Sample records for teacher education science

  1. Science Teacher Education Partnerships with Schools (STEPS): Partnerships in Science Teacher Education

    ERIC Educational Resources Information Center

    Kenny, John Daniel; Hobbs, Linda; Herbert, Sandra; Chittleborough, Gail; Campbell, Coral; Jones, Mellita; Gilbert, Andrew; Redman, Christine

    2014-01-01

    This paper reports on the STEPS project which addressed international concerns about primary teachers' lack of confidence to teach science, and on-going questions about the effectiveness of teacher education. The five universities involved had each independently established a science education program incorporating school-based partnerships…

  2. Science Teacher Education: An International Perspective.

    ERIC Educational Resources Information Center

    Abell, Sandra K., Ed.

    This book presents reform efforts in science teacher education from an international perspective. Chapters include: (1) "International Perspectives on Science Teacher Education: An Introduction" (Sandra K. Abell); (2) "The Development of Preservice Elementary Science Teacher Education in Australia" (Ken Appleton, Ian S. Ginns,…

  3. Making Philosophy of Science Education Practical for Science Teachers

    NASA Astrophysics Data System (ADS)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  4. Effect of Teacher Education Program on Science Process Skills of Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Yakar, Zeha

    2014-01-01

    Over the past three or more decades, many studies have been written about teacher education and the preparation of science teachers. Presented here is one which investigated the effectiveness of scientific process skills on pre-service science teachers of Pamukkale University Primary Science Teacher Education Program for four years. This study…

  5. Making Philosophy of Science Education Practical for Science Teachers

    ERIC Educational Resources Information Center

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  6. Teacher Efficacy of Secondary Special Education Science Teachers

    NASA Astrophysics Data System (ADS)

    Bonton, Celeste

    Students with disabilities are a specific group of the student population that are guaranteed rights that allow them to receive a free and unbiased education in an environment with their non-disabled peers. The importance of this study relates to providing students with disabilities with the opportunity to receive instruction from the most efficient and prepared educators. The purpose of this study is to determine how specific factors influence special education belief systems. In particular, educators who provide science instruction in whole group or small group classrooms in a large metropolitan area in Georgia possess specific beliefs about their ability to provide meaningful instruction. Data was collected through a correlational study completed by educators through an online survey website. The SEBEST quantitative survey instrument was used on a medium sample size (approximately 120 teachers) in a large metropolitan school district. The selected statistical analysis was the Shapiro-Wilk and Mann-Whitney in order to determine if any correlation exists among preservice training and perceived self-efficacy of secondary special education teachers in the content area of science. The results of this study showed that special education teachers in the content area of science have a higher perceived self-efficacy if they have completed an alternative certification program. Other variables tested did not show any statistical significance. Further research can be centered on the analysis of actual teacher efficacy, year end teacher efficacy measurements, teacher stipends, increased recruitment, and special education teachers of multiple content areas.

  7. Fermilab Science Education Office - Educators/Teachers

    Science.gov Websites

    - FAQ - Fermilab Friends - Fermilab Home Fermilab Office of Education & Public Outreach Fermilab MS Prairie Exhibits Leon M. Lederman Science Adventures Teacher Resource Center The Leon M. Lederman Science Education Center houses hands-on exhibits for ages 10+, technology and science labs, a store and the K-12

  8. Special Education Teachers' Nature of Science Instructional Experiences

    ERIC Educational Resources Information Center

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  9. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    NASA Astrophysics Data System (ADS)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  10. When Nature of Science Meets Marxism: Aspects of Nature of Science Taught by Chinese Science Teacher Educators to Prospective Science Teachers

    NASA Astrophysics Data System (ADS)

    Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying

    2013-05-01

    Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, NOS content to be taught to prospective science teachers. Among a total of twenty NOS elements considered by the Chinese science teacher educators to be important ideas to be taught, five were suggested by no less than a half of the educators. They are (1) empirical basis of scientific investigation, (2) logics in scientific investigation, (3) general process of scientific investigation, (4) progressive nature of scientific knowledge, and (5) realist views of mind and natural world. This paper discusses the influence of Marxism, a special socio-cultural factor in China, on Chinese science teacher educators' conceptions of NOS content to be taught to prospective science teachers. We argue the importance of considering ideological traditions (mainly those in general philosophy and religion) when interpreting views of NOS or its content to be taught in different countries and regions and understanding students' conceptual ecology of learning NOS.

  11. Teacher Leaders in Research Based Science Education

    NASA Astrophysics Data System (ADS)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-12-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  12. Teacher Leaders in Research Based Science Education

    NASA Astrophysics Data System (ADS)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-05-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  13. The feasibility of educating trainee science teachers in issues of science and religion

    NASA Astrophysics Data System (ADS)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  14. Initial Science Teacher Education in Portugal: The Thoughts of Teacher Educators About the Effects of the Bologna Process

    NASA Astrophysics Data System (ADS)

    Leite, Laurinda; Dourado, Luís; Morgado, Sofia

    2016-12-01

    Between the 1980s and 2007, Portugal used to have one-stage (5-year period) initial teacher education (ITE) programs. In 2007 and consistent with the Bologna process guidelines, Portuguese teacher education moved toward a two-stage model, which includes a 3-year undergraduate program of subject matter that leads to a licenciatura (or bachelor) degree and a 3-year professional master in the teaching of a subject. The way that teacher educators perceive the ITE programs effects the education of prospective teachers and consequently the future of science education. This paper aims at analyzing how science teacher educators perceived the changes that took place in this formal way of educating junior school (7th-9th grades) and high school (10th-12th grades) science teachers in Portugal, due to the implementation of the Bologna guidelines. To attain the objectives of the study, 33 science teacher educators including science specialists and science education specialists answered an open-ended online questionnaire, which focused on the strengths and weaknesses of the pre- and post-Bologna ITE programs, the overall quality of teacher education and measures for improving ITE. The results indicate that science teacher educators were quite happy with all of the ITE models, but they expressed the belief that both the science and the teaching practice components should be strengthened in the post-Bologna masters in teaching. Meanwhile, changes were introduced in Portuguese educational laws, and they proved to be consistent with the opinions of the participants. However, the professional development of teacher educators along with evidence-based ITE programs seems to be necessary conditions for overcoming the challenges that teacher education is still facing in Portugal and worldwide.

  15. Supporting new science teachers in pursuing socially just science education

    NASA Astrophysics Data System (ADS)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  16. When Nature of Science Meets Marxism: Aspects of Nature of Science Taught by Chinese Science Teacher Educators to Prospective Science Teachers

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying

    2013-01-01

    Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content…

  17. Integration of Geospatial Science in Teacher Education

    ERIC Educational Resources Information Center

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  18. Science Teacher Education in Japan: Past, Present, and Future

    ERIC Educational Resources Information Center

    Isozaki, Tetsuo

    2018-01-01

    The purpose of this paper is to describe the historical development of science teacher education in pre-service and in-service education in Japan with a focus on the systemic changes and teachers' professional learning culture. The characteristics of science teacher education generally are elucidated through an analysis of the system and…

  19. The Role of Philosophy of Science in Science Teacher Education.

    ERIC Educational Resources Information Center

    Bentley, Michael L.; Garrison, James W.

    1991-01-01

    Discusses teacher knowledge of nature of science. Asserts this is aspect of science content knowledge frequently neglected in teacher education. Differentiates between positivism and postpositivism. Describes textbook's role in fostering student misconceptions of nature of science. Suggests students be given chance to carry out their own…

  20. Building Future Directions for Teacher Learning in Science Education

    NASA Astrophysics Data System (ADS)

    Smith, Kathy; Lindsay, Simon

    2016-04-01

    In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were positioned as active learners undertaking critical reflection in relation to their science teaching practice. The conditions in these programs encouraged teachers to notice critical aspects of their teaching practice. The analysis illustrates that as teachers worked in this way, their understandings about effective science pedagogy began to shift, in particular, teachers recognised how their thinking not only influenced their professional practice but also ultimately shaped the quality of their students' learning. The data from these programs delivers compelling evidence of the learning experience from a teacher perspective. This article explores the impact of this experience on teacher thinking about the relationship between pedagogical choices and quality learning in science. The findings highlight that purposeful, teacher-centred in-service professional learning can significantly contribute to enabling teachers to think differently about science teaching and learning and ultimately become confident pedagogical leaders in science. The future of quality school-based science education therefore relies on a new vision for teacher professional learning, where practice explicitly recognises, values and attends to teachers as professionals and supports them to articulate and share the professional knowledge they have about effective science teaching practice.

  1. The pedagogy of argumentation in science education: science teachers' instructional practices

    NASA Astrophysics Data System (ADS)

    Özdem Yilmaz, Yasemin; Cakiroglu, Jale; Ertepinar, Hamide; Erduran, Sibel

    2017-07-01

    Argumentation has been a prominent concern in science education research and a common goal in science curriculum in many countries over the past decade. With reference to this goal, policy documents burden responsibilities on science teachers, such as involving students in dialogues and being guides in students' spoken or written argumentation. Consequently, teachers' pedagogical practices regarding argumentation gain importance due to their impact on how they incorporate this practice into their classrooms. In this study, therefore, we investigated the instructional strategies adopted by science teachers for their argumentation-based science teaching. Participants were one elementary science teacher, two chemistry teachers, and four graduate students, who have a background in science education. The study took place during a graduate course, which was aimed at developing science teachers' theory and pedagogy of argumentation. Data sources included the participants' video-recorded classroom practices, audio-recorded reflections, post-interviews, and participants' written materials. The findings revealed three typologies of instructional strategies towards argumentation. They are named as Basic Instructional Strategies for Argumentation, Meta-level Instructional ‌St‌‌rategies for ‌Argumentation, and Meta-strategic Instructional ‌St‌‌rategies for ‌Argumentation. In conclusion, the study provided a detailed coding framework for the exploration of science teachers' instructional practices while they are implementing argumentation-based lessons.

  2. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    ERIC Educational Resources Information Center

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  3. Teachers' Voices on Integrating Metacognition into Science Education

    ERIC Educational Resources Information Center

    Ben-David, Adi; Orion, Nir

    2013-01-01

    This study is an attempt to gain new insight, on behalf of science teachers, into the integration of metacognition (MC) into science education. Participants were 44 elementary school science teachers attending an in-service teacher-training (INST) program. Data collection was carried out by several data sources: recordings of all verbal…

  4. Science Teachers' Views about the Science Fair at Primary Education Level

    ERIC Educational Resources Information Center

    Tortop, Hasan Said

    2013-01-01

    Science fair is an environment where students present their scientific research projects. Opinions of science teachers who participated as a mentor in science fair are important for determining of the science fair quality and its contribution of science education. The aim of study was to determine science teachers' views about the science fair at…

  5. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    NASA Astrophysics Data System (ADS)

    Riedinger, Kelly; Marbach-Ad, Gili; Randy McGinnis, J.; Hestness, Emily; Pease, Rebecca

    2011-02-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching methods and to encourage students to continue in teacher education. We redesigned the elementary science methods course to include aspects of informal science education. The informal science education course features included informal science educator guest speakers, a live animal demonstration and a virtual field trip. We compared data from a treatment course ( n = 72) and a comparison course ( n = 26). Data collection included: researchers' observations, instructors' reflections, and teacher candidates' feedback. Teacher candidate feedback involved interviews and results on a reliable and valid Attitudes and Beliefs about the Nature of and the Teaching of Science instrument. We used complementary methods to analyze the data collected. A key finding of the study was that while benefits were found in both types of courses, the difference in results underscores the need of identifying the primary purpose for innovation as a vital component of consideration.

  6. An Examination of Black Science Teacher Educators' Experiences with Multicultural Education, Equity, and Social Justice

    NASA Astrophysics Data System (ADS)

    Atwater, Mary M.; Butler, Malcolm B.; Freeman, Tonjua B.; Carlton Parsons, Eileen R.

    2013-12-01

    Diversity, multicultural education, equity, and social justice are dominant themes in cultural studies (Hall in Cultural dialogues in cultural studies. Routledge, New York, pp 261-274, 1996; Wallace 1994). Zeichner (Studying teacher education: The report of the AERA panel on research and teacher education. Lawrence Erlbaum Associates, Mahwah, pp 737-759, 2005) called for research studies of teacher educators because little research exists on teacher educators since the late 1980s. Thomson et al. (2001) identified essential elements needed in order for critical multiculturalism to be infused in teacher education programs. However, little is known about the commitment and experiences of science teacher educators infusing multicultural education, equity, and social justice into science teacher education programs. This paper examines twenty (20) Black science teacher educators' teaching experiences as a result of their Blackness and the inclusion of multicultural education, equity, and social justice in their teaching. This qualitative case study of 20 Black science teacher educators found that some of them have attempted and stopped due to student evaluations and the need to gain promotion and tenure. Other participants were able to integrate diversity, multicultural education, equity and social justice in their courses because their colleagues were supportive. Still others continue to struggle with this infusion without the support of their colleagues, and others have stopped The investigators suggest that if science teacher educators are going to prepare science teachers for the twenty first century, then teacher candidates must be challenged to grapple with racial, ethnic, cultural, instructional, and curricular issues and what that must mean to teach science to US students in rural, urban, and suburban school contexts.

  7. Common Interest, Common Visions? Chinese Science Teacher Educators' Views about the Values of Teaching Nature of Science to Prospective Science Teachers

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling; Yung, Benny Hin Wai

    2011-01-01

    Teaching nature of science (NOS) is beginning to take root in science education in China. This exploratory study interviewed 24 science teacher educators from economically developed parts of China about their conceptions of teaching NOS to prospective science teachers. Five key dimensions emerged from the data. This paper focuses on the dimension…

  8. Educational Technology Classics: The Science Teacher and Educational Technology

    ERIC Educational Resources Information Center

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  9. The Wow-Effect in Science Teacher Education

    ERIC Educational Resources Information Center

    Kamstrupp, Anne Katrine

    2016-01-01

    This article explores the "wow-effect" as a phenomenon in science teacher education. Through ethnographic fieldwork at a teachers' college in Denmark, the author encounters a phenomenon enacted in a particular way of teaching that "wows" the students. The students are in the process of becoming natural science/technology and…

  10. Turkish Primary Science Teachers' Perceptions of an Ideal Teacher Education System

    ERIC Educational Resources Information Center

    Korkmaz, Hunkar; Altindag, Ahmet

    2017-01-01

    The goals of this descriptive study were to determine Turkish pre-service science teachers' perceptions of an ideal teacher education system. The sample consisted of 137 pre-service teachers, including 74 females and 63 males. The questionnaire was based on open-ended questions and was developed to investigate ideal teacher education system…

  11. Malaysian Teacher Trainees' Practices on Science and the Relevance of Science Education for Sustainability

    ERIC Educational Resources Information Center

    Nair, Subadrah Madhawa; Mohamed, Abdul Rashid; Marimuthu, Nagamah

    2013-01-01

    Purpose: The purpose of this paper is to investigate the practice of teacher trainees on science and the relevance of science education. The study focuses on teacher trainees' practice on science teaching and its relevance to understanding science education. Design/methodology/approach: The study employed a survey method using questionnaires. The…

  12. Becoming a Content-ESL Teacher: A Dialogic Journey of a Science Teacher and Teacher Educator

    ERIC Educational Resources Information Center

    Welsh, Lori C.; Newman, Karen L.

    2010-01-01

    This dialogical narrative describes the observations and changes in instruction of an 8th-grade science teacher in an English language learner (ELL) sheltered science class before and after receiving instruction in ESL methods, and the backdrop for the teacher's growth, as narrated by the second language teacher educator who directed the teacher's…

  13. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    NASA Astrophysics Data System (ADS)

    Hudson, Peter; Usak, Muhammet; Fančovičová, Jana; Erdoğan, Mehmet; Prokop, Pavol

    2010-12-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of science with 15 of the 28 survey items. Descriptive statistics through SPSS further showed that a teacher's enthusiastic nature (87%) and positive attitude towards science (87%) were regarded as highly memorable. In addition, explaining abstract concepts well (79%), and guiding the students' conceptual development with practical science activities (73%) may be considered as memorable secondary science teaching strategies. Implementing science lessons with one or more of these memorable science teaching practices may "make a difference" towards influencing high school students' positive long-term memories about science and their science education. Further research in other key learning areas may provide a clearer picture of high-impact teaching and a way to enhance pedagogical practices.

  14. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    NASA Astrophysics Data System (ADS)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-05-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.

  15. Pre-Service Science Teachers' Cognitive Structures Regarding Science, Technology, Engineering, Mathematics (STEM) and Science Education

    ERIC Educational Resources Information Center

    Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret

    2016-01-01

    The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…

  16. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    ERIC Educational Resources Information Center

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  17. Pre-service Science Teacher Education in Africa: Prospects and Challenges

    NASA Astrophysics Data System (ADS)

    Ogunniyi, M. B.; Rollnick, Marissa

    2015-02-01

    Since the independence era in the 1950s and 1960s, many African countries have recognised the important role that science plays in the socio-economic development of any country. As a result, various African governments have enacted policies and allocated a large proportion of their gross national product to the science and science education sector of the economy. For instance, many African countries introduced universal primary education and to cater for the bulging student population increased the number of their secondary schools considerably. However, the rapid expansion of educational facilities has to some degree compromised the quality of the science teaching in many African schools. Among the various problems facing science education in Africa since the independence era, however, the most frequently mentioned has been the shortage of qualified science teachers. Science teachers play a critical role in laying the foundation of scientific literacy of a country. Indeed, no education system can outperform the quality of its teachers.

  18. Exploring emotional climate in preservice science teacher education

    NASA Astrophysics Data System (ADS)

    Bellocchi, Alberto; Ritchie, Stephen M.; Tobin, Kenneth; Sandhu, Maryam; Sandhu, Satwant

    2013-09-01

    Classroom emotional climates (ECs) are interrelated with students' engagement with university courses. Despite growing interest in emotions and EC research, little is known about the ways in which social interactions and different subject matter mediate ECs in preservice science teacher education classes. In this study we investigated the EC and associated classroom interactions in a preservice science teacher education class. We were interested in the ways in which salient classroom interactions were related to the EC during lessons centered on debates about science-based issues (e.g., nuclear energy alternatives). Participants used audience response technology to indicate their perceptions of the EC. Analysis of conversation for salient video clips and analysis of non-verbal conduct (acoustic parameters, body movements, and facial expressions) supplemented EC data. One key contribution that this study makes to preservice science teacher education is to identify the micro-processes of successful and unsuccessful class interactions that were associated with positive and neutral EC. The structure of these interactions can inform the practice of other science educators who wish to produce positive ECs in their classes. The study also extends and explicates the construct of intensity of EC.

  19. Identifying Teacher Needs for Promoting Education through Science as a Paradigm Shift in Science Education

    ERIC Educational Resources Information Center

    Holbrook, J.; Rannikmae, M.; Valdmann, A.

    2014-01-01

    This paper identifies an "education through science" philosophy for school science teaching at the secondary level and determines its interrelationship with approaches to student acquisition of key educational competences and the identification of teacher needs to promote meaningful learning during science lessons. Based on the…

  20. Building Future Directions for Teacher Learning in Science Education

    ERIC Educational Resources Information Center

    Smith, Kathy; Lindsay, Simon

    2016-01-01

    In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were…

  1. Science Teachers' Response to the Digital Education Revolution

    NASA Astrophysics Data System (ADS)

    Nielsen, Wendy; Miller, K. Alex; Hoban, Garry

    2015-08-01

    We report a case study of two highly qualified science teachers as they implemented laptop computers in their Years 9 and 10 science classes at the beginning of the `Digital Education Revolution,' Australia's national one-to-one laptop program initiated in 2009. When a large-scale investment is made in a significant educational change, it is important to consider teachers perspectives and responses to such change and we draw from sociocultural perspectives for our analysis. Through interviews and classroom observations, our interpretive analysis identified four key tensions and contradictions. These include the following: (1) barriers to innovative science teaching; (2) maintaining classroom and school connectivity; (3) teacher versus student expectations; and (4) changes to classroom management. Analysis leads to implications for the future of this and similar programs. The study shows that while these two teachers were committed to developing and delivering technology-rich science lessons, there were many factors that challenge how the implementation progressed. The findings from this study have implications for the continued engagement of teachers in this and other jurisdictions considering the introduction of one-to-one laptop programs.

  2. The Views of Turkish Science Teachers about Gender Equity within Science Education

    ERIC Educational Resources Information Center

    Idin, Sahin; Dönmez, Ismail

    2017-01-01

    The aim of this study was to investigate Turkish Science teachers' views about gender equity in the scope of science education. This study was conducted with the quantitative methodology. Within this scope, a 35-item 5-point Likert scale survey was developed to determine Science teachers' views concerning gender equity issues. 160 Turkish Science…

  3. Elementary science education: Dilemmas facing preservice teachers

    NASA Astrophysics Data System (ADS)

    Sullivan, Sherry Elaine

    Prospective teachers are involved in a process of induction into a culture of teaching that has rules, or codes of conduct for engaging in teaching practice. This same culture of teaching exists within a larger culture of schooling that also has values and norms for behaviors, that over time have become institutionalized. Teacher educators are faced with the challenging task of preparing preservice teachers to resolve dilemmas that arise from conflicts between the pressure to adopt traditional teaching practices of schooling, or to adopt inquiry-based teaching practices from their university methods classes. One task for researchers in teacher education is to define with greater precision what factors within the culture of schooling hinder or facilitate implementation of inquiry-based methods of science teaching in schools. That task is the focus of this study. A qualitative study was undertaken using a naturalistic research paradigm introduced by Lincoln and Guba in 1985. Participant observation, interviews, discourse analysis of videotapes of lessons from the methods classroom and written artifacts produced by prospective teachers during the semester formed the basis of a grounded theory based on inductive analysis and emergent design. Unstructured interviews were used to negotiate outcomes with participants. Brief case reports of key participants were also written. This study identified three factors that facilitated or hindered the prospective teachers in this research success in implementing inquiry-based science teaching in their field placement classrooms: (a) the culture of teaching/teacher role-socialization, (b) the culture of schooling and its resistance to change, and (c) the culture of teacher education, especially in regards to grades and academic standing. Some recommendations for overcoming these persistent obstacles to best practice in elementary science teaching include: (a) preparing prospective teachers to understand and cope with change

  4. Pre-Service Science Teacher Education System in South Korea: Prospects and Challenges

    ERIC Educational Resources Information Center

    Im, Sungmin; Yoon, Hye-Gyoung; Cha, Jeongho

    2016-01-01

    While much is known about the high academic but low affective achievement of Korean students on international comparative studies, little is known about science teacher education in Korea. As the quality of science teachers is an important factor determining the quality of science education, gaining an understanding of science education in Korea…

  5. K-12 science education: A teacher`s view

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, P.

    1994-12-31

    Science education has experienced significant changes over the past two decades. Science is now vital to good citizenship, performance in the workplace, and everyday life.It is time to re-tool and re-design the entire K-12 science education system, employing the same principles and methods used in the practice of science itself. We can no longer ignore the special needs of science instruction. All students need a course that develops their scientific literacy and critical thinking skills every year. Each science program needs meaningful, useful content and skill standards to drive and continuously update the curriculum content and enabel usefull assessment. Sciencemore » teachers must articulate their needs and develop opportunities for professional development and the strengthening of their profession. We need a national plan that gets the many different participants working coherently towards a common goal.« less

  6. Science Teacher Education in Australia: Initiatives and Challenges to Improve the Quality of Teaching

    NASA Astrophysics Data System (ADS)

    Treagust, David F.; Won, Mihye; Petersen, Jacinta; Wynne, Georgie

    2015-02-01

    In this article, we describe how teachers in the Australian school system are educated to teach science and the different qualifications that teachers need to enter the profession. The latest comparisons of Australian students in international science assessments have brought about various accountability measures to improve the quality of science teachers at all levels. We discuss the issues and implications of government initiatives in preservice and early career teacher education programs, such as the implementation of national science curriculum, the stricter entry requirements to teacher education programs, an alternative pathway to teaching and the measure of effectiveness of teacher education programs. The politicized discussion and initiatives to improve the quality of science teacher education in Australia are still unfolding as we write in 2014.

  7. High School Biology Teachers' Views on Teaching Evolution: Implications for Science Teacher Educators

    NASA Astrophysics Data System (ADS)

    Hermann, Ronald S.

    2013-06-01

    In the US, there may be few scientific concepts that students maintain preconceived ideas about as strongly and passionately as they do with regard to evolution. At the confluence of a multitude of social, religious, political, and scientific factors lies the biology teacher. This phenomenological study provides insight into the salient aspects of teaching evolution as viewed by public high school biology teachers. Transcribed interviews were coded, and data were sorted resulting in key themes regarding teachers' views of evolution education. These themes are presented against the backdrop of extant literature on the teaching and learning of evolution. Suggestions for science teacher educators are presented such that we can modify teacher preparation programs to better prepare science teachers to meet the challenges of teaching evolution.

  8. The compatibility of reform initiatives in inclusion and science education: Perceptions of science teachers

    NASA Astrophysics Data System (ADS)

    Chung, Su-Hsiang

    The purposes of this investigation were to examine science teachers' instructional adaptations, testing and grading policies, as well as their perceptions toward inclusion. In addition, whether the perceptions and adaptations differ among three disability areas (learning disabilities, emotional handicaps, and mental handicaps), school level (elementary, middle, and high school), course content (life and physical science), instructional approach (textbook-oriented or activity-oriented), and other related variables was examined. Especially, the intention was to determine whether the two educational reform efforts (inclusion and excellence in science education) are compatible. In this study, 900 questionnaires were mailed to teachers in Indiana and 424 (47%) were returned. Due to incomplete or blank data, 38 (4%) responses were excluded. The final results were derived from a total of 386 respondents contributing to this investigation. The descriptive data indicated that teachers adapted their instruction moderately to accommodate students' special needs. In particular, these adaptations were made more frequently for students with mental handicaps (MH) or learning disabilities (LD), but less for students with emotional handicaps (EH). With respect to testing policies, less than half of the teachers (44.5%) used "same testing standards as regular students" for integrated LD students, while a majority of the teachers (57%) used such a policy for EH students. Unfortunately, considerably fewer teachers modified their grading policies for these two groups of students. In contrast, approximately two thirds of the teachers indicated that they used different testing or grading policies for MH students who were in the regular settings. Moreover, the results also showed that changes in classroom procedure did not occur much in the science teachers' classrooms. Perceptions of science teachers toward inclusion practices were somewhat mixed. Overall, teachers had neutral attitudes

  9. Science Teacher Identity and Eco-Transformation of Science Education: Comparing Western Modernism with Confucianism and Reflexive "Bildung"

    ERIC Educational Resources Information Center

    Sjöström, Jesper

    2018-01-01

    This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on "reform-minded" science teachers. The starting point is the paper "Science education reform in…

  10. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    NASA Astrophysics Data System (ADS)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  11. Science teachers in deaf education: A national survey of K-8 teachers

    NASA Astrophysics Data System (ADS)

    Shaw, Cynthia

    A survey was conducted with 67 science teachers who taught deaf children at the elementary school level. Teacher background variables, information about teacher preparation and certification, preferred teaching methods, communication methodologies, curriculum, and the use of technology were gathered. A purposeful, convenience sampling technique was employed. Utilizing a non-experimental, basic research design and survey methodology, the researcher reviewed both quantitative and qualitative data. The majority of science teachers in this survey at the elementary school level are female and hearing. More than half have deaf education masters degrees. Few have science degrees. The majority of teachers had less than 10 years teaching experience with deaf students. Sixty percent were highly qualified in science; only forty percent were certified in science. They were equally employed at either a state residential school or a public day school. Two-way chi-square analyses were carried out. Hearing teachers preferred to observe other teachers teaching science compared to deaf teachers chi2 (1, N = 67) = 5.39, p < .05, deaf teachers were more familiar than hearing teachers with the ASL/English Bilingual Star School program (chi2 (1, N = 67) = 8.49, p < .01). Deaf teachers participated more in the Star Schools training compared to hearing teachers (chi2 (1, N = 67) = 14.15, p < .001). Deaf teachers compared to hearing teachers were more likely to use the bilingual strategy, translanguaging than hearing teachers (chi2 (1, N = 67) = 4.54, p < .05). Hearing teachers used the computer more often in the classroom than deaf teachers (chi 2 (1, N = 67) = 4.65, p < .01). Hearing teachers had their students use the computer more regularly than deaf teachers (chi2 (1, N = 67) = 11.49, p < .01). Teachers who worked in residential schools compared to working in public schools attended more state department of education science workshops chi2 (1, N = 67) = 6.83, p < .01, attended

  12. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    NASA Astrophysics Data System (ADS)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and

  13. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    ERIC Educational Resources Information Center

    Hudson, Peter; Usak, Muhammet; Fancovicova, Jana; Erdogan, Mehmet; Prokop, Pavol

    2010-01-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of…

  14. Pre-service science teachers' perceptions of mathematics courses in a science teacher education programme

    NASA Astrophysics Data System (ADS)

    Incikabi, Lutfi; Serin, Mehmet Koray

    2017-08-01

    Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and their expectations regarding the difficulty level of mathematics courses in science-teaching education programmes. Second, the study investigates changes and the reasons behind the changes in their interest regarding mathematics after completing these courses. Third, the current study seeks to reveal undergraduate science teachers' opinions regarding the contribution of undergraduate mathematics courses to their professional development. Being qualitative in nature, this study was a case study. According to the results, almost all of the students considered that undergraduate mathematics courses were 'difficult' because of the complex and intensive content of the courses and their poor background mathematical knowledge. Moreover, the majority of science undergraduates mentioned that mathematics would contribute to their professional development as a science teacher. On the other hand, they declared a negative change in their attitude towards mathematics after completing the mathematics courses due to continuous failure at mathematics and their teachers' lack of knowledge in terms of teaching mathematics.

  15. Life science teachers' decision making on sex education

    NASA Astrophysics Data System (ADS)

    Gill, Puneet Singh

    The desires of young people and especially young bodies are constructed at the intersections of policies that set the parameters of sex education policies, the embodied experiences of students in classrooms, and the way bodies are discussed in the complex language of science. Moreover, more research points to the lack of scientifically and medically accurate information about sex education. Through this research, I hope to extend the discussion about sex education to life science classrooms, where youth can discuss how sex occurs according to scientific concepts and processes. However, science classrooms are caught in a double bind: They maintain positivist methods of teaching science while paying little attention to the nature of science or the nature and function of science that offer explanations of scientific phenomena. In this study, I describe how science teachers made decisions about what to include or not include about sexuality in a life science classroom and the discursive frameworks that shaped these decisions. I also analyzed the ways that these relationships functioned to produce certain truths, or discourses. The current trends in research concerning SSI are pointing to understanding how controversial issues are framed according to personal philosophies, identities, and teaching approaches. If we can understand science teachers' inner aspects as they relate to sexuality education, we can also understand the deep-seeded motivations behind how these specific issues are being taught. In science classrooms where a discussion of the body is part of the curriculum, specific discourses of the body and sex/sexuality are excluded. In this study, I describe how science teachers made decisions about what to include or not include about sexuality in a life science classroom and the discursive practices that shaped these decisions.

  16. Becoming a science teacher: The competing pedagogies of schools and teacher education

    NASA Astrophysics Data System (ADS)

    Rozelle, Jeffrey J.

    A culminating student teaching or internship experience is a central component of nearly every teacher education program and has been for most of teacher education's history. New teachers cite field experience and student teaching as the most beneficial, authentic, or practical aspect of teacher education. Teacher educators, however, have cause to view student teaching skeptically; student teachers often move away from the reform-minded practices espoused in teacher education. This multi-site ethnographic study investigated a full-year internship experience for six science interns at three diverse high schools as part of a teacher preparation program at a large state university. In taking an ecological perspective, this study documented the dynamic and evolving relationships between interns, cooperating teachers, teacher educators, and the school and classroom contexts. The goals of the study were to describe the changes in interns throughout the course of a year-long internship as a science teacher and to determine the relative influences of the various aspects of the ecology on interns. Data include fieldnotes from 311 hours of participant observation, 38 interviews with interns, cooperating teachers, and teacher educators, and 190 documents including course assignments, evaluations, and reflective journals. Interns' teaching practices were strongly influenced by their cooperating teachers. During the first two months, all six interns "used their mentor's script." When teaching, they attempted to re-enact lessons they witnessed their cooperating teachers enact earlier in the day. This included following the lesson structure, but also borrowing physical mannerisms, representations, anecdotes, and jokes. When interns could no longer follow their cooperating teacher due to an increased teaching load, they "followed their mentors' patterns"---implementing instruction that emphasized similar strategies---regardless of whether they were experiencing success in the

  17. Real Science for Real Science Teachers: Providing Astrobiology Science Content and Contemporary Pedagogy for Today's Educators Online

    NASA Astrophysics Data System (ADS)

    Offerdahl, E. G.; Prather, E. E.; Slater, T. F.

