScope is a highly complex technical and scientific endeavor. Making results from EarthScope accessible to the general public, educators, all levels of students, and even geoscience professionals from other disciplines is a very real challenge that must be overcome to realize EarthScope's intended broader impacts of contributing 'to the mitigation of risks from geological hazards ... and the public's understanding of the dynamic Earth.' Here we provided several case examples of how EarthScope science can be effectively communicated and then scaled to reach different or larger audiences. One approach features providing professional development regarding EarthScope and geohazard science to non-university educators who then scale up the impact by communicating to hundreds or even thousands of students and general public members each. EarthScope-funded Teachers on the Leading Edge (TOTLE) ran workshops 2008-2010 for 120 Pacific Northwest teachers and community college educators who subsequently communicated EarthScope and geohazards science to >30,000 students and >1500 other adults. Simultaneously EarthScope's National Office at Oregon State University was running workshops for park interpreters who have since reached >>100,000 park visitors. These earlier projects have served as the foundation for the new Cascadia EarthScope Earthquake and Tsunami Education Program (CEETEP), which is currently running joint workshops for coastal Oregon and Washington teachers, interpreters, and emergency management educators. The other approach featured here is UNAVCO's scaled efforts to make Plate Boundary Observatory (PBO) and other geodetic data more accessible to introductory and majors-level geoscience students and faculty. Initial projects included development of a Teaching Geodesy website on the Science Education Research Center (SERC) and development of teaching modules and activities that use PBO data. Infinitesimal strain analysis using GPS data is a 1-2 week module for

  14. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  15. The EarthKAM project: creating space imaging tools for teaching and learning

    NASA Astrophysics Data System (ADS)

    Dodson, Holly; Levin, Paula; Ride, Sally; Souviney, Randall

    2000-07-01

    The EarthKAM Project is a NASA-supported partnership of secondary and university students with Earth Science and educational researchers. This report describes an ongoing series of activities that more effectively integrate Earth images into classroom instruction. In this project, students select and analyze images of the Earth taken during Shuttle flights and use the tools of modern science (computers, data analysis tools and the Internet) to disseminate the images and results of their research. A related study, the Visualizing Earth Project, explores in greater detail the cognitive aspects of image processing and the educational potential of visualizations in science teaching and learning. The content and organization of the EarthKAM datasystem of images and metadata are also described. An associated project is linking this datasystem of images with the Getty Thesaurus of Geographic Names, which will allow users to access a wide range of geographic and political information for the regions shown in EarthKAM images. Another project will provide tools for automated feature extraction from EarthKAM images. In order to make EarthKAM resources available to a larger number of schools, the next important goal is to create an integrated datasystem that combines iterative resource validation and publication, with multimedia management of instructional materials.

  16. Project TIMS (Teaching Integrated Math/Science)

    NASA Technical Reports Server (NTRS)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  17. Learning about Earth Science: Tables and Tabulations. Superific Science Book X. A Good Apple Science Activity Book for Grades 5-8+.

    ERIC Educational Resources Information Center

    Conway, Lorraine

    In an effort to provide science teachers with the tables and scales most often used in teaching earth science, this document was designed to coordinate each table with meaningful activities, projects and experiments. The major areas covered by the booklet are: (1) electromagnetic waves (with activities about light waves and sound waves); (2) the…

  18. Creating a Down-to-Earth Approach to Teaching Science, Math and Technology.

    ERIC Educational Resources Information Center

    Williamson, Robert; Smoak, Ellen

    1999-01-01

    Down-to-Earth is a program designed to increase 9- to 12-year olds' critical thinking and problem solving by teaching gardening through the scientific method. The combination of multi- and interdisciplinary topics has increased achievement and resulted in attitudinal and behavioral changes. (SK)

  19. Approaches for Improving Earth System Science Education in Middle Schools and High Schools in the United States (Invited)

    NASA Astrophysics Data System (ADS)

    Adams, P. E.

    2009-12-01

    Earth system science is an often neglected subject in the US science curriculum. The state of Kansas State Department of Education, for example, has provided teachers with a curriculum guide for incorporating earth system science as an ancillary topic within the subjects of physics, chemistry, and the biological sciences. While this does provide a means to have earth system science within the curriculum, it relegates earth system science topics to a secondary status. In practice, earth system science topics are considered optional or only taught if there is time within an already an overly crowded curriculum. Given the importance of developing an educated citizenry that is capable of understanding, coping, and deciding how to live in a world where climate change is a reality requires a deeper understanding of earth system science. The de-emphasis of earth system science in favor of other science disciplines makes it imperative to seek opportunities to provide teachers, whose primary subject is not earth system science, with professional development opportunities to develop content knowledge understanding of earth system science, and pedagogical content knowledge (i.e. effective strategies for teaching earth system science). This is a noble goal, but there is no single method. At Fort Hays State University we have developed multiple strategies from face-to-face workshops, on-line coursework, and academic year virtual and face-to-face consultations with in-service and pre-service teachers. A review of the techniques and measures of effectiveness (based on teacher and student performance), and strengths and limitations of each method will be presented as an aid to other institutions and programs seeking to improve the teaching and learning of earth system science in their region.

  20. Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction

    ERIC Educational Resources Information Center

    Pottinger, James E.

    2012-01-01

    With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space…

  1. Earth Science Information Center

    USGS Publications Warehouse

    ,

    1991-01-01

    An ESIC? An Earth Science Information Center. Don't spell it. Say it. ESIC. It rhymes with seasick. You can find information in an information center, of course, and you'll find earth science information in an ESIC. That means information about the land that is the Earth, the land that is below the Earth, and in some instances, the space surrounding the Earth. The U.S. Geological Survey (USGS) operates a network of Earth Science Information Centers that sell earth science products and data. There are more than 75 ESIC's. Some are operated by the USGS, but most are in other State or Federal agencies. Each ESIC responds to requests for information received by telephone, letter, or personal visit. Your personal visit.

  2. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    NASA Astrophysics Data System (ADS)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  3. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  4. Integrating Intelligent Systems Domain Knowledge Into the Earth Science Curricula

    NASA Astrophysics Data System (ADS)

    Güereque, M.; Pennington, D. D.; Pierce, S. A.

    2017-12-01

    High-volume heterogeneous datasets are becoming ubiquitous, migrating to center stage over the last ten years and transcending the boundaries of computationally intensive disciplines into the mainstream, becoming a fundamental part of every science discipline. Despite the fact that large datasets are now pervasive across industries and academic disciplines, the array of skills is generally absent from earth science programs. This has left the bulk of the student population without access to curricula that systematically teach appropriate intelligent-systems skills, creating a void for skill sets that should be universal given their need and marketability. While some guidance regarding appropriate computational thinking and pedagogy is appearing, there exist few examples where these have been specifically designed and tested within the earth science domain. Furthermore, best practices from learning science have not yet been widely tested for developing intelligent systems-thinking skills. This research developed and tested evidence based computational skill modules that target this deficit with the intention of informing the earth science community as it continues to incorporate intelligent systems techniques and reasoning into its research and classrooms.

  5. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  6. GeoBrain for Facilitating Earth Science Education in Higher-Education Institutes--Experience and Lessons-learned

    NASA Astrophysics Data System (ADS)

    Deng, M.; di, L.

    2007-12-01

    Data integration and analysis are the foundation for the scientific investigation in Earth science. In the past several decades, huge amounts of Earth science data have been collected mainly through remote sensing. Those data have become the treasure for Earth science research. Training students how to discover and use the huge volume of Earth science data in research become one of the most important trainings for making a student a qualified scientist. Being developed by a NASA funded project, the GeoBrain system has adopted and implemented the latest Web services and knowledge management technologies for providing innovative methods in publishing, accessing, visualizing, and analyzing geospatial data and in building/sharing geoscience knowledge. It provides a data-rich online learning and research environment enabled by wealthy data and information available at NASA Earth Observing System (EOS) Data and Information System (EOSDIS). Students, faculty members, and researchers from institutes worldwide can easily access, analyze, and model with the huge amount of NASA EOS data just like they possess such vast resources locally at their desktops. Although still in development, the GeoBrain system has been operational since 2005. A number of education materials have been developed for facilitating the use of GeoBrain as a powerful education tool for Earth science education at both undergraduate and graduate levels. Thousands of online higher-education users worldwide have used GeoBrain services. A number of faculty members in multiple universities have been funded as GeoBrain education partners to explore the use of GeoBrain in the classroom teaching and student research. By summarizing and analyzing the feedbacks from the online users and the education partners, this presentation presents the user experiences on using GeoBrain in Earth science teaching and research. The feedbacks on classroom use of GeoBrain have demonstrated that GeoBrain is very useful for

  7. Cross-Cultural Collaboration in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Stephens, S.; Gordon, L. S.; Kopplin, M. R.

    2006-12-01

    Alaskan Native elders, other local experts, scientists and educators worked collaboratively in providing professional development science workshops and follow-up support for K-12 teachers. Cognizant of the commonalities between western science and Native knowledge, the Observing Locally Connecting Globally (OLCG) program blended GLOBE Earth science measurements, traditional knowledge and best teaching practices including culturally responsive science curriculum, in engaging teachers and students in climate change research. Native observations and knowledge were used to scaffold some local environmental studies undertaken by Alaskan teachers and their students. OLCG partnered with the Project Jukebox of the University of Alaska Fairbanks Oral History Program to produce digitized interviews of Native experts and a scientist on climate change. Sample interviews for students to use in asking Native experts about their observations and knowledge on environmental changes as well as other educational materials have been posted on the program website http://www.uaf.edu/olcg. Links to the climate change interviews, the Alaska Cultural Standards for Schools, Teachers and Students, and other relevant resource materials have also been included in the website. Results of pre- and post-institute assessment showed an increase in teacher comfort level with teaching science and integrating Native knowledge in the classroom. Teacher journals indicated the program's positive influence on their math and science teaching methods and curriculum. Student attitude and achievement assessments showed a significant increase in post-test (end of school year) scores from pre-test (beginning of the school year) scores. Other lessons learned from this project will also be presented.

  8. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  9. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    NASA Technical Reports Server (NTRS)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  10. Unique collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Lepine, S.; Nadeau, P.; Flores, K.; Sessa, J.; Zirakparvar, N.; Ustunisik, G.; Kinzler, R.; Macdonald, M.; Contino, J.; Cooke-Nieves, N.; Zachowski, M.

    2013-01-01

    Abstract: The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The dearth of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and real-world teaching experience in local urban classrooms. The program is part of New York State’s Race to the Top initiative and particularly targets high-needs schools with diverse student populations. Because of this, the MAT program has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of teacher candidates entered the MAT program in June of 2012. They represent diverse scientific expertise levels, geographic backgrounds, and career stages. We report on the first six months of this pilot program as well as the future plans and opportunities for prospective teacher candidates.

  11. Teaching programming and modelling skills to first-year earth & environmental science undergraduates: outcomes and lessons learned from a pilot project

    NASA Astrophysics Data System (ADS)

    Fisher, J. A.; Brewer, C.; O'Brien, G.

    2017-12-01

    Computing and programming are rapidly becoming necessary skills for earth and environmental scientists. Scientists in both academia and industry must be able to manipulate increasingly large datasets, create plots and 3-D visualisations of observations, and interpret outputs from complex numerical models, among other tasks. However, these skills are rarely taught as a compulsory part of undergraduate earth science curricula. In 2016, the School of Earth & Environmental Sciences at the University of Wollongong began a pilot program to integrate introductory programming and modelling skills into the required first-year core curriculum for all undergraduates majoring in earth and environmental science fields. Using Python, a popular teaching language also widely used by professionals, a set of guided exercises were developed. These exercises use interactive Jupyter Notebooks to introduce students to programming fundamentals and simple modelling problems relevant to the earth system, such as carbon cycling and population growth. The exercises are paired with peer review activities to expose students to the multitude of "correct" ways to solve computing problems. In the last weeks of the semester, students work in groups to creatively adapt their new-found skills to selected problems in earth system science. In this presentation, I will report on outcomes from delivering the new curriculum to the first two cohorts of 120-150 students, including details of the implementation and the impacts on both student aptitude and attitudes towards computing. While the first cohort clearly developed competency, survey results suggested a drop in student confidence over the course of the semester. To address this confidence gap for the second cohort, the in-class activities are now being supplemented with low-stakes open-book review quizzes that provide further practice with no time pressure. Research into the effectiveness of these review quizzes is ongoing and preliminary findings

  12. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    NASA Astrophysics Data System (ADS)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These

  13. A Comparative Analysis of Earth Science Curriculum Using Inquiry Methodology between Korean and the U.S. Textbooks

    ERIC Educational Resources Information Center

    Park, Mira; Park, Do-Yong; Lee, Robert E.

    2009-01-01

    The purpose of this study is to investigate in what ways the inquiry task of teaching and learning in earth science textbooks reflect the unique characteristics of earth science inquiry methodology, and how it provides students with opportunities to develop their scientific reasoning skills. This study analyzes a number of inquiry activities in…

  14. Enhancing the earth-science content and inquiry basis of physical geography education in Singapore schools

    NASA Astrophysics Data System (ADS)

    McCaughey, J.; Chong, E.

    2011-12-01

    Singapore has a long tradition of geography education at the secondary and Junior College levels (ages 12-18). Although most geography teachers teach both human and physical geography, many of them have received more extensive university training in human geography. The Earth Obervatory of Singapore (EOS), a newly established research institute at Nanyang Technological University (NTU), is building an education and outreach program to integrate its research across formal and informal education. We are collaborating with the Singapore Ministry of Education to enhance the earth-science content and inquiry basis of physical geography education in Singapore classrooms. EOS is providing input to national curriculum, textbook materials, and teaching resources, as well as providing inquiry-based field seminars and workshops for inservice teachers. An upcoming 5-year "Our Dynamic Earth" exhibit at the Science Centre Singapore will be a centerpoint of outreach to younger students, their teachers and parents, and to the community at large. On a longer time scale, the upcoming undergraduate program in earth science at NTU, the first of its kind in Singapore, will provide a stream of earth scientists into the geography teaching workforce. Developing ties between EOS and the National Institute of Education will further enhance teacher training. With a highly centralized curriculum, small land area, high-performing student population, and key stakeholders eager to collaborate with EOS, Singapore presents an unusual opportunity to impact classrooms on a national scale.

  15. Science teaching in science education

    NASA Astrophysics Data System (ADS)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  16. In Brief: Revitalizing Earth science education

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.

  17. Climate Change Education Today in K-12: What's Happening in the Earth and Space Science Classroom?

    NASA Astrophysics Data System (ADS)

    Holzer, M. A.; National Earth Science Teachers Association

    2011-12-01

    Climate change is a highly interdisciplinary topic, involving not only multiple fields of science, but also social science and the humanities. There are many aspects of climate change science that make it particularly well-suited for exploration in the K-12 setting, including opportunities to explore the unifying processes of science such as complex systems, models, observations, change and evolution. Furthermore, this field of science offers the opportunity to observe the nature of science in action - including how scientists develop and improve their understanding through research and debate. Finally, climate change is inherently highly relevant to students - indeed, students today will need to deal with the consequences of the climate change. The science of climate change is clearly present in current science education standards, both at the National level as well as in the majority of states. Nonetheless, a significant number of teachers across the country report difficulties addressing climate change in the classroom. The National Earth Science Teachers Association has conducted several surveys of Earth and space science educators across the country over the past several years on a number of issues, including their needs and concerns, including their experience of external influences on what they teach. While the number of teachers that report external pressures to not teach climate change science are in the minority (and less than the pressure to not teach evolution and related topics), our results suggest that this pressure against climate change science in the K-12 classroom has grown over the past several years. Some teachers report being threatened by parents, being encouraged by administrators to not teach the subject, and a belief that the "two sides" of climate change should be taught. Survey results indicate that teachers in religious or politically-conservative districts are more likely to report difficulties in teaching about climate change than in

  18. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  19. GeoBus: bringing experiential Earth science learning to secondary schools in the UK

    NASA Astrophysics Data System (ADS)

    Pike, C. J.; Robinson, R. A. J.; Roper, K. A.

    2014-12-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have no or little expertise of teaching Earth science, to share the outcomes of new science research and the experiences of young researchers with school pupils, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Over 30,000 pupils will have been involved in experiential Earth science learning activities by December 2014, including many in remote and disadvantaged regions. The challenge with secondary school experiential learning as outreach is that activities need to be completed in either 50 or 80 minutes to fit within the school timetables in the UK, and this can limit the amount of hands-on activities that pupils undertake in one session. However, it is possible to dedicate a whole or half day of linked activities to Earth science learning in Scotland and this provides a long enough period to undertake field work, conduct group projects, or complete more complicated experiments. GeoBus has developed a suite of workshops that all involve experiential learning and are targeted for shorter and longer time slots, and the lessons learned in developing and refining these workshops to maximise the learning achieved will be presented. Three potentially unsurprising observations hold true for all the schools that GeoBus visits: young learners like to experiment and use unfamiliar equipment to make measurements, the element of competition stimulates learners to ask questions and maintain focus and enthusiasum

  20. Science Teaching in Science Education

    ERIC Educational Resources Information Center

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  1. Joint Interdisciplinary Earth Science Information Center

    NASA Technical Reports Server (NTRS)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  2. GeoBus: bringing Earth science learning to secondary schools in the UK

    NASA Astrophysics Data System (ADS)

    Robinson, Ruth; Roper, Kathryn; Pike, Charlotte

    2015-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have no or little expertise of teaching Earth science, to share the outcomes of new science research and the experiences of young researchers with school pupils, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Almost 35,000 pupils will have been involved in experiential Earth science learning activities by April 2015, including many in remote and disadvantaged regions. The challenge with secondary school experiential learning as outreach is that activities need to be completed in either 50 or 80 minutes to fit within the school timetables in the UK, and this can limit the amount of hands-on activities that pupils undertake in one session. However, it is possible to dedicate a whole or half day of linked activities to Earth science learning within the Scotland Curriculum for Excellence, and this provides a long enough period to undertake field work, conduct group projects, or complete more complicated experiments. GeoBus has developed a suite of workshops that all involve experiential learning and are targeted for shorter and longer time slots, and the lessons learned in developing and refining these workshops to maximise the learning achieved will be presented. A key aim of GeoBus is to incorporate research outcomes directly into workshops, and to involve early career researchers in project development. One example that is currently in progress is a set of hydrology workshops that focus on the water

  3. Earth Science: Then and Now

    ERIC Educational Resources Information Center

    Orgren, James R.

    1969-01-01

    Reviews history of earth science in secondary schools. From early nineteenth century to the present, earth science (and its antecedents, geology, physical geography, and astronomy) has had an erratic history for several reasons, but particularly because of lack of earth science teacher-training programs. (BR)

  4. The TXESS Revolution: A Partnership to Advance Earth and Space Science in Texas

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Olson, H. C.; Willis, M.

    2007-12-01

    The Texas State Board of Education voted in 2006 to require a fourth year of science for graduation from high school and to authorize the creation of a new senior level Earth Systems and Space Science course as an option to fulfill that requirement. The new Earth Systems and Space Science course will be a capstone course for which three required science courses(biology, chemistry and physics)are prerequisites. Here, we summarize the collective efforts of business leaders, scientists and educators who worked collaboratively for almost a decade to successfully reinstate Earth science as part of Texas' standard high school curriculum and describe a new project, the Texas Earth and Space Science (TXESS) Revolution, a 5-year professional development program for 8th -12th grade minority and minority-serving science teachers and teacher mentors in Texas to help prepare them to teach the new capstone course. At the heart of TXESS Revolution is an extraordinary partnership, involving (1) two UT-Austin academic units, the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering; (2) TERC, a not-for-profit educational enterprise in Massachusetts with 30 years experience in designing science curriculum; (3) the University of South Florida; and (4) the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching, a statewide network of teacher mentors and science teachers. With guidance from the Texas Education Agency, the state agency charged with overseeing education, the TXESS Revolution project will provide teachers with access to high quality materials and instruction aligned with the Texas educational standards for the new capstone course through: a program of eight different 3-day professional development academies offered to both teachers and teachers mentors; immersive summer institutes, field experiences, and a Petroleum Science and Technology Institute; training on how to implement Earth Science by Design, a teacher

  5. Girls on Ice: Using Immersion to Teach Fluency in Science

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Mortenson, C.; Stiles, K.; Coryell-Martin, M.; Long, L.

    2010-12-01

    Young women choose not to pursue science careers for several reasons; two important ones are that they more often lack the confidence in their own ability to succeed or they perceive many science jobs as isolated (working alone in a lab) or lacking in altruistic values of helping other people or communities. We developed an immersion-science program, Girls on Ice, to provide young women with strong, female role models; with an opportunity to see what a career in the Earth sciences is like; with one-on-one interactions with scientists; with facilitated discussions on the value of Earth science in societal issues such as climate change; and with challenges that will build their self-confidence in multiple ways. Girls on Ice is field-based program for teenage young women with the theme of Glaciers, Climate, and the Alpine Landscape. The concepts we cover range from glacier dynamics to alpine plant ecology to mountain weather. The educational goals are 1. to increase young women's self-efficacy and interest in pursuing science as a career, 2. to create life-long advocates for the scientific process and its role in public policy 3. to teach critical thinking skills which will be important for all of their future pursuits 4. to enhance their leadership self-confidence so that they have a higher likelihood of becoming community leaders in the future. The educational philosophy of Girls on Ice consists of three core values: that teaching the whole process of science gives students ownership of the science; that teaching to the whole student puts the science in context; and that diversity inspires new ideas, new approaches, and better science in the end. We use a field-based immersion format -- the science equivalent of language-immersion course - in order to achieve the goals listed above in a setting that emphasizes this educational philosophy. The immersion-style course creates a deep connection between science and daily life for these young women. Combined with climate

  6. Searching for New Earths: Teaching Children How We Seek Distant Planets

    NASA Astrophysics Data System (ADS)

    Pulliam, C.

    2008-06-01

    Teaching science to children ages 8-13 can be a great challenge, especially if you lack the resources for a full-blown audio/visual presentation. How do you hold their attention and get them involved? One method is to teach a topic no one else covers at this educational level: something exciting and up-to-the-minute, at the cutting edge of science. We developed an interactive 45-minute presentation to convey the two basic techniques used to locate planets orbiting other stars. Activities allowed children to hunt for their own planets in simulated data sets. We also stimulated their imagination by giving each child a take-home, multicolored marble ``planet'' and asking them to discuss their planet's characteristics. The resulting presentation ``Searching for New Earths'' could be adapted to a variety of educational settings.

  7. Using AN Essea Earth Systems Science Course in a Web-Enhanced Setting for Pre-Service Middle School Teachers

    NASA Astrophysics Data System (ADS)

    Slattery, W.

    2003-12-01

    The ESSEA Middle School course was originally designed as an asynchronous on-line tool for teacher professional development. The ESSEA course uses real world events such as deforestation, volcanic eruptions and hurricanes to develop content understandings of Earth systems processes and to model pedagogical best practices appropriate for middle school students. The course is structured as multiple three-week learning cycles. During week one of each cycle, participants are formed into Sphere groups to study the impact of the event under consideration on the atmosphere, biosphere, hydrosphere, or lithosphere. During week two, Event teams are formed to include members from each of the previous week's Sphere groups. Together they develop interactions between the different spheres and the event. During week three, teachers develop classroom applications and post them on-line for other participants to comment upon. On-going assessment suggests that in-service teacher participants of the on-line course are more likely to infuse inquiry-based science instruction into their classroom settings and to teach science as a subject integrating Physical science, Life science, and Earth/Space science in their own classrooms It is imperative to develop such characteristics in pre-service teachers as well. Wright State University's undergraduate Middle School teacher preparation program requires that undergraduates seeking Middle Childhood Licensure by the State of Ohio take a course in Earth Systems science that is aligned with the national and state science education standards. Towards this end the ESSEA course has been adapted for use in a web-enhanced setting. Weeks one and two (Sphere and Event study) of the ESSEA Middle School course are used as an integral component of this Earth Systems science course. In this way content knowledge and pedagogical strategies are modeled just as they are in the fully on-line course. Questions raised on-line are the topic of research or

  8. The Use of HDTV Format and the Electronic Theater in Presenting Earth Science

    NASA Technical Reports Server (NTRS)

    Summey, Barbara; Hasler, Arthur; Jentoft-Nilsen, Marit; Manyin, Michael; Bene, Meredith; Allen, Jesse

    2000-01-01

    In order to maximize the public's awareness of earth science observations, earth science data must be available in multiple media formats. This talk will focus on the use High Definition TV format in presenting earth science data, The Television (HDTV) networks are mandated to completely switch over from the current TV standard (NTSC) to HDTV in the next seven years. Museums are also beginning to use HDTV format in their displays. The Visualization Analysis Laboratory at Goddard Space Flight Center has been experimenting with the use of HDTV to present earth science data. The experimental package we have developed is called the Electronic Theater (e-theater). The e-theater is a mobile presentation system used for displaying and teaching groups about earth science and the delicate interdependence between the various earth systems. The e-theater takes advantage of a double-wide screen to show the audiences high resolution data displays. The unique architecture used in this exhibit allows several data sets to be displayed at one time, demonstrating the connections between different earth systems. The data animations are manipulated in real-time during the presentation and can be paused, moved forward, backward, looped, or zoomed into, to maximize the flexibility of the presentation. Because HDTV format is used within the e-theater, the materials generated for the e-theater are made available to the news media and museums.

  9. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  10. Elementary Teachers' Perceptions of Teaching Science to Improve Student Content Knowledge

    NASA Astrophysics Data System (ADS)

    Stephenson, Robert L.

    The majority of Grade 5 students demonstrate limited science knowledge on state assessments. This trend has been documented since 2010 with no evidence of improvement. Because state accountability formulas include proficiency scores and carry sanctions against districts that fail to meet proficiency thresholds, improved student performance in science is an important issue to school districts. The purpose of this study was to explore elementary teachers' perceptions about their students' science knowledge, the strategies used to teach science, the barriers affecting science teaching, and the self-efficacy beliefs teachers maintain for teaching science. This study, guided by Vygotsky's social constructivist theory and Bandura's concept of self-efficacy, was a bounded instrumental case study in which 15 participants, required to be teaching K-5 elementary science in the county, were interviewed. An analytic technique was used to review the qualitative interview data through open coding, clustering, and analytical coding resulting in identified categorical themes that addressed the research questions. Key findings reflect students' limited content knowledge in earth and physical science. Teachers identified barriers including limited science instructional time, poor curricular resources, few professional learning opportunities, concern about new state standards, and a lack of teaching confidence. To improve student content knowledge, teachers identified the need for professional development. The project is a professional development series provided by a regional education service agency for K-5 teachers to experience science and engineering 3-dimensional learning. Area students will demonstrate deeper science content knowledge and benefit from improved science instructional practice and learning opportunities to become science problem solvers and innovative contributors to society.

  11. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    Michael Gao presents his project on Southeast Asian disasters during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  12. Earth Science, Grade 8. Part 2. Curriculum Bulletin Number 81CBM63.

    ERIC Educational Resources Information Center

    Stafford, Alva R.

    This curriculum guide is designed for use with the Charles E. Merrill textbook "Focus on Earth Science" and with the laboratory manual, teaching guide, and student review and reinforcement guide which accompany the textbook. Suggested time allotment, major concepts, instructional objectives, assessment items, available materials (such as…

  13. Earth Science, Grade 8. Part 1. Curriculum Bulletin Number 81CBM58.

    ERIC Educational Resources Information Center

    Stafford, Alva R.

    This curriculum guide is designed for use with the Charles E. Merrill textbook "Focus on Earth Science" and with the laboratory manual, teaching guide, and student review and reinforcement guide which accompany the textbook. Suggested time allotment, major concepts, instructional objectives, assessment items, available materials (such as…

  14. Globalization and Mobilization of Earth Science Education with GeoBrain Geospatial Web Service Technology

    NASA Astrophysics Data System (ADS)

    Deng, M.; di, L.

    2005-12-01

    The needs for Earth science education to prepare students as globally-trained geoscience workforce increase tremendously with globalization of the economy. However, current academic programs often have difficulties in providing students world-view training or experiences with global context due to lack of resources and suitable teaching technology. This paper presents a NASA funded project with insights and solutions to this problem. The project aims to establish a geospatial data-rich learning and research environment that enable the students, faculty and researchers from institutes all over the world easily accessing, analyzing and modeling with the huge amount of NASA EOS data just like they possess those vast resources locally at their desktops. With the environment, classroom demonstration and training for students to deal with global climate and environment issues for any part of the world are possible in any classroom with Internet connection. Globalization and mobilization of Earth science education can be truly realized through the environment. This project, named as NASA EOS Higher Education Alliance: Mobilization of NASA EOS Data and Information through Web Services and Knowledge Management Technologies for Higher Education Teaching and Research, is built on profound technology and infrastructure foundations including web service technology, NASA EOS data resources, and open interoperability standards. An open, distributed, standard compliant, interoperable web-based system, called GeoBrain, is being developed by this project to provide a data-rich on-line learning and research environment. The system allows users to dynamically and collaboratively develop interoperable, web-executable geospatial process and analysis modules and models, and run them on-line against any part of the peta-byte archives for getting back the customized information products rather than raw data. The system makes a data-rich globally-capable Earth science learning and research

  15. Preservice elementary teachers' personal science teaching efficacy and science teaching outcome expectancies: The influence of student teaching

    NASA Astrophysics Data System (ADS)

    Plourde, Lee Alton

    This study was unique in garnering an early view at how the deterioration of science teacher education begins. This investigation examined the impact of the student teaching semester on preservice elementary teachers' personal efficacy beliefs and outcome expectancy beliefs in science teaching. Participants in the study included the student teachers of three separate cohort groups commencing and completing their student teaching semester at the same time. Qualitative data were gathered from interviews and observations from selected individuals of these cohort groups. Quantitative and qualitative research methods were employed in the study. Utilizing a pretest and posttest one group research design, quantitative data were obtained from the administration of a psychometric test, Science Teaching Efficacy Belief Instrument for preservice teachers (STEBI-B). The pretest was administered at the beginning of the student teaching semester, before the student teachers began their "soloing" teaching, and the posttest was administered at the completion of the student teaching semester and "soloing" period. Qualitative data were derived from interviews and observations which were audio recorded and transcribed. The results of this study revealed that the student teaching semester did not have a statistically significant impact on the subjects' sense of personal self-efficacy, but the influence was statistically significant in regards to the student teachers' beliefs about children's ability to learn science. Data gathered through interviews and observations suggested that beliefs appear to originate from one or more of the following: a lack of practical work, personal involvement, and hands-on manipulation in science related activities in elementary, secondary, and tertiary education; a dependence of science courses on textbooks and lectures; the dispassionate association with science teachers/instructors; a focus on formalized tests with no performance assessments; the

  16. Activities in planetary geology for the physical and earth sciences

    NASA Technical Reports Server (NTRS)

    Dalli, R.; Greeley, R.

    1982-01-01

    A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.

