Sample records for teach problem-based science

  1. Effect of structure in problem based learning on science teaching efficacy beliefs and science content knowledge of elementary preservice teachers

    NASA Astrophysics Data System (ADS)

    Sasser, Selena Kay

    This study examined the effects of differing amounts of structure within the problem based learning instructional model on elementary preservice teachers' science teaching efficacy beliefs, including personal science teaching efficacy and science teaching outcome expectancy, and content knowledge acquisition. This study involved sixty (60) undergraduate elementary preservice teachers enrolled in three sections of elementary science methods classes at a large Midwestern research university. This study used a quasi-experimental nonequivalent design to collect and analyze both quantitative and qualitative data. Participants completed instruments designed to assess science teaching efficacy beliefs, science background, and demographic data. Quantitative data from pre and posttests was obtained using the science teaching efficacy belief instrument-preservice (STEBI-B) developed by Enochs and Riggs (1990) and modified by Bleicher (2004). Data collection instruments also included a demographic questionnaire, an analytic rubric, and a structured interview; both created by the researcher. Quantitative data was analyzed by conducting ANCOVA, paired samples t-test, and independent samples t-test. Qualitative data was analyzed using coding and themes. Each of the treatment groups received the same problem scenario, one group experienced a more structured PBL setting, and one group experienced a limited structure PBL setting. Research personnel administered pre and posttests to determine the elementary preservice teachers' science teaching efficacy beliefs. The results show elementary preservice teachers'science teaching efficacy beliefs can be influence by the problem based learning instructional model. This study did not find that the amount of structure in the form of core ideas to consider and resources for further research increased science teaching efficacy beliefs in this sample. Results from the science content knowledge rubric indicated that structure can increase

  2. Investigative Primary Science: A Problem-Based Learning Approach

    ERIC Educational Resources Information Center

    Etherington, Matthew B.

    2011-01-01

    This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…

  3. Teaching creativity and inventive problem solving in science.

    PubMed

    DeHaan, Robert L

    2009-01-01

    Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures.

  4. Teaching Creativity and Inventive Problem Solving in Science

    PubMed Central

    2009-01-01

    Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures. PMID:19723812

  5. A Program Based on Task-Based Teaching Approach to Develop Creative Thinking Teaching Skills for Female Science Teachers in Kingdom of Saudi Arabia (KSA)

    ERIC Educational Resources Information Center

    Ibrahim, Manal Hassan Mohammed Bin

    2015-01-01

    This study aimed at developing creative thinking teaching skills for female science teachers in Kingdom of Saudi Arabia (KSA) through designing a program based on task-based teaching approach. The problem of the study was specified as the weakness of creative thinking teaching skills for science teachers in KSA and the need for programs based on…

  6. Teaching science problem based learning (PBL) implementation of rocks and minerals

    NASA Astrophysics Data System (ADS)

    Almeida, Carla; Ruas, Fátima; Godinho, Margarida; Martins, Anabela

    2016-04-01

    Problem Based Learning (PBL) is a teaching methodology based on the Inquiry Teaching approach, which consists of finding a solution to a problem that requires the use of higher-level cognitive skills. It's best carried out in small groups. (I) First the teacher asks some questions related to the implementation of rocks and minerals in the schooĺs area and in our life. (II) Then the teacher leads students to an area of the city (Avenida dos Aliados - Porto) and asks them to look at the buildings and the objects there are. They should take pictures and notes. (III) Finally, in the classroom, the teacher gives an object (phone, CD, lamp, lipstick, dish/cup, etc.) to each group and asks them to do a research to find out what materials they contain or are made of. The teacher helps students to think about where and how they can find information about the subject. Students should proceed with their research by presenting the results to their colleagues, discussing in groups, doing brainstorming and collaborating in the learning process. After the discussion the students must present their conclusions. The main aims are: to report some applications of rocks in society; to recognize the rocks used in some buildings of the region where the school is located; to respect and preserve the traditional architecture of the rocks in each region; and to raise awareness among young people about environmental issues of preservation and sustainability of our planet. The teacher finishes the lesson, asking some other questions: Will it be possible to use the natural resources of other planets? Can human beings use them to their advantage? This educational approach motivates students towards science, helping them to solve problems from their daily life and in collaborative work. The cognitive strand continues to be the most valued for pupils.

  7. [Application of problem-based learning in teaching practice of Science of Meridians and Acupoints].

    PubMed

    Wang, Xiaoyan; Tang, Jiqin; Ying, Zhenhao; Zhang, Yongchen

    2015-02-01

    Science of Meridians and Acupoints is the bridge between basic medicine and clinical medicine of acupuncture and moxibustion. This teaching practice was conducted in reference to the teaching mode of problembased learning (PBL), in association with the clinical design problems, by taking as the students as the role and guided by teachers. In order to stimulate students' active learning enthusiasm, the writers implemented the class teaching in views of the typical questions of clinical design, presentation of study group, emphasis on drawing meridian running courses and acupoint locations, summarization and analysis, as well as comprehensive evaluation so that the comprehensive innovative ability of students and the teaching quality could be improved.

  8. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    NASA Astrophysics Data System (ADS)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    , argumentation, risk analysis, and pedagogical aspects of SSI-based instruction should be incorporated into educational courses designed for the Turkish teacher education programs such as the science teaching methods course. When we find ways to improve PSTs or science teachers' SSI teaching practices in terms of these components, we can provide useful information for curriculum developers, policy-makers, and science educators in Turkey and other countries, that are facing similar problems. We believe that this study would initiate more investigative and exploratory studies toward this goal.

  9. The Effects of Using Problem-Based Learning in Science and Technology Teaching upon Students' Academic Achievement and Levels of Structuring Concepts

    ERIC Educational Resources Information Center

    Inel, Didem; Balim, Ali Gunay

    2010-01-01

    The present study aimed to investigate the impact of the problem-based learning method used in science and technology teaching upon elementary school students' construction levels for the concepts concerning the "Systems in Our Body" unit in the science and technology course and their academic achievement. To this end, during the four-week…

  10. Teaching Science as Science Is Practiced: Opportunities and Limits for Enhancing Preservice Elementary Teachers' Self-Efficacy for Science and Science Teaching

    ERIC Educational Resources Information Center

    Avery, Leanne M.; Meyer, Daniel Z.

    2012-01-01

    Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed-methods study, we report the impacts of an inquiry-based science course on preservice elementary teachers' self-efficacy…

  11. Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Qablan, Ahmad M.; DeBaz, Theodora

    2015-01-01

    Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…

  12. A Problem-Based Learning Approach to Teaching Introductory Soil Science

    ERIC Educational Resources Information Center

    Amador, Jose A.; Gorres, Josef H.

    2004-01-01

    At most land-grant universities in the USA, Introduction to Soil Science is traditionally taught using a combination of lecture and laboratory formats. To promote engagement, improve comprehension, and enhance retention of content by students, we developed a problem-based learning (PBL) introductory soil science course. Students work in groups to…

  13. A Study on Teaching Gases to Prospective Primary Science Teachers Through Problem-Based Learning

    NASA Astrophysics Data System (ADS)

    Senocak, Erdal; Taskesenligil, Yavuz; Sozbilir, Mustafa

    2007-07-01

    The aim of this study was to compare the achievement of prospective primary science teachers in a problem-based curriculum with those in a conventional primary science teacher preparation program with regard to success in learning about gases and developing positive attitudes towards chemistry. The subjects of the study were 101 first year undergraduate students, who were in two different classes and who were taught by the same lecturer. One of the classes was randomly selected as the intervention group in which problem-based learning (PBL) was used, and the other as the control in which conventional teaching methods were used. The data were obtained through use of the gases diagnostic test (GDT), the chemistry attitude scale (CAS), and scales specific to students’ evaluation of PBL such as the peer evaluation scale (PES), self evaluation scale (SES), tutor’s performance evaluation scale (TPES) and students’ evaluation of PBL scale (SEPBLS). Data were analysed using SPSS 10.0 (Statistical Package for Social Sciences). In order to find out the effect of the intervention (PBL) on students’ learning of gases, independent sample t-tests and ANCOVA (analysis of co-variance) were used. The results obtained from the study showed that there was a statistically significant difference between the experimental and control groups in terms of students’ GDT total mean scores and, their attitude towards chemistry, as well as PBL has a significant effect on the development of students’ skills such as self-directed learning, cooperative learning and critical thinking.

  14. A Module-Based Environmental Science Course for Teaching Ecology to Non-Majors

    ERIC Educational Resources Information Center

    Smith, Geoffrey R.

    2010-01-01

    Using module-based courses has been suggested to improve undergraduate science courses. A course based around a series of modules focused on major environmental issues might be an effective way to teach non-science majors about ecology and ecology's role in helping to solve environmental problems. I have used such a module-based environmental…

  15. Assessing Problem Solving Competence through Inquiry-Based Teaching in School Science Education

    ERIC Educational Resources Information Center

    Zervas, Panagiotis; Sotiriou, Sofoklis; Tiemann, Rüdiger; Sampson, Demetrios G.

    2015-01-01

    Nowadays, there is a consensus that inquiry-based learning contributes to developing students' scientific literacy in schools. Inquiry-based teaching strategies are promoted for the development (among others) of the cognitive processes that cultivate problem solving (PS) competence. The build up of PS competence is a central objective for most…

  16. Applying problem-based learning to otolaryngology teaching.

    PubMed

    Abou-Elhamd, K A; Rashad, U M; Al-Sultan, A I

    2011-02-01

    Undergraduate medical education requires ongoing improvement in order to keep pace with the changing demands of twenty-first century medical practice. Problem-based learning is increasingly being adopted in medical schools worldwide. We review its application in the specialty of ENT, and we present our experience of using this approach combined with more traditional methods. We introduced problem-based learning techniques into the ENT course taught to fifth-year medical students at Al-Ahsa College of Medicine, King Faisal University, Saudi Arabia. As a result, the teaching schedule included both clinical and theoretical activities. Six clinical teaching days were allowed for history-taking, examination techniques and clinical scenario discussion. Case scenarios were discussed in small group teaching sessions. Conventional methods were employed to teach audiology and ENT radiology (one three-hour session each); a three-hour simulation laboratory session and three-hour student presentation were also scheduled. In addition, students attended out-patient clinics for three days, and used multimedia facilities to learn about various otolaryngology diseases (in another three-hour session). This input was supplemented with didactic teaching in the form of 16 instructional lectures per semester (one hour per week). From our teaching experience, we believe that the application of problem-based learning to ENT teaching has resulted in a substantial increase in students' knowledge. Furthermore, students have given encouraging feedback on their experience of combined problem-based learning and conventional teaching methods.

  17. Teaching Science Problem Solving: An Overview of Experimental Work.

    ERIC Educational Resources Information Center

    Taconis, R.; Ferguson-Hessler, M. G. M.; Broekkamp, H.

    2001-01-01

    Performs analysis on a number of articles published between 1985 and 1995 describing experimental research into the effectiveness of a wide variety of teaching strategies for science problem solving. Identifies 22 articles describing 40 experiments that met standards for meta-analysis. Indicates that few of the independent variables were found to…

  18. The effects of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Logerwell, Mollianne G.

    The purpose of this study was to investigate the impact of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science. Master's degree students enrolled in the elementary Fairfax Partnership Schools (FPS, n = 21) cohort served as the treatment group, while those enrolled in the Loudoun Partnership Schools (LPS, n = 15) and Professional Development Schools (PDS, n = 24) cohorts at George Mason University served as the control groups. The treatment group planned for and taught a two-week inquiry- and problem-based summer science camp as part of their science methods course, while the control groups did not. The Science Teaching Efficacy Belief Instrument (STEBI), a science content assessment, a personal data questionnaire, and a modified version of the Views of Nature of Science Questionnaire (VNOS-C) were administered to the participants at the beginning and end of their science methods course. Analyses revealed significant increases for the FPS group in general science teaching efficacy, personal science teaching efficacy, science teaching outcome expectancy, general science knowledge, biology content knowledge, chemistry content knowledge, and understanding of NOS; the LPS group in general science teaching efficacy, personal science teaching efficacy, chemistry content knowledge, and understanding of NOS; and, the PDS group in general science teaching efficacy, personal science teaching efficacy, and chemistry content knowledge. Additionally, the FPS group had significantly higher general science teaching efficacy than both control groups, personal science teaching efficacy than the PDS group, and understanding of NOS than the LPS group. Overall, the findings indicate that course length is not as important for developing preservice teachers' teaching efficacy and understanding of content as having connected, authentic field-based teaching experiences

  19. The practice of problem-based investigative teaching reform in semiconductor physics course

    NASA Astrophysics Data System (ADS)

    Chen, Aiping; Wu, Gaojian; Gu, Dawei; Jiang, Hongying; Wang, Lei

    2017-08-01

    Semiconductor physics is an important basic course for the students of the majors of applied physics, optoelectronics, and microelectronics. The authors have been carrying out investigative-teaching reform in semiconductor physics teaching. Firstly, the teaching content was re-structured based on scientific problems. Secondly, the students were placed in groups to discuss different scientific problems and to present a few short science-reports. Thirdly, micro-lesson videos were produced for the students to study and analyze before or after class. With comparative analysis, we find out that the semiconductor-physics curriculum content was greatly enriched. In addition, the students' learning motivation and scientific thinking ability increased, and their innovation ability was improved. Overall, the teaching quality of the semiconductor physics course could be significantly improved.

  20. A Comparison of the Attitudes of Spanish and American Secondary Science Teachers toward Global Science and Technology Based Problems/Threats

    ERIC Educational Resources Information Center

    Guisasola, Jenaro; Robinson, Mike; Zuza, Kristina

    2007-01-01

    In this study, Spanish and US secondary science teacher data is used to address the relationship between what science teachers teach and the science and technology based environmental problems/threats faced by the world. The results of a two part questionnaire indicated that teachers of both countries are worried about the problem of pollution of…

  1. Science teaching in science education

    NASA Astrophysics Data System (ADS)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  2. Problem Based Learning in Science

    ERIC Educational Resources Information Center

    Pepper, Coral

    2009-01-01

    Problem based learning (PBL) is a recognised teaching and learning strategy used to engage students in deep rather than surface learning. It is also viewed as a successful strategy to align university courses with the real life professional work students are expected to undertake on graduation (Biggs, 2003). Problem based learning is practised…

  3. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    NASA Astrophysics Data System (ADS)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  4. Promoting Issues-based STSE Perspectives in Science Teacher Education: Problems of Identity and Ideology

    NASA Astrophysics Data System (ADS)

    Pedretti, Erminia G.; Bencze, Larry; Hewitt, Jim; Romkey, Lisa; Jivraj, Ashifa

    2008-09-01

    Although science, technology, society and environment (STSE) education has gained considerable force in the past few years, it has made fewer strides in practice. We suggest that science teacher identity plays a role in the adoption of STSE perspectives. Simply put, issues-based STSE education challenges traditional images of a science teacher and science instructional ideologies. In this paper, we briefly describe the development of a multimedia documentary depicting issues-based STSE education in a teacher’s class and its subsequent implementation with 64 secondary student-teachers at a large Canadian university. Specifically, we set out to explore: (1) science teacher candidates’ responses to a case of issues-based STSE teaching, and (2) how science teacher identity intersects with the adoption of STSE perspectives. Findings reveal that although teacher candidates expressed confidence and motivation regarding teaching STSE, they also indicated decreased likelihood to teach these perspectives in their early years of teaching. Particular tensions or problems of practice consistently emerged that helped explain this paradox including issues related to: control and autonomy; support and belonging; expertise and negotiating curriculum; politicization and action; and biases and ideological bents. We conclude our paper with a discussion regarding the lessons learned about STSE education, teacher identity and the role of multimedia case methods.

  5. How Constructivist-Based Teaching Influences Students Learning Science

    ERIC Educational Resources Information Center

    Seimears, C. Matt; Graves, Emily; Schroyer, M. Gail; Staver, John

    2012-01-01

    The purpose of this article is to provide details about the beneficial processes the constructivist pedagogy has in the area of teaching science. No Child Left Behind could possibly cause detrimental effects to the science classroom and the constructivist teacher, so this essay tells how constructivist-based teaching influences students and their…

  6. Provocative Opinion: Fads in Science Teaching

    ERIC Educational Resources Information Center

    Parry, R. W.

    1975-01-01

    Criticizes the post-Sputnik wave of multi-disciplinary science curricula aimed at teaching the students about social problems and how science can help solve these problems. Suggests that science teaching should concentrate more on the basics of a given discipline and should be taught be specialists rather than generalists. (MLH)

  7. Pre-Service Teacher Perceptions of Using Problem Based Learning in Science Investigations

    ERIC Educational Resources Information Center

    Pepper, Coral

    2013-01-01

    Introducing Problem Based Learning (PBL) to a cohort of science education pre-service teachers enabled them to engage in a widely used learning and teaching strategy helpful to align university courses with the professional work they are expected to undertake on graduation. Almost fifty pre-service teachers participated in the study, focussed on…

  8. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    PubMed Central

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. PMID:28232589

  9. Scaffolding the Science: Problem Based Strategies for Teaching Interdisciplinary Undergraduate Research Methods

    ERIC Educational Resources Information Center

    Keebaugh, Alaine; Darrow, Lyndsey; Tan, David; Jamerson, Heather

    2009-01-01

    Previous research has highlighted the effectiveness of Problem-Based Learning (PBL) in multiple disciplinary settings, including medicine, teacher education, business, allied health, and the social sciences. Yet interdisciplinary educators have very little information about how to implement PBL in classrooms where multiple disciplines are…

  10. Pedagogy of Science Teaching Tests: Formative assessments of science teaching orientations

    NASA Astrophysics Data System (ADS)

    Cobern, William W.; Schuster, David; Adams, Betty; Skjold, Brandy Ann; Zeynep Muğaloğlu, Ebru; Bentz, Amy; Sparks, Kelly

    2014-09-01

    A critical aspect of teacher education is gaining pedagogical content knowledge of how to teach science for conceptual understanding. Given the time limitations of college methods courses, it is difficult to touch on more than a fraction of the science topics potentially taught across grades K-8, particularly in the context of relevant pedagogies. This research and development work centers on constructing a formative assessment resource to help expose pre-service teachers to a greater number of science topics within teaching episodes using various modes of instruction. To this end, 100 problem-based, science pedagogy assessment items were developed via expert group discussions and pilot testing. Each item contains a classroom vignette followed by response choices carefully crafted to include four basic pedagogies (didactic direct, active direct, guided inquiry, and open inquiry). The brief but numerous items allow a substantial increase in the number of science topics that pre-service students may consider. The intention is that students and teachers will be able to share and discuss particular responses to individual items, or else record their responses to collections of items and thereby create a snapshot profile of their teaching orientations. Subsets of items were piloted with students in pre-service science methods courses, and the quantitative results of student responses were spread sufficiently to suggest that the items can be effective for their intended purpose.

  11. [Discovery-based teaching and learning strategies in health: problematization and problem-based learning].

    PubMed

    Cyrino, Eliana Goldfarb; Toralles-Pereira, Maria Lúcia

    2004-01-01

    Considering the changes in teaching in the health field and the demand for new ways of dealing with knowledge in higher learning, the article discusses two innovative methodological approaches: problem-based learning (PBL) and problematization. Describing the two methods' theoretical roots, the article attempts to identify their main foundations. As distinct proposals, both contribute to a review of the teaching and learning process: problematization, focused on knowledge construction in the context of the formation of a critical awareness; PBL, focused on cognitive aspects in the construction of concepts and appropriation of basic mechanisms in science. Both problematization and PBL lead to breaks with the traditional way of teaching and learning, stimulating participatory management by actors in the experience and reorganization of the relationship between theory and practice. The critique of each proposal's possibilities and limits using the analysis of their theoretical and methodological foundations leads us to conclude that pedagogical experiences based on PBL and/or problematization can represent an innovative trend in the context of health education, fostering breaks and more sweeping changes.

  12. Knowledge and Attitudes of Ugandan Preservice Science and Mathematics Teachers toward Global and Ugandan Science--and Technology-Based Problems and/or Threats

    ERIC Educational Resources Information Center

    Robinson, Michael; Tibanyendera, Basil; Seltzer-Kelly, Debbie

    2007-01-01

    This article reports the effects of a science, technology, and society (STS) teaching approach on the knowledge and attitudes of preservice science and mathematics teachers in Uganda toward global science and technology-based problems and/or threats. The responses of a baseline or control group (N = 50) and an experimental group (N = 50) to five…

  13. Problem-Based Learning in the Earth and Space Science Classroom, K-12

    ERIC Educational Resources Information Center

    McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet

    2017-01-01

    If you've ever asked yourself whether problem-based learning (PBL) can bring new life to both your teaching and your students' learning, here's your answer: Yes. This all-in-one guide will help you engage your students in scenarios that represent real-world science in all its messy, thought-provoking glory. The scenarios will prompt K-12 students…

  14. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    NASA Astrophysics Data System (ADS)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  15. Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials

    ERIC Educational Resources Information Center

    Eick, Charles J.; Stewart, Bethany

    2010-01-01

    Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs…

  16. Improve Climate Change Literacy At Minority Institutions Through Problem-based Teaching And Learning

    NASA Astrophysics Data System (ADS)

    yang, Z.; Williams, H.

    2013-12-01

    Climate change is one of most popular topics in the U.S. Currently we are implementing our funded NASA climate change education grant entitled as 'Preparing Science Educators with Climate Change Literacy through Problem-based Teaching and Learning'. This project aims to prepare underrepresented STEM (Science, Technology, Engineering and Mathematics) teachers that are competent for teaching the contents of the Earth, climate, and climate change. In this project, we first developed lectures, assignments, and lab exercises which are related to climate change and then applied those materials in courses which are usually selected by pre-service teachers after modification based on students' evaluation. Also field visits to sites such as landfill and hog farm were provided to North Carolina Central University (NCCU) students in order to help them have better understanding on sources and amount of greenhouse gases emitted from human activities. In addition, summer interns are specifically trained to enhance and improve their knowledge and skills in climate change science. Those strategies have effectively improved climate change literacy of pre-service teachers at NCCU in spite of some challenges.

  17. Do Variations of Science Teaching Approaches Make Difference in Shaping Student Content and Problem Solving Achievement across Different Racial/Ethnic Groups?

    ERIC Educational Resources Information Center

    Gao, Su; Wang, Jian

    2016-01-01

    Students' frequent exposure to inquiry-based science teaching is presumed more effective than their exposure to traditional didactic instruction in helping improve competence in content knowledge and problem solving. Framed through theoretical perspectives of inquiry-based instruction and culturally relevant pedagogy, this study examines this…

  18. A Study on Teaching Gases to Prospective Primary Science Teachers through Problem-Based Learning

    ERIC Educational Resources Information Center

    Senocak, Erdal; Taskesenligil, Yavuz; Sozbilir, Mustafa

    2007-01-01

    The aim of this study was to compare the achievement of prospective primary science teachers in a problem-based curriculum with those in a conventional primary science teacher preparation program with regard to success in learning about gases and developing positive attitudes towards chemistry. The subjects of the study were 101 first year…

  19. From learning science to teaching science: What transfers?

    NASA Astrophysics Data System (ADS)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  20. Teaching Agile Software Engineering Using Problem-Based Learning

    ERIC Educational Resources Information Center

    El-Khalili, Nuha H.

    2013-01-01

    Many studies have reported the utilization of Problem-Based Learning (PBL) in teaching Software Engineering courses. However, these studies have different views of the effectiveness of PBL. This paper presents the design of an Advanced Software Engineering course for undergraduate Software Engineering students that uses PBL to teach them Agile…

  1. Education problems and Web-based teaching: how it impacts dental educators?

    PubMed

    Clark, G T

    2001-01-01

    This article looks at six problems that vex educators and how web-based teaching might help solve them. These problems include: (1) limited access to educational content, (2) need for asynchronous access to educational content, (3) depth and diversity of educational content, (4) training in complex problem solving, (5) promotion of lifelong learning behaviors and (6) achieving excellence in education. The advantages and disadvantage of web-based educational content for each problem are discussed. The article suggests that when a poorly organized course with inaccurate and irrelevant content is placed online, it solves no problems. However some of the above issues can be partially or fully solved by hosting well-constructed teaching modules on the web. This article also reviews the literature investigating the efficacy of off-site education as compared to that provided on-site. The conclusion of this review is that teleconference-based and web-based delivery of educational content can be as effective as traditional classroom-based teaching assuming the technologic problems sometimes associated with delivering teaching content to off-site locations do not interfere in the learning process. A suggested hierarchy for rating and comparing e-learning concepts and methods is presented for consideration.

  2. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments.

    PubMed

    Drinkwater, Michael J; Matthews, Kelly E; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. © 2017 M. J. Drinkwater et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Efficacy of problem based learning in a high school science classroom

    NASA Astrophysics Data System (ADS)

    Rissi, James Ryan

    At the high school level, the maturity of the students, as well as constraints of the traditional high school (both in terms of class time, and number of students), impedes the use of the Problem-based instruction. But with more coaching, guidance, and planning, Problem-based Learning may be an effective teaching technique with secondary students. In recent years, the State of Michigan High School Content Expectations have emphasized the importance of inquiry and problem solving in the high school science classroom. In order to help students gain inquiry and problem solving skills, a move towards a problem-based curriculum and away from the didactic approach may lead to favorable results. In this study, the problem-based-learning framework was implemented in a high school Anatomy and Physiology classroom. Using pre-tests and post-tests over the material presented using the Problem-based technique, student comprehension and long-term retention of the material was monitored. It was found that Problem-based Learning produced comparable test performance when compared to traditional lecture, note-taking, and enrichment activities. In addition, students showed evidence of gaining research and team-working skills.

  4. Graduate performance of science education department in implementing conservation-based science teaching

    NASA Astrophysics Data System (ADS)

    Parmin; Savitri, E. N.; Amalia, A. V.; Pratama, M. R.

    2018-04-01

    This study aims to measure the performance of graduates in implementing conservation-based science teaching. The study employed a qualitative method by collecting the self-assessment data from alumni and the performance assessment from the headmasters of schools where the graduates are currently teaching. There are nine indicators of conservation insight examined in this study. The study concluded that the 78 alumni, who have become teachers when the study was conducted, perform well in implementing conservative science lessons.

  5. Science and Technology Teachers' Opinions about Problems Faced While Teaching 8th Grade Science Unit "Force and Motion" and Suggestions for Solutions

    ERIC Educational Resources Information Center

    Bozdogan, Aykut Emre; Uzoglu, Mustafa

    2015-01-01

    The aim of this study is to explore the problems encountered while teaching force and motion unit in 8th grade science and technology course from teachers' perspectives and offer solutions to eliminate these problems. The study was conducted with 248 science and technology teachers working in 7 regions in Turkey in 2012-2013 academic year.…

  6. Exploring Problem-Based Learning in the Context of High School Science: Design and Implementation Issues

    ERIC Educational Resources Information Center

    Goodnough, Karen; Cashion, Marie

    2006-01-01

    This paper reports on the experiences of a small collaborative inquiry group consisting of a high school science teacher, Deidre, and two university researchers, the authors of this paper, as they explored an active, inquiry-based approach to teaching and learning referred to as Problem-Based Learning or PBL (Barrows, 1994; Barrows & Tamblyn,…

  7. Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research

    NASA Astrophysics Data System (ADS)

    Song, Peng

    2017-08-01

    The existing problems of the experiment education in colleges and universities are analyzed. Take the science and engineering specialty as example, the idea of the combination with teaching and scientific research is discussed. The key problems are how the scientific research and scientific research achievements are used effectively in the experiment education, how to effectively use scientific research laboratories and scientific researchers. Then, a specialty experiment education system is established which is good for the teaching in accordance of all students' aptitude. The research in this paper can give the construction of the experiment teaching methods and the experiment system reform for the science and engineering specialties in colleges and universities.

  8. Teaching Geometry through Problem-Based Learning

    ERIC Educational Resources Information Center

    Schettino, Carmel

    2011-01-01

    About seven years ago, the mathematics teachers at the author's secondary school came to the conclusion that they were not satisfied with their rather traditional geometry textbook. The author had already begun using a problem-based approach to teaching geometry in her classes, a transition for her and her students that inspired her to write about…

  9. [Application and case analysis on the problem-based teaching of Jingluo Shuxue Xue (Science of Meridian and Acupoint) in reference to the team oriented learning method].

    PubMed

    Ma, Ruijie; Lin, Xianming

    2015-12-01

    The problem based teaching (PBT) has been the main approach to the training in the universities o the world. Combined with the team oriented learning method, PBT will become the method available to the education in medical universities. In the paper, based on the common questions in teaching Jingluo Shuxue Xue (Science of Meridian and Acupoint), the concepts and characters of PBT and the team oriented learning method were analyzed. The implementation steps of PBT were set up in reference to the team oriented learning method. By quoting the original text in Beiji Qianjin Yaofang (Essential recipes for emergent use worth a thousand gold), the case analysis on "the thirteen devil points" was established with PBT.

  10. Teacher students' dilemmas when teaching science through inquiry

    NASA Astrophysics Data System (ADS)

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-09-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage. Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective? Design & method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective. Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning 'Supporting pupils' own investigations' and 'Guiding analysis and conclusions.' The subjectively perceived problems comprise concerns about 'Teachers' abilities' and 'Pupils' abilities,' 'Differentiated instruction' and institutional frame 'Conditions' while the self-reflectively noticed problems mainly comprise concerns about 'Allowing inquiry,' 'Instructional Aspects,' and 'Pupils' behavior.' Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these

  11. Confronting Barriers to Teaching Elementary Science: After-School Science Teaching Experiences for Preservice Teachers

    ERIC Educational Resources Information Center

    Cartwright, Tina; Smith, Suzanne; Hallar, Brittan

    2014-01-01

    This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…

  12. Analysing the Problems of Science Teachers That They Encounter While Teaching Physics Education

    ERIC Educational Resources Information Center

    Demir, Cihat; Sincar, Burhan; Çelik, Ridvan

    2015-01-01

    Even though physical science is very important in our daily lives, it is insufficiently understood by students. In order for students to get a better physical education, the teachers who have given physics lesson should first eliminated the problems that they face during the teaching process. The aim of this survey is to specify the matters…

  13. Comparing student achievement in the problem-based learning classroom and traditional teaching methods classroom

    NASA Astrophysics Data System (ADS)

    Dobbs, Vicki

    Significant numbers of students fail high school chemistry, preventing them from graduating. Starting in the 2013-2014 school year, 100% of the students must pass a science assessment for schools to meet Adequate Yearly Progress (AYP) in accordance to No Child Left Behind (NCLB). Failure to meet AYP results in sanctions, such as state management or closure of a school or replacing a school staff. The purpose of this study was to determine whether the teaching strategy, Problem Based Learning (PBL), will improve student achievement in high school chemistry to a greater degree than traditional teaching methods. PBL is a student-centered, inquiry-based teaching method based on the constructivist learning theory. The research question looked at whether there was a difference in student achievement between students a high school chemistry classroom using PBL and students in a classroom using traditional teaching methods as measured by scores on a 20-question quiz. The research study used a quasi-experimental pretest/posttest control group design. An independent samples t-test compared gains scores between the pretest and posttest. Analysis of quiz scores indicated that there was not a significant difference (t(171) = 1.001, p = .318) in student achievement between the teaching methods. Because there was not a significant difference, each teacher can decide which teaching method best suites the subject matter and the learning styles of the students. This study adds research based data to help teachers and schools choose one teaching method over another so that students may gain knowledge, develop problem-solving skills, and life-long learning skills that will bring about social change in the form of a higher quality of life for the students and community as a whole.

  14. Transformative Professional Development: Inquiry-Based College Science Teaching Institutes

    ERIC Educational Resources Information Center

    Zhao, Ningfeng; Witzig, Stephen B.; Weaver, Jan C.; Adams, John E.; Schmidt, Frank

    2012-01-01

    Two Summer Institutes funded by the National Science Foundation were held for current and future college science faculty. The overall goal was to promote learning and practice of inquiry-based college science teaching. We developed a collaborative and active learning format for participants that involved all phases of the 5E learning cycle of…

  15. Problem-based learning versus traditional science instruction: Achievement and interest in science of middle grades minority females

    NASA Astrophysics Data System (ADS)

    Mungin, Rochelle E.

    This quantitative study examined science interest and achievement of middle school minority females in both traditional science classes and Problem-based Learning (PBL) science classes. The purpose of this study was to determine if there is a significant difference between traditional teaching and the PBL teaching method. The researcher also looked for a significant relationship between interest in science and achievement in science. This study used survey data from parents of female middle school science students to measure student interest in science concepts. The population of interest for this study was 13--15 year old eighth grade females from various racial make-ups such as, African American, Hispanic, Bi-racial, Asian, and Other Pacific Islander. Student achievement data was retrieved from the 8th grade science fall common assessed benchmark exam of both test groups. The results of the survey along with the benchmark data was to shed light on the way adolescent females learn and come to embrace science. The findings may provide guidance for science educators seeking to reach their minority female students and guide their achievement levels higher than before. From the results of the t-test and Pearson correlation test of this study, it can be concluded that while this study did not show a significant difference in academic achievement or interest between the two teaching styles, it revealed that interest in science has a positive role to play in the academic success of minority girls in science. The practical implications for examining these issues are to further the research on solutions for closing the minority and gender achievement gaps. The results of this study have implications for researchers as well as practitioners in the field of education.

  16. Problem Based Learning (PBL) - An Effective Approach to Improve Learning Outcomes in Medical Teaching.

    PubMed

    Preeti, Bajaj; Ashish, Ahuja; Shriram, Gosavi

    2013-12-01

    As the "Science of Medicine" is getting advanced day-by-day, need for better pedagogies & learning techniques are imperative. Problem Based Learning (PBL) is an effective way of delivering medical education in a coherent, integrated & focused manner. It has several advantages over conventional and age-old teaching methods of routine. It is based on principles of adult learning theory, including student's motivation, encouragement to set goals, think critically about decision making in day-to-day operations. Above all these, it stimulates challenge acceptance and learning curiosity among students and creates pragmatic educational program. To measure the effectiveness of the "Problem Based Learning" as compared to conventional theory/didactic lectures based learning. The study was conducted on 72 medical students from Dayanand Medical College & Hospital, Ludhiana. Two modules of problem based sessions designed and delivered. Pre & Post-test score's scientific statistical analysis was done. Student feed-back received based on questionnaire in the five-point Likert scale format. Significant improvement in overall performance observed. Feedback revealed majority agreement that "Problem-based learning" helped them create interest (88.8 %), better understanding (86%) & promotes self-directed subject learning (91.6 %). Substantial improvement in the post-test scores clearly reveals acceptance of PBL over conventional learning. PBL ensures better practical learning, ability to create interest, subject understanding. It is a modern-day educational strategy, an effective tool to objectively improve the knowledge acquisition in Medical Teaching.

  17. Paired basic science and clinical problem-based learning faculty teaching side by side: do students evaluate them differently?

    PubMed

    Stevenson, Frazier T; Bowe, Connie M; Gandour-Edwards, Regina; Kumari, Vijaya G

    2005-02-01

    Many studies have evaluated the desirability of expert versus non-expert facilitators in problem-based learning (PBL), but performance differences between basic science and clinical facilitators has been less studied. In a PBL course at our university, pairs of faculty facilitators (1 clinician, 1 basic scientist) were assigned to student groups to maximise integration of basic science with clinical science. This study set out to establish whether students evaluate basic science and clinical faculty members differently when they teach side by side. Online questionnaires were used to survey 188 students about their faculty facilitators immediately after they completed each of 3 serial PBL cases. Overall satisfaction was measured using a scale of 1-7 and yes/no responses were gathered from closed questions describing faculty performance. results: Year 1 students rated basic science and clinical facilitators the same, but Year 2 students rated the clinicians higher overall. Year 1 students rated basic scientists higher in their ability to understand the limits of their own knowledge. Year 2 students rated the clinicians higher in several content expertise-linked areas: preparedness, promotion of in-depth understanding, and ability to focus the group, and down-rated the basic scientists for demonstrating overspecialised knowledge. Students' overall ratings of individual faculty best correlated with the qualities of stimulation, focus and preparedness, but not with overspecialisation, excessive interjection of the faculty member's own opinions, and encouragement of psychosocial issue discussion. When taught by paired basic science and clinical PBL facilitators, students in Year 1 rated basic science and clinical PBL faculty equally, while Year 2 students rated clinicians more highly overall. The Year 2 difference may be explained by perceived differences in content expertise.

  18. Teaching Concepts of Natural Sciences to Foreigners through Content-Based Instruction: The Adjunct Model

    ERIC Educational Resources Information Center

    Satilmis, Yilmaz; Yakup, Doganay; Selim, Guvercin; Aybarsha, Islam

    2015-01-01

    This study investigates three models of content-based instruction in teaching concepts and terms of natural sciences in order to increase the efficiency of teaching these kinds of concepts in realization and to prove that the content-based instruction is a teaching strategy that helps students understand concepts of natural sciences. Content-based…

  19. Teaching nutrition to medical students: a community-based problem-solving approach.

    PubMed

    Bhattacharji, S; Joseph, A; Abraham, S; Muliyil, J; John, K R; Ethirajan, N

    1990-01-01

    This paper presents a community-based problem-solving educational programme which aims at teaching medical and other health science students the importance of nutrition and its application. Through community surveys students assess the nutritional status of children under five using different anthropometric methods. They understand the cultural beliefs and customs related to food fads and the reasons for them. They also acquire the skill to educate the community using the information gathered. They use epidemiological methods such as case control study to find associations between malnutrition and other causative factors. Feedback from students has been positive and evaluation of students' knowledge before and after the programme has shown significant improvement.

  20. Teaching Evidence-based Medicine Using Literature for Problem Solving.

    ERIC Educational Resources Information Center

    Mottonen, Merja; Tapanainen, Paivi; Nuutinen, Matti; Rantala, Heikki; Vainionpaa, Leena; Uhari, Matti

    2001-01-01

    Evidence-based medicine--the process of using research findings systematically as the basis for clinical decisions--can be taught using problem-solving teaching methods. Evaluates whether it was possible to motivate students to use the original literature by giving them selected patient problems to solve. (Author/ASK)

  1. The Effect of a Collaborative Mentoring Program on Beginning Science Teachers' Inquiry-based Teaching Practice

    NASA Astrophysics Data System (ADS)

    Nam, Jeonghee; Seung, Eulsun; Go, MunSuk

    2013-03-01

    This study investigated how a collaborative mentoring program influenced beginning science teachers' inquiry-based teaching and their reflection on practice. The one-year program consisted of five one-on-one mentoring meetings, weekly science education seminars, weekly mentoring group discussions, and self-evaluation activities. The participants were three beginning science teachers and three mentors at the middle school level (7-9th grades) in an urban area of South Korea. For each beginning teacher, five lessons were evaluated in terms of lesson design/implementation, procedural knowledge, and classroom culture by using the Reformed Teaching Observation Protocol. Five aspects of the beginning teachers' reflections were identified. This study showed that a collaborative mentoring program focusing on inquiry-based science teaching encouraged the beginning teachers to reflect on their own perceptions and teaching practice in terms of inquiry-based science teaching, which led to changes in their teaching practice. This study also highlighted the importance of collaborative interactions between the mentors and the beginning teachers during the mentoring process.

  2. Teaching Neuroscience to Science Teachers: Facilitating the Translation of Inquiry-Based Teaching Instruction to the Classroom

    PubMed Central

    Roehrig, G. H.; Michlin, M.; Schmitt, L.; MacNabb, C.; Dubinsky, J. M.

    2012-01-01

    In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers’ inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms. PMID:23222837

  3. Teaching neuroscience to science teachers: facilitating the translation of inquiry-based teaching instruction to the classroom.

    PubMed

    Roehrig, G H; Michlin, M; Schmitt, L; MacNabb, C; Dubinsky, J M

    2012-01-01

    In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers' inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.

  4. Teaching and learning: Novice teachers' descriptions of their confidence to teach science content

    NASA Astrophysics Data System (ADS)

    Ford, Barbara Ann

    Statement of the problem. The problem being studied in this research is the relationship between a specific series of integrated science courses in a science teacher preparation program and the actual needs of the science teacher during the first years of teaching practice. Teachers often report that there is a disconnect between the coursework they have taken in college as pre-service teachers and the reality of their classroom practice during their first years of teaching. The intent of this study was to record the descriptions of three teachers who were members of a cohort and took a series of integrated science courses (NSCI series) during their teacher preparation program as it related to the influence of these courses on their teaching practice. The focus of inquiry is guided by a single question: How do former participants in the series of science courses who are currently novice teachers describe their confidence in their ability to teach science content to their middle school students? The theoretical framework was based on Shulman's (1987) pedagogical content knowledge (PCK). PCK involves the teacher understanding the content of science so thoroughly that ways are identified of representing and formulating the subject matter to make it understandable to others. The teacher who has a strong PCK uses powerful analogies, illustrations, examples, explanations and demonstrations that promote personally meaningful student understandings. Novice teachers' reflections on their confidence to teach science content to their middle school students were observed through the lens of PCK. All three novice teachers reported a high confidence level to teach middle school science and attributed their confidence level to a great degree to the integrated science series of courses (NSCI). Method. A qualitative design, specifically a case study, was used for this study. Multiple forms of data collection were employed including a semi structured interview and a focus group

  5. Is Inquiry-Based Science Teaching Worth the Effort? Some Thoughts Worth Considering

    ERIC Educational Resources Information Center

    Zhang, Lin

    2016-01-01

    Inquiry-based science teaching has been advocated by many science educational standards and reports from around the world. Disagreements about and concerns with this teaching approach, however, are often ignored. Opposing ideas and conflicting results have been bouncing around in the field. It seems that the field carries on with a hope that…

  6. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…

  7. Reform-based science teaching: A mixed-methods approach to explaining variation in secondary science teacher practice

    NASA Astrophysics Data System (ADS)

    Jetty, Lauren E.

    The purpose of this two-phase, sequential explanatory mixed-methods study was to understand and explain the variation seen in secondary science teachers' enactment of reform-based instructional practices. Utilizing teacher socialization theory, this mixed-methods analysis was conducted to determine the relative influence of secondary science teachers' characteristics, backgrounds and experiences across their teacher development to explain the range of teaching practices exhibited by graduates from three reform-oriented teacher preparation programs. Data for this study were obtained from the Investigating the Meaningfulness of Preservice Programs Across the Continuum of Teaching (IMPPACT) Project, a multi-university, longitudinal study funded by NSF. In the first quantitative phase of the study, data for the sample (N=120) were collected from three surveys from the IMPPACT Project database. Hierarchical multiple regression analysis was used to examine the separate as well as the combined influence of factors such as teachers' personal and professional background characteristics, beliefs about reform-based science teaching, feelings of preparedness to teach science, school context, school culture and climate of professional learning, and influences of the policy environment on the teachers' use of reform-based instructional practices. Findings indicate three blocks of variables, professional background, beliefs/efficacy, and local school context added significant contribution to explaining nearly 38% of the variation in secondary science teachers' use of reform-based instructional practices. The five variables that significantly contributed to explaining variation in teachers' use of reform-based instructional practices in the full model were, university of teacher preparation, sense of preparation for teaching science, the quality of professional development, science content focused professional, and the perceived level of professional autonomy. Using the results

  8. An Analysis of Pre-Service Elementary Teachers' Understanding of Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Lee, Carole K.; Shea, Marilyn

    2016-01-01

    This study examines how pre-service elementary teachers (PSETs) view inquiry-based science learning and teaching, and how the science methods course builds their confidence to teach inquiry science. Most PSETs think that inquiry is asking students questions rather than a formal set of pedagogical tools. In the present study, three groups of PSETs…

  9. The effectiveness of problem-based learning on teaching the first law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Tatar, Erdal; Oktay, Münir

    2011-11-01

    Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study is related to the teaching of the first law of thermodynamics within a PBL environment. Purpose: This study examined the effectiveness of PBL on candidate science teachers' understanding of the first law of thermodynamics and their science process skills. This study also examined their opinions about PBL. Sample: The sample consists of 48 third-grade university students from the Department of Science Education in one of the public universities in Turkey. Design and methods: A one-group pretest-posttest experimental design was used. Data collection tools included the Achievement Test, Science Process Skill Test, Constructivist Learning Environment Survey and an interview with open-ended questions. Paired samples t-test was conducted to examine differences in pre/post tests. Results: The PBL approach has a positive effect on the students' learning abilities and science process skills. The students thought that the PBL environment supports effective and permanent learning, and self-learning planning skills. On the other hand, some students think that the limited time and unfamiliarity of the approach impede learning. Conclusions: The PBL is an active learning approach supporting students in the process of learning. But there are still many practical disadvantages that could reduce the effectiveness of the PBL. To prevent the alienation of the students, simple PBL activities should be applied from the primary school level. In order to overcome time limitations, education researchers should examine short-term and effective PBL activities.

  10. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    ERIC Educational Resources Information Center

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  11. Teaching and learning based on peer review: a realistic approach in forensic sciences.

    PubMed

    Dinis-Oliveira, Ricardo Jorge; Magalhães, Teresa

    2016-01-01

    Teaching and learning methods need a continuous upgrade in higher education. However it is also true that some of the modern methodologies do not reduce or prevent school failure. Perhaps the real limitation is the inability to identify the true reasons that may explain it or ignore/undervalue the problem. In our opinion, one of the current constraints of the teaching/learning process is the excess of and inadequate bibliography recommended by the teacher, which results in continuous student difficulties and waste of time in searching and selecting useful information. The need to change the paradigm of the teaching/learning process comes also from employers. They claim forensic experts armed with useful knowledge to face professional life. It is therefore mandatory to identify the new needs and opportunities regarding pedagogical methodologies. This article reflects on the recent importance of peer review in teaching/learning forensic sciences based on the last 10 years of pedagogical experience inseparably from the scientific activity.