    2003-12-01

    As teachers strive to improve the way science is taught in the classroom, many are turning to the interdisciplinary science of astrobiology as a way integrate inquiry effectively in the science classroom. However, it is generally recognized that teachers do not often have easy access to understandable and usable cutting-edge science to enrich their science lessons. Through the generous support of the NASA Astrobiology Institute (NAI), middle and high school teachers have the opportunity to learn current and provocative scientific results within the context of astrobiology as well as receive training in pedagogically sound methods of incorporating astrobiology appropriately in the classroom. In Astrobiology for Teachers, a 15-week on-line distance learning course co-sponsored by NAI, the National Science Teachers Association (NSTA) Professional Development Institute, National Teachers Enhancement Network (NTEN), Montana State University, and the Department of Astronomy at University of Arizona, teachers engage in a virtual classroom facilitated by an integrated teaching team of educators and scientists using a standards-based, inquiry curriculum. The collaborative nature of the course encourages, demonstrates, and enhances a professional exchange among scientists and educators which, in turn, fosters implementation of innovative science teaching in today's classroom.

  18. Creating Science Education Specialists and Scientific Literacy in Students through a Successful Partnership among Scientists, Science Teachers, and Education Researchers

    NASA Astrophysics Data System (ADS)

    Metoyer, S.; Prouhet, T.; Radencic, S.

    2007-12-01

    The nature of science and the nature of learning are often assumed to have little practical relationship to each other. Scientists conduct research and science teachers teach. Rarely do the scientist and the science teacher have an opportunity to learn from each other. Here we describe results from a program funded by NSF, the Information Technology in Science (ITS) Center for Teaching and Learning. The ITS Center provided the support and structure necessary for successful long-term collaboration among scientists, science teachers, and education researchers that has resulted in the creation of new science education specialists. These specialists are not only among the science teachers, but also include avid recruits to science education from the scientists themselves. Science teachers returned to their classrooms armed with new knowledge of content, inquiry, and ideas for technology tools that could support and enhance students' scientific literacy. Teachers developed and implemented action research plans as a means of exploring educational outcomes of their use and understanding of new technologies and inquiry applied to the classroom. In other words, they tried something different in the class related to authentic inquiry and technology. They then assessed the students' to determine if there was an impact to the students in some way. Many of the scientists, on the other hand, report that they have modified their instructional practices for undergraduate courses based on their experiences with the teachers and the ITS Center. Some joined other collaborative projects pairing scientists and educators. And, many of the scientists continue on-going communication with the science teachers serving as mentors, collaborators, and as an "expert" source for the students to ask questions to. In order to convey the success of this partnership, we illustrate and discuss four interdependent components. First, costs and benefits to the science teacher are discussed through case

  19. Integrating art into science education: a survey of science teachers' practices

    NASA Astrophysics Data System (ADS)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  20. Accomplishing the Visions for Teacher Education Programs Advocated in the National Science Education Standards

    NASA Astrophysics Data System (ADS)

    Akcay, Hakan; Yager, Robert

    2010-10-01

    The purpose of this study was to investigate the advantages of an approach to instruction using current problems and issues as curriculum organizers and illustrating how teaching must change to accomplish real learning. The study sample consisted of 41 preservice science teachers (13 males and 28 females) in a model science teacher education program. Both qualitative and quantitative research methods were used to determine success with science discipline-specific “Societal and Educational Applications” courses as one part of a total science teacher education program at a large Midwestern university. Students were involved with idea generation, consideration of multiple points of views, collaborative inquiries, and problem solving. All of these factors promoted grounded instruction using constructivist perspectives that situated science with actual experiences in the lives of students.

  1. The effects of two secondary science teacher education program structures on teachers' habits of mind and action

    NASA Astrophysics Data System (ADS)

    Bergman, Daniel Jay

    2007-12-01

    This study investigated the effects of the Iowa State University Secondary Science Teacher Education Program (ISU SSTEP) on the educational goals and habits of mind exhibited by its graduates. Ten teachers from ISU SSTEP participated in the study---five from the former program featuring one semester of science teaching methods, five from the current program featuring three semesters of science teaching methods (four for the graduate certification consortium). A naturalistic inquiry research approach included the following methods used with each teacher: three classroom observations, classroom artifact analysis, teacher questionnaires and semi-structured interviews, and questionnaires for students about perceived emphasis of educational goals. Evidence exists that graduates from the current ISU SSTEP format exhibited a closer match to the educational goals promoted, modeled, and advocated by the science teaching methods faculty. Graduates from the current ISU SSTEP also exhibited a closer match to the habits of mind---understanding, action, reflection, action plan for improvement---promoted and modeled by the program. This study has implications for other secondary science teacher education programs, particularly increasing the number of science teaching methods courses; teaching meaningful content of both concepts and skills through a research-based framework; modeling the appropriate teacher behaviors, strategies, habits, and goal promotion by methods instructors; and addressing issues of institutional constraints experienced by future teachers.

  2. Modelling the Sociocultural Contexts of Science Education: The Teachers' Perspective

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser

    2013-02-01

    A growing body of research argues that teachers' beliefs and practices should be studied within the sociocultural contexts of their work because the relationship between their beliefs and practices is both complex and context-dependent. There is a need for further research in this area in understudied contexts such as developing countries, in order to promote effective education in schools and the professional development of teachers. This paper argues that if this `black box' of sociocultural contexts in which science teachers are embedded is better understood, it may be possible to identify specific aspects of these contexts related to educational organizations that act as either supports or barriers to pedagogical reform or to implementing innovations in science education. Consequently, the main purpose of this study is to explore the sociocultural contexts of ten Egyptian science teachers and to what extent these sociocultural contexts help in understanding teachers' pedagogical beliefs and practices. This paper, by utilizing a multi-grounded theory approach and qualitative methods, reveals a variety of sociocultural contexts that are related to teachers' pedagogical beliefs and practices.

  3. As an Infused or a Separated Theme? Chinese Science Teacher Educators' Conceptions of Incorporating Nature of Science Instruction in the Courses of Training Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling

    2013-01-01

    Teaching nature of science (NOS) is beginning to find its place in science education in China. This exploratory study interviewed twenty-four Chinese science teacher educators about their conceptions of teaching NOS to pre-service science teachers. Although five dimensions emerged, this paper mainly focuses on reporting the findings relevant to…

  4. Conceptions of Environment in a Continuing Education Course for Science Teachers in Brazil

    ERIC Educational Resources Information Center

    dos Santos Matos, Mauricio; Barbosa, Paulo; Coelho-Matos, Myrna Elisa Chagas

    2012-01-01

    Studies focusing on environmental education and continuing education of science teachers play an important role in the science education area. This research analyzed conceptions of environment in a continuing education course for science teachers developed at the University of Sao Paulo, Brazil. The analysis of the material was made using a…

  5. An Investigation of Pre-Service Science Teachers' Level of Efficacy in the Undergraduate Science Teacher Education Program and Pedagogical Formation Program

    ERIC Educational Resources Information Center

    Çetin, Oguz

    2017-01-01

    The purpose of this research is to comparatively investigate the efficacy levels of pre-service science (Science, Biology, Physics, and Chemistry) teachers enrolled at the Undergraduate Program of Science Teacher Education and Pedagogical Formation Program. A total of 275 pre-service teachers who were studying in different programmes in the…

  6. Enhancing Science and Mathematics Teacher Education: Evaluating an Enhancement Module for Science Pre-Service Teachers

    ERIC Educational Resources Information Center

    Woolcott, Geoff; Whannell, Robert; Pfeiffer, Linda; Yeigh, Tony; Donnelly, James; Scott, Amanda

    2017-01-01

    Motivated and well-trained science and mathematics teachers are a requirement for sustaining an industrialised economy. The Australian government has funded several projects to satisfy this requirement designed to improve pre-service teacher (PST) education in regional and rural Australia. One such project uses a collaboration nexus model with…

  7. Science Teachers' Response to the Digital Education Revolution

    ERIC Educational Resources Information Center

    Nielsen, Wendy; Miller, K. Alex; Hoban, Garry

    2015-01-01

    We report a case study of two highly qualified science teachers as they implemented laptop computers in their Years 9 and 10 science classes at the beginning of the "Digital Education Revolution," Australia's national one-to-one laptop program initiated in 2009. When a large-scale investment is made in a significant educational change,…

  8. Career Education--An Idea Book for Science Teachers.

    ERIC Educational Resources Information Center

    Soper, Joan, Ed.

    The book contains a series of career-oriented ideas for science teachers, contributed by teachers in the East Providence Career Education Project. The ideas are the basis of the interdisciplinary contracting system for grades 7-12 in three pilot schools. They are classified by occupational clusters, which the teachers can use to incorporate their…

  9. Hopes and Fears for Science Teaching: The Possible Selves of Preservice Teachers in a Science Education Program

    NASA Astrophysics Data System (ADS)

    Hong, Ji; Greene, Barbara

    2011-10-01

    Given the high attrition rate of beginning science teachers, it is imperative to better prepare science preservice teachers, so that they can be successful during the early years of their teaching. The purpose of this study was to explore science preservice teachers' views of themselves as a future teacher, in particular their hopes and fears for science teaching and the experiences that help to shape their possible selves. Employed were qualitative methods, which included open-ended surveys and face-to-face interviews. Eleven preservice teachers who enrolled in a secondary science teacher preparation program participated. Findings showed six categories of future selves with the most frequent category being for effective/ineffective science teaching. When their hoped-for and feared selves were not balanced, participants articulated more fears. Regarding the primary influence in shaping their hopes and fears, diverse past experiences related to teaching and learning appeared to be more salient factors than science teacher education program. Given the enriched understanding of the science preservice teachers' perceptions, we provided suggestions for science teacher educators.

  10. Applying a Goal-Driven Model of Science Teacher Cognition to the Resolution of Two Anomalies in Research on the Relationship between Science Teacher Education and Classroom Practice

    ERIC Educational Resources Information Center

    Hutner, Todd L.; Markman, Arthur B.

    2017-01-01

    Two anomalies continue to confound researchers and science teacher educators. First, new science teachers are quick to discard the pedagogy and practices that they learn in their teacher education programs in favor of a traditional, didactic approach to teaching science. Second, a discrepancy exists at all stages of science teachers' careers…

  11. Professional choices and teacher identities in the Science Teacher Education Program at EACH/USP

    NASA Astrophysics Data System (ADS)

    Dominguez, Celi Rodrigues Chaves; Viviani, Luciana Maria; Cazetta, Valéria; Guridi, Verónica Marcela; Faht, Elen Cristina; Pioker, Fabiana Curtopassi; Cubero, Josely

    2015-12-01

    In this article, we present results from a research project in which the main aim was to understand students' decision-making processes in choosing to become a teacher and to make sense of the relationships between this process and the formation of their identity as a teacher. The study was conducted with 39 students from the Science Teacher Education Program (LCN) at the São Paulo University (USP) School of Arts, Sciences, and Humanities (EACH) in Brazil while the students engaged in a supervised practical internship. The data used in this study was collected from narratives written by the students in which they provided their reasons for selecting the LCN program and for choosing a teaching career. The analysis showed several elements contributing to their decision making and the formation of their identities as teachers, including the nature of the undergraduate program, representational models of teaching/teachers, the possibility of being an agent for social transformation, and an affinity toward natural sciences and/or education. Findings from this research offer implications for improvement of the LCN program and suggestions for designing teacher education programs to include actions for improving the teaching career as a life project for new students.

  12. Principles of Professionalism for Science Educators. National Science Teachers Association Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Science educators play a central role in educating, inspiring, and guiding students to become responsible, scientifically literate citizens. Therefore, teachers of science must uphold the highest ethical standards of the profession to earn and maintain the respect, trust, and confidence of students, parents, school leaders, colleagues, and other…

  13. Marketing an Alternate Model for Science and Mathematics Initial Teacher Education

    ERIC Educational Resources Information Center

    Seen, Andrew; Fraser, Sharon P.; Beswick, Kim; Penson, Margaret; Whannell, Robert

    2016-01-01

    An innovative initial teacher education undergraduate degree has been offered for the first time in 2016 at an Australian University. The degree provides for qualification as a secondary science and mathematics teacher through the completion of a four-year-integrated science, mathematics and education program of study where the synergies available…

  14. A Research-Based Science Teacher Education Program for a Competitive Tomorrow

    NASA Astrophysics Data System (ADS)

    Clary, R. M.; Hamil, B.; Beard, D. J.; Chevalier, D.; Dunne, J.; Saebo, S.

    2009-12-01

    A united commitment between the College of Education and the College of Arts and Sciences at Mississippi State University, in partnership with local high-need school districts, has the goal of increasing the number of highly qualified science teachers through authentic science research experiences. The departments of Geosciences, Biological Sciences, Chemistry, and Physics offer undergraduate pre-service teachers laboratory experiences in science research laboratories, including 1) paleontological investigations of Cretaceous environments, 2) NMR studies of the conformation of tachykinin peptides, 3) FHA domains as regulators of cell signaling in plants, 4) intermediate energy nuclear physics studies, and 5) computational studies of cyclic ketene acetals. Coordinated by the Department of Curriculum and Instruction, these research experiences involve extensive laboratory training in which the pre-teacher participants matriculate through a superior education curriculum prior to administrating their individual classrooms. Participants gain valuable experience in 1) performing literature searches and reviews; 2) planning research projects; 3) recording data; 4) presenting laboratory results effectively; and 5) writing professional scientific manuscripts. The research experience is available to pre-service teachers who are science education majors with a declared second major in a science (i.e., geology, biology, physics, or chemistry). Students are employed part-time in various science university laboratories, with work schedules arranged around their individual course loads. While the focus of this endeavor is upon undergraduate pre-service teachers, the researchers also target practicing science teachers from the local high-need school districts. A summer workshop provides practicing science teachers with a summative laboratory experience in several scientific disciplines. Practicing teachers also are provided lesson plans and ideas to transform their classrooms into

  15. The effect of teacher education level, teaching experience, and teaching behaviors on student science achievement

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui

    Previous literature leaves us unanswered questions about whether teaching behaviors mediate the relationship between teacher education level and experience with student science achievement. This study examined this question with 655 students from sixth to eighth grade and their 12 science teachers. Student science achievements were measured at the beginning and end of 2006-2007 school year. Given the cluster sampling of students nested in classrooms, which are nested in teachers, a two-level multilevel model was employed to disentangle the effects from teacher-level and student-level factors. Several findings were discovered in this study. Science teachers possessing of advanced degrees in science or education significantly and positively influenced student science achievement. However, years of teaching experience in science did not directly influence student science achievement. A significant interaction was detected between teachers possessing an advanced degree in science or education and years of teaching science, which was inversely associated to student science achievement. Better teaching behaviors were also positively related to student achievement in science directly, as well as mediated the relationship between student science achievement and both teacher education and experience. Additionally, when examined separately, each teaching behavior variable (teacher engagement, classroom management, and teaching strategies) served as a significant intermediary between both teacher education and experience and student science achievement. The findings of this study are intended to provide insights into the importance of hiring and developing qualified teachers who are better able to help students achieve in science, as well as to direct the emphases of ongoing teacher inservice training.

  16. Art and Science Education Collaboration in a Secondary Teacher Preparation Programme

    ERIC Educational Resources Information Center

    Medina-Jerez, William; Dambekalns, Lydia; Middleton, Kyndra V.

    2012-01-01

    Background and purpose: The purpose of this study was to record and measure the level of involvement and appreciation that prospective teachers in art and science education programmes demonstrated during a four-session integrated activity. Art and science education prospective teachers from a Rocky Mountain region university in the US worked in…

  17. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  18. Searching for a "Pedagogy of Hope": Teacher Education and the Social Sciences

    ERIC Educational Resources Information Center

    Samuel, Michael

    2010-01-01

    I analyse module outlines within a particular school of social sciences located in a faculty of education, and uncover the evolving systems of teaching social sciences in a teacher education curriculum. The data are analysed through two theoretical lenses: firstly, through the lense of models of teacher education and professional development, and…

  19. Opinions of Secondary School Science and Mathematics Teachers on STEM Education

    ERIC Educational Resources Information Center

    Yildirim, Bekir; Türk, Cumhur

    2018-01-01

    In this study, the opinions of middle school science teachers and mathematics teachers towards STEM education were examined. The research was carried out for 30 hours with 28 middle school science and mathematics teachers who were working in Istanbul during the spring semester of 2016-2017 academic year. 75% of these teachers are female teachers…

  20. Science teacher identity and eco-transformation of science education: comparing Western modernism with Confucianism and reflexive Bildung

    NASA Astrophysics Data System (ADS)

    Sjöström, Jesper

    2018-03-01

    This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on `reform-minded' science teachers. The starting point is the paper Science education reform in Confucian learning cultures: teachers' perspectives on policy and practice in Taiwan by Ying-Syuan Huang and Anila Asghar. It highlights several factors that can explain the difficulties of implementing "new pedagogy" in science education. One important factor is Confucian values and traditions, which seem to both hinder and support the science teachers' implementation of inquiry-based and learner-centered approaches. In this article Confucianism is compared with other learning cultures and also discussed in relation to different worldviews and educational philosophies in science education. Just like for the central/north European educational tradition called Bildung, there are various interpretations of Confucianism. However, both have subcultures (e.g. reflexive Bildung and Neo-Confucianism) with similarities that are highlighted in this article. If an "old pedagogy" in science education is related to essentialism, rationalist-objectivist focus, and a hierarchical configuration, the so called "new pedagogy" is often related to progressivism, modernism, utilitarianism, and a professional configuration. Reflexive Bildung problematizes the values associated with such a "new pedagogy" and can be described with labels such as post-positivism, reconstructionism and problematizing/critical configurations. Different educational approaches in science education, and corresponding eco-identities, are commented on in relation to transformation of educational practice.

  1. Looking at the Mirror: A Self-Study of Science Teacher Educators' PCK for Teaching Teachers

    ERIC Educational Resources Information Center

    Demirdögen, Betül; Aydin, Sevgi; Tarkin, Aysegül

    2015-01-01

    In this self-study, we aimed to delve into how re-designing and teaching re-designed practicum course offered to pre-service teachers (PTs) enriched our, as science teacher educators, development of pedagogical content knowledge (PCK) for teaching science teachers. This self-study was conducted during a compulsory practicum course in which we…

  2. Views of collaboration among administrators and teachers involved in science education reform

    NASA Astrophysics Data System (ADS)

    Trax, Mark Francis

    The purposes of this study were to investigate the perceptions of collaboration among administrators and teachers involved in science education reform, determine similarities and difference in perception among administrators and teachers, and examine the progress of district reform efforts in terms of reform recommendations advanced in the research literature. Naturalistic constructivist theory guided the generation of the instruments and the analysis of data. Instruments for this investigation included a questionnaire and structured surveys. Audio-taped responses to the surveys were transcribed and analyzed for patterns of interaction. Support for science teacher collaboration and science education reform depended on the district's overall organizational style (classified as top-down, bottom-up, or a combination of these two styles), was connected to the level of commitment of the sciences teachers and administrators interviewed, and was linked to the level of solidarity for that support among teachers and administrators in the district. Reform-oriented districts addressed resource allocation in ways that supported science education reform. Science teachers, identified as the agents for educational reform, facilitated the overall process by providing specific evidence in support of reform, recruiting teachers and administrators to a reform-oriented agenda, and creating close-knit cadres engaged in the reform process. District activities in support of science education reforms which reflect the overall school reform recommendations maintained their focus provided that such activities were monitored and adjusted to furnish opportunities to include all the district science teachers, utilized a committed cadre of science teachers that supported the overall recommendations, and facilitated the inclusion of all district staff in the overall process. For success, it is important for the staff in each district to identify a clear need and establish a high level of

  3. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    NASA Astrophysics Data System (ADS)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  4. Toward a gender-sensitive model of science teacher education for women primary and early childhood teachers

    NASA Astrophysics Data System (ADS)

    Bearlin, Margaret

    1990-01-01

    Female teachers predominate in primary schools, and tend both to have more negative perceptions of their teaching skills in the physical sciences than males, and to expect girls to perform less well in these areas than boys, with likely serious consequences for girls. In this context the WASTE (Women and Science Teacher Education) Project sought to identify characteristics for teacher education programs which, in the opinion of their conveners, were productive in changing the attitude toward the teaching of science, or in changing the actual mode of teaching science, of women preservice and practising teachers. This paper reports the findings of the WASTE Project which surveyed the conveners of pre- and inservice programs and outlined the three models of exemplary practice used to classify responses: subject-centred, learner-centred and knowledge and person-centred. These models were based largely on differing explanations given for attitude change and on implicit concepts of knowledge, persons, and teaching and learning, and on the importance attributed to gender as a variable. Secondly, it shows how the Primary and Early Childhood Science and Technology Education Project, a gender-sensitive action-research project, was built on these findings. Finally, using these models, it offers a critique of the gender perspective of the Discipline Review of Teacher Education (DEET, 1989).

  5. Collaboration between science teacher educators and science faculty from arts and sciences for the purpose of developing a middle childhood science teacher education program: A case study

    NASA Astrophysics Data System (ADS)

    Buck, Gayle A.

    1998-12-01

    The science teacher educators at a midwestern university set a goal to establish a collaborative relationship between themselves and representatives from the College of Arts & Sciences for the purpose of developing a middle childhood science education program. The coming together of these two faculties provided a unique opportunity to explore the issues and experiences that emerge as such a collaborative relationship is formed. In order to gain a holistic perspective of the collaboration, a phenomenological case study design and methods were utilized. The study took a qualitative approach to allow the experiences and issues to emerge in a naturalistic manner. The question, 'What are the issues and experiences that emerge as science teacher educators and science faculty attempt to form a collaborative relationship for the purpose of developing a middle childhood science teacher program?' was answered by gathering a wealth of data. These data were collected by means of semi-structured interviews, observations and written document reviews. An overall picture was painted of the case by means of heuristic, phenomenological, and issues analyses. The researcher followed Moustakas' Phases of Heuristic Research to answer the questions 'What does science mean to me?' and 'What are my beliefs about the issues guiding this case?' prior to completing the phenomenological analysis. The phenomenological analysis followed Moustakas' 'Modification of the Van Kaam Methods of Analysis of Phenomenological Data'. This inquiry showed that the participants in this study came to the collaboration for many different reasons and ideas about the purpose for such a relationship. The participants also had very different ideas about how such a relationship should be conducted. These differences combined to create some issues that affected the development of curriculum and instruction. The issues involved the lack of (a) mutual respect for the work of the partners, (b) understanding about the

  6. The enlightenment revolution: A historical study of positive change through science teacher education

    NASA Astrophysics Data System (ADS)

    Rillero, Peter

    1993-03-01

    The impact of Pestalozzian theory as embodied in object teaching was only significantly felt in America when teacher-education institutions began teaching the spirit and techniques of this method. Sheldon and his colleagues helped spread object teaching across America by utilizing inservice teacher education, preservice teacher education, a Practice School, and education of teacher educators. This enlightenment in education shifted the instructional focus to the child, stressing activity and concrete experiences, rather than dull rote memorization. Elementary school science evolved from object teaching, and methods of science instruction were influenced by the object teaching movement. Educational reform may never again occur as swiftly or as dramatically; however, the message is clear: Significant, meaningful change can occur in schools through teacher education.

  7. The Associating Abilities of Pre-Service Teachers Science Education Program Acquisitions with Engineering According to STEM Education

    ERIC Educational Resources Information Center

    Sumen, Ozlem Ozcakir; Calisici, Hamza

    2016-01-01

    The aim of this study is to determine the associating abilities of elementary education pre-service teachers science education program acquisitions with engineering using STEM education. In the study which is a case study, firstly pre-service teachers were trained about the STEM education approach. Then "Elementary School Science Education…

  8. Teachers' Nature of Science Implementation Practices 2-5 Years after Having Completed an Intensive Science Education Program

    ERIC Educational Resources Information Center

    Herman, Benjamin C.; Clough, Michael P.; Olson, Joanne K.

    2013-01-01

    Few, if any, studies have examined the impact of nature of science (NOS) instruction on science teachers' practices 2 or more years after completing a science teacher education program. Extant studies on preservice and first-year teachers' NOS teaching practices have had disappointing results, with few teachers valuing NOS as a cognitive objective…

  9. Teachers' Voices on Integrating Metacognition into Science Education

    NASA Astrophysics Data System (ADS)

    Ben-David, Adi; Orion, Nir

    2013-12-01

    This study is an attempt to gain new insight, on behalf of science teachers, into the integration of metacognition (MC) into science education. Participants were 44 elementary school science teachers attending an in-service teacher-training (INST) program. Data collection was carried out by several data sources: recordings of all verbal discussions that took place during the program, teachers' written reflections, and semi-structured individual interviews. Our study provides a qualitative analysis of the 44 teachers' voices as a group, as well as a detailed case-study narrative analysis of three teachers' stories The findings show that the teachers' intuitive (pre-instructional) thinking was incomplete and unsatisfactory and their voices were skeptical and against the integration of MC. After teachers had mastered the notion of MC in the INST program, the following outcomes have been identified: (a) teachers expressed amazement at how such an important and relevant issue had been almost invisible to them; (b) teachers identified the affective character of metacognitive experiences as the most significant facet of MC, which acts as a mediator between teaching and learning; (c) the complete lack of learning materials addressing MC and the absence of supportive in-classroom guidance were identified as the major obstacles for its implementation; (d) teachers expressed a willingness to continue their professional development toward expanding their abilities to integrate MC as an inseparable component of the science curriculum. The implications of the findings for professional development courses in the field of MC are discussed.

  10. Science Teachers' Interpretations of Islamic Culture Related to Science Education versus the Islamic Epistemology and Ontology of Science

    ERIC Educational Resources Information Center

    Mansour, Nasser

    2010-01-01

    The debate about Islam and science extends to a debate about the relationship between Islam and science education. In this paper, I explore Egyptian teachers' views of the relationship between science and religion within the Islamic context. Teachers' key vision of the relationship between science and religion was that "religion comes first…

  11. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  12. Working Alongside Scientists. Impacts on Primary Teacher Beliefs and Knowledge About Science and Science Education

    NASA Astrophysics Data System (ADS)

    Anderson, Dayle; Moeed, Azra

    2017-05-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.

  13. Design of Chemistry Teacher Education Course on Nature of Science

    ERIC Educational Resources Information Center

    Vesterinen, Veli-Matti; Aksela, Maija

    2013-01-01

    To enhance students' understanding of nature of science (NOS), teachers need adequate pedagogical content knowledge related to NOS. The educational design research study presented here describes the design and development of a pre-service chemistry teacher education course on NOS instruction. The study documents two iterative cycles of…

  14. Science education reform in Confucian learning cultures: teachers' perspectives on policy and practice in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Ying-Syuan; Asghar, Anila

    2018-03-01

    This empirical study investigates secondary science teachers' perspectives on science education reform in Taiwan and reflects how these teachers have been negotiating constructivist and learner-centered pedagogical approaches in contemporary science education. It also explores the challenges that teachers encounter while shifting their pedagogical focus from traditional approaches to teaching science to an active engagement in students' learning. Multiple sources of qualitative data were obtained, including individual interviews with science teachers and teachers' reflective journals about Confucianism in relation to their educational philosophies. Thematic analysis and constant comparative method were used to analyze the data. The findings revealed that Confucian traditions play a significant role in shaping educational practices in Taiwan and profoundly influence teachers' epistemological beliefs and their actual classroom practice. Indeed, science teachers' perspectives on Confucian learning traditions played a key role in supporting or obstructing their pedagogical commitments to inquiry-based and learner-centered approaches. This study draws on the literature concerning teachers' professional struggles and identity construction during educational reform. Specifically, we explore the ways in which teachers respond to educational changes and negotiate their professional identities. We employed various theories of identity construction to understand teachers' struggles and challenges while wrestling with competing traditional and reform-based pedagogical approaches. Attending to these struggles and the ways in which they inform the development of a teacher's professional identity is vital for sustaining current and future educational reform in Taiwan as well as in other Eastern cultures. These findings have important implications for teachers' professional development programs in East Asian cultures.

  15. The Use of Journal Clubs in Science Teacher Education

    ERIC Educational Resources Information Center

    Tallman, Karen A.; Feldman, Allan

    2016-01-01

    This qualitative study explored how in a 7-month-long journal club pre- and inservice science teachers engaged with education research literature relevant to their practice to reduce the theory-practice gap. In the journal club they had the opportunity to critique and analyze peer-reviewed science education articles in the context of their…

  16. Turkish Science Teachers' Use of Educational Research and Resources

    ERIC Educational Resources Information Center

    Ilhan, Nail; Sözbilir, Mustafa; Sekerci, Ali Riza; Yildirim, Ali

    2015-01-01

    Research results demonstrate that there is a gap between educational research and practice. Turkey is not an exception in this case. This study aims to examine to what extent and how educational research and resources are being followed,understood and used in classroom practices by science teachers in Turkey. A sample of 968 science teachers…

  17. The Design of Preservice Primary Teacher Education Science Subjects: The Emergence of an Interactive Educational Design Model

    ERIC Educational Resources Information Center

    McKinnon, David H.; Danaia, Lena; Deehan, James

    2017-01-01

    Over the past 20 years there have been numerous calls in Australia and beyond for extensive educational reforms to preservice teacher education in the sciences. Recommendations for science teacher education programs to integrate curriculum, instruction and assessment are at the forefront of such reforms. In this paper, we describe our scholarly…

  18. Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying

    2009-01-01

    The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…

  19. Investigation of Pre-Service Science Teachers' Attitudes towards Sustainable Environmental Education

    ERIC Educational Resources Information Center

    Keles, Özgül

    2017-01-01

    The purpose of the current study is to investigate pre-service science teachers' sustainable environmental education attitudes and the factors affecting them in terms of some variables (gender and grade level). The study group of the current research is comprised of 154 pre-service teachers attending the Department of Science Education in the…

  20. Every teacher an English teacher? Literacy strategy teaching and research in the content area of science education

    NASA Astrophysics Data System (ADS)

    Buckingham, Thomas

    Recent statements from teachers of English and literacy (NCTE, 2007) have voiced the failure of schools to help minority students and ELLs close the literacy achievement gap and the responsibility of all teachers to help with this endeavor. Central to this effort in secondary schools are the content area teachers, as their subjects constitute the bulk of school day instruction. While there have been small studies and field reports of what content teachers are or are not teaching in the way of literacy instruction (Fisher and Ivey, 2005; Verplaste, 1996, 1998; Vacca and Vacca 1989), researchers have not had success measuring the literacy practices of content area teachers in a broad-based study. This study focuses specifically on what many researchers in both the content literacy and ESL fields have emphasized for promoting literacy in the classroom---teaching metacognitive strategies. Twelve metacognitive functions derived from a literacy strategies handbook are employed as a means to ascertain strategy usage within the lessons whether specifically known content strategies are named or not. The initial analysis is performed on over 100 lesson plans hosted at four prominent university science education sites, all within a five year period (2003-7). In addition to the lesson plan analysis, a review of 100 articles taken from five on-line science education journals reveal what the science education field addresses this issue. Findings suggest that while 80% of science teachers include some type of strategic teaching and learning in their lessons, only about 20% of science teachers explicitly utilize strategies as listed in content literacy manuals and promoted by literacy and ESL experts. Rather, most science teachers implicitly include these strategies within their lessons and/or promote their own subject-specific strategies in content teaching. Analysis of science education research and publications shows that there is a focus on literacy and specifically strategic

  1. Teacher content knowledge in the context of science education reform

    NASA Astrophysics Data System (ADS)

    Doby, Janice Kay

    1997-12-01

    The decline of science education in elementary schools has been well documented. While numerous efforts have been made for the purpose of reforming science education, most of those efforts have targeted science programs, assessment techniques, and setting national, state, and local standards, stressing teacher accountability for meeting those standards. However, inadequate science content knowledge of preservice teachers limits their ability to master effective teaching strategies, and also may foster negative attitudes toward science and science teaching. It is, therefore, highly unlikely that any significant reform in science education will be realized until this major underlying problem is addressed and resolved. The purpose of this study was to examine the effects of an experimental elementary science methods course, which employs the use of laser videodisc technology and instructional implications from cognitive science and instructional design, in terms of preservice teacher gains in Earth and physical science content knowledge and locus of control in science. The experimental elementary science methods course was compared to a more traditional approach to the same course which focused primarily on methods of teaching in the physical sciences and other science domains. The experimental and traditional groups were compared before and after treatment in terms of preservice teachers' content knowledge in Earth and physical science and locus ofcontrol in science. Results indicated that the experimental and traditional groups were comparable prior to treatment. The experimental group (89 preservice teachers) responded correctly to 45% of the items on the Elementary Science Concepts Test (ESCT) pretest and the traditional group (78 preservice teachers) responded correctly to 42% of the pretest items, the difference between groups being nonsignificant. Further, the experimental and traditional groups scored similarly on the pre-assessment of locus of control in

  2. A Review of Relationship between Prospective Science Teachers' Attitudes towards Science Education and Their Self-Efficacy

    ERIC Educational Resources Information Center

    Türer, Betül; Kunt, Halil

    2015-01-01

    In this research, we aim to review relationship between prospective science teachers' attitudes against science education (physics, chemistry, biology, laboratory) and their self-efficacy. Population of the research constitutes 497 students studying Science Education in Department of Elementary Education in Celal Bayar University Faculty of…

  3. Teacher Responses to Learning Cycle Science Lessons for Early Childhood Education

    NASA Astrophysics Data System (ADS)

    Kraemer, Emily N.