  17. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden speaks with young professionals about their project during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  18. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden poses for a selfie after a quick rap performance by some young professionals during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  19. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden speaks with young professionals about their project on New England water resources during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  20. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    Lisa Waldron and Justin Roberts-Pierel present their project on Texas health and air quality during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  1. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden asks young professionals about their projects after posing for a group photo during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  2. Making the Most of a Limited Opportunity: Empowering our Future Earth Science Educators by Engaging Them in Field-Based Inquiry.

    NASA Astrophysics Data System (ADS)

    Levy, R.; David, H.; Carlson, D.; Kunz, G.

    2004-12-01

    Geoscience courses that engage students in our K-12 learning environments represent a fundamental method to increase public awareness and understanding of Earth systems science. K-12 teachers are ultimately responsible for developing and teaching these courses. We recognize that it is our role as university instructors to ensure that our future K-12 teachers receive a high-quality and practical Earth science education; unfortunately many education majors at our institution receive no formal exposure to geoscience. Furthermore, for those students who choose to take a geoscience course, the experience is typically limited to a large introductory lecture-lab. While these courses are rich in content they neither provide opportunities for students to experience `real' Earth science nor address the skills required to teach Earth science to others. In 2002 we began to develop a field-based introductory geoscience course designed specifically for education students. Our major goal was to attract education majors and provide a field-based geoscience learning experience that was challenging, exciting, and directly applicable to their chosen career. Specific objectives of our project were to: (1) teach geoscience concepts and skills that K-12 teachers are expected to understand and teach to their students (outlined in national standards); (2) provide students with an opportunity to learn through scientific inquiry; (3) enhance student confidence in their ability to teach geoscience in the K-12 classroom. We piloted a two-week field course during summer 2004. The field excursion followed a route through Nebraska and Wyoming. Instructors focused on exposing students to the Earth systems concepts and content outlined in national education standards. The primary instructional approach was to engage students in inquiry-based learning. Students were provided many opportunities to utilize science process skills including: observation, documentation, classification, questioning

  3. Edible Earth and Space Science Activities

    NASA Astrophysics Data System (ADS)

    Lubowich, D.; Shupla, C.

    2014-07-01

    In this workshop we describe using Earth and Space Science demonstrations with edible ingredients to increase student interest. We show how to use chocolate, candy, cookies, popcorn, bagels, pastries, Pringles, marshmallows, whipped cream, and Starburst candy for activities such as: plate tectonics, the interior structure of the Earth and Mars, radioactivity/radioactive dating of rocks and stars, formation of the planets, lunar phases, convection, comets, black holes, curvature of space, dark energy, and the expansion of the Universe. In addition to creating an experience that will help students remember specific concepts, edible activities can be used as a formative assessment, providing students with the opportunity to create something that demonstrates their understanding of the model. The students often eat the demonstrations. These demonstrations are an effective teaching tool for all ages, and can be adapted for cultural, culinary, and ethnic differences among the students.

  4. Urban fifth graders' connections-making between formal earth science content and their lived experiences

    NASA Astrophysics Data System (ADS)

    Brkich, Katie Lynn

    2014-03-01

    Earth science education, as it is traditionally taught, involves presenting concepts such as weathering, erosion, and deposition using relatively well-known examples—the Grand Canyon, beach erosion, and others. However, these examples—which resonate well with middle- and upper-class students—ill-serve students of poverty attending urban schools who may have never traveled farther from home than the corner store. In this paper, I explore the use of a place-based educational framework in teaching earth science concepts to urban fifth graders and explore the connections they make between formal earth science content and their lived experiences using participant-driven photo elicitation techniques. I argue that students are able to gain a sounder understanding of earth science concepts when they are able to make direct observations between the content and their lived experiences and that when such direct observations are impossible they make analogies of appearance, structure, and response to make sense of the content. I discuss additionally the importance of expanding earth science instruction to include man-made materials, as these materials are excluded traditionally from the curriculum yet are most immediately available to urban students for examination.

  5. Offering More than "Here Is the Textbook": Teaching Assistants' Perspectives on Introductory Science Courses

    ERIC Educational Resources Information Center

    Dotger, Sharon

    2010-01-01

    Eight Earth science graduate teaching assistants (GTAs) participated in a semester-long seminar designed to facilitate change in their practice. The seminar used lesson-study methodology to facilitate discussion of GTAs' beliefs about teaching while planning a research lesson for implementation in their laboratory. This article reports the results…

  6. Earth at Rest. Aesthetic Experience and Students' Grounding in Science Education

    NASA Astrophysics Data System (ADS)

    Østergaard, Edvin

    2017-07-01

    Focus of this article is the current situation characterized by students' de-rootedness and possible measures to improve the situation within the frame of education for sustainable development. My main line of argument is that science teachers can practice teaching in such a way that students are brought in deeper contact to the environment. I discuss efforts to promote aesthetic experience in science class and in science teacher education. Within a wide range of definitions, my main understanding of aesthetic experience is that of pre-conceptual experience, relational to the environment and incorporated in students' embodied knowledge. I ground the idea of Earth at rest in Husserl's phenomenological philosophy and Heidegger's notion of science' deprivation of the world. A critique of the ontological reversal leads to an ontological re-reversal that implies giving lifeworld experience back its value and rooting scientific concepts in students' everyday lives. Six aspects of facilitating grounding in sustainability-oriented science teaching and teacher education are highlighted and discussed: students' everyday knowledge and experience, aesthetic experience and grounding, fostering aesthetic sensibility, cross-curricular integration with art, ontological and epistemological aspects, and belongingness and (re-)connection to Earth. I conclude that both science students and student-teachers need to practice their sense of caring and belonging, as well as refining their sensibility towards the world. With an intension of educating for a sustainable development, there is an urgent need for a critical discussion in science education when it comes to engaging learners for a sustainable future.

  7. Constructing Artificial Rock Outcrops as Tools for Fostering Earth and Environmental Science Thinking

    NASA Astrophysics Data System (ADS)

    Totten, I. M.; Hall, F.; Buxton, C.

    2004-12-01

    The Earth and Environmental Science Education Group at the University of New Orleans has created an innovative visualization teaching tool. Through funding made available by the National Science Foundation a 12'x10'x5' artificial rock outcrop was fabricated at the University of New Orleans. An accompanying curriculum, which includes a series of artificial rock outcrop labs, was also created for the outcrop. The labs incorporated fundamental concepts from the geosciences and the field of science education. The overarching philosophy behind the unity of the content knowledge and the pedagogy was to develop a more inclusive and deliberate teaching approach that utilized strategies known to enhance student learning in the sciences. The artificial outcrop lab series emphasized the following geoscience topics: relative dating, rock movement, and depositional environments. The series also integrated pedagogical ideas such as inquiry-based learning, conceptual mapping, constructivist teaching, pattern recognition, and contextualized knowledge development. Each component of the curriculum was purposefully designed to address what the body of research in science education reveals as critical to science teaching and learning. After developing the artificial rock outcrop curriculum a pilot study was done with 40 pre-service elementary education undergraduates. In the pilot study students completed the following assessments: three outcrop labs, journal reflections for each lab, pre/post attitude surveys, group video-recordings, and preconception and final interviews. Data from these assessments were analyzed using qualitative and quantitative methodologies. The following conclusions were revealed from the data: student's attitudes towards learning earth science increased after working with the artificial rock outcrop, students conceptual understanding of the concepts were clearer after working with the outcrop, students were able to answer multifaceted, higher order questions

  8. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  9. A Study of Teacher-Mediated Enhancement of Students' Organization of Earth Science Knowledge Using Web Diagrams as a Teaching Device

    NASA Astrophysics Data System (ADS)

    Anderson, O. Roger; Contino, Julie

    2010-10-01

    Current research indicates that students with enhanced knowledge networks are more effective in learning science content and applying higher order thinking skills in open-ended inquiry learning. This research examined teacher implementation of a novel teaching strategy called “web diagramming,” a form of network mapping, in a secondary school earth science class. We report evidence for student improvement in knowledge networking, questionnaire-based reports by the students on the merits of web diagramming in terms of interest and usefulness, and information on the collaborating teacher’s perceptions of the process of implementation, including implications for teacher education. This is among the first reports that teachers can be provided with strategies to enhance student knowledge networking capacity, especially for those students whose initial networking scores are among the lowest.

  10. SUPPORTING TEACHERS IN IMPLEMENTING FORMATIVE ASSESSMENT PRACTICES IN EARTH SYSTEMS SCIENCE

    NASA Astrophysics Data System (ADS)

    Harris, C. J.; Penuel, W. R.; Haydel Debarger, A.; Blank, J. G.

    2009-12-01

    An important purpose of formative assessment is to elicit student thinking to use in instruction to help all students learn and inform next steps in teaching. However, formative assessment practices are difficult to implement and thus present a formidable challenge for many science teachers. A critical need in geoscience education is a framework for providing teachers with real-time assessment tools as well as professional development to learn how to use formative assessment to improve instruction. Here, we describe a comprehensive support system, developed for our NSF-funded Contingent Pedagogies project, for addressing the challenge of helping teachers to use formative assessment to enhance student learning in middle school Earth Systems science. Our support system is designed to improve student understanding about the geosphere by integrating classroom network technology, interactive formative assessments, and contingent curricular activities to guide teachers from formative assessment to instructional decision-making and improved student learning. To accomplish this, we are using a new classroom network technology, Group Scribbles, in the context of an innovative middle-grades Earth Science curriculum called Investigating Earth Systems (IES). Group Scribbles, developed at SRI International, is a collaborative software tool that allows individual students to compose “scribbles” (i.e., drawings and notes), on “post-it” notes in a private workspace (a notebook computer) in response to a public task. They can post these notes anonymously to a shared, public workspace (a teacher-controlled large screen monitor) that becomes the centerpiece of group and class discussion. To help teachers implement formative assessment practices, we have introduced a key resource, called a teaching routine, to help teachers take advantage of Group Scribbles for more interactive assessments. Routine refers to a sequence of repeatable interactions that, over time, become

  11. Supplementary Activities for Enriching the Teaching of Earth Science: Astronomy, Geology, Meteorology, Oceanography.

    ERIC Educational Resources Information Center

    Exline, Joseph D., Ed.

    This publication is intended to be an aid for secondary school science teachers in providing some additional student-oriented activities to enrich the earth science program. These activities have been classroom tested by teachers and have been considered by these teachers to be educationally successful. This publication is a product of the Earth…

  12. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  13. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  14. Home area geology and Alabama earth science teachers: A resource to improve the understanding and use of the state's rocks to supplement textbook concepts in earth history

    NASA Astrophysics Data System (ADS)

    Lacefield, James Anderson

    Recent studies have suggested that teachers of earth science in Alabama secondary schools are undertrained in the content areas of the subject. A survey of academic training and certification of active earth science teachers (Hall, 1985) was replicated as part of a study of the current inservice needs of Alabama earth science teachers (Logue & Lacefield, 1995). Only one-third of responding teachers were found to be properly certified to teach the subject; most had been trained for teaching life science. Approximately one-half had never had a course in geology, astronomy, or meteorology--the three primary components of the typical earth science course. Of 32 earth science topics suggested for possible additional inservice workshops, teachers responding to the Logue and Lacefield survey selected Alabama and Southeastern geology as the topic of greatest interest and need. As an alternative to conventional inservice training, an illustrated book on Alabama geologic history was developed for publication. Its purpose was to supply an ongoing, usable geologic reference for Alabama earth science teachers and their students and to promote greater understanding of Alabama geology by the public in general. Entitled Lost Worlds in Alabama Rocks: The Half-Billion Year Record of Change in the State's Life and Landscape, the 82-page book (included as appendix) explains how geologic history is reconstructed using evidence from rocks, surveys the major sets of sedimentary rocks found within the state, details what each means in terms of ancient environment, and describes how Alabama's present landscape can be interpreted to reflect past geologic changes. The resource includes nearly 200 color photographs and graphics and 12 pages of fossil identification guides illustrating the most common fossil organisms found within the state. A selected group of professional geologists and earth science educators evaluated the book for scientific accuracy, format, presentation of content, and

  15. New successful ideas to teach Earth Science to students older than 55 by means of trekking

    NASA Astrophysics Data System (ADS)

    Fernández Raga, María; Cerdà, Artemi; Civera, Cristina

    2013-04-01

    During the last 10 years, the Geograns Program within the NAUGRAN initiative of the University of Valencia is using trekking as a way to teach in the field Earth Science. This paper review the contribution of this program and show the results and future challenges. The life expectancy is growing all over the world. This is a clear trend in the Western societies where after two generations there is a large group of inhabitants that have a new life after retirement. The universities must understand that this new group of citizens need services that will allow them to know better the society. This is why the University of Valencia developed in the end of the 90's a program to teach to students older than 55. The program that allows to those students to attend lectures at the University is called NAUGRAN. This is a program for more than one thousand students that cover the needs of a group that is having more and more population over the age of 55, and with a life expectancy that surpass the 81 years in Spain. Teaching History, Arts, Sciences or Literature can be easily due for those 55-old students. However, teaching geosciences is being very difficult, as the students must visit the field and the laboratory. Within the GEOGRANS project, and during the last six years, Physical Geography was taught to students older than 55 in independent lecture rooms and field and laboratory classes. The main strategy was to show them the concepts and the ideas of the Physical Geography in the field. The excursions allow to shown the main features of the landscape (rivers, mountains, rocks…) and the impacts of the humankind on the changes of the nature to the students. The program is now 6 years old and it is being very successful with more than 200 hundreds participants and with excursion every two weeks. This paper will show the importance of teaching to students that arrive to the university after retirement. And that trekking is a successful strategy as the students realise

  16. The effects of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Logerwell, Mollianne G.

    The purpose of this study was to investigate the impact of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science. Master's degree students enrolled in the elementary Fairfax Partnership Schools (FPS, n = 21) cohort served as the treatment group, while those enrolled in the Loudoun Partnership Schools (LPS, n = 15) and Professional Development Schools (PDS, n = 24) cohorts at George Mason University served as the control groups. The treatment group planned for and taught a two-week inquiry- and problem-based summer science camp as part of their science methods course, while the control groups did not. The Science Teaching Efficacy Belief Instrument (STEBI), a science content assessment, a personal data questionnaire, and a modified version of the Views of Nature of Science Questionnaire (VNOS-C) were administered to the participants at the beginning and end of their science methods course. Analyses revealed significant increases for the FPS group in general science teaching efficacy, personal science teaching efficacy, science teaching outcome expectancy, general science knowledge, biology content knowledge, chemistry content knowledge, and understanding of NOS; the LPS group in general science teaching efficacy, personal science teaching efficacy, chemistry content knowledge, and understanding of NOS; and, the PDS group in general science teaching efficacy, personal science teaching efficacy, and chemistry content knowledge. Additionally, the FPS group had significantly higher general science teaching efficacy than both control groups, personal science teaching efficacy than the PDS group, and understanding of NOS than the LPS group. Overall, the findings indicate that course length is not as important for developing preservice teachers' teaching efficacy and understanding of content as having connected, authentic field-based teaching experiences

  17. Teaching Ethics in Science.

    ERIC Educational Resources Information Center

    Reiss, Michael

    1999-01-01

    Summarizes arguments for and against teaching ethics within science education, and clarifies what might be the several aims of teaching ethics in science. Discusses how ethics instruction might be incorporated into the science curriculum. (Contains 120 references.) (WRM)

  18. RITES: Online (Reaching In-Service Teachers With Earth Sciences Online)

    NASA Astrophysics Data System (ADS)

    Baptiste, H.

    2002-12-01

    The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believe that the power of technology could not be effectively utilized unless it is grounded in new models of teaching and learning based on a student centered and project based curriculum, that increases opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believe the aforementioned ideas and points to be equally true for the inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses are delivered by distance learning via the university WebCt distance education system. Teachers are encouraged to use technology in their classrooms and to record their students' involvement in science activities with digital cameras. Teachers involved in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight the teachers in the roles of designer, researcher, and collaborator. As a result of our courses our teachers attain the following positive outcomes: 1) Teachers experience the inquiry approach to learning about the spheres of our earth. 2) Teachers become confident in using technology. 3) Teachers learn to work cooperatively in-groups and understand what their own students must feel. 4) Teachers find ways to obtain dynamic professional development and not leave their classrooms or homes

  19. Minority Preservice Teachers' Conceptions of Teaching Science: Sources of Science Teaching Strategies

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2013-01-01

    This study explores five minority preservice teachers' conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream…

  20. Teaching and Learning about the Earth. ERIC Digest.

    ERIC Educational Resources Information Center

    Lee, Hyonyong

    This ERIC Digest investigates the earth and space science guidelines of the National Science Education Standards. These guidelines are frequently referred to as the earth system and include components such as plate tectonics, the water cycle, and the carbon cycle. This Digest describes the development of earth systems science and earth systems…

  1. Teaching Children Science. Second Edition.

    ERIC Educational Resources Information Center

    Abruscato, Joseph

    This book focuses on science teaching at the elementary school level. It includes chapters dealing with various science content areas and teaching processes including: (1) what is science; (2) why teach science; (3) process skills as a foundation for unit and lesson planning; (4) how to plan learning units, daily lessons, and assessment…

  2. Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers

    NASA Astrophysics Data System (ADS)

    Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.

    2003-12-01

    An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical

  3. Confronting Barriers to Teaching Elementary Science: After-School Science Teaching Experiences for Preservice Teachers

    ERIC Educational Resources Information Center

    Cartwright, Tina; Smith, Suzanne; Hallar, Brittan

    2014-01-01

    This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…

  4. MiTEP's Collaborative Field Course Design Process Based on Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Engelmann, C. A.; Rose, W. I.; Huntoon, J. E.; Klawiter, M. F.; Hungwe, K.

    2010-12-01

    Michigan Technological University has developed a collaborative process for designing summer field courses for teachers as part of their National Science Foundation funded Math Science Partnership program, called the Michigan Teacher Excellence Program (MiTEP). This design process was implemented and then piloted during two two-week courses: Earth Science Institute I (ESI I) and Earth Science Institute II (ESI II). Participants consisted of a small group of Michigan urban science teachers who are members of the MiTEP program. The Earth Science Literacy Principles (ESLP) served as the framework for course design in conjunction with input from participating MiTEP teachers as well as research done on common teacher and student misconceptions in Earth Science. Research on the Earth Science misconception component, aligned to the ESLP, is more fully addressed in GSA Abstracts with Programs Vol. 42, No. 5. “Recognizing Earth Science Misconceptions and Reconstructing Knowledge through Conceptual-Change-Teaching”. The ESLP were released to the public in January 2009 by the Earth Science Literacy Organizing Committee and can be found at http://www.earthscienceliteracy.org/index.html. Each day of the first nine days of both Institutes was focused on one of the nine ESLP Big Ideas; the tenth day emphasized integration of concepts across all of the ESLP Big Ideas. Throughout each day, Michigan Tech graduate student facilitators and professors from Michigan Tech and Grand Valley State University consistantly focused teaching and learning on the day's Big Idea. Many Earth Science experts from Michigan Tech and Grand Valley State University joined the MiTEP teachers in the field or on campus, giving presentations on the latest research in their area that was related to that Big Idea. Field sites were chosen for their unique geological features as well as for the “sense of place” each site provided. Preliminary research findings indicate that this collaborative design

  5. Using Authentic Data in High School Earth System Science Research - Inspiring Future Scientists

    NASA Astrophysics Data System (ADS)

    Bruck, L. F.

    2006-05-01

    Using authentic data in a science research class is an effective way to teach students the scientific process, problem solving, and communication skills. In Frederick County Public Schools, MD a course has been developed to hone scientific research skills, and inspire interest in careers in science and technology. The Earth System Science Research course provides eleventh and twelfth grade students an opportunity to study Earth System Science using the latest information developed through current technologies. The system approach to this course helps students understand the complexity and interrelatedness of the Earth system. Consequently students appreciate the dynamics of local and global environments as part of a complex system. This course is an elective offering designed to engage students in the study of the atmosphere, biosphere, cryosphere, geosphere, and hydrosphere. This course allows students to utilize skills and processes gained from previous science courses to study the physical, chemical, and biological aspects of the Earth system. The research component of the course makes up fifty percent of course time in which students perform independent research on the interactions within the Earth system. Students are required to produce a scientific presentation to communicate the results of their research. Posters are then presented to the scientific community. Some of these presentations have led to internships and other scientific opportunities.

  6. Science on Stage: Engaging and teaching scientific content through performance art

    NASA Astrophysics Data System (ADS)

    Posner, Esther

    2016-04-01

    Engaging teaching material through performance art and music can improve the long-term retention of scientific content. Additionally, the development of effective performance skills are a powerful tool to communicate scientific concepts and information to a broader audience that can have many positive benefits in terms of career development and the delivery of professional presentations. While arts integration has been shown to increase student engagement and achievement, relevant artistic materials are still required for use as supplemental activities in STEM (science, technology, engineering, mathematics) courses. I will present an original performance poem, "Tectonic Petrameter: A Journey Through Earth History," with instructions for its implementation as a play in pre-university and undergraduate geoscience classrooms. "Tectonic Petrameter" uses a dynamic combination of rhythm and rhyme to teach the geological time scale, fundamental concepts in geology and important events in Earth history. I propose that using performance arts, such as "Tectonic Petrameter" and other creative art forms, may be an avenue for breaking down barriers related to teaching students and the broader non-scientific community about Earth's long and complex history.

  7. InTeGrate: Interdisciplinary Teaching about the Earth for a Sustainable Future

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2017-12-01

    InTeGrate supports integrated interdisciplinary learning about resource and environmental issues across the undergraduate curriculum to create a sustainable and just civilization. The project has developed teaching materials and examples of their use in programs and is currently engaged in a suite of activities that support use of these resources in improving undergraduate Earth education. Thirty-three sets of teaching materials supporting instruction over time periods of 2 weeks to a full semester have been developed by teams of faculty and peer-reviewed to ensure strong research-based pedagogic design and attention to five design principles: 1) address one or more grand challenges involving the Earth and society, 2) develop student ability to address interdisciplinary problems, 3) improve student understanding of the nature and methods of science and developing geoscientific habits of mind, 4) make use of authentic and credible science data to learn central concepts in the context of scientific methods of inquiry, and, 5) incorporate systems thinking. They have been tested in a wide variety of institutional and disciplinary settings and are documented with instructor notes describing adaptation for specific settings. All published materials passed a review for scientific accuracy. Sixteen program models demonstrate strategies for strengthening learning about Earth and sustainability at scales ranging from a department to an interinstitutional collaboration. These examples document the use of InTeGrate resources in the development and evaluation of these programs. A synthesis of lessons learned by these projects addresses strategies for teaching about the Earth across the curriculum. InTeGrate is currently supporting use of ideas and resources developed over the past six years of project work through a webinar series, workshops at professional society meetings, a traveling workshop program for departments and regions, a set of online learning communities and

  8. Charting a Course to Earth System Science Literacy

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Koch, L.; Ridky, R.; Wei, M.; Ladue, N.

    2008-12-01

    Public literacy of fundamental ideas in Earth System Science (ESS) is immensely important, both because of its relevance to the daily lives of individual citizens and the role played by informed policy decisions related to water, energy, climate change, and hazards in securing our Nation's well-being and prosperity. The National Science Education Standards (NRC, 1996) argued that topics which comprise ESS also have tremendous value in providing context and meaning for the teaching of Biology, Chemistry, and Physics concepts and their applications, thereby serving the goals of the America COMPETES Act. Yet, as documented in the 2006 Program for International Student Assessment (PISA) results, the U.S. continues to lag significantly behind other developed nations in science literacy. A major obstacle to improving public ESS literacy, specifically, and strengthening science literacy, in general, is the fact that fewer than 30% of students in U.S. high schools take any courses related to ESS. Often, these courses are taught by teachers with limited preparation in this content area. A new grass-roots movement within the geoscience research and education communities, fueled by interagency collaboration, is seeking to overcome these obstacles and steer a new course for ESS education in the Nation. The Earth System Science Literacy Initiative (ESSLI) builds on recent efforts within portions of the geosciences community to reach consensus on what defines scientific literacy within their fields. Individual literacy frameworks now exist for the ocean, atmospheric science, Earth science, and climate topic areas, and others are under development. The essential principles and fundamental concepts articulated in these frameworks provide consistent core messages that can be delivered and reinforced not only through formal education channels, but also through informal education activities and the media, thereby avoiding the inherent obstacles of the formal education setting

  9. Experiential learning for education on Earth Sciences

    NASA Astrophysics Data System (ADS)

    Marsili, Antonella; D'Addezio, Giuliana; Todaro, Riccardo; Scipilliti, Francesca

    2015-04-01

    The Laboratorio Divulgazione Scientifica e Attività Museali of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Laboratory for Outreach and Museum Activities) in Rome, organizes every year intense educational and outreach activities to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. Focusing on kids, we designed and implemented the "greedy laboratory for children curious on science (Laboratorio goloso per bambini curiosi di scienza)", to intrigue children from primary schools and to attract their interest by addressing in a fun and unusual way topics regarding the Earth, seismicity and seismic risk. We performed the "greedy laboratory" using experiential teaching, an innovative method envisaging the use and handling commonly used substances. In particular, in the "greedy laboratory" we proposed the use of everyday life's elements, such as food, to engage, entertain and convey in a simple and interesting communication approach notions concerning Earth processes. We proposed the initiative to public during the "European Researchers Night" in Rome, on September 26, 2014. Children attending the "greedy laboratory", guided by researchers and technicians, had the opportunity to become familiar with scientific concepts, such as the composition of the Earth, the Plate tectonics, the earthquake generation, the propagation of seismic waves and their shaking effects on the anthropogenic environment. During the hand-on laboratory, each child used not harmful substances such as honey, chocolate, flour, barley, boiled eggs and biscuits. At the end, we administered a questionnaire rating the proposed activities, first evaluating the level of general satisfaction of the laboratory and then the various activities in which it was divided. This survey supplied our team with feedbacks, revealing some precious hints on appreciation and margins of improvement. We provided a semi-quantitative assessment with a

  10. Master of Science Teaching: Encouraging Teachers and their Students in Research

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.

    2010-12-01

    The Master of Science Teaching program is designed to encourage more content knowledge among teachers. Thirty credit hours are required, chosen from 12 hours of Earth science courses, 12 hours of space science courses, a chemistry course, a math course, and research or education credits. A thesis is not required but each teacher must have a special project (either research or curriculum). A number of students chose as their project using ground penetrating radar to look for buried graves in an African-American cemetery. Others became Heliospheric Ambassadors, Messenger Ambassadors, or PolarTrec teachers. Nineteen teachers have graduated as of 2010 with six presently in the program. A survey of the participants has fifteen responses so far, with a good mixture of responses from early in the program to present students. Many (69%) were grade 6-8 teachers when they entered the program. After earning their MST, many had increased their teaching level: (93% reported that it helped their career path, 39% have upgraded to administration or science supervision, and 53% reported receiving a better or higher level job position as a result). Only one student no longer teaches (completing a PhD in Administration). Given that 20% of the respondents are still in the program, two thirds of the alumni (8 of 12) have earned better jobs. All respondents said that they learned from both the Earth and space science courses, and all respondents (except the person no longer in the classroom) say they use the earth and space science material in the classrooms, with 80% "frequently" and 13% "sometimes". They also report that they are more likely to encourage their students to become scientists (80%), more likely to encourage their students to support NASA (93%), and think that their students are getting better scores on the state standardized tests (60%). It is certainly not easy for teachers to perform publishable research (although some have), and it is even more difficult for students

  11. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    ERIC Educational Resources Information Center

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  12. Center for Space and Earth Science

    Science.gov Websites

    Search Site submit Los Alamos National LaboratoryCenter for Space and Earth Science Part of the Partnerships NSEC » CSES Center for Space and Earth Science High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and Earth systems Contact Director Reiner Friedel (505

  13. ESSEA as an Enhancement to K-12 Earth Systems Science Efforts at San José State University

    NASA Astrophysics Data System (ADS)

    Messina, P.; Metzger, E. P.; Sedlock, R. L.

    2002-12-01

    San José State University's Geology Department has implemented and maintained a two-fold approach to teacher education efforts. Both pre-service and in-service populations have been participants in a wide variety of content-area enrichment, training, and professional development endeavors. Spearheading these initiatives is the Bay Area Earth Science Institute (BAESI); organized in 1990, this program has served more than 1,000 teachers in weekend- and summer-workshops, and field trips. It sustains a network of Bay Area teachers via its Website (http://www.baesi.org), newsletter, and allows teachers to borrow classroom-pertinent materials through the Earth Science Resource Center. The Department has developed a course offering in Earth Systems Science (Geology 103), which targets pre-service teachers within SJSU's multiple-subject credential program. The curriculum satisfies California subject matter competency requirements in the geosciences, and infuses pedagogy into the syllabus. Course activities are intended for pre-service and in-service teachers' adaptation in their own classrooms. The course has been enhanced by two SJSU-NASA collaborations (Project ALERT and the Sun-Earth Connection Education Forum), which have facilitated incorporation of NASA data, imagery, and curricular materials. SJSU's M.A. in Natural Science, a combined effort of the Departments of Geology, Biology, and Program in Science Education, is designed to meet the multi-disciplinary needs of single-subject credential science teachers by providing a flexible, individually-tailored curriculum that combines science course work with a science education project. Several BAESI teachers have extended their Earth science knowledge and teaching skills through such projects as field guides to local sites of geological interest; lab-based modules for teaching about earthquakes, rocks and minerals, water quality, and weather; and interactive online materials for students and teachers of science. In

  14. Evaluating Educational Resources for Inclusion in the Dig Texas Instructional Blueprints for Earth & Space Science

    NASA Astrophysics Data System (ADS)

    Jacobs, B. E.; Bohls-Graham, E.; Martinez, A. O.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; Fox, S.; Kent, M.

    2014-12-01

    Today's instruction in Earth's systems requires thoughtful selection of curricula, and in turn, high quality learning activities that address modern Earth science. The Next Generation Science Standards (NGSS), which are intended to guide K-12 science instruction, further demand a discriminating selection process. The DIG (Diversity & Innovation in Geoscience) Texas Instructional Blueprints attempt to fulfill this practice by compiling vetted educational resources freely available online into units that are the building blocks of the blueprints. Each blueprint is composed of 9 three-week teaching units and serves as a scope and sequence for teaching a one-year Earth science course. In the earliest stages of the project, teams explored the Internet for classroom-worthy resources, including laboratory investigations, videos, visualizations, and readings, and submitted the educational resources deemed suitable for the project into the project's online review tool. Each team member evaluated the educational resources chosen by fellow team members according to a set of predetermined criteria that had been incorporated into the review tool. Resources rated as very good or excellent by all team members were submitted to the project PIs for approval. At this stage, approved resources became candidates for inclusion in the blueprint units. Team members tagged approved resources with descriptors for the type of resource and instructional strategy, and aligned these to the Texas Essential Knowledge and Skills for Earth and Space Science and the Earth Science Literacy Principles. Each team then assembled and sequenced resources according to content strand, balancing the types of learning experiences within each unit. Once units were packaged, teams then considered how they addressed the NGSS and identified the relevant disciplinary core ideas, crosscutting concepts, and science and engineering practices. In addition to providing a brief overview of the project, this

  15. Demystifying Scientific Data ­ Using Earth Science to Teach the Scientific Method

    NASA Astrophysics Data System (ADS)

    Nassiff, P. J.; Santos, E. A.; Erickson, P. J.; Niell, A. E.