  12. Teaching and learning based on peer review: a realistic approach in forensic sciences

    PubMed Central

    Dinis-Oliveira, Ricardo Jorge; Magalhães, Teresa

    2016-01-01

    Teaching and learning methods need a continuous upgrade in higher education. However it is also true that some of the modern methodologies do not reduce or prevent school failure. Perhaps the real limitation is the inability to identify the true reasons that may explain it or ignore/undervalue the problem. In our opinion, one of the current constraints of the teaching/learning process is the excess of and inadequate bibliography recommended by the teacher, which results in continuous student difficulties and waste of time in searching and selecting useful information. The need to change the paradigm of the teaching/learning process comes also from employers. They claim forensic experts armed with useful knowledge to face professional life. It is therefore mandatory to identify the new needs and opportunities regarding pedagogical methodologies. This article reflects on the recent importance of peer review in teaching/learning forensic sciences based on the last 10 years of pedagogical experience inseparably from the scientific activity. PMID:27547377

  13. Teaching-Focused Science Academics Supervising Research Students in Science Education: What's the Problem?

    ERIC Educational Resources Information Center

    Rowland, Susan

    2012-01-01

    Academics who specialise in improving the teaching of "hard" sciences like chemistry, biology, maths and physics are increasing in number and influence at Australian universities. Those in academia who have channelled their energies into teaching are delighted with this development. It means that many committed tertiary teachers can now look…

  14. A pragmatic conception of science: Implications for science teaching

    NASA Astrophysics Data System (ADS)

    Sessoms, Deidre Bates

    In this dissertation, I examine various philosophical conceptions of the nature of science---its goals, methods and products---and link those views to how science is taught. While the review begins in the 1600s, the focus is primarily on logical positivism. The logical positivist view of science prevailed for much of the twentieth century and has greatly influenced how science is taught. The review section culminates with current conceptions of science from the fields of philosophy, sociology, feminist studies and radical studies of science. These various conceptions of the nature of science are linked to how science is currently taught, at the K--12 level and at the university. In particular, the logical positivist conception has influenced the teaching of science by emphasizing the products of science (factual knowledge and theories) over the processes of science (the social methods of knowledge production). As a result of viewing science as the logical positivists did, teachers primarily focus on science as unchanging factual knowledge, at the expense of examining the social and cultural aspects of scientific practices. I develop a pragmatic conception of the method of science as reflective thinking that we effectively use in our everyday lives. Linking that conception with the aims that John Dewey outlined for schools in a democratic society points the way towards certain goals and methods for teaching science. Therefore, I explore the type of science teaching that might result when viewing science as a pragmatic activity conducted in a democracy. Teaching of this sort would involve students in working together on shared problems that arise in the context of daily life. For science students at the university, this would include participating in and critiquing scientific research in active research laboratories. Implementing this view of science teaching might result in modifications in the practices and goals of science. Lastly, the experiences of a group of

  15. Towards a Science of Science Teaching

    ERIC Educational Resources Information Center

    Yates, Carolyn

    2009-01-01

    This article is a contribution to the search for evidence-based models of learning to improve science education. The author believes that modern teachers should look to the sciences of cognitive psychology and neuroscience to build a science of science teaching. Understanding the relationships between learning and the brain's structure and…

  16. Science educators' perceptions of problems facing science education: A report of five surveys

    NASA Astrophysics Data System (ADS)

    Gallagher, James Joseph; Yager, Robert E.

    Five groups of science educators representing faculty at graduate institutions, graduate students, teachers, supervisors, and leadership conferees were surveyed concerning their perceptions of current problems facing science education. A total of 144 participants provided an average of 4.7 responses. The responses were tabulated using an emergent set of categories that resulted in six major groupings, i.e. conceptual, organizational, teacher; related, student-related, university, and societal. The category with the most problems identified was in the area of conceptual problems. University related problems and organizational problems were the next two most frequently mentioned categories for problems. Specific problems in all categories most often cited include the following:1confusion and uncertainty in goals and objectives;2lack of vision and leadership in schools and universities;3absence of a theoretical base for science education;4poor quality teacher education programs;5inappropriate avenues for continuing education of teachers; limited dialogue between researchers and practitioners; declining enrollments; poor quality teaching and counseling; insufficient programs in science for the wide spectrum of students; and public and parental apathy towards science.

  17. Teaching Teamwork and Problem Solving Concurrently

    ERIC Educational Resources Information Center

    Goltz, Sonia M.; Hietapelto, Amy B.; Reinsch, Roger W.; Tyrell, Sharon K.

    2008-01-01

    Teamwork and problem-solving skills have frequently been identified by business leaders as being key competencies; thus, teaching methods such as problem-based learning and team-based learning have been developed. However, the focus of these methods has been on teaching one skill or the other. A key argument for teaching the skills concurrently is…

  18. Teaching Students with Moderate Intellectual Disability to Solve Word Problems

    ERIC Educational Resources Information Center

    Browder, Diane M.; Spooner, Fred; Lo, Ya-yu; Saunders, Alicia F.; Root, Jenny R.; Ley Davis, Luann; Brosh, Chelsi R.

    2018-01-01

    This study evaluated an intervention developed through an Institute of Education Sciences-funded Goal 2 research project to teach students with moderate intellectual disability (moderate ID) to solve addition and subtraction word problems. The intervention involved modified schema-based instruction that embedded effective practices (e.g.,…

  19. Perspectives on learning, learning to teach and teaching elementary science

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  20. Teaching Planetary Sciences in Bilingual Classrooms

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops

  1. Inquiry-Based Instruction and Teaching about Nature of Science: Are They Happening?

    ERIC Educational Resources Information Center

    Capps, Daniel K.; Crawford, Barbara A.

    2013-01-01

    Anecdotal accounts from science educators suggest that few teachers are teaching science as inquiry. However, there is little empirical evidence to support this claim. This study aimed to provide evidence-based documentation of the state-of-use of inquiry-based instruction and explicit instruction about nature of science (NOS). We examined the…

  2. Demonstrating Inquiry-Based Teaching Competencies in the Life Sciences--Part 2

    ERIC Educational Resources Information Center

    Thompson, Stephen

    2007-01-01

    This set of botany demonstrations is a continuation of the inquiry-based lecture activities that provide realistic connections to the history and nature of science and employ technology in data collection. The demonstrations also provide examples of inquiry-based teaching practices in the life sciences. (Contains 5 figures.) [For Part 1, see…

  3. Effect of a Problem Based Simulation on the Conceptual Understanding of Undergraduate Science Education Students

    ERIC Educational Resources Information Center

    Kumar, David Devraj; Sherwood, Robert D.

    2007-01-01

    A study of the effect of science teaching with a multimedia simulation on water quality, the "River of Life," on the science conceptual understanding of students (N = 83) in an undergraduate science education (K-9) course is reported. Teaching reality-based meaningful science is strongly recommended by the National Science Education Standards…

  4. My Science Is Better than Your Science: Conceptual Change as a Goal in Teaching Science Majors Interested in Teaching Careers about Education

    ERIC Educational Resources Information Center

    Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.

    2018-01-01

    We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…

  5. The Effects of Mentored Problem-Based STEM Teaching on Pre-Service Elementary Teachers: Scientific Reasoning and Attitudes Toward STEM Subjects

    NASA Astrophysics Data System (ADS)

    Caliendo, Julia C.

    Problem-based learning in clinical practice has become an integral part of many professional preparation programs. This quasi-experimental study compared the effect of a specialized 90-hour field placement on elementary pre-service teachers' scientific reasoning and attitudes towards teaching STEM (science, technology, engineering, and math) subjects. A cohort of 53 undergraduate elementary education majors, concurrent to their enrollment in science and math methods classes, were placed into one of two clinical practice experiences: (a) a university-based, problem-based learning (PBL), STEM classroom, or (b) a traditional public school classroom. Group gain scores on the Classroom Test of Scientific Reasoning (CTSR) and the Teacher Efficacy and Attitudes Toward STEM Survey-Elementary Teachers (T-STEM) survey were calculated. A MANCOVA revealed that there was a significant difference in gain scores between the treatment and comparison groups' scientific reasoning (p = .011) and attitudes towards teaching STEM subjects (p = .004). The results support the hypothesis that the pre-service elementary teachers who experienced STEM mentoring in a PBL setting will have an increase in their scientific reasoning and produce positive attitudes towards teaching STEM subjects. In addition, the results add to the existing research suggesting that elementary pre-service teachers require significant academic preparation and mentored support in STEM content.

  6. Scientific Playworlds: a Model of Teaching Science in Play-Based Settings

    NASA Astrophysics Data System (ADS)

    Fleer, Marilyn

    2017-09-01

    Eminent scientists, like Einstein, worked with theoretical contradiction, thought experiments, mental models and visualisation—all characteristics of children's play. Supporting children's play is a strength of early childhood teachers. Promising research shows a link between imagination in science and imagination in play. A case study of 3 preschool teachers and 26 children (3.6-5.9 years; mean age of 4.6 years) over 6 weeks was undertaken, generating 59.6 h of digital observations and 788 photographs of play practices. The research sought to understand (1) how imaginative play promotes scientific learning and (2) examined how teachers engaged children in scientific play. Although play pedagogy is a strength of early childhood teachers, it was found that transforming imaginary situations into scientific narratives requires different pedagogical characteristics. The study found that the building of collective scientific narratives alongside of discourses of wondering were key determinants of science learning in play-based settings. Specifically, the pedagogical principles of using a cultural device that mirrors the science experiences, creating imaginary scientific situations, collectively building scientific problem situations, and imagining the relations between observable contexts and non-observable concepts, changed everyday practices into a scientific narrative and engagement. It is argued that these unique pedagogical characteristics promote scientific narratives in play-based settings. An approach, named as Scientific Playworlds, is presented as a possible model for teaching science in play-based settings.

  7. Sustaining Reform-Based Science Teaching of Preservice and Inservice Elementary School Teachers

    NASA Astrophysics Data System (ADS)

    Sullivan-Watts, Barbara K.; Nowicki, Barbara L.; Shim, Minsuk K.; Young, Betty J.

    2013-08-01

    This study examined the influence of a professional development program based around commercially available inquiry science curricula on the teaching practices of 27 beginning elementary school teachers and their teacher mentors over a 2 year period. A quantitative rubric used to score inquiry elements and use of data in videotaped lessons indicated that education students assigned to inquiry-based classrooms during their methods course or student teaching year outperformed students without this experience. There was also a significant positive effect of multi-year access to the kit-based program on mentor teaching practice. Recent inclusion of a "writing in science" program in both preservice and inservice training has been used to address the lesson element that received lowest scores—evaluation of data and its use in scientific explanation.

  8. A comparison of problem-based learning and conventional teaching in nursing ethics education.

    PubMed

    Lin, Chiou-Fen; Lu, Meei-Shiow; Chung, Chun-Chih; Yang, Che-Ming

    2010-05-01

    The aim of this study was to compare the learning effectiveness of peer tutored problem-based learning and conventional teaching of nursing ethics in Taiwan. The study adopted an experimental design. The peer tutored problem-based learning method was applied to an experimental group and the conventional teaching method to a control group. The study sample consisted of 142 senior nursing students who were randomly assigned to the two groups. All the students were tested for their nursing ethical discrimination ability both before and after the educational intervention. A learning satisfaction survey was also administered to both groups at the end of each course. After the intervention, both groups showed a significant increase in ethical discrimination ability. There was a statistically significant difference between the ethical discrimination scores of the two groups (P < 0.05), with the experimental group on average scoring higher than the control group. There were significant differences in satisfaction with self-motivated learning and critical thinking between the groups. Peer tutored problem-based learning and lecture-type conventional teaching were both effective for nursing ethics education, but problem-based learning was shown to be more effective. Peer tutored problem-based learning has the potential to enhance the efficacy of teaching nursing ethics in situations in which there are personnel and resource constraints.

  9. Learning from the best: Overcoming barriers to reforms-based elementary science teaching

    NASA Astrophysics Data System (ADS)

    Banchi, Heather May

    This study explored the characteristics of elementary science teachers who employ reforms-based practices. Particular attention was paid to the consistency of teachers' practices and their beliefs, the impact of professional development experiences on practices, and how teachers mitigated barriers to reforms-based instruction. Understanding how successful elementary science teachers develop fills a gap in the science reforms literature. Participants included 7 upper elementary science teachers from six different schools. All schools were located within two suburban school districts in the south-Atlantic United States and data was collected during the spring of 2008. Data collection included use of the Reformed Teaching Observation Protocol (RTOP) to evaluate the level of reforms-based instruction, as well as 35 hours of classroom observation field notes and 21 hours of audio-taped teacher interviews. The variety of data sources allowed for triangulation of evidence. The RTOP was analyzed using descriptive statistics and classroom observations and interview data were analyzed using Erickson's (1986) guidelines for analytic induction. Findings indicated (a) reforms-based elementary science teaching was attainable, (b) beliefs and practices were consistent and both reflected reforms-based philosophies and practices, (c) formal professional development experiences were limited and did not foster reforms-based practices, (d) informal professional development pursued by teachers had a positive impact on practices, (e) barriers to reforms-based instruction were present but mitigated by strong beliefs and practical strategies like curriculum integration. These findings suggest that there are common, salient characteristics of reforms-based teachers' beliefs, practices, and professional development experiences. These commonalities contribute to an understanding of how reforms-based teachers develop, and inform efforts to move all elementary teachers in the direction of

  10. Quality Teaching in Science: an Emergent Conceptual Framework

    NASA Astrophysics Data System (ADS)

    Jordens, J. Zoe; Zepke, Nick

    2017-09-01

    Achieving quality in higher education is a complex task involving the interrelationship of many factors. The influence of the teacher is well established and has led to some general principles of good teaching. However, less is known about the extent that specific disciplines influence quality teaching. The purposes of the paper are to investigate how quality teaching is perceived in the sciences and from these perceptions to develop for discussion a framework for teaching practice in the sciences. A New Zealand study explored the views of national teaching excellence award winners in science on quality teaching in undergraduate science. To capture all possible views from this expert panel, a dissensus-recognising Delphi method was used together with sensitising concepts based on complexity and wickedity. The emergent conceptual framework for quality teaching in undergraduate science highlighted areas of consensus and areas where there were a variety of views. About the purposes of science and its knowledge base, there was relative consensus, but there was more variable support for values underpinning science teaching. This highlighted the complex nature of quality teaching in science. The findings suggest that, in addition to general and discipline-specific influences, individual teacher values contribute to an understanding of quality in undergraduate science teaching.

  11. Problems with German Science Education

    NASA Astrophysics Data System (ADS)

    Riess, Falk

    The main problems of science (especially physics) teaching in Germany are students'' lack of interest and motivation in the subject, their poor understanding of scientific concepts, ideas, methods,and results, and their lack of comprehension of the social, political, and epistemological role of science. These circumstances result in a growing `scientific illiteracy'' of the population and adecline in democratic quality concerning decision making processes about scientific and technological projects. One means of improving this situation lies in the use of history and philosophy of science in science teaching. School science curricula and textbooks neglect almost completely the importance of history and philosophy of science. In this paper, the main empirical results concerning motivation and knowledge are given. Some examples from science curricula and textbooks are presented, and some of the few reform projects in Germany are listed. As a consequence a compensatory program is proposed in order to create the prerequisites for raising science education in Germany to an international standard.

  12. Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities

    NASA Astrophysics Data System (ADS)

    Lohwasser, Karin

    Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the discourse characteristics that create learning opportunities in teachers' PLCs. To this end, this study examined how middle school science teachers in three PLCs addressed science-for-teaching, and to what effect. Insight into discourse about content knowledge for teaching in PLCs has implications for the analysis, interpretation, and support of teachers' professional discourse, their collaborative learning, and consequently their improvement of practice. This dissertation looked closely at the hybrid space between teachers' knowledge of students, of teaching, and of science, and how this space was explored in the discourse among teachers, and between teachers and science experts. At the center of the study were observations of three 2-day PLC cycles in which participants worked together to improve the way they taught their curriculum. Two of the PLC cycles were supported, in part, by a science expert who helped the teachers explore the science they needed for teaching. The third PLC worked without such support. The following overarching questions were explored in the three articles of this dissertation: (1) What kind of science knowledge did teachers discuss in preparation for teaching? (2) How did the teachers talk about content knowledge for science teaching, and to what effect for their teaching practice? (3) How did collaborating teachers' discursive accountabilities provide opportunities for furthering the teachers' content knowledge for science teaching? The teachers' discourse during the 2-day collaboration cycles was analyzed and interpreted based on a sociocultural framework that included concepts from the practice-based

  13. Problem-Based Learning in Web-Based Science Classroom.

    ERIC Educational Resources Information Center

    Kim, Heeyoung; Chung, Ji-Sook; Kim, Younghoon

    The purpose of this paper is to discuss how general problem-based learning (PBL) models and social-constructivist perspectives are applied to the design and development of a Web-based science program, which emphasizes inquiry-based learning for fifth grade students. The paper also deals with the general features and learning process of a Web-based…

  14. Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area

    NASA Astrophysics Data System (ADS)

    Chamnanwong, Pornpaka; Thathong, Kongsak

    2018-01-01

    In preparing a science lesson plan, teachers may deal with numerous difficulties. Having a deep understanding of their problems and their demands is extremely essential for the teachers in preparing themselves for the job. Moreover, it is also crucial for the stakeholders in planning suitable and in-need teachers' professional development programs, in school management, and in teaching aid. This study aimed to investigate the primary school science teachers' opinion toward practice of teaching and learning activities in science learning area. Target group was 292 primary science teachers who teach Grade 4 - 6 students in Khon Kaen Province, Thailand in the academic year of 2014. Data were collected using Questionnaire about Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area. The questionnaires were consisted of closed questions scored on Likert scale and open-ended questions that invite a sentence response to cover from LS Process Ideas. Research findings were as follow. The primary science teachers' level of opinion toward teaching and learning science subject ranged from 3.19 - 3.93 (mean = 3.43) as "Moderate" level of practice. The primary school science teachers' needs to participate in a training workshop based on LS ranged from 3.66 - 4.22 (mean = 3.90) as "High" level. The result indicated that they were interested in attending a training course under the guidance of the Lesson Study by training on planning of management of science learning to solve teaching problems in science contents with the highest mean score 4.22. Open-ended questions questionnaire showed the needs of the implementation of the lesson plans to be actual classrooms, and supporting for learning Medias, innovations, and equipment for science experimentation.

  15. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    NASA Astrophysics Data System (ADS)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  16. Comparing an Inquiry-Based Approach Known as the Science Writing Heuristic to Traditional Science Teaching Practices: Are There Differences?

    ERIC Educational Resources Information Center

    Akkus, Recai; Gunel, Murat; Hand, Brian

    2007-01-01

    Many state and federal governments have mandated in such documents as the National Science Education Standards that inquiry strategies should be the focus of the teaching of science within school classrooms. The difficult part for success is changing teacher practices from perceived traditional ways of teaching to more inquiry-based approaches.…

  17. An advanced teaching scheme for integrating problem-based learning in control education

    NASA Astrophysics Data System (ADS)

    Juuso, Esko K.

    2018-03-01

    Engineering education needs to provide both theoretical knowledge and problem-solving skills. Many topics can be presented in lectures and computer exercises are good tools in teaching the skills. Learning by doing is combined with lectures to provide additional material and perspectives. The teaching scheme includes lectures, computer exercises, case studies, seminars and reports organized as a problem-based learning process. In the gradually refining learning material, each teaching method has its own role. The scheme, which has been used in teaching two 4th year courses, is beneficial for overall learning progress, especially in bilingual courses. The students become familiar with new perspectives and are ready to use the course material in application projects.

  18. Preparing College Students to Teach an Environmental Problem Solving Curriculum to Middle School Students

    NASA Astrophysics Data System (ADS)

    Powers, S. E.

    2001-12-01

    An NSF-funded project-based program was implemented by Clarkson University in 2000 to increase the interest and knowledge of middle school students in science, math and technology through the solution of an environmental problem that is relevant to their local school community. Clarkson students developed curricula for 7th and 8th grade science and technology classes and then worked with the middle school students throughout the year to reduce to transform solid waste into healthy soil for plant growth. The solution to this problem provided a vehicle to teach fundamental science and math content as well as the process of doing science and solving problems. Placing college science and engineering students in the classroom proved to be a great mechanism for engaging students in science topics and providing mentoring experiences that differ greatly from those that a practicing professional can provide. It is clear, however, that the students must be well prepared for this experience to maximize the benefits of university - school district partnership programs. The objective of this presentation will be to describe the training program that has been developed to prepare Clarkson students to work effectively in middle school classrooms. The Clarkson students are trained for their classroom experiences during the summer before they enter the classroom. They receive three credits for the training, curriculum development, and teaching efforts. It is expected that the students have the necessary background in science and technology to teach themselves the content and environmental relevance of the problem they will be teaching. Lectures and workshops focus on how to transform this knowledge into a project-based curriculum that meets the needs of the teachers, while also exciting the students. Lecture/workshops include: team work; components of an effective class and teacher; project planning and management; problem solving process; inquiry based learning, deductive

  19. Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science

    ERIC Educational Resources Information Center

    Kind, Vanessa

    2016-01-01

    This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…

  20. Newly qualified teachers' visions of science learning and teaching

    NASA Astrophysics Data System (ADS)

    Roberts, Deborah L.

    2011-12-01

    This study investigated newly qualified teachers' visions of science learning and teaching. The study also documented their preparation in an elementary science methods course. The research questions were: What educational and professional experiences influenced the instructor's visions of science learning and teaching? What visions of science learning and teaching were promoted in the participants' science methods course? What visions of science learning and teaching did these newly qualified teachers bring with them as they graduated from their teacher preparation program? How did these visions compare with those advocated by reform documents? Data sources included participants' assignments, weekly reflections, and multi-media portfolio finals. Semi-structured interviews provided the emic voice of participants, after graduation but before they had begun to teach. These data were interpreted via a combination of qualitative methodologies. Vignettes described class activities. Assertions supported by excerpts from participants' writings emerged from repeated review of their assignments. A case study of a typical participant characterized weekly reflections and final multi-media portfolio. Four strands of science proficiency articulated in a national reform document provided a framework for interpreting activities, assignments, and interview responses. Prior experiences that influenced design of the methods course included an inquiry-based undergraduate physics course, participation in a reform-based teacher preparation program, undergraduate and graduate inquiry-based science teaching methods courses, participation in a teacher research group, continued connection to the university as a beginning teacher, teaching in diverse Title 1 schools, service as the county and state elementary science specialist, participation in the Carnegie Academy for the Scholarship of Teaching and Learning, service on a National Research Council committee, and experience teaching a

  1. Teaching basic science to optimize transfer.

    PubMed

    Norman, Geoff

    2009-09-01

    Basic science teachers share the concern that much of what they teach is soon forgotten. Although some evidence suggests that relatively little basic science is forgotten, it may not appear so, as students commonly have difficulty using these concepts to solve or explain clinical problems: This phenomenon, using a concept learned in one context to solve a problem in a different context, is known to cognitive psychologists as transfer. The psychology literature shows that transfer is difficult; typically, even though students may know a concept, fewer than 30% will be able to use it to solve new problems. However a number of strategies to improve transfer can be adopted at the time of initial teaching of the concept, in the use of exemplars to illustrate the concept, and in practice with additional problems. In this article, we review the literature in psychology to identify practical strategies to improve transfer. Critical review of psychology literature to identify factors that enhance or impede transfer. There are a number of strategies available to teachers to facilitate transfer. These include active problem-solving at the time of initial learning, imbedding the concept in a problem context, using everyday analogies, and critically, practice with multiple dissimilar problems. Further, mixed practice, where problems illustrating different concepts are mixed together, and distributed practice, spread out over time, can result in significant and large gains. Transfer is difficult, but specific teaching strategies can enhance this skill by factors of two or three.

  2. The Problem of Science Education in Minority Areas--Based on a Study in Gansu Province of China

    ERIC Educational Resources Information Center

    Liang, Bai

    2017-01-01

    After 60 years of development, minority education not only has made great achievements in China, but also faces many problems. Among them is the problem of science education. The students learning in high school in the basic education in minority areas have faced particular difficulties in learning science. The teaching quality is not high,…

  3. Sustaining Inquiry-Based Teaching Methods in the Middle School Science Classroom

    ERIC Educational Resources Information Center

    Murphy, Amy Fowler

    2012-01-01

    This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI…

  4. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    NASA Astrophysics Data System (ADS)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning

  5. Teaching Biochemistry at a Medical Faculty with a Problem-Based Learning System.

    ERIC Educational Resources Information Center

    Rosing, Jan

    1997-01-01

    Highlights the differences between classical teaching methods and problem-based learning. Describes the curriculum and problem-based approach of the Faculty of Medicine at the Maastricht University and gives an overview of the implementation of biochemistry in the medical curriculum. Discusses the procedure for student assessment and presents…

  6. The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science.

    PubMed

    Siew, Nyet Moi; Amir, Nazir; Chong, Chin Lu

    2015-01-01

    Whilst much attention has focused on project-based approaches to teaching Science, Technology, Engineering and Mathematics (STEM) subjects, little has been reported on the views of South-East Asian science teachers on project-based STEM approaches. Such knowledge could provide relevant information for education training institutions on how to influence innovative teaching of STEM subjects in schools. This article reports on a study that investigated the perceptions of 25 pre-service and 21 in-service Malaysian science teachers in adopting an interdisciplinary project-based STEM approach to teaching science. The teachers undertook an eight hour workshop which exposed them to different science-based STEM projects suitable for presenting science content in the Malaysian high school science syllabus. Data on teachers' perceptions were captured through surveys, interviews, open-ended questions and classroom discussion before and at the end of the workshop. Study findings showed that STEM professional development workshops can provide insights into the support required for teachers to adopt innovative, effective, project-based STEM approaches to teaching science in their schools.

  7. Using Social Media to Promote Pre-Service Science Teachers' Practices of Socio-Scientific Issue (SSI) - Based Teaching

    ERIC Educational Resources Information Center

    Pitiporntapin, Sasithep; Lankford, Deanna Marie

    2015-01-01

    This paper addresses using social media to promote pre-service science teachers' practices of Socio-Scientific Issue (SSI) based teaching in a science classroom setting. We designed our research in two phases. The first phase examined pre-service science teachers' perceptions about using social media to promote their SSI-based teaching. The…

  8. Developing a Constructivist Proposal for Primary Teachers to Teach Science Process Skills: "Extended" Simple Science Experiments (ESSE)

    ERIC Educational Resources Information Center

    Hirça, Necati

    2015-01-01

    Although science experiments are the basis of teaching science process skills (SPS), it has been observed that a large number of prospective primary teachers (PPTs), by virtue of their background, feel anxious about doing science experiments. To overcome this problem, a proposal was suggested for primary school teachers (PSTs) to teach science and…

  9. Earth System Science: Problem-based Learning Courses for Teachers Through ESSEA

    NASA Astrophysics Data System (ADS)

    Close, E.; Witiw, M. R.

    2007-12-01

    One method that has proven effective in the study of Earth system science is to use a problem-based and event- centered course organization. In such a course, different events that occur in the Earth system are examined and how each event influences subsequent events in each of Earth's spheres (the atmosphere, hydrosphere, biosphere and lithosphere) is studied. A course is composed of several problem-based modules, where each module is centered about a particular event or issue that is important to the Earth system. The Institute for Global Environmental Strategies (IGES) was recently awarded a grant by the National Science Foundation's Geo-Teach program to develop and implement courses for teachers in Earth system science. Through the Earth System Science Education Alliance (ESSEA), IGES subsequently made awards to a group of 24 universities. Under the ESSEA program, problem-based modules are being developed for courses for middle school and high school teachers. In a typical university schedule, each module is designed to last three weeks and includes both group work and individual assignments. In the first week ("Teacher as Problem Solver"), participants explore their own ideas concerning the event and exchange their ideas with other members of their group. In the second week ("Teacher as Scholar"), participants research the issue and become more familiar with the event and the sphere-to-sphere interactions that occur. In the last week ("Teacher as Designer"), each participant develops a lesson plan for his or her own classroom. Current ESSEA modules cover topics such as volcanoes, Brazilian deforestation, Antarctic ice sheets, coral reefs, and stratospheric ozone depletion. Many new modules are under development with topics that range from plate tectonics and tsunamis to agriculture and sustainable water systems. Seattle Pacific University, in cooperation with Seattle Public Schools, was recently awarded a three-year grant by IGES to provide Earth system

  10. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  11. Measurement Instrument for Scientific Teaching (MIST): A Tool to Measure the Frequencies of Research-Based Teaching Practices in Undergraduate Science Courses

    ERIC Educational Resources Information Center

    Durham, Mary F.; Knight, Jennifer K.; Couch, Brian A.

    2017-01-01

    The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of…

  12. Problem Based Learning and the scientific process

    NASA Astrophysics Data System (ADS)

    Schuchardt, Daniel Shaner

    This research project was developed to inspire students to constructively use problem based learning and the scientific process to learn middle school science content. The student population in this study consisted of male and female seventh grade students. Students were presented with authentic problems that are connected to physical and chemical properties of matter. The intent of the study was to have students use the scientific process of looking at existing knowledge, generating learning issues or questions about the problems, and then developing a course of action to research and design experiments to model resolutions to the authentic problems. It was expected that students would improve their ability to actively engage with others in a problem solving process to achieve a deeper understanding of Michigan's 7th Grade Level Content Expectations, the Next Generation Science Standards, and a scientific process. Problem based learning was statistically effective in students' learning of the scientific process. Students statistically showed improvement on pre to posttest scores. The teaching method of Problem Based Learning was effective for seventh grade science students at Dowagiac Middle School.

  13. Turkish Preservice Science Teachers' Socioscientific Issues-Based Teaching Practices in Middle School Science Classrooms

    ERIC Educational Resources Information Center

    Genel, Abdulkadir; Topçu, Mustafa Sami

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle…

  14. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    ERIC Educational Resources Information Center

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  15. A Diagnostic-Remediation Teaching System for Enhancing Elementary Students' Science Listening Comprehension

    ERIC Educational Resources Information Center

    Lin, Sheau-Wen; Liu, Yu

    2017-01-01

    The purpose of this study was to explore elementary students' listening comprehension changes using a Web-based teaching system that can diagnose and remediate students' science listening comprehension problems during scientific inquiry. The 3-component system consisted of a 9-item science listening comprehension test, a 37-item diagnostic test,…

  16. Science Teaching in Science Education

    ERIC Educational Resources Information Center

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  17. Saudi Elementary School Science Teachers' Beliefs: Teaching Science in the New Millennium

    ERIC Educational Resources Information Center

    Alghamdi, Amani K. Hamdan; Al-Salouli, Misfer Saud

    2013-01-01

    This study explored Saudi elementary school science teachers' beliefs about the process of teaching and learning science. This involved the exploration of their views about the new Saudi science curriculum, which emphasizes critical thinking and problem solving. Comprehensive interviews were held in 8 schools with 4 male and 6 female--2 of whom…

  18. The implementation of integrated science teaching materials based socio-scientific issues to improve students scientific literacy for environmental pollution theme

    NASA Astrophysics Data System (ADS)

    Yenni, Rita; Hernani, Widodo, Ari

    2017-05-01

    The study aims to determine the increasing of students' science literacy skills on content aspects and competency of science by using Integrated Science teaching materials based Socio-scientific Issues (SSI) for environmental pollution theme. The method used in the study is quasi-experiment with nonequivalent pretest and posttest control group design. The students of experimental class used teaching materials based SSI, whereas the students of control class were still using the usual textbooks. The result of this study showed a significant difference between the value of N-gain of experimental class and control class, whichalso occurred in every indicator of content aspects and competency of science. This result indicates that using of Integrated Science teaching materials based SSI can improve content aspect and competency of science and can be used as teaching materials alternative in teaching of Integrated Science.

  19. Problem-Based Learning in Teaching Chemistry: Enthalpy Changes in Systems

    ERIC Educational Resources Information Center

    Ayyildiz, Yildizay; Tarhan, Leman

    2018-01-01

    Background: Problem-based learning (PBL) as a teaching strategy has recently become quite widespread in especially chemistry classes. Research has found that students, from elementary through college, have many alternative conceptions regarding "enthalpy changes in systems." Although there are several studies focused on identifying…

  20. A Science Teacher's Wisdom of Practice in Teaching Inquiry-Based Oceanography.

    ERIC Educational Resources Information Center

    Nelson, Tamara Holmlund

    Inquiry-based research is recommended as a method for helping more students understand the nature of science as well as learn the substance of scientific knowledge, yet there is much to learn about how teachers might adapt inquiry for science teaching and what teachers need to know in order to do this. This case study of an exemplary teacher's…

  1. The Usefulness of Qualitative and Quantitative Approaches and Methods in Researching Problem-Solving Ability in Science Education Curriculum

    ERIC Educational Resources Information Center

    Eyisi, Daniel

    2016-01-01

    Research in science education is to discover the truth which involves the combination of reasoning and experiences. In order to find out appropriate teaching methods that are necessary for teaching science students problem-solving skills, different research approaches are used by educational researchers based on the data collection and analysis…

  2. Which Extreme Variant of the Problem-Solving Method of Teaching Should Be More Characteristic of the Many Teacher Variations of Problem-Solving Teaching?

    ERIC Educational Resources Information Center

    Mahan, Luther A.

    1970-01-01

    Compares the effects of two problem-solving teaching approaches. Lower ability students in an activity group demonstrated superior growth in basic science understanding, &roblem-solving skills, science interests, personal adjustment, and school attitudes. Neither method favored cognitive learning by higher ability students. (PR)

  3. Problem-based learning in elementary science methods: Exploring a format to prepare teachers for the 21st century

    NASA Astrophysics Data System (ADS)

    Diercks, Rodney Wayne

    In order to meet the demands of the twenty-first century, national standards are calling for a new type of teacher to educate the future workforce. These standards include new methods for preparing teachers to address the challenging and complex issues facing educators and students. The Problem-Based Learning (PBL) method that has enjoyed success in medical training is showing promise in teacher education. The purpose of this blended case study was to describe the experiences of sixteen preservice teachers participating in a problem-based learning format while enrolled in a science methods class for elementary and middle school majors. The sixteen preservice teachers worked in collaborative groups mentored by inservice elementary and middle school teachers. The following five themes emerged regarding the effective implementation of PBL in teacher education: (1) The role of the instructor becomes one of facilitator; (2) The PBL process should be integrated throughout the entire course term; (3) The problems preservice teachers address must be challenging, personally relevant, and must build on their prior knowledge; (4) Students need to work collaboratively within the external conditions of safety, value, and freedom; (5) The solutions to the problems are most meaningful if students believe they can apply their solution to current and future classrooms. The Science Teacher Efficacy Belief Instrument (STEBI) was administered before and after the PBL experience. The results indicated an increase in the preservice teachers' self-efficacy in teaching science. The results from the STEBI support the qualitative findings of the study. The results of this study provide teacher education with a model for instruction that will help preservice teachers develop the skills and understandings of inquiry and inquiry-based methods needed to plan and teach successfully in their classrooms as well as collaborate and communicate with colleagues.

  4. Teaching Constructivist Science, K-8: Nurturing Natural Investigators in the Standards-Based Classroom

    ERIC Educational Resources Information Center

    Bentley, Michael L.; Ebert, Edward S., II; Ebert, Christine

    2007-01-01

    Good teachers know that science is more than just a collection of facts in a textbook and that teaching science goes beyond the mere transmission of information. Actively engaging students in the learning process is critical to building their knowledge base, assessing progress, and meeting science standards. This book shows teachers how to…

  5. The investigation of science teachers’ experience in integrating digital technology into science teaching

    NASA Astrophysics Data System (ADS)

    Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.

    2018-05-01

    The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.

  6. Effect of Problem-Based Learning on Students' Achievement in Chemistry

    ERIC Educational Resources Information Center

    Aidoo, Benjamin; Boateng, Sampson Kwadwo; Kissi, Philip Siaw; Ofori, Isaac

    2016-01-01

    The study investigated the effect of problem-based learning (PBL) on students' achievement in chemistry. Learners' low achievement in Science in South Africa has been a concern to government, stakeholders, school principals and parents over the years as a result of poor teaching techniques, students' attitudes, lack of teaching and learning…

  7. Explore the Human-Based Teaching for the Professional Course of Materials Science and Engineering

    ERIC Educational Resources Information Center

    Zhao, Yiping; Chen, Li; Zhang, Yufeng

    2008-01-01

    As viewed from two sides such as teacher and student, in this article, we explore the human-based teaching reform for the college professional course of materials Science and Engineering, point out the qualities and conditions that professional teacher should possess in the process of human-based teaching reform of professional course and the…

  8. Place-Based Science Teaching and Learning: 40 Activities for K-8 Classrooms

    ERIC Educational Resources Information Center

    Buxton, Cory A.; Provenzo, Eugene F., Jr.

    2011-01-01

    Grounded in theory and best-practices research, this practical text provides elementary and middle school teachers with 40 place-based activities that will help them to make science learning relevant to their students. This text provides teachers with both a rationale and a set of strategies and activities for teaching science in a local context…

  9. Teaching science as argument: Prospective elementary teachers' knowledge

    NASA Astrophysics Data System (ADS)

    Barreto-Espino, Reizelie

    For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry

  10. Teaching energy using an integrated science approach

    NASA Astrophysics Data System (ADS)

    Poggi, Valeria; Miceli, Cristina; Testa, Italo

    2017-01-01

    Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.

  11. Innovations in College Science Teaching.

    ERIC Educational Resources Information Center

    Penick, John E., Ed.; Dunkhase, John A., Ed.

    Fifteen innovative college science programs based on survey results about perceptions of excellence in college science teaching are presented. The goals, program origins, special features of the programs, evaluations, and conclusions are described for each. Discussed are the commonalities among this collection of 15 college science programs and…

  12. The implications and outcomes of using problem-based learning to teach middle school science

    NASA Astrophysics Data System (ADS)

    Nowak, Jeffrey Andrew

    Problem-based learning (PBL) is an educational approach where a purposefully ill-structured problem initiates learning and the teacher serves as a coach instead of an information repository (Gallagher & Stepien, 1996). This approach is becoming a very popular curricular innovation, especially at the middle and secondary levels. PBL is necessarily interdisciplinary: By modeling real-world problems, which are seldom unidisciplinary, students are required to cross the traditional disciplinary boundaries in their quest to solve the problem. PBL is also based upon the theories of situated cognition, which posit that transfer occurs infrequently and that learning requires situation-specific competence (Brown, Collins, & Duguid, 1989; Plucker & Nowak, 2000; Resnick, 1987). Rather than present students with information that they may or may not be able to use to solve problems, situated cognition stresses that knowledge should be presented in context, preferably in a problem-solving scenario (Plucker & Nowak, 2000). In addition, PBL is consistent with the principles of constructivism (Savery & Duffy, 1995). Several questions have been raised about the appropriateness of using PBL in the K--12 classroom setting. The purpose of this study is to specifically address whether or not students learn as much via PBL techniques as they do in traditional classroom settings. This was accomplished by comparing two eighth grade gifted and talented science classes in a Midwest public middle school. Focused observations, interviews, test score analyses, and document analyses were incorporated into this study. Test score analyses of pretest and posttests indicate that students in a teacher-directed classroom learn factual content at a higher rate than students learning via a PBL instructional approach. Students engaged in PBL, however, have better retention than those who learn under a teacher-directed instructional approach. Interview analyses indicate that students favor learning via PBL

  13. Physics Problems Based on Up-to-Date Science and Technology.

    NASA Astrophysics Data System (ADS)

    Folan, Lorcan M.; Tsifrinovich, Vladimir I.

    2007-03-01

    We observe a huge chasm between up-to-date science and undergraduate education. The result of this chasm is that current student interest in undergraduate science is low. Consequently, students who are graduating from college are often unable to take advantage of the many opportunities offered by science and technology. Cutting edge science and technology frequently use the methods learned in undergraduate courses, but up-to-date applications are not normally used as examples or for problems in undergraduate courses. There are many physics problems which contain information about the latest achievements in science and technology. But typically, the level of these problems is too advanced for undergraduates. We created physics problems for undergraduate science and engineering students, which are based on the latest achievements in science and technology. These problems have been successfully used in our courses at the Polytechnic University in New York. We believe that university faculty may suggest such problems in order to provide information about the frontiers of science and technological, demonstrate the importance of undergraduate physics in solving contemporary problems and raise the interest of talented students in science. From the other side, our approach may be considered an indirect way for advertising advanced technologies, which undergraduate students and, even more important, future college graduates could use in their working lives.

  14. Preservice elementary teachers' personal science teaching efficacy and science teaching outcome expectancies: The influence of student teaching

    NASA Astrophysics Data System (ADS)

    Plourde, Lee Alton

    This study was unique in garnering an early view at how the deterioration of science teacher education begins. This investigation examined the impact of the student teaching semester on preservice elementary teachers' personal efficacy beliefs and outcome expectancy beliefs in science teaching. Participants in the study included the student teachers of three separate cohort groups commencing and completing their student teaching semester at the same time. Qualitative data were gathered from interviews and observations from selected individuals of these cohort groups. Quantitative and qualitative research methods were employed in the study. Utilizing a pretest and posttest one group research design, quantitative data were obtained from the administration of a psychometric test, Science Teaching Efficacy Belief Instrument for preservice teachers (STEBI-B). The pretest was administered at the beginning of the student teaching semester, before the student teachers began their "soloing" teaching, and the posttest was administered at the completion of the student teaching semester and "soloing" period. Qualitative data were derived from interviews and observations which were audio recorded and transcribed. The results of this study revealed that the student teaching semester did not have a statistically significant impact on the subjects' sense of personal self-efficacy, but the influence was statistically significant in regards to the student teachers' beliefs about children's ability to learn science. Data gathered through interviews and observations suggested that beliefs appear to originate from one or more of the following: a lack of practical work, personal involvement, and hands-on manipulation in science related activities in elementary, secondary, and tertiary education; a dependence of science courses on textbooks and lectures; the dispassionate association with science teachers/instructors; a focus on formalized tests with no performance assessments; the

  15. Teaching evidence-based medicine using a problem-oriented approach.

    PubMed

    Hosny, Somaya; Ghaly, Mona S

    2014-04-01

    Faculty of Medicine, Suez Canal University is adopting an innovative curriculum. Evidence-based medicine (EBM) has been integrated into problem based learning (PBL) sessions as a responsive innovative paradigm for the practice and teaching of clinical medicine. To integrate EBM in the problem based sessions of the sixth-year students, and to assess students' and tutor satisfaction with this change. EBM training was conducted for sixth-year students (196) including four theoretical, and eight practical sessions. Sixteen EBM educational scenarios (problems) were formulated, according to sixth-year curriculum. Each problem was discussed in two sessions through steps of EBM, namely: formulating PICO questions, searching for and appraising evidence, applying the evidence to the clinical scenario and analysing the practice. Students and tutors satisfaction were evaluated using a 3-point ratings questionnaire. The majority of students and faculty expressed their satisfaction about integrating EBM with PBL and agreed that the problems were more stimulating. However, 33.6% of students indicated that available time was insufficient for searching literatures. Integrating EBM into PBL sessions tends to be more interesting and stimulating than traditional PBL sessions for final year students and helps them to practice and implement EBM in clinical context.

  16. Preservice Elementary Teachers' Beliefs about Science Teaching

    ERIC Educational Resources Information Center

    Yilmaz-Tuzun, Ozgul

    2008-01-01

    In this study, a Beliefs About Teaching (BAT) scale was created to examine preservice elementary science teachers' self-reported comfort level with both traditional and reform-based teaching methods, assessment techniques, classroom management techniques, and science content. Participants included 166 preservice teachers from three different US…

  17. CONGRESS ON SCIENCE TEACHING AND ECONOMIC GROWTH.

    ERIC Educational Resources Information Center

    Inter-Union Commission on the Teaching of Science, Paris (France).

    REPORTED ARE THE ACTIVITIES OF THE CONGRESS ORGANIZED BY THE INTER-UNION COMMISSION ON SCIENCE TEACHING (CEIS) OF THE INTERNATIONAL COUNCIL OF SCIENTIFIC UNIONS (ICSU). STUDIED WERE PROBLEMS ARISING IN SEVERAL BRANCHES OF KNOWLEDGE DUE TO BOTH INCREASED NUMBERS OF STUDENTS AND SHORTAGE OF TEACHERS. OF PARTICULAR INTEREST WERE THE PROBLEMS OF…

  18. Evaluation of medical students of teacher-based and student-based teaching methods in Infectious diseases course.

    PubMed

    Ghasemzadeh, I; Aghamolaei, T; Hosseini-Parandar, F

    2015-01-01

    Introduction: In recent years, medical education has changed dramatically and many medical schools in the world have been trying for expand modern training methods. Purpose of the research is to appraise the medical students of teacher-based and student-based teaching methods in Infectious diseases course, in the Medical School of Hormozgan Medical Sciences University. Methods: In this interventional study, a total of 52 medical scholars that used Section in this Infectious diseases course were included. About 50% of this course was presented by a teacher-based teaching method (lecture) and 50% by a student-based teaching method (problem-based learning). The satisfaction of students regarding these methods was assessed by a questionnaire and a test was used to measure their learning. information are examined with using SPSS 19 and paired t-test. Results: The satisfaction of students of student-based teaching method (problem-based learning) was more positive than their satisfaction of teacher-based teaching method (lecture).The mean score of students in teacher-based teaching method was 12.03 (SD=4.08) and in the student-based teaching method it was 15.50 (SD=4.26) and where is a considerable variation among them (p<0.001). Conclusion: The use of the student-based teaching method (problem-based learning) in comparison with the teacher-based teaching method (lecture) to present the Infectious diseases course led to the student satisfaction and provided additional learning opportunities.