    Three learning cycle science lessons were developed for preschoolers in an early childhood children's center in Costa Mesa, California. The lessons were field tested by both novice and experienced teachers with children ranging from three to five years old. Teachers were then interviewed informally to collect feedback on the structure and flow the lessons. The feedback was encouraging remarks towards the use of learning cycle science lessons for early childhood educators. Adjustments were made to the lessons based on teacher feedback. The lessons and their implications for preschool education are discussed.

  4. The Pedagogy of Argumentation in Science Education: Science Teachers' Instructional Practices

    ERIC Educational Resources Information Center

    Özdem Yilmaz, Yasemin; Cakiroglu, Jale; Ertepinar, Hamide; Erduran, Sibel

    2017-01-01

    Argumentation has been a prominent concern in science education research and a common goal in science curriculum in many countries over the past decade. With reference to this goal, policy documents burden responsibilities on science teachers, such as involving students in dialogues and being guides in students' spoken or written argumentation.…

  5. Innovating Science Teacher Education: A History and Philosophy of Science Perspective

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2010-01-01

    How teachers view the nature of scientific knowledge is crucial to their understanding of science content and how it can be taught. This book presents an overview of the dynamics of scientific progress and its relationship to the history and philosophy of science, and then explores their methodological and educational implications and develops…

  6. Focusing on the Classical or Contemporary? Chinese Science Teacher Educators' Conceptions of Nature of Science Content to Be Taught to Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling; Wei, Bing; Zhan, Ying

    2013-01-01

    Drawing from the phenomenographic perspective, an exploratory study investigated Chinese teacher educators' conceptions of teaching Nature of Science (NOS) to pre-service science teachers through semi-structured interviews. Five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content to be taught to pre-service…

  7. Integrating Sustainable Development Concept into Science Education Program Is Not Enough; We Need Competent Science Teachers for Education for Sustainable Development--Turkish Experience

    ERIC Educational Resources Information Center

    Karaarslan, Güliz; Teksöz, Gaye

    2016-01-01

    In order to educate science teachers for a sustainable future, recent discussions are going on related to collaboration between science education and education for sustainable development (ESD). Still, ESD has been in a development stage and needs to be improved in terms of developing teacher competencies. Therefore, in this study we focused on…

  8. Scientists are from Mars, educators are from Venus: Relationships in the ecosystem of science teacher preparation

    NASA Astrophysics Data System (ADS)

    Duggan-Haas, Don Andrew

    2000-10-01

    Great problems exist in science teaching from kindergarten through the college level (NRC, 1996; NSF, 1996). The problem may be attributed to the failure of teachers to integrate their own understanding of science content with appropriate pedagogy (Shulman, 1986, 1987). All teachers were trained by college faculty and therefore some of the blame for these problems rests on those faculty. This dissertation presents three models for describing secondary science teacher preparation. Two Programs, Two Cultures adapts C. P. Snow's classic work (1959) to describe the work of a science teacher candidate as that of an individual who navigates between two discrete programs: one in college science and the second in teacher education. The second model, Scientists Are from Mars, Educators Are from Venus adapts the popular work of John Gray to describe the system of science teacher education as hobbled by the dysfunctional relationships among the major players and describes the teacher as progeny from this relationship. The third model, The Ecosystem of Science Teacher Preparation reveals some of the deeper complexities of science teacher education and posits that the traditional college science approach treats students as a monoculture when great diversity in fact exists. The three models are described in the context of a large Midwestern university's teacher education program as that program is construed for future biology teachers. Four undergraduate courses typically taken by future biology teachers were observed and described: an introductory biology course; an introductory teacher education course; an upper division course in biochemistry and a senior level science teaching methods course. Seven second semester seniors who were biological Science majors were interviewed. All seven students had taken all of the courses observed. An organization of scientists and educators working together to improve science teaching from kindergarten through graduate school is also

  9. Developing a Material-Dialogic Approach to Pedagogy to Guide Science Teacher Education

    ERIC Educational Resources Information Center

    Hetherington, Lindsay; Wegerif, Rupert

    2018-01-01

    Dialogic pedagogy is being promoted in science teacher education but the literature on dialogic pedagogy tends to focus on explicit voices, and so runs the risk of overlooking the important role that material objects often play in science education. In this paper we use the findings of a teacher survey and classroom case study to argue that there…

  10. Inservice Science Supervisors' Assessments of a Novice Science Teacher's Videotaped Lesson.

    ERIC Educational Resources Information Center

    Zuckerman, June Trop

    The purpose of this paper is to inform novice science teachers and science teacher educators of the pedagogy that science teacher supervisors value. As expert practitioners, supervisors have a perspective quite different from that of both novice teachers and teacher educators. Nine inservice science teacher supervisors assessed a novice teacher's…

  11. Promoting Issues-based STSE Perspectives in Science Teacher Education: Problems of Identity and Ideology

    NASA Astrophysics Data System (ADS)

    Pedretti, Erminia G.; Bencze, Larry; Hewitt, Jim; Romkey, Lisa; Jivraj, Ashifa

    2008-09-01

    Although science, technology, society and environment (STSE) education has gained considerable force in the past few years, it has made fewer strides in practice. We suggest that science teacher identity plays a role in the adoption of STSE perspectives. Simply put, issues-based STSE education challenges traditional images of a science teacher and science instructional ideologies. In this paper, we briefly describe the development of a multimedia documentary depicting issues-based STSE education in a teacher’s class and its subsequent implementation with 64 secondary student-teachers at a large Canadian university. Specifically, we set out to explore: (1) science teacher candidates’ responses to a case of issues-based STSE teaching, and (2) how science teacher identity intersects with the adoption of STSE perspectives. Findings reveal that although teacher candidates expressed confidence and motivation regarding teaching STSE, they also indicated decreased likelihood to teach these perspectives in their early years of teaching. Particular tensions or problems of practice consistently emerged that helped explain this paradox including issues related to: control and autonomy; support and belonging; expertise and negotiating curriculum; politicization and action; and biases and ideological bents. We conclude our paper with a discussion regarding the lessons learned about STSE education, teacher identity and the role of multimedia case methods.

  12. Education for sustainable development - Resources for physics and sciences teachers

    NASA Astrophysics Data System (ADS)

    Miličić, Dragana; Jokić, Ljiljana; Blagdanić, Sanja; Jokić, Stevan

    2016-03-01

    With this article we would like to stress science teachers must doing practical work and communicate on the basis of scientific knowledge and developments, but also allow their students opportunity to discover knowledge through inquiry. During the last five years Serbian project Ruka u testu (semi-mirror of the French project La main á la pâte), as well as European FIBONACCI and SUSTAIN projects have offered to our teachers the wide-scale learning opportunities based on Inquiry Based Science Education (IBSE) and Education for Sustainable Development (ESD). Our current efforts are based on pedagogical guidance, several modules and experimental kits, the website, exhibitions, and trainings and workshops for students and teachers.

  13. Science Coursework and Pedagogical Beliefs of Science Teachers: The Case of Science Teachers in the Philippines

    ERIC Educational Resources Information Center

    Macugay, Eva B.; Bernardo, Allan B. I.

    2013-01-01

    Science coursework is an important element of the pre-service education of science teachers. In this study we test the hypothesis that more science coursework influences pedagogical beliefs of science teachers by studying the pedagogical beliefs of 305 Filipino science teachers. We compared pedagogical beliefs of primary school (less science…

  14. Science Teachers' Perception on Multicultural Education Literacy and Curriculum Practices

    ERIC Educational Resources Information Center

    Huang, Hsiu-Ping; Cheng, Ying-Yao; Yang, Cheng-Fu

    2017-01-01

    This study aimed to explore the current status of teachers' multicultural education literacy and multicultural curriculum practices, with a total of 274 elementary school science teachers from Taitung County as survey participants. The questionnaire used a Likert-type four-point scale which content included the teachers' perception of…

  15. A Study of Micro-Teaching in the Preservice Education of Science Teachers.

    ERIC Educational Resources Information Center

    Goldwaite, Daniel Thaddeus

    The effectiveness of microteaching techniques for improving presentation of science demonstrations by perspective science teachers was investigated. Three groups of students of ten members each were randomly selected from professional education courses for science teachers. Group A students presented two trials of two different demonstrations.…

  16. Educating Tomorrow's Science Teachers: STEM ACT Conference Report

    ERIC Educational Resources Information Center

    Sternheim, Morton M.; Feldman, Allan; Berger, Joseph B.; Zhao, Yijie

    2008-01-01

    This document reports on the findings of an NSF-funded conference (STEM ACT) on the alternative certification of science teachers. The conference explored the issues that have arisen in science education as a result of the proliferation of alternative certification programs in the United States, and to identify the research that needs to be done…

  17. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    NASA Astrophysics Data System (ADS)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  18. Turkish Preservice Primary School Teachers' Science Teaching Efficacy Beliefs and Attitudes toward Science: The Effect of a Primary Teacher Education Program

    ERIC Educational Resources Information Center

    Bayraktar, Sule

    2011-01-01

    The main purpose of this study was to investigate the effectiveness of a primary teacher education program in improving science teaching efficacy beliefs (personal science teaching efficacy beliefs and outcome expectancy beliefs) of preservice primary school teachers. The study also investigated whether the program has an effect on student…

  19. Collaborative Partnerships: A Model for Science Teacher Education and Professional Development

    ERIC Educational Resources Information Center

    Jones, Mellita M.

    2008-01-01

    This paper proposes a collaborative partnership between practicing and pre-service teachers as a model for implementing science teacher education and professional development. This model provides a structure within which partnerships will work collaboratively to plan, implement and reflect on a series of Science lessons in cycles of…

  20. Determination of Science Teachers' Opinions about Outdoor Education

    ERIC Educational Resources Information Center

    Kubat, Ulas

    2017-01-01

    The aim of this research is to discover what science teachers' opinions about outdoor education learning environments are. Outdoor education learning environments contribute to problem-solving, critical and creative thinking skills of students. For this reason, outdoor education learning environments are very important for students to learn by…

  1. Teaching about Teaching Science: Aims, Strategies, and Backgrounds of Science Teacher Educators

    ERIC Educational Resources Information Center

    Berry, Amanda; Van Driel, Jan H.

    2013-01-01

    Despite pressing concerns about the need to prepare high-quality teachers and the central role of teacher educators (TEs) in this process, little is known about how TEs teach about teaching specific subject matter, and how they develop their expertise. This empirical study focuses on the specific expertise that science TEs bring into teacher…

  2. Beyond Evolution: Addressing Broad Interactions between Science and Religion in Science Teacher Education

    ERIC Educational Resources Information Center

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-01-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion…

  3. Beginning secondary science teachers' instructional use of educational technology during the induction year

    NASA Astrophysics Data System (ADS)

    McNall, Rebecca Lee

    This study explored how 10 beginning secondary science teachers who had completed the newly revised technology-integrated science teacher education program at the University of Virginia used educational technology in their science instruction during the induction year. Nine of the beginning teachers taught in Virginia or Maryland high schools, while one taught overseas in an international school. Participants taught biology, earth science, chemistry, physics, or general science. A revised version of the Technology Usage and Needs of Science Teachers survey (Pedersen & Yerrick, 2000) was administered to all 10 participants in early fall 2002 and late spring 2003 to assess their confidence using educational technology tools in teaching science. Follow-up interviews were conducted with all participants subsequent to survey administration to explore their views toward educational technology as an instructional tool, their use of educational technology in science instruction, and factors influencing their use. In addition, four participants were purposefully selected to characterize participants' instructional use of educational technology and to increase the likelihood of observing its use. Selection criteria of this subgroup included factors summarized from the research literature: (a) high confidence using educational technology, (b) strong intent to use educational technology instructionally, (c) access to technology tools, and (d) collegial or technology support. Survey responses were analyzed using descriptive statistics, and interview and classroom observation data were analyzed using analytic induction methods developed by Erickson (1986). Analysis of survey responses indicated that participants were confident using educational technology tools in science instruction and were most confident using word processing, spreadsheets, PowerPoint, and telecommunications applications. Classroom observations and interview responses indicated that participants used

  4. Science Education Reform in Confucian Learning Cultures: Teachers' Perspectives on Policy and Practice in Taiwan

    ERIC Educational Resources Information Center

    Huang, Ying-Syuan; Asghar, Anila

    2018-01-01

    This empirical study investigates secondary science teachers' perspectives on science education reform in Taiwan and reflects how these teachers have been negotiating constructivist and learner-centered pedagogical approaches in contemporary science education. It also explores the challenges that teachers encounter while shifting their pedagogical…

  5. Educating science teachers for sustainability: questions, contradictions and possibilities for rethinking learning and pedagogy

    NASA Astrophysics Data System (ADS)

    Rahm, Jrène; Gorges, Anna

    2017-09-01

    In this review, we explore what educating science teachers for sustainability implies according to the 23 book chapters and many sampled teacher education and science methods courses in the edited book by Susan Stratton, Rita Hagevick, Allan Feldman and Mark Bloom, entitled Educating Science Teachers for Sustainability, published in 2015 by Springer as part of the ASTE Series in Science Education. We situate the review in the current complex landscape of discourses around sustainability education, exploring its grounding in an anthropocentric ideology next to emancipatory practices and a holistic vision of the world. We offer a quick overview of the chapters and themes addressed. We then take up some ideas to think with. We are particularly invested in thinking about the implications of sustainability education as going beyond science teachers and science education, and as implying a serious engagement with and critique of current unsustainable ways of living. We play with the idea of taking sustainability education beyond neoliberal ideals of education and offer some suggestions by bringing in voices of students, youth, land-based learning and the idea of living sustainability. We also explore what indigenous scholars and epistemologies could have contributed to an exploration of sustainability education, a voice that was absent in the book, yet helps desettle the conversation and actions taken, moving the discourse beyond an Eurocentric grounding.

  6. Secondary science teachers' use of the affective domain in science education

    NASA Astrophysics Data System (ADS)

    Grauer, Bette L.

    The purpose of this qualitative case study was to explore (a) the types of student affective responses that secondary science teachers reported emerged in science classes, (b) how those teachers worked with student affective responses, and (c) what interactions were present in the classroom when they worked with student affective responses. The study was motivated by research indicating that student interest and motivation for learning science is low. Eight secondary science teachers participated in the case study. The participants were selected from a pool of teachers who graduated from the same teacher education program at a large Midwest university. The primary sources of data were individual semi-structured interviews with the participants. Krathwohl's Taxonomy of the Affective Domain served as the research framework for the study. Student affective behavior reported by participants was classified within the five levels of Krathwohl's Affective Taxonomy: receiving, responding, valuing, organization, and characterization. Participants in the study reported student behavior representing all levels of the Affective Taxonomy. The types of behavior most frequently reported by participants were identified with the receiving and responding levels of the Affective Taxonomy. Organization behavior emerged during the study of perceived controversial science topics such as evolution. Participants in the study used student affective behavior to provide feedback on their lesson activities and instructional practices. Classroom interactions identified as collaboration and conversation contributed to the development of responding behavior. The researcher identified a process of affective progression in which teachers encouraged and developed student affective behavior changes from receiving to responding levels of the Affective Taxonomy.

  7. Pedagogical perspectives and implicit theories of teaching: First year science teachers emerging from a constructivist science education program

    NASA Astrophysics Data System (ADS)

    Dias, Michael James

    Traditional, teacher-centered pedagogies dominate current teaching practice in science education despite numerous research-based assertions that promote more progressive, student-centered teaching methods. Best-practice research emerging from science education reform efforts promotes experiential, collaborative learning environments in line with the constructivist referent. Thus there is a need to identify specific teacher education program designs that will promote the utilization of constructivist theory among new teachers. This study explored the learning-to-teach process of four first-year high school teachers, all graduates of a constructivist-based science education program known as Teacher Education Environments in Mathematics and Science (TEEMS). Pedagogical perspectives and implicit theories were explored to identify common themes and their relation to the pre-service program and the teaching context. Qualitative methods were employed to gather and analyze the data. In depth, semi-structured interviews (Seidman, 1998) formed the primary data for probing the context and details of the teachers' experience as well as the personal meaning derived from first year practice. Teacher journals and teaching artifacts were utilized to validate and challenge the primary data. Through an open-coding technique (Strauss & Corbin, 1990) codes, and themes were generated from which assertions were made. The pedagogical perspectives apparent among the participants in this study emerged as six patterns in teaching method: (1) utilization of grouping strategies, (2) utilization of techniques that allow the students to help teach, (3) similar format of daily instructional strategy, (4) utilization of techniques intended to promote engagement, (5) utilization of review strategies, (6) assessment by daily monitoring and traditional tests, (7) restructuring content knowledge. Assertions from implicit theory data include: (1) Time constraints and lack of teaching experience made

  8. Science and Technology Teachers' Attitudes towards Educational Research in Turkey

    ERIC Educational Resources Information Center

    Sekerci, Ali Riza; Ilhan, Nail; Mustafa, Sozbilir; Yildirim, Ali

    2017-01-01

    This study reports on the attitudes of science and technology teachers' towards educational research that were investigated and analyzed with respect to certain demographic variables. The survey method was utilized as the research design. The study group consisted of 918 science and technology teachers working in middle schools in the Eastern…

  9. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    ERIC Educational Resources Information Center

    Katz, Phyllis; McGinnis, J. Randy; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-01-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews,…

  10. Early Childhood Pre-Service Teachers' Self-Images of Science Teaching in Constructivism Science Education Courses

    ERIC Educational Resources Information Center

    Go, Youngmi; Kang, Jinju

    2015-01-01

    The purpose of this study is two-fold. First, it investigates the self-images of science teaching held by early childhood pre-service teachers who took constructivism early childhood science education courses. Second, it analyzes what aspects of those courses influenced these images. The participants were eight pre-service teachers who took these…

  11. Challenges and Changes: Developing Teachers' and Initial Teacher Education Students' Understandings of the Nature of Science

    ERIC Educational Resources Information Center

    Ward, Gillian; Haigh, Mavis

    2017-01-01

    Teachers need an understanding of the nature of science (NOS) to enable them to incorporate NOS into their teaching of science. The current study examines the usefulness of a strategy for challenging or changing teachers' understandings of NOS. The teachers who participated in this study were 10 initial teacher education chemistry students and six…

  12. Specifying a curriculum for biopolitical critical literacy in science teacher education: exploring roles for science fiction

    NASA Astrophysics Data System (ADS)

    Gough, Noel

    2017-12-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of biopolitics. I consider how such a biopolitically inflected critical literacy might find expression in a science teacher education curriculum and suggest a number of ways of materializing such a curriculum in specific literatures, media, procedures, and assessment tasks, with particular reference to the contributions of science fiction in popular media.

  13. Inside versus outside the science classroom: examining the positionality of two female science teachers at the boundaries of science education

    NASA Astrophysics Data System (ADS)

    Teo, Tang Wee

    2015-06-01

    The third wave feminist studies in science education take the stance that science teaching is political and that social change is possible through interrogating power inequalities and decentering science to balance out power. For science educators, this means developing an awareness of positionality, which I define here as a stance undertaken by an individual as she or he recognizes and makes sense of the workings of the factors and forces that constitute the politics of her/his context. In this paper, I analyze the positionalities of a female Hispanic American and a female Chinese Singaporean science teacher that influenced the ways in which they interacted with students in the consensual process of science meaning making and relationship building in and outside the classroom. The findings drawn from the analysis of the teachers' transcribed interviews and written reflections show that their personal histories, experiences with social stereotyping and control by authority shaped their positionality. They constructed alternative curriculum spaces empowering themselves and their students to transcend perceived limitations and have voice. However, their positionality did not lead them to question the boundary they saw between the social bias and content of science education. Several implications for teacher education are discussed.

  14. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  15. Reformed Teaching and Learning in Science Education: A Comparative Study of Turkish and US Teachers

    ERIC Educational Resources Information Center

    Ozfidan, Burhan; Cavlazoglu, Baki; Burlbaw, Lynn; Aydin, Hasan

    2017-01-01

    Achievements of educational reform advantage constructivist understandings of teaching and learning, and therefore highlight a shift in beliefs of teachers and apply these perceptions to the real world. Science teachers' beliefs have been crucial in understanding and reforming science education as beliefs of teachers regarding learning and…

  16. Beyond Evolution: Addressing Broad Interactions Between Science and Religion in Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-03-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion interactions so that they may better assist pre- and in-service science teachers with addressing topics such as the age and origins of the universe and biological evolution in an appropriate manner. We first introduce some foundational scholarship into the historical interactions between science and religion as well as current efforts to maintain healthy dialogue between perspectives that are frequently characterized as innately in conflict with or mutually exclusive of one another. Given that biological evolution is the dominant science-religion issue of our day, in particular in the USA, we next summarize the origins and strategies of anti-evolution movements via the rise and persistence of Christian Fundamentalism. We then summarize survey and qualitative sociological research indicating disparities between academic scientists and the general public with regard to religious beliefs to help us further understand our students' worldviews and the challenges they often face in campus-to-classroom transitions. We conclude the essay by providing resources and practical suggestions, including legal considerations, to assist science teacher educators with their curriculum and outreach.

  17. An NSTA Position Statement: International Science Education and the National Science Teachers Association

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2009

    2009-01-01

    The National Science Teachers Association (NSTA) encourages and promotes international science education because it has the ability to improve the teaching and learning of science, as well as to "empower people, improve their quality of life, and increase their capacity to participate in the decision-making processes leading to social, cultural,…

  18. Teacher Professional Develpment That Meets 21st Century Science Education Standards

    NASA Astrophysics Data System (ADS)

    van der Veen, Wil E.; Roelofsen Moody, T.

    2011-01-01

    The National Academies are working with several other groups to develop new National Science Education Standards, with the intention that they will be adopted by all states. It is critical that the science education community uses these new standards when planning teacher professional development and understands the potential implementation challenges. As a first step in developing these new standards, the National Research Council (NRC) recently published a draft Framework for Science Education. This framework describes the major scientific ideas and practices that all students should be familiar with by the end of high school. Following recommendations from the NRC Report "Taking Science to School” (NRC, 2007), it emphasizes the importance of integrating science practices with the learning of science content. These same recommendations influenced the recently revised New Jersey Science Education Standards. Thus, the revised New Jersey standards can be valuable as a case study for curriculum developers and professional development providers. While collaborating with the New Jersey Department of Education on the development of these revised science standards, we identified two critical needs for successful implementation. First, we found that many currently used science activities must be adapted to meet the revised standards and that new activities must be developed. Second, teacher professional development is needed to model the integration of science practices with the learning of science content. With support from the National Space Grant Foundation we developed a week-long Astronomy Institute, which was presented in the summers of 2009 and 2010. We will briefly describe our professional development model and how it helped teachers to bridge the gap between the standards and their current classroom practice. We will provide examples of astronomy activities that were either adapted or developed to meet the new standards. Finally, we will briefly discuss the

  19. Crossing the Border from Science Student to Science Teacher: Preservice Teachers' Views and Experiences Learning to Teach Inquiry

    NASA Astrophysics Data System (ADS)

    Kang, Emily J. S.; Bianchini, Julie A.; Kelly, Gregory J.

    2013-04-01

    Preservice science teachers face numerous challenges in understanding and teaching science as inquiry. Over the course of their teacher education program, they are expected to move from veteran science students with little experience learning their discipline through inquiry instruction to beginning science teachers adept at implementing inquiry in their own classrooms. In this study, we used Aikenhead's (Sci Educ 81: 217-238, 1997, Science Educ 85:180-188, 2001) notion of border crossing to describe this transition preservice teachers must make from science student to science teacher. We examined what one cohort of eight preservice secondary science teachers said, did, and wrote as they both conducted a two-part inquiry investigation and designed an inquiry lesson plan. We conducted two types of qualitative analyses. One, we drew from Costa (Sci Educ 79: 313-333, 1995) to group our preservice teacher participants into one of four types of potential science teachers. Two, we identified successes and struggles in preservice teachers' attempts to negotiate the cultural border between veteran student and beginning teacher. In our implications, we argue that preservice teachers could benefit from explicit opportunities to navigate the border between learning and teaching science; such opportunities could deepen their conceptions of inquiry beyond those exclusively fashioned as either student or teacher.

  20. Professional Development in Climate Science Education as a Model for Navigating the Next Generations Science Standards - A High School Science Teacher's Perspective

    NASA Astrophysics Data System (ADS)

    Manning, C.; Buhr, S. M.

    2012-12-01

    The Next Generation Science Standards attempt to move the American K12 education system into the 21st century by focusing on science and engineering practice, crosscutting concepts, and the core ideas of the different disciplines. Putting these standards into practice will challenge a deeply entrenched system and science educators will need significant financial support from state and local governments, professional development from colleges and universities, and the creation of collegial academic networks that will help solve the many problems that will arise. While all of this sounds overwhelming, there are proven strategies and mechanisms already in place. Educators who tackle challenging topics like global climate change are turning to scientists and other like-minded teachers. Many of these teachers have never taken a class in atmospheric science but are expected to know the basics of climate and understand the emerging science as well. Teachers need scientists to continue to reach out and provide rigorous and in-depth professional development opportunities that enable them to answer difficult student questions and deal with community misconceptions about climate science. Examples of such programs include Earthworks, ICEE (Inspiring Climate Education Excellence) and ESSEA (Earth System Science Education Alliance). Projects like CLEAN (Climate Literacy and Energy Awareness Network) provide excellent resources that teachers can integrate into their lessons. All of these benefit from the umbrella of documents like Climate Literacy: The Essential Principles of Climate Science. Support from the aforementioned networks has encouraged the development of effective approaches for teaching climate science. From the perspective of a Geoscience master teacher and instructional coach, this presentation will demonstrate how scientists, researchers, and science education professionals have created models for professional development that create long-term networks supporting

  1. University Leader Support for Sustained Reform in Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Gobstein, Howard; Bennett, Al; Conoley, Jane; Gottfredson, Michael

    2012-02-01

    A successful science teacher preparation effort requires commitment and collaboration across the university. Over 125 universities in APLU, the Association of Public and Land-grant Universities, have committed to the Science and Mathematics Teacher Imperative (SMTI) to significantly increase the number, quality and diversity of the teachers they produce. This national initiative is designed to galvanize university leadership to work with their faculties in addressing this critical national need. Come to this informal discussion session for pointers and answers to your questions on how to work with university leadership and education faculty.

  2. Science teachers' interpretations of Islamic culture related to science education versus the Islamic epistemology and ontology of science

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser

    2010-03-01

    The debate about Islam and science extends to a debate about the relationship between Islam and science education. In this paper, I explore Egyptian teachers' views of the relationship between science and religion within the Islamic context. Teachers' key vision of the relationship between science and religion was that "religion comes first and science comes next. I will argue that teachers' personal religious beliefs are among the major constructs that drive teachers' ways of thinking and interpretation of scientific issues related with religion. Then, I discuss how teachers' personal religious beliefs have been formed and influenced their pedagogical beliefs related to science and religion issues. Finally, I will argue, how we use the personal religious beliefs model as a framework of teaching/learning scientific issues related with religion within sociocultural (Islamic) context. [InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see fulltext.

  3. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    ERIC Educational Resources Information Center

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-01-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized…

  4. Teacher education professionals as partners in health science outreach.

    PubMed

    Houtz, Lynne E; Kosoko-Lasaki, Omofolasade; Zardetto-Smith, Andrea M; Mu, Keli; Royeen, Charlotte B

    2004-01-01

    Medical school and other health science outreach programs to educate and recruit precollege students always have relied on successful collaborative efforts. Creighton University shares the value, significance, and strategies of involving teacher education professionals in several of its current outreach programs, including HPPI, Brains Rule! Neuroscience Expositions, and HHMI Build a Human Project. The education department partner serves as an essential team member in the development, implementation, assessment, and dissemination of these projects to promote science and mathematics achievement and interest in medical careers. Specific examples and mistakes to avoid are included.

  5. A confluence of traditions: Examining teacher practice in the merging of secondary science and environmental education

    NASA Astrophysics Data System (ADS)

    Astrid, Steele

    Embedding environmental education within secondary science curriculum presents both philosophical and practical difficulties for teachers. This ethnographic/narrative study, with its methodology grounded in eco-feminism and realism/constructivism, examines the work of six secondary science teachers as they engage in an action research project focused on merging environmental education in their science lessons. Over the course of several months the teachers examine and discuss their views and their professional development related to the project. In the place of definitive conclusions, eight propositions relating the work of secondary science teachers to environmental education, form the basis for a discussion of the implications of the study. The implications are particularly relevant to secondary schools in Ontario, Canada, where the embedding of environmental education in science studies has been mandated.

  6. Cultural Memory Banking in Preservice Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Handa, Vicente C.; Tippins, Deborah J.

    2012-12-01

    This study focused on the exemplification of cultural memory banking as an ethnographic tool to understand cultural practices relevant to science teaching and learning in a rural coastal village in a central island of the Philippine archipelago. Using the collaborative action ethnography as a research methodology, 10 prospective science teachers and a science teacher educator/doctoral candidate formed a research team and documented community funds of knowledge relevant to science teaching and learning through their participation in a Community Immersion course. The study employed the use of the cultural memory banking as a meditational tool to analyze, make sense of, and represent interview, focus-group discussion, and observation data, among others, for the development of culturally relevant science lessons. Originally used as an anthropological tool to preserve cultural knowledge associated with the cultivation of indigenous plant varieties, the cultural memory banking, as adapted in science education, was used, both as a data collection and analytic tool, to locate relevant science at the intersection of community life. The research team developed a cultural memory bank exemplar, "Ginamos: The Stinky Smell that Sells," to highlight the learning experiences and meaning-making process of those involved in its development. Dilemmas and insights on the development and use of cultural memory banking were discussed with respect to issues of knowledge mining and mainstreaming of indigenous/local funds of knowledge, troubling the privileged position of Western-inspired nature of science.

  7. Teacher beliefs and cultural models: A challenge for science teacher preparation programs

    NASA Astrophysics Data System (ADS)

    Bryan, Lynn A.; Atwater, Mary M.

    2002-11-01

    The purpose of this paper is to present an argument for developing science teacher education programs that examine teachers' beliefs about multicultural issues and their impact on science teaching and learning. In the paper, we (a) delineate a rationale for the study of teacher beliefs about issues of culture and its impact on science teaching and learning; (b) assert three major categories of teacher beliefs to examine for designing teacher education programs that aim to meet the challenges of increasingly culturally diverse classrooms; and (c) discuss implications for science teacher education programs and research. Research has shown that knowing teachers' beliefs and designing instruction and experiences to explicitly confront those beliefs facilitate refinement of and/or transformation of beliefs and practices (Bryan & Abell, J Res Sci Teaching, 36, 121-140, 1999; Harrington & Hathaway, J Teacher Education, 46, 275-284, 1995; Hollingsworth, Am Educational Res J, 26(2), 160-189, 1989; Olmedo, J Teaching Teacher Education, 13, 245-258, 1997; Tobin & LaMaster, J Res Sci Teaching, 32, 225-242, 1995). Furthermore, prior to student teaching, preservice teachers need to be at least culturally sensitive teachers (Gillette, In Teacher Thinking in Cultural Contexts, F. A. Rios (Ed.); Albany, NY: State University of New York Press; 1996, pp. 104-128). Science educators need to continue to identify those beliefs and practices that undergird desirable and equitable science instruction.