    2006-12-01

    The collection of large quantities of data and their subsequent analyses are important components of any scientific process, particularly at research institutes such as MIT's Haystack Observatory, where the collection and analyses of data is crucial to research efforts. Likewise, a recent study on science education concluded that students should be introduced to analyzing evidence and hypotheses, to critical thinking - including appropriate skepticism, to quantitative reasoning and the ability to make reasonable estimates, and to the role of uncertainty and error in science. In order to achieve this goal with grades 9-12 students and their instructors, we developed lesson plans and activities based on atmospheric science and geodetic research at Haystack Observatory. From the complex steps of experimental design, measurement, and data analysis, students and teachers will gain insight into the scientific research processes as they exist today. The use of these space weather and geodesy activities in classrooms will be discussed. Space Weather: After decades of data collection with multiple variables, space weather is about as complex an area of investigation as possible. Far from the passive relationship between the Sun and Earth often taught in the early grades, or the beautiful auroras discussed in high school, there are complex and powerful interactions between the Sun and Earth. In spite of these complexities, high school students can learn about space weather and the repercussions on our communication and power technologies. Starting from lessons on the basic method of observing space weather with incoherent scatter radar, and progressing to the use of simplified data sets, students will discover how space weather affects Earth over solar cycles and how severe solar activity is measured and affects the Earth over shorter time spans. They will see that even from complex, seemingly ambiguous data with many variables and unknowns, scientists can gain valuable

  16. Introduction: Why Link Indigenous Ways of Knowing with the Teaching of Environmental Studies and Sciences?

    ERIC Educational Resources Information Center

    Rich, Nancy

    2012-01-01

    This paper introduces a mini-symposium on bringing Indigenous ways of knowing together with the teaching of environmental studies and sciences (ESS). Both knowledges share a fundamental interest in the relationship of humans with the Earth, yet until recently, Indigenous ways of knowing have rarely been visible in the teaching of ESS. Teaching…

  17. Earth Science in the Classroom

    ERIC Educational Resources Information Center

    Whitburn, Niki

    2007-01-01

    An area that teachers often find difficult to make interesting is the earth science component of the science curriculum. This may be for a variety of reasons, such as lack of knowledge, lack of ideas or lack of resources. This article outlines ideas and activities that have been developed by the Earth Science Teachers' Association (ESTA) primary…

  18. Teachers' perceptions on primary science teaching

    NASA Astrophysics Data System (ADS)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  19. Science Teaching: What Does It Mean?

    ERIC Educational Resources Information Center

    Tseitlin, Michael; Galili, Igal

    2006-01-01

    This study considers the relationship between science, science teaching and the philosophy of science perceiving these three cultural phenomena as a semantic triad. This approach presents science teaching as being a form of a scientific reflection. The relationship of science teaching to the philosophy of science is advocated to be essential,…

  20. Why Reinvent the Wheel when Earth Science Resources Are Already Available? The GEOTREX and STEGO Resource Banks

    ERIC Educational Resources Information Center

    Williams, Maggie

    2012-01-01

    The "issue" of there being only limited time available to teachers for the development of teaching and learning resources has been with us a long time. This article outlines the rationale behind the development of online teaching resources that are freely available on the Earth Science Teachers' Association (ESTA) website and introduces readers to…

  1. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  2. Senior High School Earth Sciences and Marine Sciences.

    ERIC Educational Resources Information Center

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  3. The effect of electronic networking on preservice elementary teachers' science teaching self-efficacy and attitude towards science teaching

    NASA Astrophysics Data System (ADS)

    Mathew, Nishi Mary

    Preservice elementary teachers' science teaching efficacy and attitude towards science teaching are important determinants of whether and how they will teach science in their classrooms. Preservice teachers' understanding of science and science teaching experiences have an impact on their beliefs about their ability to teach science. This study had a quasi-experimental pretest-posttest control group design (N = 60). Preservice elementary teachers in this study were networked through the Internet (using e-mail, newsgroups, listserv, world wide web access and electronic mentoring) during their science methods class and student practicum. Electronic networking provides a social context in which to learn collaboratively, share and reflect upon science teaching experiences and practices, conduct tele-research effectively, and to meet the demands of student teaching through peer support. It was hoped that the activities over the electronic networks would provide them with positive and helpful science learning and teaching experiences. Self-efficacy was measured using a 23-item Likert scale instrument, the Science Teaching Efficacy Belief Instrument, Form-B (STEBI-B). Attitude towards science teaching was measured using the Revised Science Attitude Scale (RSAS). Analysis of covariance was used to analyze the data, with pretest scores as the covariate. Findings of this study revealed that prospective elementary teachers in the electronically networked group had better science teaching efficacy and personal science teaching efficacy as compared to the non-networked group of preservice elementary teachers. The science teaching outcome expectancy of prospective elementary teachers in the networked group was not greater than that of the prospective teachers in the non-networked group (at p < 0.05). Attitude towards science teaching was not significantly affected by networking. However, this is surmised to be related to the duration of the study. Information about the

  4. Creating Deep Time Diaries: An English/Earth Science Unit for Middle School Students

    ERIC Educational Resources Information Center

    Jordan, Vicky; Barnes, Mark

    2006-01-01

    Students love a good story. That is why incorporating literary fiction that parallels teaching goals and standards can be effective. In the interdisciplinary, thematic six-week unit described in this article, the authors use the fictional book "The Deep Time Diaries," by Gary Raham, to explore topics in paleontology, Earth science, and creative…

  5. ESIP Earth Sciences Data Analytics (ESDA) Cluster - Work in Progress

    NASA Technical Reports Server (NTRS)

    Kempler, Steven

    2015-01-01

    The purpose of this poster is to promote a common understanding of the usefulness of, and activities that pertain to, Data Analytics and more broadly, the Data Scientist; Facilitate collaborations to better understand the cross usage of heterogeneous datasets and to provide accommodating data analytics expertise, now and as the needs evolve into the future; Identify gaps that, once filled, will further collaborative activities. Objectives Provide a forum for Academic discussions that provides ESIP members a better understanding of the various aspects of Earth Science Data Analytics Bring in guest speakers to describe external efforts, and further teach us about the broader use of Data Analytics. Perform activities that:- Compile use cases generated from specific community needs to cross analyze heterogeneous data- Compile sources of analytics tools, in particular, to satisfy the needs of the above data users- Examine gaps between needs and sources- Examine gaps between needs and community expertise- Document specific data analytics expertise needed to perform Earth science data analytics Seek graduate data analytics Data Science student internship opportunities.

  6. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  7. Professionality of Junior High School (SMP) Science Teacher in Preparing Instructional Design of Earth and Space Sciences (IPBA)

    NASA Astrophysics Data System (ADS)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2017-02-01

    The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.

  8. Viewing the Earth with Closed Eyes.

    ERIC Educational Resources Information Center

    Kaschner, Susan K.

    1978-01-01

    Describes earth science activities for the visually impaired student. Includes soil type identification, stream table erosion, and relief map activities. Recommends a multisensory approach to the teaching of earth science and hands-on activities. (MA)

  9. Using a robotics competition to teach about and stimulate enthusiasm for Earth science and other STEM topics

    NASA Astrophysics Data System (ADS)

    Fike, Hildee; Barnhart, Paul; Brevik, Corinne E.; Brevik, Eric C.; Burgess, Cynthia; Chen, Jundong; Egli, Shawna; Harris, Billy; Johanson, Paul J.; Johnson, Naomi; Moe, Marie; Olsen, Reba

    2016-04-01

    environment is created during the competition, with team members who are not actively competing at any given moment enthusiastically supporting their team members who are competing. However, it also generates a sense of community among the competing teams, and it is common to see members from one team assisting another team that is having problems with their robot, even though the two teams are also in direct competition with one another. The end result is an overall experience that is great fun for the competing students, but one in which they also learn about a wide range of STEM fields. In 2015, that education included an important aspect of the Earth sciences. Using similar techniques for general teaching of some Earth science topics may have promise both in terms of student learning and student enthusiasm for the subject material.

  10. Earth Science: It's All about the Processes

    ERIC Educational Resources Information Center

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  11. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  12. Moving Towards a Science-Driven Workbench for Earth Science Solutions

    NASA Astrophysics Data System (ADS)

    Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.

    2017-12-01

    The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.

  13. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  14. Primary and Secondary School Science.

    ERIC Educational Resources Information Center

    Educational Documentation and Information, 1984

    1984-01-01

    This 344-item annotated bibliography presents overview of science teaching in following categories: science education; primary school science; integrated science teaching; teaching of biology, chemistry, physics, earth/space science; laboratory work; computer technology; out-of-school science; science and society; science education at…

  15. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-072)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee...

  16. Earth Science Literacy: Building Community Consensus

    NASA Astrophysics Data System (ADS)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  17. Publishing in the Refereed International Journal of Astronomy & Earth Sciences Education JAESE

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-08-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education- JAESE was first published in 2014. JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, EBSCO, ProQuest, and NASA SAO/ADS and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute in the United States, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and a Senior Scientist at the

  18. Earth System Science Education Alliance (ESSEA) IPY Modules

    NASA Astrophysics Data System (ADS)

    Blaney, L. S.; Myers, R. J.; Schwerin, T.

    2008-12-01

    The Earth System Science Education Alliance (ESSEA) is a National Science Foundation-supported program implemented by the Institute for Global Environmental Strategies (IGES) to improve the quality of geoscience instruction for pre-service, middle, and high school teachers. ESSEA increases teachers' access to quality materials, standards-based instructional methods and content knowledge. With additional support from NASA, the ESSEA program is being enhanced to reflect emphasis on the International Polar Year. From 1999-2005 the ESSEA program was based on a trio of online courses (for elementary, middle, and high school teachers), the courses have been used by 40 faculty at 20 institutions educating over 1,700 teachers in Earth system science. Program evaluation of original course participants indicated that the courses had significant impact on teachers Earth system content knowledge and beliefs about teaching and learning. Seventeen of the original participating institutions have continued to use the courses and many have developed new programs that incorporate the courses in Earth science education opportunities for teachers. Today the ESSEA program lists nearly 40 colleges and universities as participants. With NASA support, the K-4 course and modules have been revised to include topics and resources focusing on the International Polar Year. Additional modules examining the changes in black carbon, ice sheets and permafrost have been added for middle and high school levels. The new modules incorporate geoscience data and analysis tools into classroom instruction. By exploring IPY related topics and data, participating teachers and their students will develop new understandings about the interactions and dependencies of the Earth spheres and our polar regions. Changes in climate, air, water, and land quality and animal and plant populations make the news everyday. The ESSEA IPY modules will help teachers inform rather than frighten their students as they learn

  19. "Earth, Sun and Moon": Computer Assisted Instruction in Secondary School Science--Achievement and Attitudes

    ERIC Educational Resources Information Center

    Ercan, Orhan; Bilen, Kadir; Ural, Evrim

    2016-01-01

    This study investigated the impact of a web-based teaching method on students' academic achievement and attitudes in the elementary education fifth grade Science and Technology unit, "System of Earth, Sun and Moon". The study was a quasi-experimental study with experimental and control groups comprising 54 fifth grade students attending…

  20. Earth system science: A program for global change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.

  1. Toward an Essential Ethic for Teaching Science in the New Millennium.

    ERIC Educational Resources Information Center

    Hays, Irene de la Bretonne

    The purpose of this study was to identify and explore values and views that might underlie an essential ethic for teaching science in the new millennium. With such an ethic, teachers may be better able to prepare young people to form and fully participate in communities that restore and sustain Earth. Reviewed in the literature for this study were…

  2. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R.; Botti, J.

    2002-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  3. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R. J.; Botti, J. A.

    2001-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  4. The ongoing educational anomaly of earth science placement

    USGS Publications Warehouse

    Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.

    2003-01-01

    The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.

  5. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-115)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics...) announces a meeting of the Applied Science Advisory Group. This Subcommittee reports to the Earth Science...

  6. Canadian Geoscience Education Network (CGEN): Fostering Excellence in Earth Science Education and Outreach

    NASA Astrophysics Data System (ADS)

    Haidl, F. M.; Vodden, C.; Bates, J. L.; Morgan, A. V.

    2009-05-01

    CGEN, the outreach arm of the Canadian Federation of Earth Sciences, is a network of more than 270 individuals from all over Canada who work to promote geoscience education and public awareness of science. CGEN's priorities are threefold: to improve the quality of Earth science education delivered in our primary and secondary schools; to raise public awareness about the Earth sciences and their impact on everyday life; and to encourage student interest in the Earth sciences as a career option. These priorities are supported by CGEN's six core programs: 1) The national EdGEO program (www.edgeo.org), initiated in the 1970s, supports Earth science workshops for teachers. These workshops, organized by teams of local educators and geoscientists, provide teachers with "enhanced knowledge, classroom resources and increased confidence" to more effectively teach Earth science. In 2008, a record 521 teachers attended 14 EdGEO workshops. 2) EarthNet (www.earthnet-geonet.ca) is a virtual resource centre that provides support for teachers and for geoscientists involved in education and outreach. In 2008, EarthNet received a $11,500 grant from Encana Corporation to develop energy-related content. 3) The new Careers in Earth Science website (www.earthsciencescanada.com/careers), launched in October 2008, enhances CGEN's capacity to encourage students to pursue a career in the Earth sciences. This project exemplifies the value of collaboration with other organizations. Seven groups provided financial support for the project and many other organizations and individuals contributed in-kind support. 4) Geoscape Canada and Waterscape Canada, programs led by the Geological Survey of Canada, communicate practical Earth science information to teachers, students, and other members of communities across Canada through a series of electronic and hard-copy posters and other resources. Many of the resources created from 1998 to 2007 are available online (www.geoscape.nrcan.gc.ca). A northern

  7. The Concept Currency of K-12 Science Textbooks Relative to Earth Science Concepts.

    ERIC Educational Resources Information Center

    Janke, Delmar Lester

    This study was undertaken to determine the degree of agreement between science textbooks and scholars in earth science relative to earth science concepts to be included in the K-12 science curriculum. The study consisted of two phases: (1) the identification of a sample of earth science concepts rated by earth scientists as important for inclusion…

  8. A pragmatic conception of science: Implications for science teaching

    NASA Astrophysics Data System (ADS)

    Sessoms, Deidre Bates

    In this dissertation, I examine various philosophical conceptions of the nature of science---its goals, methods and products---and link those views to how science is taught. While the review begins in the 1600s, the focus is primarily on logical positivism. The logical positivist view of science prevailed for much of the twentieth century and has greatly influenced how science is taught. The review section culminates with current conceptions of science from the fields of philosophy, sociology, feminist studies and radical studies of science. These various conceptions of the nature of science are linked to how science is currently taught, at the K--12 level and at the university. In particular, the logical positivist conception has influenced the teaching of science by emphasizing the products of science (factual knowledge and theories) over the processes of science (the social methods of knowledge production). As a result of viewing science as the logical positivists did, teachers primarily focus on science as unchanging factual knowledge, at the expense of examining the social and cultural aspects of scientific practices. I develop a pragmatic conception of the method of science as reflective thinking that we effectively use in our everyday lives. Linking that conception with the aims that John Dewey outlined for schools in a democratic society points the way towards certain goals and methods for teaching science. Therefore, I explore the type of science teaching that might result when viewing science as a pragmatic activity conducted in a democracy. Teaching of this sort would involve students in working together on shared problems that arise in the context of daily life. For science students at the university, this would include participating in and critiquing scientific research in active research laboratories. Implementing this view of science teaching might result in modifications in the practices and goals of science. Lastly, the experiences of a group of

  9. Resources and References for Earth Science Teachers

    ERIC Educational Resources Information Center

    Wall, Charles A.; Wall, Janet E.

    1976-01-01

    Listed are resources and references for earth science teachers including doctoral research, new textbooks, and professional literature in astronomy, space science, earth science, geology, meteorology, and oceanography. (SL)

  10. Competencies in Science Teaching

    ERIC Educational Resources Information Center

    Mathelitsch, Leopold

    2013-01-01

    The role of competencies is discussed with respect to science teaching. In particular, competence models from Germany, Switzerland and Austria are presented and compared. A special topical program, "Competencies in Mathematics and Science Teaching", was started in Austria three years ago. Initial experiences with this program are…

  11. The ESWN network as a platform to increase international collaboration between women in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Braker, Gesche; Wang, Yiming; Glessmer, Mirjam; Kirchgaessner, Amelie

    2014-05-01

    The Earth Science Women's Network (ESWN; ESWNonline.org) is an international peer-mentoring network of women in the Earth Sciences, many in the early stages of their careers. ESWN's mission is to promote career development, build community, provide opportunities for informal mentoring and support, and facilitate professional collaborations. This has been accomplished via email and a listserv, on Facebook, at in-person networking events, and at professional development workshops. In an effort to facilitate international connections among women in the Earth Sciences, ESWN has developed a password protected community webpage supported by AGU and a National Science Foundation ADVANCE grant where members can create an online presence and interact with each other. For example, groups help women to connect with co-workers or center around a vast array of topics ranging from research interests, funding opportunities, work-life balance, teaching, scientific methods, and searching for a job to specific challenges faced by women in the earth sciences. Members can search past discussions and share documents like examples of research statements, useful interview materials, or model recommendation letters. Over the last 10 years, ESWN has grown by word of mouth to include more than 1600 members working on all 7 continents. ESWN also offers professional development workshops at major geologic conferences around the world and at ESWN-hosted workshops mostly exclusively throughout the United States. In 2014, ESWN offers a two day international workshop on communication and networking skills and career development. Women working in all disciplines of Earth Sciences from later PhD level up to junior professors in Europe are invited to the workshop that will be held in Kiel, Germany. The workshop offers participants an individual personality assessment and aims at providing participants with improved communication and networking skills. The second focus will be to teach them how to

  12. Earth Science Missions Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Marius, Julio L.

    2009-01-01

    This presentation gives a general overlook of the engineering efforts that are necessary to meet science mission requirement especially for Earth Science missions. It provides brief overlook of NASA's current missions and future Earth Science missions and the engineering challenges to meet some of the specific science objectives. It also provides, if time permits, a brief summary of two significant weather and climate phenomena in the Southern Hemisphere: El Nino and La Nina, as well as the Ozone depletion over Antarctica that will be of interest to IEEE intercom 2009 conference audience.

  13. Layers: Places in Peril, An Art and Earth Science Exploration

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Waller, J. L.

    2013-12-01

    As an Earth scientist (former U.W. Geography/Geology Professor-now Director of the Education Program at The American Meteorological Society) and a painter (Professor of Art, University of Wisconsin - Fox Valley), we have together twenty years of collaborative teaching and scholarly work. We have produced an exhibition of paintings and accompanying explanatory essays focusing on layers, a nexus of our two disciplines. Our traveling exhibition, entitled Layers: Places in Peril, highlights natural and human caused threats to selected beloved and treasured cities and areas. The Earth and its atmosphere are composed of layers, paintings are often layered and the built environment is often constructed in layers. We feel that this notion of overlapping and interleaving strata gives texture to reality. This realization and acknowledgement is something we wish to share with those who design or study the built environment. This reality also provides an important opportunity to convey the reality of hazards to a new and important audience. In this session, we will first describe our professional history of collaboration and then feature Layers as a culmination of our collaborative teaching and professional work. Through the success of our first two showings of our Layers exhibition of large paintings and Earth science text panels (at the Aylward Gallery at the University of Wisconsin, Fox Valley in 2012, followed in 2013 at the Indiana University of Pennsylvania Museum) and, most recently, through our participation at the National Academy of Sciences 'DASER on Disasters' event at the Keck Center in Washington D.C., we witnessed the essential educational power of this type of collaborative activity. To conclude our presentation, we will lead a brief conversation about strategy and practice that illustrates how engaged colleagues can flourish across disciplines and institutions. The result will hopefully inspire those who study, teach, shape, build and care about future

  14. Pre-Teacher Case Study Analysis of Teaching Life and Earth Science in Multicultural Middle School Classes.

    ERIC Educational Resources Information Center

    McGinnis, J. Randy

    Intending teachers in two science education methods classes (Fall Quarter, n=27; Spring Quarter, n=21) read and discussed a qualitative study describing science teaching and learning in a culturally diverse middle school. The two primary participants in the qualitative study were a white female veteran life science teacher and a white male…

  15. Integrating Authentic Earth Science Data in Online Visualization Tools and Social Media Networking to Promote Earth Science Education

    NASA Astrophysics Data System (ADS)

    Carter, B. L.; Campbell, B.; Chambers, L.; Davis, A.; Riebeek, H.; Ward, K.

    2008-12-01

    The Goddard Space Flight Center (GSFC) is one of the largest Earth Science research-based institutions in the nation. Along with the research comes a dedicated group of people who are tasked with developing Earth science research-based education and public outreach materials to reach the broadest possible range of audiences. The GSFC Earth science education community makes use of a wide variety of platforms in order to reach their goals of communicating science. These platforms include using social media networking such as Twitter and Facebook, as well as geo-spatial tools such as MY NASA DATA, NASA World Wind, NEO, and Google Earth. Using a wide variety of platforms serves the dual purposes of promoting NASA Earth Science research and making authentic data available to educational communities that otherwise might not otherwise be granted access. Making data available to education communities promotes scientific literacy through the investigation of scientific phenomena using the same data that is used by the scientific community. Data from several NASA missions will be used to demonstrate the ways in which Earth science data are made available for the education community.

  16. Earth Science

    NASA Image and Video Library

    1996-01-31

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft embarks on a journey that will culminate in a close encounter with an asteroid. The launch of NEAR inaugurates NASA's irnovative Discovery program of small-scale planetary missions with rapid, lower-cost development cycles and focused science objectives. NEAR will rendezvous in 1999 with the asteroid 433 Eros to begin the first long-term, close-up look at an asteroid's surface composition and physical properties. NEAR's science payload includes an x-ray/gamma ray spectrometer, an near-infrared spectrograph, a laser rangefinder, a magnetometer, a radio science experiment and a multi-spectral imager.

  17. Earth Systems Science: An Analytic Framework

    ERIC Educational Resources Information Center

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  18. Presenting the 'Big Ideas' of Science: Earth Science Examples.

    ERIC Educational Resources Information Center

    King, Chris

    2001-01-01

    Details an 'explanatory Earth story' on plate tectonics to show how such a 'story' can be developed in an earth science context. Presents five other stories in outline form. Explains the use of these stories as vehicles to present the big ideas of science. (DDR)

  19. RITES: Online (Reaching In-service Teachers with Earth Sciences Online)

    NASA Astrophysics Data System (ADS)

    Baptiste, H.

    2003-12-01

    The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believed that the power of technology could not be effectively utilized unless it was grounded in new models of teaching and learning based on a student centered and project based curriculum, that increased opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believed the aforementioned ideas and points to be equally true for the teacher candidates and inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses were delivered by distance learning via the university WebCt distance education system to teacher candidates (preservice teachers) and inservice teachers. Teacher candidates and inservice teachers were encouraged to use technology when involving their students in science inquiry activities and to record their students' involvement in science activities with digital cameras. Teacher candidates and inservice teachers involve in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight teacher candidates and inservice teachers in the roles of designer, researcher, and collaborator. Examples of student works will also be a part of the Power point presentation. As a result of our courses our teachers have attained the following positive outcomes: 1) Teacher candidates and

  20. The Teach for America RockCorps, Year 2: Using Authentic Research Experiences in Geophysics for STEM Teachers to Inspire Earth Science-Themed Lessons in High School Classrooms

    NASA Astrophysics Data System (ADS)

    Parsons, B.; Kassimu, R.; Borjas, C. N.; Griffith, W. A.

    2016-12-01

    Brooke Parsons1, Rahmatu Kassimu2, Christopher Borjas3, and W. Ashley Griffith31Uplift Hampton Preparatory High School, Dallas, TX, 75232 2H. Grady Spruce High School, Dallas, TX, 75217 3Department of Earth and Environmental Sciences, University of Texas Arlington, Arlington, TX, 76019 As Earth Science courses appear in fewer high school curricula, we seek to find creative ways to integrate Earth Science themes as contextual examples into other K-12 STEM courses in order to develop (A) Earth Science literacy, and (B) a pipeline of young talent into our field. This presentation details the efforts of the 2nd year Teach for America (TFA) Rock Corps, a five year NSF-sponsored partnership between TFA and the University of Texas at Arlington designed to provide STEM teachers with genuine research opportunities using components that can be extrapolated to develop dynamic Geophysics-themed lesson plans and materials for their classrooms. Two teachers were selected from the Dallas-Fort Worth region of TFA to participate in original research modeling off-fault damage that occurs during earthquakes in a lab setting using a Split-Hopkinson-Pressure Bar (SHPB). In particular, we simulate a coseismic transient stress perturbation in a fault damage zone by combining traditional SHPB with a traveling harmonic oscillator: Two striker bars attached by an elastic spring are launched with a gas gun allowing us to create the double stress pulse expected during an earthquake rupture. This research affords teachers inspiration to implement Geophysics-themed lesson plans for their courses, Physics/Pre-AP Physics and Chemistry. The physics course will adopt principles of seismic wave propagation to teach concepts of impulse, momentum, conservation of energy, harmonic motion, wave velocity, wave propagation, and real world applications of waves. The chemistry course will implement geochemistry themed techniques into applying the scientific method, density, isotopic composition, p

  1. Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities

    NASA Astrophysics Data System (ADS)

    Lohwasser, Karin

    Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the discourse characteristics that create learning opportunities in teachers' PLCs. To this end, this study examined how middle school science teachers in three PLCs addressed science-for-teaching, and to what effect. Insight into discourse about content knowledge for teaching in PLCs has implications for the analysis, interpretation, and support of teachers' professional discourse, their collaborative learning, and consequently their improvement of practice. This dissertation looked closely at the hybrid space between teachers' knowledge of students, of teaching, and of science, and how this space was explored in the discourse among teachers, and between teachers and science experts. At the center of the study were observations of three 2-day PLC cycles in which participants worked together to improve the way they taught their curriculum. Two of the PLC cycles were supported, in part, by a science expert who helped the teachers explore the science they needed for teaching. The third PLC worked without such support. The following overarching questions were explored in the three articles of this dissertation: (1) What kind of science knowledge did teachers discuss in preparation for teaching? (2) How did the teachers talk about content knowledge for science teaching, and to what effect for their teaching practice? (3) How did collaborating teachers' discursive accountabilities provide opportunities for furthering the teachers' content knowledge for science teaching? The teachers' discourse during the 2-day collaboration cycles was analyzed and interpreted based on a sociocultural framework that included concepts from the practice

  2. Perspectives on learning, learning to teach and teaching elementary science

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  3. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  4. The Teaching Processes of Prospective Science Teachers with Different Levels of Science-Teaching Self-Efficacy Belief

    ERIC Educational Resources Information Center

    Saka, Mehpare; Bayram, Hale; Kabapinar, Filiz

    2016-01-01

    The concept of self-efficacy, which is an important variable in the teaching process, and how it reflects on teaching have recently been the focus of attention. Therefore, this study deals with the relationship between the science-teaching self-efficacy beliefs of prospective science teachers and their teaching practices. It was conducted with…

  5. Teaching Science as Science Is Practiced: Opportunities and Limits for Enhancing Preservice Elementary Teachers' Self-Efficacy for Science and Science Teaching

    ERIC Educational Resources Information Center

    Avery, Leanne M.; Meyer, Daniel Z.

    2012-01-01

    Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed-methods study, we report the impacts of an inquiry-based science course on preservice elementary teachers' self-efficacy…

  6. Hands on the sun: Teaching SEC science through hands on inquiery and direct observation

    NASA Astrophysics Data System (ADS)

    Mayo, L.; Cline, T.; Lewis, E.

    2003-04-01

    Hands on the Sun is a model partnership between the NASA Sun Earth Connection Education Forum (SECEF), Coronado Instruments, Space Science Institute, NOAO/Kitt Peak, Flandrau Planetarium, Astronomical League, and professional astronomers. This joint venture uses experiential learning, provocative talks, and direct observation in both formal and informal education venues to teach participants (K-12 educators, amateur astronomers, and the general public) about the sun, its impact on the Earth, and the importance of understanding the sun-Earth system. The program consists of three days of workshops and activities including tours and observing sessions on Kitt Peak including the National Solar Observatory, planetarium shows, exhibits on space weather, and professional development workshops targeted primarily at Hispanic public school science teachers which are intended to provide hands on activities demonstrating solar and SEC science that can be integrated into the classroom science curriculum. This talk will describe the many facets of this program and discuss our plans for future events.

  7. Teaching Ethical Issues in Science.

    ERIC Educational Resources Information Center

    Levinson, Ralph

    This paper presents a study that investigates the teaching and learning aspects of controversial issues in science education. Teaching ethical issues is mandatory for science teachers in England; however, teachers may experience difficulties in exploring contemporary issues in science due to rapid and unpredictable changes. The study carries an…

  8. The Earth Science Education Unit's Professional Development Workshop on "The Carbon Question--Cycling, Releasing, Capturing" for Teachers of Key Stages 3 and 4

    ERIC Educational Resources Information Center

    King, Chris

    2014-01-01

    The revised National Curriculum for Science for key stages 3 and 4 (ages 11-16) in England provides the opportunity to develop a new coherent approach to teaching about the carbon cycle, the use of carbon as a fuel and the resulting issues. The Earth Science Education Unit (ESEU) intends to develop a new workshop to support the teaching of this…

  9. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  10. Using the Earth as an Effective Model for Integrating Space Science Into Education Outreach Programs

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Allen, J.; Galindo, C.; McKay, G.; Obot, V.; Reiff, P.

    2005-05-01

    Our methods of teaching Earth and space science as two disciplines do not represent the spirit of earlier scientists such as Aristotle, da Vinci, and Galileo. We need to re-evaluate these methods and take advantage of the excitement created in the general public over the recent space science exploration programs. The information that we are obtaining from both the Mars missions and Cassini-Huygens focuses on interpreting geomorphology, mineral compositions and gas identification based on Earth as a baseline for data evaluation. This type of evaluation is an extension of Hutton's 18th century principle of Uniformitarianism, the present is the key to the past, or Earth is the key for understanding extraterrestrial bodies. Geomorphological examples are volcanic activity, meteoritic impacts, and evidence of water altering surface features. The Hawaiian, or shield, type volcanoes are analogues for Olympus Mons and the other volcanoes on Mars. Other examples include comparing sand dunes on Earth with possible Martian dunes, known stream patterns on Earth with potential stream patterns on Mars, and even comparing meteoritic impact features on Mars, the Earth, Moon and Mercury. All of these comparisons have been developed into inquiry-based activities and are available through NASA publications. Each of these activities is easily adapted to emphasize either Earth science or space science or both. Beyond geomorphology, solar storms are an excellent topic for integrating Earth and space science. Solar storms are traditionally part of space science studies, but most students do not understand their effect on Earth or the intense effects they could have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include Earth's magnetosphere, which in turn, affect radio transmission and potentially climate. Like geomorphology courses, there are extensive NASA

  11. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  12. Investigating Omani Science Teachers' Attitudes towards Teaching Science: The Role of Gender and Teaching Experiences

    ERIC Educational Resources Information Center

    Ambusaidi, Abdullah; Al-Farei, Khalid

    2017-01-01

    A 30-item questionnaire was designed to determine Omani science teachers' attitudes toward teaching science and whether or not these attitudes differ according to gender and teaching experiences of teachers. The questionnaire items were divided into 3 domains: classroom preparation, managing hands-on science, and development appropriateness. The…

  13. Earth System Science Education for the 21st Century: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.; Wake, C.; Aron, J.