  19. Teaching the process of science: faculty perceptions and an effective methodology.

    PubMed

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew; Dirks, Clarissa

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.

  20. Teaching the Process of Science: Faculty Perceptions and an Effective Methodology

    PubMed Central

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy. PMID:21123699

  1. The 5E Instructional Model: A Learning Cycle Approach for Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Duran, Lena Ballone; Duran, Emilio

    2004-01-01

    The implementation of inquiry-based teaching is a major theme in national science education reform documents such as "Project 2061: Science for All Americans" (Rutherford & Alhgren, 1990) and the "National Science Education Standards" (NRC, 1996). These reports argue that inquiry needs to be a central strategy of all…

  2. The concept of nature in Islamic science teaching

    NASA Astrophysics Data System (ADS)

    Zarman, Wendi

    2016-02-01

    Science teaching is basically value laden activities. One of the values tells that science is not related to any religion. This secular value is reflected to science teaching in many places, including religious country like Indonesia. However, we argue that in Indonesia science teaching should not be secular as in the Western country since one of the basic aim of National Education according to the Indonesian constitution Undang-Undang Dasar 1945, is to inculcate faith and god-fearing to One God Almighty. As we know, Indonesia is a Moslem country and has many Islamic schools in it too. Thus, it is important to design a science teaching framework base on Islamic teaching to fulfill the basic aim of National Education This paper discusses concept of nature, the key term in science, based on Islamic view that may used as a framework to develop Islamic science teaching. In Islam, science has a strong relation to religion since nature reflects the existence of the Creator. This concept is derived from the analysis of several verses from Qur'an as the main source of Islamic teaching. There are several principle can be derived from this analysis. Firstly, visible world is not the only world, but there is also the unseen world. Secondly, the nature is not merely matter that doesn't have any sacred value, but it is the indication or symbol of God existence and His Nature. Thirdly, The Qur'an and the nature are both Books of Allah that contain messages of Him, so they are complementary to each other

  3. Teaching and learning techniques in secondary school science education using a techno-science context of industrial technological problems

    NASA Astrophysics Data System (ADS)

    McKenzie, Neil Llewellyn

    In support of the title of this thesis, an historical review of the literature and methods of delivering practical work in science in secondary schools was carried out. From the work of others, a personal model of classroom scientific investigations was developed and formulated in terms which could be tested in schools. The main emphasis was to see (a) whether the educational value of the model for practical investigations set in a context of integrated science and technology ('techno-science') could be defended theoretically and demonstrated by intervention methods; and (b) how closely such a model could comply with the requirements set out m the Orders for Science in the National Curriculum. The conclusions may be summarised as: (i) The first case study established the value of work experience which was curriculum-based on 'techno-science'. (ii) The second case study suggested that: a) based solely on the information from the questionnaire, the differences in teaching and learning styles measured before and following intervention do not yield a consistent pattern; b) other information, such as the statistical evidence from the analysis of trends in the number of students opting to study science at A-Level and the achievements of the test group in GCSE examinations and AT1 (experimental and investigative science) skills, pointed to the success of the predictions based on the hypothesis.

  4. Design, Development and Validation of a Model of Problem Solving for Egyptian Science Classes

    ERIC Educational Resources Information Center

    Shahat, Mohamed A.; Ohle, Annika; Treagust, David F.; Fischer, Hans E.

    2013-01-01

    Educators and policymakers envision the future of education in Egypt as enabling learners to acquire scientific inquiry and problem-solving skills. In this article, we describe the validation of a model for problem solving and the design of instruments for evaluating new teaching methods in Egyptian science classes. The instruments were based on…

  5. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    NASA Astrophysics Data System (ADS)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  6. We Look More, Listen More, Notice More: Impact of Sustained Professional Development on Head Start Teachers' Inquiry-Based and Culturally-Relevant Science Teaching Practices

    NASA Astrophysics Data System (ADS)

    Roehrig, Gillian H.; Dubosarsky, Mia; Mason, Annie; Carlson, Stephan; Murphy, Barbara

    2011-10-01

    Despite many scholars' recommendations, science is often avoided during early childhood education. Among the reasons provided by early childhood teachers for the exclusion of science from their daily routines included science anxiety, low self-efficacy with respect to teaching science, lack of experience participating in science activities as students, or the notion that literacy and language are more important during the early years. In minority populations the problem is even greater due to identification of science with the `culture of. This article presents results from Ah Neen Dush, a sustained and transformative professional development program for Head Start teachers on an American Indian Reservation. The goal of the program is to support early childhood teachers in developing inquiry-based and culturally-relevant teaching practices. Through analysis of teachers' classroom practices, surveys and interviews, we explore changes in teachers' attitudes toward science and inquiry-based practices. Classroom observations were conducted using CLASS (Classroom assessment Scoring System), a tool used to evaluate the quality of classroom interactions. After 1 year of professional development teachers' attitudes were found to improve and after 2 years teachers classroom practices were more inquiry-based with statistically significant increases in CLASS observation scores.

  7. Assessing Student Workload in Problem Based Learning: Relationships among Teaching Method, Student Workload and Achievement. A Case Study in Natural Sciences

    ERIC Educational Resources Information Center

    Ruiz-Gallardo, Jose-Reyes; Castano, Santiago; Gomez-Alday, Juan J.; Valdes, Arturo

    2011-01-01

    This study examines student workload after a change in teaching style from lecture to Problem Based Learning and Cooperative Learning, and its relationship with student outcomes. Results show that the change clearly overloads students if it is not adequately planned and monitored. Marks, drop-outs and attendance were markedly better with the new…

  8. Teaching Ethics in Science.

    ERIC Educational Resources Information Center

    Reiss, Michael

    1999-01-01

    Summarizes arguments for and against teaching ethics within science education, and clarifies what might be the several aims of teaching ethics in science. Discusses how ethics instruction might be incorporated into the science curriculum. (Contains 120 references.) (WRM)

  9. Minority Preservice Teachers' Conceptions of Teaching Science: Sources of Science Teaching Strategies

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2013-01-01

    This study explores five minority preservice teachers' conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream…

  10. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  11. Problem-based learning in teaching chemistry: enthalpy changes in systems

    NASA Astrophysics Data System (ADS)

    Ayyildiz, Yildizay; Tarhan, Leman

    2018-01-01

    Problem-based learning (PBL) as a teaching strategy has recently become quite widespread in especially chemistry classes. Research has found that students, from elementary through college, have many alternative conceptions regarding enthalpy changes in systems. Although there are several studies focused on identifying student alternative conceptions and misunderstandings of this subject, studies on preventing the formation of these alternative conceptions are limited.

  12. Teaching Children Science. Second Edition.

    ERIC Educational Resources Information Center

    Abruscato, Joseph

    This book focuses on science teaching at the elementary school level. It includes chapters dealing with various science content areas and teaching processes including: (1) what is science; (2) why teach science; (3) process skills as a foundation for unit and lesson planning; (4) how to plan learning units, daily lessons, and assessment…

  13. Science modelling in pre-calculus: how to make mathematics problems contextually meaningful

    NASA Astrophysics Data System (ADS)

    Sokolowski, Andrzej; Yalvac, Bugrahan; Loving, Cathleen

    2011-04-01

    'Use of mathematical representations to model and interpret physical phenomena and solve problems is one of the major teaching objectives in high school math curriculum' (National Council of Teachers of Mathematics (NCTM), Principles and Standards for School Mathematics, NCTM, Reston, VA, 2000). Commonly used pre-calculus textbooks provide a wide range of application problems. However, these problems focus students' attention on evaluating or solving pre-arranged formulas for given values. The role of scientific content is reduced to provide a background for these problems instead of being sources of data gathering for inducing mathematical tools. Students are neither required to construct mathematical models based on the contexts nor are they asked to validate or discuss the limitations of applied formulas. Using these contexts, the instructor may think that he/she is teaching problem solving, where in reality he/she is teaching algorithms of the mathematical operations (G. Kulm (ed.), New directions for mathematics assessment, in Assessing Higher Order Thinking in Mathematics, Erlbaum, Hillsdale, NJ, 1994, pp. 221-240). Without a thorough representation of the physical phenomena and the mathematical modelling processes undertaken, problem solving unintentionally appears as simple algorithmic operations. In this article, we deconstruct the representations of mathematics problems from selected pre-calculus textbooks and explicate their limitations. We argue that the structure and content of those problems limits students' coherent understanding of mathematical modelling, and this could result in weak student problem-solving skills. Simultaneously, we explore the ways to enhance representations of those mathematical problems, which we have characterized as lacking a meaningful physical context and limiting coherent student understanding. In light of our discussion, we recommend an alternative to strengthen the process of teaching mathematical modelling - utilization

  14. Tensions Teaching Science for Equity: Lessons Learned from the Case of Ms. Dawson

    ERIC Educational Resources Information Center

    Braaten, Melissa; Sheth, Manali

    2017-01-01

    When teachers engage in forms of science teaching that disrupt the status quo of typical school science practices, they often experience dilemmas as problems of practice that are difficult--or even impossible--to solve. This instrumental case study examines one teacher's efforts to teach science for equity across two contexts: a public middle…

  15. Measurement Instrument for Scientific Teaching (MIST): A Tool to Measure the Frequencies of Research-Based Teaching Practices in Undergraduate Science Courses

    PubMed Central

    Durham, Mary F.; Knight, Jennifer K.; Couch, Brian A.

    2017-01-01

    The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of ST requires having mechanisms to quantify its implementation. While many useful instruments exist to document teaching practices, these instruments only partially align with the range of practices specified by ST, as described in a recently published taxonomy. Here, we describe the development, validation, and implementation of the Measurement Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy and designed to gauge the frequencies of ST practices in undergraduate science courses. MIST showed acceptable validity and reliability based on results from 7767 students in 87 courses at nine institutions. We used factor analyses to identify eight subcategories of ST practices and used these categories to develop a short version of the instrument amenable to joint administration with other research instruments. We further discuss how MIST can be used by instructors, departments, researchers, and professional development programs to quantify and track changes in ST practices. PMID:29196428

  16. Use of Problem-Based Learning in the Teaching and Learning of Horticultural Production

    ERIC Educational Resources Information Center

    Abbey, Lord; Dowsett, Eric; Sullivan, Jan

    2017-01-01

    Purpose: Problem-based learning (PBL), a relatively novel teaching and learning process in horticulture, was investigated. Proper application of PBL can potentially create a learning context that enhances student learning. Design/Methodology/Approach: Students worked on two complex ill-structured problems: (1) to produce fresh baby greens for a…

  17. Caught in the Balance: An Organizational Analysis of Science Teaching in Schools with Elementary Science Specialists

    ERIC Educational Resources Information Center

    Marco-Bujosa, Lisa M.; Levy, Abigail Jurist

    2016-01-01

    Elementary schools are under increasing pressure to teach science and teach it well; yet, research documents that classroom teachers must overcome numerous personal and school-based challenges to teach science effectively at this level, such as access to materials and inadequate instructional time. The elementary science specialist model…

  18. Changes in Teaching Efficacy during a Professional Development School-Based Science Methods Course

    ERIC Educational Resources Information Center

    Swars, Susan L.; Dooley, Caitlin McMunn

    2010-01-01

    This mixed methods study offers a theoretically grounded description of a field-based science methods course within a Professional Development School (PDS) model (i.e., PDS-based course). The preservice teachers' (n = 21) experiences within the PDS-based course prompted significant changes in their personal teaching efficacy, with the…

  19. Problem-based learning in a health sciences librarianship course.

    PubMed Central

    Dimitroff, A; Ancona, A M; Beman, S B; Dodge, A M; Hutchinson, K L; LaBonte, M J; Mays, T L; Simon, D T

    1998-01-01

    Problem-based learning (PBL) has been adopted by many medical schools in North America. Because problem solving, information seeking, and lifelong learning skills are central to the PBL curriculum, health sciences librarians have been actively involved in the PBL process at these medical schools. The introduction of PBL in a library and information science curriculum may be appropriate to consider at this time. PBL techniques have been incorporated into a health sciences librarianship course at the School of Library and Information Science (LIS) at the University of Wisconsin-Milwaukee to explore the use of this method in an advanced Library and Information Science course. After completion of the course, the use of PBL has been evaluated by the students and the instructor. The modified PBL course design is presented and the perceptions of the students and the instructor are discussed. PMID:9681169

  20. Alternative certification science teachers' understanding and implementation of inquiry-based instruction in their beginning years of teaching

    NASA Astrophysics Data System (ADS)

    Demir, Abdulkadir

    The purpose of this phenomenographic study was to: (a) understand how beginning science teachers recruited from various science disciplines and prepared in an Alternative Teacher Certification Program (ATCP) implemented inquiry during their initial years of teaching; (b) describe constraints and needs that these beginning science teachers perceived in implementing inquiry-based science instruction; and (c) understand the relation between what they learned in their ATCP and their practice of teaching science through inquiry. The participants of this study consisted of four ATCP teachers who are in their beginning years of teaching. Semi-structured interviews, classroom observation, field notes, and artifacts used as source of data collection. The beginning science teachers in this study held incomplete views of inquiry. These views of inquiry did not reflect inquiry as described in NRC (2000)---essential features of inquiry,---nor did they reflect views of faculty members involved in teaching science methods courses. Although the participants described themselves as reform-oriented, there were inconsistencies between their views and practices. Their practice of inquiry did not reflect inquiry either as outlined by essential features of inquiry (NRC, 2000) or inquiry as modeled in activities used in their ATCP. The research participants' perceived constraints and needs in their implementation of inquiry-based activities. Their perceived constraints included logistical and student constraints and school culture. The perceived needs included classroom management, pedagogical skills, practical knowledge, discipline, successful grade-specific models of inquiry, and access to a strong support system. Prior professional work experience, models and activities used in the ATCP, and benefits of inquiry to student learning were the declared factors that facilitated the research participants' practice of inquiry-based teaching.

  1. Teaching Research Methods in Communication Disorders: "A Problem-Based Learning Approach"

    ERIC Educational Resources Information Center

    Greenwald, Margaret L.

    2006-01-01

    A critical professional issue in speech-language pathology and audiology is the current shortage of researchers. In this context, the most effective methods for training graduate students in research must be identified and implemented. This article describes a problem-based approach to teaching research methods. In this approach, the instructor…

  2. Developing Preservice Teachers' Self-Efficacy through Field-Based Science Teaching Practice with Elementary Students

    ERIC Educational Resources Information Center

    Flores, Ingrid M.

    2015-01-01

    Thirty preservice teachers enrolled in a field-based science methods course were placed at a public elementary school for coursework and for teaching practice with elementary students. Candidates focused on building conceptual understanding of science content and pedagogical methods through innovative curriculum development and other course…

  3. Teacher beliefs about teaching science through Science-Technology-Society (STS)

    NASA Astrophysics Data System (ADS)

    Massenzio, Lynn

    2001-07-01

    Statement of the problem. As future citizens, students will have the enormous responsibility of making decisions that will require an understanding of the interaction of science and technology and its interface with society. Since many societal issues today are grounded in science and technology, learning science in its social context is vital to science education reform. Science-Technology-Society (STS) has been strongly identified with meeting this goal, but despite its benefits, putting theory into practice has been difficult. Research design and methodology. The purpose of this study was to explore teacher beliefs about teaching science through STS. The following broad research questions guided the study: (1) What are the participants' initial beliefs about teaching science through STS? (2) What beliefs emerge as participants reflect upon and share their STS instructional experiences with their peers? A social constructivist theoretical framework was developed to plan interactions and collect data. Within this framework, a qualitative methodology was used to interpret the data and answer the research questions. Three provisionally certified science teachers engaged in a series of qualitative tasks including a written essay, verbal STS unit explanation, reflective journal writings, and focus group interviews. After implementing their STS unit, the participants engaged in meaningful dialogue with their peers as they reflected upon, shared, and constructed their beliefs. Conclusions. The participants strongly believed in STS as a means for achieving scientific and technological literacy, developing cognition, enhancing scientific habits of mind and affective qualities, and fostering citizen responsibility. Four major assertions were drawn: (a) Participants' initial belief in teaching for citizen responsibility did not fully align with practice, (b) Educators at the administrative level should be made aware of the benefits of teaching science through STS, (c

  4. Enhancing Student Learning with Case-Based Teaching and Audience Response Systems in an Interdisciplinary Food Science Course

    ERIC Educational Resources Information Center

    Giacalone, Davide

    2016-01-01

    The purpose of this article is to discuss the implementation of case-based teaching and use of response technologies to graduate students in a food science course. The article focuses on teaching sensory science and sensometrics, presents several concrete examples used during the course, and discusses in each case some of the observed outcomes.…

  5. The Effectiveness of Problem-Based Learning on Teaching the First Law of Thermodynamics

    ERIC Educational Resources Information Center

    Tatar, Erdal; Oktay, Munir

    2011-01-01

    Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study…

  6. Teaching Life Sciences to Blind and Visually Impaired Learners

    ERIC Educational Resources Information Center

    Fraser, William John; Maguvhe, Mbulaheni Obert

    2008-01-01

    This study reports on the teaching of life sciences (biology) to blind and visually impaired learners in South Africa at 11 special schools with specific reference to the development of science process skills in outcomes-based classrooms. Individual structured interviews were conducted with nine science educators teaching at the different special…

  7. Problem-Based Learning in the Physical Science Classroom, K-12

    ERIC Educational Resources Information Center

    McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet

    2018-01-01

    "Problem-Based Learning in the Physical Science Classroom, K-12" will help your students truly understand concepts such as motion, energy, and magnetism in true-to-life contexts. The book offers a comprehensive description of why, how, and when to implement problem-based learning (PBL) in your curriculum. Its 14 developmentally…

  8. Teachers' perceptions on primary science teaching

    NASA Astrophysics Data System (ADS)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  9. Science Teaching: What Does It Mean?

    ERIC Educational Resources Information Center

    Tseitlin, Michael; Galili, Igal

    2006-01-01

    This study considers the relationship between science, science teaching and the philosophy of science perceiving these three cultural phenomena as a semantic triad. This approach presents science teaching as being a form of a scientific reflection. The relationship of science teaching to the philosophy of science is advocated to be essential,…

  10. The effect of site-based preservice experiences on elementary science teaching self-efficacy beliefs

    NASA Astrophysics Data System (ADS)

    Wingfield, Mary E.

    Current reform in science education has focused on the need for improvement of preservice teacher training (National Science Education Standards, 1996). As a situation specific construct (Bandura, 1977), self-efficacy studies have been conducted to investigate factors that impact preservice teachers' sense of confidence as it relates to their ability to become successful science teachers. This descriptive study identified factors in the site based experiences that affected preservice elementary teachers' self-efficacy as measured by the Science Teaching Efficacy Belief Instrument (STEBL-B) (Enochs and Riggs, 1990). The sample consisted of the entire population of undergraduate elementary preservice teachers in the site based teacher education program during the fall semester of 1997 at a large south central urban university. The 131 paired, pretest posttests of the entire STEBL-B and the two constructs were analyzed for significance in mean score gains. Results of the paired t test yielded a t value of 11.52 which was significant at p <.001. An analysis of covariance using the pretest as the covariate yielded an F value of 6.41 which was statistically significant at p <.001. These quantitative results were supported by interviews and by written comments on questionnaires that determined ratings for the extent of impact on self-efficacy from site based experiences. Results of this study indicate that the experiences of the site based program has a significant positive impact on the preservice teachers' self-efficacy. The implication for teacher educators is that this specific affective dimension can be significantly enhanced. The site based program can provide the four factors Bandura identified as sources of information used to determine self-efficacy. These include performance accomplishments through authentic teaching experiences, vicarious experiences through observation of the site based teachers, and verbal persuasion and physiological states from feedback

  11. Using ICT-Based Instructional Technologies to Teach Science: Perspectives from Teachers in Trinidad and Tobago

    ERIC Educational Resources Information Center

    Maharaj-Sharma, Rawatee; Sharma, Aarti; Sharma, Aditi

    2017-01-01

    The purpose of this study was to investigate how science teachers in Trinidad and Tobago use ICT-based instructional technologies in classroom science teaching. The participants were 30 secondary school science teachers who completed their Postgraduate Diploma in Education within the last 2 years from the University of the West Indies in Trinidad…

  12. The implementation of multiple intelligences based teaching model to improve mathematical problem solving ability for student of junior high school

    NASA Astrophysics Data System (ADS)

    Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli

    2017-05-01

    This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.

  13. The Constructionism and Neurocognitive-Based Teaching Model for Promoting Science Learning Outcomes and Creative Thinking

    ERIC Educational Resources Information Center

    Sripongwiwat, Supathida; Bunterm, Tassanee; Srisawat, Niwat; Tang, Keow Ngang

    2016-01-01

    The aim of this study was to examine the effect, after intervention on both experimental and control groups, of constructionism and neurocognitive-based teaching model, and conventional teaching model, on the science learning outcomes and creative thinking of Grade 11 students. The researchers developed a constructionism and neurocognitive-based…

  14. The ontology of science teaching in the neoliberal era

    NASA Astrophysics Data System (ADS)

    Sharma, Ajay

    2017-12-01

    Because of ever stricter standards of accountability, science teachers are under an increasing and unrelenting pressure to demonstrate the effects of their teaching on student learning. Econometric perspectives of teacher quality have become normative in assessment of teachers' work for accountability purposes. These perspectives seek to normalize some key ontological assumptions about teachers and teaching, and thus play an important role in shaping our understanding of the work science teachers do as teachers in their classrooms. In this conceptual paper I examine the ontology of science teaching as embedded in econometric perspectives of teacher quality. Based on Foucault's articulation of neoliberalism as a discourse of governmentality in his `The Birth of Biopolitics' lectures, I suggest that this ontology corresponds well with the strong and substantivist ontology of work under neoliberalism, and thus could potentially be seen as reflection of the influence of neoliberal ideas in education. Implications of the mainstreaming of an ontology of teaching that is compatible with neoliberalism can be seen in increasing marketization of teaching, `teaching evangelism', and impoverished notions of learning and teaching. A shift of focus from teacher quality to quality of teaching and building conceptual models of teaching based on relational ontologies deserve to be explored as important steps in preserving critical and socially just conceptions of science teaching in neoliberal times.

  15. The effect of electronic networking on preservice elementary teachers' science teaching self-efficacy and attitude towards science teaching

    NASA Astrophysics Data System (ADS)

    Mathew, Nishi Mary

    Preservice elementary teachers' science teaching efficacy and attitude towards science teaching are important determinants of whether and how they will teach science in their classrooms. Preservice teachers' understanding of science and science teaching experiences have an impact on their beliefs about their ability to teach science. This study had a quasi-experimental pretest-posttest control group design (N = 60). Preservice elementary teachers in this study were networked through the Internet (using e-mail, newsgroups, listserv, world wide web access and electronic mentoring) during their science methods class and student practicum. Electronic networking provides a social context in which to learn collaboratively, share and reflect upon science teaching experiences and practices, conduct tele-research effectively, and to meet the demands of student teaching through peer support. It was hoped that the activities over the electronic networks would provide them with positive and helpful science learning and teaching experiences. Self-efficacy was measured using a 23-item Likert scale instrument, the Science Teaching Efficacy Belief Instrument, Form-B (STEBI-B). Attitude towards science teaching was measured using the Revised Science Attitude Scale (RSAS). Analysis of covariance was used to analyze the data, with pretest scores as the covariate. Findings of this study revealed that prospective elementary teachers in the electronically networked group had better science teaching efficacy and personal science teaching efficacy as compared to the non-networked group of preservice elementary teachers. The science teaching outcome expectancy of prospective elementary teachers in the networked group was not greater than that of the prospective teachers in the non-networked group (at p < 0.05). Attitude towards science teaching was not significantly affected by networking. However, this is surmised to be related to the duration of the study. Information about the

  16. Professional development in college science teaching

    NASA Astrophysics Data System (ADS)

    Thomas, Aimee Kathryn

    Graduate students earning a doctorate in the sciences historically focus their work on research and not professional development in college science teaching. However, for those who go on to a career in academia, a majority of their time will be dedicated to teaching. During the past few years, graduate teaching assistants (GTAs) have been prepared to teach by attending a daylong workshop that included logistical information, but left pedagogy largely unexplored. Since that time, a seminar has been added to provide an introduction to pedagogical theory and practices and to provide practice teaching in the biological sciences laboratory course. Yet, more pedagogical preparation is needed. This study was conducted to determine if there was a need for a teaching certificate program for doctoral students in the College of Science and Technology (CoST) at The University of Southern Mississippi. The GTA respondents studied set teaching goals that were consistent with faculty members across the country; however, this research went further by finding out how competent the GTAs perceived they were and how much support they perceived they needed with respect to teaching and professional development. The GTAs did not differ in their perceived level of competence based on experience level; however, the less experienced GTAs did perceive they needed more support than the experienced GTAs. To help GTAs develop a skill set that many CoST graduates currently lack, it is recommended that the University provide ample training and supervision. Establishing a certificate program can potentially impact the community in the following ways: (1) the training of GTAs contributes to the academic preparation of future academic professionals who will be teaching in various institutions; (2) GTA training provides professional development and awareness that teaching requires life long professional development; (3) ensuring competent academicians, not only in content but also in pedagogy; (4

  17. Action Research Study. A Framework To Help Move Teachers toward an Inquiry-Based Science Teaching Approach.

    ERIC Educational Resources Information Center

    Staten, Mary E.

    This action research study developed a framework for moving teachers toward an inquiry-based approach to teaching science, emphasizing elements, strategies, and supports necessary to encourage and sustain teachers' use of inquiry-based science instruction. The study involved a literature review, participant observation, focus group discussions,…

  18. Teaching Science Using Stories: The Storyline Approach

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.

    2007-01-01

    Storytelling is an age-old and powerful means of communication that can be used as an effective teaching strategy in the science classroom. This article describes the authors' experiences implementing the Storyline Approach, an inquiry-based teaching method first introduced by Kieran Egan (1986), in the context of teaching the concept of air…

  19. The Development of Interactive World Wide Web Based Teaching Material in Forensic Science.

    ERIC Educational Resources Information Center

    Daeid, Niamh Nic

    2001-01-01

    Describes the development of a Web-based tutorial in the forensic science teaching program at the University of Strathclyde (Scotland). Highlights include the theoretical basis for course development; objectives; Web site design; student feedback; and staff feedback. (LRW)

  20. Understanding primary school science teachers' pedagogical content knowledge: The case of teaching global warming

    NASA Astrophysics Data System (ADS)

    Chordnork, Boonliang; Yuenyong, Chokchai

    2018-01-01

    This aim of this research was to investigate primary school science teachers understanding and teaching practice as well as the influence on teaching and learning a topic like global warming. The participants were four primary science teachers, who were not graduated in science education. Methodology was the case study method, which was under the qualitative research regarded from interpretive paradigm. Data were collected by openended questionnaire, semi-structure interview, and document colleting. The questionnaire examined teachers' background, teachers' understanding of problems and threats of science teaching, desiring of development their PCK, sharing the teaching approaches, and their ideas of strength and weakness. a semi-structured interview was conducted based on the approach for capturing PCK of Loughran [23] content representation (CoRe). And, the document was collected to clarify what evidence which was invented to effect on students' learning. These document included lesson plan, students' task, and painting about global warming, science projects, the picture of activities of science learning, the exercise and test. Data analysis employed multiple approach of evidence looking an issue from each primary science teachers and used triangulation method to analyze the data with aiming to make meaning of teachers' representation of teaching practice. These included descriptive statistics, CoRe interpretation, and document analysis. The results show that teachers had misunderstanding of science teaching practice and they has articulated the pedagogical content knowledge in terms of assessment, goal of teaching and linking to the context of socio cultural. In contrast, knowledge and belief of curriculum, students' understanding of content global warming, and strategies of teaching were articulated indistinct by non-graduate science teacher. Constructing opportunities for personal development, the curiosity of the student learning center, and linking context

  1. The inquiry continuum: Science teaching practices and student performance on standardized tests

    NASA Astrophysics Data System (ADS)

    Jernnigan, Laura Jane

    Few research studies have been conducted related to inquiry-based scientific teaching methodologies and NCLB-required state testing. The purpose of this study was to examine the relationship between the strategies used by seventh-grade science teachers in Illinois and student scores on the Illinois Standards Achievement Test (ISAT) to aid in determining best practices/strategies for teaching middle school science. The literature review defines scientific inquiry by placing teaching strategies on a continuum of scientific inquiry methodologies from No Inquiry (Direct Instruction) through Authentic Inquiry. Five major divisions of scientific inquiry: structured inquiry, guided inquiry, learning cycle inquiry, open inquiry, and authentic inquiry, have been identified and described. These five divisions contain eight sub-categories: demonstrations; simple or hands-on activities; discovery learning; variations of learning cycles; problem-based, event-based, and project-based; and student inquiry, science partnerships, and Schwab's enquiry. Quantitative data were collected from pre- and posttests and surveys given to the participants: five seventh grade science teachers in four Academic Excellence Award and Spotlight Award schools and their 531 students. Findings revealed that teachers reported higher inquiry scores for themselves than for their students; the two greatest reported factors limiting teachers' use of inquiry were not enough time and concern about discipline and large class size. Although the correlation between total inquiry and mean difference of pre- and posttest scores was not statistically significant, the survey instrument indicated how often teachers used inquiry in their classes, not the type of inquiry used. Implications arose from the findings that increase the methodology debate between direction instruction and inquiry-based teaching strategies; teachers are very knowledgeable about the Illinois state standards, and various inquiry-based methods

  2. The Effect of an Integrated Science and Mathematics Content-Based Course on Science and Mathematics Teaching Efficacy of Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Moseley, Christine; Utley, Juliana

    2006-01-01

    The purpose of this study was to determine the effect of an earth systems science course (integrated mathematics and science content) on preservice elementary teachers' mathematics and science teaching efficacy. Paired t-tests revealed that the personal mathematics and science teaching efficacy and science teaching outcome expectancy significantly…

  3. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R.; Botti, J.

    2002-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  4. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R. J.; Botti, J. A.

    2001-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  5. Metaphorical Roots of Beliefs about Teaching and Learning Science and Their Modifications in the Standard-Based Science Teacher Preparation Programme

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2011-01-01

    Beliefs are psychological constructs potentially driving a teacher to make pedagogical decisions and act. In this study, the metaphor construction task (MCT) was utilised to uncover beliefs about teaching and learning science held by 110 pre-service science teachers participating in the standard-based teacher preparation programme. Overall, the…

  6. Transformative Science Teaching in Higher Education

    ERIC Educational Resources Information Center

    Fraser, Sharon P.

    2015-01-01

    University science teaching remains fairly traditional in its approach, incorporating teacher-centred and lecture-based methodologies and utilizing cook book laboratory experiences. Innovative science lecturers, however, have transformed their understanding and practice as teachers, placing their students at the heart of their actions and engaging…

  7. Improving the Teaching of Science through Discipline-Based Education Research: An Example from Physics

    ERIC Educational Resources Information Center

    McDermott, Lillian C.

    2013-01-01

    Research on the learning and teaching of science is an important field for scholarly inquiry by faculty in science departments. Such research has proved to be an efficient means for improving the effectiveness of instruction in physics. A basic topic in introductory physics is used to illustrate how discipline-based education research has helped…

  8. Learning to teach science in urban schools

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  9. Preliminary investigation into application of problem-based learning in the practical teaching of diagnostics

    PubMed Central

    Rui, Zeng; Rong-Zheng, Yue; Hong-Yu, Qiu; Jing, Zeng; Xue-Hong, Wan; Chuan, Zuo

    2015-01-01

    Background Problem-based learning (PBL) is a pedagogical approach based on problems. Specifically, it is a student-centered, problem-oriented teaching method that is conducted through group discussions. The aim of our study is to explore the effects of PBL in diagnostic teaching for Chinese medical students. Methods A prospective, randomized controlled trial was conducted. Eighty junior clinical medical students were randomly divided into two groups. Forty students were allocated to a PBL group and another 40 students were allocated to a control group using the traditional teaching method. Their scores in the practice skills examination, ability to write and analyze medical records, and results on the stage test and behavior observation scale were compared. A questionnaire was administered in the PBL group after class. Results There were no significant differences in scores for writing medical records, content of interviewing, physical examination skills, and stage test between the two groups. However, compared with the control group, the PBL group had significantly higher scores on case analysis, interviewing skills, and behavioral observation scales. Conclusion The questionnaire survey revealed that PBL could improve interest in learning, cultivate an ability to study independently, improve communication and analytical skills, and good team cooperation spirit. However, there were some shortcomings in systematization of imparting knowledge. PBL has an obvious advantage in teaching with regard to diagnostic practice. PMID:25848334

  10. The advantages of problem-based curricula.

    PubMed Central

    Dolmans, D.; Schmidt, H.

    1996-01-01

    Problem-based curricula provide a learning environment in which competence is fostered not primarily by teaching to impart knowledge, but through encouraging an inquisitive style of learning. Preliminary discussion in small groups, contextual learning, integration of knowledge and an emphasis on patient problems, have several cognitive effects on student learning. These effects are increased retention of knowledge, enhancement of integration of basic science concepts into clinical problems, the development of self-directed learning skills, and the enhancement of students' intrinsic interest in the subject matter. In this paper a number of studies will be reviewed that provide empirical evidence for these premises. PMID:8949589

  11. The Effect of a Collaborative Mentoring Program on Beginning Science Teachers' Inquiry-Based Teaching Practice

    ERIC Educational Resources Information Center

    Nam, Jeonghee; Seung, Eulsun; Go, MunSuk

    2013-01-01

    This study investigated how a collaborative mentoring program influenced beginning science teachers' inquiry-based teaching and their reflection on practice. The one-year program consisted of five one-on-one mentoring meetings, weekly science education seminars, weekly mentoring group discussions, and self-evaluation activities. The participants…

  12. Teacher Beliefs toward Using Alternative Teaching Approaches in Science and Mathematics Classes Related to Experience in Teaching

    ERIC Educational Resources Information Center

    Isiksal-Bostan, Mine; Sahin, Elvan; Ertepinar, Hamide

    2015-01-01

    The purpose of this study was to examine the relationships among Turkish classroom, science and mathematics teachers' beliefs toward using inquiry-based approaches, traditional teaching approaches, and technology in their mathematics and science classrooms; their efficacy beliefs in teaching those subjects; and years of experience in teaching in…

  13. Using an interdisciplinary MOOC to teach climate science and science communication to a global classroom

    NASA Astrophysics Data System (ADS)

    Cook, J.

    2016-12-01

    MOOCs (Massive Open Online Courses) are a powerful tool, making educational content available to a large and diverse audience. The MOOC "Making Sense of Climate Science Denial" applied science communication principles derived from cognitive psychology and misconception-based learning in the design of video lectures covering many aspects of climate change. As well as teaching fundamental climate science, the course also presented psychological research into climate science denial, teaching students the most effective techniques for responding to misinformation. A number of enrolled students were secondary and tertiary educators, who adopted the course content in their own classes as well as adapted their teaching techniques based on the science communication principles presented in the lectures. I will outline how we integrated cognitive psychology, educational research and climate science in an interdisciplinary online course that has had over 25,000 enrolments from over 160 countries.

  14. Approaches to Interactive Video Anchors in Problem-based Science Learning

    NASA Astrophysics Data System (ADS)

    Kumar, David Devraj

    2010-02-01

    This paper is an invited adaptation of the IEEE Education Society Distinguished Lecture Approaches to Interactive Video Anchors in Problem-Based Science Learning. Interactive video anchors have a cognitive theory base, and they help to enlarge the context of learning with information-rich real-world situations. Carefully selected movie clips and custom-developed regular videos and virtual simulations have been successfully used as anchors in problem-based science learning. Examples discussed include a range of situations such as Indiana Jones tackling a trap, a teenager misrepresenting lead for gold, an agriculture inspection at the US border, counterintuitive events, analyzing a river ecosystem for pollution, and finding the cause of illness in a nineteenth century river city. Suggestions for teachers are provided.

  15. Competencies in Science Teaching

    ERIC Educational Resources Information Center

    Mathelitsch, Leopold

    2013-01-01

    The role of competencies is discussed with respect to science teaching. In particular, competence models from Germany, Switzerland and Austria are presented and compared. A special topical program, "Competencies in Mathematics and Science Teaching", was started in Austria three years ago. Initial experiences with this program are…

  16. Measurement Instrument for Scientific Teaching (MIST): A Tool to Measure the Frequencies of Research-Based Teaching Practices in Undergraduate Science Courses.

    PubMed

    Durham, Mary F; Knight, Jennifer K; Couch, Brian A

    2017-01-01

    The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of ST requires having mechanisms to quantify its implementation. While many useful instruments exist to document teaching practices, these instruments only partially align with the range of practices specified by ST, as described in a recently published taxonomy. Here, we describe the development, validation, and implementation of the Measurement Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy and designed to gauge the frequencies of ST practices in undergraduate science courses. MIST showed acceptable validity and reliability based on results from 7767 students in 87 courses at nine institutions. We used factor analyses to identify eight subcategories of ST practices and used these categories to develop a short version of the instrument amenable to joint administration with other research instruments. We further discuss how MIST can be used by instructors, departments, researchers, and professional development programs to quantify and track changes in ST practices. © 2017 M. F. Durham et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Preparing perservice teachers to teach elementary school science

    NASA Astrophysics Data System (ADS)

    Lewis, Amy D.

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.

  18. Redesigning Problem-Based Learning in the Knowledge Creation Paradigm for School Science Learning

    ERIC Educational Resources Information Center

    Yeo, Jennifer; Tan, Seng Chee

    2014-01-01

    The introduction of problem-based learning into K-12 science classrooms faces the challenge of achieving the dual goal of learning science content and developing problem-solving skills. To overcome this content-process tension in science classrooms, we employed the knowledge-creation approach as a boundary object between the two seemingly…

  19. Sustaining inquiry-based teaching methods in the middle school science classroom

    NASA Astrophysics Data System (ADS)

    Murphy, Amy Fowler

    This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI program, each of the four teacher participants in this study had a unique, individual context as well. The researcher collected data through a series of interviews, multiple-day observations, and curricular materials. The interview data was analyzed to develop a textural, structural, and composite description of the phenomenon. The Reformed Teaching Observation Protocol (RTOP) was used along with the Assesing Inquiry Potential (AIP) questionnaire to determine the level of inquiry-based instruction occuring in the participants classrooms. Analysis of the RTOP data and AIP data indicated all of the participants utilized inquiry-based methods in their classrooms during their observed lessons. The AIP data also indicated the level of inquiry in the AMSTI curricular materials utilized by the participants during the observations was structured inquiry. The findings from the interview data suggested the ability of the participants to sustain their use of structured inquiry was influenced by their experiences with, beliefs about, and understandings of inquiry. This study contributed to the literature by supporting existing studies regarding the influence of teachers' experiences, beliefs, and understandings of inquiry on their classroom practices. The inquiry approach stressed in current reforms in science education targets content knowledge, skills, and processes needed in a future scientifically literate citizenry.

  20. Preparing new nurses with complexity science and problem-based learning.

    PubMed

    Hodges, Helen F

    2011-01-01

    Successful nurses function effectively with adaptability, improvability, and interconnectedness, and can see emerging and unpredictable complex problems. Preparing new nurses for complexity requires a significant change in prevalent but dated nursing education models for rising graduates. The science of complexity coupled with problem-based learning and peer review contributes a feasible framework for a constructivist learning environment to examine real-time systems data; explore uncertainty, inherent patterns, and ambiguity; and develop skills for unstructured problem solving. This article describes a pilot study of a problem-based learning strategy guided by principles of complexity science in a community clinical nursing course. Thirty-five senior nursing students participated during a 3-year period. Assessments included peer review, a final project paper, reflection, and a satisfaction survey. Results were higher than expected levels of student satisfaction, increased breadth and analysis of complex data, acknowledgment of community as complex adaptive systems, and overall higher level thinking skills than in previous years. 2011, SLACK Incorporated.

  1. Exploring Corn-Ethanol As A Complex Problem To Teach Sustainability Concepts Across The Science-Business-Liberal Arts Curriculum

    NASA Astrophysics Data System (ADS)

    Oches, E. A.; Szymanski, D. W.; Snyder, B.; Gulati, G. J.; Davis, P. T.

    2012-12-01

    stakeholders in developing and implementing policy on renewable fuels standards and ethanol production targets for the U.S. In Microeconomics students learn cost-benefit analysis and other concepts by applying economics principles to the corn ethanol problem. Following the disciplinary activities, students are asked to reconsider the central corn ethanol problem and evaluate it from a sustainability perspective. Assessment is ongoing, although initial results suggest that undergraduate students have difficulty integrating knowledge across multiple disciplines when evaluating a complex sustainability problem. Based on our initial assessment, we are exploring ways to modify the corn ethanol module as well as fine-tune the assessment instruments to provide the most effective outcomes possible. Because there are commonly institutional barriers to team teaching and other methods of cross-disciplinary instruction, we are recruiting faculty from additional disciplines to adapt and implement the corn ethanol module as a way of integrating sustainability concepts across the curriculum. Our goal is to teach complex, trans-disciplinary problem-solving and have students explore ways in which sustainability issues must be addressed through the application of concepts from the environmental and social sciences, public policy, and economics.

  2. Innovative research on the group teaching mode based on the LabVIEW virtual environment

    NASA Astrophysics Data System (ADS)

    Liang, Pei; Huang, Jie; Gong, Hua-ping; Dong, Qian-min; Dong, Yan-yan; Sun, Cai-xia

    2017-08-01

    This paper discusses the widely existing problems of increasing demand of professional engineer in electronic science major and the backward of the teaching mode at present. From one specialized course "Virtual Instrument technique and LABVIEW programming", we explore the new group-teaching mode based on the Virtual Instrument technique, and then the Specific measures and implementation procedures and effect of this teaching mode summarized in the end.

  3. Teaching with Moodle in Soil Science

    NASA Astrophysics Data System (ADS)

    Roca, Núria

    2014-05-01

    Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil is integral to many ecological and social systems and it holds potential solutions for many of the world's economic and scientific problems as climate change or scarcity of food and water. The teaching of Soil Science, as a natural science in its own right, requires principles that reflect the unique features and behaviour of soil and the practices of soil scientists. It could be argued that a unique set of teaching practices applies to Soil Science; however specific teaching practices are scarce in literature. The present work was triggered by the need to develop new techniques of teaching to speed up the learning process and to experiment with new methods of teaching. For such, it is necessary to adopt virtual learning environment to new learning requirements regarding Soil Science. This paper proposes a set of e-teaching techniques (as questionnaires, chats as well as forums) introduced in Moodle virtual learning Environment in order to increase student motivation and interest in Soil Science. Such technologies can be used to: a)Increase the amount of time a teacher allots for student reflection after asking a question and before a student responds (wait-time). This practice increases the quantity and quality of students' answers. The students give longer responses, students give more evidence for their ideas and conclusions, students speculate and hypothesize more and more students participated in responding. Furthermore, students ask more questions and talk more to other students. b)Improve active learning, an essential paradigm in education. In contrast to learning-before-doing, we propose to focus on learning-in-doing, a model where learners are increasingly involved in the authentic practices of communities through learning conversations and activities involving expert

  4. Examining the Effectiveness of Problem-Based Learning in the Teaching of Information Technology: A Comparison with Lectured-Based Learning

    ERIC Educational Resources Information Center

    Liu, YuFing

    2013-01-01

    This paper applies a quasi-experimental research method to compare the difference in students' approaches to learning and their learning achievements between the group that follows the problem based learning (PBL) teaching method with computer support and the group that follows the non-PBL teaching methods. The study sample consisted of 68 junior…

  5. The Effect of Reform-Based Science Teaching on SES-Associated Achievement Gap on PISA 2006: A Comparative Study of the United States and Taiwan

    NASA Astrophysics Data System (ADS)

    Tang, Nai-En

    The goal of this study is to examine how reform-based science teaching has been implemented and whether reform-based science teaching has promoted education equity through being available and beneficial for students from different socioeconomic status (SES) family backgrounds in the U.S. and Taiwan. No existing study used large-scale assessment to investigate the implementation and outcomes of the science reform movement in the U.S. and Taiwan. This study was developed to fill this gap using the Program of International Student Assessment (PISA) 2006 data including 5,611 students in the United States and 5995 students in Taiwan. A Latent Profile Analysis (LPA) was used to classify students into different science learning subgroups to understand how broadly reform-based science learning has been implemented in classrooms. The results showed that students in the U.S. had more opportunity to learn science through the reform-based learning activities than students in Taiwan. Latent Class Regression (LCR) and Structural Equation Modeling (SEM) were used for examining the availability of reform-based science teaching in both countries. The results showed that in the U.S., higher SES students had more opportunity to learn science reform-based learning activities. On the other hand, students' SES had no association with reform-based science learning in Taiwan. Regression Mixture Modeling and SEM were used to examine whether there was an association between reform-based science teaching and SES-associated achievement gaps. The results found no evidence to support the claim that reform-based science teaching helps to minimize SES-associated achievement gaps in both countries.