  8. Teachers' Use of Educative Curriculum Materials to Engage Students in Science Practices

    ERIC Educational Resources Information Center

    Arias, Anna Maria; Davis, Elizabeth A.; Marino, John-Carlos; Kademian, Sylvie M.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of integrating science practices into the learning of science. This integration requires sophisticated teaching that does not often happen. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited as a way to support teachers to achieve…

  9. Emotional Climate and High Quality Learning Experiences in Science Teacher Education

    ERIC Educational Resources Information Center

    Bellocchi, Alberto; Ritchie, Stephen M.; Tobin, Kenneth; King, Donna; Sandhu, Maryam; Henderson, Senka

    2014-01-01

    The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study, we explore the emotional climates (ECs), that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality…

  10. Strengthening Mathematics And Science Education (SMASE) For Improving The Quality Of Teachers in Nigeria

    NASA Astrophysics Data System (ADS)

    Shuaibu, Zainab Muhammad

    2016-04-01

    The education system in Nigeria, especially at the basic education level, teachers who teach mathematics and science need to be confident with what they are teaching, they need to have appropriate techniques and strategies of motivating the pupils. If these subjects are not taught well at the basic education level its extraordinarily hard to get them (pupils/students) back to track, no matter what will be done in the secondary and tertiary level. Teachers as the driving force behind improvements in the education system are in the best position to understand and propose solutions to problems faced by students. Teachers must have access to sustainable, high quality professional development in order to improve teaching and student learning. Teachers' professional development in Nigeria, however, has long been criticized for its lack of sustainability and ability to produce effective change in teaching and students achievement. Education theorists today believe that a critical component of educational reform lies in providing teachers with various opportunities and supports structures that encourage ongoing improvement in teachers' pedagogy and discipline-specific content knowledge. However, the ongoing reforms in education sector and the need to refocus the Nigeria education system towards the goal of the National Economical Empowerment and Development Strategies (NEEDS) demand that the existing In-service and Education Training (INSET) in Nigeria be refocused. It is against this premise that an INSET programme aimed at Strengthening Mathematics And Science Education (SMASE) for primary and secondary school teachers was conceived. The relevance of the SMASE INSET according to the Project Design Matrix (PDM) was derived from an In-service aimed at enhancing the quality of teachers in terms of positive attitude, teaching methodology, mastery of content, resource mobilization and utilization of locally available teaching and learning materials. The intervention of

  11. Teachers' voices: A comparison of two secondary science teacher preparation programs

    NASA Astrophysics Data System (ADS)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M-teachers

  12. Barriers, Support, and Collaboration: A Comparison of Science and Agriculture Teachers' Perceptions regarding Integration of Science into the Agricultural Education Curriculum

    ERIC Educational Resources Information Center

    Warnick, Brian K.; Thompson, Gregory W.

    2007-01-01

    This study is part of a larger investigation which focused on determining and comparing the perceptions of agriculture teachers and science teachers on integrating science into agricultural education programs. Science and agriculture teachers' perceptions of barriers to integrating science, the support of stakeholders, and collaboration between…

  13. Science Education in the Rural United States. Implications for the Twenty-First Century. A Yearbook of the Association for the Education of Teachers in Science.

    ERIC Educational Resources Information Center

    Otto, Paul B., Ed.

    This yearbook of the Association for the Education of Teachers in Science (AETS) is designed to give a perspective on rural science education. It is presented in a sequence which leads from the definition and philosophy of rural science education, to the status of rural science education, research implications, the integration of science within…

  14. The TRUST Project: A Formal-Informal Teacher Education Partnership for the Promotion of Earth Science Teacher Certification

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Miele, E.; Powell, W.; MacDonald, M.

    2004-12-01

    The American Museum of Natural History (AMNH) in partnership with Lehman and Brooklyn Colleges of the City University of New York (CUNY) has initiated The Teacher Renewal for Urban Science Teaching (TRUST) project. TRUST combines informal and formal teacher education in a four-year initiative to enhance professional development and masters of science education programs, grades K-8 at Brooklyn College and 7-12 at Lehman College. This NSF-funded partnership brings together the resources of AMNH, CUNY, New York City school districts, New York City Department of Education-Museum Partnerships, and the expertise of scientists and teachers with research experiences. Following an initial planning year, TRUST will recruit and sustain 90 teachers over a period of 3 years as well as engage 30 school administrators in support of Earth science instruction. Program components include two new formal Earth systems science courses, intensive informal summer institutes, and a lecture and workshop series during which participants gain new Earth science content knowledge, develop action plans, and present their work on the local and national level. In addition, participants have access to ongoing resource and material support to enhance their learning and instruction. Continuous documentation and data collection by project investigators are being used to address questions regarding the impact various aspects of the TRUST participant experience on classroom instruction and learning, the acquisition of scientific knowledge in the new courses and institutes, and to examine the nature of the Museum experience in meeting certification goals. External formative and summative evaluation of the project is addressing issues surrounding the value of the program as a model for formal-informal partnership in urban Earth science teacher education and certification, analysis of policies that facilitate partnership arrangements, and how socialization of novices with experts affects retention and

  15. A survey of specific individualized instruction strategies in elementary science methods courses in Tennessee teacher education institutions

    NASA Astrophysics Data System (ADS)

    Hazari, Alan A.

    The purpose of the study was to determine the status of individualized science instruction in Tennessee teacher education institutions. Specifically, the study sought to investigate the extent of teaching about and/or use of 31 strategies for individualizing instruction in elementary science teaching methods courses. The individualized instruction frameworks, with strategies for individualizing instruction, were developed by Rowell, et al. in the College of Education at the University of Tennessee, Knoxville. A review of the literature on the preparation of preservice elementary science teachers for individualized instruction in K-8 classrooms revealed very limited research. This investigation sought to identify how the elementary science teacher educators prepared their preservice elementary science teachers to (1) learn about the children they will teach, (2) determine differences among learners, (3) plan for individualized science instruction in the elementary school classroom, and (4) help attend to individual student differences. The researcher prepared and used a 31-item survey to poll elementary science teacher educators in Tennessee. The participants included K-8 educators from 40 state-approved teacher education institutions. The high teacher education institution response rate (72.5%) brought input from institutions of varying sizes, operated privately or publicly across the state of Tennessee. In general, Tennessee elementary science teacher educators reported that they tended to teach about and/or use a fair number of the 31 individualized instruction strategies that involve both learning about K-8 students and their differences. On the other hand, many of these educators provided preservice teachers with quite a bit of the strategies that lead to planning for individualized science instruction and to attending to individual student differences. The two strategies that were the most taught about and/or used in elementary science methods by Tennessee

  16. Developing Practical Knowledge of the "Next Generation Science Standards" in Elementary Science Teacher Education

    ERIC Educational Resources Information Center

    Hanuscin, Deborah L.; Zangori, Laura

    2016-01-01

    Just as the "Next Generation Science Standards" (NGSSs) call for change in what students learn and how they are taught, teacher education programs must reconsider courses and curriculum in order to prepare teacher candidates to understand and implement new standards. In this study, we examine the development of prospective elementary…

  17. New Technologies and Science Teachers Education within the Context of Distance Learning: A Case Study for the University of Lagos

    ERIC Educational Resources Information Center

    Adewara, Ademola Johnson; Lawal, Olufunke

    2015-01-01

    The Open and Distance Learning (ODL) education for science teachers is seen as a solution to the problems of equity and access to teacher education in Nigeria. It is used to provide cost-effective Science Teacher Education, and to train large numbers of teachers within a short period of time. The need for training science teachers through ODL…

  18. Nihithewak Ithiniwak, Nihithewatisiwin and science education: An exploratory narrative study examining Indigenous-based science education in K--12 classrooms from the perspectives of teachers in Woodlands Cree community contexts

    NASA Astrophysics Data System (ADS)

    Michell, Herman Jeremiah

    This study was guided by the following research questions: What do the stories of teachers in Nihithewak (Woodlands Cree) school contexts reveal about their experiences and tendencies towards cultural and linguistic-based pedagogical practices and actions in K-12 classrooms? How did these teachers come to teach this way? How do their beliefs and values from their experiences in science education and cultural heritage influence their teaching? Why do these teachers do what they do in their science classroom and instructional practices? The research explores Indigenous-based science education from the perspectives and experiences of science teachers in Nihithewak school contexts. Narrative methodology (Clandinin & Connelly, 2000) was used as a basis for collecting and analyzing data emerging from the research process. The results included thematic portraits and stories of science teaching that is connected to Nihithewak and Nihithewatisiwin (Woodlands Cree Way of Life). Major data sources included conversational interviews, out-of-class observations and occasional in-class observations, field notes, and a research journal. An interview guide with a set of open-ended and semi-structured questions was used to direct the interviews. My role as researcher included participation in storied conversations with ten selected volunteer teachers to document the underlying meanings behind the ways they teach science in Nihithewak contexts. This research is grounded in socio-cultural theory commonly used to support the examination and development of school science in Indigenous cultural contexts (Lemke, 2001; O'Loughlin, 1992). Socio-cultural theory is a framework that links education, language, literacy, and culture (Nieto, 2002). The research encapsulates a literature review that includes the history of Aboriginal education in Canada (Battiste & Barman, 1995; Kirkness, 1992; Perley, 1993), Indigenous-based science education (Cajete, 2000; Aikenhead, 2006a), multi

  19. Using sunshine for elementary space science education: A model for IHY scientist teacher partnerships

    NASA Astrophysics Data System (ADS)

    Moldwin, M. B.; Fiello, D.; Harter, E.; Holman, G.; Nagumo, N.; Pryharski, A.; Takunaga, C.

    2008-12-01

    An elementary science education professional development partnership between Culver City Unified School District teachers and UCLA has been formed. The project was designed to assist teachers to comfortably present introductory space science concepts, to support them in their efforts, and to aid them in encouraging their students to develop inquiry skills related to space sciences. The project encourages teacher use of observational science techniques in their classrooms, the use of NASA solar mission images and enhanced use of astronomical observation to facilitate discovery learning. The integrated approach of the project has fostered collegial learning activities among the participating teachers and offered them opportunities for continued renewal and professional development of teacher competencies in astronomy and space science. The activities used in the classroom were developed by others, classroom tested, and specifically address National Science Education and California Science Content Standards. These activities have been sustained through on-going collaboration between the scientist and the teachers, a summer Research Experience for Teachers program, and on-going, grade-specific, district-sponsored workshops. Assessment of the value of the program is done by the school district and is used to continuously improve each workshop and program component. Culver City (California) Unified School District is a small urban school district located on the Westside of Los Angeles. This paper describes the program and the plans for incorporating IHY-themed science into the classroom.

  20. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    ERIC Educational Resources Information Center

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  1. Results of the Salish Projects: Summary and Implications for Science Teacher Education

    ERIC Educational Resources Information Center

    Yager, Robert E.; Simmons, Patricia

    2013-01-01

    Science teaching and teacher education in the U.S.A. have been of great national interest recently due to a severe shortage of science (and mathematics) teachers who do not hold strong qualifications in their fields of study. Unfortunately we lack a rigorous research base that helps inform solid practices about various models or elements of…

  2. Using a Multicultural Social Justice Framework to Analyze Elementary Teachers' Meanings of Multicultural Science Education

    NASA Astrophysics Data System (ADS)

    Kye, Hannah Anne

    In response to the persistent gaps in science opportunities and outcomes across lines of race, class, gender, and disability, decades of science reforms have called for "science for all." For elementary teachers, science for all demands that they not only learn to teach science but learn to teach it in ways that promote more equitable science learning opportunities and outcomes. In this qualitative case study, I use a framework of multicultural social justice education to examine three teachers' beliefs and practices of multicultural science education. The teachers, one preservice and two in-service, taught elementary science in a month-long summer program and met weekly with this researcher to discuss connections between their expressed commitments about teaching toward social justice and their work as science teachers. The data sources for this study included audio recordings of weekly meetings, science lessons, and semi-structured individual interviews. These data were transcribed, coded, and analyzed to define the most salient themes and categories among the individual teachers and across cases. I found that the teachers' beliefs and practices aligned with traditional approaches to school and science wherein science was a set of scripted right answers, diversity was only superficially acknowledged, and multiculturalizing the curriculum meant situating science in unfamiliar real world contexts. These meanings of science positioned the teacher as authority and operated outside of a structural analysis of the salience of race, culture, gender, and disability in students' science learning experiences. As they taught and reflected on their teaching in light of their social justice commitments, I found that the teachers negotiated more constructivist and student-centered approaches to science education. These meanings of science required teachers to learn about students and make their experiences more central to their learning. Yet they continued to only acknowledge

  3. Exploring Emotional Climate in Preservice Science Teacher Education

    ERIC Educational Resources Information Center

    Bellocchi, Alberto; Ritchie, Stephen M.; Tobin, Kenneth; Sandhu, Maryam; Sandhu, Satwant

    2013-01-01

    Classroom emotional climates (ECs) are interrelated with students' engagement with university courses. Despite growing interest in emotions and EC research, little is known about the ways in which social interactions and different subject matter mediate ECs in preservice science teacher education classes. In this study we investigated the EC…

  4. A Review of Models for Teacher Preparation Programs for Precollege Computer Science Education.

    ERIC Educational Resources Information Center

    Deek, Fadi P.; Kimmel, Howard

    2002-01-01

    Discusses the need for adequate precollege computer science education and focuses on the issues of teacher preparation programs and requirements needed to teach high school computer science. Presents models of teacher preparation programs and compares state requirements with Association for Computing Machinery (ACM) recommendations. (Author/LRW)

  5. A Comparison of Faculty and Institutional Practices between Teacher Education and the Liberal Arts and Sciences.

    ERIC Educational Resources Information Center

    Powers, P. J.

    In order to explore the perceived conflict between teacher education programs and liberal arts and sciences programs this study examined faculty and institutional principles for good practice in undergraduate education at a comprehensive college. For the study, 14 teacher education (TE) and 10 liberal arts and sciences (LAS) (all from the…

  6. Science teaching in science education

    NASA Astrophysics Data System (ADS)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  7. Developing a Global Perspective in/for Science Teacher Education: The Case of Pollination

    ERIC Educational Resources Information Center

    Reis, Giuliano

    2014-01-01

    Science educators at all levels continuously struggle to keep pace with the rapidly developing understanding of the causes and potential solutions to current environmental issues while also trying to enthuse a new generation of passionate and knowledgeable scientists. However, how can future science teachers make science education more attractive…

  8. How Close Student Teachers' Educational Philosophies and Their Scientific Thinking Processes in Science Education

    ERIC Educational Resources Information Center

    Yurumezoglu, Kemal; Oguz, Ayse

    2007-01-01

    For being guidance, science teachers should be framed by strong content knowledge to construct scientific thinking process as a scaffold. The aim of this research was to look at student teachers' scientific thinking processes. Then, the results compared with their educational philosophy. During the study, two different instruments were used. For…

  9. Implementation of National Science Education Standards in suburban elementary schools: Teachers' perceptions and classroom practices

    NASA Astrophysics Data System (ADS)

    Khan, Rubina Samer

    2005-07-01

    This was an interpretive qualitative study that focused on how three elementary school science teachers from three different public schools perceived and implemented the National Science Education Standards based on the Reformed Teaching Observation Protocol and individual interviews with the teachers. This study provided an understanding of the standards movement and teacher change in the process. Science teachers who were experienced with the National Science Education Standards were selected as the subjects of the study. Grounded in the theory of teacher change, this study's phenomenological premise was that the extent to which a new reform has an effect on students' learning and achievement on standardized tests depends on the content a teacher teaches as well as the style of teaching. It was therefore necessary to explore how teachers understand and implement the standards in the classrooms. The surveys, interviews and observations provided rich data from teachers' intentions, reflections and actions on the lessons that were observed while also providing the broader contextual framework for the understanding of the teachers' perspectives.

  10. Meaningful Science: Teachers Doing Inquiry + Teaching Science.

    ERIC Educational Resources Information Center

    Kielborn, Terrie L., Ed.; Gilmer, Penny J., Ed.

    This publication relates the experiences of seven K-8 teachers who participated in a science education doctoral cohort group during which each of the teachers engaged in a different real-world scientific research project. The idea was to immerse teachers in scientific research so that they could experience inquiry in science first-hand and become…

  11. Challenges and Changes: Developing Teachers' and Initial Teacher Education Students' Understandings of the Nature of Science

    NASA Astrophysics Data System (ADS)

    Ward, Gillian; Haigh, Mavis

    2017-12-01

    Teachers need an understanding of the nature of science (NOS) to enable them to incorporate NOS into their teaching of science. The current study examines the usefulness of a strategy for challenging or changing teachers' understandings of NOS. The teachers who participated in this study were 10 initial teacher education chemistry students and six experienced teachers from secondary and primary schools who were introduced to an explicit and reflective activity, a dramatic reading about a historical scientific development. Concept maps were used before and after the activity to assess teachers' knowledge of NOS. The participants also took part in a focus group interview to establish whether they perceived the activity as useful in developing their own understanding of NOS. Initial analysis led us to ask another group, comprising seven initial teacher education chemistry students, to take part in a modified study. These participants not only completed the same tasks as the previous participants but also completed a written reflection commenting on whether the activity and focus group discussion enhanced their understanding of NOS. Both Lederman et al.'s (Journal of Research in Science Teaching, 39(6), 497-521, 2002) concepts of NOS and notions of "naive" and "informed" understandings of NOS and Hay's (Studies in Higher Education, 32(1), 39-57, 2007) notions of "surface" and "deep" learning were used as frameworks to examine the participants' specific understandings of NOS and the depth of their learning. The ways in which participants' understandings of NOS were broadened or changed by taking part in the dramatic reading are presented. The impact of the data-gathering tools on the participants' professional learning is also discussed.

  12. Educating the Whole Child through Science: A Portrait of an Exemplary Primary Science Teacher

    ERIC Educational Resources Information Center

    Tytler, Russell; Clark, John Cripps; Darby, Linda

    2009-01-01

    This article describes the primary science practice of one teacher as a picture of exemplary professional practice. The teacher, Suzanne Peterson, was a colleague and friend. Her untimely death earlier this year was regarded by those who knew her as a tragic loss to education. As it happens, we have access to many sources of information about…

  13. Exploring Climate Science with WV Educators: A Regional Model for Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Ruberg, L. F.; Calinger, M.

    2014-12-01

    The National Research Council Framework for K-12 Science Literacy reports that children reared in rural agricultural communities, who experience regular interactions with plants and animals, develop more sophisticated understanding of ecology and biological systems than do urban and suburban children of the same age. West Virginia (WV) is a rural state. The majority of its residents live in communities of fewer than 2,500 people. Based on the features of the population being served and their unique strengths, this presentation focuses on a regional model for teacher professional development that addresses agricultural and energy vulnerabilities and adaptations to climate change in WV. The professional development model outlined shows how to guide teachers to use a problem-based learning approach to introduce climate data and analysis techniques within a scenario context that is locally meaningful. This strategy engages student interest by focusing on regional and community concerns. Climate science standards are emphasized in the Next Generation Science Standards, but WV has not provided its teachers with appropriate instructional resources to meet those standards. The authors addressed this need by offering a series of climate science education workshops followed by online webinars offered to WV science educators free of charge with funding by the West Virginia Space Grant Consortium. The authors report on findings from this series of professional development workshops conducted in partnership with the West Virginia Science Teachers Association. The goal was to enhance grades 5-12 teaching and learning about climate change through problem-based learning. Prior to offering the climate workshops, all WV science educators were asked to complete a short questionnaire. As Figure 1 shows, over 40% of the teacher respondents reported being confident in teaching climate science content. For comparison post workshops surveys measure teacher confidence in climate science

  14. Action research in gender issues in science education: Towards an understanding of group work with science teachers

    NASA Astrophysics Data System (ADS)

    Nyhof-Young, Joyce Marion

    Action research is emerging as a promising means of promoting individual and societal change in the context of university programmes in teacher education. However, significant gaps exist in the literature regarding the use of action research groups for the education of science teachers. Therefore, an action research group, dealing with gender issues in science education, was established within the context of a graduate course in action research at OISE. For reasons outlined in the thesis, action research was deemed an especially appropriate means for addressing issues of gender. The group met 14 times from September 1992 until May 1993 and consisted of myself and five other science teachers from the Toronto area. Two of us were in the primary panel, two in the intermediate panel, and two in the tertiary panel. Five teachers were female. One was male. The experiences of the group form the basis of this study. A methodology of participant observation supported by interviews, classroom visits, journals, group feedback and participant portfolios provides a means of examining experiences from the perspective of the participants in the group. The case study investigates the nature of the support and learning opportunities that the action research group provided for science teachers engaged in curiculum and professional development in the realm of gender issues in science education, and details the development of individuals, the whole group and myself (as group worker, researcher and participant) over the life of the project. The action research group became a resource for science teachers by providing most participants with: A place to personalize learning and research; a place for systematic reflection and research; a forum for discussion; a source of personal/professional support; a source of friendship; and a place to break down isolation and build self-confidence. This study clarifies important relational and political issues that impinge on action research in

  15. Teacher beliefs in contemporary science education goals and classroom practice: The case of Souhegan High School

    NASA Astrophysics Data System (ADS)

    Mueller, Jennifer Creed

    The central research question for this study was: To what extent is a teacher's purported beliefs in contemporary science education goals embedded in his/her routine classroom practice? Two sub-research questions were necessary to investigate this central research question: (1) To what degree do Souhegan High School science teachers believe in the contemporary goals of science education? (2) What is a Souhegan High School science teacher's degree of conviction to his/her beliefs of particular goals? The goal of this study was to develop grounded hypotheses/research questions. Given the stated research questions, a case study design most appropriately met the intended purpose of this study. The study was initiated with the science teachers at Souhegan High School taking the survey of Contemporary Goals of Science Education (Zeidler & Duffy, 1994). Following analysis of the group's responses, two equal ranges of scores were established. In addition, a weighted mean provided data on a teacher's degree of conviction to his/her beliefs of particular goals. Three teachers were invited to continue with the study, each range represented. Classroom observations provided data in the next phase of inquiry. Samples of assessment tasks were also collected as data. Following classroom observations, interviews were conducted. These interviews were semi-structured, with the use of Newmann, Secada, and Wehlage (1995), Standards and Scoring Criteria for Classroom Instruction and Assessment Tasks as a vehicle for teacher reflection. Data collection and analyses occurred simultaneously as characterized by the constant comparative method in accordance with grounded theory (Glaser & Strauss, 1967). Spradley's Developmental Research Sequence (1980) provided a framework and process for implementing grounded theory which was modified to meet the goals of this study. Analysis of the data from the Survey of Contemporary Goals of Science Education showed strong preference for the contemporary

  16. Do Inquiring Minds Have Positive Attitudes? The Science Education of Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Riegle-Crumb, Catherine; Morton, Karisma; Moore, Chelsea; Chimonidou, Antonia; LaBrake, Cynthis; Kopp, Sacha

    2015-01-01

    Owing to their potential impact on students' cognitive and noncognitive outcomes, the negative attitudes toward science held by many elementary teachers are a critical issue that needs to be addressed. This study focuses on the science education of preservice elementary teachers with the goal of improving their attitudes "before" they…

  17. Science education in an urban elementary school: Case studies of teacher beliefs and classroom practices

    NASA Astrophysics Data System (ADS)

    King, Ken; Shumow, Lee; Lietz, Stephanie

    2001-03-01

    Through a case study approach, the state of science education in an urban elementary school was examined in detail. Observations made from the perspective of a science education specialist, an educational psychologist, and an expert elementary teacher were triangulated to provide a set of perspectives from which elementary science instruction could be examined. Findings revealed that teachers were more poorly prepared than had been anticipated, both in terms of science content knowledge and instructional skills, but also with respect to the quality of classroom pedagogical and management skills. Particularly significant, from a science education perspective, was the inconsistency between how they perceived their teaching practice (a hands-on, inquiry-based approach) and the investigator-observed expository nature of the lessons. Lessons were typically expository in nature, with little higher-level interaction of significance. Implications for practice and the associated needs for staff development among urban elementary teachers is discussed within the context of these findings.

  18. Teachers' perceptions on primary science teaching

    NASA Astrophysics Data System (ADS)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  19. From professional lives to inclusive practice: Science teachers and scientists' views of gender and ethnicity in science education

    NASA Astrophysics Data System (ADS)

    Bianchini, Julie A.; Cavazos, Lynnette M.; Helms, Jenifer V.

    2000-08-01

    To provide insight into issues of gender and ethnicity in science education, we examine the views of approximately 60 secondary science teachers and university scientists from three different research projects. In each project, participants and researcher explored the intersection of professional and personal identities; views of the nature of science; beliefs related to students' experiences in science education; and kinds of curricular and instructional strategies used to promote access and equity for all students. Participants' interviews were analyzed qualitatively for patterns across these four dimensions of inclusive science education. Analysis of data revealed a wide range of beliefs and experiences along each dimension. From our findings, we argue for careful examination of the ways identities shape instructors' professional experiences and educational practices; critical, constructive conversations about feminist science studies scholarship between professional developers and science teachers or scientists; and reasoned reflection on how views of students can inform recommendations for inclusive content and instruction. We conclude with the call for increased sophistication in the conceptualization and implementation of solutions to the problem of women and ethnic minorities in science education, for balancing recognition of systematic gender and ethnic bias with sensitivity to instructors and students' diverse interests and experiences.

  20. Filling the Educator Pipeline: Recruiting Male Family and Consumer Sciences Teachers

    ERIC Educational Resources Information Center

    Godfrey, Roxie V.; Manis, Kerry T.

    2017-01-01

    To encourage males to enter the teaching field, specifically in family and consumer sciences (FCS), FCS professionals should participate in recruitment initiatives aimed at males. Administrators, teacher educators, career counselors, and FCS teachers can play a significant role in this comprehensive and systematic effort. This paper adopts the…

  1. Survey of K-12 Science Teachers' Educational Product Needs from Planetary Scientists

    ERIC Educational Resources Information Center

    Slater, Stephanie J.; Slater, Timothy F.; Olsen, Julia K.

    2009-01-01

    Most education reform documents of the last two decades call for students to have authentic science inquiry experiences that mimic scientific research using real scientific data. In order for professional planetary scientists to provide the most useful data and professional development for K-12 teachers in support of science education reform, an…

  2. Science Teacher Retention: Mentoring and Renewal. Issues in Science Education.

    ERIC Educational Resources Information Center

    Rhoton, Jack, Ed.; Bowers, Patricia, Ed.

    This book discusses science teacher retention and renewal, what kinds of problems beginner teachers face, mentoring programs, and intervention programs that support beginner teachers. Chapters include: (1) "Turnover and Shortages among Science and Mathematics Teachers in the United States" (Richard M. Ingersoll); (2) "Comprehensive Teacher…

  3. Turkish Pre-Service Science Teachers' Views on Science-Technology-Society Issues

    ERIC Educational Resources Information Center

    Yalvac, Bugrahan; Tekkaya, Ceren; Cakiroglu, Jale; Kahyaoglu, Elvan

    2007-01-01

    The international science education community recognises the role of pre-service science teachers' views about the interdependence of Science, Technology, and Society (STS) in achieving scientific literacy for all. To this end, pre-service science teachers' STS views signal the strengths and the weaknesses of science education reform movements.…

  4. Professional Identity Development of Teacher Candidates Participating in an Informal Science Education Internship: A focus on drawings as evidence

    NASA Astrophysics Data System (ADS)

    Katz, Phyllis; McGinnis, J. Randy; Hestness, Emily; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy; Pease, Rebecca

    2011-06-01

    This study investigated the professional identity development of teacher candidates participating in an informal afterschool science internship in a formal science teacher preparation programme. We used a qualitative research methodology. Data were collected from the teacher candidates, their informal internship mentors, and the researchers. The data were analysed through an identity development theoretical framework, informed by participants' mental models of science teaching and learning. We learned that the experience in an afterschool informal internship encouraged the teacher candidates to see themselves, and to be seen by others, as enacting key recommendations by science education standards documents, including exhibiting: positive attitudes, sensitivity to diversity, and increasing confidence in facilitating hands-on science participation, inquiry, and collaborative work. Our study provided evidence that the infusion of an informal science education internship in a formal science teacher education programme influenced positively participants' professional identity development as science teachers.

  5. Teacher talk about science: An examination of the constructed understanding of science held by four elementary school teachers

    NASA Astrophysics Data System (ADS)

    Price, Robert John

    The elementary school teacher's personal understanding of science has not been a primary focus of consideration in educational reform discussions. This study examines how four elementary school teachers have constructed their personal understanding of science. The purpose of this study is to explore core understandings about science held by these teachers, and to examine the origins of these ideas. This study assumes that a teacher's understanding of science is unique and constructed on personal experiences affected by influences. This study further explores the relationship of the teachers understanding to the school's stated curriculum. The theoretical framework of this research recognizes three guiding assumptions: science exists as a set of ideas that have developed over time through competing discourses; the teacher plays an important role in the implementation of the science curriculum; and the guiding influences of a teacher's understanding of science are associated with power that emerges from discourse. The methodology in this qualitative study is closely associated with narrative inquiry. Data collection methods include a questionnaire, focus group sessions, and individual interviews. Teachers' stories were collected through collaborative interview opportunities between the researcher and the participants. The findings are presented through the narratives of the four teachers, and are organized through the guiding influences, and talk related to the stated science curriculum. The teachers' talk can be categorized by three broad guiding influences: family, education, and an image of science. The talk related to the stated curriculum illustrates both conflicts, and a relationship between the teachers' understanding of science and the curriculum. The finding of this study provides evidence that each teacher's understanding of science is unique and developed over time. Additionally, this understanding plays a role in how the stated curriculum is discussed and

  6. Teacher education in the generative virtual classroom: developing learning theories through a web-delivered, technology-and-science education context

    NASA Astrophysics Data System (ADS)

    Schaverien, Lynette

    2003-12-01

    This paper reports the use of a research-based, web-delivered, technology-and-science education context (the Generative Virtual Classroom) in which student-teachers can develop their ability to recognize, describe, analyse and theorize learning. Addressing well-recognized concerns about narrowly conceived, anachronistic and ineffective technology-and-science education, this e-learning environment aims to use advanced technologies for learning, to bring about larger scale improvement in classroom practice than has so far been effected by direct intervention through teacher education. Student-teachers' short, intensive engagement with the Generative Virtual Classroom during their practice teaching is examined. Findings affirm the worth of this research-based e-learning system for teacher education and the power of a biologically based, generative theory to make sense of the learning that occurred.

  7. Preparing "Professional" Science Teachers: Critical Goals.

    ERIC Educational Resources Information Center

    Dass, Pradeep Maxwell

    This paper focuses on pre-service teacher education and elaborates on the critical importance of three attributes to the development of professional science teachers: (1) science teachers must be reflective practitioners of their profession; (2) all instructional practice and decisions of science teachers must be backed by a research-based…

  8. Do Inquiring Minds Have Positive Attitudes? The Science Education of Preservice Elementary Teachers

    PubMed Central

    Riegle-Crumb, Catherine; Morton, Karisma; Moore, Chelsea; Chimonidou, Antonia; Labrake, Cynthia; Kopp, Sacha

    2016-01-01

    Due to their potential impact on students' cognitive and non-cognitive outcomes, the negative attitudes towards science held by many elementary teachers are a critical issue that needs to be addressed. This study focuses on the science education of pre-service elementary teachers with the goal of improving their attitudes before they begin their professional lives as classroom teachers. Specifically, this study builds on a small body of research to examine whether exposure to inquiry-based science content courses that actively involve students in the collaborative process of learning and discovery can promote a positive change in attitudes towards science across several different dimensions. To examine this issue, surveys and administrative data were collected from over 200 students enrolled in the Hands on Science (HoS) program for pre-service teachers at the University of Texas at Austin, as well as more than 200 students in a comparison group enrolled in traditional lecture-style classes. Quantitative analyses reveal that after participating in HoS courses, pre-service teachers significantly increased their scores on scales measuring confidence, enjoyment, anxiety, and perceptions of relevance, while those in the comparison group experienced a decline in favorable attitudes to science. These patterns offer empirical support for the attitudinal benefits of inquiry-based instruction and have implications for the future learning opportunities available to students at all education levels. PMID:27667862

  9. Science as experience, exploration, and experiments: elementary teachers' notions of `doing science'

    NASA Astrophysics Data System (ADS)

    Murphy, Ashley N.; Luna, Melissa J.; Bernstein, Malayna B.