    2005-12-01

    Earth System Science Education for the 21st Century (ESSE 21) is a collaborative undergraduate/graduate Earth system science education program sponsored by NASA offering small grants to colleges and universities with special emphasis on including minority institutions to engage faculty and scientists in the development of Earth system science courses, curricula, degree programs and shared learning resources. The annual ESSE 21 meeting in Fairbanks in August, 2005 provided an opportunity for 70 undergraduate educators and scientists to share their best classroom learning resources through a series of short presentations, posters and skills workshops. This poster will highlight meeting results, advances in the development of ESS learning modules, and describe a community-led proposal to develop in the coming year a Design Guide for Undergraduate Earth system Science Education to be based upon the experience of the 63 NASA-supported ESSE teams over the past 15 years. As a living document on the Web, the Design Guide would utilize and share ESSE experiences that: - Advance understanding of the Earth as a system - Apply ESS to the Vision for Space Exploration - Create environments appropriate for teaching and learning ESS - Improve STEM literacy and broaden career paths - Transform institutional priorities and approaches to ESS - Embrace ESS within Minority Serving Institutions - Build collaborative interdisciplinary partnerships - Develop ESS learning resources and modules The Design Guide aims to be a synthesis of just how ESS has been and is being implemented in the college and university environment, listing items essential for undergraduate Earth system education that reflect the collective wisdom of the ESS education community. The Design Guide will focus the vision for ESS in the coming decades, define the challenges, and explore collaborative processes that utilize the next generation of information and communication technology.

  14. Grid Computing for Earth Science

    NASA Astrophysics Data System (ADS)

    Renard, Philippe; Badoux, Vincent; Petitdidier, Monique; Cossu, Roberto

    2009-04-01

    The fundamental challenges facing humankind at the beginning of the 21st century require an effective response to the massive changes that are putting increasing pressure on the environment and society. The worldwide Earth science community, with its mosaic of disciplines and players (academia, industry, national surveys, international organizations, and so forth), provides a scientific basis for addressing issues such as the development of new energy resources; a secure water supply; safe storage of nuclear waste; the analysis, modeling, and mitigation of climate changes; and the assessment of natural and industrial risks. In addition, the Earth science community provides short- and medium-term prediction of weather and natural hazards in real time, and model simulations of a host of phenomena relating to the Earth and its space environment. These capabilities require that the Earth science community utilize, both in real and remote time, massive amounts of data, which are usually distributed among many different organizations and data centers.

  15. Towards a Science of Science Teaching

    ERIC Educational Resources Information Center

    Yates, Carolyn

    2009-01-01

    This article is a contribution to the search for evidence-based models of learning to improve science education. The author believes that modern teachers should look to the sciences of cognitive psychology and neuroscience to build a science of science teaching. Understanding the relationships between learning and the brain's structure and…

  16. Sense of Place in the Practice and Assessment of Place-Based Science Teaching

    ERIC Educational Resources Information Center

    Semken, Steven; Freeman, Carol Butler

    2008-01-01

    We teach earth, ecological, and environmental sciences in and about "places" imbued with meaning by human experience. Scientific understanding is but one of the many types of meanings that can accrue to a given place. People develop emotional attachments to meaningful places. The "sense of place," encompassing the meanings and…

  17. Earthspace: A National Clearinghouse For Higher Education In Space And Earth Sciences

    NASA Astrophysics Data System (ADS)

    CoBabe-Ammann, Emily; Shipp, S.; Dalton, H.

    2012-10-01

    The EarthSpace is a searchable database of undergraduate classroom materials for undergraduate faculty teaching earth and space sciences at both the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, EarthSpace was designed for easy submission of classroom assets - from homeworks and computerinteractives to laboratories and demonstrations. All materials are reviewedbefore posting, and authors adhere to the Creative Commons Non-Commercial Attribution (CC-BY NC 3.0). If authors wish, their EarthSpace materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities(e.g., Connexions). As new electronic repositories come online, EarthSpace materials will automatically be sent. So faculty submit their materials only once and EarthSpace ensures continual distribution as time goes on and new opportunities arise. In addition to classroom materials, EarthSpace provides news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education. http://www.lpi.usra.edu/earthspace

  18. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    ERIC Educational Resources Information Center

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  19. Earth System Science Education in a General Education Context: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Herring, J. A.

    2004-12-01

    The teaching of Earth System Science (ESS) to non-science majors is examined in a large lecture format class at a state university and in small classes with a significant research component at a liberal arts college. Quantitative and qualitative evaluations of both approaches reveal some of the challenges educators face as they work to advance students' integrated understanding of the Earth system. Student learning on selected concepts in the large lecture format class was poorly or negatively correlated with the amount of class time spent on the topic, even when the time was spent in teacher-student dialogue or in cooperative learning activities. The small class format emphasized student participation in research, which was found to be particularly effective when the class operated as a three-week intensive block and student use of computer models to simulate the dynamics of complex systems, which was found to be more effective when the class was held in a ten-week quarter. This study provides some clarification as to the utility of specific pedagogical frameworks (such as constructivism and experiential education) in the teaching of ESS to a general education audience and emphasizes the importance of carefully defining educational goals (both cognitive and affective) as a part of the curriculum design.

  20. Graduate Student and High School Teacher Partnerships Implementing Inquiry-Based Lessons in Earth Science

    NASA Astrophysics Data System (ADS)

    Smith, M. A.; Preston, L.; Graham, K.

    2007-12-01

    Partnering science graduate students with high school teachers in their classroom is a mutually beneficial relationship. Graduate students who may become future university level faculty are exposed to teaching, classroom management, outreach scholarship, and managing time between teaching and research. Teachers benefit by having ready access to knowledgeable scientists, a link to university resources, and an additional adult in the classroom. Partnerships in Research Opportunities to Benefit Education (PROBE), a recent NSF funded GK-12 initiative, formed partnerships between science and math graduate students from the University of New Hampshire (UNH) and local high school science teachers. A primary goal of this program was to promote inquiry-based science lessons. The teacher-graduate student teams worked together approximately twenty hours per week on researching, preparing, and implementing new lessons and supervising student-led projects. Several new inquiry-based activities in Geology and Astronomy were developed as a result of collaboration between an Earth Science graduate student and high school teacher. For example, a "fishbowl" activity was very successful in sparking a classroom discussion about how minerals are used in industrial materials. The class then went on to research how to make their own paint using minerals. This activity provided a capstone project at the end of the unit about minerals, and made real world connections to the subject. A more involved geology lesson was developed focusing on the currently popular interest in forensics. Students were assigned with researching how geology can play an important part in solving a crime. When they understood the role of geologic concepts within the scope of the forensic world, they used techniques to solve their own "crime". Astronomy students were responsible for hosting and teaching middle school students about constellations, using a star- finder, and operating an interactive planetarium

  1. Collaboration between research scientists and educators in implementation of a Masters program for training new Earth Science teachers in New York State

    NASA Astrophysics Data System (ADS)

    Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.

    2012-12-01

    Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong

  2. Earth Science Data Grid System

    NASA Astrophysics Data System (ADS)

    Chi, Y.; Yang, R.; Kafatos, M.

    2004-05-01

    The Earth Science Data Grid System (ESDGS) is a software system in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We also develop the earth science application metadata; geospatial, temporal, and content-based indexing; and some other tools. In this paper, we will describe software architecture and components of the data grid system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.

  3. The 2009 Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Budd, D. A.; Campbell, K. M.; Conklin, M. H.; Kappel, E. S.; Ladue, N.; Lewis, G.; Raynolds, R.; Ridky, R. W.; Ross, R. M.; Taber, J.; Tewksbury, B. J.; Tuddenham, P.

    2009-12-01

    In 2009, the NSF-funded Earth Science Literacy Initiative (ESLI) completed and published a document representing a community consensus about what all Americans should understand about Earth sciences. These Earth Science Literacy Principles, presented as a printed brochure and on the Internet at www.earthscienceliteracy.org, were created through the work of nearly 1000 geoscientists and geoeducators who helped identify nine “big ideas” and seventy-five “supporting concepts” fundamental to terrestrial geosciences. The content scope involved the geosphere and land-based hydrosphere as addressed by the NSF-EAR program, including the fields of geobiology and low-temperature geochemistry, geomorphology and land-use dynamics, geophysics, hydrologic sciences, petrology and geochemistry, sedimentary geology and paleobiology, and tectonics. The ESLI Principles were designed to complement similar documents from the ocean, atmosphere, and climate research communities, with the long-term goal of combining these separate literacy documents into a single Earth System Science literacy framework. The aim of these principles is to educate the public, shape the future of geoscience education, and help guide the development of government policy related to Earth science. For example, K-12 textbooks are currently being written and museum exhibits constructed with these Principles in hand. NPR-funded educational videos are in the process of being made in alignment with the ESLP Principles. US House and Senate representatives on science and education committees have been made aware that the major geoscience organizations have endorsed such a document generated and supported by the community. Given the importance of Earth science in so many societally relevant topics such as climate change, energy and mineral resources, water availability, natural hazards, agriculture, and human impacts on the biosphere, efforts should be taken to ensure that this document is in a position to

  4. Pedagogy of Science Teaching Tests: Formative assessments of science teaching orientations

    NASA Astrophysics Data System (ADS)

    Cobern, William W.; Schuster, David; Adams, Betty; Skjold, Brandy Ann; Zeynep Muğaloğlu, Ebru; Bentz, Amy; Sparks, Kelly

    2014-09-01

    A critical aspect of teacher education is gaining pedagogical content knowledge of how to teach science for conceptual understanding. Given the time limitations of college methods courses, it is difficult to touch on more than a fraction of the science topics potentially taught across grades K-8, particularly in the context of relevant pedagogies. This research and development work centers on constructing a formative assessment resource to help expose pre-service teachers to a greater number of science topics within teaching episodes using various modes of instruction. To this end, 100 problem-based, science pedagogy assessment items were developed via expert group discussions and pilot testing. Each item contains a classroom vignette followed by response choices carefully crafted to include four basic pedagogies (didactic direct, active direct, guided inquiry, and open inquiry). The brief but numerous items allow a substantial increase in the number of science topics that pre-service students may consider. The intention is that students and teachers will be able to share and discuss particular responses to individual items, or else record their responses to collections of items and thereby create a snapshot profile of their teaching orientations. Subsets of items were piloted with students in pre-service science methods courses, and the quantitative results of student responses were spread sufficiently to suggest that the items can be effective for their intended purpose.

  5. MAESTRO: Mathematics and Earth Science Teachers' Resource Organization

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.

    2013-12-01

    The Mathematics and Earth Science Teachers' Resource Organization (MAESTRO) partnership between James Madison University and Harrisonburg City and Page County Public Schools, funded through NSF-GEO. The partnership aims to transform mathematics and Earth science instruction in middle and high schools by developing an integrated mathematics and Earth systems science approach to instruction. This curricular integration is intended to enhance the mathematical skills and confidence of students through concrete, Earth systems-based examples, while increasing the relevance and rigor of Earth science instruction via quantification and mathematical modeling of Earth system phenomena. MAESTRO draws heavily from the Earth Science Literacy Initiative (2009) and is informed by criterion-level standardized test performance data in both mathematics and Earth science. The project has involved two summer professional development workshops, academic year Lesson Study (structured teacher observation and reflection), and will incorporate site-based case studies with direct student involvement. Participating teachers include Grade 6 Science and Mathematics teachers, and Grade 9 Earth Science and Algebra teachers. It is anticipated that the proposed integration across grade bands will first strengthen students' interests in mathematics and science (a problem in middle school) and subsequently reinforce the relevance of mathematics and other sciences (a problem in high school), both in support of Earth systems literacy. MAESTRO's approach to the integration of math and science focuses on using box models to emphasize the interconnections among the geo-, atmo-, bio-, and hydrospheres, and demonstrates the positive and negative feedback processes that connect their mutual evolution. Within this framework we explore specific relationships that can be described both qualitatively and mathematically, using mathematical operations appropriate for each grade level. Site-based case studies

  6. Changes in Preservice Elementary Teachers' Personal Science Teaching Efficacy and Science Teaching Outcome Expectancies: The Influence of Context

    ERIC Educational Resources Information Center

    Hechter, Richard P.

    2011-01-01

    This study investigated contextual changes in perceptions of science teaching self-efficacy through pre-, post- and retrospective administrations of the Science Teaching Expectancy Belief Instrument (STEBI-B) among preservice elementary teachers when exposed to a science teaching methods course. Findings revealed that the number of postsecondary…

  7. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  8. Earthquake!: An Event-Based Science Module. Teacher's Guide. Earth Science Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school earth science teachers to help their students learn about earthquakes and scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…

  9. Deriving Earth Science Data Analytics Requirements

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  10. Story-telling, Earth-Sciences and Geoethics

    NASA Astrophysics Data System (ADS)

    Bohle, Martin; Sibilla, Anna; Graells, Robert Casals i.

    2015-04-01

    People are engineers, even the artist. People like stories, even the engineers. Engineering shapes the intersections of humans and their environments including with the geosphere. Geoethics considers values upon which to base practices how to intersect the geosphere. Story-telling is a skilful human practice to describe perception of values in different contexts to influence their application. Traditional earth-centric narrations of rural communities have been lost in the global urbanisation process. These former-time narrations related to the "sacrum" - matters not possible to be explained with reasoning. Science and technology, industrialisation and global urbanisation require an other kind of earth-centric story-telling. Now at the fringe of the Anthropocene, humans can base their earth-centricity on knowledge and scientific thinking. We argue that modern story-telling about the functioning of Earth's systems and the impact of humankind's activities on these systems is needed, also in particular because citizens rarely can notice how the geosphere intersects with their daily dealings; putting weather and disasters aside. Modern earth-centric story-telling would offer citizens opportunities to develop informed position towards humankind's place within earth-systems. We argue that such "earth-science story-lines" should be part of the public discourse to engage citizens who have more or less "expert-knowledge". Understanding the functioning of the Earth is needed for economy and values suitable for an anthropophil society. Multi-faceted discussion of anthropogenic global change and geoengineering took off recently; emerging from discussions about weather and hazard mitigation. Going beyond that example; we illustrate opportunities for rich story-telling on intersections of humans' activities and the geosphere. These 'modern narrations' can weave science, demographics, linguistics and cultural histories into earth-centric stories around daily dealings of citizens

  11. Teaching Monte Carlo Strategies for Earth System Modelling using a Guided Group-Learning Approach in the Classroom

    NASA Astrophysics Data System (ADS)

    Wagener, T.; Pianosi, F.; Woods, R. A.

    2016-12-01

    The need for quantifying uncertainty in earth system modelling has now been well established on both scientific and policy-making grounds. There is an urgent need to bring the skills and tools needed for doing so into practice. However, such topics are currently largely constrained to specialist graduate courses or to short courses for PhD students. Teaching the advanced skills needed for implementing and for using uncertainty analysis is difficult because students feel that it is inaccessible and it can be boring if presented using frontal teaching in the classroom. While we have made significant advancement in sharing teaching material, sometimes even including teaching notes (Wagener et al., 2012, Hydrology and Earth System Sciences), there is great need for understanding how we can bring such advanced topics into the undergraduate (and even graduate) curriculum in an effective manner. We present the results of our efforts to teach Matlab-based tools for uncertainty quantification in earth system modelling in a civil engineering undergraduate course. We use the example of teaching Monte Carlo strategies, the basis for the most widely used uncertainty quantification approaches, through the use of guided group-learning activities in the classroom. We utilize a three-step approach: [1] basic introduction to the problem, [2] guided group-learning to develop a possible solution, [3] comparison of possible solutions with state-of-the-art algorithms across groups. Our initial testing in an undergraduate course suggests that (i) overall students find a group-learning approach more engaging, (ii) that different students take charge of advancing the discussion at different stages or for different problems, and (iii) that making appropriate suggestions (facilitator) to guide the discussion keeps the speed of advancement sufficiently high. We present the approach, our initial results and suggest how a wider course on earth system modelling could be formulated in this manner.

  12. Earth System Science: Problem-based Learning Courses for Teachers Through ESSEA

    NASA Astrophysics Data System (ADS)

    Close, E.; Witiw, M. R.

    2007-12-01

    One method that has proven effective in the study of Earth system science is to use a problem-based and event- centered course organization. In such a course, different events that occur in the Earth system are examined and how each event influences subsequent events in each of Earth's spheres (the atmosphere, hydrosphere, biosphere and lithosphere) is studied. A course is composed of several problem-based modules, where each module is centered about a particular event or issue that is important to the Earth system. The Institute for Global Environmental Strategies (IGES) was recently awarded a grant by the National Science Foundation's Geo-Teach program to develop and implement courses for teachers in Earth system science. Through the Earth System Science Education Alliance (ESSEA), IGES subsequently made awards to a group of 24 universities. Under the ESSEA program, problem-based modules are being developed for courses for middle school and high school teachers. In a typical university schedule, each module is designed to last three weeks and includes both group work and individual assignments. In the first week ("Teacher as Problem Solver"), participants explore their own ideas concerning the event and exchange their ideas with other members of their group. In the second week ("Teacher as Scholar"), participants research the issue and become more familiar with the event and the sphere-to-sphere interactions that occur. In the last week ("Teacher as Designer"), each participant develops a lesson plan for his or her own classroom. Current ESSEA modules cover topics such as volcanoes, Brazilian deforestation, Antarctic ice sheets, coral reefs, and stratospheric ozone depletion. Many new modules are under development with topics that range from plate tectonics and tsunamis to agriculture and sustainable water systems. Seattle Pacific University, in cooperation with Seattle Public Schools, was recently awarded a three-year grant by IGES to provide Earth system

  13. Quality Teaching in Science: an Emergent Conceptual Framework

    NASA Astrophysics Data System (ADS)

    Jordens, J. Zoe; Zepke, Nick

    2017-09-01

    Achieving quality in higher education is a complex task involving the interrelationship of many factors. The influence of the teacher is well established and has led to some general principles of good teaching. However, less is known about the extent that specific disciplines influence quality teaching. The purposes of the paper are to investigate how quality teaching is perceived in the sciences and from these perceptions to develop for discussion a framework for teaching practice in the sciences. A New Zealand study explored the views of national teaching excellence award winners in science on quality teaching in undergraduate science. To capture all possible views from this expert panel, a dissensus-recognising Delphi method was used together with sensitising concepts based on complexity and wickedity. The emergent conceptual framework for quality teaching in undergraduate science highlighted areas of consensus and areas where there were a variety of views. About the purposes of science and its knowledge base, there was relative consensus, but there was more variable support for values underpinning science teaching. This highlighted the complex nature of quality teaching in science. The findings suggest that, in addition to general and discipline-specific influences, individual teacher values contribute to an understanding of quality in undergraduate science teaching.

  14. NewsMars: Express journey to Mars ASE 2003: Knocked out by meteorites Events: Sun-Earth Day ASE 2003: Fun Physics - popular as ever Appointments: Sykes to bring science to the people UK Science Education: The future's bright, the future's science ASE 2003: A grand finale for Catherine Teaching Resources: UK goes to the planets Cambridge Physics Update: Basement physics Conferences: Earth Science Teachers' Association Conference 2003 New Website: JESEI sets sail GIREP: Teacher education seminar Malaysia: Rewards for curriculum change Cambridge Physics Update: My boomerang will come back! Teaching Resources: Widening particiption through ideas and evidence with the University of Surrey Wales: First Ffiseg Events: Nuna: Solar car on tour Physics on Stage: Physics on Stage 3 embraces life Symposium: In what sense a nuclear 'debate'? Gifted and Talented: Able pupils experiencing challenging science Australia: ISS flies high Down Under

    NASA Astrophysics Data System (ADS)

    2003-03-01

    Mars: Express journey to Mars ASE 2003: Knocked out by meteorites Events: Sun-Earth Day ASE 2003: Fun Physics - popular as ever Appointments: Sykes to bring science to the people UK Science Education: The future's bright, the future's science ASE 2003: A grand finale for Catherine Teaching Resources: UK goes to the planets Cambridge Physics Update: Basement physics Conferences: Earth Science Teachers' Association Conference 2003 New Website: JESEI sets sail GIREP: Teacher education seminar Malaysia: Rewards for curriculum change Cambridge Physics Update: My boomerang will come back! Teaching Resources: Widening particiption through ideas and evidence with the University of Surrey Wales: First Ffiseg Events: Nuna: Solar car on tour Physics on Stage: Physics on Stage 3 embraces life Symposium: In what sense a nuclear 'debate'? Gifted and Talented: Able pupils experiencing challenging science Australia: ISS flies high Down Under

  15. The CLEAN Workshop Series: Promoting Effective Pedagogy for Teaching Undergraduate Climate Science

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.; Bruckner, M. Z.; Manduca, C. A.; Buhr, S. M.

    2012-12-01

    To prepare students to understand a changing climate, it is imperative that we equip educators with the best possible tools and methods for reaching their audience. As part of the Climate Literacy and Energy Awareness Network (CLEAN) professional development efforts, two workshops for undergraduate faculty were held in 2012. These workshops used a variety of activities to help faculty learn about recent climate research, take part in demonstrations of successful activities for teaching climate topics, and collaborate to create new teaching materials. The workshops also facilitated professional networking among participants. Both workshops were held online, eliminating the need for travel, encouraging participants without travel funds to attend, and allowing international collaborations and presentations. To create an authentic experience, the workshop used several technologies such as the Blackboard Collaborate web conferencing platform, SERC's web-based collaboration tools and online discussion threads, and conference calls. The workshop Communicating Climate Science in the Classroom, held in April 2012, explored practices for communicating climate science and policy in the classroom and provided strategies to improve student understanding of this complex and sensitive topic. Workshop presentations featured public opinion research on Americans' perceptions of climate change, tactics for identifying and resolving student misconceptions, and methods to address various "backfire effects" that can result from attempts to correct misinformation. Demonstrations of teaching approaches included a role-playing simulation of emissions negotiations, Princeton's climate stabilization wedges game, and an activity that allows students to use scientific principles to tackle misinformation. The workshop Teaching Climate Complexity was held in May 2012. Teaching the complexities of climate science requires an understanding of many facets of the Earth system and a robust pedagogic

  16. Utah's Mobile Earth Science Outreach Vehicle

    NASA Astrophysics Data System (ADS)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  17. NASA's Earth Science Enterprise: 1998 Education Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The goals of the Earth Science Enterprise (ESE) are to expand the scientific knowledge of the Earth system; to widely disseminate the results of the expanded knowledge; and to enable the productive use of this knowledge. This catalog provides information about the Earth Science education programs and the resources available for elementary through university levels.

  18. Sun-Earth Day - Teaching Heliophysics Through Education Technology

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Cline, T.; Lewis, E.

    2010-01-01

    Sun-Earth Day (SED) is an Education and Outreach program supported by the U.S, National Aeronautics and Space Administration (NASA). The intent of the program is to teach students and the general public about Heliophysics (the science of the study of the Sun, how it varies, and how solar dynamics affect the rest of the solar system, especially the Earth). The program was begun ten years ago. Each year since that time a particular day has been designated as "Sun-Earth Day ,,. Usually the day of the spring equinox (March 20 or 21) is Sun-Earth Day, but other days have been used as well. Each year a theme is chosen relating to Heliophysics and events reflecting that theme are planned not only for Sun-Earth Day, but for the entire year. From the very beginning educational technology was emphasized in the events in order to effectively reach wide audiences with the SED message. The main approach has been to have a "webcast" related to each year's theme, often from a location that supports the theme as well. For example, a webcast took place from the Mayan pyramids at Chichen Itza, Mexico to highlight the theme of "Ancient Observatories, Timeless Knowledge". Webcasts were not the only technology employed, however. Many of the themes centered on the dynamic nature of the Sun and the effects that solar storms can have on interplanetary space and in our day-to-day life on Earth. Activities for tracking when solar storms happen and how they affect the Earth were developed and brought together in an educational package called Space Weather Action Centers. This project is explained in more detail in another presentation in this session being given by Norma Teresinha Oliveira Reis. Recent Sun-Earth Days have utilized "social networking" technologies to reach widespread groups on the internet. Podcasts, Vodcasts, Facebook, Twitter, and Second Life are the types of network technologies being employed now. The NASA Distance learning Network is another method for bringing Sun-Earth

  19. How Often Do Early Childhood Teachers Teach Science Concepts? Determinants of the Frequency of Science Teaching in Kindergarten

    ERIC Educational Resources Information Center

    Saçkes, Mesut

    2014-01-01

    The purpose of the present study was to explore how often teachers of young children teach science concepts in kindergarten and examine the factors that influence the frequency of science teaching in early years. A theoretical model of the determinants of the frequency of science teaching in kindergarten was developed and tested using a…

  20. Influencing Intended Teaching Practice: Exploring pre-service teachers' perceptions of science teaching resources

    NASA Astrophysics Data System (ADS)

    Cooper, Grant; Kenny, John; Fraser, Sharon

    2012-08-01

    Many researchers have identified and expressed concern over the state of science education internationally, but primary teachers face particular obstacles when teaching science due to their poor science background and low confidence with science. Research has suggested that exemplary resources, or units that work, may be an effective way to support primary teachers. This study explores the effect of one such resource on the intentions of pre-service primary teachers to teach science. The resource in question is Primary Connections, a series of learning resources produced by the Australian Academy of Science specifically designed for primary science. Evaluative studies of Primary Connections have indicated its efficacy with practising primary teachers but there is little evidence of its impact upon pre-service teachers. The purpose of this study was to investigate how effective these quality teaching resources were in influencing the intentions of primary pre-service teachers to teach science after they graduated. The theory of planned behaviour highlighted the linkage between the intentions of the pre-service teachers to teach science, and their awareness of and experiences with using Primary Connections during their education studies. This enabled key factors to be identified which influenced the intentions of the pre-service teachers to use Primary Connections to teach science after they graduate. The study also provided evidence of how quality science teaching resources can be effectively embedded in a teacher education programme as a means of encouraging and supporting pre-service teachers to teach science.

  1. Teaching Science through Research.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Zidani, Saleem; Kurtam, Naji

    2003-01-01

    Discusses the objectives of the science curriculum and the teacher's responsibility of passing through not only the required material, but also skills. Suggests that in order to improve teaching and learning skills, new strategies, such as teaching and learning through research must be utilized. Presents four examples of teaching and learning…

  2. Does The Sun Rotate Around The Earth Or Does The Earth Rotate Around the Sun? An Important Key to Evaluating Science Education

    NASA Astrophysics Data System (ADS)

    Isobe, S.

    2006-08-01

    The Japan Spaceguard Association, Tokyo, Japan Sciences are continuously developing. This is a good situation for the sciences, but when one tries to teach scientific results, it is hard to decide which levels of science should be taught in schools. The point to evaluate is not only the quality of scientific accuracy, but also the method with which school students of different scientific abilities study scientific results. In astronomy, an important question, which is "Does the Sun rotate around the Earth or does the Earth rotate around the Sun?" can be used to evaluate student abilities. Scientifically, it is obvious that the latter choice is the better answer, but it is not so obvious for the lower-grade students and also for the lower-ability students even in the higher grades. If one sees daily the sky without scientific knowledge, one has an impression of "the Sun rotates around the Earth," and for his rest of his life he will not see any problem. If one wants to be a scientist, though, he should know that "the Earth rotates around the Sun" before reaching university level. If he will become a physical scientist, he should understand that it is not correct to say "the Earth rotates around the Sun," but he should know that the Earth rotates around the center of gravity of the solar system. A similar type of question is "has the Earth the shape of a sphere, or a pear, or a geoid?" There are many teachers with varying ranges of students who do not understand the proper level of science instruction. When students of lower capacity are instructed to understand concepts with the higher degrees of sophistication, they can easily lose their interest in the sciences. This happens in many countries, especially in Japan, where there are many different types of people with different jobs. We, as educators, should appreciate that the students can be interested in any given scientific idea, no matter what level of sophistication it is.

  3. Science in a Box. Magnets IV: Magnet Earth.

    ERIC Educational Resources Information Center

    Blizard, Elizabeth B.

    1992-01-01

    Presents low-cost learning activities to help teach elementary students about the earth's magnetic field. One project has students make a model of the earth's magnetic field. Another has them experiment with magnetism. (SM)

  4. Earth Sciences Requirements for the Information Sciences Experiment System

    NASA Technical Reports Server (NTRS)

    Bowker, David E. (Editor); Katzberg, Steve J. (Editor); Wilson, R. Gale (Editor)

    1990-01-01

    The purpose of the workshop was to further explore and define the earth sciences requirements for the Information Sciences Experiment System (ISES), a proposed onboard data processor with real-time communications capability intended to support the Earth Observing System (Eos). A review of representative Eos instrument types is given and a preliminary set of real-time data needs has been established. An executive summary is included.

  5. Understanding MSFC/Earth Science Office Within NASA

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2010-01-01

    This slide presentation reviews the role of the Marshal's Earth Science Office (ESO) and the relationship of the office to the NASA administration, the National Research Council and NASA's Science Directorate. The presentation also reviews the strategic goals for Earth Science, and briefly reviews the ESO's international partners that NASA is cooperating with.

  6. Earth Science Data Grid System

    NASA Astrophysics Data System (ADS)

    Chi, Y.; Yang, R.; Kafatos, M.

    2004-12-01

    The Earth Science Data Grid System (ESDGS) is a software in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We are also developing additional services of 1) metadata management, 2) geospatial, temporal, and content-based indexing, and 3) near/on site data processing, in response to the unique needs of Earth science applications. In this paper, we will describe the software architecture and components of the system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.

  7. Design Guide for Earth System Science Education: Common Student Learning Objectives and Special Pedagogical Approaches

    NASA Astrophysics Data System (ADS)

    Baker, D.

    2006-12-01

    As part of the NASA-supported undergraduate Earth System Science Education (ESSE) program, fifty-seven institutions have developed and implemented a wide range of Earth system science (ESS) courses, pedagogies, and evaluation tools. The Teaching, Learning, and Evaluation section of USRA's online ESSE Design Guide showcases these ESS learning environments. This Design Guide section also provides resources for faculty who wish to develop ESS courses. It addresses important course design issues including prior student knowledge and interests, student learning objectives, learning resources, pedagogical approaches, and assessments tied to student learning objectives. The ESSE Design Guide provides links to over 130 ESS course syllabi at introductory, senior, and graduate levels. ESS courses over the past 15 years exhibit common student learning objectives and unique pedagogical approaches. From analysis of ESS course syllabi, seven common student learning objectives emerged: 1) demonstrate systems thinking, 2) develop an ESS knowledge base, 3) apply ESS to the human dimension, 4) expand and apply analytical skills, 5) improve critical thinking skills, 6) build professional/career skills, and 7) acquire an enjoyment and appreciation for science. To meet these objectives, ESSE often requires different ways of teaching than in traditional scientific disciplines. This presentation will highlight some especially successful pedagogical approaches for creating positive and engaging ESS learning environments.