  6. Elementary teachers' acquisition of science knowledge: Case-studies and implications for teaching preparation

    NASA Astrophysics Data System (ADS)

    Stein, Morton

    Elementary school is a key time for students to develop their understanding of basic science concepts as well as their attitudes towards science and science learning. Yet many elementary teachers do not feel comfortable teaching science; as a result, they are likely to devote less time on that subject and to be less effective as science teachers. The literature suggests that weaknesses in elementary teachers' knowledge of science could be a main cause of this problem and, furthermore, that current elementary teacher preparation programs have contributed to this weakness. This study aims at gaining more knowledge about how elementary teachers who are successful in teaching science have acquired their science content knowledge and how such knowledge could be best acquired, with the ultimate goal of informing the design of more effective elementary teacher preparation programs. More specifically, this study addresses the following research questions: Which science learning experiences for elementary teachers seem most conducive to develop the kind of science content knowledge and pedagogical content knowledge needed to support the teaching of science as called for by the most recent national and state standards? Which of these experiences should be included in elementary teacher preparation programs, and how? The core of this study consists of case studies of eight elementary school teachers who were identified as successful in teaching science. These subjects were selected so as to ensure differences in their teacher preparation programs, as well as gender and years of teaching experience. Information about each teacher's self-efficacy and motivation with respect to teaching science, history of pre-service and in-service preparation with respect to science, and how his/her current science knowledge was acquired, was sought through a series of interviews with each subject and triangulated with data collected from other sources. A cross-case analysis revealed some

  7. The Teaching Processes of Prospective Science Teachers with Different Levels of Science-Teaching Self-Efficacy Belief

    ERIC Educational Resources Information Center

    Saka, Mehpare; Bayram, Hale; Kabapinar, Filiz

    2016-01-01

    The concept of self-efficacy, which is an important variable in the teaching process, and how it reflects on teaching have recently been the focus of attention. Therefore, this study deals with the relationship between the science-teaching self-efficacy beliefs of prospective science teachers and their teaching practices. It was conducted with…

  8. Teaching Probability to Pre-Service Teachers with Argumentation Based Science Learning Approach

    ERIC Educational Resources Information Center

    Can, Ömer Sinan; Isleyen, Tevfik

    2016-01-01

    The aim of this study is to explore the effects of the argumentation based science learning (ABSL) approach on the teaching probability to pre-service teachers. The sample of the study included 41 students studying at the Department of Elementary School Mathematics Education in a public university during the 2014-2015 academic years. The study is…

  9. Elementary Teachers' Perceptions of Teaching Science to Improve Student Content Knowledge

    NASA Astrophysics Data System (ADS)

    Stephenson, Robert L.

    The majority of Grade 5 students demonstrate limited science knowledge on state assessments. This trend has been documented since 2010 with no evidence of improvement. Because state accountability formulas include proficiency scores and carry sanctions against districts that fail to meet proficiency thresholds, improved student performance in science is an important issue to school districts. The purpose of this study was to explore elementary teachers' perceptions about their students' science knowledge, the strategies used to teach science, the barriers affecting science teaching, and the self-efficacy beliefs teachers maintain for teaching science. This study, guided by Vygotsky's social constructivist theory and Bandura's concept of self-efficacy, was a bounded instrumental case study in which 15 participants, required to be teaching K-5 elementary science in the county, were interviewed. An analytic technique was used to review the qualitative interview data through open coding, clustering, and analytical coding resulting in identified categorical themes that addressed the research questions. Key findings reflect students' limited content knowledge in earth and physical science. Teachers identified barriers including limited science instructional time, poor curricular resources, few professional learning opportunities, concern about new state standards, and a lack of teaching confidence. To improve student content knowledge, teachers identified the need for professional development. The project is a professional development series provided by a regional education service agency for K-5 teachers to experience science and engineering 3-dimensional learning. Area students will demonstrate deeper science content knowledge and benefit from improved science instructional practice and learning opportunities to become science problem solvers and innovative contributors to society.

  10. A Geometric Model to Teach Nature of Science, Science Practices, and Metacognition

    ERIC Educational Resources Information Center

    Nyman, Matthew; St. Clair, Tyler

    2016-01-01

    Using the science practice model in science classes for preservice teachers addresses three important aspects of science teacher preparation: teaching the nonlinear nature of scientific process, using scientific practices rather than the ambiguous term "inquiry-based," and emphasizing the process of metacognition as an important tool in…

  11. Evaluating the Use of Problem-Based Video Podcasts to Teach Mathematics in Higher Education

    ERIC Educational Resources Information Center

    Kay, Robin; Kletskin, Ilona

    2012-01-01

    Problem-based video podcasts provide short, web-based, audio-visual explanations of how to solve specific procedural problems in subject areas such as mathematics or science. A series of 59 problem-based video podcasts covering five key areas (operations with functions, solving equations, linear functions, exponential and logarithmic functions,…

  12. The Future of Teaching Research in the Social Sciences

    ERIC Educational Resources Information Center

    Wagner, C.

    2009-01-01

    Current literature on teaching research methodology in the social sciences highlights the changing nature of our world in terms of its complexity and diversity, and points to how this affects the way in which we search for answers to related problems (Brew 2003, 3; Tashakkori and Teddlie 2003, 74). New ways of approaching research problems that…

  13. The Effects of Incorporating Web-assisted Learning with Team Teaching in Seventh-grade Science Classes

    NASA Astrophysics Data System (ADS)

    Jang, Syh-Jong

    2006-05-01

    Due to the implementation of a 9-year integrated curriculum scheme in Taiwan, research on team teaching and web-based technology appears to be urgent. The purpose of this study was incorporated web-assisted learning with team teaching in seventh-grade science classes. The specific research question concerned student performance and attitudes about the teaching method. Two certified science teachers and four classes of the seventh graders participated in this study. It used a mixed methods design, incorporating both quantitative and qualitative techniques. The main data included students’ scores, questionnaires, teachers’ self-reflections, and the researcher’s interviews with teachers. The results showed that the average final examination scores of students experiencing the experimental teaching method were higher than that of those receiving traditional teaching. The two teaching methods showed significant difference in respect of students’ achievement. The research had limitations because of students’ abilities of data collection, computer use, and discussion, but more than one-half of the students preferred the experimental method to traditional teaching. However, team teachers would encounter the problems of technology ability, time constraints, and entrance examination pressure.

  14. Science is Elementary, A Science Teaching Resource Publication, 1992-1993.

    ERIC Educational Resources Information Center

    Science is Elementary, 1993

    1993-01-01

    These resource magazines for K-6 educators are published to promote the teaching of science, mathematics, and technology through participatory, inquiry-based methods. Each issue provides resources and hands-on activities for educators that focus on one theme. Issues in volume 5 cover the themes of geology, math and science integration, tropical…

  15. Teaching Ethical Issues in Science.

    ERIC Educational Resources Information Center

    Levinson, Ralph

    This paper presents a study that investigates the teaching and learning aspects of controversial issues in science education. Teaching ethical issues is mandatory for science teachers in England; however, teachers may experience difficulties in exploring contemporary issues in science due to rapid and unpredictable changes. The study carries an…

  16. Problem-Based Learning in the Life Science Classroom, K-12

    ERIC Educational Resources Information Center

    McConnell, Tom; Parker, Joyce; Eberhardt, Janet

    2016-01-01

    "Problem-Based Learning in the Life Science Classroom, K-12" offers a great new way to ignite your creativity. Authors Tom McConnell, Joyce Parker, and Janet Eberhardt show you how to engage students with scenarios that represent real-world science in all its messy, thought-provoking glory. The scenarios prompt K-12 learners to immerse…

  17. TEACHING SCIENCE AT THE SECONDARY STAGE, A HANDBOOK ON THE TEACHING OF SCIENCE TO THE AVERAGE PUPIL.

    ERIC Educational Resources Information Center

    KNOCK, H.E.; AND OTHERS

    THIS ENGLISH PUBLICATION IS DESIGNED TO PROVIDE DIRECTION FOR PROSPECTIVE OR PRACTICING TEACHERS IN THE TEACHING OF GENERAL EDUCATION SCIENCE TO SECONDARY SCHOOL STUDENTS. IT IS BASED ON THE ASSUMPTION THAT SCIENCE SHOULD BE RECOGNIZED, AND TAUGHT, AS A HUMAN ACTIVITY WHICH EXPLORES THE REALM OF HUMAN EXPERIENCE, MAPS IT METHODICALLY BUT…

  18. Collaborating to Improve Inquiry-Based Teaching in Elementary Science and Mathematics Methods Courses

    ERIC Educational Resources Information Center

    Magee, Paula A.; Flessner, Ryan

    2012-01-01

    This study examines the effect of promoting inquiry-based teaching (IBT) through collaboration between a science methods course and mathematics methods course in an elementary teacher education program. During the collaboration, preservice elementary teacher (PST) candidates experienced 3 different types of inquiry as a way to foster increased…

  19. The transformation of science and mathematics content knowledge into teaching content by university faculty

    NASA Astrophysics Data System (ADS)

    Flynn, Natalie P.

    This study developed a survey from the existing literature in an attempt to illuminate the processes, tools, insights, and events that allow university science and mathematics content experts (Ph.D.'s) unpack their expertise in order to teach develop and teach undergraduate students. A pilot study was conducted at an urban university in order to refine the survey. The study consisted of 72 science or mathematics Ph.D. faculty members that teach at a research-based urban university. Follow-up interviews were conducted with 21 volunteer faculty to further explore their methods and tools for developing and implementing teaching within their discipline. Statistical analysis of the data revealed: faculty that taught while obtaining their Ph.D. were less confident in their ability to teach successful and faculty that received training in teaching believed that students have difficult to change misconceptions and do not commit enough time to their course. Student centered textbooks ranked the highest among tools used to gain teaching strategies followed by grading of exams and assignments for gaining insights into student knowledge and difficulties. Science and mathematics education literature and university provided education session ranked the lowest in rating scale for providing strategies for teaching. The open-ended survey questions were sub-divided and analyzed by the number of years of experience to identify the development of teaching knowledge over time and revealed that teaching became more interactive, less lecture based, and more engaging. As faculty matured and gained experience they became more aware of student misconceptions and difficulties often changing their teaching to eliminate such issues. As confidence levels increase their teaching included more technology-based tools, became more interactive, incorporated problem based activities, and became more flexible. This change occurred when and if faculty members altered their thinking about their

  20. Investigating Omani Science Teachers' Attitudes towards Teaching Science: The Role of Gender and Teaching Experiences

    ERIC Educational Resources Information Center

    Ambusaidi, Abdullah; Al-Farei, Khalid

    2017-01-01

    A 30-item questionnaire was designed to determine Omani science teachers' attitudes toward teaching science and whether or not these attitudes differ according to gender and teaching experiences of teachers. The questionnaire items were divided into 3 domains: classroom preparation, managing hands-on science, and development appropriateness. The…

  1. A Professional Development Teaching Course for Science Graduate Students

    ERIC Educational Resources Information Center

    Baumgartner, Erin

    2007-01-01

    Although the majority of the teaching faculty at U.S. universities is composed of people who are scientific experts, research has found that most scientists do not have information about effective teaching methods (DeHaan 2005). Traditional lecture-style college science teaching does not reflect knowledge about best teaching practices based upon…

  2. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    NASA Astrophysics Data System (ADS)

    Trauth-Nare, Amy

    2015-08-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers' self-efficacy for teaching about the environment and to determine which aspects of the combined field-based course/service learning preservice teachers perceived as effective for enhancing their self-efficacy. Data were collected from class documents and written teaching reflections of 38 middle-level preservice teachers. Some participants ( n = 18) also completed the Environmental Education Efficacy Belief Instrument at the beginning and end of the semester. Both qualitative and quantitative data analyses indicated a significant increase in PSTs' personal efficacies for environmental teaching, t(17) = 4.50, p = .000, d = 1.30, 95 % CI (.33, .90), but not outcome expectancy, t(17) = 1.15, p = .268, d = .220, 95 % CI (-.06, .20). Preservice teachers reported three aspects of the course as important for enhancing their self-efficacies: learning about ecological concepts through place-based issues, service learning with K-5 students and EE curriculum development. Data from this study extend prior work by indicating that practical experiences with students were not the sole factor in shaping PSTs' self-efficacy; learning ecological concepts and theories in field-based activities grounded in the local landscape also influenced PSTs' self-efficacy.

  3. Promoting Scientific Literacy by Using ICT in Science Teaching

    ERIC Educational Resources Information Center

    Al-Rsa'i, Mohammed Salameh

    2013-01-01

    This study aims to identify the way upon which ICT can be employed in science teaching to develop scientific literacy level. The study has conclude to design a triple learning model (PEA) based on ICT and constructive learning strategy in teaching science through a context which cares for building positive trends of searching for knowledge and…

  4. Editors' overview perspectives on teaching social responsibility to students in science and engineering.

    PubMed

    Zandvoort, Henk; Børsen, Tom; Deneke, Michael; Bird, Stephanie J

    2013-12-01

    Global society is facing formidable current and future problems that threaten the prospects for justice and peace, sustainability, and the well-being of humanity both now and in the future. Many of these problems are related to science and technology and to how they function in the world. If the social responsibility of scientists and engineers implies a duty to safeguard or promote a peaceful, just and sustainable world society, then science and engineering education should empower students to fulfil this responsibility. The contributions to this special issue present European examples of teaching social responsibility to students in science and engineering, and provide examples and discussion of how this teaching can be promoted, and of obstacles that are encountered. Speaking generally, education aimed at preparing future scientists and engineers for social responsibility is presently very limited and seemingly insufficient in view of the enormous ethical and social problems that are associated with current science and technology. Although many social, political and professional organisations have expressed the need for the provision of teaching for social responsibility, important and persistent barriers stand in the way of its sustained development. What is needed are both bottom-up teaching initiatives from individuals or groups of academic teachers, and top-down support to secure appropriate embedding in the university. Often the latter is lacking or inadequate. Educational policies at the national or international level, such as the Bologna agreements in Europe, can be an opportunity for introducing teaching for social responsibility. However, frequently no or only limited positive effect of such policies can be discerned. Existing accreditation and evaluation mechanisms do not guarantee appropriate attention to teaching for social responsibility, because, in their current form, they provide no guarantee that the curricula pay sufficient attention to

  5. Critical Debates in Teaching Research Methods in the Social Sciences

    ERIC Educational Resources Information Center

    Gunn, Andrew

    2017-01-01

    This paper explores some of the critical debates in social science research methods education and is set out in three parts. The first section introduces the importance and relevance of research methods to the social sciences. It then outlines the problems and challenges experienced in the teaching and learning of research methods, which are…

  6. Comparative Effectiveness of Context-Based and Traditional Approaches in Teaching Genetics: Student Views and Achievement

    ERIC Educational Resources Information Center

    Kazeni, Monde; Onwu, Gilbert

    2013-01-01

    The study aimed to determine the comparative effectiveness of context-based and traditional teaching approaches in enhancing student achievement in genetics, problem-solving, science inquiry and decision-making skills, and attitude towards the study of life sciences. A mixed method but essentially quantitative research approach involving a…

  7. Investigating the effects of cognitive apprenticeship-based instructional coaching on science teaching efficacy beliefs

    NASA Astrophysics Data System (ADS)

    Cooper, Teo O. H.

    The overall purpose of this collected papers dissertation was to examine the utility of a cognitive apprenticeship-based instructional coaching (CAIC) model for improving the science teaching efficacy beliefs (STEB) of preservice and inservice elementary teachers. Many of these teachers perceive science as a difficult subject and feel inadequately prepared to teach it. However, teacher efficacy beliefs have been noted as the strongest indicator of teacher quality, the variable most highly correlated with student achievement outcomes. The literature is scarce on strong, evidence-based theoretical models for improving STEB. This dissertation is comprised of two studies. STUDY #1 was a sequential explanatory mixed-methods study investigating the impact of a reformed CAIC elementary science methods course on the STEB of 26 preservice teachers. Data were collected using the Science Teaching Efficacy Belief Instrument (STEBI-B) and from six post-course interviews. A statistically significant increase in STEB was observed in the quantitative strand. The qualitative data suggested that the preservice teachers perceived all of the CAIC methods as influential, but the significance of each method depended on their unique needs and abilities. STUDY #2 was a participatory action research case study exploring the utility of a CAIC professional development program for improving the STEB of five Bahamian inservice teachers and their competency in implementing an inquiry-based curriculum. Data were collected from pre- and post-interviews and two focus group interviews. Overall, the inservice teachers perceived the intervention as highly effective. The scaffolding and coaching were the CAIC methods portrayed as most influential in developing their STEB, highlighting the importance of interpersonal relationship aspects in successful instructional coaching programs. The teachers also described the CAIC approach as integral in supporting their learning to implement the new inquiry-based

  8. A Novel Harmony Search Algorithm Based on Teaching-Learning Strategies for 0-1 Knapsack Problems

    PubMed Central

    Tuo, Shouheng; Yong, Longquan; Deng, Fang'an

    2014-01-01

    To enhance the performance of harmony search (HS) algorithm on solving the discrete optimization problems, this paper proposes a novel harmony search algorithm based on teaching-learning (HSTL) strategies to solve 0-1 knapsack problems. In the HSTL algorithm, firstly, a method is presented to adjust dimension dynamically for selected harmony vector in optimization procedure. In addition, four strategies (harmony memory consideration, teaching-learning strategy, local pitch adjusting, and random mutation) are employed to improve the performance of HS algorithm. Another improvement in HSTL method is that the dynamic strategies are adopted to change the parameters, which maintains the proper balance effectively between global exploration power and local exploitation power. Finally, simulation experiments with 13 knapsack problems show that the HSTL algorithm can be an efficient alternative for solving 0-1 knapsack problems. PMID:24574905

  9. A novel harmony search algorithm based on teaching-learning strategies for 0-1 knapsack problems.

    PubMed

    Tuo, Shouheng; Yong, Longquan; Deng, Fang'an

    2014-01-01

    To enhance the performance of harmony search (HS) algorithm on solving the discrete optimization problems, this paper proposes a novel harmony search algorithm based on teaching-learning (HSTL) strategies to solve 0-1 knapsack problems. In the HSTL algorithm, firstly, a method is presented to adjust dimension dynamically for selected harmony vector in optimization procedure. In addition, four strategies (harmony memory consideration, teaching-learning strategy, local pitch adjusting, and random mutation) are employed to improve the performance of HS algorithm. Another improvement in HSTL method is that the dynamic strategies are adopted to change the parameters, which maintains the proper balance effectively between global exploration power and local exploitation power. Finally, simulation experiments with 13 knapsack problems show that the HSTL algorithm can be an efficient alternative for solving 0-1 knapsack problems.

  10. Project-Based Science

    ERIC Educational Resources Information Center

    Krajcik, Joe

    2015-01-01

    Project-based science is an exciting way to teach science that aligns with the "Next Generation Science Standards" ("NGSS"). By focusing on core ideas along with practices and crosscutting concepts, classrooms become learning environments where teachers and students engage in science by designing and carrying out…

  11. Changes in Preservice Elementary Teachers' Personal Science Teaching Efficacy and Science Teaching Outcome Expectancies: The Influence of Context

    ERIC Educational Resources Information Center

    Hechter, Richard P.

    2011-01-01

    This study investigated contextual changes in perceptions of science teaching self-efficacy through pre-, post- and retrospective administrations of the Science Teaching Expectancy Belief Instrument (STEBI-B) among preservice elementary teachers when exposed to a science teaching methods course. Findings revealed that the number of postsecondary…

  12. Application of basic science to clinical problems: traditional vs. hybrid problem-based learning.

    PubMed

    Callis, Amber N; McCann, Ann L; Schneiderman, Emet D; Babler, William J; Lacy, Ernestine S; Hale, David Sidney

    2010-10-01

    It is widely acknowledged that clinical problem-solving is a key skill for dental practitioners. The aim of this study was to determine if students in a hybrid problem-based learning curriculum (h-PBL) were better at integrating basic science knowledge with clinical cases than students in a traditional, lecture-based curriculum (TC). The performance of TC students (n=40) was compared to that of h-PBL students (n=31). Participants read two clinical scenarios and answered a series of questions regarding each. To control for differences in ability, Dental Admission Test (DAT) Academic Average scores and predental grade point averages (GPAs) were compared, and an ANCOVA was used to adjust for the significant differences in DAT (t-test, p=0.002). Results showed that h-PBL students were better at applying basic science knowledge to a clinical case (ANCOVA, p=0.022) based on overall scores on one case. TC students' overall scores were better than h-PBL students on a separate case; however, it was not statistically significant (p=0.107). The h-PBL students also demonstrated greater skills in the areas of hypothesis generation (Mann-Whitney U, p=0.016) and communication (p=0.006). Basic science comprehension (p=0.01) and neurology (p<0.001) were two areas in which the TC students did score significantly higher than h-PBL students.

  13. Creative Science Teaching Labs: New Dimensions in CPD

    ERIC Educational Resources Information Center

    Chappell, Kerry; Craft, Anna

    2009-01-01

    This paper offers analysis and evaluation of "Creative Science Teaching (CST) Labs III", a unique and immersive approach to science teachers' continuing professional development (CPD) designed and run by a London-based organisation, Performing Arts Labs (PAL), involving specialists from the arts, science and technology as integral. Articulating…

  14. A Proposal for Teaching Undergraduate Chemistry Students Carbohydrate Biochemistry by Problem-Based Learning Activities

    ERIC Educational Resources Information Center

    Figueira, Angela C. M.; Rocha, Joao B. T.

    2014-01-01

    This article presents a problem-based learning (PBL) approach to teaching elementary biochemistry to undergraduate students. The activity was based on "the foods we eat." It was used to engage students' curiosity and to initiate learning about a subject that could be used by the future teachers in the high school. The experimental…

  15. Developing Teaching Materials PISA-Based for Mathematics and Science of Junior High School

    ERIC Educational Resources Information Center

    Somakim; Suharman, Andi; Madang, Kodri; Taufiq

    2016-01-01

    This research aims to develop valid and practical teaching materials for mathematics and science lesson PISA-based for junior high school students and to determine potential effects on students in scientific activity. Subjects of this study were students of Junior High School 9 Palembang (SMP Negeri 9 Palembang). The method used in this study is…

  16. Teaching planetary sciences to elementary school teachers: Programs that work

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are

  17. "Finding the Joy in the Unknown": Implementation of STEAM Teaching Practices in Middle School Science and Math Classrooms

    NASA Astrophysics Data System (ADS)

    Quigley, Cassie F.; Herro, Dani

    2016-06-01

    In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and humanities. This desire created space for science, technology, engineering, arts, and mathematics (STEAM) education, a transdisciplinary approach that focuses on problem-solving. STEAM-based curricula and STEAM-themed schools are appearing all over the globe. This growing national and global attention to STEAM provides an opportunity for teacher education to explore the ways in which teachers implement STEAM practices, examining the successes and challenges, and how teachers are beginning to make sense of this innovative teaching practice. The purpose of this paper is to examine the implementation of STEAM teaching practices in science and math middle school classrooms, in hopes to provide research-based evidence on this emerging topic to guide teacher educators.

  18. Physics Teachers' Challenges in Using History and Philosophy of Science in Teaching

    NASA Astrophysics Data System (ADS)

    Henke, Andreas; Höttecke, Dietmar

    2015-05-01

    The inclusion of the history and philosophy of science (HPS) in science teaching is widely accepted, but the actual state of implementation in schools is still poor. This article investigates possible reasons for this discrepancy. The demands science teachers associate with HPS-based teaching play an important role, since these determine teachers' decisions towards implementing its practices and ideas. We therefore investigate the perceptions of 8 HPS-experienced German middle school physics teachers within and beyond an HPS implementation project. Within focused interviews these teachers describe and evaluate the challenges of planning and conducting HPS-based physics lessons using collaboratively developed HPS teaching materials. The teachers highlight a number of obstacles to the implementation of HPS specific to this approach: finding and adapting HPS teaching material, knowing and using instructional design principles for HPS lessons, presenting history in a motivating way, dealing with students' problematic ideas about the history of science, conducting open-ended historical classroom investigations in the light of known historical outcomes, using historical investigations to teach modern science concepts, designing assessments to target HPS-specific learning outcomes, and justifying the HPS-approach against curriculum and colleagues. Teachers' perceived demands point out critical aspects of pedagogical content knowledge necessary for confident, comfortable and effective teaching of HPS-based science. They also indicate how HPS teacher education and the design of curricular materials can be improved to make implementing HPS into everyday teaching less demanding.

  19. The Effects of Problem Solving Applications on the Development of Science Process Skills, Logical Thinking Skills and Perception on Problem Solving Ability in the Science Laboratory

    ERIC Educational Resources Information Center

    Seyhan, Hatice Güngör

    2015-01-01

    This study was conducted with 98 prospective science teachers, who were composed of 50 prospective teachers that had participated in problem-solving applications and 48 prospective teachers who were taught within a more researcher-oriented teaching method in science laboratories. The first aim of this study was to determine the levels of…

  20. Approaches to Interactive Video Anchors in Problem-Based Science Learning

    ERIC Educational Resources Information Center

    Kumar, David Devraj

    2010-01-01

    This paper is an invited adaptation of the IEEE Education Society Distinguished Lecture Approaches to Interactive Video Anchors in Problem-Based Science Learning. Interactive video anchors have a cognitive theory base, and they help to enlarge the context of learning with information-rich real-world situations. Carefully selected movie clips and…

  1. How Often Do Early Childhood Teachers Teach Science Concepts? Determinants of the Frequency of Science Teaching in Kindergarten

    ERIC Educational Resources Information Center

    Saçkes, Mesut

    2014-01-01

    The purpose of the present study was to explore how often teachers of young children teach science concepts in kindergarten and examine the factors that influence the frequency of science teaching in early years. A theoretical model of the determinants of the frequency of science teaching in kindergarten was developed and tested using a…

  2. Principles of Gestalt Psychology and Their Application to Teaching Junior High School Science

    ERIC Educational Resources Information Center

    Blosser, Patricia E.

    1973-01-01

    Discusses insightful learning, trace system,'' and laws of perception and Pragnanz in connection with problem solving and critical thinking in science teaching. Suggests 19 guidelines for sequencing curriculum and identifying activities for use in science classes. (CC)

  3. Teaching Thinking and Problem Solving.

    ERIC Educational Resources Information Center

    Bransford, John; And Others

    1986-01-01

    This article focuses on two approaches to teaching reasoning and problem solving. One emphasizes the role of domain-specific knowledge; the other emphasizes general strategic and metacognitive knowledge. Many instructional programs are based on the latter approach. The article concludes that these programs can be strengthened by focusing on domain…

  4. Influencing Intended Teaching Practice: Exploring pre-service teachers' perceptions of science teaching resources

    NASA Astrophysics Data System (ADS)

    Cooper, Grant; Kenny, John; Fraser, Sharon

    2012-08-01

    Many researchers have identified and expressed concern over the state of science education internationally, but primary teachers face particular obstacles when teaching science due to their poor science background and low confidence with science. Research has suggested that exemplary resources, or units that work, may be an effective way to support primary teachers. This study explores the effect of one such resource on the intentions of pre-service primary teachers to teach science. The resource in question is Primary Connections, a series of learning resources produced by the Australian Academy of Science specifically designed for primary science. Evaluative studies of Primary Connections have indicated its efficacy with practising primary teachers but there is little evidence of its impact upon pre-service teachers. The purpose of this study was to investigate how effective these quality teaching resources were in influencing the intentions of primary pre-service teachers to teach science after they graduated. The theory of planned behaviour highlighted the linkage between the intentions of the pre-service teachers to teach science, and their awareness of and experiences with using Primary Connections during their education studies. This enabled key factors to be identified which influenced the intentions of the pre-service teachers to use Primary Connections to teach science after they graduate. The study also provided evidence of how quality science teaching resources can be effectively embedded in a teacher education programme as a means of encouraging and supporting pre-service teachers to teach science.

  5. Teaching Science through Research.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Zidani, Saleem; Kurtam, Naji

    2003-01-01

    Discusses the objectives of the science curriculum and the teacher's responsibility of passing through not only the required material, but also skills. Suggests that in order to improve teaching and learning skills, new strategies, such as teaching and learning through research must be utilized. Presents four examples of teaching and learning…

  6. Let's Turn Things on Their Head--Teaching Counterintuitive Science

    ERIC Educational Resources Information Center

    Kumar, David

    2017-01-01

    Teaching science through counterintuitive events is an effective way of engaging students in exploring science; such events motivate and involve students in solving problems with a high degree of creativity and critical thinking. This can push students into a seeking explanation mode, setting the stage for discovery. In this article, the author…

  7. Problem-Based Approach to Teaching Advanced Chemistry Laboratories and Developing Students' Critical Thinking Skills

    ERIC Educational Resources Information Center

    Quattrucci, Joseph G.

    2018-01-01

    A new method for teaching advanced laboratories at the undergraduate level is presented. The intent of this approach is to get students more engaged in the lab experience and apply critical thinking skills to solve problems. The structure of the lab is problem-based and provides students with a research-like experience. Students read the current…

  8. The Challenges of Science Inquiry Teaching for Pre-Service Teachers in Elementary Classrooms: Difficulties on and under the Scene

    NASA Astrophysics Data System (ADS)

    Yoon, Hye-Gyoung; Joung, Yong Jae; Kim, Mijung

    2012-06-01

    In the context of the emphasis on inquiry teaching in science education, this study looks into how pre-service elementary teachers understand and practise science inquiry teaching during field experience. By examining inquiry lesson preparation, practice, and reflections of pre-service elementary teachers, we attempt to understand the difficulties they encounter and what could result from those difficulties in their practice. A total of 16 seniors (fourth-year students) in an elementary teacher education program participated in this study. In our findings, we highlight three difficulties `on the lesson' that are related to teaching practices that were missing in the classrooms: (1) developing children's own ideas and curiosity, (2) guiding children in designing valid experiments for their hypotheses, (3) scaffolding children's data interpretation and discussion and another three difficulties `under the lesson' that are related to problems with the pre-service teachers' conceptualization of the task: (4) tension between guided and open inquiry, (5) incomplete understanding of hypothesis, and (6) lack of confidence in science content knowledge. Based on these findings, we discuss how these difficulties are complexly related in the pre-service teachers' understandings and action. Several suggestions for science teacher education for inquiry teaching, especially hypothesis-based inquiry teaching, are then explored.

  9. Comparing problem-based learning and lecture as methods to teach whole-systems design to engineering students

    NASA Astrophysics Data System (ADS)

    Dukes, Michael Dickey

    The objective of this research is to compare problem-based learning and lecture as methods to teach whole-systems design to engineering students. A case study, Appendix A, exemplifying successful whole-systems design was developed and written by the author in partnership with the Rocky Mountain Institute. Concepts to be tested were then determined, and a questionnaire was developed to test students' preconceptions. A control group of students was taught using traditional lecture methods, and a sample group of students was taught using problem-based learning methods. After several weeks, the students were given the same questionnaire as prior to the instruction, and the data was analyzed to determine if the teaching methods were effective in correcting misconceptions. A statistically significant change in the students' preconceptions was observed in both groups on the topic of cost related to the design process. There was no statistically significant change in the students' preconceptions concerning the design process, technical ability within five years, and the possibility of drastic efficiency gains with current technologies. However, the results were inconclusive in determining that problem-based learning is more effective than lecture as a method for teaching the concept of whole-systems design, or vice versa.

  10. An analysis of the concept of teaching in elementary school science education

    NASA Astrophysics Data System (ADS)

    Seatter, Carol Eunice Scarff

    The problem for this thesis arises directly from several years of observation of science classrooms in British Columbia. The troubling phenomenon seen within numerous classrooms, taught by teachers claiming to be constructivist teachers, involved teachers fostering the idea that children can think about science in terms of their own ideas, that is, that children can think about science in common-sense terms. In the many cases I have observed, teachers justify this practice on the grounds of constructivist theory. However, this kind of "constructivist teaching" does not, in my opinion, lead to scientific reasoning. My argument begins with the premise that the development of scientific reasoning in children is necessary for science education. I will argue that the currently popular "constructivist" movement has significant potential to fail in producing scientific reasoning in children, as did its predecessor, the "discovery learning" movement of the 1960s. The incommensurable differences between scientific and common-sense reasoning are presented and discussed. This thesis examines constructivist theory in terms of its potential to hinder the development of scientific reasoning in children. Two features of the constructivist writings are examined: those which pertain to the nature of science, and those relating to the concept of teaching. A chapter on the logic of scientific inquiry is central to the thesis, as it describes and explains the concepts, forms of explanation and truth criteria unique to the discipline of science. The epistemological foundations of science education are discussed in terms of the realist/instrumentalist debate. The thesis argues in favor of a sophisticated realist view of knowledge, such as those offered by Hacking and Matthews who take into account Hanson's "theory-laden" observation without falling prey to a naive realist view. Reasoning in science is compared with children's common-sense reasoning in an attempt to further understand

  11. Transition from Cookbook to Problem-Based Learning in a High School Chemistry Gas Law Investigation

    ERIC Educational Resources Information Center

    McPherson, Heather

    2018-01-01

    In this article, the author describes a chemistry gas experiment that she developed with the intent of integrating inquiry and Problem-Based Learning (PBL). The lab activity follows the principles of Ambitious Science Teaching (AST). Teachers (1) engage students with important science ideas, (2) elicit students' ideas while making visible what…

  12. Teaching animal science: education or indoctrination?

    PubMed

    Schillo, K K

    1997-04-01

    Traditional animal science curricula ignore sociological aspects of scientific research and therefore portray scientific knowledge as value-free. This view gives rise to a teaching method that involves imparting lists of scientific facts that are to be accepted by students without critical evaluation. This amounts to little more than indoctrination and misrepresents science as a system of knowledge. An alternative approach is based on the view that science is a creative human activity that reflects the values and biases of its practitioners. The goal of this approach is to teach students to think analytically and to make independent judgments about scientific claims. This requires a scientific literacy: an understanding of principal scientific theories, the nature of scientific research, and the relationship between science and society. To achieve this goal, a teacher must become less of an authority figure, whose role is to simply pass on information, and more of a facilitator, whose role is to promote questioning, exploration, and synthesis. This requires a learning community in which students feel comfortable taking risks and develop the courage to make and defend judgments. This teaching approach enhances the intellectual and ethical development of students, allowing them to serve themselves and society in responsible ways.

  13. Developing a Tool to Evaluate Differences in Beliefs about Science Teaching and Learning among Freshman Science Student Teachers from Different Science Teaching Domains: A Case Study

    ERIC Educational Resources Information Center

    Markic, Silvija; Eilks, Ingo; Valanides, Nicos

    2008-01-01

    This paper presents a pilot case study on developing a qualitative tool to evaluate science student teachers' beliefs concerning science teaching and learning. The study is based on student teachers' drawings of themselves in a typical classroom situation and four open questions. Data was collected from 104 freshman science student teachers, and…

  14. Collegiality and Better Science Teaching

    ERIC Educational Resources Information Center

    Weiser, Brenda

    2012-01-01

    For the past five years, teachers from four Houston-area school districts have joined together in a professional learning community (PLC) to improve their science teaching. Through the University of Houston-Clear Lake (UHCL) Regional Collaborative for Excellence in Science and Mathematics Teaching, the teachers strengthen content knowledge and…

  15. Examination of Pre-Service Science Teachers' Activities Using Problem Based Learning Method

    ERIC Educational Resources Information Center

    Ekici, Didem Inel

    2016-01-01

    In this study, both the activities prepared by pre-service science teachers regarding the Problem Based Learning method and the pre-service science teachers' views regarding the method were examined before and after applying their activities in a real class environment. 69 pre-service science teachers studying in the 4th grade of the science…

  16. Using Science Fiction To Teach Mainstream Literature.

    ERIC Educational Resources Information Center

    Fife, Ernelle

    This paper illustrates several examples of visual science fiction use in teaching literary classics, and is based on the philosophy that students share a visual cultural literacy through movies and television, types of representation with which they are more familiar than with literary texts. It claims that visual science fiction can be utilized…

  17. The Use of History of Science Texts in Teaching Science: Two Cases of an Innovative, Constructivist Approach

    ERIC Educational Resources Information Center

    Koliopoulos, Dimitris; Dossis, Sotiris; Stamoulis, Efthymios

    2007-01-01

    This study proposes an empirical classification of ways to introduce elements of the history of science into science teaching, as well as describing a special way to do so characterized by the introduction of short extracts from historical texts. The aim is to motivate students to participate in problem-solving activities and to transform their…

  18. Impact of a Professional Development Program Using Data-Loggers on Science Teachers' Attitudes towards Inquiry-Based Teaching

    ERIC Educational Resources Information Center

    Tosa, Sachiko; Martin, Fred

    2010-01-01

    This study examined how a professional development program which incorporates the use of electronic data-loggers could impact on science teachers' attitudes towards inquiry-based teaching. The participants were 28 science or technology teachers who attended workshops offered in the United States and Japan. The professional development program…

  19. Problem Orientation in Physical Geography Teaching.

    ERIC Educational Resources Information Center

    Church, Michael

    1988-01-01

    States that the introduction of real, quantitative problems in classroom and field teaching improves scientific rigor and leads more directly to applied studies. Examines the use of problems in an introductory hydrology course, presenting teaching objectives and the full course structure to illustrate their integration with other teaching modes.…

  20. Integration of Problem-Based Learning and Web-Based Multimedia to Enhance Soil Management Course

    NASA Astrophysics Data System (ADS)

    Strivelli, R.; Krzic, M.; Crowley, C.; Dyanatkar, S.; Bomke, A.; Simard, S.; Grand, S.

    2012-04-01

    In an attempt to address declining enrolment in soil science programs and the changing learning needs of 21st century students, several universities in North America and around the world have re-organized their soil science curriculum and adopted innovative educational approaches and web-based teaching resources. At the University of British Columbia, Canada, an interdisciplinary team set out to integrate teaching approaches to address this trend. The objective of this project was to develop an interactive web-based teaching resource, which combined a face-to-face problem-based learning (PBL) case study with multimedia to illustrate the impacts of three land-uses on soil transformation and quality. The Land Use Impacts (LUI) tool (http://soilweb.landfood.ubc.ca/luitool/) was a collaborative and concentrated effort to maximize the advantages of two educational approaches: (1) the web's interactivity, flexibility, adaptability and accessibility, and (2) PBL's ability to foster an authentic learning environment, encourage group work and promote the application of core concepts. The design of the LUI case study was guided by Herrington's development principles for web-based authentic learning. The LUI tool presented students with rich multimedia (streaming videos, text, data, photographs, maps, and weblinks) and real world tasks (site assessment and soil analysis) to encourage students to utilize knowledge of soil science in collaborative problem-solving. Preliminary student feedback indicated that the LUI tool effectively conveyed case study objectives and was appealing to students. The resource is intended primarily for students enrolled in an upper level undergraduate/graduate university course titled Sustainable Soil Management but it is flexible enough to be adapted to other natural resource courses. Project planning and an interactive overview of the tool will be given during the presentation.

  1. Teaching the Human Dimension of Science

    ERIC Educational Resources Information Center

    Farland-Smith, Donna; McComas, William

    2009-01-01

    Teachers have the important responsibility of providing students with accurate and engaging science content while also helping them establish authentic views of scientists. Though there are numerous curriculum materials to assist in the teaching of science content, the authors have found that methods and materials to teach science as a human…

  2. Students' satisfaction to hybrid problem-based learning format for basic life support/advanced cardiac life support teaching.

    PubMed

    Chilkoti, Geetanjali; Mohta, Medha; Wadhwa, Rachna; Saxena, Ashok Kumar; Sharma, Chhavi Sarabpreet; Shankar, Neelima

    2016-11-01

    Students are exposed to basic life support (BLS) and advanced cardiac life support (ACLS) training in the first semester in some medical colleges. The aim of this study was to compare students' satisfaction between lecture-based traditional method and hybrid problem-based learning (PBL) in BLS/ACLS teaching to undergraduate medical students. We conducted a questionnaire-based, cross-sectional survey among 118 1 st -year medical students from a university medical college in the city of New Delhi, India. We aimed to assess the students' satisfaction between lecture-based and hybrid-PBL method in BLS/ACLS teaching. Likert 5-point scale was used to assess students' satisfaction levels between the two teaching methods. Data were collected and scores regarding the students' satisfaction levels between these two teaching methods were analysed using a two-sided paired t -test. Most students preferred hybrid-PBL format over traditional lecture-based method in the following four aspects; learning and understanding, interest and motivation, training of personal abilities and being confident and satisfied with the teaching method ( P < 0.05). Implementation of hybrid-PBL format along with the lecture-based method in BLS/ACLS teaching provided high satisfaction among undergraduate medical students.

  3. Science-Technology-Society literacy in college non-majors biology: Comparing problem/case studies based learning and traditional expository methods of instruction

    NASA Astrophysics Data System (ADS)

    Peters, John S.

    This study used a multiple response model (MRM) on selected items from the Views on Science-Technology-Society (VOSTS) survey to examine science-technology-society (STS) literacy among college non-science majors' taught using Problem/Case Studies Based Learning (PBL/CSBL) and traditional expository methods of instruction. An initial pilot investigation of 15 VOSTS items produced a valid and reliable scoring model which can be used to quantitatively assess student literacy on a variety of STS topics deemed important for informed civic engagement in science related social and environmental issues. The new scoring model allows for the use of parametric inferential statistics to test hypotheses about factors influencing STS literacy. The follow-up cross-institutional study comparing teaching methods employed Hierarchical Linear Modeling (HLM) to model the efficiency and equitability of instructional methods on STS literacy. A cluster analysis was also used to compare pre and post course patterns of student views on the set of positions expressed within VOSTS items. HLM analysis revealed significantly higher instructional efficiency in the PBL/CSBL study group for 4 of the 35 STS attitude indices (characterization of media vs. school science; tentativeness of scientific models; cultural influences on scientific research), and more equitable effects of traditional instruction on one attitude index (interdependence of science and technology). Cluster analysis revealed generally stable patterns of pre to post course views across study groups, but also revealed possible teaching method effects on the relationship between the views expressed within VOSTS items with respect to (1) interdependency of science and technology; (2) anti-technology; (3) socioscientific decision-making; (4) scientific/technological solutions to environmental problems; (5) usefulness of school vs. media characterizations of science; (6) social constructivist vs. objectivist views of theories; (7

  4. Teacher Students' Dilemmas When Teaching Science through Inquiry

    ERIC Educational Resources Information Center

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-01-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE…

  5. A case of learning to teach elementary science: Investigating beliefs, experiences, and tensions

    NASA Astrophysics Data System (ADS)

    Bryan, Lynn Ann

    This study examines how preservice elementary teacher beliefs and experiences within the context of reflective science teacher education influence the development of professional knowledge. From a cognitive constructivist theoretical perspective, I conducted a case analysis to investigate the beliefs about science teaching and learning held by a preservice teacher (Barbara), identify the tensions she encountered in learning to teach elementary science, understand the frames from which she identified problems of practice, and discern how her experiences influenced the process of reflecting on her own science teaching. From an analysis of interviews, observation, and written documents, I constructed a profile of Barbara's beliefs that consisted of three foundational and three dualistic beliefs about science teaching and learning. Her foundational beliefs concerned: (a) the value of science and science teaching, (b) the nature of scientific concepts and goals of science instruction, and (c) control in the science classroom. Barbara held dualistic beliefs about: (a) how children learn science, (b) the science students' role, and (c) the science teacher's role. The dualistic beliefs formed two contradictory nests of beliefs. One nest, grounded in life-long science learner experiences, reflected a didactic teaching orientation and predominantly guided her practice. The second nest, not well-grounded in experience, embraced a hands-on approach and predominantly guided her vision of practice. Barbara encountered tensions in thinking about science teaching and learning as a result of inconsistencies between her vision of science teaching and her actual practice. Confronting these tensions prompted Barbara to rethink the connections between her classroom actions and students' learning, create new perspectives for viewing her practice, and consider alternative practices more resonant with her visionary beliefs. However, the self-reinforcing belief system created by her

  6. Physics Teachers' Challenges in Using History and Philosophy of Science in Teaching

    ERIC Educational Resources Information Center

    Henke, Andreas; Höttecke, Dietmar

    2015-01-01

    The inclusion of the history and philosophy of science (HPS) in science teaching is widely accepted, but the actual state of implementation in schools is still poor. This article investigates possible reasons for this discrepancy. The demands science teachers associate with HPS-based teaching play an important role, since these determine teachers'…

  7. A New Metaphor for Teaching: Science Teacher as Anthropologist.

    ERIC Educational Resources Information Center

    Hodson, Derek

    This paper addresses problems inherent in traditional science teaching and argues that the pitfalls of assimilation and exclusion can be avoided by adopting an anthropological approach: regarding scientists as a sub-cultural group with its own language and ways of thinking about, investigating, and explaining phenomena and events, its distinctive…

  8. Teacher Self-Efficacy during the Implementation of a Problem-Based Science Curriculum

    ERIC Educational Resources Information Center

    Hodges, Charles B.; Gale, Jessica; Meng, Alicia

    2016-01-01

    This study was conducted to investigate eighth-grade science teachers' self-efficacy during the implementation of a new, problem-based science curriculum. The curriculum included applications of LEGO® robotics, a new technology for these teachers. Teachers' responded to structured journaling activities designed to collect information about their…

  9. Peer Assessment of Elementary Science Teaching Skills

    ERIC Educational Resources Information Center

    Kilic, Gulsen Bagci; Cakan, Mehtap

    2007-01-01

    In this study, peer assessment was applied in assessing elementary science teaching skills. Preservice teachers taught a science topic as a team to their peers in an elementary science methods course. The peers participating in the science lesson assessed teacher-groups' elementary science teaching skills on an assessment form provided by the…

  10. The Teaching Practices Inventory: A New Tool for Characterizing College and University Teaching in Mathematics and Science

    PubMed Central

    Gilbert, Sarah

    2014-01-01

    We have created an inventory to characterize the teaching practices used in science and mathematics courses. This inventory can aid instructors and departments in reflecting on their teaching. It has been tested with several hundred university instructors and courses from mathematics and four science disciplines. Most instructors complete the inventory in 10 min or less, and the results allow meaningful comparisons of the teaching used for the different courses and instructors within a department and across different departments. We also show how the inventory results can be used to gauge the extent of use of research-based teaching practices, and we illustrate this with the inventory results for five departments. These results show the high degree of discrimination provided by the inventory, as well as its effectiveness in tracking the increase in the use of research-based teaching practices. PMID:25185237

  11. Characteristics of High School Students' and Science Teachers' Cognitive Frame about Effective Teaching Method for High School Science Subject

    NASA Astrophysics Data System (ADS)

    Chung, Duk Ho; Park, Kyeong-Jin; Cho, Kyu Seong

    2016-04-01

    We investigated the cognitive frame of high school students and inservice high school science teachers about effective teaching method, and we also explored how they understood about the teaching methods suggested by the 2009 revised Science Curriculum. Data were collected from 275 high school science teachers and 275 high school students. We analyzed data in terms of the words and the cognitive frame using the Semantic Network Analysis. The results were as follows. First, the teachers perceived that an activity oriented class was the effective science class that helped improve students'' problem-solving abilities and their inquiry skills. The students had the cognitive frame that their teacher had to present relevant and enough teaching materials to students, and that they should also receive assistance from teachers in science class to better prepare for college entrance exam. Second, both students and teachers retained the cognitive frame about the efficient science class that was not reflected 2009 revised Science Curriculum exactly. Especially, neither groups connected the elements of ''convergence'' as well as ''integration'' embedded across science subject areas to their cognitive frame nor cognized the fact that many science learning contents were closed related to one another. Therefore, various professional development opportunities should be offered so that teachers succinctly comprehend the essential features and the intents of the 2009 revised Science Curriculum and thereby implement it in their science lessons effectively. Keywords : semantic network analysis, cognitive frame, teaching method, science lesson

  12. Studies on attitude toward teaching science and anxiety about teaching science in preservice elementary teachers

    NASA Astrophysics Data System (ADS)

    Westerback, Mary E.