    2017-11-01

    Much of the literature on science teaching suggests that elementary teachers lack relevant prior experiences with science. This study begins to reframe the deficit approach to research in science teaching by privileging the experiences elementary teachers have had with science - both in and out of schools - throughout their lives. Our work uses identity as a lens to examine the complexities of elementary teachers' narrative accounts of their experiences with science over the course of their lives. Our findings identify components of teachers' science-related experiences in order to lay the groundwork for making connections between teachers' personal experiences and professional practice. This work demonstrates that teachers' storied lives are important for educational researchers and teacher educators, as they reveal elements of teaching knowledge that may be productive and resourceful for refining teachers' science practice.

  10. Science education for empowerment and social change: a case study of a teacher educator in urban Pakistan

    NASA Astrophysics Data System (ADS)

    Zahur, Rubina; Calabrese Barton, Angela; Upadhyay, Bhaskar Raj

    2002-09-01

    In this manuscript we focus on the question, 'What should be the purpose of science education for children of the very poor class in caste-oriented developing countries such as Pakistan?' In other words, in a country where the literacy rate hovers around 10 per cent for the poorest segment of society and where there is no expectation that children will complete primary school, of what importance is primary science education and to what end should it be offered in schools? We begin a conversation around this question by presenting, in this manuscript, a case study of one teacher educator whose beliefs and practices sharply deviate from the norm - she believes science education ought to be about empowering students to make physical and political changes in their community. In particular, using the rich, contextual interview and observational data generated through case study, we show how Haleema's (pseudonym) orientation to science teacher education are buttressed by three fundamental beliefs: that low levels of literacy and school achievement among poor children have as much to do with poor families' lack of power/influence on the purposes and processes of schooling as it has to do with opportunities and resources; that school science can begin to address inequalities in power by fostering a kind of scientific literacy among children that leads to individual and community empowerment around health and environmental issues, the very science-related issues that divide quality of life and opportunity for poor families; and that teacher education programmes can play a role in transforming a society's views about how science and scientific practices might play a role in bringing communities together to effect change for the better.

  11. Science Education for Empowerment and Social Change: A Case Study of a Teacher Educator in Urban Pakistan.

    ERIC Educational Resources Information Center

    Zahur, Rubina; Barton, Angela Calabrese; Upadhyay, Bhaskar Raj

    2002-01-01

    Discusses the purpose of science education for children of the very poor classes in caste-oriented developing countries such as Pakistan. Presents a case study of one teacher educator whose beliefs and practices sharply deviated from the norm--she believes that science education ought to be about empowering students to make physical and political…

  12. Precipitation Education: Connecting Students and Teachers with the Science of NASA's GPM Mission

    NASA Astrophysics Data System (ADS)

    Weaver, K. L. K.

    2015-12-01

    The Global Precipitation Measurement (GPM) Mission education and communication team is involved in variety of efforts to share the science of GPM via hands-on activities for formal and informal audiences and engaging students in authentic citizen science data collection, as well as connecting students and teachers with scientists and other subject matter experts. This presentation will discuss the various forms of those efforts in relation to best practices as well as lessons learned and evaluation data. Examples include: GPM partnered with the Global Observations to Benefit the Environment (GLOBE) Program to conduct a student precipitation field campaign in early 2015. Students from around the world collected precipitation data and entered it into the GLOBE database, then were invited to develop scientific questions to be answered using ground observations and satellite data available from NASA. Webinars and blogs by scientists and educators throughout the campaign extended students' and teachers' knowledge of ground validation, data analysis, and applications of precipitation data. To prepare teachers to implement the new Next Generation Science Standards, the NASA Goddard Earth science education and outreach group, led by GPM Education Specialists, held the inaugural Summer Watershed Institute in July 2015 for 30 Maryland teachers of 3rd-5th grades. Participants in the week-long in-person workshop met with scientists and engineers at Goddard, learned about NASA Earth science missions, and were trained in seven protocols of the GLOBE program. Teachers worked collaboratively to make connections to their own curricula and plan for how to implement GLOBE with their students. Adding the arts to STEM, GPM is producing a comic book story featuring the winners of an anime character contest held by the mission during 2013. Readers learn content related to the science and technology of the mission as well as applications of the data. The choice of anime/manga as the style

  13. Theory and Practice in a Science Education Course for Elementary Teachers

    ERIC Educational Resources Information Center

    Lacueva, Aurora

    2014-01-01

    In this action research work, I analyze the theory-practice integration in teacher preparation within the context of a science and technology (S&T) education teaching methodology course aimed at future elementary teachers. The course was designed, developed and evaluated taking into account this relationship as one of its axes. The results…

  14. Affording Explicit-Reflective Science Teaching by Using an Educative Teachers' Guide

    ERIC Educational Resources Information Center

    Lin, Shu-Fen; Lieu, Sang-Chong; Chen, Sufen; Huang, Mao-Tsai; Chang, Wen-Hua

    2012-01-01

    Although researchers have achieved some success in effective nature of science (NOS) teaching, helping teachers teach NOS continues to be a great challenge. The development of an educative teachers' guide would provide support for NOS teaching. In this study, we explored the effects that a research-based guide had on affording elementary school…

  15. Developing Practical Knowledge of the Next Generation Science Standards in Elementary Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Hanuscin, Deborah L.; Zangori, Laura

    2016-12-01

    Just as the Next Generation Science Standards (NGSSs) call for change in what students learn and how they are taught, teacher education programs must reconsider courses and curriculum in order to prepare teacher candidates to understand and implement new standards. In this study, we examine the development of prospective elementary teachers' practical knowledge of the NGSS in the context of a science methods course and innovative field experience. We present three themes related to how prospective teachers viewed and utilized the standards: (a) as a useful guide for planning and designing instruction, (b) as a benchmark for student and self-evaluation, and (c) as an achievable vision for teaching and learning. Our findings emphasize the importance of collaborative opportunities for repeated teaching of the same lessons, but question what is achievable in the context of a semester-long experience.

  16. Exploring reforms while learning to teach science: Facilitating exploration of theory-practice relationships in a teacher education study group

    NASA Astrophysics Data System (ADS)

    Foster, Jacob G.

    This dissertation inserts a new view into an old problem in teacher education. The study explores the theory-practice gap, the large distance between what preservice science teachers experience in schools, are able to enact, and are told they should hold themselves to in their practice. It does so by narrowing the focus of analysis to a secondary science study group and examining how the facilitator uses sociocultural constructivism to promote discussion. The analysis surfaces key communicative moves made by the facilitator and preservice teachers that yield fruitful discussion of theory-practice relationships. Additionally, the study's use of discourse analysis as a methodology and intertextuality as a conceptual framework opens new directions for applied sociolinguistic research and scholarship in science teacher education. Findings from the study focus on what was discussed and how explorations of theory-practice relationships were facilitated. Preservice teachers in the study group engaged in meaningful conversations about constructivist theory and its application to their students and teaching of science. They discussed many science education topics such as planning science lessons that actively engage students, assessment of content understanding, and management of content-based activities. Discussions of broader science education goals, including implementation of inquiry or development of collaborative communities, were not promoted. Examination of the facilitation illuminates a number of strategies found to be helpful in supporting these explorations. This study shows that facilitation can successfully support preservice teachers to construct understanding of social constructivist assumptions underlying the National Science Education Standards (NSES), as well as a few components of the Standards themselves. The focus on the underlying assumptions suggests that science teacher education should focus on these so that preservice teachers can build a strong

  17. Teachers' perspectives of why and how they use the resources of informal science education sites

    NASA Astrophysics Data System (ADS)

    Youker, Christian Rene

    There has been a growing interest in fostering increased connections between schools and community resources---such as informal science sites. This is due, in part, to the recognition that museum learning has many potential advantages, including improving motivation and attitudes, and nurturing curiosity. Some teachers are using the resources of informal science sites more than others. The purpose of this study was to determine why and how some teachers have continually used the resources of informal science education sites. The study was situated within a constructivist paradigm and employed a naturalistic inquiry strategy. Emergent interviews were conducted with six elementary teachers who regularly used the resources of informal science sites. Observations of informal science use and relevant documents were also used in data analysis. Using a qualitative data analysis program, data were unitized, coded and emergent themes were identified. Findings indicated that the teachers shared many characteristics in terms of why they used informal science, and they situated this within the context of their approaches to science teaching. Yet they valued different aspects of informal science as a resource. Support, especially emotional and social support, for using informal science was also important to these teachers, although where this support came from differed among them. All of the teachers had a strong interest in science, were leaders in science education on many levels and tended to seek out science-related projects and activities. While they shared many characteristics in terms of their approach to science teaching, there was great variation in how these teachers used informal science sites and in the amount and kind of support they received. These findings support the notion that there may be many definitions of the effective use of informal science by elementary teachers.

  18. Science Perceptions of Prospective Class Teachers

    ERIC Educational Resources Information Center

    Ulucinar Sagir, Safak

    2017-01-01

    The perceptions of class teachers, who will deliver science education at the elementary school, of information and science are significant as these affect the quality of education received by children. The aim of this research is to determine perceptions of prospective class teachers of science. The sample group of the research consists of 120…

  19. The Use of Journal Clubs in Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Tallman, Karen A.; Feldman, Allan

    2016-04-01

    This qualitative study explored how in a 7-month-long journal club pre- and inservice science teachers engaged with education research literature relevant to their practice to reduce the theory-practice gap. In the journal club they had the opportunity to critique and analyze peer-reviewed science education articles in the context of their classroom practice. Data sources included audio recordings of the meetings; semi-structured pre- and post-interviews of the teachers; focus groups; and artifacts (e.g., journal articles, reflective paper, email exchanges, and researcher's field notes). Data were analyzed using the techniques of grounded theory (Corbin & Strauss in Basics of qualitative research, 3rd ed. Sage, Thousand Oaks, 2008). In addition we used some preconceived categories that we created from existing literature on journal clubs and communities of practice (Newswander & Borrego in European Journal of Engineering Education 34(6): 561-571, 2009; Wenger in Communities of practice: learning, meaning, and identity. Cambridge University Press, Cambridge, 1998) and from our previous research (Tallman & Feldman, 2012). We found that the journal club incorporated the three characteristics of a community of practice (Wenger in Communities of practice: learning, meaning, and identity. Cambridge University Press, Cambridge, 1998) into its functioning (mutual engagement, joint enterprise, and shared repertoire). The teachers mutually engaged around the joint enterprise of reading, critiquing, and understanding the research studies with the goal of improving practice. The teachers also asked each other analytical questions, which became a shared repertoire of the journal club. They reflected on their practice by presenting, reading, and discussing the articles, which helped them to determine whether and how the findings from the articles could be incorporated into their teaching practice. In doing so, they learned the skills needed to critique the research literature in

  20. Secondary Physical Science Teachers' Conceptions of Science Teaching in a Context of Change

    NASA Astrophysics Data System (ADS)

    Taylor, Dale L.; Booth, Shirley

    2015-05-01

    Pre-service teachers enter initial teacher education programmes with conceptions of teaching gleaned from their own schooling. These conceptions, which include teachers' beliefs, may be resistant to change, which is a challenge in contexts where teacher educators hope that teachers will teach in ways different from their own schooling. Conceptions of teaching found in different cultural and disciplinary contexts have contextual differences but have resonances with the results of research into teacher beliefs. Our sample of eight South African secondary physical science teachers was schooled in a system which encouraged knowledge transmission, but they were prepared in their initial teacher education for a learner-centred approach. After they had taught for a few years, we explored their conceptions of science teaching, using phenomenographic interviews. Four conceptions emerged inductively from the analysis: transferring science knowledge from mind to mind; transferring problematic science knowledge from mind to mind; creating space for learning science knowledge and creating space for learning problematic science knowledge. Internally these conceptions are constituted by three dimensions of variation: the nature of the science knowledge to be learnt, the role of the students and the role of the teacher. Media and practical work play different roles in the external horizon of these conceptions. These conceptions reflect the disciplinary context as well as the emphases of the sample's initial teacher education programme. This suggests that initial teacher education can significantly shape teachers' conceptions of teaching.

  1. Science Laboratory Safety: Findings and Implications for Teacher Education.

    ERIC Educational Resources Information Center

    Swami, Piyush

    1986-01-01

    Summarizes a survey of the condition of high school science laboratories in the greater Cincinnati area (N=36). Reports safety measures undertaken for fire and burn and eye and face protection, waste disposal, storage facilities, and ventilation. Offers suggestions and plans for enriching safety education programs for teachers. (ML)

  2. Exploring the role of curriculum materials to support teachers in science education reform

    NASA Astrophysics Data System (ADS)

    Schneider, Rebecca M.

    2001-07-01

    For curriculum materials to succeed in promoting large-scale science education reform, teacher learning must be supported. Materials were designed to reflect desired reforms and to be educative by including detailed lesson descriptions that addressed necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe how such materials contributed to classroom practices. As part of an urban systemic reform effort, four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were videotaped. Enactments focused on five lesson sequences containing experiences with phenomena, investigation, technology use, or artifact development. Each sequence spanned three to five days across the 10-week unit. For each lesson sequence, intended and actual enactment were compared using ratings of (1) accuracy and completeness of science ideas presented, (2) amount student learning opportunities, similarity of learning opportunities with those intended, and quality of adaptations , and (3) amount of instructional supports offered, appropriateness of instructional supports and source of ideas for instructional supports. Ratings indicated two teachers' enactments were consistent with intentions and two teachers' enactments were not. The first two were in school contexts supportive of the reform. They purposefully used the materials to guide enactment, which tended to be consistent with standards-based reform. They provided students opportunities to use technology tools, design investigations, and discuss ideas. However, enactment ratings were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Moreover, enactment ratings were less consistent in parts of lessons where materials did not include lesson specific

  3. Career education attitudes and practices of K-12 science educators

    NASA Astrophysics Data System (ADS)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  4. Pre-Service Science Teachers' Views on Laboratory Applications in Science Education: The Effect of a Two-Semester Course

    ERIC Educational Resources Information Center

    Harman, Gonca; Cokelez, Aytekin; Dal, Burckin; Alper, Umut

    2016-01-01

    The aim of this study was to examine pre-service science teachers' views about laboratory applications in science education and how their views changed through laboratory applications that were carried out for two semesters. 63 (52 females, 11 males) pre-service teachers participated in the study. The study was carried out by using pre-test and…

  5. Family and Consumer Sciences Teacher Education: Not for Women Only.

    ERIC Educational Resources Information Center

    Werhan, Carol

    2002-01-01

    Discusses the anticipated shortage of teachers in elementary education and family and consumer sciences and the need to recruit men into these positions. Discusses gender stereotypes and other barriers for men in nontraditional teaching fields. (Contains 20 references.) (JOW)

  6. Crossing the Border from Science Student to Science Teacher: Preservice Teachers' Views and Experiences Learning to Teach Inquiry

    ERIC Educational Resources Information Center

    Kang, Emily J. S.; Bianchini, Julie A.; Kelly, Gregory J.

    2013-01-01

    Preservice science teachers face numerous challenges in understanding and teaching science as inquiry. Over the course of their teacher education program, they are expected to move from veteran science students with little experience learning their discipline through inquiry instruction to beginning science teachers adept at implementing inquiry…

  7. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    NASA Astrophysics Data System (ADS)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These

  8. Science Teacher Education in Australia: Initiatives and Challenges to Improve the Quality of Teaching

    ERIC Educational Resources Information Center

    Treagust, David F.; Won, Mihye; Petersen, Jacinta; Wynne, Georgie

    2015-01-01

    In this article, we describe how teachers in the Australian school system are educated to teach science and the different qualifications that teachers need to enter the profession. The latest comparisons of Australian students in international science assessments have brought about various accountability measures to improve the quality of science…

  9. Towards Building Science Teachers' Understandings of Contemporary Science Practices

    ERIC Educational Resources Information Center

    Lancaster, Greg; Corrigan, Deborah; Fazio, Lisa; Burke, Joanne; Overton, David

    2017-01-01

    Faculties of Education and Science at Monash University have designed a Masters unit to assist pre-service and in-service science teachers in exploring the practices of contemporary science and examine how varied understandings can influence science communication. Teachers are encouraged to explore their current understandings of the Nature of…

  10. Educational Background, Teaching Experience and Teachers' Views on the Inclusion of Nature of Science in the Science Curriculum

    NASA Astrophysics Data System (ADS)

    Martín-Díaz, M. J.

    2006-08-01

    The aim of this research is to ascertain teachers’ opinions on what elements of nature of science (NOS) and science technology society relationships (STS) should be taught in school science. To this end an adapted version of the questionnaire developed by Osborne et al. is used. Our results show that experts consulted by Osborne et al. and Spanish teachers confer similar importance on the provisional, experimental, and predictive nature of scientific knowledge based on some of the procedures used such as the drawing up of hypotheses and the analysis and interpretation of data. We also look into the relationship between the teachers’ views and their educational background.1 Results suggest that philosophy teachers are more concerned with the inclusion of NOS and STS topics in science curricula than science teachers, although further studies will be necessary. Some suggestions concerning the university training of science teachers are also discussed.

  11. Preservice Elementary Teachers' Science Self-Efficacy Beliefs and Science Content Knowledge

    NASA Astrophysics Data System (ADS)

    Menon, Deepika; Sadler, Troy D.

    2016-10-01

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers' science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers' science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants' responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.

  12. The influence of secondary science teachers' pedagogical content knowledge, educational beliefs and perceptions of the curriculum on implementation and science reform

    NASA Astrophysics Data System (ADS)

    Bonner, Portia Selene

    2001-07-01

    Science education reform is one of the focal points of restructuring the educational system in the United States. However, research indicates a slow change in progression towards science literacy among secondary students. One of the factors contributing to slow change is how teachers implement the curriculum in the classroom. Three constructs are believed to be influential in curriculum implementation: educational beliefs, pedagogical knowledge and perception of the curriculum. Earlier research suggests that there is a strong correlation between teachers' educational beliefs and instructional practices. These beliefs can be predictors of preferred strategies employed in the classroom. Secondly, teachers' pedagogical knowledge, that is the ability to apply theory and appropriate strategies associated with implementing and evaluating a curriculum, contributes to implementation. Thirdly, perception or how the curriculum itself is perceived also effects implementation. Each of these constructs has been examined independently, but never the interplay of the three. The purpose of this qualitative study was to examine the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of a science curriculum with respect to how these influence curriculum implementation. This was accomplished by investigating the emerging themes that evolved from classroom observations, transcripts from interview and supplementary data. Five high school biology teachers in an urban school system were observed for ten months for correspondence of teaching strategies to the curriculum. Teachers were interviewed formally and informally about their perceptions of science teaching, learning and the curriculum. Supplementary material such as lesson plans, course syllabus and notes from classroom observations were collected and analyzed. Data were transcribed and analyzed for recurring themes using a thematic matrix. A theoretical model was developed from the emerging

  13. Placing the History and the Philosophy of Science on Teacher Education.

    ERIC Educational Resources Information Center

    Cachapuz, Antonio F.; Paixao, Fatima

    Recent research indicated that teachers conceive and orient their teaching depending (among others things) on their conceptions about both the nature of science and the construction of the scientific knowledge. This is an important educational issue because the image generally held by students sees science simply as a rhetoric of conclusions.…

  14. Teachers as Producers of Data Analytics: A Case Study of a Teacher-Focused Educational Data Science Program

    ERIC Educational Resources Information Center

    McCoy, Chase; Shih, Patrick C.

    2016-01-01

    Educational data science (EDS) is an emerging, interdisciplinary research domain that seeks to improve educational assessment, teaching, and student learning through data analytics. Teachers have been portrayed in the EDS literature as users of pre-constructed data dashboards in educational technologies, with little consideration given to them as…

  15. Professional development for science teachers.

    PubMed

    Wilson, Suzanne M

    2013-04-19

    The Next Generation Science Standards will require large-scale professional development (PD) for all science teachers. Existing research on effective teacher PD suggests factors that are associated with substantial changes in teacher knowledge and practice, as well as students' science achievement. But the complexity of the U.S. educational system continues to thwart the search for a straightforward answer to the question of how to support teachers. Interventions that take a systemic approach to reform hold promise for improving PD effectiveness.

  16. Supporting Beginning Teacher Planning and Enactment of Investigation-based Science Discussions: The Design and Use of Tools within Practice-based Teacher Education

    NASA Astrophysics Data System (ADS)

    Kademian, Sylvie M.

    Current reform efforts prioritize science instruction that provides opportunities for students to engage in productive talk about scientific phenomena. Given the challenges teachers face enacting instruction that integrates science practices and science content, beginning teachers need support to develop the knowledge and teaching practices required to teach reform-oriented science lessons. Practice-based teacher education shows potential for supporting beginning teachers while they are learning to teach in this way. However, little is known about how beginning elementary teachers draw upon the types of support and tools associated with practice-based teacher education to learn to successfully enact this type of instruction. This dissertation addresses this gap by investigating how a practice-based science methods course using a suite of teacher educator-provided tools can support beginning teachers' planning and enactment of investigation-based science lessons. Using qualitative case study methodologies, this study drew on video-records, lesson plans, class assignments, and surveys from one cohort of 22 pre-service teachers (called interns in this study) enrolled in a year-long elementary education master of the arts and teaching certification program. Six focal interns were also interviewed at multiple time-points during the methods course. Similarities existed across the types of tools and teaching practices interns used most frequently to plan and enact investigation-based discussions. For the focal interns, use of four synergistic teaching practices throughout the lesson enactments (including consideration of students' initial ideas; use of open-ended questions to elicit, extend, and challenge ideas; connecting across students' ideas and the disciplinary core ideas; and use of a representation to organize and highlight students' ideas) appeared to lead to increased opportunities for students to share their ideas and engage in data analysis, argumentation and

  17. Using AER to Improve Teacher Education

    NASA Astrophysics Data System (ADS)

    Ludwig, Randi R.

    2013-06-01

    In many ways, the astronomy education community is uniquely poised to influence pre-service and in-service teacher preparation. Astro101 courses are among those most commonly taken to satisfy general education requirements for non-science majors, including 9-25% education majors (Deming & Hufnagel, 2001; Rudolph et al. 2010). In addition, the astronomy community's numerous observatories and NASA centers engage in many efforts to satisfy demand for in-service teacher professional development (PD). These efforts represent a great laboratory in which we can apply conclusions from astronomy education research (AER) studies in particular and science education research (SER) in general. Foremost, we can work to align typical Astro101 and teacher PD content coverage to heavily hit topics in the Next Generation Science Standards (http://www.nextgenscience.org/) and utilize methods of teaching those topics that have been identified as successful in AER studies. Additionally, we can work to present teacher education using methodology that has been identified by the SER community as effective for lasting learning. In this presentation, I will highlight some of the big ideas from AER and SER that may be most useful in teacher education, many of which we implement at UT Austin in the Hands-on-Science program for pre-service teacher education and in-service teacher PD.

  18. A phenomenological case study concerning science teacher educators' beliefs and teaching practices about culturally relevant pedagogy and preparing K-12 science teachers to engage African American students in K-12 science

    NASA Astrophysics Data System (ADS)

    Underwood, Janice Bell

    Due to the rising diversity in today's schools, science teacher educators (STEs) suggest that K-12 teachers must be uniquely prepared to engage these students in science classrooms. Yet, in light of the increasing white-black science achievement gap, it is unclear how STEs prepare preservice teachers to engage diverse students, and African Americans in particular. Therefore, the purpose of this study was to find out how STEs prepare preservice teachers to engage African American students in K-12 science. Thus, using the culturally relevant pedagogy (CRP) framework, this phenomenological case study explored beliefs about culturally relevant science teaching and the influence of reported beliefs and experiences related to race on STEs' teaching practices. In the first phase, STE's in a mid-Atlantic state were invited to participate in an electronic survey. In the second phase, four participants, who were identified as exemplars, were selected from the survey to participate in three semi-structured interviews. The data revealed that STEs were more familiar with culturally responsive pedagogy (CResP) in the context of their post-secondary classrooms as opposed to CRP. Further, most of the participants in part one and two described modeling conventional ways they prepare their preservice teachers to engage K-12 students, who represent all types of diversity, without singling out any specific race. Lastly, many of the STEs' in this study reported formative experiences related to race and beliefs in various manifestations of racism have impacted their teaching beliefs and practices. The findings of this study suggest STEs do not have a genuine understanding of the differences between CRP and CResP and by in large embrace CResP principles. Secondly, in regards to preparing preservice teachers to engage African American students in science, the participants in this study seemed to articulate the need for ideological change, but were unable to demonstrate pedagogical changes

  19. Inspiring Climate Education Excellence(ICEE): Developing Elearning professional development modules - secondary science teachers

    NASA Astrophysics Data System (ADS)

    Kellagher, E.; Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Cires Education Outreach

    2011-12-01

    Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop content knowledge and knowledge of effective teaching strategies in climate education among secondary science teachers. ICEE resources are aligned with the Essential Principles of Climate Science. Building upon a needs assessment and face to face workshop, ICEE resources include iTunesU videos, an ICEE 101 resource site with videos and peer-reviewed learning activities, and a moderated online forum. Self-directed modules and an online course are being developed around concepts and topics in which teachers express the most interest and need for instruction. ICEE resources include attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and are informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign.

  20. How To Survive Your First Year. A Handbook for New Teachers in Health Science Technology Education.

    ERIC Educational Resources Information Center

    Texas Univ., Austin. Extension Instruction and Materials Center.

    This guide is designed to assist teachers who are beginning their first year of teaching Texas' Health Science Technology Education program. Discussed in the guide's seven sections are the following: the state's educational system, the teacher-student relationship, and teachers' internal struggles; planning/scheduling; classroom management…

  1. Preschool Teachers' Attitudes and Beliefs Toward Science

    NASA Astrophysics Data System (ADS)

    Lloyd, Sharon Henry

    In the United States, a current initiative, Advancing Active STEM Education for Our Youngest Learners, aims to advance science, technology, engineering, and math (STEM) education in early childhood. The purpose of this study was to understand preschool teachers' proficiency with science and address the problem of whether or not science learning opportunities are provided to young children based on teachers' attitudes and beliefs. A theoretical framework for establishing teachers' attitudes toward science developed by van Aalderen-Smeets, van der Molen, and Asma, along with Bandura's theory of self-efficacy were the foundations for this research. Research questions explored preschool teachers' attitudes and beliefs toward science in general and how they differed based on education level and years of preschool teaching experience. Descriptive comparative data were collected from 48 preschool teacher participants using an online format with a self-reported measure and were analyzed using nonparametric tests to describe differences between groups based on identified factors of teacher comfort, child benefit, and challenges. Results indicated that the participants believed that early childhood science is developmentally appropriate and that young children benefit from science instruction through improved school-readiness skills. Preschool teachers with a state credential or an associate's degree and more teaching experience had more teacher comfort toward science based on attitudes and beliefs surveyed. The data indicated participating preschool teachers experienced few challenges in teaching science. The study may support positive social change through increased awareness of strengths and weaknesses of preschool teachers for the development of effective science professional development. Science is a crucial component of school-readiness skills, laying a foundation for success in later grades.

  2. Possibilities and Limits of Integrating Science and Diversity Education in Preservice Elementary Teacher Preparation

    NASA Astrophysics Data System (ADS)

    Bravo, Marco A.; Mosqueda, Eduardo; Solís, Jorge L.; Stoddart, Trish

    2014-08-01

    In this paper we present findings from a project that documented the development of preservice teachers' beliefs and practices in delivering science instruction that considers issues of language and culture. Teacher candidates in the intervention group ( n = 65) received a science methods course and teaching practicum experience that provided guidance in teaching science in culturally and linguistically responsive ways. Comparisons between a control group of preservice teachers ( n = 45) and those involved in the intervention yielded stronger beliefs about the efficacy in promoting collaboration in science teaching than the intervention group. Observations of these preservice teachers during their teaching practicum revealed differences in favor of the intervention group in: (a) implementing science instruction that addressed the language and literacy involved in science; (b) using questions that elicited higher order thinking and; (c) providing scaffolds (e.g., purposeful feedback, probing student background knowledge) when confronting abstract scientific concepts. Implications for preservice teacher education are addressed.

  3. Diffusing Innovations: Adoption of Serious Educational Games by K-12 Science Teachers

    ERIC Educational Resources Information Center

    Vallett, David; Annetta, Leonard; Lamb, Richard; Bowling, Brandy

    2014-01-01

    Innovation is a term that has become widely used in education; especially as it pertains to technology infusion. Applying the corporate theory of diffusing innovation to educational practice is an innovation in itself. This mixed-methods study examined 38 teachers in a science educational gaming professional development program that provided…

  4. Collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Flores, K.; Nadeau, P. A.; Sessa, J.; Ustunisik, G.; Zirakparvar, N.; Ebel, D.; Harlow, G.; Webster, J. D.; Kinzler, R.; MacDonald, M. B.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Zachowski, M.

    2014-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The lack of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and a teaching residency in local urban classrooms. The MAT program targets high-needs schools with diverse student populations and therefore has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of candidates entered the MAT program in June of 2012 and finished in August of 2013. Nineteen new Regents-qualified Earth Science teachers are now in full-time teaching positions at high-needs schools in New York State. We report on the experience of the first cohort as well as the continuation of the program for current and future cohorts of teacher candidates.

  5. Practical Application of Research in Science Education (PARSE) -- A New Collaboration for K-12 Science Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Zwicker, Andrew; Lopez, Jose; Clayton, James

    2008-11-01

    A new collaboration between PPPL, St. Peter's College, the Liberty Science Center, and the Jersey City Public School District was formed in order to create a unique K-12 teacher professional development program. St. Peter's College, located in Jersey City, NJ, is a liberal arts college in an urban setting. The Liberty Science Center (LSC) is the largest education resource in the New Jersey-New York City region. The Jersey City School District has 28,000 students of which approximately 90% are from populations traditionally under-represented in science. The new program is centered upon topics surrounding energy and the environment. In the first year, beginning in 2009, 15-20 teachers will participate in a pilot course that includes hands-on research at PPPL and St. Peter's, the creation of new curricular materials, and pedagogical techniques. Scientists, master teachers, and education professors will teach the course. In subsequent years, the number of participants will be significantly expanded and the curricular material disseminated to other school districts. In addition, an outside evaluator will measure the educational outcome throughout the project.

  6. Making science accessible through collaborative science teacher action research on feminist pedagogy

    NASA Astrophysics Data System (ADS)

    Capobianco, Brenda M.

    The underrepresentation of women and minorities in science is an extensively studied yet persistent concern of our society. Major reform movements in science education suggest that better teaching, higher standards, and sensitivity to student differences can overcome long-standing obstacles to participation among women and minorities. In response to these major reform movements, researchers have suggested teachers transform their goals, science content, and instructional practices to make science more attractive and inviting to all students, particularly young women and minorities (Barton, 1998; Brickhouse, 1994; Mayberry & Rees, 1999; Rodriguez, 1999; Roychoudhury, Tippins, & Nichols, 1995). One of the more dominant approaches currently heralded is the use of feminist pedagogy in science education. The purpose of this study was to examine the ways eleven middle and high school science teachers worked collaboratively to engage in systematic, self-critical inquiry of their own practice and join with other science teachers to engage in collaborative conversations in effort to transform their practice for a more equitable science education. Data were gathered via semi-structured interviews, whole group discussions, classroom observations, and review of supporting documents. Data analysis was based on grounded theory (Strauss & Corbin, 1990) and open coding (Miles and Huberman, 1994). This study described the collective processes the science teachers and university researcher employed to facilitate regular collaborative action research meetings over the course of six months. Findings indicated that engaging in collaborative action research allowed teachers to gain new knowledge about feminist science teaching, generate a cluster of pedagogical possibilities for inclusive pedagogy, and enhance their understanding for science teaching. Additional findings indicated dilemmas teachers experienced including resistance to a feminist agenda and concerns for validity in action

  7. Developing Elementary Science PCK for Teacher Education: Lessons Learned from a Second Grade Partnership

    NASA Astrophysics Data System (ADS)

    Bradbury, Leslie U.; Wilson, Rachel E.; Brookshire, Laura E.