  8. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  9. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  10. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  11. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  12. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  13. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  14. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  15. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  16. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  17. Collegiality and Better Science Teaching

    ERIC Educational Resources Information Center

    Weiser, Brenda

    2012-01-01

    For the past five years, teachers from four Houston-area school districts have joined together in a professional learning community (PLC) to improve their science teaching. Through the University of Houston-Clear Lake (UHCL) Regional Collaborative for Excellence in Science and Mathematics Teaching, the teachers strengthen content knowledge and…

  18. Research on teaching and learning processes in Earth Sciences education, particularly centred on the awareness on natural risks and hazards

    NASA Astrophysics Data System (ADS)

    Occhipinti, Susanna

    2013-04-01

    This research, main subject of a PhD now in progress, aims to promote the teaching - learning of Earth Sciences in schools of all levels of educations, with the interesting opportunity to experience innovative and effective practices in our local contest, sharing them between all the teachers as a community of practice and all schools as an open laboratory. Based on experiences already acted in other branches of science, we have made a work notebook freely downloadable from the internet, containing an archive of teaching tools, kits, interactive lessons, easy or complex, common and new, developing contents in a vertical approach, which are now shared and used by nearly all the teachers of our Region. The most important is that each teacher, if request, is initially supported in the practices, then trained and, finally, able to carry out the activity on his own. All the materials and kits necessary for carrying out the various activities are freely available at the regional Science Centre and ready to be used, with clear instructions for the use. Traditional educational scientific instruments, trolleys and trays with all the necessary materials, but mostly models and kits, organised in structured paths, sometime a bit naive but highly effective and able to interest, intrigue and involve, are proposed to students of all ages, sometimes in a peer-to-peer exchange of knowledge. Topics are linked to the curricula of Earth Science, such as minerals and rocks, air and water, plate tectonics, volcanoes and Earthquakes, but a special attention has been paid to the topic of natural hazards and risks: dealing with natural hazard and risks, so common in our Country, requires that local communities, starting from schools, become more and more aware of the natural phenomena, beneficial or catastrophic as they are, but always making a direct impact on the quality of life. For example, students can experience how and why landslides and floods occur, by varying on hands-on models

  19. NASA'S Earth Science Data Stewardship Activities

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  20. Music Education and the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  1. Storytelling in Earth sciences: The eight basic plots

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2012-11-01

    Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.

  2. From learning science to teaching science: What transfers?

    NASA Astrophysics Data System (ADS)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  3. The Design and Use of Planetary Science Video Games to Teach Content while Enhancing Spatial Reasoning Skills

    NASA Astrophysics Data System (ADS)

    Ziffer, Julie; Nadirli, Orkhan; Rudnick, Benjamin; Pinkham, Sunny; Montgomery, Benjamin

    2016-10-01

    Traditional teaching of Planetary Science requires students to possess well developed spatial reasoning skills (SRS). Recent research has demonstrated that SRS, long known to be crucial to math and science success, can be improved among students who lack these skills (Sorby et al., 2009). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their abilities (Hill et al., 2010). To address SRS deficiencies, our team is developing video games that embed SRS training into Planetary Science content. Our first game, on Moon Phases, addresses the two primary challenges faced by students trying to understand the Sun-Earth-Moon system: 1) visualizing the system (specifically the difference between the Sun-Earth orbital plane and the Earth-Moon orbital plane) and 2) comprehending the relationship between time and the position-phase of the Moon. In our second video game, the student varies an asteroid's rotational speed, shape, and orientation to the light source while observing how these changes effect the resulting light curve. To correctly pair objects to their light curves, students use spatial reasoning skills to imagine how light scattering off a three dimensional rotating object is imaged on a sensor plane and is then reduced to a series of points on a light curve plot. These two games represent the first of our developing suite of high-interest video games designed to teach content while increasing the student's competence in spatial reasoning.

  4. Towards "open applied" Earth sciences

    NASA Astrophysics Data System (ADS)

    Ziegler, C. R.; Schildhauer, M.

    2014-12-01

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizations) that are focused on applied science have been slow to incorporate open practices across the spectrum of scientific activities, from data to decisions. Myriad benefits include transparency, reproducibility, efficiency (timeliness and cost savings), stakeholder engagement, direct linkages between research and environmental outcomes, reduction in bias and corruption, improved simulation of Earth systems and improved availability of science in general. We map out where and how open science can play a role, providing next steps, with specific emphasis on applied science efforts and processes such as environmental assessment, synthesis and systematic reviews, meta-analyses, decision support and emerging cyber technologies. Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the organizations for which they work and/or represent.

  5. Earth Science Misconceptions.

    ERIC Educational Resources Information Center

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  6. Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Qablan, Ahmad M.; DeBaz, Theodora

    2015-01-01

    Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…

  7. Smarter Earth Science Data System

    NASA Technical Reports Server (NTRS)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  8. Teaching Earth System Science Using Climate Educational Modules Based on NASA and NOAA Resources

    NASA Astrophysics Data System (ADS)

    Ramirez, P. C.; LaDochy, S.; Patzert, W. C.; Willis, J. K.

    2011-12-01

    The Earth System Science Education Alliance (ESSEA) recently developed a set of climate related educational modules to be used by K-12 teachers. These modules incorporate recent NASA and NOAA resources in Earth Science education. In the summer of 2011, these modules were tested by in-service teachers in courses held at several college campuses. At California State University, Los Angeles, we reviewed two climate modules: The Great Ocean Conveyer Belt and Abrupt Climate Change (http://essea.strategies.org/module.php?module_id=148) and Sulfur Dioxide: Its Role in Climate Change (http://essea.strategies.org/module.php?module_id=168). For each module, 4-6 teachers formed a cohort to complete assignments and unit assessments and to evaluate the effectiveness of the module for use in their classroom. Each module presented the teachers with a task that enabled them to research and better understand the science behind the climate related topic. For The Great Ocean Conveyer Belt, teachers are tasked with evaluating the impacts of the slowing or stopping of the thermohaline circulation on climate. In the same module teachers are charged with determining the possibilities of an abrupt climate shift during this century such as happened in the past. For the Sulfur Dioxide module teachers investigated the climate implications of the occurrence of several major volcanic eruptions within a short time period, as well as the feasibility of using sulfates to geoengineer climate change. In completing module assignments, teachers must list what they already know about the topic as well as formulate questions that still need to be addressed. Teachers then model the related interactions between spheres comprising the earth system (atmosphere-lithosphere, for example) to evaluate possible environmental impacts. Finally, teachers applied their research results to create lesson plans for their students. At a time when climate change and global warming are important topics in science

  9. Provocative Opinion: Fads in Science Teaching

    ERIC Educational Resources Information Center

    Parry, R. W.

    1975-01-01

    Criticizes the post-Sputnik wave of multi-disciplinary science curricula aimed at teaching the students about social problems and how science can help solve these problems. Suggests that science teaching should concentrate more on the basics of a given discipline and should be taught be specialists rather than generalists. (MLH)

  10. Teaching the Human Dimension of Science

    ERIC Educational Resources Information Center

    Farland-Smith, Donna; McComas, William

    2009-01-01

    Teachers have the important responsibility of providing students with accurate and engaging science content while also helping them establish authentic views of scientists. Though there are numerous curriculum materials to assist in the teaching of science content, the authors have found that methods and materials to teach science as a human…

  11. The effects of a professional development geoscience education institute upon secondary school science teachers in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Llerandi Roman, Pablo Antonio

    The geographic and geologic settings of Puerto Rico served as the context to develop a mixed methods investigation on: (1) the effects of a five-day long constructivist and field-based earth science education professional development institute upon 26 secondary school science teachers' earth science conceptual knowledge, perceptions of fieldwork, and beliefs about teaching earth science; and (2) the implementation of participants' newly acquired knowledge and experience in their science lessons at school. Qualitative data included questionnaires, semi-structured interviews, reflective journals, pre-post concept maps, and pre-post lesson plans. The Geoscience Concept Inventory and the Science Outdoor Learning Environment Inventory were translated into Spanish and culturally validated to collect quantitative data. Data was analyzed through a constructivist grounded theory methodology, descriptive statistics, and non-parametric methods. Participants came to the institute with serious deficiencies in earth science conceptual understanding, negative earth science teaching perspectives, and inadequate earth science teaching methodologies. The institute helped participants to improve their understanding of earth science concepts, content, and processes mostly related to the study of rocks, the Earth's structure, plate tectonics, maps, and the geology of Puerto Rico. Participants also improved their earth science teaching beliefs, perceptions on field-based education, and reflected on their environmental awareness and social responsibility. Participants greatly benefited from the field-based learning environment, inquiry-based teaching approaches modeled, the attention given to their affective domain, and reflections on their teaching practice as part of the institute's activities. The constructivist learning environment and the institute's contextualized and meaningful learning conceptual model were effective in generating interest and confidence in earth science teaching

  12. Our Mission to Planet Earth: A guide to teaching Earth system science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  13. The GeoBus project: a mobile Earth science outreach project for secondary schools in the UK

    NASA Astrophysics Data System (ADS)

    Robinson, R. A.; Roper, K. A.; Macfarlane, D.; Pike, C.

    2013-12-01

    GeoBus is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews. It is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (high) schools by providing teaching resources that are not readily available to educators, to inspire young learners by incorporating new science research outcomes in teaching activities, and to provide a bridge between industry, higher education institutions, research councils and schools. These linkages are important for introducing career opportunities in Earth sciences. Since its launch, GeoBus has visited over 140 different schools across the length and breadth of Scotland. Over 20,000 pupils will have been involved in practical hands-on Earth science learning activities by December 2013, including many in remote and disadvantaged regions. The resources that GeoBus brings to schools include all the materials and equipment needed to run workshops, field excursions and Enterprise Challenges. GeoBus provides 16 workshops which can be adapted for different learning levels. Workshops are 50 to 80 minute sessions for up to 30 pupils and topics include minerals, rocks, fossils, geological time, natural resources, climate change, volcanoes, earthquakes, and geological mapping. As with all GeoBus activities, the inclusion of equipment and technology otherwise unavailable to schools substantially increases the engagement of pupils in workshops. Field excursions are popular, as many teachers have little or no field trainng and feel unable to lead this type of activity. The excursions comprise half or full day sessions for up to 30 pupils and are tailored to cover the local geology or geomorphology. The Enterprise Challenges are half or full day sessions for up to 100 pupils. Current topics are Drilling for Oil, Renewable Energy, a Journey to Mars and Scotland

  14. NASA Earth Science Research and Applications Using UAVs

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.

    2003-01-01

    The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.

  15. A crisis in the NASA space and earth sciences programme

    NASA Technical Reports Server (NTRS)

    Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.

    1987-01-01

    Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.

  16. Peer Assessment of Elementary Science Teaching Skills

    ERIC Educational Resources Information Center

    Kilic, Gulsen Bagci; Cakan, Mehtap

    2007-01-01

    In this study, peer assessment was applied in assessing elementary science teaching skills. Preservice teachers taught a science topic as a team to their peers in an elementary science methods course. The peers participating in the science lesson assessed teacher-groups' elementary science teaching skills on an assessment form provided by the…

  17. The Interactive Virtual Earth Science Teaching (InVEST) project: preliminary results

    NASA Astrophysics Data System (ADS)

    Gallus, W.; Cervato, C.; Parham, T.; Larsen, M.; Cruz-Neira, C.; Boudreaux, H.

    2009-04-01

    The InVEST (Interactive Virtual Earth Science Teaching) project has as its goal the development of state-of-the-art virtual reality geoscience tools that can be used to correct student misunderstandings about some geoscience phenomena. One tool, originally developed several years ago, the virtual tornadic thunderstorm, was recently modified based on feedback from instructors given the opportunity to use the tool. The modified virtual storm will be demonstrated during the presentation. In addition, a virtual volcano application is currently under development. To steer the development of this application, a Volcanic Concept Survey was recently administered to over 600 students at six U.S. institutions with the goal of identifying areas of greatest misconception relating to volcanoes. Both mean and median scores on the instrument were exceptionally low, indicating that students generally possessed minimal understanding of volcanic systems. High scores were restricted to the simplest aspects of volcanism (terminology, basic volcano shape) while questions requiring higher thinking and deeper conceptual connections (analysis of patterns, eruptive controls, and hazards) saw much lower scores. Categorical analysis of response types revealed the extent of specific misconceptions, the most predominant of which demonstrated a failure to link tectonics to a global volcanic pattern. Eruptive catalysts and controls also appear poorly understood, as are volcanic impacts on the environment and human endeavors. The survey also included demographic information which has been analyzed. Analysis of student sources of knowledge found that over 41% of students said that they had acquired most of their understanding about volcanoes from non-traditional sources such as the popular media and Hollywood films. Application of a multiple linear regression model and an expanded model suggests that these students were much less likely to receive high scores on questions relating to understanding

  18. Earth Science Multimedia Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  19. Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science

    ERIC Educational Resources Information Center

    Kind, Vanessa

    2016-01-01

    This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…

  20. Improving the Science Teaching Self-Efficacy of Preservice Elementary Teachers: A Multiyear Study of A Hybrid Geoscience Course

    ERIC Educational Resources Information Center

    Cervato, Cinzia; Kerton, Charles

    2017-01-01

    We describe the impact of a hybrid Earth and space science course, taught online and complemented by a 2-hour face-to-face lab, on the science teaching self-efficacy of elementary preservice teachers over a 3-year span. Guided by the two overarching objectives of engaging students in the content and increasing their comfort level with teaching…

  1. Earth Science Education for the 21st Century Conference (Alexandria, Virginia, April 19-23, 1988). Executive Summary.

    ERIC Educational Resources Information Center

    American Geological Inst., Alexandria, VA.

    This meeting initiates the planning of new guidelines and a framework for teaching the earth sciences from kindergarten through grade 12. The conference report serves as a discussion paper for a series of American Geological Institute (AGI) regional conferences scheduled for fall and winter, 1988-89. It also provides background for an advisory…

  2. Earth and Space Sciences: The Need for Diversity in Global Science

    NASA Astrophysics Data System (ADS)

    Hall, F. R.; Johnson, R.; Alexander, C.

    2004-12-01

    The Earth and Space sciences are truly global in nature and encompass the most diverse subject areas in science. Yet, the practitioners of these fields do not reflect the diversity of the populations that are impacted by the outcomes of the research in these fields of study. The global marketplace, migration, the search for economic and renewable resources, Earth Systems research, and understanding our place in the universe compels us to be more inclusive of the populations and cultures that inhabit our planet. In this talk, we discuss the relevancy of these issues on scientific endeavors in the 21st century and the need for the Earth and Space sciences to be the leaders within the broad scientific community of ensuring that science remains an inclusive enterprise.

  3. The application of Legacy Cycles in the development of Earth Science curriculum

    NASA Astrophysics Data System (ADS)

    Ellins, K.; Abernathy, E.; Negrito, K.; McCall, L.

    2009-04-01

    Texas' UTeach program, the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution program of teacher professional development, and the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching, and scientists from the Institute for Geophysics, the Lamont-Doherty Earth Observatory and the Texas Water Development Board.

  4. Bridging the gap with a duel-credit Earth Science course

    NASA Astrophysics Data System (ADS)

    Van Norden, W.

    2011-12-01

    College-bound high school students rarely have any exposure to the Earth Sciences. Earth Science may be offered to Middle School students. What is offered in High School, however, is usually a watered-down course offered to the weakest students. Meanwhile, our best and brightest students are steered towards biology, chemistry, and physics, what most schools consider the "real sciences". As a direct result, our population is not literate in the Earth Sciences and few students choose to study the Earth Science in college. One way to counteract this trend is to offer a rigorous capstone Earth Science course to High School Juniors and Seniors. Offering a course does not guarantee enrollment, however. Top science students are too busy taking Advanced Placement courses to consider a non-AP course. For that reason, the best way to lure top students into studying Earth Science is to create a duel-credit course, for which students receive both high school and college credit. A collaboration between high school teachers and college professors can result in a quality Earth Science course that bridges the huge gap that now exists between middle school science and college Earth Science. Harvard-Westlake School has successfully offered a duel-credit course with UCLA, and has created a model that can be used by other schools.

  5. Tactile Earth and Space Science Materials for Students with Visual Impairments: Contours, Craters, Asteroids, and Features of Mars

    ERIC Educational Resources Information Center

    Rule, Audrey C.

    2011-01-01

    New tactile curriculum materials for teaching Earth and planetary science lessons on rotation=revolution, silhouettes of objects from different views, contour maps, impact craters, asteroids, and topographic features of Mars to 11 elementary and middle school students with sight impairments at a week-long residential summer camp are presented…

  6. Earth Science Geostationary Platform Technology

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)

    1989-01-01

    The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.

  7. Teaching Science through Inquiry

    ERIC Educational Resources Information Center

    Wilcox, Jesse; Kruse, Jerrid W.; Clough, Michael P.

    2015-01-01

    Science education efforts have long emphasized inquiry, and inquiry and scientific practices are prominent in contemporary science education reform documents (NRC 1996; NGSS Lead States 2013). However, inquiry has not become commonplace in science teaching, in part because of misunderstandings regarding what it means and entails (Demir and Abell…

  8. Middle school science teachers' teaching self-efficacy and students' science self-efficacy

    NASA Astrophysics Data System (ADS)

    Pisa, Danielle

    Project 2061, initiated by the American Association for the Advancement of Science (AAAS), developed recommendations for what is essential in education to produce scientifically literate citizens. Furthermore, they suggest that teachers teach effectively. There is an abundance of literature that focuses on the effects of a teacher's science teaching self-efficacy and a student's science self-efficacy. However, there is no literature on the relationship between the two self-efficacies. This study investigated if there is a differential change in students' science self-efficacy over an academic term after instruction from a teacher with high science teaching self-efficacy. Quantitative analysis of STEBI scores for teachers showed that mean STEBI scores did not change over one academic term. A t test indicated that there was no statistically significant difference in mean SMTSL scores for students' science self-efficacy over the course of one academic term for a) the entire sample, b) each science class, and c) each grade level. In addition, ANOVA indicated that there was no statistically significant difference in mean gain factor of students rated as low, medium, and high on science self-efficacy as measured by the SMTSL, when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. Finally, there was no statistically significant association between the pre- and post-instructional rankings of SMTSL by grade level when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. This is the first study of its kind. Studies indicated that teaching strategies typically practiced by teachers with high science teaching were beneficial to physics self-efficacy (Fencl & Scheel, 2005). Although it was unsuccessful at determining whether or not a teacher with high science teaching self-efficacy has a differential affect on students' science self

  9. The Echoes of Earth Science

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Earth Observing System Data and Information System (EOSDIS) acquires, archives, and manages data from all of NASA s Earth science satellites, for the benefit of the Space Agency and for the benefit of others, including local governments, first responders, the commercial remote sensing industry, teachers, museums, and the general public. EOSDIS is currently handling an extraordinary amount of NASA scientific data. To give an idea of the volume of information it receives, NASA s Terra Earth-observing satellite, just one of many NASA satellites sending down data, sends it hundreds of gigabytes a day, almost as much data as the Hubble Space Telescope acquires in an entire year, or about equal to the amount of information that could be found in hundreds of pickup trucks filled with books. To make EOSDIS data completely accessible to the Earth science community, NASA teamed up with private industry in 2000 to develop an Earth science "marketplace" registry that lets public users quickly drill down to the exact information they need. It also enables them to publish their research and resources alongside of NASA s research and resources. This registry is known as the Earth Observing System ClearingHOuse, or ECHO. The charter for this project focused on having an infrastructure completely independent from EOSDIS that would allow for more contributors and open up additional data access options. Accordingly, it is only fitting that the term ECHO is more than just an acronym; it represents the functionality of the system in that it can echo out and create interoperability among other systems, all while maturing with time as industry technologies and standards change and improve.

  10. My Science Is Better than Your Science: Conceptual Change as a Goal in Teaching Science Majors Interested in Teaching Careers about Education

    ERIC Educational Resources Information Center

    Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.

    2018-01-01

    We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…

  11. Professional development in college science teaching

    NASA Astrophysics Data System (ADS)

    Thomas, Aimee Kathryn

    Graduate students earning a doctorate in the sciences historically focus their work on research and not professional development in college science teaching. However, for those who go on to a career in academia, a majority of their time will be dedicated to teaching. During the past few years, graduate teaching assistants (GTAs) have been prepared to teach by attending a daylong workshop that included logistical information, but left pedagogy largely unexplored. Since that time, a seminar has been added to provide an introduction to pedagogical theory and practices and to provide practice teaching in the biological sciences laboratory course. Yet, more pedagogical preparation is needed. This study was conducted to determine if there was a need for a teaching certificate program for doctoral students in the College of Science and Technology (CoST) at The University of Southern Mississippi. The GTA respondents studied set teaching goals that were consistent with faculty members across the country; however, this research went further by finding out how competent the GTAs perceived they were and how much support they perceived they needed with respect to teaching and professional development. The GTAs did not differ in their perceived level of competence based on experience level; however, the less experienced GTAs did perceive they needed more support than the experienced GTAs. To help GTAs develop a skill set that many CoST graduates currently lack, it is recommended that the University provide ample training and supervision. Establishing a certificate program can potentially impact the community in the following ways: (1) the training of GTAs contributes to the academic preparation of future academic professionals who will be teaching in various institutions; (2) GTA training provides professional development and awareness that teaching requires life long professional development; (3) ensuring competent academicians, not only in content but also in pedagogy; (4

  12. New Earth Science Data and Access Methods

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Weinstein, Beth E.; Farnham, Jennifer

    2004-01-01

    NASA's Earth Science Enterprise, working with its domestic and international partners, provides scientific data and analysis to improve life here on Earth. NASA provides science data products that cover a wide range of physical, geophysical, biochemical and other parameters, as well as services for interdisciplinary Earth science studies. Management and distribution of these products is administered through the Earth Observing System Data and Information System (EOSDIS) Distributed Active Archive Centers (DAACs), which all hold data within a different Earth science discipline. This paper will highlight selected EOS datasets and will focus on how these observations contribute to the improvement of essential services such as weather forecasting, climate prediction, air quality, and agricultural efficiency. Emphasis will be placed on new data products derived from instruments on board Terra, Aqua and ICESat as well as new regional data products and field campaigns. A variety of data tools and services are available to the user community. This paper will introduce primary and specialized DAAC-specific methods for finding, ordering and using these data products. Special sections will focus on orienting users unfamiliar with DAAC resources, HDF-EOS formatted data and the use of desktop research and application tools.

  13. Shaping Watersheds Exhibit: An Interactive, Augmented Reality Sandbox for Advancing Earth Science Education

    NASA Astrophysics Data System (ADS)

    Reed, S. E.; Kreylos, O.; Hsi, S.; Kellogg, L. H.; Schladow, G.; Yikilmaz, M. B.; Segale, H.; Silverman, J.; Yalowitz, S.; Sato, E.

    2014-12-01

    One of the challenges involved in learning earth science is the visualization of processes which occur over large spatial and temporal scales. Shaping Watersheds is an interactive 3D exhibit developed with support from the National Science Foundation by a team of scientists, science educators, exhibit designers, and evaluation professionals, in an effort to improve public understanding and stewardship of freshwater ecosystems. The hands-on augmented reality sandbox allows users to create topographic models by shaping real "kinetic" sand. The exhibit is augmented in real time by the projection of a color elevation map and contour lines which exactly match the sand topography, using a closed loop of a Microsoft Kinect 3D camera, simulation and visualization software, and a data projector. When an object (such as a hand) is sensed at a particular height above the sand surface, virtual rain appears as a blue visualization on the surface and a flow simulation (based on a depth-integrated version of the Navier-Stokes equations) moves the water across the landscape. The blueprints and software to build the sandbox are freely available online (http://3dh2o.org/71/) under the GNU General Public License, together with a facilitator's guide and a public forum (with how-to documents and FAQs). Using these resources, many institutions (20 and counting) have built their own exhibits to teach a wide variety of topics (ranging from watershed stewardship, hydrology, geology, topographic map reading, and planetary science) in a variety of venues (such as traveling science exhibits, K-12 schools, university earth science departments, and museums). Additional exhibit extensions and learning modules are planned such as tsunami modeling and prediction. Moreover, a study is underway at the Lawrence Hall of Science to assess how various aspects of the sandbox (such as visualization color scheme and level of interactivity) affect understanding of earth science concepts.

  14. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    NASA Astrophysics Data System (ADS)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  15. Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying

    2009-01-01

    The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…

  16. Hands-on earth science with students at schools for the Deaf

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.

    2011-12-01

    Earth science teachers at schools for the Deaf face a variety of challenges. This community of students has a wide range of language skills, teaching resources can be limited and often teachers are not trained in geosciences. An NSF CAREER grant provided an opportunity to make a difference to this community and foster earth science learning at 8 schools for the Deaf around the country. We designed hands-on deformational sandboxes for the teachers and provided accompanying curriculum materials. The sandbox is a physical model of crustal deformation that students can manipulate to test hypotheses. The visual nature of the sandbox was well-suited for the spatial grammar of American Sign Language used by these students. Furthermore, language skills were enhanced by scaffolded observation, sketch, annotation, discussion, interpretation assignments. Geoscience training of teachers was strengthened with workshops and three 5-day field trips for teachers and selected students to Utah, western New England and southern California. The field trips provided opportunity for students to work as geoscientists observing, interpreting, discussing and presenting their investigations. Between field trips, we set up videoconferences from the UMass experimental lab with the high school earth science classrooms. These sessions facilitated dialog between students and researchers at UMass. While the project set out to provide geoscience learning opportunities for students at Schools for the Deaf, the long lasting impact was the improved geoscience training of teachers, most of whom had limited post-secondary earth science training. The success of the project also rested on the dedication of the teachers to their students and their willingness to try new approaches and experiences. By tapping into a community of 6 teachers, who already shared curriculum and had fantastic leadership, the project was able to have significant impact and exceed the initial goals. The project has led to a

  17. Science Teaching in Rhodesia

    ERIC Educational Resources Information Center

    Smith, A. L.

    1975-01-01

    Describes science teaching in Rhodesia as beset with limitations in the quality of students, in student motivation, in the number and quality of teachers, in the Rhodesian environment, and in the science syllabuses themselves. (Author/GS)

  18. Reforming Earth science education in developing countries

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    Improving the employability of Earth science graduates by reforming Earth science instruction is a matter of concern to universities worldwide. It should, however, be self-evident that the developing countries cannot follow the same blueprint for change as the industrialized countries due to constraints of affordability and relevance. Peanuts are every bit as nutritious as almonds; if one with limited means has to choose between a fistful of peanuts and just one almond, it is wise to choose the peanuts. A paradigm proposed here would allow institutions in developing countries to impart good quality relevant Earth science instruction that would be affordable and lead to employment.

  19. Providing Authentic Research Experiences for Pre-Service Teachers through UNH's Transforming Earth System Science Education (TESSE) Program

    NASA Astrophysics Data System (ADS)

    Varner, R. K.; Furman, T.; Porter, W.; Darwish, A.; Graham, K.; Bryce, J.; Brown, D.; Finkel, L.; Froburg, E.; Guertin, L.; Hale, S. R.; Johnson, J.; von Damm, K.

    2007-12-01

    The University of New Hampshire's Transforming Earth System Science Education (UNH TESSE) project is designed to enrich the education and professional development of in-service and pre-service teachers, who teach or will teach Earth science curricula. As part of this program, pre-service teachers participated in an eight- week summer Research Immersion Experience (RIE). The main goal of the RIE is to provide authentic research experiences in Earth system science for teachers early in their careers in an effort to increase future teachers` comfort and confidence in bringing research endeavors to their students. Moreover, authentic research experiences for teachers will complement teachers` efforts to enhance inquiry-based instruction in their own classrooms. Eighteen pre-service teachers associated with our four participating institutions - Dillard University (4), Elizabeth City State University (4), Pennsylvania State University (5), and University of New Hampshire (UNH) (5) participated in the research immersion experience. Pre-service teachers were matched with a faculty mentor who advised their independent research activities. Each pre-service teacher was expected to collect and analyze his or her own data to address their research question. Some example topics researched by participants included: processes governing barrier island formation, comparison of formation and track of hurricanes Hugo and Katrina, environmental consequences of Katrina, numerical models of meander formation, climatic impacts on the growth of wetland plants, and the visual estimation of hydrothermal vent properties. Participants culminated their research experience with a public presentation to an audience of scientists and inservice teachers.

  20. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  1. Multi-Instrument Tools and Services to Access NASA Earth Science Data from the GSFC Earth Sciences Data and Information Services Center

    NASA Technical Reports Server (NTRS)

    Kempler, Steve; Leptoukh, Greg; Lynnes, Chris

    2010-01-01

    The presentation purpose is to describe multi-instrument tools and services that facilitate access and usability of NASA Earth science data at Goddard Space Flight Center (GSFC). NASA's Earth observing system includes 14 satellites. Topics include EOSDIS facilities and system architecture, and overview of GSFC Earth Science Data and Information Services Center (GES DISC) mission, Mirador data search, Giovanni, multi-instrument data exploration, Google Earth[TM], data merging, and applications.

  2. Cross-Cutting Interoperability in an Earth Science Collaboratory

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Ramachandran, Rahul; Kuo, Kuo-Sen

    2011-01-01

    An Earth Science Collaboratory is: A rich data analysis environment with: (1) Access to a wide spectrum of Earth Science data, (3) A diverse set of science analysis services and tools, (4) A means to collaborate on data, tools and analysis, and (5)Supports sharing of data, tools, results and knowledge

  3. An Analysis of Misconceptions in Science Textbooks: Earth Science in England and Wales

    ERIC Educational Resources Information Center

    King, Chris John Henry

    2010-01-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one…

  4. Earth Exploration Toolbook Workshops: Web-Conferencing and Teleconferencing Professional Development Bringing Earth Science Data Analysis and Visualization Tools to K-12 Teachers and Students

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.; Ledley, T.

    2008-12-01

    our participants reported that they have not tried to locate a teaching resource in DLESE and forty-eight percent report that they have not to locate a teaching resource in NSDL. As part of an EET Data Analysis workshop, teachers actively visit both digital libraries. Virtual workshops using Web conferencing and teleconferencing are an effective and convenient way to deliver professional development that brings teachers from all over the nation together to learn new technology. Teachers report that the step-by-step facilitation along with the ability to ask questions and interact with their peers are some of the most useful aspects of the workshop. In this presentation, we will share successes and challenges of teachers as they implement these Earth science data analysis and visualization tools in their classrooms.

  5. Pedagogy of Science Teaching Tests: Formative Assessments of Science Teaching Orientations

    ERIC Educational Resources Information Center

    Cobern, William W.; Schuster, David; Adams, Betty; Skjold, Brandy Ann; Mugaloglu, Ebru Zeynep; Bentz, Amy; Sparks, Kelly

    2014-01-01

    A critical aspect of teacher education is gaining pedagogical content knowledge of how to teach science for conceptual understanding. Given the time limitations of college methods courses, it is difficult to touch on more than a fraction of the science topics potentially taught across grades K-8, particularly in the context of relevant pedagogies.…

  6. Elementary Children's Retrodictive Reasoning about Earth Science

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Schneps, Matthew H.