    These studies examined attitude toward teaching science (ATTS) using an adaptation of the Bratt Attitude Test (M-BAT); anxiety about teaching science (ANX-TS), as measured by the State-Trait Anxiety Inventory (STAI A-State); and selected demographic variables in preservice elementary teachers for the 1977-1978 and 1978-1979 academic years and a follow-up of those students who completed their student teaching in May 1979. The M-BAT and STAI were administered in September at the beginning of Science 6 (earth science and biology course), in December on the next to last day of Science 6, in May on the next to the last day of Science 5 (physical science), and in May 1979 after student teaching. In the two academic years, both ATTS and ANX-TS became more positive during the sequence Science 6-5. Both changes in ATTS and ANX-TS continued to change in a positive direction after completion of Science 6-5, after student teaching. There were differences in the times that the greatest changes in ATTS and ANX-TS occurred. In both studies, the greatest change in ATTS took place between September and December, during Science 6. The greatest change in ANX-TS, however, took place during Science 5 between December and May in the 1977-1978 study. In the 1978-1979 study, the greatest changes in ANX-TS occurred in Science 6, between September and December. The delayed reduction of ANX-TS in the 1977-1978 study may be explained by differences in teaching patterns. In 1977-1978, two teachers taught only their academic specialty, biology or earth science, to students who switched teachers midsemester. In 1978-1979, the same two instructors taught both biology and earth science to the same students. Correlation coefficients for successive and corresponding administrations of both the M-BAT and STAI suggest these variables are related. Students with more positive ATTS tended to have reduced ANX-TS. Neither the number of high school or college science and math courses completed nor the level

  13. The Feasibility of Applying PBL Teaching Method to Surgery Teaching of Chinese Medicine

    ERIC Educational Resources Information Center

    Tang, Qianli; Yu, Yuan; Jiang, Qiuyan; Zhang, Li; Wang, Qingjian; Huang, Mingwei

    2008-01-01

    The traditional classroom teaching mode is based on the content of the subject, takes the teacher as the center and gives priority to classroom instruction. While PBL (Problem Based Learning) teaching method breaches the traditional mode, combining the basic science with clinical practice and covering the process from discussion to self-study to…

  14. The Art of Teaching Science in Secondary Schools: A Meta Analysis

    ERIC Educational Resources Information Center

    Hassan, Sharifah Sariah Syed; Ibrahim, Ahmad Abdullahi

    2018-01-01

    This study attempted to highlight the trend of research in science related subjects specifically in schools. Articles and journals were retrieved from Google scholar under peer reviewed with the aim to highlight the trend of research methods, findings and teaching strategies. The themes were based on pedagogical approaches of teaching science,…

  15. Teaching psychosomatic medicine using problem-based learning and role-playing.

    PubMed

    Heru, Alison M

    2011-01-01

    Problem-based learning (PBL) has been implemented in medical education world-wide. Despite its popularity, it has not been generally considered useful for residency programs. The author presents a model for the implementation of PBL in residency programs. The author presents a description of a PBL curriculum for teaching psychosomatic medicine to PGY 2 members in a psychiatry training program. The goals of PBL are to encourage self-directed learning; enhance curiosity, using case-based, contextualized learning; promote collaborative practice; and support patient-centered care. The addition of role-playing exercises helps PGY 2 residents to develop their skills from simply developing a differential diagnosis to being able to construct biopsychosocial formulations, and it provides these residents an opportunity to practice presenting case formulations to the patient and family. Residents and faculty enjoyed the PBL role-playing sessions. Residents wanted the learning objectives given to them rather than generating their own learning objectives, to move through the cases faster, and to receive more information and more cases. Teaching psychosomatic medicine, using PBL and role-playing, allows many of the proposed Academy of Psychosomatic Medicine residency core competencies to be met. However, further refinement of the PBL method needs to take place in order to adapt its use to residency programs.

  16. Case study of science teaching in an elementary school: Characteristics of an exemplary science teacher

    NASA Astrophysics Data System (ADS)

    Kao, Huey-Lien

    Improving the quality of science teaching is one of the greatest concerns in recent science education reform efforts. Many science educators suggest that case studies of exemplary science teachers may provide guidance for these reform efforts. For this reason, the characteristics of exemplary science teaching practices have been identified in recent years. However, the literature lacks research exploring exemplary teacher beliefs about the nature of science and science pedagogy, the relationships between their beliefs and practices, or how outstanding teachers overcome difficulties in order to facilitate their students' science learning. In this study, Sam-Yu, an identified exemplary science teacher who teaches in an elementary school in Pintung, Taiwan, was the subject. An interpretative research design (Erickson, 1986) based on principles of naturalistic inquiry (Lincoln & Guba, 1985) was used. Both qualitative and quantitative methods were employed in this case study. The qualitative method involved conducting interviews with the teacher and students, observing classroom activities and analyzing the structure of the learning materials. The quantitative methods involved using the Learning Climate Inventory (LCI) (Lin, 1997) instrument to assess the learning environment of the exemplary science classroom. This study found that Sam-Yu had a blend of views on the nature of science and a varied knowledge about science pedagogy. Personal preferences, past experiences, and the national science curriculum all played important roles in the development and refinement of Sam-Yu's beliefs about science and pedagogy. Regarding his teaching practices, Sam-Yu provided the best learning experiences, as evidenced in both classroom observations and the survey results, for his students by using a variety of strategies. In addition, his classroom behaviors were highly associated with his beliefs about science and pedagogy. However, due to school-based and socio-cultural constraints

  17. Teaching Writing in the Social Sciences: A Comparison and Critique of Three Models

    ERIC Educational Resources Information Center

    Hansen, Kristine; Adams, Joyce

    2010-01-01

    This article describes and evaluates three approaches to teaching writing in the social sciences, particularly psychology: an English department-based course for all social science majors; a team-teaching model that embeds writing in core courses in psychology; and a stand-alone course dedicated to teaching writing in psychology, often taken…

  18. An exploration of equitable science teaching practices for students with learning disabilities

    NASA Astrophysics Data System (ADS)

    Morales, Marlene

    In this study, a mixed methods approach was used to gather descriptive exploratory information regarding the teaching of science to middle grades students with learning disabilities within a general education classroom. The purpose of this study was to examine teachers' beliefs and their practices concerning providing equitable opportunities for students with learning disabilities in a general education science classroom. Equitable science teaching practices take into account each student's differences and uses those differences to inform instructional decisions and tailor teaching practices based on the student's individualized learning needs. Students with learning disabilities are similar to their non-disabled peers; however, they need some differentiation in instruction to perform to their highest potential achievement levels (Finson, Ormsbee, & Jensen, 2011). In the quantitative phase, the purpose of the study was to identify patterns in the beliefs of middle grades science teachers about the inclusion of students with learning disabilities in the general education classroom. In the qualitative phase, the purpose of the study was to present examples of instruction in the classrooms of science education reform-oriented middle grades science teachers. The quantitative phase of the study collected data from 274 sixth through eighth grade teachers in the State of Florida during the 2007--2008 school year using The Teaching Science to Students with Learning Disabilities Inventory. Overall, the quantitative findings revealed that middle grades science teachers held positive beliefs about the inclusion of students with learning disabilities in the general education science classroom. The qualitative phase collected data from multiple sources (interviews, classroom observations, and artifacts) to develop two case studies of reform-oriented middle grades science teachers who were expected to provide equitable science teaching practices. Based on their responses to The

  19. Models in Science Education: Applications of Models in Learning and Teaching Science

    ERIC Educational Resources Information Center

    Ornek, Funda

    2008-01-01

    In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…

  20. Assessment of preclinical problem-based learning versus lecture-based learning.

    PubMed

    Login, G R; Ransil, B J; Meyer, M; Truong, N T; Donoff, R B; McArdle, P J

    1997-06-01

    Academic performance on a standardized oral comprehensive exam (OCE) was compared for students taught basic science in a problem-based learning (PBL) curriculum and a lecture-based learning (LBL) curriculum. The OCE was administered to the graduating classes of 1991-1994 (n approximately 20/class) six months after completion of their basic science courses. The OCE contained six components including: Organization and Thoroughness, Diagnosis, Primary Treatment Plan, Alternate Treatment Plan, Science and Medical Knowledge, and Dental Knowledge. Six to eight examiners graded each of the students by using a standardized scoring system and by subjective comments. The class of 1991 was taught by LBL, classes of 1993 and 1994 by PBL, and the class of 1992 by an incomplete PBL teaching method. Mean OCE scores were not significantly different between classes; however, the Science and Medical Knowledge component score was significantly better for the class of 1994 than for 1991 (p < 0.05). There was a non-significant 40 percent increase (p = 0.07) in honors and a 269 percent (p < 0.001) increase in cumulative positive examiner comments between 1991 and 1994.

  1. Teaching Science through Inquiry

    ERIC Educational Resources Information Center

    Wilcox, Jesse; Kruse, Jerrid W.; Clough, Michael P.

    2015-01-01

    Science education efforts have long emphasized inquiry, and inquiry and scientific practices are prominent in contemporary science education reform documents (NRC 1996; NGSS Lead States 2013). However, inquiry has not become commonplace in science teaching, in part because of misunderstandings regarding what it means and entails (Demir and Abell…

  2. Middle school science teachers' teaching self-efficacy and students' science self-efficacy

    NASA Astrophysics Data System (ADS)

    Pisa, Danielle

    Project 2061, initiated by the American Association for the Advancement of Science (AAAS), developed recommendations for what is essential in education to produce scientifically literate citizens. Furthermore, they suggest that teachers teach effectively. There is an abundance of literature that focuses on the effects of a teacher's science teaching self-efficacy and a student's science self-efficacy. However, there is no literature on the relationship between the two self-efficacies. This study investigated if there is a differential change in students' science self-efficacy over an academic term after instruction from a teacher with high science teaching self-efficacy. Quantitative analysis of STEBI scores for teachers showed that mean STEBI scores did not change over one academic term. A t test indicated that there was no statistically significant difference in mean SMTSL scores for students' science self-efficacy over the course of one academic term for a) the entire sample, b) each science class, and c) each grade level. In addition, ANOVA indicated that there was no statistically significant difference in mean gain factor of students rated as low, medium, and high on science self-efficacy as measured by the SMTSL, when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. Finally, there was no statistically significant association between the pre- and post-instructional rankings of SMTSL by grade level when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. This is the first study of its kind. Studies indicated that teaching strategies typically practiced by teachers with high science teaching were beneficial to physics self-efficacy (Fencl & Scheel, 2005). Although it was unsuccessful at determining whether or not a teacher with high science teaching self-efficacy has a differential affect on students' science self

  3. Learner-centered teaching in the college science classroom: a practical guide for teaching assistants, instructors, and professors

    NASA Astrophysics Data System (ADS)

    Dominguez, Margaret Z.; Vorndran, Shelby

    2014-09-01

    The Office of Instruction and Assessment at the University of Arizona currently offers a Certificate in College Teaching Program. The objective of this program is to develop the competencies necessary to teach effectively in higher education today, with an emphasis on learner-centered teaching. This type of teaching methodology has repeatedly shown to have superior effects compared to traditional teacher-centered approaches. The success of this approach has been proven in both short term and long term teaching scenarios. Students must actively participate in class, which allows for the development of depth of understanding, acquisition of critical thinking, and problem-solving skills. As optical science graduate students completing the teaching program certificate, we taught a recitation class for OPTI 370: Photonics and Lasers for two consecutive years. The recitation was an optional 1-hour long session to supplement the course lectures. This recitation received positive feedback and learner-centered teaching was shown to be a successful method for engaging students in science, specifically in optical sciences following an inquiry driven format. This paper is intended as a guide for interactive, multifaceted teaching, due to the fact that there are a variety of learning styles found in every classroom. The techniques outlined can be implemented in many formats: a full course, recitation session, office hours and tutoring. This guide is practical and includes only the most effective and efficient strategies learned while also addressing the challenges faced, such as formulating engaging questions, using wait time and encouraging shy students.

  4. How to Support Primary Teachers' Implementation of Inquiry: Teachers' Reflections on Teaching Cooperative Inquiry-Based Science

    ERIC Educational Resources Information Center

    Gillies, Robyn M.; Nichols, Kim

    2015-01-01

    Many primary teachers face challenges in teaching inquiry science, often because they believe that they do not have the content knowledge or pedagogical skills to do so. This is a concern given the emphasis attached to teaching science through inquiry where students do not simply learn about science but also do science. This study reports on the…

  5. Science Teaching in Rhodesia

    ERIC Educational Resources Information Center

    Smith, A. L.

    1975-01-01

    Describes science teaching in Rhodesia as beset with limitations in the quality of students, in student motivation, in the number and quality of teachers, in the Rhodesian environment, and in the science syllabuses themselves. (Author/GS)

  6. Problems in Choosing Tools and Methods for Teaching Programming

    ERIC Educational Resources Information Center

    Vitkute-Adžgauskiene, Davia; Vidžiunas, Antanas

    2012-01-01

    The paper analyses the problems in selecting and integrating tools for delivering basic programming knowledge at the university level. Discussion and analysis of teaching the programming disciplines, the main principles of study programme design, requirements for teaching tools, methods and corresponding languages is presented, based on literature…

  7. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    ERIC Educational Resources Information Center

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  8. Investigating How Nontraditional Elementary Pre-service Teachers Negotiate the Teaching of Science

    NASA Astrophysics Data System (ADS)

    Shelton, Mythianne

    This qualitative study was designed to investigate the influences on nontraditional preservice teachers as they negotiated the teaching of science in elementary school. Based upon a sociocultural theoretical framework with an identity-in-practice lens, these influences included beliefs about science teaching, life experiences, and the impact of the teacher preparation program. The study sample consisted of two nontraditional preservice teachers who were student teaching in an elementary classroom. Data, collected over a five-month period, included in-depth individual interviews, classroom observations, audio recordings, and reviews of documentations. Interviews focused on the participants' beliefs relating to the teaching of science, prior experiences, and their teacher preparation program experiences relating to the teaching of science. Classroom observations provided additional insights into the classroom setting, participants' teaching strategies, and participants' interactions with the students and cooperating teacher. A whole-text analysis of the interview transcripts, observational field notes, audio recordings and documents generated eight major categories: beliefs about science teaching, role of family, teaching science in the classroom, teacher identity, non-teacher identity, relationships with others, discourses of classroom teaching, and discourses of teachers. The following significant findings emerged from the data: (a) the identity of nontraditional student teachers as science teachers related to early life experiences in science classes; (b) the identity of nontraditional student teachers as science teachers was influenced by their role as parents; (c) nontraditional student teachers learned strategies that supported their beliefs about inquiry learning; and (d) nontraditional student teachers valued the teacher preparation program support system. The results from this qualitative study suggest that sociocultural theory with an identity

  9. An analysis of elementary teachers' perceptions of teaching science as inquiry

    NASA Astrophysics Data System (ADS)

    Domjan, Heather Nicole

    The purpose of this study is to describe elementary school teachers' perceptions of science as inquiry in science instruction. A descriptive survey research design was used to collect data regarding elementary science teachers' knowledge and beliefs related to inquiry and its role in science education. The written section of the survey was analyzed and interpreted descriptively through phenomenological data and the constant comparative method (Glaser & Strauss, 1967; Lincoln & Guba, 1985). The researcher used the constant comparative method to identify statements, perceptions, and impressions that occurred over time during the study (Janesick, 1994). Ninety-two elementary school teachers who teach science in a large suburban district southwest of Houston, Texas were administered a three part Understanding Science as Inquiry Survey (USAI) developed by the researcher. Participants communicated in writing personal definitions of inquiry in elementary science as well as determined to what extent inquiry was used in four elementary science classroom scenarios. The survey items were based on the following four components of inquiry described by Inquiry and the National Science Education Standards (2000): (1) conceptual knowledge, (2) process skills, (3) nature of science, and (4) affect. The study describes elementary school teachers' perceptions about science as inquiry. Conclusions for Part A of the USAI Survey indicate that participants define inquiry as: mostly process skills, some conceptual knowledge, and very little affect with no perception of the nature of science. The Likert scale ratings for the scenarios in Part B of the USAI Survey reveal that participants have varied perceptions regarding teaching science as inquiry. The written section of Part B reveals participants' perceptions to be similar to that of their Likert scale ratings except in scenario one. The researcher concludes that the participants in this study appear to have an incomplete understanding

  10. Science teachers teaching socioscientific issues (SSI): Four case studies

    NASA Astrophysics Data System (ADS)

    Lee, Hyunju

    Socioscientific issues (SSI) are a class of issues that represent the social, ethical, and moral aspects of science in society. The need for the inclusion of SSI into science curricula has been generally accepted, but relatively few science teachers have incorporated SSI into their courses. Most science teachers feel that their most important task by far is to teach the principles of science, and any substantive pedagogical changes represent a burden. However, there are some teachers who address SSI out of personal initiatives. This dissertation study investigates four high school science teachers who address SSI out of their own initiative and explores their deeper inspirations, values, philosophies, and personal ideals that lead them to teach SSI. The overall approach is based on essentialist methodology (Witz, Goodwin, Hart, & Thomas, 2001; Witz, 2006a) with its focus on "the participant as ally" and "essentialist portraiture." The primary data source is four to six in-depth interviews with individual teachers (about 40-90 minutes for each interview). The interviews are complemented by extensive classroom observations of individual teachers' teaching SSI and by document analysis (including teaching materials, rubrics, student group projects and journals, etc.). There are two major findings. First, the teachers' deeper values and ideals are a source of larger inspiration that plays a significant role in changing their teaching practice. This inspiration may involve higher aspects (e.g., deep concern for students' development, unselfishness, caring, etc.) and commitment. Their teaching represents an integration of their personal experiences, values, concerns, and worldviews, which forms a larger inspiration for teaching. Teaching SSI is a part of this larger process. Second, the current curriculum reforms (STS, SSI, and NOS) only suggest theoretical ideals and do not effectively touch teachers' deeper values and ideals. Basically, the teachers are doing what they

  11. The Sources of Science Teaching Self-efficacy among Elementary School Teachers: A mediational model approach

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Ling; Tsai, Chin-Chung; Wei, Shih-Hsuan

    2015-09-01

    This study aimed to investigate the factors accounting for science teaching self-efficacy and to examine the relationships among Taiwanese teachers' science teaching self-efficacy, teaching and learning conceptions, technological-pedagogical content knowledge for the Internet (TPACK-I), and attitudes toward Internet-based instruction (Attitudes) using a mediational model approach. A total of 233 science teachers from 41 elementary schools in Taiwan were invited to take part in the study. After ensuring the validity and reliability of each questionnaire, the results indicated that each measure had satisfactory validity and reliability. Furthermore, through mediational models, the results revealed that TPACK-I and Attitudes mediated the relationship between teaching and learning conceptions and science teaching self-efficacy, suggesting that (1) knowledge of and attitudes toward Internet-based instruction (KATII) mediated the positive relationship between constructivist conceptions of teaching and learning and outcome expectancy, and that (2) KATII mediated the negative correlations between traditional conceptions of teaching and learning and teaching efficacy.

  12. Pedagogy of Science Teaching Tests: Formative Assessments of Science Teaching Orientations

    ERIC Educational Resources Information Center

    Cobern, William W.; Schuster, David; Adams, Betty; Skjold, Brandy Ann; Mugaloglu, Ebru Zeynep; Bentz, Amy; Sparks, Kelly

    2014-01-01

    A critical aspect of teacher education is gaining pedagogical content knowledge of how to teach science for conceptual understanding. Given the time limitations of college methods courses, it is difficult to touch on more than a fraction of the science topics potentially taught across grades K-8, particularly in the context of relevant pedagogies.…

  13. Teaching about Teaching Science: Aims, Strategies, and Backgrounds of Science Teacher Educators

    ERIC Educational Resources Information Center

    Berry, Amanda; Van Driel, Jan H.

    2013-01-01

    Despite pressing concerns about the need to prepare high-quality teachers and the central role of teacher educators (TEs) in this process, little is known about how TEs teach about teaching specific subject matter, and how they develop their expertise. This empirical study focuses on the specific expertise that science TEs bring into teacher…

  14. Emotions in teaching environmental science

    NASA Astrophysics Data System (ADS)

    Quigley, Cassie

    2016-09-01

    This op-ed article examines the emotional impact of teaching environmental science and considers how certain emotions can broaden viewpoints and other emotions narrow them. Specifically, it investigates how the topic of climate change became an emotional debate in a science classroom because of religious beliefs. Through reflective practice and examination of positionality, the author explored how certain teaching practices of pre-service science teachers created a productive space and other practices closed down the conversations. This article is framed with theories that explore both divergent and shared viewpoints.

  15. Addressing Problems Encountered in Case-Based Teaching

    ERIC Educational Resources Information Center

    Turgeon, A. J.

    2007-01-01

    TURF 436 (Case Studies in Turfgrass Management) is the capstone course for turfgrass science majors at the Pennsylvania State University. Students are introduced to problems and complex problematic situations encountered in the management of golf and sports turf and in professional lawn-care operations. Following completion of the orientation case…

  16. Teaching With and About Nature of Science, and Science Teacher Knowledge Domains

    NASA Astrophysics Data System (ADS)

    Abd-El-Khalick, Fouad

    2013-09-01

    The ubiquitous goals of helping precollege students develop informed conceptions of nature of science (NOS) and experience inquiry learning environments that progressively approximate authentic scientific practice have been long-standing and central aims of science education reforms around the globe. However, the realization of these goals continues to elude the science education community partly because of a persistent, albeit not empirically supported, coupling of the two goals in the form of `teaching about NOS with inquiry'. In this context, the present paper aims, first, to introduce the notions of, and articulate the distinction between, teaching with and about NOS, which will allow for the meaningful coupling of the two desired goals. Second, the paper aims to explicate science teachers' knowledge domains requisite for effective teaching with and about NOS. The paper argues that research and development efforts dedicated to helping science teachers develop deep, robust, and integrated NOS understandings would have the dual benefits of not only enabling teachers to convey to students images of science and scientific practice that are commensurate with historical, philosophical, sociological, and psychological scholarship (teaching about NOS), but also to structure robust inquiry learning environments that approximate authentic scientific practice, and implement effective pedagogical approaches that share a lot of the characteristics of best science teaching practices (teaching with NOS).

  17. [Analysis on application of PBL in teaching of Zhenjiuxue (science of acupuncture and moxibustion) and establishment of a new education model].

    PubMed

    Zhang, Kun; Zheng, Jun

    2013-05-01

    Advantages of problem-based leaning (PBL) in teaching of Zhenjiuxue (Science of acupuncture and moxibustion) is analyzed through the feature that the curriculum has more comprehensiveness and practicalness and characteristics of the teaching team. Defects of incomplete communication among thinking pattern, cognitive contents and organization structure are presented in this article as well. It is held that things can be taken as a common point or cognitive origin of the west and the east. Therefore, bridge model of origin is designed, which could fulfill more profound expression and cognition of knowledge in ordered and dynamic organization form based on advantages of PBL, surrounded with cognitive origin and depended on impetus produced by differences between domestic and international sciences, technologies and cultures of ancient and modern societies. Thus, the level of teaching can be constantly enhanced.

  18. [Legacy and promises from the teaching of Social Sciences in the Health field].

    PubMed

    Minayo, Maria Cecília de Souza

    2012-12-01

    The article analyzes the teaching and learning of social sciences in health sciences courses from the perspective of the curriculum and learning generated by research groups and thesis supervision activities. The author conducts a rereading of the classics and main contemporary scientists, based on the subarea's scientific output and her own personal experience as professor, researcher, and thesis supervisor. The article focuses on the tradition and teaching of the classics in social sciences, the main contemporary social theories, social sciences in health with an emphasis on teaching, and observations on the interface between teaching in social sciences and life sciences. The author concludes by highlighting the importance of work by social scientists in the health field and identifies the following problematic points: difficulties in dealing with mediations between the biological and the social; frequent subordination of foundations to techniques; and ideological and common-sense issues in the teaching and appropriation of Social Sciences in Health.

  19. Voices of Reform: Infusion of Standards-Based Mathematics and Science Teaching in an Urban District.

    ERIC Educational Resources Information Center

    Huinker, DeAnn; Coan, Cheryl; Posnanski, Tracy

    This study examined the impact of a systemic reform initiative to implement standards-based mathematics and science teaching and learning in one urban school district, noting its effect on teachers, principals, students, and classroom practice. Participants were a sample of elementary and secondary schools involved in the Milwaukee Urban Systemic…

  20. Using the tools of science to teach science

    NASA Astrophysics Data System (ADS)

    Wieman, C.

    2005-12-01

    Much of the rapid progress of modern science comes from its solid foundation on objective quantitative data, the rapid widespread dissemination and duplication of ideas, results, and successful approaches, and the rapid utilization of technological developments to achieve new capabilities. Unfortunately, scientists usually abandon these powerful tools in their approach to the teaching of science and instead rely on an approach that would be considered little more than individual superstition if used in the context of actual science. Choices of content and presentation in teaching are usually based on tradition or totally subjective judgments of the instructor. I will discuss my efforts to approach teaching physics much as I have done experimental physics. This includes: collecting and utilizing data (both my own and that from the research of others), developing a strategy for dealing with numerous degrees of freedom that one cannot control nearly as well as one would like (whether they are atomic interactions or student attitudes), optimizing the use of the time and money available, and taking advantage of useful new technology. The latter discussion will include some specifics on using technology that allows real time measurement of student learning and engagement in a large class and the development and use of interactive simulations to facilitate conceptual understanding. Achieving true understanding and appreciation of physics by introductory students is a major challenge. Fortunately, there is sufficient room for improvement in the current educational system that one can fall far short of that ideal and still be making major progress. Work supported by NSF and the Kavli Operating Institute

  1. The study of electrochemical cell taught by problem-based learning

    NASA Astrophysics Data System (ADS)

    Srichaitung, Paisan

    2018-01-01

    According to the teaching activity of Chemistry, researcher found that students were not able to seek self knowledge even applied knowledge to their everyday life. Therefore, the researcher is interested in creating an activity to have students constructed their knowledge, science process skills, and can apply knowledge in their everyday life. The researcher presented form of teaching activity of electrochemical cell by using problem-based learning for Mathayom five students of Thai Christian School. The teaching activity focused on electron transfer in galvanic cell. In this activity, the researcher assigned students to design the electron transfer in galvanic cell using any solution that could light up the bulb. Then students were separated into a group of two, which were total seven groups. Each group of students searched the information about the electron transfer in galvanic cell from books, internet, or other sources of information. After students received concepts, or knowledge they searched for, Students designed and did the experiment. Finally, the students in each groups had twenty minutes to give a presentation in front of the classroom about the electron transfer in galvanic using any solution to light up the bulb with showing the experiment, and five minutes to answer their classmates' questions. Giving the presentation took four periods with total seven groups. After students finished their presentation, the researcher had students discussed and summarized the teaching activity's main idea of electron transfer in galvanic. Then, researcher observed students' behavior in each group found that 85.7 percentages of total students developed science process skills, and transferred their knowledge through presentation completely. When students done the post test, the researcher found that 92.85 percentages of total students were able to explain the concept of galvanic cell, described the preparation and the selection of experimental equipment. Furthermore

  2. Values of Catholic science educators: Their impact on attitudes of science teaching and learning

    NASA Astrophysics Data System (ADS)

    DeMizio, Joanne Greenwald

    This quantitative study examined the associations between the values held by middle school science teachers in Catholic schools and their attitudes towards science teaching. A total of six value types were studied---theoretical, economic, aesthetic, social, political, and religious. Teachers can have negative, positive, or neutral attitudes towards their teaching that are linked to their teaching practices and student learning. These teachers' attitudes may affect their competence and have a subsequent impact on their students' attitudes and dispositions towards science. Of particular interest was the relationship between science teaching attitudes and religious values. A non-experimental research design was used to obtain responses from 54 teachers with two survey instruments, the Science Teaching Attitude Scale II and the Allport-Vernon-Lindzey Study of Values. Stepwise multiple regression analysis showed that political values were negatively associated with attitudes towards science teaching. Data collected were inconsistent with the existence of any measurable association between religious values and attitudes towards science teaching. This study implies that science teacher preparation programs should adopt a more contextual perspective on science that seeks to develop the valuation of science within a cultural context, as well as programs that enable teachers to identify the influence of their beliefs on instructional actions to optimize the impact of learning new teaching practices that may enhance student learning.

  3. Developing Interpretive Power in Science Teaching

    ERIC Educational Resources Information Center

    Rosebery, Ann S.; Warren, Beth; Tucker-Raymond, Eli

    2016-01-01

    Early career teachers rarely receive sustained support for addressing issues of diversity and equity in their science teaching. This paper reports on design research to create a 30 hour professional development seminar focused on cultivating the interpretive power of early career teachers who teach science to students from historically…

  4. Urban schools' teachers enacting project-based science

    NASA Astrophysics Data System (ADS)

    Tal, Tali; Krajcik, Joseph S.; Blumenfeld, Phyllis C.

    2006-09-01

    What teaching practices foster inquiry and promote students to learn challenging subject matter in urban schools? Inquiry-based instruction and successful inquiry learning and teaching in project-based science (PBS) were described in previous studies (Brown & Campione, [1990]; Crawford, [1999]; Krajcik, Blumenfeld, Marx, Bass, & Fredricks, [1998]; Krajcik, Blumenfeld, Marx, & Solloway, [1994]; Minstrell & van Zee, [2000]). In this article, we describe the characteristics of inquiry teaching practices that promote student learning in urban schools. Teaching is a major factor that affects both achievement of and attitude of students toward science (Tamir, [1998]). Our involvement in reform in a large urban district includes the development of suitable learning materials and providing continuous and practiced-based professional development (Fishman & Davis, in press; van Es, Reiser, Matese, & Gomez, [2002]). Urban schools face particular challenges when enacting inquiry-based teaching practices like those espoused in PBS. In this article, we describe two case studies of urban teachers whose students achieved high gains on pre- and posttests and who demonstrated a great deal of preparedness and commitment to their students. Teachers' attempts to help their students to perform well are described and analyzed. The teachers we discuss work in a school district that strives to bring about reform in mathematics and science through systemic reform. The Center for Learning Technologies in Urban Schools (LeTUS) collaborates with the Detroit Public Schools to bring about reform in middle-school science. Through this collaboration, diverse populations of urban-school students learn science through inquiry-oriented projects and the use of various educational learning technologies. For inquiry-based science to succeed in urban schools, teachers must play an important role in enacting the curriculum while addressing the unique needs of students. The aim of this article is to

  5. Teaching biochemistry to medical students in Singapore--from organic chemistry to problem-based learning.

    PubMed

    Khoo, H E

    2005-07-01

    The medical faculty in the National University of Singapore started in 1905 but the Chair in Biochemistry was only established in 1927. For many years the biochemistry course consisted of the teaching of the organic chemistry of substances of physiological importance, nutrition, metabolism and hormones. In 1961, clinical biochemistry was introduced and in the 1980s, genetics and molecular biology were included. By then, most of the organic chemistry content had been removed as greater emphasis was placed on clinical correlation. Laboratory classes consisted of mock glucose tolerance tests and the measurement of various enzymes. By the 1990s, students were no longer interested in such practical classes, so a bold decision was made around 1995 to remove laboratory classes from the curriculum. Unfortunately, this meant that the medical students who might have been interested in laboratory work could no longer do such work. However, the new curriculum in 1999 gave the department an opportunity to offer a laboratory course as an elective for interested students. This new curriculum adopted an integrated approach with Genetics being taught as part of Paediatrics, and a new module (Structural and Cell Biology) comprising aspects of cell biology and biochemistry was introduced. This module is currently taught by staff from Anatomy, Physiology and Biochemistry. Some biochemistry content is now incorporated into the clinical problem scenarios of problem-based learning such as jaundice, diabetes mellitus, anorexia nervosa, etc. So the evolution of teaching biochemistry to medical students in Singapore has paralleled worldwide trends and moved from the didactic teaching of organic chemistry of biomolecules to problem-based learning using clinical cases.

  6. Inquiry-based training improves teaching effectiveness of biology teaching assistants

    PubMed Central

    Hughes, P. William; Ellefson, Michelle R.

    2013-01-01

    Graduate teaching assistants (GTAs) are used extensively as undergraduate science lab instructors at universities, yet they often have having minimal instructional training and little is known about effective training methods. This blind randomized control trial study assessed the impact of two training regimens on GTA teaching effectiveness. GTAs teaching undergraduate biology labs (n = 52) completed five hours of training in either inquiry-based learning pedagogy or general instructional “best practices”. GTA teaching effectiveness was evaluated using: (1) a nine-factor student evaluation of educational quality; (2) a six-factor questionnaire for student learning; and (3) course grades. Ratings from both GTAs and undergraduates indicated that indicated that the inquiry-based learning pedagogy training has a positive effect on GTA teaching effectiveness. PMID:24147138

  7. Science teacher's perception about science learning experiences as a foundation for teacher training program

    NASA Astrophysics Data System (ADS)

    Tapilouw, Marisa Christina; Firman, Harry; Redjeki, Sri; Chandra, Didi Teguh

    2017-05-01

    Teacher training is one form of continuous professional development. Before organizing teacher training (material, time frame), a survey about teacher's need has to be done. Science teacher's perception about science learning in the classroom, the most difficult learning model, difficulties of lesson plan would be a good input for teacher training program. This survey conducted in June 2016. About 23 science teacher filled in the questionnaire. The core of questions are training participation, the most difficult science subject matter, the most difficult learning model, the difficulties of making lesson plan, knowledge of integrated science and problem based learning. Mostly, experienced teacher participated training once a year. Science training is very important to enhance professional competency and to improve the way of teaching. The difficulties of subject matter depend on teacher's education background. The physics subject matter in class VIII and IX are difficult to teach for most respondent because of many formulas and abstract. Respondents found difficulties in making lesson plan, in term of choosing the right learning model for some subject matter. Based on the result, inquiry, cooperative, practice are frequently used in science class. Integrated science is understood as a mix between Biology, Physics and Chemistry concepts. On the other hand, respondents argue that problem based learning was difficult especially in finding contextual problem. All the questionnaire result can be used as an input for teacher training program in order to enhanced teacher's competency. Difficult concepts, integrated science, teaching plan, problem based learning can be shared in teacher training.

  8. Using a Moodle-Based Professional Development Program to Train Science Teachers to Teach for Creativity and its Effectiveness on their Teaching Practices

    NASA Astrophysics Data System (ADS)

    Al-Balushi, Sulaiman M.; Al-Abdali, Nasser S.

    2015-08-01

    This study describes a distance learning professional development program that we designed for the purpose of training science teachers to teach for creativity. The Moodle platform was used to host the training. To ensure that trainees would benefit from this distance learning program, we designed the instructional activities according to the Community of Inquiry framework, which consists of three main elements: cognitive presence, teaching presence and social presence. Nineteen science teachers in Oman engaged in the training, which lasted for 36 working days. To measure the effectiveness of the training program on science teachers' instructional practices related to teaching for creativity, we used a pre-post one-group quasi-experimental design. An observation form was used to assess and document participants' practices. Paired t test results showed that there was a statistically significant improvement in science teachers' practices related to teaching for creativity. During the implementation of the training program, we observed that cognitive presence and teaching presence were the two most successful elements of the program. The training program involved participants in different instructional activities which were designed to help them understand the role of creativity in science; a wide range of instructional techniques designed to nurture students' creativity was discussed. The program also provided participants with opportunities to relate their practices to teaching for creativity and to design and implement lesson plans geared toward teaching for creativity. However, the social presence element was not satisfying. Participants' virtual interactions with each other and their engagement in online discussion forums were limited. This paper provides some recommendations to overcome such pitfalls.

  9. Contributions of Science Principles to Teaching: How Science Principles Can Be Used

    ERIC Educational Resources Information Center

    Henson, Kenneth T.

    1974-01-01

    Describes the steps involved in using the "principles" approach in teaching science, illustrates the process of using science principles with an example relating to rock formation, and discusses the relevance of this approach to contemporary trends in science teaching. (JR)

  10. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    ERIC Educational Resources Information Center

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  11. Teaching Teachers: Bringing First-Rate Science to the Elementary Classroom. An NSTA Press Journals Collection.

    ERIC Educational Resources Information Center

    Smith, Betty, Ed.

    This document presents a collection of papers published in the "Teaching Teachers" column in the elementary-level journal, "Science and Children." Contents include: (1) "Science is Part of the Big Picture: Teachers Become Science Learners" (Anita Greenwood); (2) "Reaching the Reluctant Science Teacher: Learning How To Teach Inquiry-Based Science"…

  12. Emotions and elementary school science teaching: Postmodernism in practice

    NASA Astrophysics Data System (ADS)

    Zembylas, Michalinos

    This is an ethnographic study about an elementary school teacher's emotions in her science teaching and pedagogy. This study is an interdisciplinary account of emotions in teaching and draws both methodologically and theoretically from a variety of disciplines: philosophy, sociology, psychology, anthropology, cultural studies and feminist studies. The account developed here is based on my understanding of the role of one teacher's (Catherine) emotions in her classroom life for three years. I describe my approach in terms of what I call emotional genealogies of teaching; referring to an account of the events, objects, persons and their relationships that are present or absent in the realization of emotions, and the ways that these emotions are experienced in relation to the self (individual reality), the others (social interactions) and the world in general (sociopolitical context). Applied to my study, an emotional genealogy of Catherine's science teaching seeks not to trace the gradual evolution of her emotions but to record the singularity of various events that make some emotions present and others absent. My study shows how certain emotions are constructed in the science classroom and how they are transformed over the years (as mediated by values, philosophies, beliefs and so on). Catherine's emotions in science teaching is a "history of the present," a history of her emotions' "presences and absences" in her daffy interactions with her students, parents and administrators in the context of the science classroom. This work raises important questions that go beyond the meaning and interpretation of teachers' emotions: How can teachers' emotions become a legitimate topic in (science) education as well as in efforts for science curricular reform? Further, how can educational institutions (universities and schools) and elementary school science teachers themselves support their personal and professional emotional growth?

  13. Promoting Scientific Literacy Using a Sociocritical and Problem-Oriented Approach to Chemistry Teaching: Concept, Examples, Experiences

    ERIC Educational Resources Information Center

    Marks, Ralf; Eilks, Ingo

    2009-01-01

    This paper revisits the discussion about the objectives of scientific literacy-oriented chemistry teaching, its connection to the German concept of "Allgemeinbildung", and the debate of "science through education" vs. "education through science". About 10 years ago the sociocritical and problem-oriented approach to…

  14. Preservice Science Teachers' Uses of Inscriptions in Science Teaching

    ERIC Educational Resources Information Center

    Tanis Ozcelik, Arzu; McDonald, Scott P.

    2013-01-01

    This study investigated preservice science teachers' uses of inscriptions in their peer teaching activities and was guided by the following research questions: (1) What kinds of inscriptions and inscriptional practices do preservice science teachers use in their peer teaching activity? and (2) How and for what purposes do preservice science…

  15. Problem Based Learning in School of Engineering Science, Osaka University

    NASA Astrophysics Data System (ADS)

    Sato, Kosuke; Kosakada, Kozo; Kuboi, Ryoichi

    Problem Based Leaning in School of Engineering Science, Osaka University is being achieved mainly focusing on the spontaneous setting of the project theme. The PBL program aims to promote students' wide variety of abilities ; communication skill, group discussion, presentation skill, mutual assessment of the students, and also especially research skill 3P (Plan-Perform-Publish) .

  16. Environmental Problems and the Social Sciences: What Should We Teach?

    ERIC Educational Resources Information Center

    Cylke, F. Kurt, Jr.

    1995-01-01

    Environmental issues that can be explored in social science courses include problems with potential to cause serious or irreversible change to an ecosystem or biosphere. Areas for discussion include: environmental attitudes, values, and behaviors; the environmental movement; risk perceptions; and the political economy of the environment and…

  17. Heuristic Diagrams as a Tool to Teach History of Science

    ERIC Educational Resources Information Center

    Chamizo, Jose A.

    2012-01-01

    The graphic organizer called here heuristic diagram as an improvement of Gowin's Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The…

  18. The science knowledge, conceptions of the nature of science, attitudes about teaching science, and science instructional strategies of bilingual and English-only elementary teachers

    NASA Astrophysics Data System (ADS)

    Alegria, Adelina Victoria

    The goal of this study was to explore bilingual and English-only elementary teachers' science knowledge, their conceptions of the nature of science, their attitudes about teaching science, and their self-reported science instructional skills. In this study, a bilingual teacher was defined as a teacher who provides instruction in Spanish and English in core academic subjects and has completed and/or is completing a bilingual certification program. An English-only teacher was defined as a monolingual teacher that only speaks and instructs in English. The principal questions guiding this dissertation investigation were the following: How do bilingual elementary teachers differ from English-only elementary teachers in (a) their science knowledge, (b) their conceptions of the nature of science, (c) their attitude about teaching science, and (d) their self-reported science instructional skills? This dissertation study is a component of a three-year long Eisenhower Project granted to Hueneme School District and the University of California, Santa Barbara Southcoast Science Project. While the Project will last three years (1997--2000), this dissertation study was developed to answer only a subset of questions of the entire project and data was collected in 1998. The research design for this study consisted of a self-administered questionnaire that was given to Hueneme School District elementary teachers that teach science and was developed by reviewing the relevant literature about teachers' science knowledge, their conceptions of the nature of science, their attitudes about teaching science, and the instructional strategies that support science learning. The findings showed that both the bilingual and the English-only respondents demonstrated a similar science knowledge base, which is suggested, by this researcher, to be limited. That both bilingual and English-only teacher respondents demonstrated similar positive attitudes about teaching science and both reported making

  19. A Teaching-Learning Method Enhancing Problem Solving and Motivation in Secondary Schools.

    ERIC Educational Resources Information Center

    Markoczi-Revak, Ibolya

    2003-01-01

    Presents a teaching-learning method for enhancing problem solving and motivation for studying science in secondary schools. Emerges from a former survey which, found that the motivation of 14-18-year-olds as measured by the Kozekik-Entwistle test was at a rather low level. (Contains 16 references.) (Author/YDS)

  20. Teaching children the structure of science

    NASA Astrophysics Data System (ADS)

    Börner, Katy; Palmer, Fileve; Davis, Julie M.; Hardy, Elisha; Uzzo, Stephen M.; Hook, Bryan J.

    2009-01-01

    Maps of the world are common in classroom settings. They are used to teach the juxtaposition of natural and political functions, mineral resources, political, cultural and geographical boundaries; occurrences of processes such as tectonic drift; spreading of epidemics; and weather forecasts, among others. Recent work in scientometrics aims to create a map of science encompassing our collective scholarly knowledge. Maps of science can be used to see disciplinary boundaries; the origin of ideas, expertise, techniques, or tools; the birth, evolution, merging, splitting, and death of scientific disciplines; the spreading of ideas and technology; emerging research frontiers and bursts of activity; etc. Just like the first maps of our planet, the first maps of science are neither perfect nor correct. Today's science maps are predominantly generated based on English scholarly data: Techniques and procedures to achieve local and global accuracy of these maps are still being refined, and a visual language to communicate something as abstract and complex as science is still being developed. Yet, the maps are successfully used by institutions or individuals who can afford them to guide science policy decision making, economic decision making, or as visual interfaces to digital libraries. This paper presents the process and results of creating hands-on science maps for kids that teaches children ages 4-14 about the structure of scientific disciplines. The maps were tested in both formal and informal science education environments. The results show that children can easily transfer their (world) map and concept map reading skills to utilize maps of science in interesting ways.

  1. The Art and Science of Teaching: A Comprehensive Framework for Effective Instruction

    ERIC Educational Resources Information Center

    Marzano, Robert J.

    2007-01-01

    Though classroom instructional strategies should clearly be based on sound science and research, knowing when to use them and with whom is more of an art. In "The Art and Science of Teaching: A Comprehensive Framework for Effective Instruction," author Robert J. Marzano presents a model for ensuring quality teaching that balances the necessity of…

  2. The teaching practices inventory: a new tool for characterizing college and university teaching in mathematics and science.