    2017-06-01

    In this self-study, two science educators partnered with two elementary teachers to plan, implement, and reflect on a unit taught in second grade classrooms that integrated science and language arts. The researchers hoped to increase their pedagogical content knowledge (PCK) for elementary science teaching so that they might use their experiences working in an elementary context to modify their practices in their elementary science method instruction. The research question guiding the study was: What aspects of our PCK for elementary science teaching do we as science educators develop by co-planning, co-teaching, and reflecting with second grade teachers? Data include transcripts of planning meetings, oral reflections about the experience, and videos of the unit being enacted. Findings indicate that managing resources for science teaching, organizing students for science learning, and reflecting on science teaching were themes prevalent in the data. These themes were linked to the model of PCK developed by Park and Oliver (Research in Science Education, 38, 261-284, 2008) and demonstrate that we developed PCK for elementary science teaching in several areas. In our discussion, we include several proposed changes for our elementary science methods course based on the outcomes of the study.

  8. The development of elementary teacher identities as teachers of science

    NASA Astrophysics Data System (ADS)

    Carrier, Sarah J.; Whitehead, Ashley N.; Walkowiak, Temple A.; Luginbuhl, Sarah C.; Thomson, Margareta M.

    2017-09-01

    The purpose of this qualitative study was to investigate the contributions of pre-service teachers' memories of science and science education, combined with their experiences in a STEM-focused teacher preparation programme, to their developing identities as elementary school teachers of science. Data collected over three years include a series of interviews and observations of science teaching during elementary teacher preparation and the first year of teaching. Grounded within a theoretical framework of identity and using a case-study research design, we examined experiences that contributed to the participants' identity development, focusing on key themes from teacher interviews: memories of science and science instruction, STEM-focused teacher preparation programme, field experiences, first year of teaching, and views of effective science instruction. Findings indicate the importance of exposure to reform strategies during teacher preparation and are summarised in main assertions and discussed along with implications for teacher preparation and research.

  9. The Uses of the Term Hypothesis and the Inquiry Emphasis Conflation in Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Gyllenpalm, Jakob; Wickman, Per-Olof

    2011-09-01

    This paper examines the use and role of the term 'hypothesis' in science teacher education as described by teacher students. Data were collected through focus group interviews conducted at seven occasions with 32 students from six well-known Swedish universities. The theoretical framework is a sociocultural and pragmatist perspective on language and learning, introducing the notion of pivot terms to operationalise language use as a habit and mediated action. We describe three different customs of using the term 'hypothesis' within four cultural institutions that can be said to constitute science teacher education in Sweden. Students were found to habitually use the term hypothesis as meaning a guess about an outcome. This is contrasted to the function of this term in scientific research as a tentative explanation. We also found differences in how this term was used between the pure science courses given by the science departments of universities and science education courses taken only by teacher students. Findings also included further support for school students hypothesis fear reported in an earlier study. It is discussed how these findings can obstruct learning and teaching about the nature of scientific inquiry. Constructivist theories of learning are suggested as a possible origin of these problems. The findings are also related to curricular reform and development.

  10. Improving Early Career Science Teachers' Ability to Teach Space Science

    NASA Astrophysics Data System (ADS)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  11. Designing Inductive Instructional Activities in a Teacher Training Program to Enhance Conceptual Understandings in Science for Thai Science and Non-Science Teachers

    ERIC Educational Resources Information Center

    Narjaikaew, Pattawan; Jeeravipoonvarn, Varanya; Pongpisanou, Kanjana; Lamb, Dennis

    2016-01-01

    Teachers are viewed as the most significant factor affecting student learning. However, research in science education showed that teachers often demonstrate misunderstandings of science very similar to students. The purpose of this research was to correct conceptual difficulties in science of Thai primary school science and non-science teachers…

  12. Discerning selective traditions in science education: a qualitative study of teachers' responses to what is important in science teaching

    NASA Astrophysics Data System (ADS)

    Sund, Per

    2016-06-01

    Science teachers have differing views about what students should learn. Their teaching experience often leads them to develop habitual answers to students' questions, such as—why should I learn this? Some teachers argue that students need to learn more `canonical' science knowledge so that they can become scientists, while others tell students to apply scientific knowledge in order to make their everyday lives easier. If a group of teachers argue and act in similar ways in similar situations, they can be described as working in a similar collective habit. In this study these are called selective traditions in science teaching. In practical terms they work well in everyday, multifaceted, hectic teaching situations. However, the traditions can obstruct the inclusion of socio-scientific issues in national science education tests. Some research has been conducted on selective traditions in written curriculum material, although little is known about how they can be discerned in teachers' descriptions of their science teaching. This study draws on Dewey's discussion of the interplay between individual and collective habits to discern teaching traditions by regarding them as institutionalized teaching habits. A firmly developed analytical tool is applied to the extensive data consisting of twenty-nine Swedish science teachers' responses in semi-structured interviews. The methodology used in this study is inspired by earlier environmental and sustainability education research. The results are discussed in relation to earlier research on `scientific literacy' and how research can support teachers' changes of practice to encourage students to perform better in large-scale tests.

  13. Becoming a Science Teacher: The Competing Pedagogies of Schools and Teacher Education

    ERIC Educational Resources Information Center

    Rozelle, Jeffrey J.

    2010-01-01

    A culminating student teaching or internship experience is a central component of nearly every teacher education program and has been for most of teacher education's history. New teachers cite field experience and student teaching as the most beneficial, authentic, or practical aspect of teacher education. Teacher educators, however, have cause to…

  14. NGSS and the Next Generation of Science Teachers

    NASA Astrophysics Data System (ADS)

    Bybee, Rodger W.

    2014-03-01

    This article centers on the Next Generation Science Standards (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts—interconnecting science and engineering practices, disciplinary core ideas, crosscutting concepts; recognizing learning progressions; including engineering; addressing the nature of science, coordinating with Common Core State Standards. The article continues with a general discussion of reforming teacher education programs and a concluding discussion of basic competencies and personal qualities of effective science teachers.

  15. A longitudinal investigation of the preservice science teachers' beliefs about science teaching during a science teacher training programme

    NASA Astrophysics Data System (ADS)

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants were composed of 76 preservice teachers, and the DASTT-C was used as the data collection tool. As a result of the study, it was determined that the students had conventional teaching beliefs after the first years of the teacher training programme. Moreover, the mental teaching styles of preservice teachers about the science teaching were found to undergo changes throughout their undergraduate education. Participants' beliefs about conventional teaching started to change, especially after they first took a science method course in their third year and their beliefs shifted towards student-centred teaching. Implications for science teacher training programmes were also addressed.

  16. If Science Teachers Are Positively Inclined Toward Inclusive Education, Why Is It So Difficult?

    NASA Astrophysics Data System (ADS)

    Spektor-Levy, Ornit; Yifrach, Merav

    2017-08-01

    This paper describes the unique challenges that students with learning disabilities (LD) experience in science studies and addresses the question of the extent to which science teachers are willing and prepared to teach in inclusive classrooms. We employed the theory of planned behavior (TPB), according to which behavioral intentions are a function of individuals' attitudes toward the behavior, their subjective norms, and their perceived control—i.e., their perception of the simplicity and benefits of performing the behavior. The study comprised 215 junior high school science teachers, who answered a TPB-based quantitative questionnaire. Semi-structured interviews were conducted to support and enrich the findings and conclusions. We found that teachers held positive attitudes and were willing to adapt their teaching methods (perceived control), which correlated and contributed to their behavioral intention. In terms of subjective norms, however, they felt a lack of support and ongoing guidance in providing the appropriate pedagogy to meet the needs of students with LD. We therefore recommend that educational policy makers and school management devote attention and resources to providing professional training and appropriate instructional materials and to establishing frameworks for meaningful cooperation between the science teachers and special education staff. This could ensure the efficient cooperation and coordination of all the involved parties and send a positive message of support to the science teachers who are the actual implementers of change.

  17. Infusing Culturally Responsive Science Curriculum into Early Childhood Teacher Preparation

    NASA Astrophysics Data System (ADS)

    Yoon, Jiyoon; Martin, Leisa A.

    2017-08-01

    Previous research studies in early childhood teacher education have indicated that teacher candidates are not adequately prepared to demonstrate the knowledge and skills needed to teach science to all children including culturally and linguistically diverse students. To address this issue, the researchers provided 31 early childhood teacher candidates with instructions through a culturally responsive science education curriculum that integrates American and Korean science curriculum corresponding to the American and Korean standards for teacher education. The results showed a statistically significant increase in their Personal Science Teaching Efficacy (PSTE). In addition, the teacher candidates were able to create a multicultural/diverse lesson in the developing and proficiency levels based on Ambrosio's lesson matrix. This study provides teacher candidates' knowledge as well as an additional resource for developing their self-efficacy and understanding the role of multicultural/diverse lesson planning for science instruction. Also, teacher candidates could be better prepared by understanding how other countries approach science education and integrating this knowledge to enrich their own science instruction.

  18. Promoting Issues-Based STSE Perspectives in Science Teacher Education: Problems of Identity and Ideology

    ERIC Educational Resources Information Center

    Pedretti, Erminia G.; Bencze, Larry; Hewitt, Jim; Romkey, Lisa; Jivraj, Ashifa

    2008-01-01

    Although science, technology, society and environment (STSE) education has gained considerable force in the past few years, it has made fewer strides in practice. We suggest that "science" teacher identity plays a role in the adoption of STSE perspectives. Simply put, issues-based STSE education challenges traditional images of a science…

  19. Teacher Educators' Research Practices: An Explorative Study of Teacher Educators' Perceptions on Research

    ERIC Educational Resources Information Center

    Willemse, T. M.; Boei, F.

    2013-01-01

    Research conducted by teacher educators is considered important for their professional development, their actual teaching practice and their body of knowledge. However, for many teacher educators in Universities of Applied Sciences (UAS) in the Netherlands, research is a new challenge. A survey was conducted among 508 such teacher educators…

  20. Standards for Indiana Teachers of Science.

    ERIC Educational Resources Information Center

    Andersen, Hans O.; Kobe, Michael

    1996-01-01

    The Standards for Teachers of Science address the preparation, provisional practice, continued practice, and support that teachers will need to ensure that students are prepared for life and to be lifelong learners. The background of educational reform, vision behind the Standards, goals for science teachers, and suggestions for sustaining…

  1. Science educators' perceptions of problems facing science education: A report of five surveys

    NASA Astrophysics Data System (ADS)

    Gallagher, James Joseph; Yager, Robert E.

    Five groups of science educators representing faculty at graduate institutions, graduate students, teachers, supervisors, and leadership conferees were surveyed concerning their perceptions of current problems facing science education. A total of 144 participants provided an average of 4.7 responses. The responses were tabulated using an emergent set of categories that resulted in six major groupings, i.e. conceptual, organizational, teacher; related, student-related, university, and societal. The category with the most problems identified was in the area of conceptual problems. University related problems and organizational problems were the next two most frequently mentioned categories for problems. Specific problems in all categories most often cited include the following:1confusion and uncertainty in goals and objectives;2lack of vision and leadership in schools and universities;3absence of a theoretical base for science education;4poor quality teacher education programs;5inappropriate avenues for continuing education of teachers; limited dialogue between researchers and practitioners; declining enrollments; poor quality teaching and counseling; insufficient programs in science for the wide spectrum of students; and public and parental apathy towards science.

  2. Educational technology usage and needs of science education in Turkey

    NASA Astrophysics Data System (ADS)

    Turkmen, Hakan

    The purpose of this study was to examine Turkish science teachers and pre-service teachers' attitudes towards the use of technological tools in their science lessons in Turkish colleges of education in the assist of Turkish government projects, and how science education teachers, who have earned a science education degree from western countries, influence the use technology in Turkish higher education. The research method employed were quantitative data sources, including a technology background questionnaire, which is cross-sectional design, and qualitative historical research data sources. The study analyzed the data under a cross-section or between subjects' method with four factors: Turkish science teachers; Turkish pre-service science teachers; Turkish science teachers who have earned science degrees from western universities; and Turkish graduate students whose majors are in science education in U.S. It was anticipated that an analysis of variance (ANOVA) would be used to analyze data and "level 0.05" was established. Major findings of the study include: (1) Science education faculty members who have earned science education degrees from western countries have a positive effect on the use of technological tools in science courses in Turkish higher education. (2) Science education faculty members who have earned science degrees from Turkish universities have a limited knowledge on the use of technological tools in science courses in Turkish higher education. (3) Science education graduate students who have been studying in science education in western countries have positive attitudes for the use of technological tools in science courses have potential to impact Turkish higher education, when they return to Turkey. (4) Most Turkish pre-service teachers know very little about effective use of technology in education. Gender differences are apparent and females consistently indicated that they knew less and hence may not integrate technological tools in their

  3. Space Science Educational Media Resources, A Guide for Junior High School Teachers.

    ERIC Educational Resources Information Center

    McIntyre, Kenneth M.

    This guide, developed by a panel of teacher consultants, is a correlation of educational media resources with the "North Carolina Curricular Bulletin for Eighth Grade Earth and Space Science" and the state adopted textbook, pModern Earth Science." The three major divisions are (1) the Earth in Space (Astronomy), (2) Space…

  4. Pre-service Science Teacher Preparation in China: Challenges and Promises

    NASA Astrophysics Data System (ADS)

    Liu, Enshan; Liu, Cheng; Wang, Jian

    2015-02-01

    The purpose of this article was to present an overview of pre-service science teacher preparation in China, which is heavily influenced by Chinese tradition, Confucianism, and rapid social and economic development. The policies, science teacher education systems and related programs jointly contribute to producing enough science teachers for hundreds of thousands of schools at different levels. At the same time, some important reforms should be undertaken, and more candidates with the ability to do educational research should be trained. These qualified science teachers not only face the challenges of the new round of science education reform, but also take opportunities to implement new science curriculum effectively. Therefore, it will facilitate professional development and improve science education in turn.

  5. "The Teacher Education Conversation": A Network of Cooperating Teachers

    ERIC Educational Resources Information Center

    Nielsen, Wendy S.; Triggs, Valerie; Clarke, Anthony; Collins, John

    2010-01-01

    This study investigated a professional learning community of cooperating teachers and university-based teacher educators. To examine our roles and perspectives as colleagues in teacher education, we drew on frameworks in teacher learning and complexity science. Monthly group meetings of this inquiry community were held over two school years in a…

  6. Introducing curriculum innovations in science: Identifying teachers' transformations and the design of related teacher education

    NASA Astrophysics Data System (ADS)

    Pint, Roser

    2005-01-01

    This paper introduces the four research papers in this paper set, which all derive from a European research project, STTIS (Science Teacher Training in an Information Society). The central concern of the project was to study curriculum innovations in science, and to investigate ways in which teachers transform these innovations when putting them into practice. This work led to the construction of appropriate teacher training materials for use when an innovation is being introduced. The paper describes the mutual research strategy agreed upon by the STTIS partners. Both to avoid repetition and to underline the understanding that the partners share about the issues involved in curriculum innovation and related teacher education, the main theoretical background and the review of literature relevant to all four papers is to be found here. Themes and conclusions common to all the papers are highlighted. The paper also outlines the common features of the approach the STTIS partners took toward the construction of teacher training materials. These materials build in concrete results from the research, in forms that provoke discussion and reflection aimed at making teachers more aware of their ideas and behavior, with a view to effecting lasting change.

  7. Rationale for a Study of the Relevance of Academic Learning Time and Active Teaching Behaviors to Secondary Science Teacher Education. Part of a Paper Set: Applying Teacher Effectiveness Findings to Preservice and Inservice Science Teacher Education.

    ERIC Educational Resources Information Center

    Ponzio, Richard; Russell, Thomas L.

    This report is part of a paper set which focuses on a project designated as "Applying Research to Teacher Education (ARTE)." It reviews application possibilities of teacher effectiveness research in elementary classrooms to science teaching at the secondary level. Mills College (Oakland, California) was one of the sites involved in the…

  8. Globalization and Teacher Education

    ERIC Educational Resources Information Center

    Flinders, David J.

    2009-01-01

    Educational researchers and teacher educators are often concerned with immediate and practical questions. How can health teachers help youth avoid substance abuse? Should a high school biology teacher show Al Gore's "An Inconvenient Truth," or is that film too political for a science classroom? What sports should be included in a physical…

  9. The effects of a professional development geoscience education institute upon secondary school science teachers in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Llerandi Roman, Pablo Antonio

    The geographic and geologic settings of Puerto Rico served as the context to develop a mixed methods investigation on: (1) the effects of a five-day long constructivist and field-based earth science education professional development institute upon 26 secondary school science teachers' earth science conceptual knowledge, perceptions of fieldwork, and beliefs about teaching earth science; and (2) the implementation of participants' newly acquired knowledge and experience in their science lessons at school. Qualitative data included questionnaires, semi-structured interviews, reflective journals, pre-post concept maps, and pre-post lesson plans. The Geoscience Concept Inventory and the Science Outdoor Learning Environment Inventory were translated into Spanish and culturally validated to collect quantitative data. Data was analyzed through a constructivist grounded theory methodology, descriptive statistics, and non-parametric methods. Participants came to the institute with serious deficiencies in earth science conceptual understanding, negative earth science teaching perspectives, and inadequate earth science teaching methodologies. The institute helped participants to improve their understanding of earth science concepts, content, and processes mostly related to the study of rocks, the Earth's structure, plate tectonics, maps, and the geology of Puerto Rico. Participants also improved their earth science teaching beliefs, perceptions on field-based education, and reflected on their environmental awareness and social responsibility. Participants greatly benefited from the field-based learning environment, inquiry-based teaching approaches modeled, the attention given to their affective domain, and reflections on their teaching practice as part of the institute's activities. The constructivist learning environment and the institute's contextualized and meaningful learning conceptual model were effective in generating interest and confidence in earth science teaching

  10. Co-planning among science and special education teachers: How do different conceptual lenses help to make sense of the process?

    NASA Astrophysics Data System (ADS)

    Swanson, Lauren H.; Bianchini, Julie A.

    2015-12-01

    In this study, we investigated the process of teacher co-planning. We examined two teams of high school science and special education teachers brought together to co-plan inclusive, inquiry-oriented science units as part of a professional development effort. We used three conceptual lenses to help make sense of this process: (1) characteristics of collaboration, (2) small group interactions, and (3) community discourse. Using these lenses individually and collectively, we identified strengths and limitations in teachers' co-planning efforts. A strength was that all teachers, irrespective of discipline, shared ideas and helped make decisions about the content and activities included in unit and lesson plans. A limitation was that teachers, again irrespective of discipline, discussed science education topics in their teams more often than special education ones. We found this latter finding of note as it spoke to issues of parity among teachers during the professional development. In our discussion, we argue that each conceptual lens yielded both unique and common findings on co-planning. We also provide recommendations for professional developers and educational scholars intent on organizing and/or researching co-planning among science and special education teachers.

  11. Perceived professional needs of Korean science teachers majoring in chemical education and their preferences for online and on-site training

    NASA Astrophysics Data System (ADS)

    Noh, Taehee; Cha, Jeongho; Kang, Sukjin; Scharmann, Lawrence C.

    2004-10-01

    In this study, we investigated the perceived professional needs of Korean science teachers majoring in chemical education, and examined their preferences for online and on-site inservice teacher training programmes. The results were also compared with those of preservice teachers. Participants were 120 secondary school teachers and 67 preservice teachers, whose majors were either chemical education or science education with emphasis in chemistry. A questionnaire consisting of a modified Science Teacher Inventory of Need and a section concerning respondents' demographic information and their use of the Internet was administered. In contrast to previous studies, the perceived needs of Korean inservice and preservice teachers were found to be very strong in all 30 needs assessment items, and their prominent needs were from all seven categories. Preservice teachers indicated significantly greater needs than inservice teachers on several items. Korean teachers generally tended to prefer online inservice to traditional on-site training programmes, although they still preferred on-site types of programmes in areas such as conducting laboratory sessions and demonstrating manipulative skills. Preferences for online programmes tended to be stronger among preservice teachers than inservice teachers, and among non-veteran teachers than in veteran teachers. Educational implications are discussed.

  12. Becoming urban science teachers by transforming middle-school classrooms: A study of the Urban Science Education Fellows Program

    NASA Astrophysics Data System (ADS)

    Furman, Melina Gabriela

    The current scenario in American education shows a large achievement and opportunity gap in science between urban children in poverty and more privileged youth. Research has shown that one essential factor that accounts for this gap is the shortage of qualified science teachers in urban schools. Teaching science in a high poverty school presents unique challenges to beginner teachers. Limited resources and support and a significant cultural divide with their students are some of the common problems that cause many novice teachers to quit their jobs or to start enacting what has been described as "the pedagogy of poverty." In this study I looked at the case of the Urban Science Education Fellows Program. This program aimed to prepare preservice teachers (i.e. "fellows") to enact socially just science pedagogies in urban classrooms. I conducted qualitative case studies of three fellows. Fellows worked over one year with science teachers in middle-school classrooms in order to develop transformative action research studies. My analysis focused on how fellows coauthored hybrid spaces within these studies that challenged the typical ways science was taught and learned in their classrooms towards a vision of socially just teaching. By coauthoring these hybrid spaces, fellows developed grounded generativity, i.e. a capacity to create new teaching scenarios rooted in the pragmatic realities of an authentic classroom setting. Grounded generativity included building upon their pedagogical beliefs in order to improvise pedagogies with others, repositioning themselves and their students differently in the classroom and constructing symbols of possibility to guide their practice. I proposed authentic play as the mechanism that enabled fellows to coauthor hybrid spaces. Authentic play involved contexts of moderate risk and of distributed expertise and required fellows to be positioned at the intersection of the margins and the center of the classroom community of practice. In

  13. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    ERIC Educational Resources Information Center

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  14. Inquiry-Based Science Education: Towards a Pedagogical Framework for Primary School Teachers

    ERIC Educational Resources Information Center

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2016-01-01

    Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open…

  15. A Space Science Teacher Professional Development Program

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay S.; Pertzborn, Rosalyn A.

    Recent adoption of state/national science education standards by school districts in the US has created a need for effective teacher professional development in space science at elementary middle and high school level. Particularly at the elementary and middle school levels majority of teachers teaching the Astronomy/Space Science content have had little education in the area regardless of when they obtained their certification. To meet this growing need the Office of Space Science Education has developed a program to offer teachers background content knowledge through summer workshops and periodic school year meetings for a small number of teachers from Wisconsin and Illinois. The program has included lectures by experts tours of observatories (professional and amateur) science museums and planetariums and on-line learning. A highlight of the program has been introducing teachers to hands-on observing through remotely accessible telescopes. Another aspect has been to make them aware of the many resources available to them through NASA missions. The most significant benefit for the teachers however has been the creation of a peer group and the support it offers in sharing curriculum and lesson plans. This effort has been supported by a NASA/IDEAS grant

  16. Collaboration between Science and Religious Education Teachers in Scottish Secondary Schools

    ERIC Educational Resources Information Center

    Hall, Stuart; McKinney, Stephen; Lowden, Kevin; Smith, Marjorie; Beaumont, Paul

    2014-01-01

    The article reports on quantitative research that examines: (1) the current practice in collaboration; and (2) potential for collaboration between Science and Religious Education teachers in a large sample of Scottish secondary schools. The authors adopt and adapt three models ("conflict"; "concordat" and…

  17. An Instrument Development Study for Determining Prospective Science Teachers' Science-Specific Epistemological Beliefs

    ERIC Educational Resources Information Center

    Koksal, Mustafa Serdar; Ertekin, Pelin

    2016-01-01

    The study is focusing on development of an instrument to determine science-specific epistemological beliefs of prospective science teachers. The study involved 364 (male = 82, female = 282) prospective science teachers enrolled in a science teacher education program. The confirmatory factor analysis, reliability analysis and correlation analysis…

  18. The Pedagogy of Science Teachers from Non-Natural Science Backgrounds

    ERIC Educational Resources Information Center

    Woods, Shaneka

    2017-01-01

    This is a descriptive, exploratory, qualitative, collective case study that explores the pedagogical practices of science teachers who do not hold natural science degrees. The intent of this study is to support the creation of alternative pathways for recruiting and retaining high-quality secondary science teachers in K-12 education. The…

  19. Science teacher's perception about science learning experiences as a foundation for teacher training program

    NASA Astrophysics Data System (ADS)

    Tapilouw, Marisa Christina; Firman, Harry; Redjeki, Sri; Chandra, Didi Teguh

    2017-05-01

    Teacher training is one form of continuous professional development. Before organizing teacher training (material, time frame), a survey about teacher's need has to be done. Science teacher's perception about science learning in the classroom, the most difficult learning model, difficulties of lesson plan would be a good input for teacher training program. This survey conducted in June 2016. About 23 science teacher filled in the questionnaire. The core of questions are training participation, the most difficult science subject matter, the most difficult learning model, the difficulties of making lesson plan, knowledge of integrated science and problem based learning. Mostly, experienced teacher participated training once a year. Science training is very important to enhance professional competency and to improve the way of teaching. The difficulties of subject matter depend on teacher's education background. The physics subject matter in class VIII and IX are difficult to teach for most respondent because of many formulas and abstract. Respondents found difficulties in making lesson plan, in term of choosing the right learning model for some subject matter. Based on the result, inquiry, cooperative, practice are frequently used in science class. Integrated science is understood as a mix between Biology, Physics and Chemistry concepts. On the other hand, respondents argue that problem based learning was difficult especially in finding contextual problem. All the questionnaire result can be used as an input for teacher training program in order to enhanced teacher's competency. Difficult concepts, integrated science, teaching plan, problem based learning can be shared in teacher training.

  20. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    NASA Astrophysics Data System (ADS)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  1. "From the Beginning, I Felt Empowered": Incorporating an Ecological Approach to Learning in Elementary Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Birmingham, Daniel; Smetana, Lara; Coleman, Elizabeth

    2017-09-01

    While a renewed national dialog promotes the importance of science education for future technological and economic viability, students must find science personally relevant to themselves and their communities if the goals set forth in recent reform movements are to be achieved. In this paper, we investigate how incorporating an ecological perspective to learning in teacher education, including opportunities to participate with science in connection to their everyday lives, influenced the ways in which elementary teacher candidates (TCs) envisioned learning and doing science and its potential role in their future classroom. We draw from data collected across three sections of a field-based elementary methods course focused on learning to teach science and social studies through inquiry. We argue that participating in an authentic interdisciplinary inquiry project impacted the ways in which TCs conceived of science, their identities as science learners and teachers and their commitments to bringing inquiry-based science instruction to their future classrooms. This paper addresses issues regarding access to quality science learning experiences in elementary classrooms through empowering TCs to build identities as science learners and teachers in order to impact conditions in their future classrooms.

  2. Perceptions on the importance of gerontological education by teachers and students of undergraduate health sciences.

    PubMed

    Mendoza-Núñez, Víctor Manuel; Martínez-Maldonado, María de la Luz; Correa-Muñoz, Elsa

    2007-01-19

    The main challenge of higher education institutions throughout the world is to develop professionals capable of understanding and responding to the current social priorities of our countries. Given the utmost importance of addressing the complex needs of an increasingly elderly population in Mexico, the National Autonomous University of Mexico has systematically incorporated modules dealing with primary gerontological health care into several of its undergraduate programs in health sciences. The objective of this study was to analyze teacher's and student's perceptions about the current educational practices on gerontology. A cross-sectional study was carried out with a sample of 26 teachers and 122 undergraduate students. Subjects were administered interviews and responded survey instrument. A vast proportion of the teachers (42%) reported students' attitudes towards their academic training as the most important factor affecting learning in the field of gerontology, whereas students reported that the main problems of education in gerontology were theoretical (32%) and methodological (28%). In addition, 41% of students considered education on ageing matters as an essential element for their professional development, as compared to 19% of teachers (p < 0.05). Our findings suggest that the teachers' perceptions about the low importance of education on ageing matters for the professional practice of health sciences could be a negative factor for gerontology teaching.

  3. Level of the Environmental Risks' Awareness of Water Shortage for the Educational Sciences College's Student-Teachers at the World Islamic Sciences and Education University in Jordan

    ERIC Educational Resources Information Center

    Alebous, Tahani

    2016-01-01

    The study aimed at investigating the degree of awareness of environmental risks of water shortage of students-teachers in the majors of Classroom teachers, Counseling and Special education in the Education Sciences College at WISE and their degree of awareness according to major and gender. The sample of the study which was selected randomly…

  4. Socioscience and ethics in science classrooms: Teacher perspectives and strategies

    NASA Astrophysics Data System (ADS)

    Sadler, Troy D.; Amirshokoohi, Aidin; Kazempour, Mahsa; Allspaw, Kathleen M.

    2006-04-01

    This study explored teacher perspectives on the use of socioscientific issues (SSI) and on dealing with ethics in the context of science instruction. Twenty-two middle and high school science teachers from three US states participated in semi-structured interviews, and researchers employed inductive analyses to explore emergent patterns relative to the following two questions. (1) How do science teachers conceptualize the place of ethics in science and science education? (2) How do science teachers handle topics with ethical implications and expression of their own values in their classrooms? Profiles were developed to capture the views and reported practices, relative to the place of ethics in science and science classrooms, of participants. Profile A comprising teachers who embraced the notion of infusing science curricula with SSI and cited examples of using controversial topics in their classes. Profile B participants supported SSI curricula in theory but reported significant constraints which prohibited them from actualizing these goals. Profile C described teachers who were non-committal with respect to focusing instruction on SSI and ethics. Profile D was based on the position that science and science education should be value-free. Profile E transcended the question of ethics in science education; these teachers felt very strongly that all education should contribute to their students' ethical development. Participants also expressed a wide range of perspectives regarding the expression of their own values in the classroom. Implications of this research for science education are discussed.

  5. A Field-Based Curriculum Model for Earth Science Teacher-Preparation Programs.

    ERIC Educational Resources Information Center

    Dubois, David D.

    1979-01-01

    This study proposed a model set of cognitive-behavioral objectives for field-based teacher education programs for earth science teachers. It describes field experience integration into teacher education programs. The model is also applicable for evaluation of earth science teacher education programs. (RE)

  6. Inquiry-Based Science Education Competencies of Primary School Teachers: A Literature Study and Critical Review of the American National Science Education Standards

    ERIC Educational Resources Information Center

    Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin

    2012-01-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a…

  7. Anticipating Change: An Exploratory Analysis of Teachers' Conceptions of Engineering in an Era of Science Education Reform

    ERIC Educational Resources Information Center

    Sengupta-Irving, Tesha; Mercado, Janet

    2017-01-01

    While integrating engineering into science education is not new in the United States, technology and engineering have not been well emphasized in the preparation and professional development of science teachers. Recent science education reforms integrate science and engineering throughout K-12 education, making it imperative to explore the…

  8. Understanding Standards and Assessment Policy in Science Education: Relating and Exploring Variations in Policy Implementation by Districts and Teachers in Wisconsin

    NASA Astrophysics Data System (ADS)

    Anderson, Kevin John Boyett

    Current literature shows that many science teachers view policies of standards-based and test-based accountability as conflicting with research-based instruction in science education. With societal goals of improving scientific literacy and using science to spur economic growth, improving science education policy becomes especially important. To understand perceived influences of science education policy, this study looked at three questions: 1) How do teachers perceive state science standards and assessment and their influence on curriculum and instruction? 2) How do these policy perspectives vary by district and teacher level demographic and contextual differences? 3) How do district leaders' interpretations of and efforts within these policy realms relate to teachers' perceptions of the policies? To answer these questions, this study used a stratified sample of 53 districts across Wisconsin, with 343 middle school science teachers responding to an online survey; science instructional leaders from each district were also interviewed. Survey results were analyzed using multiple regression modeling, with models generally predicting 8-14% of variance in teacher perceptions. Open-ended survey and interview responses were analyzed using a constant comparative approach. Results suggested that many teachers saw state testing as limiting use of hands-on pedagogy, while standards were seen more positively. Teachers generally held similar views of the degree of influence of standards and testing regardless of their experience, background in science, credentials, or grade level taught. District SES, size and past WKCE scores had some limited correlations to teachers' views of policy, but teachers' perceptions of district policies and leadership consistently had the largest correlation to their views. District leadership views of these state policies correlated with teachers' views. Implications and future research directions are provided. Keywords: science education, policy

  9. What Are the Teachers' Experiences When Implementing the Curriculum for Agricultural Science Education?

    ERIC Educational Resources Information Center

    Lambert, Misty D.; Velez, Jonathan J.; Elliott, Kristopher M.