    2012-01-01

    We report on interviews conducted with twenty-one elementary school children (grades 1-5) about a number of Earth science concepts. These interviews were undertaken as part of a teacher training video series designed specifically to assist elementary teachers in learning essential ideas in Earth science. As such, children were interviewed about a…

  7. Teaching about Teaching Science: Aims, Strategies, and Backgrounds of Science Teacher Educators

    ERIC Educational Resources Information Center

    Berry, Amanda; Van Driel, Jan H.

    2013-01-01

    Despite pressing concerns about the need to prepare high-quality teachers and the central role of teacher educators (TEs) in this process, little is known about how TEs teach about teaching specific subject matter, and how they develop their expertise. This empirical study focuses on the specific expertise that science TEs bring into teacher…

  8. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    ERIC Educational Resources Information Center

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  9. Emotions in teaching environmental science

    NASA Astrophysics Data System (ADS)

    Quigley, Cassie

    2016-09-01

    This op-ed article examines the emotional impact of teaching environmental science and considers how certain emotions can broaden viewpoints and other emotions narrow them. Specifically, it investigates how the topic of climate change became an emotional debate in a science classroom because of religious beliefs. Through reflective practice and examination of positionality, the author explored how certain teaching practices of pre-service science teachers created a productive space and other practices closed down the conversations. This article is framed with theories that explore both divergent and shared viewpoints.

  10. Teaching With and About Nature of Science, and Science Teacher Knowledge Domains

    NASA Astrophysics Data System (ADS)

    Abd-El-Khalick, Fouad

    2013-09-01

    The ubiquitous goals of helping precollege students develop informed conceptions of nature of science (NOS) and experience inquiry learning environments that progressively approximate authentic scientific practice have been long-standing and central aims of science education reforms around the globe. However, the realization of these goals continues to elude the science education community partly because of a persistent, albeit not empirically supported, coupling of the two goals in the form of `teaching about NOS with inquiry'. In this context, the present paper aims, first, to introduce the notions of, and articulate the distinction between, teaching with and about NOS, which will allow for the meaningful coupling of the two desired goals. Second, the paper aims to explicate science teachers' knowledge domains requisite for effective teaching with and about NOS. The paper argues that research and development efforts dedicated to helping science teachers develop deep, robust, and integrated NOS understandings would have the dual benefits of not only enabling teachers to convey to students images of science and scientific practice that are commensurate with historical, philosophical, sociological, and psychological scholarship (teaching about NOS), but also to structure robust inquiry learning environments that approximate authentic scientific practice, and implement effective pedagogical approaches that share a lot of the characteristics of best science teaching practices (teaching with NOS).

  11. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  12. Values of Catholic science educators: Their impact on attitudes of science teaching and learning

    NASA Astrophysics Data System (ADS)

    DeMizio, Joanne Greenwald

    This quantitative study examined the associations between the values held by middle school science teachers in Catholic schools and their attitudes towards science teaching. A total of six value types were studied---theoretical, economic, aesthetic, social, political, and religious. Teachers can have negative, positive, or neutral attitudes towards their teaching that are linked to their teaching practices and student learning. These teachers' attitudes may affect their competence and have a subsequent impact on their students' attitudes and dispositions towards science. Of particular interest was the relationship between science teaching attitudes and religious values. A non-experimental research design was used to obtain responses from 54 teachers with two survey instruments, the Science Teaching Attitude Scale II and the Allport-Vernon-Lindzey Study of Values. Stepwise multiple regression analysis showed that political values were negatively associated with attitudes towards science teaching. Data collected were inconsistent with the existence of any measurable association between religious values and attitudes towards science teaching. This study implies that science teacher preparation programs should adopt a more contextual perspective on science that seeks to develop the valuation of science within a cultural context, as well as programs that enable teachers to identify the influence of their beliefs on instructional actions to optimize the impact of learning new teaching practices that may enhance student learning.

  13. Board on Earth Sciences and Resources and its activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    The Board on Earth Sciences and Resources (BESR) coordinates, the National Research Council`s advice to the federal government on solid-earth science issues. The board identifies opportunities for advancing basic research and understanding, reports on applications of earth sciences in such areas as disaster mitigation and resource utilization, and analyzes the scientific underpinnings and credibility of earth science information for resource, environmental and other applications and policy decision. Committees operating under the guidance of the Board conducts studies addressing specific issues within the earth sciences. The current committees are as follows: Committee on Geophysical and Environmental Data; Mapping Sciences Committee; Committeemore » on Seismology; Committee on Geodesy; Rediscovering Geography Committee; Committee on Research Programs of the US Bureau of Mines. The following recent reports are briefly described: research programs of the US Bureau of Mines, first assessment 1994; Mount Rainier, active cascade volcano; the national geomagnetic initiative; reservoir class field demonstration program; solid-earth sciences and society; data foundation for the national spatial infrastructure; promoting the national spatial data infrastructure through partnerships; toward a coordinated spatial data infrastructure for the nation; and charting a course into the digital era; guidance to the NOAA`s nautical charting mission.« less

  14. The Denali Earth Science Education Project

    NASA Astrophysics Data System (ADS)

    Hansen, R. A.; Stachnik, J. C.; Roush, J. J.; Siemann, K.; Nixon, I.

    2004-12-01

    In partnership with Denali National Park and Preserve and the Denali Institute, the Alaska Earthquake Information Center (AEIC) will capitalize upon an extraordinary opportunity to raise public interest in the earth sciences. A coincidence of events has made this an ideal time for outreach to raise awareness of the solid earth processes that affect all of our lives. On November 3, 2002, a M 7.9 earthquake occurred on the Denali Fault in central Alaska, raising public consciousness of seismic activity in this state to a level unmatched since the M 9.2 "Good Friday" earthquake of 1964. Shortly after the M 7.9 event, a new public facility for scientific research and education in Alaska's national parks, the Murie Science and Learning Center, was constructed at the entrance to Denali National Park and Preserve only 43 miles from the epicenter of the Denali Fault Earthquake. The AEIC and its partners believe that these events can be combined to form a synergy for the creation of unprecedented opportunities for learning about solid earth geophysics among all segments of the public. This cooperative project will undertake the planning and development of education outreach mechanisms and products for the Murie Science and Learning Center that will serve to educate Alaska's residents and visitors about seismology, tectonics, crustal deformation, and volcanism. Through partnerships with Denali National Park and Preserve, this cooperative project will include the Denali Institute (a non-profit organization that assists the National Park Service in operating the Murie Science and Learning Center) and Alaska's Denali Borough Public School District. The AEIC will also draw upon the resources of long standing state partners; the Alaska Division of Geological & Geophysical Surveys and the Alaska Division of Homeland Security and Emergency Services. The objectives of this project are to increase public awareness and understanding of the solid earth processes that affect life in

  15. Developing Interpretive Power in Science Teaching

    ERIC Educational Resources Information Center

    Rosebery, Ann S.; Warren, Beth; Tucker-Raymond, Eli

    2016-01-01

    Early career teachers rarely receive sustained support for addressing issues of diversity and equity in their science teaching. This paper reports on design research to create a 30 hour professional development seminar focused on cultivating the interpretive power of early career teachers who teach science to students from historically…

  16. Setting the Stage for Science in Schools - EIROforum presents the very best of European science teaching

    NASA Astrophysics Data System (ADS)

    2005-11-01

    EIROforum presents the very best of European science teaching How can you weigh the Earth with a straw, a paperclip and a piece of thread? Why don't we really know what we see? How can a juggling act explain mathematics? These are but a few of the on-stage activities that will be shown at the EIROforum [1] Science on Stage Festival, to be held from 21 to 25 November at CERN in Geneva (Switzerland). With support from the European Commission, this international festival brings together around 500 science educators from 29 European countries to show how fascinating and entertaining science can be. "Science is fun! This is what this week-long event will show by presenting innovative methods of teaching science and demonstrations", says Helen Wilson from the European Space Agency and co-ordinator of the event. "At the festival, teachers have the chance to view things from a new perspective, to be entertained and enchanted by science", says Rolf Landua, Head of Education at CERN and Chairman of the event. "As well as taking to the stage, they set up stalls in fair-like surroundings to share their most successful teaching tricks." Workshops on themes as varied as "flying on stage", "the theatre of science", or "stem cell research" and "gamma-ray bursts", will give the attendees - teachers and other science educators - the chance to discuss and come up with solutions to the problem of growing disinterest for science in Europe. "A key element of the Science on Stage concept is to give teachers an up-to-date 'insider's view' of what is happening in big science, to tell them about new, highly diverse and interesting career opportunities for their pupils, and to create a European atmosphere where bright young people can meet and interact", says Colin Carlile, Director General of the Institut Laue-Langevin and current chairman of the EIROforum. At the end of the festival, the European Science Teaching Awards will be presented. The names of the winners will be made public on the

  17. An Analysis of Earth Science Data Analytics Use Cases

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  18. Preparing a New Generation of Citizens and Scientists to Face Earth's Future

    ERIC Educational Resources Information Center

    Bralower, Timothy J.; Feiss, P. Geoffrey; Manduca, Cathryn A.

    2008-01-01

    As the research interests and the focus of traditional earth scientists are transformed, so too must education in earth system science at colleges and universities across the country change. The required change involves not only the methods used to teach this new science, but also the essential place of the earth sciences in the panoply of…

  19. NASA's Earth Science Flight Program overview

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  20. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  1. Dartmouth College Earth Sciences Mobile Field Program

    NASA Astrophysics Data System (ADS)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  2. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  3. Contributions of Science Principles to Teaching: How Science Principles Can Be Used

    ERIC Educational Resources Information Center

    Henson, Kenneth T.

    1974-01-01

    Describes the steps involved in using the "principles" approach in teaching science, illustrates the process of using science principles with an example relating to rock formation, and discusses the relevance of this approach to contemporary trends in science teaching. (JR)

  4. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  5. Evolving Metadata in NASA Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  6. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    ERIC Educational Resources Information Center

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  7. Increasing Diversity in the Earth Sciences (IDES) - An Oregon Effort

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Duncan, R. A.; Wright, D. J.; de Silva, L.; Guerrero, E. F.

    2011-12-01

    The IDES (Increasing Diversity in Earth Sciences) Program is the first partnership of its kind in the state of Oregon targeted at broadening participation in the Earth Science enterprise. Funded by the National Science Foundation Opportunities to Enhance Diversity in the Geosciences program (NSF-OEDG), this partnership involves community colleges, a research university with major strengths in Earth Science research and education and an institutionalized commitment to enhancing diversity, state and federal agencies, centers of informal education, and the Oregon Space Grant Consortium, IDES has two integrated goals: 1) to increase the number of students from under-represented groups who pursue careers in Earth Science research and education, and 2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Built around the best practices of tiered mentoring, interactive student cohort, research and education internships, and financial support, this 4-year program recruits 10 to 12 students (mainly rising juniors) each year from science majors at Oregon State University and five Oregon community colleges. The program is reaching its goals by: a) training participants in the application of geospatial to Earth Science problems of personal relevance b) immersing participants in a two-year mentored research project that involves summer internships with academic units, state and federal agencies, and centers for informal education in Oregon. c) exposing, educating, and involving participants in the breadth of Earth Science careers through contact with Earth Science professionals through mentors, a professional internship, and a learning community that includes a speaker series. d) instilling an understanding of context and relevance of the Earth Science Enterprise to the participants, their families, their communities, and the general public. We report on the first two years of this program during

  8. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    NASA Astrophysics Data System (ADS)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  9. Sun-Earth Day: Exposing the Public to Sun-Earth Connection Science

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Lewis, E.; Cline, T.

    2001-12-01

    The year 2001 marked the first observance of Sun-Earth Day as an event to celebrate the strong interconnection of the life we have on Earth and the dependence of it on the dynamic influence of the Sun. The science of the Sun-Earth Connection has grown dramatically with new satellite and ground-based studies of the Sun and the Sun's extended "atmosphere" in which we live. Space weather is becoming a more common concept that people know can affect their lives. An understanding of the importance of the Sun's dynamic behavior and how this shapes the solar system and especially the Earth is the aim of Sun-Earth Day. The first Sun-Earth event actually took place over two days, April 27 and 28, 2001, in order to accommodate all the events which were planned both in the classroom on Friday the 27th and in more informal settings on Saturday the 28th. The Sun-Earth Connection Education Forum (SECEF) organized the creation of ten thousand packets of educational materials about Sun-Earth Day and distributed them mostly to teachers who were trained to use them in the classroom. Many packets, however, went to science centers, museums, and planetariums as resource materials for programs associated with Sun-Earth Day. Over a hundred scientists used the event as an opportunity to communicate their love of science to audiences in these informal settings. Sun-Earth Day was also greatly assisted by the Amateur Astronomical Society which used the event as a theme for their annual promotion of astronomy in programs given around the country. The Solar and Heliospheric Observatory (SOHO), a satellite mission jointly sponsored by NASA and the European Space Agency (ESA), used Sun-Earth Day in conjunction with the fifth anniversary celebration of SOHO as a basis for many programs and events, especially a large number of happenings in Europe. These included observing parties, art exhibits, demonstrations, etc. Examples of some of the innovative ways that Sun-Earth Day was brought into people

  10. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  11. Preservice Science Teachers' Uses of Inscriptions in Science Teaching

    ERIC Educational Resources Information Center

    Tanis Ozcelik, Arzu; McDonald, Scott P.

    2013-01-01

    This study investigated preservice science teachers' uses of inscriptions in their peer teaching activities and was guided by the following research questions: (1) What kinds of inscriptions and inscriptional practices do preservice science teachers use in their peer teaching activity? and (2) How and for what purposes do preservice science…

  12. Newly qualified teachers' visions of science learning and teaching

    NASA Astrophysics Data System (ADS)

    Roberts, Deborah L.

    2011-12-01

    This study investigated newly qualified teachers' visions of science learning and teaching. The study also documented their preparation in an elementary science methods course. The research questions were: What educational and professional experiences influenced the instructor's visions of science learning and teaching? What visions of science learning and teaching were promoted in the participants' science methods course? What visions of science learning and teaching did these newly qualified teachers bring with them as they graduated from their teacher preparation program? How did these visions compare with those advocated by reform documents? Data sources included participants' assignments, weekly reflections, and multi-media portfolio finals. Semi-structured interviews provided the emic voice of participants, after graduation but before they had begun to teach. These data were interpreted via a combination of qualitative methodologies. Vignettes described class activities. Assertions supported by excerpts from participants' writings emerged from repeated review of their assignments. A case study of a typical participant characterized weekly reflections and final multi-media portfolio. Four strands of science proficiency articulated in a national reform document provided a framework for interpreting activities, assignments, and interview responses. Prior experiences that influenced design of the methods course included an inquiry-based undergraduate physics course, participation in a reform-based teacher preparation program, undergraduate and graduate inquiry-based science teaching methods courses, participation in a teacher research group, continued connection to the university as a beginning teacher, teaching in diverse Title 1 schools, service as the county and state elementary science specialist, participation in the Carnegie Academy for the Scholarship of Teaching and Learning, service on a National Research Council committee, and experience teaching a

  13. Celebrate the Earth...Every Day!

    ERIC Educational Resources Information Center

    Laubenthal, Gail

    1995-01-01

    Discusses the importance of teaching young children to appreciate and care for the earth and how to integrate earth activities into the curriculum. Includes a year-round curriculum with ideas for hands-on activities appropriate to each month, an integrated unit called "Flowers Blooming," tips for evaluating science experiences, and a…

  14. 75 FR 81315 - Earth Sciences Proposal Review Panel; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... NATIONAL SCIENCE FOUNDATION Earth Sciences Proposal Review Panel; Notice of Meeting In accordance... announces the following meeting. Name: Proposal Review Panel in Earth Sciences (1569). Date and Time... Kelz, Program Director, Instrumentation & Facilities Program, Division of Earth Sciences, Room 785...

  15. Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  16. Virtual Collections: An Earth Science Data Curation Service

    NASA Astrophysics Data System (ADS)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.

    2016-12-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  17. Virtual Collections: An Earth Science Data Curation Service

    NASA Technical Reports Server (NTRS)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick

    2016-01-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility, and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of the time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  18. Revolutions in the earth sciences

    PubMed Central

    Allègre, C.

    1999-01-01

    The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so-called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.

  19. New Millenium Program Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk

    1999-01-01

    A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.

  20. Teaching climate science within the transdisciplinary framework of Critical Zone science

    NASA Astrophysics Data System (ADS)

    White, T. S.; Wymore, A.; Dere, A. L. D.; Washburne, J. C.; Hoffman, A.; Conklin, M. H.

    2017-12-01

    During the past decade a new realm of Earth surface and environmental science has evolved, Critical Zone (CZ) science. The CZ is the outermost layer of the continents spanning from the top of the vegetation canopy down to the bottom of the fresh groundwater zone. CZ science integrates across many disciplines and cross cutting concepts, including climate science, and much progress has been made by the CZ community to develop educational curricula - descriptions of the climate science aspects of two of those follows. An interdisciplinary team of CZ scientists developed an undergraduate course entitled "Introduction to CZ science". The semester-long course is modular, has been tested in multiple university settings, and the content is available online. A primary tenet of the course is that to achieve environmental sustainability, society must understand the CZ system, the natural processes and services of the CZ that are of value to society, and how those processes operate with and without the presence of humanity. A fundamental concept in the course is that the fluxes of water, C, energy, reactive gases, particulates and nutrients throughout the CZ are directly and indirectly related to climatic phenomenon and processes. Units on land-atmosphere interactions, weathering, and water budgets highlight the connection between CZ science and climate science, and are augmented by learning activities that consider climate links to soil development and landscape evolution. An online open-source course entitled "Earth 530: Earth Surface Processes in the Critical Zone'" is offered as part of The Pennsylvania State University's Masters of Education in Earth Sciences program. The course is designed to educate teachers interested in incorporating CZ science into their classrooms, though it is usable by anyone with a basic understanding of Earth surface and environmental science. Earth 530 introduces students to knowledge needed to understand the CZ through integration of

  1. UNESCO’s New Earth Science Education Initiative for Africa

    NASA Astrophysics Data System (ADS)

    Missotten, R.; Gaines, S. M.; de Mulder, E. F.

    2009-12-01

    The United Nations Education Science Culture and Communication Organization (UNESCO) has recently launched a new Earth Science Education Initiative in Africa. The overall intention of this Initiative is to support the development of the next generation of earth scientists in Africa who are equipped with the necessary tools, networks and perspectives to apply sound science to solving and benefiting from the challenges and opportunities of sustainable development. The opportunities in the earth sciences are great, starting with traditional mineral extraction and extending into environmental management such as climate change adaptation, prevention of natural hazards, and ensuring access to drinking water. The Earth Science Education Initiative has received strong support from many different types of partners. Potential partners have indicated an interest to participate as organizational partners, content providers, relevant academic institutes, and funders. Organizational partners now include the Geological Society of Africa (GSAf), International Center for Training and Exchanges in the Geosciences (CIFEG), Association of African Women Geoscientists (AAWG), International Year of Planet Earth (IYPE), and International Union of Geological Sciences (IUGS). The activities and focus of the Initiative within the overall intention is being developed in a participatory manner through a series of five regional workshops in Africa. The objective of these workshops is to assess regional capacities and needs in earth science education, research and industry underlining existing centers of excellence through conversation with relevant regional and international experts and plotting the way ahead for earth science education. This talk will provide an update on the outcomes of the first three workshops which have taken place in Luanda, Angola; Assiut, Egypt; and Cape Town; South Africa.

  2. NASA's Earth Science Data Systems Standards Process Experiences

    NASA Technical Reports Server (NTRS)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  3. Earth Science in 1970

    ERIC Educational Resources Information Center

    Geotimes, 1971

    1971-01-01

    Reviews advancements in earth science during 1970 in each of these areas: economic geology (fuels), economic geology (metals), economic geology (nonmetals), environmental geology, geochemistry, manpower, hydrology, mapping, marine geology, mineralogy, paleontology, plate tectonics, politics and geology, remote sensing, and seismology. (PR)

  4. Shake It All About! Using Earthquake Science to Enhance Geology and Physics Teaching in the UK

    ERIC Educational Resources Information Center

    Murphy, Phillip; Murphy, Elizabeth

    2014-01-01

    A three-year project aimed at embedding seismology into schools in northern England to support the teaching of the earth science strands in the National Curriculum for England and Wales is described. Seismometers were deployed in a range of high schools across the Yorkshire and Humberside region. Deployment was supported by a programme of staff…

  5. Connecting NASA science and engineering with earth science applications

    USDA-ARS?s Scientific Manuscript database

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  6. Be a Citizen Scientist!: Celebrate Earth Science Week 2006

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2006-01-01

    During Earth Science Week (October 8-14, 2006), millions of citizen scientists worldwide will be sampling groundwater, monitoring weather, touring quarries, exploring caves, preparing competition projects, and visiting museums and science centers to learn about Earth science. The American Geological Institute organizes this annual event to…

  7. Re-designing an Earth Sciences outreach program for Rhode Island public elementary schools to address new curricular standards and logistical realities in the community

    NASA Astrophysics Data System (ADS)

    Richter, N.; Vachula, R. S.; Pascuzzo, A.; Prilipko Huber, O.

    2017-12-01

    In contrast to middle and high school students, elementary school students in Rhode Island (RI) have no access to dedicated science teachers, resulting in uneven quality and scope of science teaching across the state. In an attempt to improve science education in local public elementary schools, the Department of Earth, Environmental, and Planetary Sciences (DEEPS) at Brown University initiated a student-driven science-teaching program that was supported by a NSF K-12 grant from 2007 to 2014. The program led to the development of an extensive in-house lesson plan database and supported student-led outreach and teaching in several elementary and middle school classrooms. After funding was terminated, the program continued on a volunteer basis, providing year-round science teaching for several second-grade classrooms. During the 2016-2017 academic year, New Generation Science Standards (NGSS) were introduced in RI public schools, and it became apparent that our outreach efforts required adaptation to be more efficient and relevant for both elementary school students and teachers. To meet these new needs, DEEPS, in collaboration with the Providence Public School District, created an intensive summer re-design program involving both graduate and undergraduate students. Three multi-lesson units were developed in collaboration with volunteer public school teachers to specifically address NGSS goals for earth science teaching in 2nd, 3rd and 4th grades. In the 2017-2018 academic year DEEPS students will co-teach the science lessons with the public school teachers in two local elementary schools. At the end of the next academic year all lesson plans and activities will be made publically available through a newly designed DEEPS outreach website. We herein detail our efforts to create and implement new educational modules with the goals of: (1) empowering teachers to instruct science, (2) engaging students and fostering lasting STEM interest and competency, (3) optimizing

  8. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  9. The concept of nature in Islamic science teaching

    NASA Astrophysics Data System (ADS)

    Zarman, Wendi

    2016-02-01

    Science teaching is basically value laden activities. One of the values tells that science is not related to any religion. This secular value is reflected to science teaching in many places, including religious country like Indonesia. However, we argue that in Indonesia science teaching should not be secular as in the Western country since one of the basic aim of National Education according to the Indonesian constitution Undang-Undang Dasar 1945, is to inculcate faith and god-fearing to One God Almighty. As we know, Indonesia is a Moslem country and has many Islamic schools in it too. Thus, it is important to design a science teaching framework base on Islamic teaching to fulfill the basic aim of National Education This paper discusses concept of nature, the key term in science, based on Islamic view that may used as a framework to develop Islamic science teaching. In Islam, science has a strong relation to religion since nature reflects the existence of the Creator. This concept is derived from the analysis of several verses from Qur'an as the main source of Islamic teaching. There are several principle can be derived from this analysis. Firstly, visible world is not the only world, but there is also the unseen world. Secondly, the nature is not merely matter that doesn't have any sacred value, but it is the indication or symbol of God existence and His Nature. Thirdly, The Qur'an and the nature are both Books of Allah that contain messages of Him, so they are complementary to each other

  10. Broadening the Participation of Native Americans in Earth Science

    NASA Astrophysics Data System (ADS)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  11. Teaching science in museums

    NASA Astrophysics Data System (ADS)

    Tran, Lynn Uyen

    Museums are free-choice, non-threatening, non-evaluative learning and teaching environments. They enable learners to revisit contents, authentic objects, and experiences at their own leisure as they continually build an understanding and appreciation of the concepts. Schools in America have used museums as resources to supplement their curriculum since the 19 th century. Field trip research is predominantly from the teachers' and students' perspectives, and draws attention to the importance for classroom teachers and students to prepare prior to field trips, have tasks, goals, and objectives during their time at the museum, and follow up afterwards. Meanwhile, museum educators' contributions to field trip experiences have been scantily addressed. These educators develop and implement programs intended to help students' explore science concepts and make sense of their experiences, and despite their limited time with students, studies show they can be memorable. First, field trips are a break in the usual routine, and thus have curiosity and attention attracting power. Second, classroom science teaching literature suggests teachers' teaching knowledge and goals can affect their behaviors, and in turn influence student learning. Third, classroom teachers are novices at planning and implementing field trip planners, and museum educators can share this responsibility. But little is reported on how the educators teach, what guides their instruction, how classroom teachers use these lessons, and what is gained from these lessons. This study investigates two of these inquiries. The following research questions guided this investigation. (1) How do educators teaching one-hour, one-time lessons in museums adapt their instruction to the students that they teach? (2) How do time limitations affect instruction? (3) How does perceived variability in entering student knowledge affect instruction? Four educators from two museums took part in this participant observation study to

  12. Analyzing Earth Science Research Networking through Visualizations

    NASA Astrophysics Data System (ADS)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  13. EarthCache as a Tool to Promote Earth-Science in Public School Classrooms

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Rose, W. I.; Klawiter, M.; Vye, E. C.; Engelmann, C. A.

    2011-12-01

    Geoscientists often find it difficult to bridge the gap in communication between university research and what is learned in the public schools. Today's schools operate in a high stakes environment that only allow instruction based on State and National Earth Science curriculum standards. These standards are often unknown by academics or are written in a style that obfuscates the transfer of emerging scientific research to students in the classroom. Earth Science teachers are in an ideal position to make this link because they have a background in science as well as a solid understanding of the required curriculum standards for their grade and the pedagogical expertise to pass on new information to their students. As part of the Michigan Teacher Excellence Program (MiTEP), teachers from Grand Rapids, Kalamazoo, and Jackson school districts participate in 2 week field courses with Michigan Tech University to learn from earth science experts about how the earth works. This course connects Earth Science Literacy Principles' Big Ideas and common student misconceptions with standards-based education. During the 2011 field course, we developed and began to implement a three-phase EarthCache model that will provide a geospatial interactive medium for teachers to translate the material they learn in the field to the students in their standards based classrooms. MiTEP participants use GPS and Google Earth to navigate to Michigan sites of geo-significance. At each location academic experts aide participants in making scientific observations about the locations' geologic features, and "reading the rocks" methodology to interpret the area's geologic history. The participants are then expected to develop their own EarthCache site to be used as pedagogical tool bridging the gap between standards-based classroom learning, contemporary research and unique outdoor field experiences. The final phase supports teachers in integrating inquiry based, higher-level learning student

  14. General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Kahmann-Robinson, J. A.

    2012-12-01

    The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.

  15. An Overview of Rare Earth Science and Technology

    NASA Astrophysics Data System (ADS)

    Gschneidner, Karl, Jr.

    2012-02-01

    Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.

  16. A longitudinal investigation of the preservice science teachers' beliefs about science teaching during a science teacher training programme

    NASA Astrophysics Data System (ADS)

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants were composed of 76 preservice teachers, and the DASTT-C was used as the data collection tool. As a result of the study, it was determined that the students had conventional teaching beliefs after the first years of the teacher training programme. Moreover, the mental teaching styles of preservice teachers about the science teaching were found to undergo changes throughout their undergraduate education. Participants' beliefs about conventional teaching started to change, especially after they first took a science method course in their third year and their beliefs shifted towards student-centred teaching. Implications for science teacher training programmes were also addressed.

  17. Holistic Approach to Secondary Earth Science Teacher Professional Development: the Triad of Project-based Instruction, Earth Science Content, and GIS Technology

    NASA Astrophysics Data System (ADS)

    Rubino-Hare, L.; Sample, J. C.; Fredrickson, K.; Claesgens, J.; Bloom, N.; Henderson-Dahms, C.; Manone, M.

    2011-12-01

    We have provided two years of professional development for secondary and middle school teachers with a focus on project-based instruction (PBI) using GIS. The EYE-POD project (funded by NSF-ITEST) involved pairs of teachers from Arizona and the surrounding region in two-week institutes during Summer, 2010, and an advanced institute in Summer, 2011. The NAz-POD project (funded by Arizona Department of Education and administered by Science Foundation Arizona) provided similar PD experiences, but the institutes occurred during weekends in the academic year. The institutes were led by a team with expertise in Earth science content, professional development and pedagogy, and GIS. The teachers developed learning modules using the project based learning instructional model. Pedagogy, content, and GIS skills were combined throughout the professional development activities. Academic year follow up by NAU personnel included classroom observations and technical support. For assessing student work we provided a rubric, but learned that teachers were not prepared to assess GIS products in order to determine the level of student understanding. In year two of the project we incorporated strategies for assessment of student products into the professional development. Teacher-participants and their students completed several pre- and post- assessments. Teacher assessments included a geospatial performance assessment, classroom observations, and content tests. Student data collection included attitude and efficacy questionnaires, content tests, and authentic assessments including products using GIS. Content tests were the same for teachers and students and included spatial reasoning, data analysis, and Earth science content. Data was also collected on teacher perception of professional development delivery and self-reported confidence in teaching with PBI and geospatial technology. Student assessments show that improvement occurred in all areas on the content test. Possible factors

  18. Teaching Earth Signals Analysis Using the Java-DSP Earth Systems Edition: Modern and Past Climate Change

    ERIC Educational Resources Information Center

    Ramamurthy, Karthikeyan Natesan; Hinnov, Linda A.; Spanias, Andreas S.

    2014-01-01

    Modern data collection in the Earth Sciences has propelled the need for understanding signal processing and time-series analysis techniques. However, there is an educational disconnect in the lack of instruction of time-series analysis techniques in many Earth Science academic departments. Furthermore, there are no platform-independent freeware…

  19. Deriving Earth Science Data Analytics Tools/Techniques Requirements

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2015-12-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists. Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics tools/techniques requirements that would support specific ESDA type goals. Representative existing data analytics tools/techniques relevant to ESDA will also be addressed.

  20. How to Justify Teaching False Science

    ERIC Educational Resources Information Center

    Slater, Matthew H.

    2008-01-01

    We often knowingly teach false science. Such a practice conflicts with a prima facie pedagogical value placed on teaching only what is true. I argue that only a partial dissolution of the conflict is possible: the proper aim of instruction in science is not to provide an armory of facts about what things the world contains, how they interact, and…

  1. Safety and Science Teaching.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Education, Richmond. Div. of Sciences and Elementary Administration.