    PubMed

    Wieman, Carl; Gilbert, Sarah

    2014-01-01

    We have created an inventory to characterize the teaching practices used in science and mathematics courses. This inventory can aid instructors and departments in reflecting on their teaching. It has been tested with several hundred university instructors and courses from mathematics and four science disciplines. Most instructors complete the inventory in 10 min or less, and the results allow meaningful comparisons of the teaching used for the different courses and instructors within a department and across different departments. We also show how the inventory results can be used to gauge the extent of use of research-based teaching practices, and we illustrate this with the inventory results for five departments. These results show the high degree of discrimination provided by the inventory, as well as its effectiveness in tracking the increase in the use of research-based teaching practices. © 2014 C. Wieman and S. Gilbert. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Trends in Research on Project-Based Science and Technology Teaching and Learning at K-12 Levels: A Systematic Review

    ERIC Educational Resources Information Center

    Hasni, Abdelkrim; Bousadra, Fatima; Belletête, Vincent; Benabdallah, Ahmed; Nicole, Marie-Claude; Dumais, Nancy

    2016-01-01

    Project-based teaching is nothing new; it originates from the work of authors like Dewey and Kilpatrick. Recent decades have seen renewed interest in this approach. In many countries, it is currently considered to be an innovative approach to science and technology (S&T) teaching. In this article, we present a systematic review of what recent…

  4. RELM: developing a serious game to teach evidence-based medicine in an academic health sciences setting.

    PubMed

    Gleason, Ann Whitney

    2015-01-01

    Gaming as a means of delivering online education continues to gain in popularity. Online games provide an engaging and enjoyable way of learning. Gaming is especially appropriate for case-based teaching, and provides a conducive environment for adult independent learning. With funding from the National Network of Libraries of Medicine, Pacific Northwest Region (NN/LM PNR), the University of Washington (UW) Health Sciences Library, and the UW School of Medicine are collaborating to create an interactive, self-paced online game that teaches players to employ the steps in practicing evidence-based medicine. The game encourages life-long learning and literacy skills and could be used for providing continuing medical education.

  5. A case study of secondary teachers facilitating a historical problem-based learning instructional unit

    NASA Astrophysics Data System (ADS)

    Pecore, John L.

    Current curriculum trends promote inquiry-based student-centered strategies as a way to foster critical thinking and learning. Problem-based learning (PBL), a type of inquiry focusing on an issue or "problem," is an instructional approach taught on the basis that science reform efforts increase scientific literacy. PBL is a constructivist approach to learning real life problems where understanding is a function of content, context, experiences, and learner goals; historical PBL situates the lesson in a historical context and provides opportunities for teaching NOS concepts. While much research exists on the benefits of historical PBL to student learning in general, more research is warranted on how teachers implement PBL in the secondary science curriculum. The purpose of this study was to examine the classroom-learning environment of four science teachers implementing a historical PBL instructional unit to identify the teachers' understandings, successes and obstacles. By identifying teachers' possible achievements and barriers with implementing a constructivist philosophy when executing historical PBL, educators and curriculum designers may improve alignment of the learning environment to constructivist principles. A qualitative interpretive case study guided this research study. The four participants of this study were purposefully and conveniently selected from biology teachers with at least three years of teaching experience, degrees in education, State Licensure, and completion of a PBL workshop. Data collection consisted of pre and post questionnaires, structured interviews, a card sort activity in which participants categorized instructional outcomes, and participant observations. Results indicated that the four teachers assimilated reform-based constructivist practices to fit within their preexisting routines and highlighted the importance of incorporating teachers' current systems into reform-based teacher instruction. While participating teachers

  6. Supporting Inquiry-based Earth System Science Instruction with Middle and High School Earth Science Teachers

    NASA Astrophysics Data System (ADS)

    Finkel, L.; Varner, R.; Froburg, E.; Smith, M.; Graham, K.; Hale, S.; Laura, G.; Brown, D.; Bryce, J.; Darwish, A.; Furman, T.; Johnson, J.; Porter, W.; von Damm, K.

    2007-12-01

    The Transforming Earth System Science Education (TESSE) project, a partnership between faculty at the University of New Hampshire, Pennsylvania State University, Elizabeth City State University and Dillard University, is designed to enrich the professional development of in-service and pre-service Earth science teachers. One goal of this effort is to help teachers use an inquiry-based approach to teaching Earth system science in their classrooms. As a part of the TESSE project, 42 pre-service and in-service teachers participated in an intensive two-week summer institute at UNH taught by Earth scientists and science educators from TESSE partnership institutions. The institute included instruction about a range of Earth science system topics as well as an introduction to teaching Earth science using an inquiry-based approach. In addition to providing teachers with information about inquiry-based science teaching in the form of sample lesson plans and opportunities to revise traditional lessons and laboratory exercises to make them more inquiry-based, TESSE instructors modeled an inquiry- based approach in their own teaching as much as possible. By the end of the Institute participants had developed lesson plans, units, or year-long course overviews in which they were expected to explain the ways in which they would include an inquiry-based approach in their Earth science teaching over the course of the school year. As a part of the project, graduate fellows (graduate students in the earth sciences) will work with classroom teachers during the academic year to support their implementation of these plans as well as to assist them in developing a more comprehensive inquiry-based approach in the classroom.

  7. Affording Explicit-Reflective Science Teaching by Using an Educative Teachers' Guide

    ERIC Educational Resources Information Center

    Lin, Shu-Fen; Lieu, Sang-Chong; Chen, Sufen; Huang, Mao-Tsai; Chang, Wen-Hua

    2012-01-01

    Although researchers have achieved some success in effective nature of science (NOS) teaching, helping teachers teach NOS continues to be a great challenge. The development of an educative teachers' guide would provide support for NOS teaching. In this study, we explored the effects that a research-based guide had on affording elementary school…

  8. A Collection of Problems for Physics Teaching

    ERIC Educational Resources Information Center

    Grober, S.; Jodl, H. -J.

    2010-01-01

    Problems are an important instrument for teachers to mediate physics content and for learners to adopt this content. This collection of problems is not only suited to traditional teaching and learning in lectures or student labs, but also to all kinds of new ways of teaching and learning, such as self-study, long-distance teaching,…

  9. Effect of Learning Cycle Approach-Based Science Teaching on Academic Achievement, Attitude, Motivation and Retention

    ERIC Educational Resources Information Center

    Uyanik, Gökhan

    2016-01-01

    The purpose of this study was to examine the effect of learning cycle approach-based teaching on academic achievement, attitude, motivation and retention at primary school 4th grade science lesson. It was conducted pretest-posttest quasi-experimental design in this study. The study was conducted on a total of 65 students studying in two different…

  10. The Sources of Science Teaching Self-Efficacy among Elementary School Teachers: A Mediational Model Approach

    ERIC Educational Resources Information Center

    Wang, Ya-Ling; Tsai, Chin-Chung; Wei, Shih-Hsuan

    2015-01-01

    This study aimed to investigate the factors accounting for science teaching self-efficacy and to examine the relationships among Taiwanese teachers' science teaching self-efficacy, teaching and learning conceptions, technological--pedagogical content knowledge for the Internet (TPACK-I), and attitudes toward Internet-based instruction (Attitudes)…

  11. A study of Web-based instructional strategies in post-secondary sciences

    NASA Astrophysics Data System (ADS)

    Stanley, Scott A.

    There is a large demand for web-based instruction offered by post secondary institutions (U.S. Department of Education, 2003), but only recently have post secondary science faculty begun to develop courses for this medium (Carr, 2000). Research evaluating the effectiveness of this type of instruction suggests that there is no significant difference in the grades between students in traditional and online courses (Russell, 1999; Spooner, Jordan, Agozzine, & Spooner, 1999; Verduin & Clark, 1991; Wideman & Owston, 1999). It is important to note that while grades may be similar in face-to-face (FTF) and web-based science courses, it cannot be implied that student learning is identical in both environments. Experts in web-based instruction claim that teaching practices for web-based instruction are similar to those used in a FTF environment (Bronack & Riedl, 1998; Ragan, 1999). This is troublesome when viewed in context with the data on instructional strategies used in FTF post-secondary science courses. It is well documented that undergraduate students perceive science pedagogy as ineffective (NSF, 1996; Seymour & Hewitt, 1997; Tobias, 1990). This research examined web-based instructional strategies in post secondary science courses. Using a web-based questionnaire, this study collected data in order to examine the frequency of use of previously identified effective FTF instructional strategies, and the difference in use of instructional strategies in the different fields of science. One hundred and thirty respondents completed the web-based questionnaire. Data from faculty (N=122) who teach more than 75% of their course online were analyzed. Data analyses revealed the frequency of use of effective face-to-face instructional strategies is variable. Science faculty do not regularly assess students' conceptual understandings prior to the presentation of new concepts. Faculty frequently made connections to the real-world and incorporated problem solving using real

  12. Implementation of small group discussion as a teaching method in earth and space science subject

    NASA Astrophysics Data System (ADS)

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  13. Teaching science in museums

    NASA Astrophysics Data System (ADS)

    Tran, Lynn Uyen

    Museums are free-choice, non-threatening, non-evaluative learning and teaching environments. They enable learners to revisit contents, authentic objects, and experiences at their own leisure as they continually build an understanding and appreciation of the concepts. Schools in America have used museums as resources to supplement their curriculum since the 19 th century. Field trip research is predominantly from the teachers' and students' perspectives, and draws attention to the importance for classroom teachers and students to prepare prior to field trips, have tasks, goals, and objectives during their time at the museum, and follow up afterwards. Meanwhile, museum educators' contributions to field trip experiences have been scantily addressed. These educators develop and implement programs intended to help students' explore science concepts and make sense of their experiences, and despite their limited time with students, studies show they can be memorable. First, field trips are a break in the usual routine, and thus have curiosity and attention attracting power. Second, classroom science teaching literature suggests teachers' teaching knowledge and goals can affect their behaviors, and in turn influence student learning. Third, classroom teachers are novices at planning and implementing field trip planners, and museum educators can share this responsibility. But little is reported on how the educators teach, what guides their instruction, how classroom teachers use these lessons, and what is gained from these lessons. This study investigates two of these inquiries. The following research questions guided this investigation. (1) How do educators teaching one-hour, one-time lessons in museums adapt their instruction to the students that they teach? (2) How do time limitations affect instruction? (3) How does perceived variability in entering student knowledge affect instruction? Four educators from two museums took part in this participant observation study to

  14. Teaching science with a multicultural agenda: The challenges and conflicts for preservice teachers

    NASA Astrophysics Data System (ADS)

    Yang, Kimberley

    This dissertation examines the challenges and conflicts that preservice teachers have when teaching science with a multicultural agenda. This study is based on the experience of three preservice teachers who have participated in a one or two semester(s) volunteered commitment teaching science to pre-kindergarten students at a homeless shelter in the South Bronx of New York City. Findings derived from in-depth interviews, observations, lesson planning and debriefing sessions, journals, questionnaires and extracurricular interaction of the researcher and participants, indicate that preservice teachers were initially uncertain about the philosophy and actual practice of teaching science with a multicultural agenda. Their experience at the homeless shelter brings up issues of social class and family background as determinants of access and success in science education, multicultural science as exclusive from the accepted science canon, and the value of practicing science education with a multicultural agenda. The philosophical framework for teaching science from a multicultural framework is based on ideas that stem from feminist theories of valuing the lived social and educational experiences of children, and critical theory that examines the role of school and science as culture. The intention of multicultural science education is to create a science education that is inclusive for students regardless of cultural background. This includes students who have been traditionally marginalized from school science. In many instances, children from severe inner-city economically impoverished environments have been overlooked as science-able within school culture.

  15. A Geograns update. New experiences to teach earth sciences to students older than 55

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Pinazo, S.

    2009-04-01

    How to teach earth science to students that have access to the university after the age of 55 is a challenge due to the different background of the students. They ranged from those with only basic education (sometimes they finished school at the age of 9) to well educate students such as university professors, physicians or engineers. Students older than 55 are enrolled in what is called the university programme NauGran project at the University of Valencia. They follow diverse topics, from health science to Arts. Since 2006 the Department of Geography and the NauGran project developed the Club for Geographers and Walkers called Geograns. The objective is to teach Earth Science in the field as a strategy to improve the knowledge of the students with a direct contact with the territory. This initiative reached a successful contribution by the students, with 70 students registered. The successful strategy we have developed since then is to base our teaching on field work. Every lecture is related to some visits to the field. A pre-excursion lecture introduces the key questions of the study site (hydrology, geology, botany, geomorphology…). During the field work we review all the topics and the students are encouraged to ask and discuss any of the topics studied. Finally, a post-excursion lecture is given to review the acquired knowledge. During the last academic year 2007-2008 the excursion focussed on: (i) energy sources: problems and solutions, with visit to nuclear, wind and hydraulic power stations; (i) human disturbances and humankind as landscaper, with visits to wetlands, river gorges and Iberian settlements; and (iii) human activities and economical resources, with visits to vineyards and wineries and orange fields devoted to organic farming. This is being a positive strategy to teach Earth Science to a wide and heterogeneous group of students, as they improve their knowledge with a direct contact with the landscape, other colleagues and teachers in the

  16. Not Just Good Science Teaching: Supporting Academic Language Development

    ERIC Educational Resources Information Center

    Silva, Cecilia; Weinburgh, Molly; Smith, Kathy Horak

    2013-01-01

    In this article, the authors explore ways in which they have worked together in understanding the complexities of academic language within the science classroom and discuss strategies they have used to teach academic language to young adolescent English Language Learners (ELLs) within inquiry-based science lessons. They discuss strategies they use…

  17. Multiple case studies of STEM teachers' orientations to science teaching through engineering design

    NASA Astrophysics Data System (ADS)

    Rupp, Madeline

    The following master's thesis is composed of two manuscripts describing STEM teachers' orientations to science teaching through engineering within the context of the Science Learning through Engineering Design (SLED) partnership. The framework guiding both studies was science teaching orientations, a component of pedagogical content knowledge. Data were collected via semi-structured interviews, multi-day classroom observations, pre- and post-observation interviews, implementation plans, and written reflections. Data sources were analyzed to generate two orientations to science teaching through engineering design for each participant. The first manuscript illustrates a single case study conducted with a sixth grade STEM teacher. Results of this study revealed a detailed picture of the teacher's goals, practices, assessments, and general views when teaching science through engineering design. Common themes across the teacher's instruction were used to characterize her orientations to science teaching through engineering design. Overall, the teacher's orientations showed a shift in her practice from didactic to student-centered methods of teaching as a result of integrating engineering design-based curriculum. The second manuscript describes a comparative case study of two sixth grade SLED participants. Results of this study revealed more complex and diverse relationships between the teachers' orientations to teaching science through engineering design and their instruction. Participants' orientations served as filters for instruction, guided by their divergent purposes for science teaching. Furthermore, their orientations and resulting implementation were developed from knowledge gained in teacher education, implying that teacher educators and researchers can use this framework to learn more about how teachers' knowledge is used to integrate engineering and science practices in the K-12 classroom.

  18. A longitudinal investigation of the preservice science teachers' beliefs about science teaching during a science teacher training programme

    NASA Astrophysics Data System (ADS)

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants were composed of 76 preservice teachers, and the DASTT-C was used as the data collection tool. As a result of the study, it was determined that the students had conventional teaching beliefs after the first years of the teacher training programme. Moreover, the mental teaching styles of preservice teachers about the science teaching were found to undergo changes throughout their undergraduate education. Participants' beliefs about conventional teaching started to change, especially after they first took a science method course in their third year and their beliefs shifted towards student-centred teaching. Implications for science teacher training programmes were also addressed.

  19. Development of interest in science and interest in teaching elementary science: Influence of informal, school, and inquiry methods course experiences

    NASA Astrophysics Data System (ADS)

    Bulunuz, Mizrap

    Inquiry-based science instruction is a major goal of science education reform. However, there is little research examining how preservice elementary teachers might be motivated to teach through inquiry. This quantitative study was designed to examine the role of background experiences and an inquiry science methods course on interest in science and interest in teaching science. The course included many activities and assignments at varying levels of inquiry, designed to teach content and inquiry methods and to model effective teaching. The study involved analyses of surveys completed by students in the course on their experiences with science before, during, and at the end of the course. The following questions guided the design of this study and analysis of the data: (1) What science background experiences (school, home, and informal education) do participants have and how do those experiences affect initial interest in science? (2) Among the hands-on activities in the methods course, is there a relationship between level of inquiry of the activity and the motivational quality (interesting, fun, and learning) of the activity? (3) Does the course affect participants' interest and attitude toward science? (4) What aspects of the course contribute to participants' interest in teaching science and choice to teach science? Descriptive and inferential analysis of a background survey revealed that participants with high and low initial interest in science differed significantly on remembering about elementary school science and involvement in science related activities in childhood/youth. Analysis of daily ratings of each hands-on activity on motivational qualities (fun, interest, and learning) indicated that there were significant differences in motivational quality of the activities by level of inquiry with higher levels of inquiry rated more positively. Pre/post surveys indicated that participants increased in interest in science and a number of variables reflecting

  20. How to Justify Teaching False Science

    ERIC Educational Resources Information Center

    Slater, Matthew H.

    2008-01-01

    We often knowingly teach false science. Such a practice conflicts with a prima facie pedagogical value placed on teaching only what is true. I argue that only a partial dissolution of the conflict is possible: the proper aim of instruction in science is not to provide an armory of facts about what things the world contains, how they interact, and…

  1. Safety and Science Teaching.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Education, Richmond. Div. of Sciences and Elementary Administration.

    This 10-chapter handbook (designed for science teachers and school administrators) describes known hazards associated with science teaching and provides information to develop a framework for local safety programs specifically designed to avoid or neutralize the effects of such hazards. Major areas addressed in the chapters include: (1) the nature…

  2. A Comparative Study of Problem-Based and Lecture-Based Learning in Junior Secondary School Science

    ERIC Educational Resources Information Center

    Wong, Kenson Kin Hang; Day, Jeffrey Richard

    2009-01-01

    The purpose of the study is to compare problem based learning (PBL) and lecture-based learning (LBL) in Hong Kong secondary students' science achievement. Secondary One students were divided into two groups: group A (n = 37), was taught two topics: "Human Reproduction" and "Density" through PBL; group B (n = 38) was taught the…

  3. The Role Played by Contextual Challenges in Practising Inquiry-Based Science Teaching in Tanzania "Secondary Schools"

    ERIC Educational Resources Information Center

    Mkimbili, Selina Thomas; Tiplic, Dijana; Ødegaard, Marianne

    2017-01-01

    Our study aims to explore the practice of Inquiry-based Science Teaching (IBST) in schools with contextual challenges in Tanzania. The study draws on multiple data sources. Eleven teachers purposively selected were interviewed. Also, out of 11 teachers, seven were observed in their practical sessions. Participants were selected from community…

  4. Exploring the Place of Exemplary Science Teaching. This Year in School Science 1993.

    ERIC Educational Resources Information Center

    Haley-Oliphant, Ann E., Ed.

    Exemplary science teaching is an experience that fosters wonder, excitement, and risk-taking. This book presents essays which attempt to describe the culture of classrooms of exemplary science teachers. Chapter titles are: "Exploring the Place of Exemplary Science Teaching" (Ann E. Haley-Oliphant); "The Voices of Exemplary Science Teachers" (Ann…

  5. Attitudes of eighth-grade honors students toward the conceptual change methods of teaching science

    NASA Astrophysics Data System (ADS)

    Heide, Clifford Lee

    1998-12-01

    The study researched the attitude of eighth grade honors science students toward the steps of the conceptual change teaching method. The attitudes of 25 students in an honors 8th grade science class in the Greater Phoenix metropolitan area were assessed using a multi-method approach. A quantitative method (student survey) and a qualitative method (focus group) were triangulated for convergence. Since conceptual change is a relatively new reform teaching modality, the study assessed students' attitudes utilizing this method. Conceptual change teaching is characterized by connections between concepts and facts which are organized around key ideas. Knowledge connected through concepts is constantly revised and edited by students as they continue to learn and add new concepts. The results of this study produced evidence that the conceptual change method of teaching science and its six process steps have qualities that foster positive student attitude. The study demonstrated that students' attitudes toward science is positively influenced through the conceptual change teaching method by enabling students to: (1) choose problems and find solutions to those problems (student directed); (2) work together in large and small groups; (3) learn through student oral presentations; (4) perform hands-on laboratory experiences; (5) learn through conceptual understanding not memorization; (6) implement higher order learning skills to make connections from the lab to the real world. Teachers can use the information in the study to become aware of the positive and negative attitudes of students taught with the conceptual change method. Even if the conceptual change teaching strategy is not the modality utilized by an educator, the factors identified by this study that affect student attitude could be used to help a teacher design lesson plans that help foster positive student attitudes.

  6. An examination of the relationship among science teaching actions, beliefs, and knowledge of the nature of science

    NASA Astrophysics Data System (ADS)

    Chun, Sajin

    constructed based on their science teaching and learning experiences and as a result are closely related to their belief about the nature of school science. These teachers teaching actions reflected their own personal beliefs about the nature of science within the interaction of multiple referent beliefs with relation to science teaching and learning.

  7. Teaching and Learning Science for Transformative, Aesthetic Experience

    NASA Astrophysics Data System (ADS)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  8. The effect of teacher education level, teaching experience, and teaching behaviors on student science achievement

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui

    Previous literature leaves us unanswered questions about whether teaching behaviors mediate the relationship between teacher education level and experience with student science achievement. This study examined this question with 655 students from sixth to eighth grade and their 12 science teachers. Student science achievements were measured at the beginning and end of 2006-2007 school year. Given the cluster sampling of students nested in classrooms, which are nested in teachers, a two-level multilevel model was employed to disentangle the effects from teacher-level and student-level factors. Several findings were discovered in this study. Science teachers possessing of advanced degrees in science or education significantly and positively influenced student science achievement. However, years of teaching experience in science did not directly influence student science achievement. A significant interaction was detected between teachers possessing an advanced degree in science or education and years of teaching science, which was inversely associated to student science achievement. Better teaching behaviors were also positively related to student achievement in science directly, as well as mediated the relationship between student science achievement and both teacher education and experience. Additionally, when examined separately, each teaching behavior variable (teacher engagement, classroom management, and teaching strategies) served as a significant intermediary between both teacher education and experience and student science achievement. The findings of this study are intended to provide insights into the importance of hiring and developing qualified teachers who are better able to help students achieve in science, as well as to direct the emphases of ongoing teacher inservice training.

  9. Development of contextual teaching and learning based science module for junior high school for increasing creativity of students

    NASA Astrophysics Data System (ADS)

    Kurniasari, H.; Sukarmin; Sarwanto

    2018-03-01

    The purpose of this research are to analyze the the properness of contextual teaching and learning (CTL)-based science module for Junior High School for increasing students’ creativity and using CTL-based science module to increase students’ learning creativity. Development of CTL-based science module for Junior High School is Research and Development (R&D) using 4D Model consist of 4 steps: define, design, develop, and disseminate. Module is validated by 3 expert validators (Material, media, and language experts), 2 reviewer and 1 peer reviewer. . Based on the results of data analysis, it can be concluded that: the results of the validation, the average score of CTL-based science module is 88.28%, the value exceeded the value of the cut off score of 87.5%, so the media declared eligible for the study. Research shows that the gain creativity class that uses CTL-based science module has a gain of 0.72. Based on the results of the study showed that CTL-based science module effectively promotes creativity of students

  10. Integrating Ultrasound Teaching into Preclinical Problem-based Learning

    PubMed Central

    Tshibwabwa, Eli Tumba; Cannon, Jenifer; Rice, James; Kawooya, Michael G; Sanii, Reza; Mallin, Robert

    2016-01-01

    Objectives: The aim is to provide students in the preclinical with ultrasound image interpretation skills. Research question: Are students in smaller groups with access to a combination of lectures and hands-on patient contact most likely to have better ultrasound image interpretation skills, than students in larger groups with only interactive didactic lectures? Methodology: First-year students at the preclinical Program of the College of Medicine, participated in two 2-h introductory interactive ultrasound sessions. The study comprised two cohorts: 2012/2013 students, who were offered large group teaching (LGT) sessions (control group), and 2013/2014 students, who received the intervention in small group learning problem-based learning (PBL) sessions (experimental group). The overall learning objectives were identical for both groups. The success of the module was evaluated using pre- and post-tests as well as students’ feedback. Results: The students in the experimental group showed significantly higher scores in interpretations of images than those in the control group. The experimental group showed achievement of learning outcomes along with higher levels of satisfaction with the module compared to the latter. Conclusion: Posttest knowledge of the basics of ultrasound improved significantly over the pretest in the experimental group. In addition, students’ overall satisfaction of the ultrasound module was shown to be higher for the PBL compared to the LGT groups. Small groups in an interactive and PBL setting along with opportunities for hands-on practice and simultaneous visualization of findings on a high definition screen should enhance preclinical student learning of the basics of ultrasound. Despite the potential of ultrasound as a clinical, teaching and learning tool for students in the preclinical years, standardized recommendations have yet to be created regarding its integration into the curricula within academic institutions and clinical medicine

  11. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  12. Using "What If.." Questions to Teach Science

    ERIC Educational Resources Information Center

    Tan, Kok Siang

    2007-01-01

    With the widening knowledge base students will need to be more flexible in their learning habits. Traditionally, teaching school science often involves teacher-centred methods like lectures, experimental demonstration or guided inquiry. Plain knowledge dissemination will not adequately prepare students to cope with the changing world. Hence,…

  13. Microteaching Lesson Study: An Approach to Prepare Teacher Candidates to Teach Science through Inquiry

    ERIC Educational Resources Information Center

    Zhou, George; Xu, Judy

    2017-01-01

    Inquiry-based teaching has become the most recommended approach in science education for a few decades; however, it is not a common practice yet in k-12 school classrooms. In order to prepare future teachers to teach science through inquiry, a Microteaching Lesson Study (MLS) approach was employed in our science methods courses. Instead of asking…

  14. Learning and Teaching about the Nature of Science through Process Skills

    ERIC Educational Resources Information Center

    Mulvey, Bridget K.

    2012-01-01

    This dissertation, a three-paper set, explored whether the process skills-based approach to nature of science instruction improves teachers' understandings, intentions to teach, and instructional practice related to the nature of science. The first paper examined the nature of science views of 53 preservice science teachers before and after a…

  15. Redesigning Introductory Science Courses to Teach Sustainability: Introducing the L(SC)2 Paradigm

    NASA Astrophysics Data System (ADS)

    Myers, J. D.; Campbell-Stone, E.; Massey, G.

    2008-12-01

    Modern societies consume vast quantities of Earth resources at unsustainable levels; at the same time, resource extraction, processing, production, use and disposal have resulted in environmental damage severe enough to threaten the life-support systems of our planet. These threats are produced by multiple, integrative and cumulative environmental stresses, i.e. syndromes, which result from human physical, ecological and social interactions with the environment in specific geographic places. In recent decades, recognition of this growing threat has lead to the concept of sustainability. The science needed to provide the knowledge and know-how for a successful sustainability transition differs markedly from the science that built our modern world. Sustainability science must balanced basic and applied research, promote integrative research focused on specific problems and devise a means of merging fundamental, general scientific principles with understanding of specific places. At the same time, it must use a variety of knowledge areas, i.e. biological systems, Earth systems, technological systems and social systems, to devise solutions to the many complex and difficult problems humankind faces. Clearly, sustainability science is far removed from the discipline-based science taught in most U.S. colleges. Many introductory science courses focus on content, lack context and do not integrate scientific disciplines. To prepare the citizens who will confront future sustainability issues as well as the scientists needed to devise future sustainability strategies, educators and scientists must redesign the typical college science course. A new course paradigm, Literacies and Scientific Content in Social Context (L(SC)2), is ideally suited to teach sustainability science. It offers an alternative approach to liberal science education by redefining and expanding the concept of the interdisciplinary course and merging it with the integrated science course. In addition to

  16. Problem- and case-based learning in science: an introduction to distinctions, values, and outcomes.

    PubMed

    Allchin, Douglas

    2013-01-01

    Case-based learning and problem-based learning have demonstrated great promise in reforming science education. Yet an instructor, in newly considering this suite of interrelated pedagogical strategies, faces a number of important instructional choices. Different features and their related values and learning outcomes are profiled here, including: the level of student autonomy; instructional focus on content, skills development, or nature-of-science understanding; the role of history, or known outcomes; scope, clarity, and authenticity of problems provided to students; extent of collaboration; complexity, in terms of number of interpretive perspectives; and, perhaps most importantly, the role of applying versus generating knowledge.

  17. Problem- and Case-Based Learning in Science: An Introduction to Distinctions, Values, and Outcomes

    PubMed Central

    Allchin, Douglas

    2013-01-01

    Case-based learning and problem-based learning have demonstrated great promise in reforming science education. Yet an instructor, in newly considering this suite of interrelated pedagogical strategies, faces a number of important instructional choices. Different features and their related values and learning outcomes are profiled here, including: the level of student autonomy; instructional focus on content, skills development, or nature-of-science understanding; the role of history, or known outcomes; scope, clarity, and authenticity of problems provided to students; extent of collaboration; complexity, in terms of number of interpretive perspectives; and, perhaps most importantly, the role of applying versus generating knowledge. PMID:24006385

  18. Epistemological Beliefs and Practices of Science Faculty with Education Specialties: Combining Teaching Scholarship and Interdisciplinarity

    NASA Astrophysics Data System (ADS)

    Addy, Tracie Marcella

    2011-12-01

    Across the United States institutions of higher education address educational reform by valuing scholarship that focuses on teaching and learning, especially in STEM fields. University science departments can encourage teaching scholarship by hiring science faculty with education specialties (SFES), individuals who have expertise in both science and science education. The goal of this study was to understand how the epistemological beliefs and teaching practices of SFES relate to national reform efforts in science teaching promoting student-centered instruction. The research questions guiding this investigation were: (1) What epistemological belief systems do science faculty with education specialties espouse concerning the teaching and learning of science?; and (2) What are the classroom practices of science faculty with education specialties? How are these practices congruent with the reform efforts described by the National Research Council (1996, 2001, 2003)? The theoretical framework guiding the study was interdisciplinarity, the integration of knowledge between two or more disciplines (science and science pedagogy). The research design employed mixed (qualitative and quantitative) approaches and focused on 25 volunteer SFES participants. The TBI, ATI, and RTOP were used to triangulate self-report and videotaped teaching vignettes, and develop profiles of SFES. Of the 25 SFES participants, 82 percent of their beliefs were transitional or student-centered beliefs. Seventy-two percent of the 25 SFES espoused more student-focused than teacher focused approaches. The classroom practices of 10 SFES were on average transitional in nature (at the boundary of student-focused and teacher-focused). The beliefs of SFES appeared to be influenced by the sizes of their courses, and were positive correlated with reform-based teaching practices. There was a relationship between the degree to which they implemented reform-based practice and their perceived level of

  19. Teaching Science through Physical Education.

    ERIC Educational Resources Information Center

    Kumar, David; Whitehurst, Michael

    1997-01-01

    Physical education can serve as a vehicle for teaching science and make student understanding of certain personal health-related science concepts meaningful. Describes activities involving the musculoskeletal system, the nervous system, and the cardiovascular system. (DKM)

  20. Teaching Science to the Gifted.

    ERIC Educational Resources Information Center

    Scher, Joyce L.

    Science teaching practices at the Long Island School for the Gifted emphasize hands-on experiments where children do the work and the teacher assists learning. This approach bypasses the reading/writing barrier that prevents some children from learning science. Many science experiments are described, including a first-grade lesson on using…

  1. Leon Cooper's Perspective on Teaching Science: An Interview Study

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Klassen, Stephen; McMillan, Barbara; Metz, Don

    2010-01-01

    The authors of this paper portray the perspective of Professor Leon Cooper, a theoretical physicist, Nobel laureate, active researcher, and physics textbook author, on teaching science and on the nature of science (NOS). The views presented emerged from an interview prepared by the authors and responded to in writing by Professor Cooper. Based on…

  2. Improving Early Career Science Teachers' Ability to Teach Space Science

    NASA Astrophysics Data System (ADS)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  3. Teaching Science through Story

    ERIC Educational Resources Information Center

    Horton, Jessica

    2013-01-01

    Children find comfort in stories. They are familiar, accessible and entertaining. By teaching science through narratives, we can provide that same comfort and access to scientific content to children of all ages. In this article, I will discuss how, through the use of narratives in science instruction, we can provide students with a deeper…

  4. Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.

    ERIC Educational Resources Information Center

    Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.

    During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…

  5. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    ERIC Educational Resources Information Center

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-01-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…

  6. Problem-based learning: effects on student’s scientific reasoning skills in science

    NASA Astrophysics Data System (ADS)

    Wulandari, F. E.; Shofiyah, N.

    2018-04-01

    This research aimed to develop instructional package of problem-based learning to enhance student’s scientific reasoning from concrete to formal reasoning skills level. The instructional package was developed using the Dick and Carey Model. Subject of this study was instructional package of problem-based learning which was consisting of lesson plan, handout, student’s worksheet, and scientific reasoning test. The instructional package was tried out on 4th semester science education students of Universitas Muhammadiyah Sidoarjo by using the one-group pre-test post-test design. The data of scientific reasoning skills was collected by making use of the test. The findings showed that the developed instructional package reflecting problem-based learning was feasible to be implemented in classroom. Furthermore, through applying the problem-based learning, students could dominate formal scientific reasoning skills in terms of functionality and proportional reasoning, control variables, and theoretical reasoning.

  7. Girls on Ice: Using Immersion to Teach Fluency in Science

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Mortenson, C.; Stiles, K.; Coryell-Martin, M.; Long, L.

    2010-12-01

    Young women choose not to pursue science careers for several reasons; two important ones are that they more often lack the confidence in their own ability to succeed or they perceive many science jobs as isolated (working alone in a lab) or lacking in altruistic values of helping other people or communities. We developed an immersion-science program, Girls on Ice, to provide young women with strong, female role models; with an opportunity to see what a career in the Earth sciences is like; with one-on-one interactions with scientists; with facilitated discussions on the value of Earth science in societal issues such as climate change; and with challenges that will build their self-confidence in multiple ways. Girls on Ice is field-based program for teenage young women with the theme of Glaciers, Climate, and the Alpine Landscape. The concepts we cover range from glacier dynamics to alpine plant ecology to mountain weather. The educational goals are 1. to increase young women's self-efficacy and interest in pursuing science as a career, 2. to create life-long advocates for the scientific process and its role in public policy 3. to teach critical thinking skills which will be important for all of their future pursuits 4. to enhance their leadership self-confidence so that they have a higher likelihood of becoming community leaders in the future. The educational philosophy of Girls on Ice consists of three core values: that teaching the whole process of science gives students ownership of the science; that teaching to the whole student puts the science in context; and that diversity inspires new ideas, new approaches, and better science in the end. We use a field-based immersion format -- the science equivalent of language-immersion course - in order to achieve the goals listed above in a setting that emphasizes this educational philosophy. The immersion-style course creates a deep connection between science and daily life for these young women. Combined with climate

  8. Problem Solving Model for Science Learning

    NASA Astrophysics Data System (ADS)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  9. Mentor Advice Giving in an Alternative Certification Program for Secondary Science Teaching: Opportunities and Roadblocks in Developing a Knowledge Base for Teaching

    NASA Astrophysics Data System (ADS)

    Upson Bradbury, Leslie; Koballa, Thomas R., Jr.

    2007-12-01

    Mentoring is often an important component of alternative certification programs, yet little is known about what novices learn about science teaching through mentoring relationships. This study investigated the advice given by two mentor science teachers to their protégés. Findings indicate that mentors gave more advice related to general pedagogical knowledge than science-specific pedagogical content knowledge. Specifically, there was little to no advice related to the topics of inquiry, the nature of science, or the development of scientific literacy. Implications call for an increase in communication between university teacher education programs and school-based mentors, the development of benchmarks to help guide mentor-protégé interactions, and the importance of a multiyear induction process.

  10. Crossing borders: High school science teachers learning to teach the specialized language of science

    NASA Astrophysics Data System (ADS)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  11. Learning and teaching about the nature of science through process skills

    NASA Astrophysics Data System (ADS)

    Mulvey, Bridget K.

    This dissertation, a three-paper set, explored whether the process skills-based approach to nature of science instruction improves teachers' understandings, intentions to teach, and instructional practice related to the nature of science. The first paper examined the nature of science views of 53 preservice science teachers before and after a year of secondary science methods instruction that incorporated the process skills-based approach. Data consisted of each participant's written and interview responses to the Views of the Nature of Science (VNOS) questionnaire. Systematic data analysis led to the conclusion that participants exhibited statistically significant and practically meaningful improvements in their nature of science views and viewed teaching the nature of science as essential to their future instruction. The second and third papers assessed the outcomes of the process skills-based approach with 25 inservice middle school science teachers. For the second paper, she collected and analyzed participants' VNOS and interview responses before, after, and 10 months after a 6-day summer professional development. Long-term retention of more aligned nature of science views underpins teachers' ability to teach aligned conceptions to their students yet it is rarely examined. Participants substantially improved their nature of science views after the professional development, retained those views over 10 months, and attributed their more aligned understandings to the course. The third paper addressed these participants' instructional practices based on participant-created video reflections of their nature of science and inquiry instruction. Two participant interviews and class notes also were analyzed via a constant comparative approach to ascertain if, how, and why the teachers explicitly integrated the nature of science into their instruction. The participants recognized the process skills-based approach as instrumental in the facilitation of their improved

  12. Sims for Science: Powerful Tools to Support Inquiry-Based Teaching

    ERIC Educational Resources Information Center

    Perkins, Katherine K.; Loeblein, Patricia J.; Dessau, Kathryn L.

    2010-01-01

    Since 2002, the PhET Interactive Simulations project at the University of Colorado has been working to provide learning tools for students and teachers. The project has developed over 85 interactive simulations--or sims--for teaching and learning science. Although these sims can be used in a variety of ways, they are specifically designed to make…

  13. Teaching professionalism in science courses: anatomy to zoology.

    PubMed

    Macpherson, Cheryl C

    2012-02-01

    Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.

  14. Hot Topics in Science Teaching

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2018-01-01

    There are vital topics in science teaching and learning which are mentioned frequently in the literature. Specialists advocate their importance in the curriculum as well as science teachers stress their saliency. Inservice education might well assist new and veteran teachers in knowledge and skills. The very best science lessons and units of…

  15. Project science inquiry: An exploration of elementary teachers' beliefs and perceptions about science teaching and learning

    NASA Astrophysics Data System (ADS)

    Wilcox, Dawn Renee

    This dissertation examined elementary teachers' beliefs and perceptions of effective science instruction and documents how these teachers interpret and implement a model for Inquiry-Based (I-B) science in their classrooms. The study chronicles a group of teachers working in a large public school division and documents how these teachers interpret and implement reform-based science methods after participating in a professional development course on I-B science methods administered by the researcher. I-B science teaching and its implementation is discussed as an example of one potential method to address the current call for national education reform to meet the increasing needs of all students to achieve scientific literacy and the role of teachers in that effort. The conviction in science reform efforts is that all students are able to learn science and consequently must be given the crucial opportunities in the right environment that permits optimal science learning in our nation's schools. Following this group of teachers as they attempted to deliver I-B science teaching revealed challenges elementary science teachers face and the professional supports necessary for them to effectively meet science standards. This dissertation serves as partial fulfillment of the requirements for the degree of Doctor of Philosophy in Education at George Mason University.

  16. Research and Teaching: Assessing the Effect of Problem-Based Learning on Undergraduate Student Learning in Biomechanics

    ERIC Educational Resources Information Center

    Mandeville, David; Stoner, Mark

    2015-01-01

    The aim of this study was to assess the effect of using the problem-based learning (PBL) teaching strategy on student academic achievement and secondary learning outcomes when compared with the traditional lecture (TL) for an undergraduate Biomechanics course. Successive undergraduate Biomechanics courses--a TL cohort and a PBL cohort--were…

  17. Many Paths toward Discovery: A Module for Teaching How Science Works

    ERIC Educational Resources Information Center

    Price, Rebecca M.; Perez, Kathryn E.

    2018-01-01

    Improving students' understanding of how science works requires explicit instruction. Here, we test the efficacy of a module based on two previously published activities (the "Cube Puzzle" and the case study "Asteroids and Dinosaurs") that teach how science works to college science majors. Students also use the How Science…

  18. The Effect of Teaching Strategy Based on Multiple Intelligences on Students' Academic Achievement in Science Course

    ERIC Educational Resources Information Center

    Abdi, Ali; Laei, Susan; Ahmadyan, Hamze

    2013-01-01

    The purpose of this study was to investigate the effects of Teaching Strategy based on Multiple Intelligences on students' academic achievement in sciences course. Totally 40 students from two different classes (Experimental N = 20 and Control N = 20) participated in the study. They were in the fifth grade of elementary school and were selected…

  19. Study of Turkish Preschool Teachers' Attitudes toward Science Teaching

    NASA Astrophysics Data System (ADS)

    Erden, Feyza T.; Sönmez, Sema

    2011-05-01

    This study aims to explore preschool teachers' attitudes toward science teaching and its impact on classroom practices through the frequency of science activities provided in the classroom. In addition, the study investigates if their attitudes are related to factors such as educational level, years of teaching experience, and the school type they work in. The present research was conducted with 292 preschool teachers who work in public and private schools in different districts of Ankara, Turkey. The data were collected by administering the Early Childhood Teachers' Attitudes toward Science Teaching Scale. Our analyses indicate that there is a significant but weak link between preschool teachers' attitudes toward science teaching and the frequency of science activities that they provide in the classroom. Further, while teachers' characteristics such as educational level and experience are found to play an insignificant role on the overall measures of the scale, type of school appears to be a major factor in explaining the attitudes toward science teaching.

  20. Pre-service elementary science teaching self-efficacy and teaching practices: A mixed-methods, dual-phase, embedded case study

    NASA Astrophysics Data System (ADS)

    Sangueza, Cheryl Ramirez

    This mixed-method, dual-phase, embedded-case study employed the Social Cognitive Theory and the construct of self-efficacy to examine the contributors to science teaching self-efficacy and science teaching practices across different levels of efficacy in six pre-service elementary teachers during their science methods course and student teaching experiences. Data sources included the Science Teaching Efficacy Belief Instrument (STEBI-B) for pre-service teachers, questionnaires, journals, reflections, student teaching lesson observations, and lesson debriefing notes. Results from the STEBI-B show that all participants measured an increase in efficacy throughout the study. The ANOVA analysis of the STEBI-B revealed a statistically significant increase in level of efficacy during methods course, student teaching, and from the beginning of the study to the end. Of interest in this study was the examination of the participants' science teaching practices across different levels of efficacy. Results of this analysis revealed how the pre-service elementary teachers in this study contextualized their experiences in learning to teach science and its influences on their science teaching practices. Key implications involves the value in exploring how pre-service teachers interpret their learning to teach experiences and how their interpretations influence the development of their science teaching practices.

  1. Brain-Based Learning and Standards-Based Elementary Science.

    ERIC Educational Resources Information Center

    Konecki, Loretta R.; Schiller, Ellen

    This paper explains how brain-based learning has become an area of interest to elementary school science teachers, focusing on the possible relationships between, and implications of, research on brain-based learning to the teaching of science education standards. After describing research on the brain, the paper looks at three implications from…

  2. Teacher candidates in an online post-baccalaureate science methods course: Implications for teaching science inquiry with technology

    NASA Astrophysics Data System (ADS)

    Colon, Erica L.

    Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods course. The purposes were to (a) explore whether the teacher candidates had a thorough understanding of scientific inquiry and how to implement higher-order thinking skills, (b) examine whether or not the teacher candidates used a variety of computer-based instructional technologies when choosing instructional objectives, and (c) identify barriers that impede teacher candidates from using science inquiry or technology singly, or the ability to incorporate technology into learning science inquiry. The findings indicate that an online approach in preparing science teachers holds great potential for using innovative technology to teach science inquiry. First, the teacher candidates did incorporate essential features of classroom inquiry, however it was limited and varied in the type of inquiry used. Second, of the 86 lesson plans submitted by the teacher candidates, less than twelve percent of the learning objectives involved higher-order skills that promoted science inquiry. Third, results supported that when using technology in their lesson planning, participants had widely varying backgrounds in reference to their familiarity with technology. However, even though each participant used some form or another, the technology used was fairly low level. Finally, when discussing implementing inquiry-based science in the lesson plans, this study identified time as a reason that participants may not be pushing for more inquiry-based lessons. The researcher also identifies that school placements were a huge factor in the amount of inquiry-based skills coded in the lesson plans. The study concludes that online teacher preparation

  3. Influence of an extensive inquiry-based field experience on pre-service elementary student teachers' science teaching beliefs

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sumita

    This study examined the effects of an extensive inquiry-based field experience on pre-service elementary teachers' personal agency beliefs (PAB) about teaching science and their ability to effectively implement science instruction. The research combined quantitative and qualitative approaches within an ethnographic research tradition. A comparison was made between the pre and posttest scores for two groups. The experimental group utilized the inquiry method; the control group did not. The experimental group had the stronger PAB pattern. The field experience caused no significant differences to the context beliefs of either groups, but did to the capability beliefs. The number of college science courses taken by pre-service elementary teachers' was positively related to their post capability belief (p = .0209). Qualitative information was collected through case studies which included observation of classrooms, assessment of lesson plans and open-ended, extended interviews of the participants about their beliefs in their teaching abilities (efficacy beliefs), and in teaching environments (context beliefs). The interview data were analyzed by the analytic induction method to look for themes. The emerging themes were then grouped under several attributes. Following a review of the attributes a number of hypotheses were formulated. Each hypothesis was then tested across all the cases by the constant comparative method. The pattern of relationship that emerged from the hypotheses testing clearly suggests a new hypothesis that there is a spiral relationship among the ability to establish communicative relationship with students, desire for personal growth and improvement, and greater content knowledge. The study concluded that inquiry based student teaching should be encouraged to train school science teachers. But the meaning and the practice of the inquiry method should be clearly delineated to ensure its correct implementation in the classroom. A survey should be

  4. Introducing Inquiry-Based Methodologies during Initial Secondary Education Teacher Training Using an Open-Ended Problem about Chemical Change

    ERIC Educational Resources Information Center

    Rodríguez-Arteche, In~igo; Martínez-Aznar, M. Mercedes

    2016-01-01

    In this paper, the characteristics of an initial training program for secondary school physics and chemistry teachers are presented. This program is based on the resolution of professional problems, in order to develop preservice teachers' competencies for integrating inquiry-based science education (IBSE) into their future teaching. With this…

  5. Development of Socioscientific Issues-Based Teaching for Preservice Science Teachers

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2009-01-01

    Problem statement: In the context of science education reform in Thailand, we need to prepare science teachers who can face science and social issues controversial; teachers can response the question socioscientific issues and let their students to meet the goal of science education. This study investigated the conception leading preservice…

  6. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    PubMed

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  7. Graduate Experience in Science Education: The Development of a Science Education Course for Biomedical Science Graduate Students

    PubMed Central

    DuPré, Michael J.