    2014-01-01

    This multiple case study was designed to understand the experience of implementing the Curriculum for Agricultural Science Education (CASE) for five teachers at four high schools. All teachers were in their first year of implementing CASE. Through the use of weekly journals, semi-structured interviews and a focus group, researchers attempted to…

  10. The Future of Science Teacher Education

    ERIC Educational Resources Information Center

    Harrison, Christine

    2014-01-01

    In this article, Christine Harrison questions the quality of education received by today's trainee teachers and illustrates how different routes providing initial teacher education can be problematic. Many of the new routes involve schools, more than previously, in deciding on which aspects need to be focused on. While there are some excellent…

  11. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    NASA Astrophysics Data System (ADS)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  12. Fostering solidarity and transforming identities: A collaborative approach to elementary science teacher education

    NASA Astrophysics Data System (ADS)

    Siry, Christina A.

    This study explores the use of coteaching and cogenerative dialogue in pre-service elementary teacher education, and the ways in which collaborating to share responsibility for learning and teaching can afford the development of solidarity and new teachers' identity transformations. Specifically, the research detailed in this dissertation focuses on learning to teach science in a field-based methods course taught partially on a college campus and partially in an urban elementary school. I used critical ethnography guided by the theoretical frameworks of cultural sociology and the sociology of emotions. The lens of phenomenology provided the contextual aspects of the individual experience, and design experiment was utilized as the research unfolded, affording continual redesign of the work. Issues of identity and group membership are central to this research, and I have explored connections between the emergence of solidarity within a group of teachers and the individual identity transformations supported through a collective sense of belonging. A key component of this study was an analysis of the co-responsibility nurtured through coteaching and cogenerative dialogue, and thus the dialectical relationship between the individual and the collective is critical to this research. At the individual level, I examined identity development, and individual participation in a field-based methods course. At the collective level, I considered the ways that participants form collective identities and group solidarity. Two of the chapters of my dissertation are coauthored with students, as I have sought to dismantle teacher-student hierarchies and replace them with complex relationships supported through polysemic and polyphonic approaches to research. In examining identity and solidarity as they emerged from this approach, I make the following contributions to science teacher education; (1) identify resources and practices in elementary science teaching that surface in a

  13. Design and validation of a standards-based science teacher efficacy instrument

    NASA Astrophysics Data System (ADS)

    Kerr, Patricia Reda

    National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA

  14. Science teachers' worldviews and values regarding nature and the environment

    NASA Astrophysics Data System (ADS)

    Roberts, Wendy P.

    According to the National Science Education Standards (1996), science educators are challenged with the goal of educating future citizens and policy makers to make informed decisions concerning socio-scientific issues. Previous science education research has not explored the influence of science teachers' personal worldviews and values in achieving this educational goal. The purpose of this study was to investigate secondary science teachers' worldviews and values as they relate to nature and environmental education in their science classrooms. The participants' descriptions of their environmental personae and their perception of its influence in their classrooms were also examined. The participants represented a purposeful sample of twelve certified secondary school science teachers who teach in a suburban Atlanta, Georgia school. The study employed an interpretive, qualitative methodology using a constant comparative, inductive analysis design to develop grounded theory. Each participant's worldview, values, and environmental personae regarding the natural world and the environment were explored using William Cobern's (2000) Nature Card Sort instrument, responses to five environmental scenarios and individual interviews that addressed each participant's interpretation of the effect that personal worldviews and values have in their science classrooms. The participants' worldviews and values were disproportionately reflective of both science and society with far more weight given to the contextual values of society rather than the constitutive values of science. Most of these teachers had strong spiritual worldviews of nature; however, these views were of a Puritanical nature rather than Aboriginal. The participants felt conflicted about the appropriate course of action in many environmental issues. Contrary to other studies conducted in this field, there were few philosophical differences between teachers in the different disciplines of science, with the exception

  15. Using Educational Computer Games in the Classroom: Science Teachers' Experiences, Attitudes, Perceptions, Concerns, and Support Needs

    ERIC Educational Resources Information Center

    An, Yun-Jo; Haynes, Linda; D'Alba, Adriana; Chumney, Frances

    2016-01-01

    Science teachers' experiences, attitudes, perceptions, concerns, and support needs related to the use of educational computer games were investigated in this study. Data were collected from an online survey, which was completed by 111 science teachers. The results showed that 73% of participants had used computer games in teaching. Participants…

  16. Science teachers' worldviews: A way to understand beliefs and practices

    NASA Astrophysics Data System (ADS)

    Yalaki, Yalcin

    Understanding science teachers' beliefs is important for science teacher educators, because such understanding is a prerequisite for promoting change within the framework of educational reform. The worldview model developed by Graves (1981) and Beck and Cowan (1996) provides a holistic approach to understanding teachers' beliefs and values and it also provides a framework for understanding how people's worldviews change. In this study, worldviews of four science teachers were investigated within the framework of Beck and Cowan's model. Two of these teachers were high school science teachers, while the other two were middle school science teachers. One of the teachers held National Board of Professional Teaching Certification and she had 18 years of teaching experience. Another teacher was a relatively new teacher with three years of teaching experience. The third teacher had nine years of teaching experience, but when this study was conducted, it was her first year of teaching science. The other teacher had 26 years of experience with certification in all science areas. During this study, interpretative qualitative methods of data collection and analysis were used which included interviews, observations, and the use of a survey developed by Beck and Cowan (2000) called the Values Test. The results show that differing values and experiences among science teachers leads to different strategies for making sense of science teaching. The assertion that the worldview perspective provided by Beck and Cowan is a useful tool in understanding teachers' beliefs and values is made in the conclusions. Teacher educators can utilize this tool in research about teacher beliefs, in promoting change for reform, or in developing curriculum for teacher education programs. Teachers can utilize it in self-reflective practices to better understand their own beliefs, their context, and their students and ultimately improve the teaching and learning process they engage in.

  17. PolarTREC-Teachers and Researchers Exploring and Collaborating: Science Education from the Poles to the World

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Breen, K.; Warburton, J.; Fischer, K.; Wiggins, H.; Owens, R.; Polly, B.; Wade, B.; Buxbaum, T.

    2007-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that advances polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. Currently in its second year, the program fosters the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. Through PolarTREC, over 40 U.S. teachers will spend two to six weeks in the Arctic or Antarctic, working closely with researchers in the field as an integral part of the science team. Research projects focus on a wide range of IPY science themed topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and teacher peer groups. To learn more about PolarTREC visit the website at: http://www.polartrec.com or contact info@polartrec.com or 907-474-1600. PolarTREC is funded by NSF and managed by the Arctic Research Consortium of the US (ARCUS).

  18. Preservice Elementary Teachers' Science Self-Efficacy Beliefs and Science Content Knowledge

    ERIC Educational Resources Information Center

    Menon, Deepika; Sadler, Troy D.

    2016-01-01

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers' science self-efficacy beliefs. However, there are few studies examining the relationship between science…

  19. General Atomics Sciences Education Foundation Outreach Programs

    NASA Astrophysics Data System (ADS)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  20. Collaboration in teacher workshops and citizen science

    NASA Astrophysics Data System (ADS)

    Gibbs, M. G.; Buxner, S.; Gay, P.; Crown, D. A.; Bracey, G.; Gugliucci, N.; Costello, K.; Reilly, E.

    2013-12-01

    The Moon and Earth system is an important topic for elementary and middle school science classrooms. Elementary and middle school teachers are challenged to keep current in science. The Planetary Science Institute created a program titled Workshops in Science Education and Resources (WISER): Planetary Perspectives to assist in-service K-12 teachers with their knowledge in earth and space science, using up-to-date science and inquiry activities to assist them in engaging their students. To augment the science and add a new aspect for teacher professional development, PSI is working in a new partnership collaborating with the Cosmoquest project in engaging teachers in authentic inquiry of the Moon. Teachers now learn about the Moon from PSI scientists and education staff and then engage in inquiry of the Moon using CosmoQuest's online citizen science project MoonMappers and its accompanying classroom curriculum TerraLuna. Through MoonMappers, teachers and students explore the lunar surface by viewing high-resolution pictures from the Lunar Reconnaissance Orbiter and marking craters and other interesting features. In addition, TerraLuna provides a unit of inquiry-based activities that bring MoonMappers and its science content into the classroom. This program addresses standards teachers need to teach and helps them not only teach about the Moon but also engage their students in authentic inquiry of the lunar surface.

  1. The Current Situation of Field Experience in a Five-Year Science Teacher Education Program in Thailand

    ERIC Educational Resources Information Center

    Faikhamta, Chatree; Jantarakantee, Ekgapoom; Roadrangka, Vantipa

    2011-01-01

    This research explored the current situation in managing the field experience of a five-year science teacher education program in one university in Thailand. A number of methods were used to assess field experience situation: (1) a questionnaire on the perceptions of pre-service science teachers of field experience management; (2) participant…

  2. University and Elementary School Perspectives of Ideal Elementary Science Teacher Knowledge, Skills, and Dispositions

    NASA Astrophysics Data System (ADS)

    Sewart, Bethany Bianca

    Teacher education knowledge, skills, and dispositions have recently become a well-discussed topic among education scholars around the nation, mainly due to its attention by the National Council for Accreditation of Teacher Education (NCATE) over the past few years. Accrediting agencies, such as NCATE and the Interstate New Teacher and Assessment and Support Consortium (INTASC), have sought to improve the quality of teacher education programs by examining knowledge, skills, and dispositions as factors in preparing highly-qualified teachers. There is a paucity of research examining these factors for elementary science teachers. Because these factors influence instruction, and students are behind in scientific and mathematical knowledge, elementary science teachers should be studied. Teacher knowledge, skills, and dispositions should be further researched in order to ultimately increase the quality of teachers and teacher education programs. In this particular case, by determining what schools of education and public schools deem important knowledge, skills, and dispositions needed to teach science, higher education institutions and schools can collaborate to further educate these students and foster the necessary qualities needed to teach effectively. The study of knowledge, skills, and dispositions is crucial to nurturing effective teaching within the classroom. Results from this study demonstrated that there were prominent knowledge, skills, and dispositions identified by teachers, administrators, and science teacher educators as important for effective teaching of elementary science. These characteristics included: a willingness to learn, or open-mindedness; content knowledge; planning, organization, and preparation; significance of teaching science; and science-related assessment strategies. Interestingly, administrators in the study responded differently than their counterparts in the following areas: their self-evaluation of teacher effectiveness; how the

  3. Meanings teachers make of teaching science outdoors as they explore citizen science

    NASA Astrophysics Data System (ADS)

    Benavides, Aerin Benavides

    This descriptive case study examined the meanings public elementary school teachers (N = 13) made of learning to enact citizen science projects in their schoolyards in partnership with a local Arboretum. Utilizing Engestrom's (2001) framework of cultural-historical activity theory (CHAT), the Arboretum's outreach program for area Title 1 schools was viewed as an activity system composed of and acting in partnership with the teachers. The major finding was that teachers designed and mastered new ways of teaching (expansive learning) and transformed their citizen science activity to facilitate student engagement and learning. I highlight four important themes in teachers' expansive learning: (a) discussion, (b) inclusion, (c) integration, and (d) collaboration. Teacher learning communities formed when colleagues shared responsibilities, formed mentor/mentee relationships, and included student teachers and interns in the activity. This program could serve as a model for elementary school citizen science education, as well as a model for professional development for teachers to learn to teach science and Environmental Education outdoors.

  4. Unique collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Lepine, S.; Nadeau, P.; Flores, K.; Sessa, J.; Zirakparvar, N.; Ustunisik, G.; Kinzler, R.; Macdonald, M.; Contino, J.; Cooke-Nieves, N.; Zachowski, M.

    2013-01-01

    Abstract: The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The dearth of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and real-world teaching experience in local urban classrooms. The program is part of New York State’s Race to the Top initiative and particularly targets high-needs schools with diverse student populations. Because of this, the MAT program has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of teacher candidates entered the MAT program in June of 2012. They represent diverse scientific expertise levels, geographic backgrounds, and career stages. We report on the first six months of this pilot program as well as the future plans and opportunities for prospective teacher candidates.

  5. National standards in science education: Teacher perceptions regarding utilization

    NASA Astrophysics Data System (ADS)

    Fletcher, Carol Louise Parsons

    teachers are unlikely to embrace national standards while others choose to utilize them as a tool for reforming science education in their classrooms, schools, or districts. As such, it can be used by reformers to design and diagnostically evaluate the implementation process and its related staff development.

  6. Pre-Service Teachers' Development of Technological Pedagogical Content Knowledge (TPACK) in the Context of a Secondary Science Teacher Education Program

    ERIC Educational Resources Information Center

    Habowski, Thomas; Mouza, Chrystalla

    2014-01-01

    This study investigates pre-service teachers' TPACK development in a secondary science teacher education program that combined a content-specific technology integration course with extensive field experience. Both quantitative and qualitative data were collected. Quantitative data were collected through a pre-post administration of the…

  7. Design of Chemistry Teacher Education Course on Nature of Science

    NASA Astrophysics Data System (ADS)

    Vesterinen, Veli-Matti; Aksela, Maija

    2013-09-01

    To enhance students' understanding of nature of science (NOS), teachers need adequate pedagogical content knowledge related to NOS. The educational design research study presented here describes the design and development of a pre-service chemistry teacher education course on NOS instruction. The study documents two iterative cycles of problem analysis, design, implementation, and evaluation. The main aims of the study were (1) to create an in-depth and detailed description of the process used in the development of the course and the design solutions produced, and (2) to evaluate how the design solutions affected participants' commitment to teach NOS. Based on the problem analysis based on challenges recognized from the previous research, three design solutions were produced: (1) definition of central dimensions of domain-specific NOS for chemistry education, (2) teaching cycle for explicit and structured opportunities for reflection and discussion, and (3) design assignments to translate NOS understanding into classroom practice. The major data-sources used in the evaluation of the design solutions were the four in-depth interviews conducted after the course. Based on the evaluation, the design solutions supported internalizing understanding of NOS and transforming the understanding to instruction. Supporting the implementation of new innovative teaching practices such as NOS instruction in pre-service teacher education is a challenge. However, the success of the participants in implementing NOS instruction demonstrates, that a pre-service teacher education course can be successful in producing early adopters of NOS instruction and thus might be one of the first steps in injecting NOS instruction into the curriculum.

  8. Zambian pre-service junior high school science teachers' chemical reasoning and ability

    NASA Astrophysics Data System (ADS)

    Banda, Asiana

    The purpose of this study was two-fold: examine junior high school pre-service science teachers' chemical reasoning; and establish the extent to which the pre-service science teachers' chemical abilities explain their chemical reasoning. A sample comprised 165 junior high school pre-service science teachers at Mufulira College of Education in Zambia. There were 82 males and 83 females. Data were collected using a Chemical Concept Reasoning Test (CCRT). Pre-service science teachers' chemical reasoning was established through qualitative analysis of their responses to test items. The Rasch Model was used to determine the pre-service teachers' chemical abilities and item difficulty. Results show that most pre-service science teachers had incorrect chemical reasoning on chemical concepts assessed in this study. There was no significant difference in chemical understanding between the Full-Time and Distance Education pre-service science teachers, and between second and third year pre-service science teachers. However, there was a significant difference in chemical understanding between male and female pre-service science teachers. Male pre-service science teachers showed better chemical understanding than female pre-service science teachers. The Rasch model revealed that the pre-service science teachers had low chemical abilities, and the CCRT was very difficult for this group of pre-service science teachers. As such, their incorrect chemical reasoning was attributed to their low chemical abilities. These results have implications on science teacher education, chemistry teaching and learning, and chemical education research.

  9. Science Teacher Education in South America: The Case of Argentina, Colombia and Chile

    ERIC Educational Resources Information Center

    Cofré, Hernán; González-Weil, Corina; Vergara, Claudia; Santibáñez, David; Ahumada, Germán; Furman, Melina; Podesta, María E.; Camacho, Johanna; Gallego, Rómulo; Pérez, Royman

    2015-01-01

    In this review, the main characteristics of science teacher education in three countries in South America, namely Argentina, Chile and Colombia, are examined. Although reforms toward constructivist and inquiry-based teaching in science instruction have been made in each of the three reviewed countries, each country demonstrates limitations in the…

  10. Perceptions on the importance of gerontological education by teachers and students of undergraduate health sciences

    PubMed Central

    Mendoza-Núñez, Víctor Manuel; Martínez-Maldonado, María de la Luz; Correa-Muñoz, Elsa

    2007-01-01

    Background The main challenge of higher education institutions throughout the world is to develop professionals capable of understanding and responding to the current social priorities of our countries. Given the utmost importance of addressing the complex needs of an increasingly elderly population in Mexico, the National Autonomous University of Mexico has systematically incorporated modules dealing with primary gerontological health care into several of its undergraduate programs in health sciences. The objective of this study was to analyze teacher's and student's perceptions about the current educational practices on gerontology. Methods A cross-sectional study was carried out with a sample of 26 teachers and 122 undergraduate students. Subjects were administered interviews and responded survey instrument. Results A vast proportion of the teachers (42%) reported students' attitudes towards their academic training as the most important factor affecting learning in the field of gerontology, whereas students reported that the main problems of education in gerontology were theoretical (32%) and methodological (28%). In addition, 41% of students considered education on ageing matters as an essential element for their professional development, as compared to 19% of teachers (p < 0.05). Conclusion Our findings suggest that the teachers' perceptions about the low importance of education on ageing matters for the professional practice of health sciences could be a negative factor for gerontology teaching. PMID:17233923

  11. From Students to Teachers: Investigating the Science Teaching Efficacy Beliefs and Experiences of Graduate Primary Teachers

    NASA Astrophysics Data System (ADS)

    Deehan, James; Danaia, Lena; McKinnon, David H.

    2018-03-01

    The science achievement of primary students, both in Australia and abroad, has been the subject of intensive research in recent decades. Consequently, much research has been conducted to investigate primary science education. Within this literature, there is a striking juxtaposition between tertiary science teaching preparation programs and the experiences and outcomes of both teachers and students alike. Whilst many tertiary science teaching programs covary with positive outcomes for preservice teachers, reports of science at the primary school level continue to be problematic. This paper begins to explore this apparent contradiction by investigating the science teaching efficacy beliefs and experiences of a cohort of graduate primary teachers who had recently transitioned from preservice to inservice status. An opportunity sample of 82 primary teachers responded to the science teaching efficacy belief instrument A (STEBI-A), and 10 graduate teachers provided semi-structured interview data. The results showed that participants' prior science teaching efficacy belief growth, which occurred during their tertiary science education, had remained durable after they had completed their teaching degrees and began their careers. Qualitative data showed that their undergraduate science education had had a positive influence on their science teaching experiences. The participants' school science culture, however, had mixed influences on their science teaching. The findings presented within this paper have implications for the direction of research in primary science education, the design and assessment of preservice primary science curriculum subjects and the role of school contexts in the development of primary science teachers.

  12. Developing Partnerships between Higher Education Faculty, K-12 Science Teachers, and School Administrators via MSP initiatives: The RITES Model

    NASA Astrophysics Data System (ADS)

    Caulkins, J. L.; Kortz, K. M.; Murray, D. P.

    2011-12-01

    The Rhode Island Technology Enhanced Science Project (RITES) is a NSF-funded Math and Science Partnership (MSP) project that seeks to improve science education. RITES is, at its core, a unique partnership that fosters relationships between middle and high school science teachers, district and school administrators, higher education (HE) faculty members, and science education researchers. Their common goal is to enhance scientific inquiry, increase classroom technology usage, and improve state level science test scores. In one of the more visible examples of this partnership, middle and high school science teachers work closely with HE science faculty partners to design and teach professional development (PD) workshops. The PD sessions focus on technology-enhanced scientific investigations (e.g. use of probes, online simulations, etc.), exemplify inquiry-based instruction, and relate expert content knowledge. Teachers from these sessions express substantial satisfaction in the program, report increased comfort levels in teaching the presented materials (both via post-workshop surveys), and show significant gains in content knowledge (via pre-post assessments). Other benefits to this kind of partnership, in which K-12 and HE teachers are considered equals, include: 1) K-12 teachers are empowered through interactions with HE faculty and other science teachers in the state; 2) HE instructors become more informed not only about good pedagogical practices, but also practical aspects of teaching science such as engaging students; and 3) the PD sessions tend to be much stronger than ones designed and presented solely by HE scientists, for while HE instructors provide content expertise, K-12 teachers provide expertise in K-12 classroom practice and implementation. Lastly, the partnership is mutually beneficial for the partners involved because both sides learn practical ways to teach science and inquiry at different levels. In addition to HE faculty and K-12 science teacher

  13. Teachers' Attitude towards Implementation of Learner-Centered Methodology in Science Education in Kenya

    ERIC Educational Resources Information Center

    Ndirangu, Caroline

    2017-01-01

    This study aims to evaluate teachers' attitude towards implementation of learner-centered methodology in science education in Kenya. The study used a survey design methodology, adopting the purposive, stratified random and simple random sampling procedures and hypothesised that there was no significant relationship between the head teachers'…

  14. PolarTREC-Teachers and Researchers Exploring and Collaborating: Science Education from the Poles to the World

    NASA Astrophysics Data System (ADS)

    Timm, K. M.; Warburton, J.; Owens, R.; Warnick, W. K.

    2008-12-01

    PolarTREC--Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS), is a National Science Foundation (NSF)--funded International Polar Year (IPY) project in which K-12 educators participate in hands-on field experiences, working closely with IPY scientists as a pathway to improving science education. PolarTREC has developed a successful internet-based platform for teachers and researchers to interact and share their diverse experiences and expertise by creating interdisciplinary educational tools including online journals and forums, real-time Internet seminars, lesson plans, activities, audio, and other educational resources that address a broad range of scientific topics. These highly relevant, adaptable, and accessible resources are available to educators across the globe and have connected thousands of students and citizens to the excitement of polar science. By fostering the integration of research and education and infusing education with the thrill of discovery, PolarTREC will produce a legacy of long-term teacher-researcher collaborations and increased student knowledge of and interest in the polar regions well beyond the IPY time period. Educator and student feedback from preliminary evaluations has shown that PolarTREC's comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person in today's world, as well as increased self-reported knowledge and interest in Science, Technology, Engineering, and Mathematics content areas. PolarTREC provides a tested approach and a clear route for researcher participation in the education community

  15. Teachers engaging in Authentic Education Research as They Engage Students in Authentic Science Research: A Collaboration Among Scientists, Education Researchers and Practitioners

    NASA Astrophysics Data System (ADS)

    Schielack, J. F.; Herbert, B. E.

    2004-12-01

    The ITS Center for Teaching and Learning (http://its.tamu.edu) is a five-year NSF-funded collaborative effort to engage scientists, educational researchers, and educators in the use of information technology to enhance science teaching and learning at Grades 7 - 16. The ITS program combines graduate courses in science and science education leadership for both science and education graduate students with professional development experiences for classroom teachers. The design of the ITS professional development experience is based upon the assumption that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology to support inquiry in science classrooms has been shown to help achieve this objective. In particular, the professional development for teachers centers around support for implementing educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. As a design study that is "working toward a greater understanding of the "learning ecology," the research related to the creation and refinement of the ITS Center's collaborative environment for integrating professional development for faculty, graduate students, and classroom teachers is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, science education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. In this presentation, we will discuss the results of the formative

  16. TEACHER TRAINING: How to Produce Better Math and Science Teachers.

    PubMed

    Mervis, J

    2000-09-01

    Two National Research Council panels have released new reports on improving science and math education in the United States. One panel says that the best way to improve teacher education is to make it a continuum, with school districts taking more responsibility for the initial preparation of new teachers and university faculty playing a bigger role in ongoing professional development. The other panel says that more recent science Ph.D.s would be willing to teach high school science and math if the government helped with the transition, if the certification process were compressed, and if they could retain ties to research.

  17. Science Education Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Discusses current topics in science education including increasing adult education through innovation in course planning/recruitment methods, a course in microelectronics/digital control, and need for increased human genetics topics in biology/health education. Also discusses changing role of biology teachers, preschool science, and teaching a…

  18. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    ERIC Educational Resources Information Center

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  19. Materials Science and Technology Teachers Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry,more » physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.« less

  20. The (Non)Making/Becoming of Inquiry Practicing Science Teachers

    ERIC Educational Resources Information Center

    Sharma, Ajay; Muzaffar, Irfan

    2012-01-01

    Teacher education programs have adopted preparing science teachers that teach science through inquiry as an important pedagogic agenda. However, their efforts have not met with much success. While traditional explanations for this failure focus largely on preservice science teachers' knowledge, beliefs and conceptions regarding science and science…

  1. The Role of E-learning in Science Education vis-a-vis Teacher Training Institutes in Middle East

    ERIC Educational Resources Information Center

    Deshmukh, Veena; Forawi, Sufian; Jaiswal, Anuradha

    2012-01-01

    This paper describes the effect of "online science teaching" in teacher education institutes in the UAE (United Arab Emirates). The study was undertaken to understand the mindset and perceptions of educators with respect to online education with a sample comprising of 20 pre-service teachers in the second semester of a one-year post…

  2. Suited for Spacewalking: A Teacher's Guide with Activities for Technology Education, Mathematics, and Science

    NASA Technical Reports Server (NTRS)

    Vogt, Gregory L.; George, Jane A. (Editor)

    1998-01-01

    A Teacher's Guide with Activities for Technology Education, Mathematics, and Science National Aeronautics and Space Administration Office of Human Resources and Education Education Division Washington, DC Education Working Group NASA Johnson Space Center Houston, Texas This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication.

  3. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    NASA Astrophysics Data System (ADS)

    Atar, Hakan Yavuz

    Creating a scientifically literate society appears to be the major goal of recent science education reform efforts (Abd-El-Khalick, Boujaoude, Dushl, Lederman, Hofstein, Niaz, Tregust, & Tuan, 2004). Recent national reports in the U.S, such as Shaping the Future, New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology (NSF,1996), Inquiry in Science and In Classroom, Inquiry and the National Science Education Standards (NRC, 2001), Pursuing excellence: Comparison of international eight-grade mathematics and science achievement from a U.S. perspective (NCES, 2001), and Standards for Science Teacher Preparation (NSTA 2003) appear to agree on one thing: the vision of creating a scientifically literate society. It appears from science education literature that the two important components of being a scientifically literate individual are developing an understanding of nature of science and ability to conduct scientific inquiries. Unfortunately, even though teaching science through inquiry has been recommended in national reports since the 1950's, it has yet to find its way into many science classrooms (Blanchard, 2006; Yerrick, 2000). Science education literature identfies several factors for this including: (1) lack of content knowledge (Anderson, 2002; Lee, Hart Cuevas, & Enders, 2004; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Moscovici, 1999; Smith & Naele, 1989; Smith, 1989); (2) high stake tests (Aydeniz, 2006); (3) teachers' conflicting beliefs with inquiry-based science education reform (Blanchard, 2006; Wallace & Kang, 2004); and, (4) lack of collaboration and forums for communication (Anderson, 2002; Davis, 2003; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Wallace & Kang, 2004). In addition to the factors stated above this study suggest that some of the issues and problems that have impeded inquiry instruction to become the primary approach to teaching science in many science classrooms might be related to

  4. The Views of Science Pre-Service Teachers about the Usage of Basic Information Technologies (BIT) in Education and Instruction

    ERIC Educational Resources Information Center

    Çetin, Oguz

    2016-01-01

    In this study aiming to present a description based on science pre-service teachers' views related to use of Basic Information Technologies (BIT) in education and training, an interview is carried out with 21 pre-service science teachers who study in different classes in Faculty of Education, Nigde University. For this aim, improved interview form…

  5. Quality Science Teacher Professional Development and Student Achievement

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2007-12-01

    Studies show that socio-economic background and parental education accounts for 50-60 percent of a child's achievement in school. School, and other influences, account for the remaining 40-50 percent. In contrast to most other professions, schools require no real apprenticeship training of science teachers. Overall, only 38 percent of United States teachers have had any on-the-job training in their first teaching position, and in some cases this consisted of a few meetings over the course of a year between the beginning teacher and the assigned mentor or master teacher. Since individual teachers determine the bulk of a student's school experiences, interventions focused on teachers have the greatest likelihood of affecting students. To address this deficiency, partnerships between scientists and K-12 teachers are increasingly recognized as an excellent method for improving teacher preparedness and the quality of science education. Columbia University's Summer Research Program for Science Teachers' (founded in 1990) basic premise is simple: teachers cannot effectively teach science if they have no firsthand experience doing science, hence the Program's motto, "Practice what you teach." Columbia University's Summer Research Program for Science Teachers provides strong evidence that a teacher research program is a very effective form of professional development for secondary school science teachers and has a direct correlation to increased student achievement in science. The author will present the methodology of the program's evaluation citing statistically significant data. The author will also show the economic benefits of teacher participation in this form of professional development.