    This 10-chapter handbook (designed for science teachers and school administrators) describes known hazards associated with science teaching and provides information to develop a framework for local safety programs specifically designed to avoid or neutralize the effects of such hazards. Major areas addressed in the chapters include: (1) the nature…

  2. The Earth System Course at the University of Oklahoma: Science and Pedagogy Aimed at Pre-service Teachers

    NASA Astrophysics Data System (ADS)

    Postawko, S.; Soreghan, M.; Marek, E.

    2005-12-01

    Traditionally, education majors at the University of Oklahoma took either Introduction to Physical Geology or Introduction to Meteorology to fulfill their physical sciences requirement. Science education majors were required to take both courses. These courses are large-enrollment lecture type courses, with required lab sections taught by graduate teaching assistants. Beginning in 1997, faculty from the Colleges of Education and Geosciences at the University of Oklahoma began working together to provide effective earth science education for pre-service teachers. The first step in this collaboration was the development of a new course on The Earth System that focuses on Earth as a whole rather than on the more narrow focus of either the geology or meteorology courses. The new course, which was taught for the first time in the Spring of 2001, covers a number of major themes related to Earth Science, including the Carbon Cycle, Earth Materials, Plate Tectonics, Atmosphere and Oceans. The particular concepts within each theme were chosen based on two criteria: 1) alignment with content advocated by national (NSES) and state (Priority Academic Student Skills-PASS) standards; and 2) they are amenable to a learning cycle pedagogical approach. Besides an interdisciplinary approach to the content, the new course features pedagogical innovations. In lieu of independent laboratory and lecture times, we scheduled two class periods of longer duration, so that active learning, involving hands-on activities and experiments were possible throughout each class period. The activities modeled the learning-cycle approach with an exploration, concept invention, and an expansion phase (Marek and Cavallo, 1997). Therefore, the pre-service teachers experienced the learning cycle in practice prior to learning the theory in their upper division "methods" course. In the first 3 years that the course was taught, students were given surveys early in the semester and at the end of the semester

  3. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    NASA Astrophysics Data System (ADS)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  4. Exploring the Place of Exemplary Science Teaching. This Year in School Science 1993.

    ERIC Educational Resources Information Center

    Haley-Oliphant, Ann E., Ed.

    Exemplary science teaching is an experience that fosters wonder, excitement, and risk-taking. This book presents essays which attempt to describe the culture of classrooms of exemplary science teachers. Chapter titles are: "Exploring the Place of Exemplary Science Teaching" (Ann E. Haley-Oliphant); "The Voices of Exemplary Science Teachers" (Ann…

  5. Board on Earth Sciences and Resources and its Activities

    NASA Technical Reports Server (NTRS)

    Schiffries, Craig M.

    1997-01-01

    The Board will provide oversight of the earth science and resource activities within the National Research Council, provide a review of research and public activities in the solid-earth sciences, and provide analyses and recommendations relevant to the supply, delivery, and associated impacts of and issues related to hydrocarbon, metallic, and non-metallic mineral resources. The Board will monitor the status of the earth sciences, assess the health of the disciplines, and identify research opportunities, and will respond to specific agency requests.

  6. Global Issues in an Introductory Earth Science Course.

    ERIC Educational Resources Information Center

    Pierce, James P.

    Information is provided explaining the incorporation of global issues units into an introductory earth science course at Skagit Valley Community College (Mount Vernon, Washington). First, a short description is provided of the original format of the earth science course, which was designed as an introductory level survey course covering topics in…

  7. Teaching and Learning Science for Transformative, Aesthetic Experience

    NASA Astrophysics Data System (ADS)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  8. EarthRef.org: Exploring aspects of a Cyber Infrastructure in Earth Science and Education

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Koppers, A.; Tauxe, L.; Constable, C.; Helly, J.

    2004-12-01

    EarthRef.org is the common host and (co-) developer of a range of earth science databases and IT resources providing a test bed for a Cyberinfrastructure in Earth Science and Education (CIESE). EarthRef.org data base efforts include in particular the Geochemical Earth Reference Model (GERM), the Magnetics Information Consortium (MagIC), the Educational Resources for Earth Science Education (ERESE) project, the Seamount Catalog, the Mid-Ocean Ridge Catalog, the Radio-Isotope Geochronology (RiG) initiative for CHRONOS, and the Microbial Observatory for Fe oxidizing microbes on Loihi Seamount (FeMO; the most recent development). These diverse databases are developed under a single database umbrella and webserver at the San Diego Supercomputing Center. All the data bases have similar structures, with consistent metadata concepts, a common database layout, and automated upload wizards. Shared resources include supporting databases like an address book, a reference/publication catalog, and a common digital archive making database development and maintenance cost-effective, while guaranteeing interoperability. The EarthRef.org CIESE provides a common umbrella for synthesis information as well as sample-based data, and it bridges the gap between science and science education in middle and high schools, validating the potential for a system wide data infrastructure in a CIESE. EarthRef.org experiences have shown that effective communication with the respective communities is a key part of a successful CIESE facilitating both utility and community buy-in. GERM has been particularly successful at developing a metadata scheme for geochemistry and in the development of a new electronic journal (G-cubed) that has made much progress in data publication and linkages between journals and community data bases. GERM also has worked, through editors and publishers, towards interfacing databases with the publication process, to accomplish a more scholarly and database friendly data

  9. Teaching about the Earth Online: Faculty-Sourced Guidance from InTeGrate

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Bralower, T. J.; Anbar, A. D.; Leinbach, A.

    2017-12-01

    Teaching online is growing in acceptance within the higher education community and its accessibility creates an opportunity to reach students from diverse backgrounds with geoscience content. There is a need to develop best practices for teaching about Earth online as new technologies, pedagogical approaches, and teaching materials that incorporate societal issues and data emerge. In response to this need, the InTeGrate: Teaching about Earth for a Sustainable Future project convened a workshop of interdisciplinary faculty who teach about the Earth online, in a variety of contexts, to develop consensus best-practices, collect online resources, and develop teaching materials to share with the rest of the community. Workshop participants generated five broad categories of guidance for faculty teaching online: develop communication and a sense of community among class participants, stimulate student engagement, develop activity frameworks that scale with class size, include information literacy in the curriculum explicitly, and employ effective management and assessment techniques. Many of the best practices highlighted by the group are not unique to teaching online, but teaching online rather than face-to-face affects how they are or can be implemented. The suite of webpages developed from this work showcase specific strategies in each area, underpinned by examples drawn from the experiences of the participants. This resource can provide a wealth of advice for faculty seeking help for teaching online. Faculty can also provide feedback on the strategies and add their own experiences to the collection. Participants also worked together in teams to develop new or revise existing teaching resources to make available via the InTeGrate website. In addition, they shared insights about online resources they use in their teaching and class management and developed plans for an online repository for next-generation, interactive educational materials and tools for creating them

  10. Innovations in College Science Teaching.

    ERIC Educational Resources Information Center

    Penick, John E., Ed.; Dunkhase, John A., Ed.

    Fifteen innovative college science programs based on survey results about perceptions of excellence in college science teaching are presented. The goals, program origins, special features of the programs, evaluations, and conclusions are described for each. Discussed are the commonalities among this collection of 15 college science programs and…

  11. The effect of teacher education level, teaching experience, and teaching behaviors on student science achievement

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui

    Previous literature leaves us unanswered questions about whether teaching behaviors mediate the relationship between teacher education level and experience with student science achievement. This study examined this question with 655 students from sixth to eighth grade and their 12 science teachers. Student science achievements were measured at the beginning and end of 2006-2007 school year. Given the cluster sampling of students nested in classrooms, which are nested in teachers, a two-level multilevel model was employed to disentangle the effects from teacher-level and student-level factors. Several findings were discovered in this study. Science teachers possessing of advanced degrees in science or education significantly and positively influenced student science achievement. However, years of teaching experience in science did not directly influence student science achievement. A significant interaction was detected between teachers possessing an advanced degree in science or education and years of teaching science, which was inversely associated to student science achievement. Better teaching behaviors were also positively related to student achievement in science directly, as well as mediated the relationship between student science achievement and both teacher education and experience. Additionally, when examined separately, each teaching behavior variable (teacher engagement, classroom management, and teaching strategies) served as a significant intermediary between both teacher education and experience and student science achievement. The findings of this study are intended to provide insights into the importance of hiring and developing qualified teachers who are better able to help students achieve in science, as well as to direct the emphases of ongoing teacher inservice training.

  12. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level…

  13. Ground Water Studies. Earth Science Module for Grades 7-9.

    ERIC Educational Resources Information Center

    Baldwin, Roland L.; And Others

    Earth science education needs to be relevant to students in order to make them aware of the serious problems facing the planet. In an effort to insure that this need is meet, the Denver Earth Science Project has set as one of their goals the development of new earth science curriculum materials for teachers. This document provides a collection of…

  14. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  15. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    ERIC Educational Resources Information Center

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  16. JPL Earth Science Center Visualization Multitouch Table

    NASA Astrophysics Data System (ADS)

    Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.

    2014-12-01

    JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.

  17. Earth & Space Science PhDs, Class of 2001.

    ERIC Educational Resources Information Center

    Claudy, Nicholas; Henly, Megan; Migdalski, Chet

    This study documents the employment patterns and demographic characteristics of recent PhDs in earth and space science. It summarizes the latest annual survey of recent earth and space science PhDs conducted by the American Geological Institute, the American Geophysical Union, and the Statistical Research Center of the American Institute of…

  18. Communicating Earth Science Applications through Virtual Poster Sessions

    NASA Astrophysics Data System (ADS)

    Favors, J. E.; Childs-Gleason, L. M.; Ross, K. W.; Ruiz, M. L.; Rogers, L.

    2013-12-01

    The DEVELOP National Program addresses environmental and public policy issues through interdisciplinary research projects that apply the lens of NASA Earth observations to community concerns around the globe. Part of NASA's Applied Sciences' Capacity Building Program, DEVELOP bridges the gap between NASA Earth Science and society, building capacity in both participants and partner organizations to better prepare them to handle the challenges that face our society and future generations. Teams of DEVELOP participants partner with decision makers to conduct rapid feasibility projects that highlight fresh applications of NASA's suite of Earth observing sensors, cultivate advanced skills, and increase understanding of NASA Earth Science data and technology. Part of this process involves the creation of short introductory videos that demonstrate the environmental concerns, project methodologies and results, and an overview of how this work will impact decision makers. These videos are presented to the public three times a year in 'virtual poster sessions' (VPS) that provide an interactive way for individuals from around the globe to access the research, understand the capabilities and applications of NASA's Earth science datasets, and interact with the participants through blogging and dialogue sessions. Virtual poster sessions have allowed DEVELOP to introduce NASA's Earth science assets to thousands of viewers around the world. For instance, one fall VPS had over 5,000 visitors from 89 different countries during the two week session. This presentation will discuss lessons learned and statistics related to the series of nine virtual poster sessions that DEVELOP has conducted 2011-2013.

  19. Teaching science as argument: Prospective elementary teachers' knowledge

    NASA Astrophysics Data System (ADS)

    Barreto-Espino, Reizelie

    For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry

  20. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    NASA Astrophysics Data System (ADS)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  1. Teaching Science through Physical Education.

    ERIC Educational Resources Information Center

    Kumar, David; Whitehurst, Michael

    1997-01-01

    Physical education can serve as a vehicle for teaching science and make student understanding of certain personal health-related science concepts meaningful. Describes activities involving the musculoskeletal system, the nervous system, and the cardiovascular system. (DKM)

  2. 3D Visualization in Elementary Education Astronomy: Teaching Urban Second Graders about the Sun, Earth, and Moon

    NASA Astrophysics Data System (ADS)

    Isik-Ercan, Zeynep; Kim, Beomjin; Nowak, Jeffrey

    This research-in-progress hypothesizes that urban second graders can have an early understanding about the shape of Sun, Moon, and Earth, how day and night happens, and how Moon appears to change its shape by using three dimensional stereoscopic vision. The 3D stereoscopic vision system might be an effective way to teach subjects like astronomy that explains relationships among objects in space. Currently, Indiana state standards for science teaching do not suggest the teaching of these astronomical concepts explicitly before fourth grade. Yet, we expect our findings to indicate that students can learn these concepts earlier in their educational lives with the implementation of such technologies. We also project that these technologies could revolutionize when these concepts could be taught to children and expand the ways we think about children's cognitive capacities in understanding scientific concepts.

  3. Globalizing Space and Earth Science - the International Heliophysical Year Education and Outreach Program

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. C.; Morrow, C.; Thompson, B. J.

    2006-08-01

    The International Heliophysical Year (IHY) in 2007 & 2008 will celebrate the 50th anniversary of the International Geophysical Year (IGY) and, following its tradition of international research collaboration, will focus on the cross-disciplinary studies of universal processes in the heliosphere. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe how to participate in the IHY Education and Outreach Program and the benefits in doing so. Emphasis will be given to the role played by developing countries; not only in selecting useful resources and helping in their translation and adaptation, but also in providing different approaches and techniques in teaching.

  4. Teaching Science to the Gifted.

    ERIC Educational Resources Information Center

    Scher, Joyce L.

    Science teaching practices at the Long Island School for the Gifted emphasize hands-on experiments where children do the work and the teacher assists learning. This approach bypasses the reading/writing barrier that prevents some children from learning science. Many science experiments are described, including a first-grade lesson on using…

  5. Preservice Elementary Teachers' Beliefs about Science Teaching

    ERIC Educational Resources Information Center

    Yilmaz-Tuzun, Ozgul

    2008-01-01

    In this study, a Beliefs About Teaching (BAT) scale was created to examine preservice elementary science teachers' self-reported comfort level with both traditional and reform-based teaching methods, assessment techniques, classroom management techniques, and science content. Participants included 166 preservice teachers from three different US…

  6. Earth Science Mobile App Development for Non-Programmers

    NASA Astrophysics Data System (ADS)

    Oostra, D.; Crecelius, S.; Lewis, P.; Chambers, L. H.

    2012-08-01

    A number of cloud based visual development tools have emerged that provide methods for developing mobile applications quickly and without previous programming experience. The MY NASA DATA (MND) team would like to begin a discussion on how we can best leverage current mobile app technologies and available Earth science datasets. The MY NASA DATA team is developing an approach based on two main ideas. The first is to teach our constituents how to create mobile applications that interact with NASA datasets; the second is to provide web services or Application Programming Interfaces (APIs) that create sources of data that educators, students and scientists can use in their own mobile app development. This framework allows data providers to foster mobile application development and interaction while not becoming a software clearing house. MY NASA DATA's research has included meetings with local data providers, educators, libraries and individuals. A high level of interest has been identified from initial discussions and interviews. This overt interest combined with the marked popularity of mobile applications in our societies has created a new channel for outreach and communications with and between the science and educational communities.

  7. Revolutionizing Earth System Science Education for the 21st Century: Report and Recommendations from a 50-State Analysis of Earth Science Education Standards

    ERIC Educational Resources Information Center

    Hoffman, Martos; Barstow, Daniel

    2007-01-01

    The National Oceanic and Atmospheric Administration (NOAA) commissioned TERC to complete a review of science education standards for all 50 states. The study analyzed K-12 Earth science standards to determine how well each state addresses key Earth-science content, concepts and skills. This report reveals that few states have thoroughly integrated…

  8. Teaching Science through Story

    ERIC Educational Resources Information Center

    Horton, Jessica

    2013-01-01

    Children find comfort in stories. They are familiar, accessible and entertaining. By teaching science through narratives, we can provide that same comfort and access to scientific content to children of all ages. In this article, I will discuss how, through the use of narratives in science instruction, we can provide students with a deeper…

  9. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances

  10. Resources Available for Earth Science Education. Final Report.

    ERIC Educational Resources Information Center

    Clausen, Eric

    A study of schools was conducted to determine needs of earth science programs, and what, if any, services could effectively be provided by an earth science resource center. Contacts were made with approximately one-half the schools in the Minot State College service region. Discussions were held with administrators and teachers, and facilities at…

  11. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  12. What to do when the Universities reject High School Earth Science

    NASA Astrophysics Data System (ADS)

    Van Norden, W.

    2011-12-01

    It is hard to imagine a state of the union more affected by Earth processes than the state of California. However, the University of California actively discourages High School students from taking Earth Science courses. For admission into the University of California students are required to take at least 2 years of courses that offer a fundamental knowledge in at least two of these three foundational subjects: biology, chemistry, and physics. Earth Science courses simply don't qualify as laboratory science courses. The UC Admissions will sometimes make an exception for an Earth Science course only if it is shown to contain a large component of biology, chemistry and physics topics. Since students don't get credit for admission for taking Earth Science, High Schools are quick to drop Earth Science courses for their college-bound students. A group of teachers and University professors have been working to reverse this policy by creating a rigorous capstone Earth Science course that clearly merits laboratory status. Getting this course accepted by the University of California is well on its way, but getting the course into the High Schools will take a lot of work and probably some extra funding.

  13. Crossing borders: High school science teachers learning to teach the specialized language of science

    NASA Astrophysics Data System (ADS)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  14. Teaching earth science in the field: GPS-based educational trails as a practically relevant, empirical verified approach

    NASA Astrophysics Data System (ADS)

    Kisser, Thomas

    2015-04-01

    GPS devices are common use in the daily life and are used in geography classes increasingly often. Presently, specialist literature is merely descriptive and thematically reduced to the function of orientation. The questions whether they are an applicable tool for teaching earth science circumstances and if the lasting learning success shows any differences compared to normal lessons hold in a class room haven't been answered. Neurobiological and teaching psychological knowledge support the idea that students completing the GPS-based educational trail will learn more successful compared to students in a "normal" class: A successful contextualization of modern geomedia stimulates the motivation. Geocaches are also suitable for didactical structuration. The order of "Geopoints" is chosen in a way that the structure of the landscape is being displayed adequate. The students feel addressed affectively due to the real-life encounters and experience their environment consciously. The presented concept "GPS-based educational trail" is different from a normal geocache, which is merely a hide-and-seek-game. Here, the main focus lays on the field work and earth science. The GPS-decvices are used for the orientation between the Geopoints. In order to get two groups with characteristics as different as possible, due to their developmental psychology, age-related education of cognitive and methodical competence, classes from grade 5 (11 years old) and 11 (17 years old) have been chosen. The different cognitive states of development require different didactical approaches. For the 11 grade the topic "rearrangements of fluvial topography" is a possible one. Using the example of anthropogenic rearrangements of the Rheinaue wetlands near Karlsruhe the interdependency between human and environment can be shown. The "Nördlinger Ries" between the Swabian and the Franconian Jura has been chosen for grade 5. The typical elements of the Swabian Jura (karst formation, hydrogeology

  15. Developing Earth System Science Courses and Programs at Minority Serving Institutions

    NASA Astrophysics Data System (ADS)

    Johnson, D. R.; Jackson, C.; Ruzek, M.

    2004-12-01

    In the current NASA/USRA ESSE21 Program, emphasis is placed on the development of Earth System Science courses and degree offerings in Minority Serving Institutions (MSIs). Of the 18 colleges/universities being supported by NASA through USRA, 10 colleges/universities are MSIs. While there is recognition of the need for Earth system science courses, minors and degree programs by NASA and other agencies, within MSIs, a central challenge is how to provide a vision of the future opportunities in ESS and STEM disciplines that attracts and motivates students to these studies. Students need career guidance, role models and mentoring to encourage entry into STEM in general, and Earth system science in particular. Then there is the question of how to bring interested faculty together in institutions to form a critical mass that would forego the breadth and depth of disciplinary interests to undertake the development of multi/cross and interdisciplinary courses, minors and degree programs in ESS. Within the ESSE21 Diversity Working Group, the question has been raised as to how will MSIs ever be mainstream participants in ESS without teaching and engaging in research in remote sensing, modeling of the Earth's climate system and other like endeavors. Two other related questions raised within the Working Group are what are the long-term objectives of MSI adoption of ESS and what course corrections are needed to make ESS viable at MSIs. Within these considerations there are unresolved questions concerning the need and availability of resources from NASA, other agencies and local institutions. Apart from these larger considerations, efforts are underway within the ESSE21 Program that provide for sharing of resources among participants, organization of and access to materials that already exist, online resources, course outlines and successful listings for online resources by topics for particular courses and subject areas. The Lesson Learned Working Group, as well as the program

  16. Focusing the EarthScope for a Broader Audience

    NASA Astrophysics Data System (ADS)

    Smith-Konter, B. R.

    2011-12-01

    One of the most challenging milestones of scientific research is often the translation of a technical result into a clear "teachable moment" that is accessible (and interesting!) to a broader audience. The success of this milestone can largely be measured by its effectiveness to inspire interest and enthusiasm in the non-scientist. Moreover, as 4D multimedia now dominates most aspects of our social environment, science "teaching" now also requires intervention of visualization technology and animation to portray research results in an inviting and stimulating manner. In response to these needs, a primary objective of the EarthScope Education and Outreach program is to transform technical science into teachable products for a technologically thriving generation. Following the Incorporated Research Institutions for Seismology (IRIS)'s lead in developing interactive Earth science kiosk multimedia (bundled in a free product called Active Earth), a major focus of this EarthScope CAREER project is aimed at the construction and installation of customized EarthScope-themed touch screen kiosks in local communities. These kiosks are helping to educate a broader audience about EarthScope's unique instrumentation and observations using interactive animations, games, and virtual field trips. An additional focus of this CAREER project is aimed at the development of several Earthquakes in Action teaching modules for grades 6-12, which have been successfully tested and implemented in both teacher-prep courses and an annual high school summer geosciences camp at the University of Texas at El Paso. These activities are beginning to shape a new pathway for how teachers teach and students learn about planet Earth and its fantastic EarthScope - one click (and touch) at a time.

  17. Teaching professionalism in science courses: anatomy to zoology.

    PubMed

    Macpherson, Cheryl C

    2012-02-01

    Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.

  18. Combined Industry, Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)

    1996-01-01

    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.

  19. EarthTutor: An Interactive Intelligent Tutoring System for Remote Sensing

    NASA Astrophysics Data System (ADS)

    Bell, A. M.; Parton, K.; Smith, E.

    2005-12-01

    Earth science classes in colleges and high schools use a variety of satellite image processing software to teach earth science and remote sensing principles. However, current tutorials for image processing software are often paper-based or lecture-based and do not take advantage of the full potential of the computer context to teach, immerse, and stimulate students. We present EarthTutor, an adaptive, interactive Intelligent Tutoring System (ITS) being built for NASA (National Aeronautics and Space Administration) that is integrated directly with an image processing application. The system aims to foster the use of satellite imagery in classrooms and encourage inquiry-based, hands-on earth science scientific study by providing students with an engaging imagery analysis learning environment. EarthTutor's software is available as a plug-in to ImageJ, a free image processing system developed by the NIH (National Institute of Health). Since it is written in Java, it can be run on almost any platform and also as an applet from the Web. Labs developed for EarthTutor combine lesson content (such as HTML web pages) with interactive activities and questions. In each lab the student learns to measure, calibrate, color, slice, plot and otherwise process and analyze earth science imagery. During the activities, EarthTutor monitors students closely as they work, which allows it to provide immediate feedback that is customized to a particular student's needs. As the student moves through the labs, EarthTutor assesses the student, and tailors the presentation of the content to a student's demonstrated skill level. EarthTutor's adaptive approach is based on emerging Artificial Intelligence (AI) research. Bayesian networks are employed to model a student's proficiency with different earth science and image processing concepts. Agent behaviors are used to track the student's progress through activities and provide guidance when a student encounters difficulty. Through individual

  20. Hot Topics in Science Teaching

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2018-01-01

    There are vital topics in science teaching and learning which are mentioned frequently in the literature. Specialists advocate their importance in the curriculum as well as science teachers stress their saliency. Inservice education might well assist new and veteran teachers in knowledge and skills. The very best science lessons and units of…

  1. Eighth Grade Earth Science Curriculum Guide. Part 1.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This is a curriculum guide composed of lessons which can serve as models for the beginning teacher as well as for the teacher who needs activities to broaden the earth science perspective in the classroom. It was designed to supplement the New york State Earth Science Syllabus and encourages students to develop inquiry and problem solving skills.…

  2. An Integrated and Collaborative Approach for NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Murphy, K.; Lowe, D.; Behnke, J.; Ramapriyan, H.; Behnke, J.; Sofinowski, E.

    2012-01-01

    Earth science research requires coordination and collaboration across multiple disparate science domains. Data systems that support this research are often as disparate as the disciplines that they support. These distinctions can create barriers limiting access to measurements, which could otherwise enable cross-discipline Earth science. NASA's Earth Observing System Data and Information System (EOSDIS) is continuing to bridge the gap between discipline-centric data systems with a coherent and transparent system of systems that offers up to date and engaging science related content, creates an active and immersive science user experience, and encourages the use of EOSDIS earth data and services. The new Earthdata Coherent Web (ECW) project encourages cohesiveness by combining existing websites, data and services into a unified website with a common look and feel, common tools and common processes. It includes cross-linking and cross-referencing across the Earthdata site and NASA's Distributed Active Archive Centers (DAAC), and by leveraging existing EOSDIS Cyber-infrastructure and Web Service technologies to foster re-use and to reduce barriers to discovering Earth science data (http://earthdata.nasa.gov).

  3. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    NASA Technical Reports Server (NTRS)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  4. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  5. Grid Technology as a Cyber Infrastructure for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas H.

    2004-01-01

    This paper describes how grids and grid service technologies can be used to develop an infrastructure for the Earth Science community. This cyberinfrastructure would be populated with a hierarchy of services, including discipline specific services such those needed by the Earth Science community as well as a set of core services that are needed by most applications. This core would include data-oriented services used for accessing and moving data as well as computer-oriented services used to broker access to resources and control the execution of tasks on the grid. The availability of such an Earth Science cyberinfrastructure would ease the development of Earth Science applications. With such a cyberinfrastructure, application work flows could be created to extract data from one or more of the Earth Science archives and then process it by passing it through various persistent services that are part of the persistent cyberinfrastructure, such as services to perform subsetting, reformatting, data mining and map projections.

  6. Study of Turkish Preschool Teachers' Attitudes toward Science Teaching

    NASA Astrophysics Data System (ADS)

    Erden, Feyza T.; Sönmez, Sema

    2011-05-01

    This study aims to explore preschool teachers' attitudes toward science teaching and its impact on classroom practices through the frequency of science activities provided in the classroom. In addition, the study investigates if their attitudes are related to factors such as educational level, years of teaching experience, and the school type they work in. The present research was conducted with 292 preschool teachers who work in public and private schools in different districts of Ankara, Turkey. The data were collected by administering the Early Childhood Teachers' Attitudes toward Science Teaching Scale. Our analyses indicate that there is a significant but weak link between preschool teachers' attitudes toward science teaching and the frequency of science activities that they provide in the classroom. Further, while teachers' characteristics such as educational level and experience are found to play an insignificant role on the overall measures of the scale, type of school appears to be a major factor in explaining the attitudes toward science teaching.

  7. Pre-service elementary science teaching self-efficacy and teaching practices: A mixed-methods, dual-phase, embedded case study

    NASA Astrophysics Data System (ADS)

    Sangueza, Cheryl Ramirez

    This mixed-method, dual-phase, embedded-case study employed the Social Cognitive Theory and the construct of self-efficacy to examine the contributors to science teaching self-efficacy and science teaching practices across different levels of efficacy in six pre-service elementary teachers during their science methods course and student teaching experiences. Data sources included the Science Teaching Efficacy Belief Instrument (STEBI-B) for pre-service teachers, questionnaires, journals, reflections, student teaching lesson observations, and lesson debriefing notes. Results from the STEBI-B show that all participants measured an increase in efficacy throughout the study. The ANOVA analysis of the STEBI-B revealed a statistically significant increase in level of efficacy during methods course, student teaching, and from the beginning of the study to the end. Of interest in this study was the examination of the participants' science teaching practices across different levels of efficacy. Results of this analysis revealed how the pre-service elementary teachers in this study contextualized their experiences in learning to teach science and its influences on their science teaching practices. Key implications involves the value in exploring how pre-service teachers interpret their learning to teach experiences and how their interpretations influence the development of their science teaching practices.

  8. Earth Science: 49 Science Fair Projects Series.

    ERIC Educational Resources Information Center

    Bonnet, Robert L.; Keen, G. Daniel

    This book offers a large collection of Earth science projects and project ideas for students, teachers, and parents. The projects described are complete but can also be used as spring boards to create expanded projects. Overviews, organizational direction, suggested hypotheses, materials, procedures, and controls are provided. The projects…

  9. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  10. Technology thrusts for future Earth science applications

    NASA Astrophysics Data System (ADS)

    Habib, Shahid

    2001-02-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  11. Technology Thrust for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2000-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Traditionally, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, weight and volume. These missions have taken much longer implementation due to technology development time and have carried a large suite of instruments on a large-size spacecraft. NASA is also facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific goals have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall life cycle by infusing technologies that are being developed independently of any planned mission's implementation cycle. The major redirection of early investment in the critical technologies should have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, and allow for more frequent missions or earth science measurements to occur. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  12. Technology Thrusts for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2001-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  13. An experience of science theatre: Earth Science for children

    NASA Astrophysics Data System (ADS)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-04-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks

  14. ArXives of Earth science

    NASA Astrophysics Data System (ADS)

    2018-03-01

    Preprint servers afford a platform for sharing research before peer review. We are pleased that two dedicated preprint servers have opened for the Earth sciences and welcome submissions that have been posted there first.

  15. A decade of Earth science

    NASA Astrophysics Data System (ADS)

    2018-01-01

    Great Earth science has been published over the ten years since the launch of Nature Geoscience. The field has also become more interdisciplinary and accountable, as well as more central to society and sustainability.

  16. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  17. Using Food to Demonstrate Earth Science Concepts

    NASA Astrophysics Data System (ADS)

    Walter, J.; Francek, M.

    2001-12-01

    One way to better engage K-16 students with the earth sciences is through classroom demonstrations with food. We summarize references from journals and the world wide web that use food to illustrate earth science concepts. Examples of how edible substances have been used include using candy bars to demonstrate weathering concepts, ice cream to mimic glaciers, and grapes to demonstrate evaporation. We also categorize these demonstrations into geology, weather, space science, and oceanography categories. We further categorize the topics by grade level, web versus traditional print format, amount of time necessary to prepare a lesson plan, and whether the activity is better used as a demonstration or hands on activity.

  18. Learning to teach science in a professional development school program

    NASA Astrophysics Data System (ADS)

    Hildreth, David P.