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers. PMID:17785406

  8. A Problem-Based Learning Scenario That Can Be Used in Science Teacher Education

    ERIC Educational Resources Information Center

    Sezgin Selçuk, Gamze

    2015-01-01

    The purpose of this study is to introduce a problem-based learning (PBL) scenario that elementary school science teachers in middle school (5th-8th grades) can use in their in-service training. The scenario treats the subjects of heat, temperature and thermal expansion within the scope of the 5th and 6th grade science course syllabi and has been…

  9. Learning to teach science for social justice in urban schools

    NASA Astrophysics Data System (ADS)

    Vora, Purvi

    This study looks at how beginner teachers learn to teach science for social justice in urban schools. The research questions are: (1) what views do beginner teachers hold about teaching science for social justice in urban schools? (2) How do beginner teachers' views about teaching science for social justice develop as part of their learning? In looking at teacher learning, I take a situative perspective that defines learning as increased participation in a community of practice. I use the case study methodology with five teacher participants as the individual units of analysis. In measuring participation, I draw from mathematics education literature that offers three domains of professional practice: Content, pedagogy and professional identity. In addition, I focus on agency as an important component of increased participation from a social justice perspective. My findings reveal two main tensions that arose as teachers considered what it meant to teach science from a social justice perspective: (1) Culturally responsive teaching vs. "real" science and (2) Teaching science as a political act. In negotiating these tensions, teachers drew on a variety of pedagogical and conceptual tools offered in USE that focused on issues of equity, access, place-based pedagogy, student agency, ownership and culture as a toolkit. Further, in looking at how the five participants negotiated these tensions in practice, I describe four variables that either afforded or constrained teacher agency and consequently the development of their own identity and role as socially just educators. These four variables are: (1) Accessing and activating social, human and cultural capital, (2) reconceptualizing culturally responsive pedagogical tools, (3) views of urban youth and (4) context of participation. This study has implications for understanding the dialectical relationship between agency and social justice identity for beginner teachers who are learning how to teach for social justice. Also

  10. Educational Technologies in Problem-Based Learning in Health Sciences Education: A Systematic Review

    PubMed Central

    Jin, Jun

    2014-01-01

    Background As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. Objective The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. Methods A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Results Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for

  11. Educational technologies in problem-based learning in health sciences education: a systematic review.

    PubMed

    Jin, Jun; Bridges, Susan M

    2014-12-10

    As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education

  12. Learning to teach science in a professional development school program

    NASA Astrophysics Data System (ADS)

    Hildreth, David P.

    1997-09-01

    The purpose of this study was to determine the effects of learning to teach science in a Professional Development School (PDS) program on university elementary education preservice teachers' (1) attitudes toward science, (2) science process skills achievement, and (3) sense of science teaching efficacy. Data were collected and analyzed using both quantitative and qualitative methods. Quantitative data were collected using the Science Attitude Inventory (North Carolina Math and Science Education Network (1994), the Test of Integrated Process Skills, TIPS, (Dillashaw & Okey, 1980), and the Science Teaching Efficacy Belief Instrument, STEBI, form B (Enochs & Riggs, 1990). A pretest posttest research design was used for the attitude and process skills constructs. These results were analyzed using paired t test procedures. A pre-experimental group comparison group research design was used for the efficacy construct. Results from this comparison were analyzed using unpaired t test procedures. Qualitative data were collected through students' responses to open-ended questionnaires, narrative interviews, journal entries, small messages, and unsolicited conversations. These data were analyzed via pattern analysis. Posttest scores were significantly higher than pretests scores on both the Science Attitude Inventory and the TIPS. This indicated that students had improved attitudes toward science and science teaching and higher process skills achievement after three semesters in the science-focused PDS program. Scores on the STEBI were significantly higher for students in the pre-experimental group when compared to students in the comparison group. This indicates that students in the science-focused PDS program possessed more efficacious beliefs about science teaching than did the comparison group. Quantitative data were supported by analysis of qualitative data. Implications from this study point to the effectiveness of learning to teach science in a science-focused PDS

  13. Florida and Puerto Rico Secondary Science Teachers' Knowledge and Teaching of Climate Change Science

    ERIC Educational Resources Information Center

    Herman, Benjamin C.; Feldman, Allan; Vernaza-Hernandez, Vanessa

    2017-01-01

    Misconceptions about climate change science are pervasive among the US public. This study investigated the possibility that these misconceptions may be reflective of science teachers' knowledge and teaching of climate change science. Florida and Puerto Rico secondary science teachers who claim to teach extensively about climate change were…

  14. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    ERIC Educational Resources Information Center

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  15. Preparing prospective physics teachers to teach integrated science in junior high school

    NASA Astrophysics Data System (ADS)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  16. Pedagogical perspectives and implicit theories of teaching: First year science teachers emerging from a constructivist science education program

    NASA Astrophysics Data System (ADS)

    Dias, Michael James

    Traditional, teacher-centered pedagogies dominate current teaching practice in science education despite numerous research-based assertions that promote more progressive, student-centered teaching methods. Best-practice research emerging from science education reform efforts promotes experiential, collaborative learning environments in line with the constructivist referent. Thus there is a need to identify specific teacher education program designs that will promote the utilization of constructivist theory among new teachers. This study explored the learning-to-teach process of four first-year high school teachers, all graduates of a constructivist-based science education program known as Teacher Education Environments in Mathematics and Science (TEEMS). Pedagogical perspectives and implicit theories were explored to identify common themes and their relation to the pre-service program and the teaching context. Qualitative methods were employed to gather and analyze the data. In depth, semi-structured interviews (Seidman, 1998) formed the primary data for probing the context and details of the teachers' experience as well as the personal meaning derived from first year practice. Teacher journals and teaching artifacts were utilized to validate and challenge the primary data. Through an open-coding technique (Strauss & Corbin, 1990) codes, and themes were generated from which assertions were made. The pedagogical perspectives apparent among the participants in this study emerged as six patterns in teaching method: (1) utilization of grouping strategies, (2) utilization of techniques that allow the students to help teach, (3) similar format of daily instructional strategy, (4) utilization of techniques intended to promote engagement, (5) utilization of review strategies, (6) assessment by daily monitoring and traditional tests, (7) restructuring content knowledge. Assertions from implicit theory data include: (1) Time constraints and lack of teaching experience made

  17. Researching Primary Teachers' Professional Agency: Employing Interactive Ethnography to Overcome Reluctance to Teach Science

    NASA Astrophysics Data System (ADS)

    Martin, Jenny

    2017-09-01

    This paper provides a report of a case study on the professional agency of an experienced early years teacher, Sarah, who successfully embedded a chemical science program of teaching-learning for her students aged between 6 and 8. Interactive ethnography informs the research design, and discursive psychology provides the tools for the analysis of Sarah's speech acts for her positioning as a responsible agent. Reframing the problem of primary teacher reluctance to teach science in terms of primary teachers' professional agency using discursive psychology, this ontological study provides new insight into issues related to the provision of science education in primary schools and asks: How do primary teachers position themselves and others in relation to science curriculum and education? The research calls for research methodologies and reform efforts in primary science that are better grounded in the local moral orders of primary schools.

  18. Turkish Preservice Elementary Science Teachers' Conceptions of Learning Science and Science Teaching Efficacy Beliefs: Is There a Relationship?

    ERIC Educational Resources Information Center

    Bahcivan, Eralp; Kapucu, Serkan

    2014-01-01

    This study has been conducted to investigate conceptions of learning science (COLS) and personal science teaching efficacy belief (PSTE) of Turkish preservice elementary science teachers (PSTs) and to explore the relationship between these variables. Two instruments COLS questionnaire and PSTE subscale of Science Teaching Efficacy Beliefs…

  19. Teaching science for conceptual change: Toward a proposed taxonomy of diagnostic teaching strategies to gauge students' personal science conceptions

    NASA Astrophysics Data System (ADS)

    Shope, Richard Edwin, III

    Science instruction aims to ensure that students properly construct scientific knowledge so that each individual may play a role as a science literate citizen or as part of the science workforce (National Research Council, 1996, 2000). Students enter the classroom with a wide range of personal conceptions regarding science phenomena, often at variance with prevailing scientific views (Duschl, Hamilton, & Grandy, 1992; Hewson, 1992). The extensive misconceptions research literature emphasizes the importance of diagnosing students' initial understandings in order to gauge the accuracy and depth of what each student knows prior to instruction and then to use that information to adapt the teaching to address student needs. (Ausubel, 1968; Carey, 2000; Driver et al., 1985; Karplus & Thier, 1967; Mintzes, Wandersee, & Novak, 1998; Osborne & Freyberg, 1985; Project 2061, 1993; Strike & Posner, 1982, 1992; Vygotsky, 1934/1987). To gain such insight, teachers diagnose not only the content of the students' personal conceptions but also the thinking processes that produced them (Strike and Posner, 1992). Indeed, when teachers design opportunities for students to express their understanding, there is strong evidence that such diagnostic assessment also enhances science teaching and learning (Black & William, 1998). The functional knowledge of effective science teaching practice resides in the professional practitioners at the front lines---the science teachers in the classroom. Nevertheless, how teachers actually engage in the practice of diagnosis is not well documented. To help fill this gap, the researcher conducted a study of 16 sixth grade science classrooms in four Los Angeles area middle schools. Diagnostic teaching strategies were observed in action and then followed up by interviews with each teacher. Results showed that teachers use strategies that vary by the complexity of active student involvement, including pretests, strategic questions, interactive discussion

  20. The Influence of an Extensive Inquiry-Based Field Experience on Pre-Service Elementary Student Teachers' Science Teaching Beliefs

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sumita; Volk, Trudi; Lumpe, Andrew

    2009-06-01

    This study examined the effects of an extensive inquiry-based field experience on pre service elementary teachers’ personal agency beliefs, a composite measure of context beliefs and capability beliefs related to teaching science. The research combined quantitative and qualitative approaches and included an experimental group that utilized the inquiry method and a control group that used traditional teaching methods. Pre- and post-test scores for the experimental and control groups were compared. The context beliefs of both groups showed no significant change as a result of the experience. However, the control group’s capability belief scores, lower than those of the experimental group to start with, declined significantly; the experimental group’s scores remained unchanged. Thus, the inquiry-based field experience led to an increase in personal agency beliefs. The qualitative data suggested a new hypothesis that there is a spiral relationship among teachers’ ability to establish communicative relationships with students, desire for personal growth and improvement, ability to implement multiple instructional strategies, and possession of substantive content knowledge. The study concludes that inquiry-based student teaching should be encouraged in the training of elementary school science teachers. However, the meaning and practice of the inquiry method should be clearly delineated to ensure its correct implementation in the classroom.

  1. In-Service Turkish Elementary and Science Teachers' Attitudes toward Science and Science Teaching: A Sample from Usak Province

    ERIC Educational Resources Information Center

    Turkmen, Lutfullah

    2013-01-01

    The purpose of this study is to reveal Turkish elementary teachers' and science teachers' attitudes toward science and science teaching. The sample of the study, 138 in-service elementary level science teachers from a province of Turkey, was selected by a clustered sampling method. The Science Teaching Attitude Scale-II was employed to measure the…

  2. Nursing students' perceptions of effective problem-based learning tutors.

    PubMed

    Matthew-Maich, Nancy; Martin, Lynn; Hammond, Cynthia; Palma, Amy; Pavkovic, Maria; Sheremet, Darlene; Roche, Carmen

    2016-11-16

    Aim To explore baccalaureate nursing students' perceptions of what makes an effective tutor in problem-based learning courses, and the influence of effective teaching on students' learning and experience. Method Students enrolled in all four years of a baccalaureate nursing programme completed online surveys (n=511) and participated in focus groups (n=19). Data were analysed and combined using content analysis. Findings The data were summarised using five themes, the '5 Ps' of effective teaching in problem-based learning. Nursing students perceived effective problem-based learning tutors to be prepared with knowledge and facilitation skills, person-centred, passionate, professional and able to prepare students for success in the nursing programme. Effective tutors adjusted their approaches to students throughout the four years of the nursing programme. Conclusion Effective teaching in problem-based learning is essential and has significant effects on nursing students' learning, motivation and experience. Important attributes, skills and strategies of effective problem-based learning tutors were identified and may be used to enhance teaching and plan professional development initiatives.

  3. Hidden Treasures for Science Teaching: United States Patents.

    ERIC Educational Resources Information Center

    Anderson, Norman D.

    United States patents are a source of historical information with many implications for science teaching. Using patents as science teaching devices has been largely ignored by science educators. Some of these devices can be easily modified for use in today's classrooms; in addition, patents serve as great examples of how our knowledge of science…

  4. Science Teaching Orientations and Technology-Enhanced Tools for Student Learning

    NASA Astrophysics Data System (ADS)

    Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Shelton, Brett E.

    2013-10-01

    This qualitative study examines teacher orientations and technology-enhanced tools for student learning within a science literacy framework. Data for this study came from a group of 10 eighth grade science teachers. Each of these teachers was a participant in a professional development (PD) project focused on reformed and technology-enhanced science instruction shaped by national standards documents. The research is focused on identifying teacher orientations and use of technology-enhanced tools prior to or unaffected by PD. The primary data sources for this study are drawn from learning journals and classroom observations. Qualitative methods were used to analyze learning journals, while descriptive statistics were used from classroom observations to further explore and triangulate the emergent qualitative findings. Two teacher orientation teacher profiles were developed to reveal the emergent teacher orientation dimensions and technology-enhanced tool categories found: "more traditional teacher orientation profile" and "toward a reformed-based teacher orientation profile." Both profiles were founded on "knowledge of" beliefs about the goals and purposes for science education, while neither profile revealed sophisticated beliefs about the nature of science. The "traditional" profile revealed more teacher-centered beliefs about science teaching and learning, and the "towards reformed-based" profile revealed student-centered beliefs. Finally, only technology-enhanced tools supportive of collaborative construction of science knowledge were found connected to the "towards reformed-based" profile. This research is concluded with a proposed "reformed-based teacher orientation profile" as a future target for science teaching and learning with technology-enhanced tools in a science literacy framework.

  5. Developing Preservice Teachers' Knowledge of Science Teaching Through Video Clubs

    NASA Astrophysics Data System (ADS)

    Johnson, Heather J.; Cotterman, Michelle E.

    2015-06-01

    Though an adequate understanding of content is a natural prerequisite of teaching (Carlsen in Journal of Research in Science Teaching 30:471-481, 1993), teachers also need to be able to interpret content in ways that facilitate student learning. How to best support novice teachers in developing and refining their content knowledge for teaching is a crucial and ongoing question for preservice teacher educators. Recently, video clubs are being explored as potential contexts for teacher learning (Barnhart & van Es in Teaching and Teacher Education 45:83-93, 2015; Sherin & Han in Teaching and Teacher Education 20:163-183, 2004). We hypothesized that pairing video clubs with student teaching experiences would provide a forum for preservice teachers to discuss issues relevant to their professional trajectory through exposure to models of peer teaching and opportunities to reflect on practice. In this study, we explored how secondary science preservice teachers used video club to restructure their overall science knowledge into science knowledge for teaching. Our findings suggest that video clubs allowed preservice teachers to access and leverage student thinking and instructional resources to deepen their understanding of science content and trajectories for science learning.

  6. Teaching Science Fiction to Science and Technology Majors.

    ERIC Educational Resources Information Center

    Diaconoff, Ted

    This paper describes the content and implementation of a course designed to teach science and technology majors about science fiction. Although many students had expressed little interest in the imaginative world of literature, the scientific content of the texts used attracted their attention and legitimized their involvement in something outside…

  7. An Expert System Shell to Teach Problem Solving.

    ERIC Educational Resources Information Center

    Lippert, Renate C.

    1988-01-01

    Discusses the use of expert systems to teach problem-solving skills to students from grade 6 to college level. The role of computer technology in the future of education is considered, and the construction of knowledge bases is described, including an example for physics. (LRW)

  8. Developing Environmentally Responsible Behaviours Through the Implementation of Argumentation- and Problem-Based Learning Models

    NASA Astrophysics Data System (ADS)

    Fettahlıoğlu, Pınar; Aydoğdu, Mustafa

    2018-04-01

    The purpose of this research is to investigate the effect of using argumentation and problem-based learning approaches on the development of environmentally responsible behaviours among pre-service science teachers. Experimental activities were implemented for 14 weeks for 52 class hours in an environmental education class within a science teaching department. A mixed method was used as a research design; particularly, a special type of Concurrent Nested Strategy was applied. The quantitative portion was based on the one-group pre-test and post-test models, and the qualitative portion was based on the holistic multiple-case study method. The quantitative portion of the research was conducted with 34 third-year pre-service science teachers studying at a state university. The qualitative portion of the study was conducted with six pre-service science teachers selected among the 34 pre-service science teachers based on the pre-test results obtained from an environmentally responsible behaviour scale. t tests for dependent groups were used to analyse quantitative data. Both descriptive and content analyses of the qualitative data were performed. The results of the study showed that the use of the argumentation and problem-based learning approaches significantly contributed to the development of environmentally responsible behaviours among pre-service science teachers.

  9. The Context of Demarcation in Nature of Science Teaching: The Case of Astrology

    NASA Astrophysics Data System (ADS)

    Turgut, Halil

    2011-05-01

    The aim of developing students' understanding of the nature of science [NOS] has been considered an important aspect of science education. However, the results of previous research indicate that students of various ages and even teachers possess both inaccurate and inappropriate views of the NOS. Such a failure has been explained by the view that perceptions about the NOS are well assimilated into mental structures and resistant to change. Further, the popularization of pseudoscience by the media and the assimilation of pseudoscience into previously established scientific fields have been presented as possible reasons for erroneous popular perceptions of science. Any teaching intervention designed to teach the NOS should first provoke individuals to expose their current ideas in order to provide them the chance to revise or replace these conceptual frameworks. Based on these assumptions, the aim of this study was to determine whether a teaching context based on the issue of demarcation would provide a suitable opportunity for exposing and further developing the NOS understandings of individuals enrolled in a teacher education course. Results indicate that a learning intervention based on the issue of demarcation of science from pseudoscience (in the specific case of astrology) proved an effective instructional strategy, which a majority of teacher candidates claimed to plan to use in their future teachings.

  10. Pre-Service Science Teachers' Epistemological Beliefs and Teaching Reforms in Tanzania

    ERIC Educational Resources Information Center

    Tarmo, Albert

    2016-01-01

    In an effort to understand why recent initiatives to promote learner-centred pedagogy in science teaching made a little change in the actual teaching practices of science teachers, this study explored pre-service science teachers' beliefs about science knowledge and their teaching practices. Six pre-service science teachers were interviewed to…

  11. Concept-Focused Teaching: Using Big Ideas to Guide Instruction in Science

    ERIC Educational Resources Information Center

    Olson, Joanne K.

    2008-01-01

    One of the main problems we face in science teaching is that students are learning isolated facts and missing central concepts. For instance, consider what you know about life cycles. Chances are that you remember something about butterflies and stages, such as egg, larva, pupa, adult. But what's the take-home idea that we should have learned…

  12. How Select Groups of Preservice Science Teachers with Inquiry Orientations View Teaching and Learning Science through Inquiry

    NASA Astrophysics Data System (ADS)

    Ward, Peggy

    Although hailed as a powerful form of instruction, in most teaching and learning contexts, inquiry-based instruction is fraught with ambiguous and conflicting definitions and descriptions. Yet little has been written about the experiences preservice science teacher have regarding their learning to teach science through inquiry. This project sought to understand how select preservice secondary science teachers enrolled in three UTeach programs in Arkansas conceptualize inquiry instruction and how they rationalize its value in a teaching and learning context. The three teacher education programs investigated in this study are adoption sites aligned with the UTeach Program in Austin, TX that distinguishes itself in part by its inquiry emphasis. Using a mixed method investigation design, this study utilized two sources of data to explore the preservice science teachers' thinking. In the first phase, a modified version of the Pedagogy of Science teaching Tests (POSTT) was used to identify select program participants who indicated preferences for inquiry instruction over other instructional strategies. Secondly, the study used an open-ended questionnaire to explore the selected subjects' beliefs and conceptions of teaching and learning science in an inquiry context. The study also focused on identifying particular junctures in the prospective science teachers' education preparation that might impact their understanding about inquiry. Using a constant comparative approach, this study explored 19 preservice science teachers' conceptions about inquiry. The results indicate that across all levels of instruction, the prospective teachers tended to have strong student-centered teaching orientations. Except subjects in for the earliest courses, subjects' definitions and descriptions of inquiry tended toward a few of the science practices. More advanced subjects, however, expressed more in-depth descriptions. Excluding the subjects who have completed the program, multiple

  13. Graduate teaching assistants' perceptions of teaching competencies required for work in undergraduate science labs

    NASA Astrophysics Data System (ADS)

    Deacon, Christopher; Hajek, Allyson; Schulz, Henry

    2017-11-01

    Many post-secondary institutions provide training and resources to help GTAs fulfil their teaching roles. However, few programmes focus specifically on the teaching competencies required by GTAs who work with undergraduate students in laboratory settings where learning tends to be more active and inquiry based than in classroom settings. From a review of 8 GTA manuals, we identified 20 competencies and then surveyed faculty and lab coordinators (FIS) and GTAs from a Faculty of Science at a comprehensive Canadian university to identify which of those competencies are required of GTAs who work in undergraduate science labs. GTAs and FIS did not significantly differ in the competencies they view as required for GTAs to work effectively in undergraduate labs. But, when comparing the responses of GTAs and FIS to TA manuals, 'Clearly and effectively communicates ideas and information with students' was the only competency for which there was agreement on the level of requirement. We also examined GTAs' self-efficacy for each of the identified competencies and found no overall relationship between self-efficacy and demographic characteristics, including experience and training. Our results can be used to inform the design of training programmes specifically for GTAs who work in undergraduate science labs, for example, programmes should provide strategies for GTAs to obtain feedback which they can use to enhance their teaching skills. The goal of this study is to improve undergraduate lab instruction in faculties of science and to enhance the teaching experience of GTAs by better preparing them for their role.

  14. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    NASA Astrophysics Data System (ADS)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  15. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    ERIC Educational Resources Information Center

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-01-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching…

  16. Teaching Efficacy of Universiti Putra Malaysia Science Student Teachers

    ERIC Educational Resources Information Center

    Bakar, Abd. Rahim; Konting, Mohd. Majid; Jamian, Rashid; Lyndon, Novel

    2008-01-01

    The objective of the study was to access teaching efficacy of Universiti Putra Malaysia Science student teachers. The specific objectives were to determine teaching efficacy of Science student teachers in terms of student engagement; instructional strategies; classroom management and teaching with computers in classroom; their satisfaction with…

  17. Preparing Perservice Teachers to Teach Elementary School Science

    ERIC Educational Resources Information Center

    Lewis, Amy D.

    2017-01-01

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in…

  18. Early childhood teachers' self-efficacy toward teaching science: Outcomes of professional development

    NASA Astrophysics Data System (ADS)

    Clark, Sarah

    The teaching of science in the early childhood classrooms has slowly been decreasing. As the years have passed, the subject of science has been put on the backburner while mathematics and language arts have taken center stage in the educational system. Early childhood teachers need to find ways to integrate science with other subjects in order to ensure children are receiving a well-rounded and full education. The purpose of this study was to determine the effectiveness of professional development on teachers' efficacy in teaching science. Volunteer teachers completed the Weisgram and Bigler scale (TWBS) pre and post training, in order to determine their self-efficacy toward teaching science, they also completed pre- and post- concept maps about their knowledge of teaching science, and a demographic questionnaire. Findings indicate the training provided was effective in increasing teachers' knowledge of teaching science. Teachers who had an increase in science teaching knowledge were also found to feel more efficacious about teaching science after completing the training and an academic year of implementing science lessons in their classrooms. There was not a relationship between teacher demographics and their science-teaching efficacy. This means that the demographics of participants in this study were not influential on teachers' efficacy, but professional development workshops enabled teachers to gain more knowledge about teaching as well as increase their efficacy about teaching science.

  19. A collection of problems for physics teaching

    NASA Astrophysics Data System (ADS)

    Gröber, S.; Jodl, H.-J.

    2010-07-01

    Problems are an important instrument for teachers to mediate physics content and for learners to adopt this content. This collection of problems is not only suited to traditional teaching and learning in lectures or student labs, but also to all kinds of new ways of teaching and learning, such as self-study, long-distance teaching, project-oriented learning and the use of remote labs/web experiments. We focus on Rutherford's scattering experiment, electron diffraction, Millikan's experiment and the use of pendulums to measure the dependence of gravitational acceleration on latitude. The collection contains about 50 problems with 160 subtasks and solutions, altogether 100 pages. Structure, content, range and the added value of the problems are described. The whole collection can be downloaded for free from http://rcl.physik.uni-kl.de.

  20. Primary School Teachers' Understanding of Science Process Skills in Relation to Their Teaching Qualifications and Teaching Experience

    NASA Astrophysics Data System (ADS)

    Shahali, Edy H. M.; Halim, Lilia; Treagust, David F.; Won, Mihye; Chandrasegaran, A. L.

    2017-04-01

    This study investigated the understanding of science process skills (SPS) of 329 science teachers from 52 primary schools selected by random sampling. The understanding of SPS was measured in terms of conceptual and operational aspects of SPS using an instrument called the Science Process Skills Questionnaire (SPSQ) with a Cronbach's alpha reliability of 0.88. The findings showed that the teachers' conceptual understanding of SPS was much weaker than their practical application of SPS. The teachers' understanding of SPS differed by their teaching qualifications but not so much by their teaching experience. Emphasis needs to be given to both conceptual and operational understanding of SPS during pre-service and in-service teacher education to enable science teachers to use the skills and implement inquiry-based lessons in schools.

  1. Barriers Inhibiting Inquiry-Based Science Teaching and Potential Solutions: Perceptions of Positively Inclined Early Adopters

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Michael; Danaia, Lena; McKinnon, David H.

    2017-07-01

    In recent years, calls for the adoption of inquiry-based pedagogies in the science classroom have formed a part of the recommendations for large-scale high school science reforms. However, these pedagogies have been problematic to implement at scale. This research explores the perceptions of 34 positively inclined early-adopter teachers in relation to their implementation of inquiry-based pedagogies. The teachers were part of a large-scale Australian high school intervention project based around astronomy. In a series of semi-structured interviews, the teachers identified a number of common barriers that prevented them from implementing inquiry-based approaches. The most important barriers identified include the extreme time restrictions on all scales, the poverty of their common professional development experiences, their lack of good models and definitions for what inquiry-based teaching actually is, and the lack of good resources enabling the capacity for change. Implications for expectations of teachers and their professional learning during educational reform and curriculum change are discussed.

  2. Problem-Based Learning: Student Engagement, Learning and Contextualized Problem-Solving. Occasional Paper

    ERIC Educational Resources Information Center

    Mossuto, Mark

    2009-01-01

    The adoption of problem-based learning as a teaching method in the advertising and public relations programs offered by the Business TAFE (Technical and Further Education) School at RMIT University is explored in this paper. The effect of problem-based learning on student engagement, student learning and contextualised problem-solving was…

  3. Fostering nature of science teaching in elementary pre-service teachers through developing reflection on teaching and learning

    NASA Astrophysics Data System (ADS)

    Pongsanon, Khemmawadee

    Although teacher educators have successfully helped K-12 teachers' develop adequate views of NOS, their views have not been transferred to their students. It is evident that K-12 students' understanding of NOS still does not align with the recommendation of the reforms document, indicating that holding an adequate view of NOS is insufficient for teaching NOS effectively. Instead, to teach NOS, teachers must develop the knowledge for translating their understanding of NOS into the forms accessible to students. The current study investigated the influence of four contexts of reflective practice on prospective elementary teachers' learning of how and intention to teach NOS. The participants were 18 pre-service teachers enrolled in a science methods course that was tied to a field experience course. To understand the development of the participants' intentions, knowledge of instructional strategies, and knowledge of assessment for teaching NOS, multiple data were collected throughout the science methods course and the field experience. Data sources included different versions of participants' lesson plans, video recordings of their teaching and teaching debriefings, online weekly teaching reflections, final semester reflection and other artifacts from the methods course. Content analysis was conducted with all data. The data revealed that the participants' knowledge of how and intentions to teach NOS were developed throughout the science methods course. Toward the conclusion of the semester, the participants showed intention to include NOS in their science instruction. With regard to strategies, participants planned to apply explicit reflective NOS instruction in the context of inquiry-based activities and stories from children's literature. They also planned to use age-appropriate language to refer to the targeted NOS aspects. In terms of assessment, by the conclusion of the semester the participants tended to use more formal assessment strategies. They reported

  4. Toward making the invisible visible: Studying science teaching self-efficacy beliefs

    NASA Astrophysics Data System (ADS)

    Perkins, Catherine J.

    This dissertation consists of two articles to be submitted for publication. The first, a literature review, makes visible common influences on science teaching self-efficacy beliefs and also points to potentially invisible validation concerns regarding the instrument used. The second investigates the participants' invisible science teaching self-efficacy beliefs and, through the use of a more focused interview, makes those beliefs visible. Science teaching self-efficacy beliefs are science teachers' perceptions of their abilities to teach science effectively. The construct "teaching self-efficacy" originated in social cognitive theory (Bandura, 1977). The first article reviews the mixed results from teaching self-efficacy research in science contexts. The review focuses upon factors that facilitate or inhibit the development of self-efficacy beliefs among science teachers across stages of their careers. Although many studies of science teaching self-efficacy beliefs have utilized the Science Teaching Efficacy Belief Instrument - STEBI (Enochs & Riggs, 1990; Riggs & Enochs, 1990), this review also includes non-STEBI studies in order to represent diverse lines of research methodology. The review's findings indicate that antecedent factors such as science activities in and out of school, teacher preparation, science teaching experiences and supportive job contexts are significant influences on the development of science teaching self-efficacy beliefs. The review also indicates that the majority of these studies are short term and rely on a single STEBI administration with the collection of antecedent/demographic and/or interview data. The second article documents a study that responded to the above literature review findings. This study utilized multiple STEBI administrations during the preservice and beginning year of teaching for two science teachers. Rather than general questions, these participants were asked item specific, yet open-ended, questions to determine

  5. Measuring Primary Teachers' Attitudes Toward Teaching Science: Development of the Dimensions of Attitude Toward Science (DAS) Instrument

    NASA Astrophysics Data System (ADS)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette

    2013-03-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the professionalization of these teachers in the field of primary science education. With the development of this instrument, we sought to fulfill the need for a statistically and theoretically valid and reliable instrument to measure pre-service and in-service teachers' attitudes. The DAS Instrument is based on a comprehensive theoretical framework for attitude toward (teaching) science. After pilot testing, the DAS was revised and subsequently validated using a large group of respondents (pre-service and in-service primary teachers) (N = 556). The theoretical underpinning of the DAS combined with the statistical data indicate that the DAS possesses good construct validity and that it proves to be a promising instrument that can be utilized for research purposes, and also as a teacher training and coaching tool. This instrument can therefore make a valuable contribution to progress within the field of science education.

  6. Why and How We Made a Problem Oriented AV Teaching Unit for Chemistry Students.

    ERIC Educational Resources Information Center

    Mulder, T. H. M.; Verdonk, A. H.

    1984-01-01

    Describes an audiovisual teaching unit on the chemical laboratory technique of recrystallization which was developed along problem-solving lines and based on observation of student laboratory behavior. Discussion includes usual procedures for developing such units, how this unit solves problems typically associated with teaching, and its general…

  7. A Truth-Based Epistemological Framework for Supporting Teachers in Integrating Indigenous Knowledge into Science Teaching

    ERIC Educational Resources Information Center

    Zinyeka, Gracious; Onwu, Gilbert O.M.; Braun, Max

    2016-01-01

    Integrating indigenous knowledge (IK) into school science teaching is one way of maximising the socio-cultural relevance of science education for enhanced learners' performance. The epistemological differences however between the nature of science (NOS) and nature of indigenous knowledge (NOIK) constitute a major challenge for an inclusive…

  8. STEM education and Fermi problems

    NASA Astrophysics Data System (ADS)

    Holubova, Renata

    2017-01-01

    One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.

  9. Detecting changes in student teachers' conceptions of teaching science to adolescent English language learners

    NASA Astrophysics Data System (ADS)

    Pomeroy, Jonathon Richard

    2000-10-01

    This research study investigated the changes that occurred in six student teachers' conceptions of teaching science to adolescent English language learners over the duration of their participation in a one-year, graduate level, science teacher education program. Cases were created for each of the student teachers based on their concept maps, writing samples, interviews, lesson plans, informal interviews with cooperating teachers, and observation notes collected on biweekly visitations. The cases were divided into three dyads each consisting of two student teachers with similar preprogram and student teaching experiences. Cross case analysis revealed the existence of seven themes related to teaching science to adolescent English language learners. Further analysis suggested that student teachers that worked with experienced cooperating teachers and who had achieved a sense of autonomy over their student teaching demonstrated broad and sophisticated growth across all seven themes. Student teachers who had not achieved a sense of autonomy, demonstrated growth in two to three themes. Student teachers who demonstrated broad and sophisticated growth were able to clearly articulate their conceptions of teaching science to English language learners where as those who demonstrated limited growth were not. This research establishes the use of concept maps as a tool for detecting changes in student teachers' conceptions of teaching science to adolescent English language learners as well as the sensitivity of concept maps to detect the types of changes historically detected by writing samples and interviews. Recommendations based on the implications from are included.

  10. A Dynamic Intranet-Based Online-Portal Support for Computer Science Teaching

    ERIC Educational Resources Information Center

    Iyer, Viswanathan K.

    2017-01-01

    This paper addresses the issue of effective content-delivery of Computer Science subjects taking advantage of a university intranet. The proposal described herein for teaching a subject like Combinatorics and Graph Theory (CGT) is to supplement lectures with a moderated online forum against an associated intranet portal, which is referred to as a…

  11. Setting the Stage for Science in Schools - EIROforum presents the very best of European science teaching

    NASA Astrophysics Data System (ADS)

    2005-11-01

    EIROforum presents the very best of European science teaching How can you weigh the Earth with a straw, a paperclip and a piece of thread? Why don't we really know what we see? How can a juggling act explain mathematics? These are but a few of the on-stage activities that will be shown at the EIROforum [1] Science on Stage Festival, to be held from 21 to 25 November at CERN in Geneva (Switzerland). With support from the European Commission, this international festival brings together around 500 science educators from 29 European countries to show how fascinating and entertaining science can be. "Science is fun! This is what this week-long event will show by presenting innovative methods of teaching science and demonstrations", says Helen Wilson from the European Space Agency and co-ordinator of the event. "At the festival, teachers have the chance to view things from a new perspective, to be entertained and enchanted by science", says Rolf Landua, Head of Education at CERN and Chairman of the event. "As well as taking to the stage, they set up stalls in fair-like surroundings to share their most successful teaching tricks." Workshops on themes as varied as "flying on stage", "the theatre of science", or "stem cell research" and "gamma-ray bursts", will give the attendees - teachers and other science educators - the chance to discuss and come up with solutions to the problem of growing disinterest for science in Europe. "A key element of the Science on Stage concept is to give teachers an up-to-date 'insider's view' of what is happening in big science, to tell them about new, highly diverse and interesting career opportunities for their pupils, and to create a European atmosphere where bright young people can meet and interact", says Colin Carlile, Director General of the Institut Laue-Langevin and current chairman of the EIROforum. At the end of the festival, the European Science Teaching Awards will be presented. The names of the winners will be made public on the

  12. Theme: Is Problem-Solving Teaching and SAE Needed in Agricultural Education in the 21st Century?

    ERIC Educational Resources Information Center

    Wardlow, George, Ed.

    1999-01-01

    Nine articles in this theme issue address problem-solving teaching and supervised agricultural experience. Topics covered include systems approaches to SAE, SAE for Y2K, SAE for science, applied SAE, types of SAE, and examples of activities. (JOW)

  13. SKyTeach: Addressing the need for Science and Math Teachers in Kentucky

    NASA Astrophysics Data System (ADS)

    Bonham, Scott

    2008-10-01

    The shortage of good science and math teachers is a chronic problem that threatens to undermine the future of our profession and economy. While our world is becoming increasingly dependent on technology, many high schools do not even offer physics, in part due to of the unavailability of a qualified teacher. The entire state of Kentucky typically produces 0-2 new physics teachers per year, compared to 200+ elementary teachers per year from WKU alone. The picture is not much better in math and other sciences. SKyTeach is a new program at WKU to address this great need and is part of a national effort to replicate the successful UTeach program. The University of Texas UTeach program graduates 70-90 new math and science teachers a year, in the process providing them with a strong preparation based on current research on how people learn science and math, experience teaching in real classrooms from the start, and strong mentoring and support. UTeach graduates stay in the classroom at rates above the national average, and some fairly quickly move into leadership positions within their schools. A key element is good collaboration between the college of science, that of education, local P-12 schools, and others. Last year thirteen universities across the nation were selected as part of an effort to replicate the UTeach program nation-wide. This effort is supported by the National Science and Math Initiative in a partnership with the UTeach Institute. Our first cohort of students has started this fall, and we have had many successes and challenges as we move forward.

  14. Problem-Based Learning in K-8 Mathematics and Science Education: A Literature Review

    ERIC Educational Resources Information Center

    Merritt, Joi; Lee, Mi Yeon; Rillero, Peter; Kinach, Barbara M.

    2017-01-01

    This systematic literature review was conducted to explore the effectiveness of problem-based and project-based learning (PBL) implemented with students in early elementary to grade 8 (ages 3-14) in mathematics and science classrooms. Nine studies met the following inclusion criteria: (a) focus on PBL, (b) experimental study, (c) kindergarten to…

  15. The effect of concept mapping on preservice elementary teachers' knowledge of science inquiry teaching

    NASA Astrophysics Data System (ADS)

    Jackson, Diann Carol

    This study examined the effect of concept mapping as a method of stimulating reflection on preservice elementary teachers' knowledge of science inquiry instruction methods. Three intact classes of science education preservice teachers participated in a non-randomized comparison group with a pretest and posttest design to measure the influence of mapping on participants' knowledge of inquiry science instruction. All groups followed the same course syllabus, in class activities, readings, assignments and assessment tasks. The manner in which they presented their ideas about inquiry science teaching varied. Groups constructed pre-lesson, post-lesson, and homework lists or maps across three inquiry based instruction modules (ecosystems, food chains, and electricity). Equivalent forms of the Teaching Science Inventory (TSI) were used to investigate changes in preservice teachers' propositional knowledge about how to teach using inquiry science instruction methods. Equivalent forms of the Science Lesson Planning (SLP) test were used to investigate changes in preservice teachers' application knowledge about how to teach using inquiry science instruction methods. Data analysis included intrarater reliability, ANOVAs, ANCOVAs, and correlations between lists and maps and examination responses. SLP and TSI scores improved from the pretest to the posttest in each of the three study groups. The results indicate that, in general, there were basically no relationships between the treatment and outcome measures. In addition, there were no significant differences between the three groups in their knowledge about how to teach science. Conclusions drawn from this study include, first, the learners did learn how to teach science using inquiry. Second, in this study there is little evidence to support that concept mapping was more successful than the listing strategy in improving preservice elementary teachers' knowledge of teaching science using inquiry science instruction methods.

  16. Testing the effectiveness of problem-based learning with learning-disabled students in biology

    NASA Astrophysics Data System (ADS)

    Guerrera, Claudia Patrizia

    The purpose of the present study was to investigate the effects of problem-based learning (PBL) with learning-disabled (LD) students. Twenty-four students (12 dyads) classified as LD and attending a school for the learning-disabled participated in the study. Students engaged in either a computer-based environment involving BioWorld, a hospital simulation designed to teach biology students problem-solving skills, or a paper-and-pencil version based on the computer program. A hybrid model of learning was adopted whereby students were provided with direct instruction on the digestive system prior to participating in a problem-solving activity. Students worked in dyads and solved three problems involving the digestive system in either a computerized or a paper-and-pencil condition. The experimenter acted as a coach to assist students throughout the problem-solving process. A follow-up study was conducted, one month later, to measure the long-term learning gains. Quantitative and qualitative methods were used to analyze three types of data: process data, outcome data, and follow-up data. Results from the process data showed that all students engaged in effective collaboration and became more systematic in their problem solving over time. Findings from the outcome and follow-up data showed that students in both treatment conditions, made both learning and motivational gains and that these benefits were still evident one month later. Overall, results demonstrated that the computer facilitated students' problem solving and scientific reasoning skills. Some differences were noted in students' collaboration and the amount of assistance required from the coach in both conditions. Thus, PBL is an effective learning approach with LD students in science, regardless of the type of learning environment. These results have implications for teaching science to LD students, as well as for future designs of educational software for this population.

  17. Student Teaching: Problems and Promising Practices.

    ERIC Educational Resources Information Center

    Griffin, Gary A., Ed.; Edwards, Sara, Ed.

    The working conference "Student Teaching: Problems and Promising Practices" brought together experts representing three different role orientations: cooperating teachers, school system representatives, and teacher educators. Under discussion was the student teaching process and the nature of research that might contribute to its better…

  18. Secondary Physical Science Teachers' Conceptions of Science Teaching in a Context of Change

    NASA Astrophysics Data System (ADS)

    Taylor, Dale L.; Booth, Shirley

    2015-05-01

    Pre-service teachers enter initial teacher education programmes with conceptions of teaching gleaned from their own schooling. These conceptions, which include teachers' beliefs, may be resistant to change, which is a challenge in contexts where teacher educators hope that teachers will teach in ways different from their own schooling. Conceptions of teaching found in different cultural and disciplinary contexts have contextual differences but have resonances with the results of research into teacher beliefs. Our sample of eight South African secondary physical science teachers was schooled in a system which encouraged knowledge transmission, but they were prepared in their initial teacher education for a learner-centred approach. After they had taught for a few years, we explored their conceptions of science teaching, using phenomenographic interviews. Four conceptions emerged inductively from the analysis: transferring science knowledge from mind to mind; transferring problematic science knowledge from mind to mind; creating space for learning science knowledge and creating space for learning problematic science knowledge. Internally these conceptions are constituted by three dimensions of variation: the nature of the science knowledge to be learnt, the role of the students and the role of the teacher. Media and practical work play different roles in the external horizon of these conceptions. These conceptions reflect the disciplinary context as well as the emphases of the sample's initial teacher education programme. This suggests that initial teacher education can significantly shape teachers' conceptions of teaching.

  19. The Sociopolitical Importance of Genetic, Phenomenological Approaches to Science Teaching and Learning

    ERIC Educational Resources Information Center

    Bazzul, Jesse

    2015-01-01

    This article discusses Wolff-Michael Roth's theoretical framework for a phenomenological, genetic approach to science teaching and learning based on the work of Edmund Husserl. This approach advocates the inclusion of student lifeworlds in science education and underlines the importance of thinking about subjectivity in both science and science…

  20. Teaching Science IBL, a shared experience between schools

    NASA Astrophysics Data System (ADS)

    Ruas, Fatima; Carneiro, Paula

    2015-04-01

    Key words: Problem based learning, Inquiry-based learning, digital resources, climate changes The inquiry-based learning approach is applied by watching a video about the last rigorous winter and its effects. The teacher starts by posing some questions related with the video news: Why only after a 20 or 30 years from now, how will it be possible to explain the occurrence of two storms in just a month's time? Is our climate effectively changing? What is the difference between weather and climate? The teacher helps students to think about where and how they can find information about the subject, providing/teaching them suitable tools to access and use information. The teacher plays the role of mentor/facilitator. Students should proceed to their research, presenting the results to their colleagues, discussing in groups, doing brainstorming and collaborate in the learning process. After the discussion the students must present their conclusions. The main goals are: explain the difference between weather and climate; understand whether or not climate change exists; identify the causes of climate change and extreme weather events; raising awareness among young people about environmental issues of preservation and sustainability of our planet. The results globally show that this educational approach motivates students' towards science, helping them to solve problems from daily life, as well as the collaborative working. The cognitive strand continues to be the most valued by pupils.

  1. The Effects of Project Based Learning on Undergraduate Students' Achievement and Self-Efficacy Beliefs towards Science Teaching

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Karakuyu, Yunus; Ay, Yusuf

    2015-01-01

    The purpose of this study is to investigate the effects of the Project-Based Learning (PBL) method on undergraduate students' achievement and its association with these students' self-efficacy beliefs about science teaching and pinions about PBL. The sample of the study consisted of two randomly chosen classes from a set of seven classes enrolled…

  2. Case-based Long-term Professional Development of Science Teachers

    NASA Astrophysics Data System (ADS)

    Dori, Yehudit J.; Herscovitz, Orit

    2005-10-01

    Reform efforts are often unsuccessful because they failed to understand that teachers play a key role in making educational reforms successful. This paper describes a long-term teacher professional development (PD) program aimed at educating and training teachers to teach interdisciplinary topics using case-based method in science. The research objective was to identify, follow and document the processes that science teachers went through as they assimilated the interdisciplinary, case-based science teaching approach. The research accompanied the PD program throughout its 3-year period. About 50 teachers, who took part in the PD program, were exposed to an interdisciplinary case-based teaching method. The research instruments included teacher portfolios, which contained projects and reflection questionnaires, classroom observations, teacher interviews, and student feedback questionnaires. The portfolios contained the projects that the teachers had carried out during the PD program, which included case studies and accompanying student activities. We found that the teachers gradually moved from exposure to new teaching methods and subject matter, through active learning and preparing case-based team projects, to interdisciplinary, active classroom teaching using the case studies they developed.

  3. Urban Schools' Teachers Enacting Project-Based Science

    ERIC Educational Resources Information Center

    Tal, Tali; Krajcik, Joseph S.; Blumenfeld, Phyllis C.

    2006-01-01

    What teaching practices foster inquiry and promote students to learn challenging subject matter in urban schools? Inquiry-based instruction and successful inquiry learning and teaching in project-based science (PBS) were described in previous studies (Brown & Campione, [1990]; Crawford, [1999]; Krajcik, Blumenfeld, Marx, Bass, & Fredricks,…

  4. Jordanian Preservice Primary Teachers' Perceptions of Mentoring in Science Teaching

    NASA Astrophysics Data System (ADS)

    Abed, Osama H.; Abd-El-Khalick, Fouad

    2015-03-01

    Quality mentoring is fundamental to preservice teacher education because of its potential to help student and novice teachers develop the academic and pedagogical knowledge and skills germane to successful induction into the profession. This study focused on Jordanian preservice primary teachers' perceptions of their mentoring experiences as these pertain to science teaching. The Mentoring for Effective Primary Science Teaching instrument was administered to 147 senior preservice primary teachers in a university in Jordan. The results indicated that the greater majority of participants did not experience effective mentoring toward creating a supportive and reflexive environment that would bolster their confidence in teaching science; further their understanding of primary science curriculum, and associated aims and school policies; help with developing their pedagogical knowledge; and/or furnish them with specific and targeted feedback and guidance to help improve their science teaching. Substantially more participants indicated that their mentors modeled what they perceived to be effective science teaching. The study argues for the need for science-specific mentoring for preservice primary teachers, and suggests a possible pathway for achieving such a model starting with those in-service primary teachers-much like those identified by participants in the present study-who are already effective in their science teaching.

  5. Coaching to Build Support for Inquiry-Based Teaching

    ERIC Educational Resources Information Center

    Bransfield, Paula; Holt, Patrice; Nastasi, Patricia

    2007-01-01

    In teaching science today, the emphasis is on inquiry-based pedagogies, with the expectation that students in the science classroom will be exposed to the theories and practices of scientists in the science community. However, for many science teachers, implementing inquiry in the classroom is a daunting task. In the traditional classroom setting,…

  6. Food-Based Science Curriculum Increases 4th Graders Multidisciplinary Science Knowledge

    ERIC Educational Resources Information Center

    Hovland, Jana A.; Carraway-Stage, Virginia G.; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R.; Collins, Angelo; Duffrin, Melani W.

    2013-01-01

    Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students' understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a…

  7. Teaching Triple Science: GCSE Chemistry

    ERIC Educational Resources Information Center

    Learning and Skills Network (NJ3), 2007

    2007-01-01

    The Department for Children, Schools and Families (DCSF) has contracted with the Learning and Skills Network to support awareness and take-up of Triple Science GCSEs through the Triple Science Support Programme. This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Chemistry. It…

  8. Teaching Triple Science: GCSE Biology

    ERIC Educational Resources Information Center

    Learning and Skills Network (NJ3), 2007

    2007-01-01

    The Department for Children, Schools and Families (DCSF) has contracted with the Learning and Skills Network to support awareness and take-up of Triple Science GCSEs through the Triple Science Support Programme. This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Biology. It highlights…

  9. Some Aspects of Science Education in European Context

    ERIC Educational Resources Information Center

    Naumescu, Adrienne Kozan; Pasca, Roxana-Diana

    2008-01-01

    Some up-to-date problems in science education in European context are treated in this paper. The characteristics of science education across Europe are presented. Science teachers' general competencies are underlined. An example of problem-solving as teaching method in chemistry is studied in knowledge based society. Transforming teacher practice…

  10. Turkish Preservice Science Teachers' Efficacy Beliefs Regarding Science Teaching and Their Beliefs about Classroom Management

    ERIC Educational Resources Information Center

    Gencer, Ayse Savran; Cakiroglu, Jale

    2007-01-01

    The purpose of this study was to explore Turkish preservice science teachers' science teaching efficacy and classroom management beliefs. Data in this study were collected from a total number of 584 preservice science teachers utilizing the Science Teaching Efficacy Belief Instrument and the attitudes and beliefs on classroom control (ABCC)…

  11. Reflective Pathways: Analysis of an Urban Science Teaching Field Experience on Noyce Scholar-Science Education Awardees' Decisions to Teach Science in a High-Need New York City School

    ERIC Educational Resources Information Center

    Bischoff, Paul; French, Paul; Schaumloffel, John

    2014-01-01

    Awardees of the National Science Foundation's Noyce Scholars funds are required to teach science in high-need urban or rural school districts upon graduation. The purpose of this research was to analyze the reflective considerations that distinguish preservice Noyce Scholar science education majors committed to teaching in high-need New York City…

  12. Teaching Evolution & the Nature of Science.

    ERIC Educational Resources Information Center

    Farber, Paul

    2003-01-01

    The theory of evolution provides direction in many fields, such as ecology, genetics, and embryology. Examines issues concerning the teaching of the subject in the United States. Presents a case study approach to teach about the nature of science using the theory of evolution. (SOE)

  13. Biomedical laboratory science education: standardising teaching content in resource-limited countries.

    PubMed

    Arneson, Wendy; Robinson, Cathy; Nyary, Bryan

    2013-01-01

    There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs. Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA). Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS) lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself. The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes. These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  14. Relationships between Prospective Elementary Teachers' Classroom Practice and Their Conceptions of Biology and of Teaching Science.

    ERIC Educational Resources Information Center

    Meyer, Helen; Tabachnick, B. Robert; Hewson, Peter W.; Lemberger, John; Park, Hyun-Ju

    1999-01-01

    Discusses three prospective elementary teachers' conceptions of teaching science and selected portions of their knowledge base in life science. Explores how these teachers' conceptions, along with their teaching actions, developed during the course of a teacher-education program. Contains 21 references. (Author/WRM)

  15. Implementing a Context-Based Environmental Science Unit in the Middle Years: Teaching and Learning at the Creek

    ERIC Educational Resources Information Center

    King, Donna; Ginns, Ian

    2015-01-01

    Engaging middle school students in science continues to be a challenge in Australian schools. One initiative that has been tried in the senior years but is a more recent development in the middle years is the context-based approach. In this ethnographic study, we researched the teaching and learning transactions that occurred in one ninth grade…

  16. Facilitating Collegial Exchange among Science Teachers: An Experiment in Computer-Based Conferencing. Technical Report 86-14.

    ERIC Educational Resources Information Center

    Katz, Mary Maxwell; And Others

    Teacher isolation is a significant problem in the science teaching profession. Traditional inservice solutions are often plagued by logistical difficulties or occur too infrequently to build ongoing teacher networks. Educational Technology Center (ETC) researchers reasoned that computer-based conferencing might promote collegial exchange among…

  17. Problem-Based Learning on Students' Critical Thinking Skills in Teaching Business Education in Malaysia: A Literature Review

    ERIC Educational Resources Information Center

    Zabit, Mohd Nazir Md

    2010-01-01

    This review forms the background to explore and to gain empirical support among lecturers to improve the students' critical thinking skills in business education courses in Malaysia, in which the main teaching and learning methodology is Problem-Based Learning (PBL). The PBL educational approach is known to have maximum positive impacts in…

  18. Innovative Technologies in Science Teaching

    ERIC Educational Resources Information Center

    Guerra, Cecilia; Pombo, Lucia; Moreira, Antonio

    2011-01-01

    Technology plays a crucial role in pupils' and primary teachers' lives nowadays and its use can facilitate change towards an innovative school environment. The internet, for example, can act as a platform to foster science teaching and offers a variety of opportunities for effective science learning and engaging and motivating children. But…

  19. Enhanced learning through design problems - teaching a components-based course through design

    NASA Astrophysics Data System (ADS)

    Jensen, Bogi Bech; Högberg, Stig; Fløtum Jensen, Frida av; Mijatovic, Nenad

    2012-08-01

    This paper describes a teaching method used in an electrical machines course, where the students learn about electrical machines by designing them. The aim of the course is not to teach design, albeit this is a side product, but rather to teach the fundamentals and the function of electrical machines through design. The teaching method is evaluated by a student questionnaire, designed to measure the quality and effectiveness of the teaching method. The results of the questionnaire conclusively show that this method labelled 'learning through design' is a very effective way of teaching a components-based course. This teaching method can easily be generalised and used in other courses.

  20. Improving Group Work Practices in Teaching Life Sciences: Trialogical Learning

    NASA Astrophysics Data System (ADS)

    Tammeorg, Priit; Mykkänen, Anna; Rantamäki, Tomi; Lakkala, Minna; Muukkonen, Hanni

    2017-08-01

    Trialogical learning, a collaborative and iterative knowledge creation process using real-life artefacts or problems, familiarizes students with working life environments and aims to teach skills required in the professional world. We target one of the major limitation factors for optimal trialogical learning in university settings, inefficient group work. We propose a course design combining effective group working practices with trialogical learning principles in life sciences. We assess the usability of our design in (a) a case study on crop science education and (b) a questionnaire for university teachers in life science fields. Our approach was considered useful and supportive of the learning process by all the participants in the case study: the students, the stakeholders and the facilitator. Correspondingly, a group of university teachers expressed that the trialogical approach and the involvement of stakeholders could promote efficient learning. In our case in life sciences, we identified the key issues in facilitating effective group work to be the design of meaningful tasks and the allowance of sufficient time to take action based on formative feedback. Even though trialogical courses can be time consuming, the experience of applying knowledge in real-life cases justifies using the approach, particularly for students just about to enter their professional careers.

  1. Science Teaching and Learning Activities and Students' Engagement in Science

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Bennett, Judith

    2013-01-01

    The purpose of this analysis is to describe the variation in students' reports of engagement in science across science teaching and learning activities. In addition, this study examines student and school characteristics that may be associated with students' levels of engagement in science. Data are drawn from the Programme for International…

  2. Problem-Based Learning Approaches in Meteorology

    ERIC Educational Resources Information Center

    Charlton-Perez, Andrew James

    2013-01-01

    Problem-Based Learning, despite recent controversies about its effectiveness, is used extensively as a teaching method throughout higher education. In meteorology, there has been little attempt to incorporate Problem-Based Learning techniques into the curriculum. Motivated by a desire to enhance the reflective engagement of students within a…

  3. Historical Experiments and Physics Teaching: adding considerations from a Bibliographic Review and the Cultural History of Science

    NASA Astrophysics Data System (ADS)

    Jardim, W. T.; Guerra, A.

    2017-12-01

    In this paper, a discussion about the purposes of historical experiments in science teaching found in the literature will be presented. As a starting point, we carried out a bibliographic review, on the websites of six relevant periodicals for the area of Science Teaching and, especially for Physics Teaching. The search was based, at first, on works published between the years 2001 and 2016, from terms like "historical experiments", "museums" and "experience". Thereon, due to the large number of publications found, a screening process was developed based on the analysis of titles, abstracts, keywords and, whether necessary, the whole text, aiming to identify which searches emphasize working with historical experiments in Physics teaching, from a theoretical perspective or based on manipulation of a replica of historical apparatus. The selected proposals were arranged in categories adapted from the work of Heering and Höttecke (2014) which allowed us to draw a parallel between the national and international publication that presented resembling scopes. Furthermore, the analysis of the results leads us to infer that, in general, extralab factors, inherent to science, when not neglected, are placed in a peripheral perspective. Thus, we draw theoretical considerations based on Historians of Science, which develop their researches based on the bias of the Cultural History of Science, seeking to add reflections to what has been developed about historical experiments in teaching up to now.

  4. Teaching science, technology, and society to engineering students: a sixteen year journey.

    PubMed

    Ozaktas, Haldun M

    2013-12-01

    The course Science, Technology, and Society is taken by about 500 engineering students each year at Bilkent University, Ankara. Aiming to complement the highly technical engineering programs, it deals with the ethical, social, cultural, political, economic, legal, environment and sustainability, health and safety, reliability dimensions of science, technology, and engineering in a multidisciplinary fashion. The teaching philosophy and experiences of the instructor are reviewed. Community research projects have been an important feature of the course. Analysis of teaching style based on a multi-dimensional model is given. Results of outcome measurements performed for ABET assessment are provided. Challenges and solutions related to teaching a large class are discussed.

  5. The article critique as a problem-based teaching method for medical students early in their training: a French example using anatomy.

    PubMed

    Havet, Eric; Duparc, Fabrice; Peltier, Johan; Tobenas-Dujardin, Anne-Claire; Fréger, Pierre

    2012-01-01

    In France, "article critique" became a particular teaching method in the second part of the medical curriculum. It approaches a reading exercise of scientific medical papers similar to that of journal club. It could be compared to reviewing a paper as performed by reviewers of a scientific journal. We studied the relevancy of that teaching method for the youngest medical students. Our questions were about the understanding and the analyzing ability of a scientific paper while students have just learned basic medical sciences as anatomy. We have included 54 "article critique" written by voluntary students in second and third years of medical cursus. All of the IMRaD structure items (introduction, materials and methods, results and discussion) were analyzed using a qualitative scale for understanding as for analyzing ability. For understanding, 89-96% was good or fair and for the analyzing ability, 93-100% was good or fair. The anatomical papers were better understood than therapeutic or paraclinical studies, but without statistical difference, except for the introduction chapter. Results for analyzing ability were various according to the subject of the papers. This teaching method could be compared to a self-learning method, but also to a problem-based learning method. For the youngest students, the lack of medical knowledge aroused the curiosity. Their enthusiasm to learn new medical subjects remained full. The authors would insist on the requirement of rigorous lessons about evidence-based medicine and IMRaD structure and on a necessary companionship of the students by the teachers.

  6. Conceptual and procedural knowledge community college students use when solving a complex science problem

    NASA Astrophysics Data System (ADS)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as

  7. Measuring Teachers' Learning from a Problem-Based Learning Approach to Professional Development in Science Education

    ERIC Educational Resources Information Center

    Weizman, Ayelet; Covitt, Beth A.; Koehler, Matthew J.; Lundeberg, Mary A.; Oslund, Joy A.; Low, Mark R.; Eberhardt, Janet; Urban-Lurain, Mark

    2008-01-01

    In this study we measured changes in science teachers' conceptual science understanding (content knowledge) and pedagogical content knowledge (PCK) while participating in a problem-based learning (PBL) model of professional development. Teachers participated in a two-week long workshop followed by nine monthly meetings during one academic year…

  8. Problem-Solving Style, Teaching Style, and Teaching Practices among In-Service Teachers

    ERIC Educational Resources Information Center

    Mandelbaum, Matthew Gary

    2013-01-01

    While educational psychologists have found evidence for effective teaching behaviors that lead to academic achievement, pedagogy still lacks prescriptive accuracy for all students at all times. Teaching style and problem-solving style may be underlying mechanisms behind teaching behaviors. The present study looked at these three…

  9. Taking a Closer Look at Science Teaching Orientations

    ERIC Educational Resources Information Center

    Friedrichsen, Patrica; Van Driel, Jan H.; Abell, Sandra K.

    2011-01-01

    In this position paper, we examine the science teaching orientation component of the S. Magnusson, J. Krajcik, and H. Borko (1999) pedagogical content knowledge (PCK) model for science teaching. We trace the origin of the construct in the literature, identifying multiple definitions that have lead to ambiguity. After examining published studies…

  10. New Pedagogies on Teaching Science with Computer Simulations

    ERIC Educational Resources Information Center

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  11. Teaching and Learning. A Problem-Solving Focus.

    ERIC Educational Resources Information Center

    Curcio, Frances R., Ed.

    This book is dedicated to George Polya, who focused on problem solving as the means for teaching and learning mathematics. The first chapter is a reprint of his article "On Learning, Teaching, and Learning Teaching." Then, G. L. Alexanderson paints a portrait of "George Polya, Teacher," including some anecdotes that exemplify…

  12. Effects of Inquiry-Based Science Instruction on Science Achievement and Interest in Science: Evidence from Qatar

    ERIC Educational Resources Information Center

    Areepattamannil, Shaljan

    2012-01-01

    The author sought to investigate the effects of inquiry-based science instruction on science achievement and interest in science of 5,120 adolescents from 85 schools in Qatar. Results of hierarchical linear modeling analyses revealed the substantial positive effects of science teaching and learning with a focus on model or applications and…

  13. Reform of experimental teaching based on quality cultivation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yan, Xingwei; Liu, Wei; Yao, Tianfu; Shi, Jianhua; Lei, Bing; Hu, Haojun

    2017-08-01

    Experimental teaching plays an import part in quality education which devotes to cultivating students with innovative spirit, strong technological talents and practical ability. However, in the traditional experimental teaching mode, the experiments are treated as a vassal or supplementary mean of theoretical teaching, and students prefer focus on theory to practice. Therefore, the traditional experimental teaching mode is difficult to meet the requirements of quality education. To address this issue, the reform of experimental teaching is introduced in this paper taking the photoelectric detector experiment as the example. The new experimental teaching mode is designed from such aspects as experimental content, teaching method and experimental evaluation. With the purpose of cultivating students' practical ability, two different-level experimental content is designed. Not only the basic experiments used to verify the theory are set to consolidate the students' learned theoretical knowledge, but also comprehensive experiments are designed to encourage the students to apply their learned knowledge to solve practical problems. In the teaching process, heuristic teaching thought is adopt and the traditional `teacher-centered' teaching form is replaced by `student-centered' form, which aims to encourage students to design the experimental systems by their own with the teacher's guidance. In addition to depending on stimulating the students' interest of science research, experimental evaluation is necessary to urge students to complete the experiments efficiently. Multifaceted evaluation method is proposed to test the students' mastery of theoretical knowledge, practice ability, troubleshooting and problem solving skills, and innovation capability comprehensively. Practices demonstrated the satisfying effect of our experimental teaching mode.

  14. Teaching science vs. the apprentice model--do we really have the choice?

    PubMed

    Marckmann, G

    2001-01-01

    The debate about the appropriate methodology of medical education has been (and still is) dominated by the opposing poles of teaching science versus teaching practical skills. I will argue that this conflict between scientific education and practical training has its roots in the underlying, more systematic question about the conceptual foundation of medicine: how far or in what respects can medicine be considered to be a science? By analyzing the epistemological status of medicine I will show that the internal aim of medicine ("promoting health through the prevention and treatment of disease") differs from the internal aim of science ("the methodological and systematic acquisition of knowledge"). Therefore, medicine as a whole discipline should not be considered as a science. However, medicine can be conceptually and methodologically scientific in so much as it is based on scientific knowledge. There is evidence from cognitive science research that diagnostic reasoning not only relies on the application of scientific knowledge but also--especially in routine cases--on a process of pattern recognition, a reasoning strategy based on the memory of previously encountered patients. Hence, medical education must contain both: the imparting of scientific knowledge and the rich exposure to concrete cases during practical training. Hence, the question of teaching science vs. the apprentice model will not be "either-or" but rather "both--but in which proportion?"

  15. Grade 8 students' capability of analytical thinking and attitude toward science through teaching and learning about soil and its' pollution based on science technology and society (STS) approach

    NASA Astrophysics Data System (ADS)

    Boonprasert, Lapisarin; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 8 students' analytical thinking and attitude toward science in teaching and learning about soil and its' pollution through science technology and society (STS) approach. The participants were 36 Grade 8 students in Naklang, Nongbualumphu, Thailand. The teaching and learning about soil and its' pollution through STS approach had carried out for 6 weeks. The soil and its' pollution unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' analytical thinking and attitude toward science was collected during their learning by participant observation, analytical thinking test, students' tasks, and journal writing. The findings revealed that students could gain their capability of analytical thinking. They could give ideas or behave the characteristics of analytical thinking such as thinking for classifying, compare and contrast, reasoning, interpreting, collecting data and decision making. Students' journal writing reflected that the STS class of soil and its' pollution motivated students. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  16. The integration of creative drama into science teaching

    NASA Astrophysics Data System (ADS)

    Arieli, Bracha (Bari)

    This study explored the inclusion of creative drama into science teaching as an instructional strategy for enhancing elementary school students' understanding of scientific concepts. A treatment group of sixth grade students was taught a Full Option Science System (FOSS) science unit on Mixtures and Solutions with the addition of creative drama while a control group was taught using only the FOSS teaching protocol. Quantitative and qualitative data analyses demonstrated that students who studied science through creative drama exhibited a greater understanding of scientific content of the lessons and preferred learning science through creative drama. Treatment group students stated that they enjoyed participating in the activities with their friends and that the creative drama helped them to better understand abstract scientific concepts. Teachers involved with the creative drama activities were positively impressed and believed creative drama is a good tool for teaching science. Observations revealed that creative drama created a positive classroom environment, improved social interactions and self-esteem, that all students enjoyed creative drama, and that teachers' teaching style affected students' use of creative drama. The researcher concluded that the inclusion of creative drama with the FOSS unit enhanced students' scientific knowledge and understanding beyond that of the FOSS unit alone, that both teachers and students reacted positively to creative drama in science and that creative drama requires more time.

  17. The Effect of Inquiry Training Learning Model Based on Just in Time Teaching for Problem Solving Skill

    ERIC Educational Resources Information Center

    Turnip, Betty; Wahyuni, Ida; Tanjung, Yul Ifda

    2016-01-01

    One of the factors that can support successful learning activity is the use of learning models according to the objectives to be achieved. This study aimed to analyze the differences in problem-solving ability Physics student learning model Inquiry Training based on Just In Time Teaching [JITT] and conventional learning taught by cooperative model…

  18. Challenges and Support When Teaching Science Through an Integrated Inquiry and Literacy Approach

    NASA Astrophysics Data System (ADS)

    Ødegaard, Marianne; Haug, Berit; Mork, Sonja M.; Ove Sørvik, Gard

    2014-12-01

    In the Budding Science and Literacy project, we explored how working with an integrated inquiry-based science and literacy approach may challenge and support the teaching and learning of science at the classroom level. By studying the inter-relationship between multiple learning modalities and phases of inquiry, we wished to illuminate possible dynamics between science inquiry and literacy in an integrated science approach. Six teachers and their students were recruited from a professional development course for the current classroom study. The teachers were to try out the Budding Science teaching model. This paper presents an overall video analysis of our material demonstrating variations and patterns of inquiry-based science and literacy activities. Our analysis revealed that multiple learning modalities (read it, write it, do it, and talk it) are used in the integrated approach; oral activities dominate. The inquiry phases shifted throughout the students' investigations, but the consolidating phases of discussion and communication were given less space. The data phase of inquiry seems essential as a driving force for engaging in science learning in consolidating situations. The multiple learning modalities were integrated in all inquiry phases, but to a greater extent in preparation and data. Our results indicate that literacy activities embedded in science inquiry provide support for teaching and learning science; however, the greatest challenge for teachers is to find the time and courage to exploit the discussion and communication phases to consolidate the students' conceptual learning.

  19. A Historical Perspective on Problems in Botany Teaching.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1996-01-01

    Discusses how the many problems in botany teaching are interrelated and most have existed since at least the early 1900s. Considers botany teaching at both the precollege and introductory college levels. Discusses botany neglect in biology teaching, botanical illiteracy, uninteresting or irrelevant botany teaching, zoochauvinism, research…

  20. Understanding Teaching or Teaching for Understanding: Alternative Frameworks for Science Classrooms.

    ERIC Educational Resources Information Center

    Wildy, Helen; Wallace, John

    1995-01-01

    Describes the findings of a study that involved exploring the classroom practices of an experienced physics teacher to enable researchers to reexamine assumptions about good teaching. Asserts that a broader view of good science teaching is needed than that proposed by the constructivist literature. (ZWH)

  1. Emotional Issues in Teaching Science: A Case Study of a Teacher's Views

    NASA Astrophysics Data System (ADS)

    Zembylas, Michalinos

    2004-08-01

    Science teaching environments are social environments, and teachers emotions interact with their science teaching in powerful ways. To value the teacher is to value the whole person, not just the intellect. In this paper, a theorization of teacher emotion in science teaching is developed which illustrates the role of emotion in establishing and maintaining self-esteem in science teaching situations. From the standpoint of social-constructionist theory of emotion, it is argued that emotion is a social construction within social relationships. Arising from this view, are the emotions of intellectual excitement, frustration and shame that play a key role in the development of self-esteem. The dynamics of these emotions, in the context of experiences of success and failure, may dispose teachers to act positively or negatively towards science teaching. The theorisation developed is illustrated in the emotional experiences of an elementary school teacher in an early childhood science classroom. These experiences indicate that emotion is constitutive of teaching, and merits greater consideration in science teaching.

  2. Learning to teach effectively: Science, technology, engineering, and mathematics graduate teaching assistants' teaching self-efficacy

    NASA Astrophysics Data System (ADS)

    Dechenne, Sue Ellen

    Graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) are important in the teaching of undergraduate students (Golde & Dore, 2001). However, they are often poorly prepared for teaching (Luft, Kurdziel, Roehrig, & Turner, 2004). This dissertation addresses teaching effectiveness in three related manuscripts: (1) A position paper that summarizes the current research on and develops a model of GTA teaching effectiveness. (2) An adaptation and validation of two instruments; GTA perception of teaching training and STEM GTA teaching self-efficacy. (3) A model test of factors that predict STEM GTA teaching self-efficacy. Together these three papers address key questions in the understanding of teaching effectiveness in STEM GTAs including: (a) What is our current knowledge of factors that affect the teaching effectiveness of GTAs? (b) Given that teaching self-efficacy is strongly linked to teaching performance, how can we measure STEM GTAs teaching self-efficacy? (c) Is there a better way to measure GTA teaching training than currently exists? (d) What factors predict STEM GTA teaching self-efficacy? An original model for GTA teaching effectiveness was developed from a thorough search of the GTA teaching literature. The two instruments---perception of training and teaching self-efficacy---were tested through self-report surveys using STEM GTAs from six different universities including Oregon State University (OSU). The data was analyzed using exploratory and confirmatory factor analysis. Using GTAs from the OSU colleges of science and engineering, the model of sources of STEM GTA teaching self-efficacy was tested by administering self-report surveys and analyzed by using OLS regression analysis. Language and cultural proficiency, departmental teaching climate, teaching self-efficacy, GTA training, and teaching experience affect GTA teaching effectiveness. GTA teaching self-efficacy is a second-order factor combined from self

  3. The effect of alternative clinical teaching experience on preservice science teachers' self-efficacy

    NASA Astrophysics Data System (ADS)

    Klett, Mitchell Dean

    The purpose of this study was to compare different methods of alternative clinical experience; family science nights and Saturday science (authentic teaching) against micro-teaching (peer teaching) in terms of self-efficacy in science teaching and teaching self-efficacy. The independent variable, or cause, is teaching experiences (clinical vs. peer teaching); the dependent variable, or effect, is two levels of self-efficacy. This study was conducted at the University of Idaho's main campus in Moscow and extension campus in Coeur d'Alene. Four sections of science methods were exposed to the same science methods curriculum and will have opportunities to teach. However, each of the four sections were exposed to different levels or types of clinical experience. One section of preservice teachers worked with students in a Saturday science program. Another section worked with students during family science nights. The third worked with children at both the Saturday science program and family science nights. The last section did not have a clinical experience with children, instead they taught in their peer groups and acted as a control group. A pre-test was given at the beginning of the semester to measure their content knowledge, teaching self-efficacy and self-efficacy in science teaching. A post-test was given at the end of the semester to see if there was any change in self-efficacy or science teaching self-efficacy. Throughout the semester participants kept journals about their experiences and were interviewed after their alternative clinical teaching experiences. These responses were categorized into three groups; gains in efficacy, no change in efficacy, and drop in efficacy. There was a rise in teaching efficacy for all groups. The mean scores for personal teaching efficacy dropped for the Monday-Wednesday and Tuesday-Thursday group while the both Coeur D'Alene groups remained nearly unchanged. There was no significant change in the overall means for science

  4. Preservice elementary teachers' alternative conceptions of science and their self-efficacy beliefs about science teaching

    NASA Astrophysics Data System (ADS)

    Koc, Isil

    The present study was conducted to investigate the extent to which preservice elementary teachers held alternative conceptions in fundamental elementary science concepts from earth/space science, life science, and physical science along with their self-efficacy beliefs about science teaching and to determine the relationship between these two issues. Eighty-six preservice elementary education majors enrolled in the four sections of the course titled "07E:162 Methods Elementary School Science" offered in the Science Education Center, College of Education, the University of Iowa during the 2005-2006 academic year participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions in Science Instrument constructed by Schoon and Boone (1998), Science Teaching Efficacy Belief Instrument (STEBI-B) constructed by Enochs and Riggs (1990), a participant information form, and through utilization of interviews. The results from the alternative conception instrument indicated that the majority of preservice elementary teachers held a number of alternative conceptions with most being in the physical sciences followed by earth/space, and then life science. Various sources of alternative conceptions emerged during the interview sessions. Participants mainly cited science teachers, science textbooks, and previous science experiences as sources of their alternative conceptions. On the other hand, the analysis of the self-efficacy instrument and follow-up interviews revealed generally positive self-efficacy beliefs. Findings from the study also confirmed that science courses completed in high school and college do not seem to have influenced participants' number and types of alternative conceptions regarding earth/space science, life science, and physical science and self-efficacy beliefs about science teaching. The results also indicate that participants with the lowest number of

  5. Bare-Bones Teaching-Learning-Based Optimization

    PubMed Central

    Zou, Feng; Wang, Lei; Hei, Xinhong; Chen, Debao; Jiang, Qiaoyong; Li, Hongye

    2014-01-01

    Teaching-learning-based optimization (TLBO) algorithm which simulates the teaching-learning process of the class room is one of the recently proposed swarm intelligent (SI) algorithms. In this paper, a new TLBO variant called bare-bones teaching-learning-based optimization (BBTLBO) is presented to solve the global optimization problems. In this method, each learner of teacher phase employs an interactive learning strategy, which is the hybridization of the learning strategy of teacher phase in the standard TLBO and Gaussian sampling learning based on neighborhood search, and each learner of learner phase employs the learning strategy of learner phase in the standard TLBO or the new neighborhood search strategy. To verify the performance of our approaches, 20 benchmark functions and two real-world problems are utilized. Conducted experiments can been observed that the BBTLBO performs significantly better than, or at least comparable to, TLBO and some existing bare-bones algorithms. The results indicate that the proposed algorithm is competitive to some other optimization algorithms. PMID:25013844

  6. Bare-bones teaching-learning-based optimization.

    PubMed

    Zou, Feng; Wang, Lei; Hei, Xinhong; Chen, Debao; Jiang, Qiaoyong; Li, Hongye

    2014-01-01

    Teaching-learning-based optimization (TLBO) algorithm which simulates the teaching-learning process of the class room is one of the recently proposed swarm intelligent (SI) algorithms. In this paper, a new TLBO variant called bare-bones teaching-learning-based optimization (BBTLBO) is presented to solve the global optimization problems. In this method, each learner of teacher phase employs an interactive learning strategy, which is the hybridization of the learning strategy of teacher phase in the standard TLBO and Gaussian sampling learning based on neighborhood search, and each learner of learner phase employs the learning strategy of learner phase in the standard TLBO or the new neighborhood search strategy. To verify the performance of our approaches, 20 benchmark functions and two real-world problems are utilized. Conducted experiments can been observed that the BBTLBO performs significantly better than, or at least comparable to, TLBO and some existing bare-bones algorithms. The results indicate that the proposed algorithm is competitive to some other optimization algorithms.

  7. Virtual school teacher's science efficacy beliefs: The effects of community of practice on science-teaching efficacy beliefs

    NASA Astrophysics Data System (ADS)

    Uzoff, Phuong Pham

    The purpose of this study was to examine how much K-12 science teachers working in a virtual school experience a community of practice and how that experience affects personal science-teaching efficacy and science-teaching outcome expectancy. The study was rooted in theoretical frameworks from Lave and Wenger's (1991) community of practice and Bandura's (1977) self-efficacy beliefs. The researcher used three surveys to examine schoolteachers' experiences of a community of practice and science-teaching efficacy beliefs. The instrument combined Mangieri's (2008) virtual teacher demographic survey, Riggs and Enochs (1990) Science-teaching efficacy Beliefs Instrument-A (STEBI-A), and Cadiz, Sawyer, and Griffith's (2009) Experienced Community of Practice (eCoP) instrument. The results showed a significant linear statistical relationship between the science teachers' experiences of community of practice and personal science-teaching efficacy. In addition, the study found that there was also a significant linear statistical relationship between teachers' community of practice experiences and science-teaching outcome expectancy. The results from this study were in line with numerous studies that have found teachers who are involved in a community of practice report higher science-teaching efficacy beliefs (Akerson, Cullen, & Hanson, 2009; Fazio, 2009; Lakshmanan, Heath, Perlmutter, & Elder, 2011; Liu, Lee, & Lin, 2010; Sinclair, Naizer, & Ledbetter, 2010). The researcher concluded that school leaders, policymakers, and researchers should increase professional learning opportunities that are grounded in social constructivist theoretical frameworks in order to increase teachers' science efficacy.

  8. Adopting Just-in-Time Teaching in the Context of an Elementary Science Education Methodology Course

    ERIC Educational Resources Information Center

    Osmond, Pamela; Goodnough, Karen

    2011-01-01

    In this self-study, Pamela, a new science teacher educator, adopted Just-in-Time Teaching (JiTT) in the context of an elementary science education methodology course. JiTT is a teaching and learning strategy involving interaction between web-based study assignments and face-to-face class sessions. Students respond electronically to web-based…

  9. The enhancement of students' mathematical problem solving ability through teaching with metacognitive scaffolding approach

    NASA Astrophysics Data System (ADS)

    Prabawanto, Sufyani

    2017-05-01

    This research aims to investigate the enhancement of students' mathematical problem solving through teaching with metacognitive scaffolding approach. This research used a quasi-experimental design with pretest-posttest control. The subjects were pre-service elementary school teachers in a state university in Bandung. In this study, there were two groups: experimental and control groups. The experimental group consists of 60 studentswho acquire teaching mathematicsunder metacognitive scaffolding approach, while the control group consists of 58 studentswho acquire teaching mathematicsunder direct approach. Students were classified into three categories based on the mathematical prior ability, namely high, middle, and low. Data collection instruments consist of mathematical problem solving test instruments. By usingmean difference test, two conclusions of the research:(1) there is a significant difference in the enhancement of mathematical problem solving between the students who attended the course under metacognitive scaffolding approach and students who attended the course under direct approach, and(2) thereis no significant interaction effect of teaching approaches and ability level based on the mathematical prior ability toward enhancement of students' mathematical problem solving.

  10. Guiding science expeditions: The design of a learning environment for project-based science

    NASA Astrophysics Data System (ADS)

    Polman, Joseph Louis

    Project-based pedagogy has been revived recently as a teaching strategy for promoting students' active engagement in learning science by doing science. Numerous reform efforts have encouraged project-based teaching in high schools, along with a range of supports for its implementation, often including computers and the Internet. History has shown, however, that academic research and new technologies are not enough to effect real change in classrooms. Ultimately, teachers accomplish activity with their students daily in classrooms. Putting the idea of project-based teaching into practice depends on many particulars of teachers' situated work with students. To better understand the complexity of project-based science teaching in schools, I conducted an interpretive case study of one exceptional teacher's work. The teacher devotes all class time after the beginning of the year to open-ended, student-designed Earth Science research projects. Over four years of involvement with the Learning through Collaborative Visualization (CoVis) reform effort, this teacher has developed, implemented, and refined strategies for supporting and guiding students in conducting open-ended inquiry. Through a close examination of the teacher's work supporting student projects, I explore the design issues involved in such an endeavor, including affordances, constraints, and tradeoffs. In particular, I show how time constrains both student and teacher action, how the traditional school culture and grading create stumbling blocks for change, and how conflicting beliefs about teaching and learning undermine the accomplishment of guided inquiry. I also show how Internet tools including Usenet news, email, and the World Wide Web afford students an opportunity to gather and make use of distributed expertise and scientific data resources; how an activity structure, combined with a corresponding structure to the artifact of the final written product, supports student accomplishment of unfamiliar

  11. "Almost Everything We Do Includes Inquiry": Fostering Inquiry-Based Teaching and Learning with Preschool Teachers

    ERIC Educational Resources Information Center

    Hollingsworth, Heidi L.; Vandermaas-Peeler, Maureen

    2017-01-01

    Given the increased emphasis on science in early learning standards, two studies were conducted to investigate preschool teachers' efficacy for teaching science and their inquiry-based teaching practices. Fifty-one teachers completed a survey of their efficacy for teaching science and understanding of inquiry methods. Teachers reported moderate…

  12. Co-Teaching as an Approach to Enhance Science Learning and Teaching in Primary Schools

    ERIC Educational Resources Information Center

    Murphy, Colette; Beggs, Jim

    2006-01-01

    In this article, we explore some of the experiences of student teachers, classroom teachers, science teacher educators, and children in co-teaching contexts in primary schools. The model of co-teaching adopted enabled student teachers (science specialist), classroom teachers, and university tutors to share expertise and work as equals, without…

  13. An interactive problem-solving approach to teach traumatology for medical students.

    PubMed

    Abu-Zidan, Fikri M; Elzubeir, Margaret A

    2010-08-13

    We aimed to evaluate an interactive problem-solving approach for teaching traumatology from perspectives of students and consider its implications on Faculty development. A two hour problem-solving, interactive tutorial on traumatology was structured to cover main topics in trauma management. The tutorial was based on real cases covering specific topics and objectives. Seven tutorials (5-9 students in each) were given by the same tutor with the same format for fourth and fifth year medical students in Auckland and UAE Universities (n = 50). A 16 item questionnaire, on a 7 point Likert-type scale, focusing on educational tools, tutor-based skills, and student-centered skills were answered by the students followed by open ended comments. The tutorials were highly ranked by the students. The mean values of educational tools was the highest followed by tutor-centered skills and finally student-centered skills. There was a significant increase of the rating of studied attributes over time (F = 3.9, p = 0.004, ANOVA). Students' open ended comments were highly supportive of the interactive problem-solving approach for teaching traumatology. The interactive problem-solving approach for tutorials can be an effective enjoyable alternative or supplement to traditional instruction for teaching traumatology to medical students. Training for this approach should be encouraged for Faculty development.

  14. Science teaching self-efficacy in a primary school: A case study

    NASA Astrophysics Data System (ADS)

    de Laat, Jenny; Watters, James J.

    1995-12-01

    Bandura's theory of self-efficacy predicts that teachers with high, self-efficacy should persist longer, provide a greater academic focus in child-centred classrooms and exhibit different types of feedback than teachers who have lower self-efficacy. This paper reports on the science teaching self-efficacy in a group of teachers at a state primary school. The research was conducted in two stages using firstly the Science Teaching Efficacy Beliefs Instrument (STEBI-A) to identify cases, and secondly, a semistructured interview coupled with classroom observations. Thirty seven teaching staff were surveyed with the STEBI-A instrument. The five highest and five lowest scoring teachers on the personal science teaching self-efficacy subscale of the STEBI-A were interviewed. The analysis of interviews and observations indicated that teachers with high personal science teaching self-efficacy have had a long interest in science and a relatively strong background of formal science studies with opportunities for exploring out of school activities. Although they may have experienced negative science experiences in their own schooling other ameliorating factors existed which maintained their interest. Their instructional strategies in science lessons were more child-centred than those reported by teachers with lower personal science teaching self-efficacy. The implications of the results for the inservice training of teachers are discussed.

  15. Combination of Didactic Lectures with Problem-Based Learning Sessions in Physiology Teaching in a Developing Medical College in Nepal.

    ERIC Educational Resources Information Center

    Ghosh, Sarmishtha; Dawka, Violet

    2000-01-01

    Introduces the SPICES curriculum of the Manipal College of Medical Sciences in Nepal, which is student centered, problem based, integrated, community-based, elective oriented, and systematic. Reports that the majority of students opined that the combination of didactic lectures and problem-based learning sessions were definitely beneficial.…

  16. Computer assisted analysis of research-based teaching method in English newspaper reading teaching

    NASA Astrophysics Data System (ADS)

    Jie, Zheng

    2017-06-01

    In recent years, the teaching of English newspaper reading has been developing rapidly. However, the teaching effect of the existing course is not ideal. The paper tries to apply the research-based teaching model to English newspaper reading teaching, investigates the current situation in higher vocational colleges, and analyzes the problems. It designs a teaching model of English newspaper reading and carries out the empirical research conducted by computers. The results show that the teaching mode can use knowledge and ability to stimulate learners interest and comprehensively improve their ability to read newspapers.

  17. The distinctiveness and effectiveness of science teaching in the Malaysian `Smart school'

    NASA Astrophysics Data System (ADS)

    Tek Ong, Eng; Ruthven, Kenneth

    2010-04-01

    A recent reform initiative in the Malaysian educational system has sought to develop 'Smart schools', intended to better prepare students for adult life in a developing economy and to increase the flow of young people prepared for scientific and technological careers. The study reported in this paper examined lower-secondary science teaching, comparing two Smart schools officially judged to be successfully implementing the reform, with two neighbouring mainstream schools. Through analysis of classroom observation, supported by teacher interview and student report, the distinctive features of science teaching in the Smart schools were found to be use of ICT-based resources and of student-centred approaches, often intertwined to provide extended support for learning; accompanied by a near absence of the note giving and copying prevalent in the mainstream schools. Through analysis of measures of student attitude to science, science process skills and general science attainment, science teaching in Smart schools was found to be relatively effective overall. However, while the positive attitude effect was general, both academic effects were much weaker amongst students who had been of lower attainment on entry to secondary school.

  18. Promoting Students' Problem Solving Skills and Knowledge of STEM Concepts in a Data-Rich Learning Environment: Using Online Data as a Tool for Teaching about Renewable Energy Technologies

    NASA Astrophysics Data System (ADS)

    Thurmond, Brandi

    This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related to renewable energy technologies and students' problem solving skills. Two purposefully selected Advanced Placement (AP) Environmental Science teachers were included in the study. Each teacher taught one class about RET in a lecture-based environment (control) and another class in a DRL environment (treatment), for a total of four classes of students (n=128). This study utilized a quasi-experimental, pretest/posttest, control-group design. The initial hypothesis that the treatment group would have a significant gain in knowledge of STEM concepts related to RET and be better able to solve problems when compared to the control group was not supported by the data. Although students in the DRL environment had a significant gain in knowledge after instruction, posttest score comparisons of the control and treatment groups revealed no significant differences between the groups. Further, no significant differences were noted in students' problem solving abilities as measured by scores on a problem-based activity and self-reported abilities on a reflective questionnaire. This suggests that the DRL environment is at least as effective as the lecture-based learning environment in teaching AP Environmental Science students about RET and fostering the development of problem solving skills. As this was a small scale study, further research is needed to provide information about effectiveness of DRL environments in promoting students' knowledge of STEM concepts and problem-solving skills.

  19. How to Teach High-School Students "How Science Really Works?"

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Students, High-School; Winiarska, Anna; Parys-Wasylkiewicz, Magdalena

    2016-04-01

    One of the largest problems in Poland (as well as in the large part of the developed world) is that people do not understand how science works. Based on what they learned at school, they think that science is an aggregation of facts that you need to learn by heart. Based on media coverage of the science topics, they think it is a collection of curiosities about the two-headed-snakes. Based on the way in which science is shown in movies and TV series, they envision science as a magic performed in a white coat with usage of colorful fluids and magic spells such as "transformative hermeneutics of quantum gravity". As a result, our societies include a large number of people who "do not believe" in evolution, think that vaccinations are causing autism and that anthropogenic global warming is a myth. This is not very surprising, given that most people never had a chance to perform a real scientific experiment. Most of people, if they are lucky, are able to see some science demonstrations in the classrooms. They are of course very useful, but it is quite clear for everyone that (if everything goes well) the demonstration can end up in one, pre-defined way. The "real" scientific experiment, as a part of the scientific process, is when the outcome is unknown until the end of the entire process. In order to teach high-school students "How Science Really Works" we have developed a project lasting one year (grant from Foundation for Polish Science 26/UD/SKILLS/2015): 1) At first students learned about scientific method, science history and performed a simple scientific experiment. 2) Later, students developed an experiment that was answering a real, unanswered scientific problem (the problem was given by the Leading Scientist). The aim of the project was to determine influence of albedo and emissivity of rock particles laying on a surface of a glacier on the rate of cryoconite holes formation. The results of this experiment can be used to better determine the rate of melting

  20. Rethinking the lecture: the application of problem based learning methods to atypical contexts.

    PubMed

    Rogal, Sonya M M; Snider, Paul D

    2008-05-01

    Problem based learning is a teaching and learning strategy that uses a problematic stimulus as a means of motivating and directing students to develop and acquire knowledge. Problem based learning is a strategy that is typically used with small groups attending a series of sessions. This article describes the principles of problem based learning and its application in atypical contexts; large groups attending discrete, stand-alone sessions. The principles of problem based learning are based on Socratic teaching, constructivism and group facilitation. To demonstrate the application of problem based learning in an atypical setting, this article focuses on the graduate nurse intake from a teaching hospital. The groups are relatively large and meet for single day sessions. The modified applications of problem based learning to meet the needs of atypical groups are described. This article contains a step by step guide of constructing a problem based learning package for large, single session groups. Nurse educators facing similar groups will find they can modify problem based learning to suit their teaching context.