    1997-09-01

    The purpose of this study was to determine the effects of learning to teach science in a Professional Development School (PDS) program on university elementary education preservice teachers' (1) attitudes toward science, (2) science process skills achievement, and (3) sense of science teaching efficacy. Data were collected and analyzed using both quantitative and qualitative methods. Quantitative data were collected using the Science Attitude Inventory (North Carolina Math and Science Education Network (1994), the Test of Integrated Process Skills, TIPS, (Dillashaw & Okey, 1980), and the Science Teaching Efficacy Belief Instrument, STEBI, form B (Enochs & Riggs, 1990). A pretest posttest research design was used for the attitude and process skills constructs. These results were analyzed using paired t test procedures. A pre-experimental group comparison group research design was used for the efficacy construct. Results from this comparison were analyzed using unpaired t test procedures. Qualitative data were collected through students' responses to open-ended questionnaires, narrative interviews, journal entries, small messages, and unsolicited conversations. These data were analyzed via pattern analysis. Posttest scores were significantly higher than pretests scores on both the Science Attitude Inventory and the TIPS. This indicated that students had improved attitudes toward science and science teaching and higher process skills achievement after three semesters in the science-focused PDS program. Scores on the STEBI were significantly higher for students in the pre-experimental group when compared to students in the comparison group. This indicates that students in the science-focused PDS program possessed more efficacious beliefs about science teaching than did the comparison group. Quantitative data were supported by analysis of qualitative data. Implications from this study point to the effectiveness of learning to teach science in a science-focused PDS

  19. Florida and Puerto Rico Secondary Science Teachers' Knowledge and Teaching of Climate Change Science

    ERIC Educational Resources Information Center

    Herman, Benjamin C.; Feldman, Allan; Vernaza-Hernandez, Vanessa

    2017-01-01

    Misconceptions about climate change science are pervasive among the US public. This study investigated the possibility that these misconceptions may be reflective of science teachers' knowledge and teaching of climate change science. Florida and Puerto Rico secondary science teachers who claim to teach extensively about climate change were…

  20. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    ERIC Educational Resources Information Center

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  1. Space Science in Action: Earth [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording explains the factors that allow life to flourish on Earth, including our position within the solar system, the water cycle, and the composition of the planet. A hands-on activity demonstrates the earth's water cycle. Contents include a teacher's guide designed to help science teachers in grades 5-8 by providing a brief…

  2. Turkish Preservice Elementary Science Teachers' Conceptions of Learning Science and Science Teaching Efficacy Beliefs: Is There a Relationship?

    ERIC Educational Resources Information Center

    Bahcivan, Eralp; Kapucu, Serkan

    2014-01-01

    This study has been conducted to investigate conceptions of learning science (COLS) and personal science teaching efficacy belief (PSTE) of Turkish preservice elementary science teachers (PSTs) and to explore the relationship between these variables. Two instruments COLS questionnaire and PSTE subscale of Science Teaching Efficacy Beliefs…

  3. Teaching science for conceptual change: Toward a proposed taxonomy of diagnostic teaching strategies to gauge students' personal science conceptions

    NASA Astrophysics Data System (ADS)

    Shope, Richard Edwin, III

    Science instruction aims to ensure that students properly construct scientific knowledge so that each individual may play a role as a science literate citizen or as part of the science workforce (National Research Council, 1996, 2000). Students enter the classroom with a wide range of personal conceptions regarding science phenomena, often at variance with prevailing scientific views (Duschl, Hamilton, & Grandy, 1992; Hewson, 1992). The extensive misconceptions research literature emphasizes the importance of diagnosing students' initial understandings in order to gauge the accuracy and depth of what each student knows prior to instruction and then to use that information to adapt the teaching to address student needs. (Ausubel, 1968; Carey, 2000; Driver et al., 1985; Karplus & Thier, 1967; Mintzes, Wandersee, & Novak, 1998; Osborne & Freyberg, 1985; Project 2061, 1993; Strike & Posner, 1982, 1992; Vygotsky, 1934/1987). To gain such insight, teachers diagnose not only the content of the students' personal conceptions but also the thinking processes that produced them (Strike and Posner, 1992). Indeed, when teachers design opportunities for students to express their understanding, there is strong evidence that such diagnostic assessment also enhances science teaching and learning (Black & William, 1998). The functional knowledge of effective science teaching practice resides in the professional practitioners at the front lines---the science teachers in the classroom. Nevertheless, how teachers actually engage in the practice of diagnosis is not well documented. To help fill this gap, the researcher conducted a study of 16 sixth grade science classrooms in four Los Angeles area middle schools. Diagnostic teaching strategies were observed in action and then followed up by interviews with each teacher. Results showed that teachers use strategies that vary by the complexity of active student involvement, including pretests, strategic questions, interactive discussion

  4. In-Service Turkish Elementary and Science Teachers' Attitudes toward Science and Science Teaching: A Sample from Usak Province

    ERIC Educational Resources Information Center

    Turkmen, Lutfullah

    2013-01-01

    The purpose of this study is to reveal Turkish elementary teachers' and science teachers' attitudes toward science and science teaching. The sample of the study, 138 in-service elementary level science teachers from a province of Turkey, was selected by a clustered sampling method. The Science Teaching Attitude Scale-II was employed to measure the…

  5. Ensuring Credibility of NASA's Earth Science Data (Invited)

    NASA Astrophysics Data System (ADS)

    Maiden, M. E.; Ramapriyan, H. K.; Mitchell, A. E.; Berrick, S. W.; Walter, J.; Murphy, K. J.

    2013-12-01

    The summary description of the Fall 2013 AGU session on 'Data Curation, Credibility, Preservation Implementation, and Data Rescue to Enable Multi-Source Science' identifies four attributes needed to ensure credibility in Earth science data records. NASA's Earth Science Data Systems Program has been working on all four of these attributes: transparency, completeness, permanence, and ease of access and use, by focusing on them and upon improving our practices of them, over many years. As far as transparency or openness, NASA was in the forefront of free and open sharing of data and associated information for Earth observations. The US data policy requires such openness, but allows for the recoup of the marginal cost of distribution of government data and information - but making the data available with no such charge greatly increases their usage in scientific studies and the resultant analyses hasten our collective understanding of the Earth system. NASA's currently available Earth observations comprise primarily those obtained from satellite-borne instruments, suborbital campaigns, and field investigations. These data are complex and must be accompanied by rich metadata and documentation to be understandable. To enable completeness, NASA utilizes standards for data format, metadata content, and required documentation for any data that are ingested into our distributed Earth Observing System Data and Information System, or EOSDIS. NASA is moving to a new metadata paradigm, primarily to enable a fuller description of data quality and fit-for-purpose attributes. This paradigm offers structured approaches for storing quality measures in metadata that include elements such as Positional Accuracy, Lineage and Cloud Cover. NASA exercises validation processes for the Earth Science Data Systems Program to ensure users of EOSDIS have a predictable level of confidence in data as well as assessing the data viability for usage and application. The Earth Science Data Systems

  6. Using an Artificial Rock Outcrop to Teach Geology

    ERIC Educational Resources Information Center

    Totten, Iris

    2005-01-01

    Teaching Earth science without exposure to rock outcrops limits students depth of understanding of Earth's processes, limits the concept of scale from their spatial visualization imaging, and distorts their perception of geologic time (Totten 2003). Through a grant funded by the National Science Foundation, an artificial rock outcrop was…

  7. Hidden Treasures for Science Teaching: United States Patents.

    ERIC Educational Resources Information Center

    Anderson, Norman D.

    United States patents are a source of historical information with many implications for science teaching. Using patents as science teaching devices has been largely ignored by science educators. Some of these devices can be easily modified for use in today's classrooms; in addition, patents serve as great examples of how our knowledge of science…

  8. Exploiting Untapped Information Resources in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  9. Teacher beliefs about teaching science through Science-Technology-Society (STS)

    NASA Astrophysics Data System (ADS)

    Massenzio, Lynn

    2001-07-01

    Statement of the problem. As future citizens, students will have the enormous responsibility of making decisions that will require an understanding of the interaction of science and technology and its interface with society. Since many societal issues today are grounded in science and technology, learning science in its social context is vital to science education reform. Science-Technology-Society (STS) has been strongly identified with meeting this goal, but despite its benefits, putting theory into practice has been difficult. Research design and methodology. The purpose of this study was to explore teacher beliefs about teaching science through STS. The following broad research questions guided the study: (1) What are the participants' initial beliefs about teaching science through STS? (2) What beliefs emerge as participants reflect upon and share their STS instructional experiences with their peers? A social constructivist theoretical framework was developed to plan interactions and collect data. Within this framework, a qualitative methodology was used to interpret the data and answer the research questions. Three provisionally certified science teachers engaged in a series of qualitative tasks including a written essay, verbal STS unit explanation, reflective journal writings, and focus group interviews. After implementing their STS unit, the participants engaged in meaningful dialogue with their peers as they reflected upon, shared, and constructed their beliefs. Conclusions. The participants strongly believed in STS as a means for achieving scientific and technological literacy, developing cognition, enhancing scientific habits of mind and affective qualities, and fostering citizen responsibility. Four major assertions were drawn: (a) Participants' initial belief in teaching for citizen responsibility did not fully align with practice, (b) Educators at the administrative level should be made aware of the benefits of teaching science through STS, (c

  10. A New Curriculum For a Lab-Based Course in Introductory Earth Science: the Combined Effort of a Regional University and Local Community Colleges in the North Cascades Olympic Science Partnership.

    NASA Astrophysics Data System (ADS)

    Debari, S. M.; Bachmann, J.; Dougan, B.; Fackler-Adams, B.; Grupp, S.; Linneman, S.; Plake, T.; Smith, B.

    2005-12-01

    The North Cascades Olympic Science Partnership (NCOSP) is a partnership between Western Washington University, three local community colleges, the Northwest Indian College, and 29 K-12 school districts in western Washington State. One of the partnership goals is to improve the teaching and learning of science at the post-secondary level with specific emphasis on the training of future teachers. To this end, Western Washington University (WWU) joined with grass-roots efforts by local 2-year colleges to develop a yearlong science sequence that would directly impact pre-service elementary school teachers and other non-science majors. Students from these 2-year colleges who identify themselves as pre-service teachers go on to a teacher preparation program at WWU. The multi-year process of collaborative work among ~20 faculty from these institutions has produced three quarters of new curriculum in the sciences (including one quarter of Earth Science) that uses the pedagogical approach of Physics for Elementary Teachers (PET) (cpucips.sdsu/web/pet). Each of the science quarters utilizes the theme of the transfer of matter and energy. The Earth Science curriculum (transfer of matter and energy in Earth systems) is a quarter-long, lab-based course that emphasizes a metacognitive approach. The curriculum utilizes questioning, small group work, and small and large class discussions. Whiteboarding, or the process of sharing small-group ideas to a larger group, occupies a central theme in the curriculum. Students learn concepts by doing the lab activities, but the group discussions that promote discourse and questioning among students is a crucial tool in the sense-making and solidification of those concepts. The curriculum stands alone and does not require lectures by the instructors. The instructor's role is as a facilitator and questioner. The Earth Science curriculum is focused on only a few "Big Ideas" that the faculty developers identified in the planning stages. These

  11. The ESWN webpage as a tool to increase international collaboration in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Glessmer, Mirjam S.; Adams, Manda; de Boer, Agatha M.; Hastings, Meredith; Kontak, Rose

    2013-04-01

    The Earth Science Women's Network (ESWN; ESWNonline.org) is an international peer-mentoring network of women in the Earth Sciences, many in the early stages of their careers. ESWN's mission is to promote career development, build community, provide opportunities for informal mentoring and support, and facilitate professional collaborations. This has been accomplished via email and a listserv, on Facebook, at in-person networking events, and at professional development workshops. Over the last 10 years, ESWN has grown by word of mouth to include more than 1600 members working on all 7 continents. In an effort to facilitate international connections among women in the Earth Sciences, ESWN has developed a password protected community webpage where members can create an online presence and interact with each other. For example, regional groups help women to connect with co-workers at the same employer, in the same city or the same country, or with women at the place where they are considering taking a new job, will attend a conference or will start working soon. Topical groups center around a vast array of topics ranging from research interests, funding opportunities, work-life balance, teaching, scientific methods, and searching for a job to specific challenges faced by women in the earth sciences. Members can search past discussions and share documents like examples of research statements, useful interview materials, or model recommendation letters. The new webpage also allows for more connectivity among other online platforms used by our members, including LinkedIn, Facebook, and Twitter. Built in Wordpress with a Buddypress members-only section, the new ESWN website is supported by AGU and a National Science Foundation ADVANCE grant. While the ESWN members-only community webpage is focused on providing a service to women geoscientists, the content on the public site is designed to be useful for institutions and individuals interested in helping to increase, retain

  12. Developing Preservice Teachers' Knowledge of Science Teaching Through Video Clubs

    NASA Astrophysics Data System (ADS)

    Johnson, Heather J.; Cotterman, Michelle E.

    2015-06-01

    Though an adequate understanding of content is a natural prerequisite of teaching (Carlsen in Journal of Research in Science Teaching 30:471-481, 1993), teachers also need to be able to interpret content in ways that facilitate student learning. How to best support novice teachers in developing and refining their content knowledge for teaching is a crucial and ongoing question for preservice teacher educators. Recently, video clubs are being explored as potential contexts for teacher learning (Barnhart & van Es in Teaching and Teacher Education 45:83-93, 2015; Sherin & Han in Teaching and Teacher Education 20:163-183, 2004). We hypothesized that pairing video clubs with student teaching experiences would provide a forum for preservice teachers to discuss issues relevant to their professional trajectory through exposure to models of peer teaching and opportunities to reflect on practice. In this study, we explored how secondary science preservice teachers used video club to restructure their overall science knowledge into science knowledge for teaching. Our findings suggest that video clubs allowed preservice teachers to access and leverage student thinking and instructional resources to deepen their understanding of science content and trajectories for science learning.

  13. In Brief: European Earth science network for postdocs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    The European Space Agency (ESA) has launched a new initiative called the Changing Earth Science Network, to support young scientists undertaking leading-edge research activities aimed at advancing the understanding of the Earth system. The initiative will enable up to 10 young postdoctoral researchers from the agency's member states to address major scientific challenges by using Earth observation (EO) satellite data from ESA and its third-party missions. The initiative aims to foster the development of a network of young scientists in Europe with a good knowledge of the agency and its EO programs. Selected candidates will have the option to carry out part of their research in an ESA center as a visiting scientist. The deadline to submit proposals is 16 January 2009. Selections will be announced in early 2009. The Changing Earth Science Network was developed as one of the main programmatic components of ESA's Support to Science Element, launched in 2008. For more information, visit http://www.esa.int/stse.

  14. Earth Sciences at Boston University: Reorientation and Renewal

    NASA Astrophysics Data System (ADS)

    Murray, R. W.; Simpson, C.

    2003-12-01

    Beginning in 1994 with the renaming of its Department of Geology as the Department of Earth Sciences, Boston University has invested much effort into developing a modern, energetic department that excels in its dual research and teaching mission. These changes required strong leadership at the departmental and senior administrative level, but they have resulted in a moderately sized program (9.5 full time faculty) that is competing with "Top Ten" institutions for graduate students and faculty, and which is also placing its undergraduates in the leading graduate programs. Most of the revitalization was achieved over a 5-year period in which across the board changes occurred in our undergraduate curriculum and during which we recruited junior and mid-level faculty on the basis of their scholarly abilities and for their belief in the culture of our new mission and program. The undergraduate curriculum, which had been oriented towards traditional geologic offerings, was greatly increased in rigor (requiring a full year each of calculus, physics, and chemistry) and redesigned to expand flexibility in the broad field of earth sciences. During the evolution of the curriculum, it was extremely important not to confuse "tradition" with "rigor". Undergraduates became more critically involved with our research mission through senior theses, a formal Undergraduate Research Opportunities program, and by work-study participation in the laboratories. By making the program more challenging, over the period of 3 years we doubled the number of majors and minors and increased the average GPA by 0.5 units. Now, after 8 years, we have nearly tripled our overall number of students, with further improvements in quality and intellectual diversity. The opportunity to replace departing senior faculty was achieved through effectively arguing to the central administration that modern earth sciences are an essential component of any leading institution of higher education. By persuading the

  15. Educating the Public about Deep-Earth Science

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2010-12-01

    The nature of Earth’s interior is an active frontier of scientific research. Much of our current understanding of sub-crustal Earth is based on knowledge acquired in the last 2-3 decades, made possible by public funding and by dense seismic arrays, satellite remote sensing, increases in computer power that enable use of enhanced numerical techniques, improved theoretical and experimental knowledge of high PT mineral physics and chemistry, and a vigorous scientific community that has been trained to take advantage of these opportunities. An essential component of science is effective communication; therefore, providing for public education about science is a responsibility of the research community. Current public understanding of Earth’s interior is meager at best. In pre-college texts and in non-technical mass media, Earth's interior is typically visualized as an onion or baseball of concentric different-colored shells along whose upper surface "crustal" plates move like packages on conveyor belts of convecting mantle. Or the crust is thought to float on a molten mantle, as in the 19th century ideas of William Lowthian Green. Misconceptions about Earth that are brought to the undergraduate classroom must be confronted frankly and replaced by current understanding based on good science. Persistent ignorance has consequences. What do we want the public to know? First, the public should understand that knowledge of Earth's interior is important, not irrelevant. The public should know that deep-Earth processes result in Earth's dynamic magnetic field. Deep-Earth processes affect how radiation from the Sun reaches Earth, consequently affecting the atmosphere, the oceans, and the viability of life on Earth. The composition and differentiated structure of Earth's interior is a result of the early accretionary history of Earth and the Earth-Moon system. The public should also know that lithospheric tectonics, with all of its consequences (dynamic topography, volcanoes

  16. Clay-Motion: Modeling Our Dynamic Earth.

    ERIC Educational Resources Information Center

    Borrello, Murray C.

    1994-01-01

    Provides easy to teach and understand laboratory exercises for three fundamental concepts (plate movement, rock mechanics, and geologic time) that are often left out of the geology and Earth science curriculum. (ZWH)

  17. Teaching Science Fiction to Science and Technology Majors.

    ERIC Educational Resources Information Center

    Diaconoff, Ted

    This paper describes the content and implementation of a course designed to teach science and technology majors about science fiction. Although many students had expressed little interest in the imaginative world of literature, the scientific content of the texts used attracted their attention and legitimized their involvement in something outside…

  18. PREFACE: 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013), was held at the Swiss Bell Mangga Besar, Jakarta, Indonesia, on 23 December 2013. The AeroEarth conference aims to bring together researchers, engineers and scientists in the domain of interest from around the world. AeroEarth 2013 promotes interaction between the theoretical, experimental, and applied communities, so that high-level exchange is achieved in new and emerging areas within Earth Science. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 91 papers and after rigorous review, 17 papers were accepted. The participants come from 8 countries. There are 3 (three) Plenary Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of AeroEarth 2013. The AeroEarth 2013 Proceedings Editors Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. Amit Desai Further information on the invited plenary speakers and photographs from the conference can be found in the pdf.

  19. NASA's Earth Science Research and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    2004-01-01

    NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.

  20. Earth Science Data for a Mobile Age

    NASA Astrophysics Data System (ADS)

    Oostra, D.; Chambers, L. H.; Lewis, P. M.; Baize, R.; Oots, P.; Rogerson, T.; Crecelius, S.; Coleman, T.

    2012-12-01

    /needs and generate new data combinations--targeting users with a web 3.0 methodology. We will examine applications that give users direct access to data in near real-time and find solutions for the educational community. MND and S'COOL will identify trends in the mobile and web application sectors to provide the greatest effect upon relevant audiences within the science and educational communities. Greater access is the goal, with an acute focus on educating our future explorers and scientists with tools and data that will provide the most efficacy, use, and enriching science experiences. Current trends point to cross-platform web applications as being the most effective and efficient means of delivering content, data, and ideas to end users. Universal availability of key datasets on any device will encourage users to continue to use data and attract potential data users and providers. Projected Outcomes Initially, the outcome for this work is to increase the effectiveness of the MND and S'COOL projects by learning more about our users needs and anticipating how data will be used in the future. Through our work we will increase exposure and ease of access to NASA datasets relevant to our communities. Our goal is to focus on our participants mobile usage in the classroom, thereby gaining a greater understanding on how data is being used to teach students about the Earth and begin to develop better tools and technologies.

  1. Pre-Service Science Teachers' Epistemological Beliefs and Teaching Reforms in Tanzania

    ERIC Educational Resources Information Center

    Tarmo, Albert

    2016-01-01

    In an effort to understand why recent initiatives to promote learner-centred pedagogy in science teaching made a little change in the actual teaching practices of science teachers, this study explored pre-service science teachers' beliefs about science knowledge and their teaching practices. Six pre-service science teachers were interviewed to…

  2. Earth Stewardship Science: International Research Networks based in Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Gaines, S. M.

    2010-12-01

    The role of networking in student and early career years is critical in the development of international interdisciplinary earth system science. These networks - both peer and mentor-based - can build community, foster enthusiasm and further research applications in addition to the traditional goal of identifying and obtaining work. UNESCO has nearly 40 years of experience in building international research teams through the International Geoscience Program (IGCP) and has recently focused their attention on the status of the earth sciences in Africa. UNESCO’s Earth Science Education Initiative in Africa ran a series of regional scoping workshops around the continent in order to develop an integrated status report on the earth sciences in Africa. The results, which are globally relevant, indicate that the field is limited by the level of basic science education of incoming students and restricted laboratory facilities, but also by a lack of connectedness. This isolation relates both to the interaction between researchers within countries and around the world but also the divide between Universities and Industry and the failure of the field to communicate its relevance to the public. In a context where livelihood opportunities are the driver of study and the earth sciences provide a major source of income, practical academic ties to industry are an essential element of the attractiveness of the field to students. Actions and ideas for addressing this situation will be presented to reinforce the role of the earth sciences in improving human and environmental well-being.

  3. The Role and Evolution of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  4. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  5. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    NASA Astrophysics Data System (ADS)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  6. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    ERIC Educational Resources Information Center

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-01-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching…

  7. Teaching Efficacy of Universiti Putra Malaysia Science Student Teachers

    ERIC Educational Resources Information Center

    Bakar, Abd. Rahim; Konting, Mohd. Majid; Jamian, Rashid; Lyndon, Novel

    2008-01-01

    The objective of the study was to access teaching efficacy of Universiti Putra Malaysia Science student teachers. The specific objectives were to determine teaching efficacy of Science student teachers in terms of student engagement; instructional strategies; classroom management and teaching with computers in classroom; their satisfaction with…

  8. SCIDIP-ES - A science data e-infrastructure for preservation of earth science data

    NASA Astrophysics Data System (ADS)

    Riddick, Andrew; Glaves, Helen; Marelli, Fulvio; Albani, Mirko; Tona, Calogera; Marketakis, Yannis; Tzitzikas, Yannis; Guarino, Raffaele; Giaretta, David; Di Giammatteo, Ugo

    2013-04-01

    The capability for long term preservation of earth science data is a key requirement to support on-going research and collaboration within and between many earth science disciplines. A number of critically important current research directions (e.g. understanding climate change, and ensuring sustainability of natural resources) rely on the preservation of data often collected over several decades in a form in which it can be accessed and used easily. In many branches of the earth sciences the capture of key observational data may be difficult or impossible to repeat. For example, a specific geological exposure or subsurface borehole may be only temporarily available, and deriving earth observation data from a particular satellite mission is clearly often a unique opportunity. At the same time such unrepeatable observations may be a critical input to environmental, economic and political decision making. Another key driver for strategic long term data preservation is that key research challenges (such as those described above) frequently require cross disciplinary research utilising raw and interpreted data from a number of earth science disciplines. Effective data preservation strategies can support this requirement for interoperability, and thereby stimulate scientific innovation. The SCIDIP-ES project (EC FP7 grant agreement no. 283401) seeks to address these and other data preservation challenges by developing a Europe wide e-infrastructure for long term data preservation comprising appropriate software tools and infrastructure services to enable and promote long term preservation of earth science data. Because we define preservation in terms of continued usability of the digitally encoded information, the generic infrastructure services will allow a wide variety of data to be made usable by researchers from many different domains. This approach will enable the cost for long-term usability across disciplines to be shared supporting the creation of strong

  9. Early childhood teachers' self-efficacy toward teaching science: Outcomes of professional development

    NASA Astrophysics Data System (ADS)

    Clark, Sarah

    The teaching of science in the early childhood classrooms has slowly been decreasing. As the years have passed, the subject of science has been put on the backburner while mathematics and language arts have taken center stage in the educational system. Early childhood teachers need to find ways to integrate science with other subjects in order to ensure children are receiving a well-rounded and full education. The purpose of this study was to determine the effectiveness of professional development on teachers' efficacy in teaching science. Volunteer teachers completed the Weisgram and Bigler scale (TWBS) pre and post training, in order to determine their self-efficacy toward teaching science, they also completed pre- and post- concept maps about their knowledge of teaching science, and a demographic questionnaire. Findings indicate the training provided was effective in increasing teachers' knowledge of teaching science. Teachers who had an increase in science teaching knowledge were also found to feel more efficacious about teaching science after completing the training and an academic year of implementing science lessons in their classrooms. There was not a relationship between teacher demographics and their science-teaching efficacy. This means that the demographics of participants in this study were not influential on teachers' efficacy, but professional development workshops enabled teachers to gain more knowledge about teaching as well as increase their efficacy about teaching science.

  10. The earth in technological balance

    NASA Astrophysics Data System (ADS)

    Stout, Dorothy L.

    1998-08-01

    The K-12 National Science Education Standards have been developed and published by the National Research Council (1995)to "improve scientific literacy across the nation to prepare our students to be scientifically literate". The Standards stress that a quality science education requires an "active learning" approach to science inquiry within the areas of science teaching, professional development, assessment, science content, science education programs and science education systems. In this time of increasing technological advance, the equal treatment of earth and space science alongside biology, physics and chemistry bodes well for the future.

  11. Digital Geological Mapping for Earth Science Students

    NASA Astrophysics Data System (ADS)

    England, Richard; Smith, Sally; Tate, Nick; Jordan, Colm

    2010-05-01

    This SPLINT (SPatial Literacy IN Teaching) supported project is developing pedagogies for the introduction of teaching of digital geological mapping to Earth Science students. Traditionally students are taught to make geological maps on a paper basemap with a notebook to record their observations. Learning to use a tablet pc with GIS based software for mapping and data recording requires emphasis on training staff and students in specific GIS and IT skills and beneficial adjustments to the way in which geological data is recorded in the field. A set of learning and teaching materials are under development to support this learning process. Following the release of the British Geological Survey's Sigma software we have been developing generic methodologies for the introduction of digital geological mapping to students that already have experience of mapping by traditional means. The teaching materials introduce the software to the students through a series of structured exercises. The students learn the operation of the software in the laboratory by entering existing observations, preferably data that they have collected. Through this the students benefit from being able to reflect on their previous work, consider how it might be improved and plan new work. Following this they begin fieldwork in small groups using both methods simultaneously. They are able to practise what they have learnt in the classroom and review the differences, advantages and disadvantages of the two methods, while adding to the work that has already been completed. Once the field exercises are completed students use the data that they have collected in the production of high quality map products and are introduced to the use of integrated digital databases which they learn to search and extract information from. The relatively recent development of the technologies which underpin digital mapping also means that many academic staff also require training before they are able to deliver the

  12. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  13. The Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1993-01-01

    This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.

  14. EVEREST: a virtual research environment for the Earth SciencesEVEREST: a virtual research environment for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Marelli, Fulvio; Glaves, Helen; Albani, Mirko

    2017-04-01

    Advances in technologies and measuring techniques in the Earth science and Earth observation domains have resulted in huge amounts of data about our Planet having been acquired. By making this data readily discoverable and accessible, and providing researchers with the necessary processing power, tools, and technologies to work collaboratively and share the results with their peers, will create new opportunities and innovative approaches for cross-disciplinary research. The EVER-EST project aims to support these advancements in scientific research by developing a generic Virtual Research Environment (VRE) which is tailored to the needs of the Earth Science domain. It will provide scientists with the means to manage, share and preserve the data and methodologies applied in their research, and lead to results that are validated, attributable and can be shared within and beyond their often geographically dispersed communities e.g. in the form of scholarly communications. The EVER-EST VRE is being implemented as a Service Oriented Architecture (SOA) that is based on loosely coupled services which can be differentiated as being either generic or specific to the requirements of the Earth Science domain. Central to the EVEREST approach is the concept of the Research Object (RO) which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although the concept of Research Objects has previously been validated by other experimental disciplines this application in the Earth Sciences represents its first implementation in observational research. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary Earth Science domains: including ocean monitoring, selected natural hazards (flooding, ground instability and extreme weather events), land monitoring and risk management (volcanoes and

  15. From Sky to Earth: Data Science Methodology Transfer

    NASA Astrophysics Data System (ADS)

    Mahabal, Ashish A.; Crichton, Daniel; Djorgovski, S. G.; Law, Emily; Hughes, John S.

    2017-06-01

    We describe here the parallels in astronomy and earth science datasets, their analyses, and the opportunities for methodology transfer from astroinformatics to geoinformatics. Using example of hydrology, we emphasize how meta-data and ontologies are crucial in such an undertaking. Using the infrastructure being designed for EarthCube - the Virtual Observatory for the earth sciences - we discuss essential steps for better transfer of tools and techniques in the future e.g. domain adaptation. Finally we point out that it is never a one-way process and there is enough for astroinformatics to learn from geoinformatics as well.

  16. Teaching the process of science: faculty perceptions and an effective methodology.

    PubMed

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew; Dirks, Clarissa

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.

  17. Teaching the Process of Science: Faculty Perceptions and an Effective Methodology

    PubMed Central

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy. PMID:21123699

  18. Immersive Earth: Teaching Earth and Space with inexpensive immersive technology

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.; Law, C. C.; Handron, K.

    2003-12-01

    In 1995 we pioneered "Space Update", the Digital Library for the rest of us", software that was so simple that a child could use it without a keyboard and yet would allow one-click updating of the daily earth and space science images without the dangers of having an open web browser on display. Thanks to NASA support, it allowed museums and schools to have a powerful exhibit for a tiny price. Over 40,000 disks in our series have been distributed so far to educators and the public. In 2003, with our partners we are again revolutionizing educational technology with a low-cost hardware and software solution to creating and displaying immersive content. Recently selected for funding as part of the REASoN competition, Immersive Earth is a partnership of scientists, museums, educators, and content providers. The hardware consists of a modest projector with a special fisheye lens to be used in an inflatable dome which many schools already have. This, coupled with a modest personal computer, can now easily project images and movies of earth and space, allows training students in 3-D content at a tiny fraction of the cost of a cave or fullscale dome theater. Another low-cost solution is the "Imove" system, where spherical movies can play on a personal computer, with the user changing the viewing direction with a joystick. We were the first to create immersive earth science shows, remain the leader in creating educational content that people want to see. We encourage people with "allsky" images or movies to bring it and see what it looks like inside a dome! Your content could be in our next show!

  19. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  20. Avenues for Scientist Involvement in Earth and Space Science Education and Public Outreach (Invited)

    NASA Astrophysics Data System (ADS)

    Peticolas, L. M.; Gross, N. A.; Hsu, B. C.; Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Smith, D.; Meinke, B. K.

    2013-12-01

    used in conjunction with E/PO activities, NASA Wavelength (http://nasawavelength.org). Further supporting higher-education efforts, the Forums coordinate a network of science faculty, bringing them together at science conferences to share resources and experiences and to discuss pertinent education research. An online higher education clearinghouse, EarthSpace (http://www.lpi.usra.edu/earthspace), has been developed to provide faculty with news and funding information, the latest education research and resources for teaching undergraduates, and undergraduate course materials, including lectures, labs, and homework. This presentation will explore the Science E/PO Forums' pathways and tools available to support scientists involved in - or interested in being involved in - E/PO.