  6. Interacting with a Suite of Educative Features: Elementary Science Teachers' Use of Educative Curriculum Materials

    ERIC Educational Resources Information Center

    Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…

  7. The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers

    ERIC Educational Resources Information Center

    Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu

    2013-01-01

    We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers' developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The…

  8. Pre-Service Physics Teachers' Conceptions of Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2011-01-01

    Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…

  9. Teacher beliefs about teaching science through Science-Technology-Society (STS)

    NASA Astrophysics Data System (ADS)

    Massenzio, Lynn

    2001-07-01

    Statement of the problem. As future citizens, students will have the enormous responsibility of making decisions that will require an understanding of the interaction of science and technology and its interface with society. Since many societal issues today are grounded in science and technology, learning science in its social context is vital to science education reform. Science-Technology-Society (STS) has been strongly identified with meeting this goal, but despite its benefits, putting theory into practice has been difficult. Research design and methodology. The purpose of this study was to explore teacher beliefs about teaching science through STS. The following broad research questions guided the study: (1) What are the participants' initial beliefs about teaching science through STS? (2) What beliefs emerge as participants reflect upon and share their STS instructional experiences with their peers? A social constructivist theoretical framework was developed to plan interactions and collect data. Within this framework, a qualitative methodology was used to interpret the data and answer the research questions. Three provisionally certified science teachers engaged in a series of qualitative tasks including a written essay, verbal STS unit explanation, reflective journal writings, and focus group interviews. After implementing their STS unit, the participants engaged in meaningful dialogue with their peers as they reflected upon, shared, and constructed their beliefs. Conclusions. The participants strongly believed in STS as a means for achieving scientific and technological literacy, developing cognition, enhancing scientific habits of mind and affective qualities, and fostering citizen responsibility. Four major assertions were drawn: (a) Participants' initial belief in teaching for citizen responsibility did not fully align with practice, (b) Educators at the administrative level should be made aware of the benefits of teaching science through STS, (c

  10. News Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

    NASA Astrophysics Data System (ADS)

    2011-07-01

    Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

  11. Helping teachers change science instruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consuegra, G.F.

    1994-12-31

    Scientists and science educators jointly believe that science is important to society. So strong are these beliefs that many educational and scientific organizations have issued reports and recommendations calling for systemic revisions to science education. Collectively these documents describe an enlightened view of science and science education. Such a view includes identifying key concepts, skills, and attitudes in science for the scientifically literate citizen, and describes effective instructional strategies, delineates characteristics of successful science programs for others to imitate and emulate, and lists resources for educators, scientists, and parents to use. The effects of these resources have been clearly visiblemore » over the past five years. Science process-based objectives provide infrastructure and promote modern and traditional science teachers` efforts to provide science programming that supports scientific literacy needed for the 21st century.« less

  12. Teachers' perceptions and use of a large-scale science education reform initiative for middle schools

    NASA Astrophysics Data System (ADS)

    Pistorius, Carolyn Sue

    Reform efforts in science education have been increasing over the past decade. This quantitative design study explored middle school teachers' perceptions and attitudes about one such reform effort. Quantitative and qualitative data were gathered from teachers and their classrooms. The population consisted of all of the middle school science teachers who had completed at least one two-week session of professional development in the University of Alabama in Huntsville in-service region. The teachers were all involved in the Alabama Math, Science, and Technology Initiative (AMSTI). This initiative provided professional development and complete science modules, including materials for all K-8 teachers of science to use. Middle school teachers' (grades 6-8) perceptions, attitudes, and information about classroom decisions in teaching science using the AMSTI were obtained through the uses of the AMSTI Science Questionnaire, teacher interviews and classroom observations using the Reformed Teaching Observation Protocol (RTOP). Quantitative data were analyzed using ANOVA, chi-square, Tukey HSD statistical analyses. Qualitative data involved transcribing, coding, and determination of emerging themes. The AMSTI Science Questionnaire was found to have evidence of reliability and validity for the determination of the impact of professional development on teachers' perceptions and attitudes towards teaching science in their classrooms. Results of this study demonstrated that the more professional development experienced by the teachers was related to the number of lessons that the teachers used from the AMSTI modules. The amount of professional development was also related to the amount of time spent teaching and quality of the teaching as rated using the Reformed Teacher Observation Protocol. The more professional development the teachers received, the higher they self-reported their level of expertise in teaching the AMSTI science modules. Some of the strengths of the

  13. Opening Pandora's Box: Texas Elementary Campus Administrators use of Educational Policy And Highly Qualified Classroom Teachers Professional Development through Data-informed Decisions for Science Education

    NASA Astrophysics Data System (ADS)

    Brown, Linda Lou

    Federal educational policy, No Child Left Behind Act of 2001, focused attention on America's education with conspicuous results. One aspect, highly qualified classroom teacher and principal (HQ), was taxing since states established individual accountability structures. The HQ impact and use of data-informed decision-making (DIDM) for Texas elementary science education monitoring by campus administrators, Campus Instruction Leader (CILs), provides crucial relationships to 5th grade students' learning and achievement. Forty years research determined improved student results when sustained, supported, and focused professional development (PD) for teachers is available. Using mixed methods research, this study applied quantitative and qualitative analysis from two, electronic, on-line surveys: Texas Elementary, Intermediate or Middle School Teacher Survey(c) and the Texas Elementary Campus Administrator Survey(c) with results from 22.3% Texas school districts representing 487 elementary campuses surveyed. Participants selected in random, stratified sampling of 5th grade teachers who attended local Texas Regional Collaboratives science professional development (PD) programs between 2003-2008. Survey information compared statistically to campus-level average passing rate scores on the 5th grade science TAKS using Statistical Process Software (SPSS). Written comments from both surveys analyzed with Qualitative Survey Research (NVivo) software. Due to the level of uncertainty of variables within a large statewide study, Mauchly's Test of Sphericity statistical test used to validate repeated measures factor ANOVAs. Although few individual results were statistically significant, when jointly analyzed, striking constructs were revealed regarding the impact of HQ policy applications and elementary CILs use of data-informed decisions on improving 5th grade students' achievement and teachers' PD learning science content. Some constructs included the use of data

  14. A Comparison of Swiss and Turkish Pre-Service Science Teachers' Attitudes, Anxiety and Self-Efficacy Regarding Educational Technology

    ERIC Educational Resources Information Center

    Efe, Hülya Aslan; Efe, Rifat; Yücel, Sait

    2016-01-01

    In this study, pre-service science teachers' anxiety, self-efficacy and attitudes regarding educational technology were investigated. Given the increased emphasis on educational technology in the classroom, teachers' attitudes, anxiety and self-efficacy regarding educational technology are important. The study was conducted with a total of 726…

  15. Developing Preservice Teachers' Knowledge of Science Teaching Through Video Clubs

    NASA Astrophysics Data System (ADS)

    Johnson, Heather J.; Cotterman, Michelle E.

    2015-06-01

    Though an adequate understanding of content is a natural prerequisite of teaching (Carlsen in Journal of Research in Science Teaching 30:471-481, 1993), teachers also need to be able to interpret content in ways that facilitate student learning. How to best support novice teachers in developing and refining their content knowledge for teaching is a crucial and ongoing question for preservice teacher educators. Recently, video clubs are being explored as potential contexts for teacher learning (Barnhart & van Es in Teaching and Teacher Education 45:83-93, 2015; Sherin & Han in Teaching and Teacher Education 20:163-183, 2004). We hypothesized that pairing video clubs with student teaching experiences would provide a forum for preservice teachers to discuss issues relevant to their professional trajectory through exposure to models of peer teaching and opportunities to reflect on practice. In this study, we explored how secondary science preservice teachers used video club to restructure their overall science knowledge into science knowledge for teaching. Our findings suggest that video clubs allowed preservice teachers to access and leverage student thinking and instructional resources to deepen their understanding of science content and trajectories for science learning.

  16. Teacher Field Research Experiences: Building and Maintaining the Passion for K-12 Science Education

    NASA Astrophysics Data System (ADS)

    Dunton, K.; Schonberg, S.

    2006-12-01

    Academic scientists and researchers are increasingly encouraged to develop connections with K-12 educators to promote scientific literacy and bring excitement into the classroom. Such partnerships carry long-term benefits to both teachers and researchers. Teachers gain the tools, confidence, and knowledge to develop research activities with their students that promote scientific inquiry, and researchers benefit from outreach activities that improve communication skills for sharing scientific knowledge with the public. Our K-12 programs have been field based under a theme of Classrooms Without Walls, to take advantage of our local marine environment and a long-term research program on the Alaskan Arctic coast. Our professional development programs for teachers have included the creation of an annual summer graduate level course (Application of Field Research Experiences for K-12 Science and Math Educators) as an introduction to scientific methodology, observation, and inquiry based learning. We provide graduate students as resources in classrooms and for field trip experiences and provide supplies and instrumentation to teachers for K-12 field projects. Finally, teachers have an opportunity to join our researchers to remote sites under various competitive programs that receive federal support (e.g. GK-12, ARMADA). We provide examples of our activities, which are based on recent needs assessment surveys of science teachers; these included development of content knowledge and providing students with opportunities to connect concepts with experiences. Our goal is to provide field experiences to teachers and students that enable them to relate science concepts to the real world.

  17. Enhancing Preservice Teacher Education Students' Sense of Science Teaching Self Efficacy.

    ERIC Educational Resources Information Center

    Watters, James J.; And Others

    This paper reports on the effects of an intervention program designed to develop cognitive and affective skills for the study of science by students undertaking a preservice elementary teacher education course. Previous research has indicated that a high proportion of students coming into this course have had negative experience in their previous…

  18. Challenges of Virtual and Open Distance Science Teacher Education in Zimbabwe

    ERIC Educational Resources Information Center

    Mpofu, Vongai; Samukange, Tendai; Kusure, Lovemore M.; Zinyandu, Tinoidzwa M.; Denhere, Clever; Huggins, Nyakotyo; Wiseman, Chingombe; Ndlovu, Shakespear; Chiveya, Renias; Matavire, Monica; Mukavhi, Leckson; Gwizangwe, Isaac; Magombe, Elliot; Magomelo, Munyaradzi; Sithole, Fungai; Bindura University of Science Education (BUSE),

    2012-01-01

    This paper reports on a study of the implementation of science teacher education through virtual and open distance learning in the Mashonaland Central Province, Zimbabwe. The study provides insight into challenges faced by students and lecturers on inception of the program at four centres. Data was collected from completed evaluation survey forms…

  19. Spanish Secondary-School Science Teachers' Beliefs About Science-Technology-Society (STS) Issues

    NASA Astrophysics Data System (ADS)

    Vázquez-Alonso, Ángel; García-Carmona, Antonio; Manassero-Mas, María Antonia; Bennàssar-Roig, Antoni

    2013-05-01

    This study analyzes the beliefs about science-technology-society, and other Nature of Science (NOS) themes, of a large sample (613) of Spanish pre- and in-service secondary education teachers through their responses to 30 items of the Questionnaire of Opinions on Science, Technology and Society. The data were processed by means of a multiple response model to generate the belief indices used as the bases for subsequent quantitative and qualitative analyses. Other studies have reported a negative profile of teachers' understanding in this area, but the diagnosis emerging from the present work is more complex. There was a mix of appropriate beliefs coexisting with others that are inappropriate on the topics analyzed. The overall assessment, however, is negative since clearly teachers need to have a better understanding of these questions. There were scant differences between the pre- and in-service teachers, and hence no decisive evidence that the practice of teaching contributes to improving the in-service teachers' understanding. These results suggest there is an urgent need to bring the initial and continuing education of science teachers up to date to improve their understanding of these topics of science curricula, and thus improve the teaching of science.

  20. A Mental Model of the Learner: Teaching the Basic Science of Educational Psychology to Future Teachers

    ERIC Educational Resources Information Center

    Willingham, Daniel T.

    2017-01-01

    Although most teacher education programs include instruction in the basic science of psychology, practicing teachers report that this preparation has low utility. Researchers have considered what sort of information from psychology about children's thinking, emotion, and motivation would be useful for teachers' practice. Here, I take a different…

  1. Pre-Service Science Teachers' Perceptions of Mathematics Courses in a Science Teacher Education Programme

    ERIC Educational Resources Information Center

    Incikabi, Lutfi; Serin, Mehmet Koray

    2017-01-01

    Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and…

  2. Theory to practice: A study of science teachers' pedagogical practices as measured by the Science Teacher Analysis Matrix (STAM) and Teacher Pedagogical Philosophy Interview (TPPI)

    NASA Astrophysics Data System (ADS)

    Brown, Sherri Lynne

    This study continued research previously conducted by a nine-university collaborative, the Salish I Research Project, by exploring science teachers' beliefs and actions with regard to inquiry instruction. Science education reform efforts require that students learn science via inquiry. The purpose of this study was to determine and classify espoused teaching beliefs and observable teaching style. Reported are linkages between the teachers' beliefs and styles, influential coursework from College of Education and College of Liberal Arts, and outcomes of increased classroom experience. Eight participants were chosen from three separate preservice science education cohorts. Inquiry efforts require a student-centered environment as opposed to the traditional teacher-centered environment. According to the 1997 Salish I Research Collaborative, beginning teachers displayed a stark contrast between their student centered beliefs to their teacher-centered actions. The limitations of this study were as follows: (1) the participants had completed the authentic research-based inquiry science course, Knowing and Teaching Science: Just Do It; (2) the participants were currently teaching science at the secondary level; (3) the selected instruments were used in the Salish I Research Collaborative Study, and (4) instrument validity and reliability data were not available. Interview data from the Teacher Pedagogical Philosophy Interview (TPPI) instrument and observational data from the Secondary Science Teacher Analysis Matrix (STAM) instrument were statistically compiled via concept maps and matrices. Data were then represented on an ordinal scale. Interview results indicated that 87.5% of the participants professed a teacher-centered style with regard to teacher and student's actions. Observational results indicated that 56% of the participants displayed a teacher-centered style with regard to content, teacher's actions, student's actions, resources, and environment. Additionally

  3. Professionality of Junior High School (SMP) Science Teacher in Preparing Instructional Design of Earth and Space Sciences (IPBA)

    NASA Astrophysics Data System (ADS)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2017-02-01

    The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.

  4. Science Teacher Preparation in a North American Context

    ERIC Educational Resources Information Center

    Olson, Joanne K.; Tippett, Christine D.; Milford, Todd M.; Ohana, Chris; Clough, Michael P.

    2015-01-01

    This article provides a description of science teacher education policy in Canada and the USA. We focus on qualifications and procedures to obtain an initial teaching license, requirements for license renewal, and trends in our respective countries. In both countries, science teacher education is the responsibility of the province or state, rather…

  5. Development of Socioscientific Issues-Based Teaching for Preservice Science Teachers

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2009-01-01

    Problem statement: In the context of science education reform in Thailand, we need to prepare science teachers who can face science and social issues controversial; teachers can response the question socioscientific issues and let their students to meet the goal of science education. This study investigated the conception leading preservice…

  6. Science and environmental field experiences at a formal environmental education site: An investigation of teacher participation and educators' perceptions in a large urban school district

    NASA Astrophysics Data System (ADS)

    Sugg, Paul G.

    The state curriculum in Texas was amended in 1997 to require field investigations in all science classes. This study attempted to explore and add to the research base of information about the efficacy and use of field investigations as important but often underutilized tools in science and environmental instruction. The underlying theme of the study was the view that urban students should receive more instruction in natural settings and that doing so not only improves science learning but also environmental literacy. A sequential mixed method approach was employed to investigate teacher and principal participation in, and perceptions of, outdoor field investigations in public school instruction. In the quantitative phase, surveys were administered to 277 science teachers and 96 principals in a large, urban, Texas district. Significant differences (p ≤ .05) were found between teachers and principals who utilized the field investigation and those who did not. In the qualitative phase, 12 teachers were interviewed about various factors related to field investigations. The study found that while science teachers generally have positive opinions of field studies, awareness of the requirement to provide them is low and obstacles remain which prevent teachers from employing the method. Many science teachers are not providing opportunities for their students to experience science and environmental education instruction in natural settings. Half of the teachers and more than a third of the principals surveyed were not aware of the requirement to provide students with field investigations. The study generated quantitative and qualitative evidence demonstrating that teacher use of the field investigation method is strongly linked to the following factors: (a) teacher and principal awareness of the requirement; (b) administrator support; (c) funding for transportation to appropriate natural settings; (d) intra or interdepartmental competition for limited field trip

  7. Seeing Ourselves as Others See Us: Egyptian Teachers' Views of Science Education in Secondary Schools in London, UK.

    ERIC Educational Resources Information Center

    Swain, Julian; Monk, Martin; Johnson, Sally

    1999-01-01

    Explores Egyptian science teachers' views of (1) science education in London secondary schools and (2) how London schools influenced their teaching in Egypt. Explains that the Egyptian teachers were participating in a 12-week in-service course at King's College, London. Discusses the results. (CMK)

  8. Leadership in Mobile Technology: An Opportunity for Family and Consumer Sciences Teacher Educators

    ERIC Educational Resources Information Center

    Godfrey, Roxie V.; Duke, Sandra E.

    2014-01-01

    A stroll across campus reveals that students are plugged into mobile technology. They never have to break stride in their social connectivity as they pursue an education.Where does the family and consumer sciences (FCS) teacher educator fit into this opportunistic scenario? From its inception, FCS has been at the forefront in the application of…

  9. ``It depends on what science teacher you got'': urban science self-efficacy from teacher and student voices

    NASA Astrophysics Data System (ADS)

    Bolshakova, Virginia L. J.; Johnson, Carla C.; Czerniak, Charlene M.

    2011-12-01

    In the United States today, urban schools serve the majority of high-poverty and high minority populations including large numbers of Hispanic students. While many Hispanic students perform below grade level in middle school science, the science teaching community as a whole is lacking elements of diversity as teachers struggle to meet the needs of all learners. Researchers have recognized that science teacher effectiveness, one consequence of self-efficacy among teachers, is associated with future science achievement and science-related careers of their students. This qualitative study explores how three science teachers' effectiveness in the classroom impacts students' science self-efficacy beliefs at one urban middle school. Hispanic students were the focus of this investigation due to demographics and history of underperformance within this district. Teachers' perspectives, as well as outside observer evaluations of instructional strategies and classroom climates were triangulated to explore dynamics that influence students' interests and motivation to learn science using a framework to link teachers' sense of efficacy (focusing on student outcomes). Findings suggest the impact teacher effectiveness can have on student outcomes, including strengthened student science self-efficacy and increased science achievement. Building awareness and support in teachers' sense of efficacy, as well as developing respectful and supportive relationships between educator/facilitator and pupil during the transition to middle school may construct permanence and accomplishment for all in science.

  10. Preparing Future Secondary Computer Science Educators

    ERIC Educational Resources Information Center

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  11. Teacher Talk Patterns in Science Lessons: Use in Teacher Education

    ERIC Educational Resources Information Center

    Viiri, Jouni; Saari, Heikki

    2006-01-01

    This paper presents an innovative and useful methodology to analyze instructional talk. In teacher education, there is a lack of practical methods that the tutor teacher can use to discuss and reflect on student teachers' lessons. The student teacher cannot remember what actually happened during the lesson, and the feedback and discussions are…

  12. Assessment in Science Education

    NASA Astrophysics Data System (ADS)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  13. Teacher and Student Perceptions on High School Science Flipped Classrooms: Educational Breakthrough or Media Hype?

    NASA Astrophysics Data System (ADS)

    Hunley, Rebecca C.

    For years educators have struggled to ensure students meet the rigors of state mandated tests. Challenges that often impede student success are student absences, school closings due to weather, and remediation for students who need additional help while advanced students can move ahead. Many educators, especially secondary math and science teachers, have responded to these issues by implementing a teaching strategy called the flipped classroom where students view lectures, power points, or podcasts outside of school and class time shifts to allow opportunities for collaborative learning. The purpose of this research was to evaluate teacher and student perceptions of high school flipped science classrooms. A qualitative phenomenological study was conducted to observe 3 high school science teachers from Georgia, North Carolina, and Tennessee selected through purposeful sampling who have used the flipped classroom method for a minimum of 2 years. Analysis of data from an online survey, direct observation, teacher interviews, and student focus groups helped to identify challenges and benefits of this teaching and learning strategy. Findings indicated that teachers find the flipped classroom beneficial to build student relationships but requires a significant amount of time to develop. Mixed student reactions revealed benefits of a flipped classroom as a successful learning tool for current and future endeavors for college or career preparation.

  14. Differentiating Science Instruction: Secondary science teachers' practices

    NASA Astrophysics Data System (ADS)

    Maeng, Jennifer L.; Bell, Randy L.

    2015-09-01

    This descriptive study investigated the implementation practices of secondary science teachers who differentiate instruction. Participants included seven high school science teachers purposefully selected from four different schools located in a mid-Atlantic state. Purposeful selection ensured participants included differentiated instruction (DI) in their lesson implementation. Data included semi-structured interviews and field notes from a minimum of four classroom observations, selected to capture the variety of differentiation strategies employed. These data were analyzed using a constant-comparative approach. Each classroom observation was scored using the validated Differentiated Instruction Implementation Matrix-Modified, which captured both the extent to which critical indicators of DI were present in teachers' instruction and the performance levels at which they engaged in these components of DI. Results indicated participants implemented a variety of differentiation strategies in their classrooms with varying proficiency. Evidence suggested all participants used instructional modifications that required little advance preparation to accommodate differences in students' interests and learning profile. Four of the seven participants implemented more complex instructional strategies that required substantial advance preparation by the teacher. Most significantly, this study provides practical strategies for in-service science teachers beginning to differentiate instruction and recommendations for professional development and preservice science teacher education.

  15. Technology-Enhanced Science Partnership Initiative: Impact on Secondary Science Teachers

    NASA Astrophysics Data System (ADS)

    Ng, Wan; Fergusson, Jennifer

    2017-07-01

    The issue of student disengagement in school science continues to pose a threat to lifting the participation rates of students undertaking STEM courses and careers in Australia and other countries globally. In Australia, several science initiatives to reverse the problem have been funded over the last two decades. Many of these initiatives involve partnerships with scientists, science educators and with industries, as is the case in this paper. The research in this paper investigated a recent partnership initiative between secondary science teachers, scientists and an educational technology company to produce science e-modules on adaptive learning platforms, enabling students to engage in personalised, inquiry-based learning and the investigation of real-world problems. One of the objectives of the partnership project was to build theoretical and pedagogical skills in teachers to deliver science by exposing them to new ways of engaging students with new digital tools, for example analytics. Using a mixed methods approach, the research investigated science teachers' pedagogical involvement in the partnership project and their perceptions of the project's impact on their teaching and students' learning. The findings indicate that the teachers believed that new technology could enhance their teaching and students' learning and that while their students were motivated by the online modules, there was still a need for scaffolding for many of the students. The effectiveness of this would depend on the teachers' ability to internalise the new technological and content knowledge resulting from the partnership and realign them with their existing pedagogical framework. The research is significant in identifying elements for successful partnership projects as well as challenges that need to be considered. It is significant in facilitating continuous discourse about new evidence-based pedagogical approaches to science education in engaging students to learn STEM subjects in a

  16. Educating Prospective Teachers of Biology: Introduction and Research Methods.

    ERIC Educational Resources Information Center

    Hewson, Peter W.; Tabachnick, B. Robert; Zeichner, Kenneth M.; Blomker, Kathryn B.; Meyer, Helen; Lemberger, John; Marion, Robin; Park, Hyun-Ju; Toolin, Regina

    1999-01-01

    Introduces an issue that details a complex study of a science-teacher-education program whose goal was to graduate teachers who held conceptual change conceptions of teaching science and were disposed to put them into practice. Presents a conceptual framework for science-teacher education, and describes the context and major questions of the…

  17. Learning Opportunities for Pre-Service Science Teachers in a Core Course on Educational Psychology: Changing Epistemological View

    ERIC Educational Resources Information Center

    Azam, Saiqa

    2016-01-01

    This paper describes an action research study aimed at challenging and changing the epistemological views of pre-service science teachers (PSTs) during a core course on educational psychology in a teacher education programme. The researcher, as an instructor, used this course to provide learning opportunities for PSTs to change their existing…

  18. Specifying a Curriculum for Biopolitical Critical Literacy in Science Teacher Education: Exploring Roles for Science Fiction

    ERIC Educational Resources Information Center

    Gough, Noel

    2017-01-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of "biopolitics." I consider how such a biopolitically inflected critical literacy might find expression in…

  19. Avenues of access to future science teachers: An interview study

    NASA Astrophysics Data System (ADS)

    Weiss, Richard

    2007-12-01

    This research study explored the experiences of individuals who chose careers in secondary science education by examining two cohorts of science education students in a teacher credential program and a group of current secondary science teachers in their first five years of teaching. Issues of how these individuals became interested in science education and the characteristics common among them were examined. This study explored the educational experiences that appeared to contribute to people becoming science teachers. This study also explored the participants' motivation and key turning point moments that appeared to contribute to their choice to pursue a career in science education. The research design used in this study was a two-year, semi-structured interview protocol. Research was conducted at one main university site and within one local unified school district. During the 2004-2005 and 2005-2006 academic years, twenty-five secondary science pre-service teacher candidates at a University of California were interviewed, and during the 2005-2006 academic year, twenty-five current practicing science teachers within a Southern California unified school district were also interviewed. Data collection consisted of interviews with the fifty participants typically between 30-45 minutes in length. The EZ-Text software program was employed to aid in the analysis of the transcribed interview data. This study found that much of the previous research on the characteristics of entrants to teaching in general was supported, but that some specific differences exist among science teachers and the general population of teachers. The majority of the participants had exposure to internships or tutoring experiences and indicated that this made them more willing to pursue science teaching as a profession. This study found that high achieving female students constituted the entire female portion of the sample and cited teaching as a friendly avenue for females in science. Teacher

  20. Investigation of preservice elementary teachers' thinking about science

    NASA Astrophysics Data System (ADS)

    Cobern, William W.; Loving, Cathleen C.

    2002-12-01

    It is not uncommon to find media reports on the failures of science education, nor uncommon to hear prestigious scientists publicly lament the rise of antiscience attitudes. Given the position elementary teachers have in influencing children, antiscience sentiment among them would be a significant concern. Hence, this article reports on an investigation in which preservice elementary teachers responded to the Thinking about Science survey instrument. This newly developed instrument addresses the broadrelationship of science to nine important areas of society and culture and is intended to reveal the extent of views being consistent with or disagreeing with a commonly held worldview of science portrayed in the media and in popular science and science education literature. Results indicate that elementary teachers discriminate with respect to different aspects of culture and science but they are not antiscience.

  1. Flight Opportunities for Science Teacher EnRichment

    NASA Astrophysics Data System (ADS)

    Koch, D.; Devore, E.; Gillespie, C., Jr.; Hull, G.

    1994-12-01

    The Kuiper Airborne Observatory (KAO) is NASA's unique stratospheric infrared observatory. Science on board the KAO involves many disciplines and technologies. NASA Astrophysics Division supports a pre-college teacher program to provide Flight Opportunities for Science Teacher EnRichment (FOSTER). To date, forty-five teachers are participating, and the program is designed to nation-wide to serve fifty teachers per year on board the KAO. FOSTER is a pilot program for K-12 educational outreach for NASA's future Stratospheric Observatory for Infrared Astronomy (SOFIA) which will directly involve more than one-hundred teachers each year in airborne astronomical research missions. FOSTER aims to enrich precollege teachers' experiences and understanding of science, mathematics and technology. Teachers meet at NASA Ames Research Center for summer workshops on astronomy and contemporary astrophysics, and to prepare for flights. Further, teachers receive Internet training and support to create a FOSTER teacher network across the country, and to sustain communication with the airborne astronomy community. Each research flight of the KAO is a microcosm of the scientific method. Flying teachers obtain first-hand, real-time experiences of the scientific process: its excitement, hardships, challenges, discoveries, teamwork, and educational value. The FOSTER experience gives teachers pride and a sense of special achievement. They bring the excitement and adventure of doing first-class science to their students and communities. Flight Opportunities for Science Teacher EnRichment is funded by a NASA's Astrophysics Division grant, NAGW 3291, and supported by the SETI Institute and NASA Ames Research Center.

  2. How a Deweyan science education further enables ethics education

    NASA Astrophysics Data System (ADS)

    Webster, Scott

    2008-09-01

    This paper questions the perceived divide between ‘science’ subject matter and ‘moral’ or ‘ethical’ subject matter. A difficulty that this assumed divide produces is that science teachers often feel that there needs to be ‘special treatment’ given to certain issues which are of an ethical or moral nature and which are ‘brought into’ the science class. The case is made in this article that dealing with ethical issues in the science class should not call for a sensitivity that is beyond the expertise of the science teacher. Indeed it is argued here that science teachers in particular have a great deal to offer in enabling ethics education. To overcome this perceived divide between science and values it needs to be recognised that the educative development of learners is both scientific and moral. I shall be using a Deweyan perspective to make the case that we as science teachers can overcome this apparent divide and significantly contribute to an ethics education of our students.

  3. Negotiating Cultural Differences in Urban Science Education: An Overview of Teacher's First-Hand Experience Reflection of Cogen Journey

    ERIC Educational Resources Information Center

    Shady, Ashraf

    2014-01-01

    Classrooms across the United States increasingly find immigrant science teachers paired with urban minority students, but few of these teachers are prepared for the challenges such cultural assimilation presents. This is particularly true in secondary science education. Identifying potential prospects for culturally adaptive pedagogy in science…

  4. Science Teacher Education in the Twenty-First Century: a Pedagogical Framework for Technology-Integrated Social Constructivism

    NASA Astrophysics Data System (ADS)

    Barak, Miri

    2017-04-01

    Changes in our global world have shifted the skill demands from acquisition of structured knowledge to mastery of skills, often referred to as twenty-first century competencies. Given these changes, a sequential explanatory mixed methods study was undertaken to (a) examine predominant instructional methods and technologies used by teacher educators, (b) identify attributes for learning and teaching in the twenty-first century, and (c) develop a pedagogical framework for promoting meaningful usage of advanced technologies. Quantitative and qualitative data were collected via an online survey, personal interviews, and written reflections with science teacher educators and student teachers. Findings indicated that teacher educators do not provide sufficient models for the promotion of reform-based practice via web 2.0 environments, such as Wikis, blogs, social networks, or other cloud technologies. Findings also indicated four attributes for teaching and learning in the twenty-first century: (a) adapting to frequent changes and uncertain situations, (b) collaborating and communicating in decentralized environments, (c) generating data and managing information, and (d) releasing control by encouraging exploration. Guided by social constructivist paradigms and twenty-first century teaching attributes, this study suggests a pedagogical framework for fostering meaningful usage of advanced technologies in science teacher education courses.

  5. Engaging Science Faculty in Teacher Professional Development: Renewable Energy

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.; Czerniak, C.; Struble, J.; Mentzer, G.; Brooks, L.; Hedley, M.

    2011-12-01

    The LEADERS Program (Leadership for Educators: Academy for Driving Economic Revitalization in Science) is an NSF funded Math and Science Partnership program that aims to link economic revitalization in the Great Lakes region with K-12 education through renewable energy technology using a project-based learning approach. The LEADERS Program brings teacher leaders together with science and education faculty from the University of Toledo. Teacher leaders, from Toledo Public and Catholic Schools, attended a six week long institute in the summers of 2010 and 2011 and offered professional development for their colleagues during the school year. The teacher leaders took two science courses during the summer of 2010 in Physics and Chemistry of Renewable Energy as well as classes in Project-Based Science and Leadership and three courses in the summer of 2011, Earth Technologies, Climate Change and Biofuels. In addition, teachers were introduced to industry leaders in renewable energies as well as conservation. This presentation will discuss the implementation of the program and focus on the involvement of science faculty. We will discuss the challenges and successes in bringing together science faculty with teachers including how the experience has changed the teaching style of the scientists.

  6. Science teacher improvement: A study of the change in preparation and qualifications of public middle school science teachers

    NASA Astrophysics Data System (ADS)

    Wickler, Nicole I. Z.

    According to the National Commission on Teaching and America's Future (1996), a teacher's professional preparation, their work conditions and sense of efficacy are fundamental to improving elementary and secondary education. These factors lie at the core of educational reforms that seek to raise standards, reshape curricula, and restructure the way schools operate. The call to reconceptualize the practice of teaching and the interaction between teachers and students ring hollow without a careful examination of actions that have taken place in the workplace of teachers themselves. A national profile that identifies key characteristics of the current status of public middle school science teachers preparation, teaching qualifications, and work environments can provide a context for better understanding the current conditions that confront science teachers. This study seeks to provide critical information in four major areas: (1) preservice learning and teaching assignment; (2) continued learning; (3) supportive work environment, and (4) teachers' sense of efficacy. This study is based on current efforts by the National Center for Education Statistics (LACES) to collect data of key indicators of teacher preparation and qualifications using a large-scale survey administered to a nationally representative sample of full-time public school teachers whose primary teaching assignment is in science. In this effort, the information reported in this study utilizes the NCES's Schools and Staffing Surveys (SASS) from 1987--88 and 1993--94. Significant change between 1987--77 and 1993--94 was determined using a t-test for independent means. In addition, frequency counts were analyzed using a chi-square statistic to determine if more "qualified middle school science teachers" were located in particular schools by urbanicity location or/and percent minority enrollment. In general, the quality of middle school science teachers across the country is declining. Teachers report they

  7. Preparing Science Teachers for the future

    NASA Astrophysics Data System (ADS)

    Stein, Fredrick

    2002-04-01

    What will teachers need in the future to be successful? What will "successful" mean in the future? Are the teaching approaches learned 40 years ago still relevant for tomorrow's classrooms? Will technology really change the way physics is taught (K-16)? Will we close the performance gap between students of differing ethnicity? Are schools of education rising to the challenge to answer these questions? Can college and university physics departments rise to the challenge of presenting physics to all students in an engaging manner? What can the APS, in partnership with AAPT and AIP, do to find the answers and provide strategies to improve the science preparation of future teachers? PhysTEC aims to help physics and education faculty work together to provide an education for future teachers that emphasizes a student-centered, hands-on, inquiry-based approach to learning science. The compelling evidence produced from Physics Education Research warrants this approach. A National Science Foundation grant of 5.76 million and a 498 thousand grant from the Fund for the Improvement of Postsecondary Education support PhysTEC, its partners and activities. http://www.phystec.org/

  8. Revising Teacher Candidates' Views of Science and Self: Can Accounts from the History of Science Help?

    ERIC Educational Resources Information Center

    Lewthwaite, Brian; Murray, John; Hechter, Richard

    2012-01-01

    Our inquiry uses accounts from the history of science to develop teacher-candidate (student teacher) understanding of the nature of science (NOS) in a science teacher education methods course. This understanding of the NOS is then used as a foundation for developing teacher candidate appreciation of the attributes of authentic science lessons.…

  9. Investigation of Inquiry-based Science Pedagogy among Middle Level Science Teachers: A Qualitative Study

    NASA Astrophysics Data System (ADS)

    Weiland, Sunny Minelli

    This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level science teachers conceptualize "inquiry-based instruction?" 2) What are preferred instructional strategies for implementation in middle level science classrooms? And 3) How do middle level science teachers perceive the connection between science instruction and student learning? The participants within this research study represent 33 percent of teachers in grades 5 through 9 within six school districts in northeastern Pennsylvania. Of the 12 consent forms originally obtained, 10 teachers completed all three phases of the data collection, including the online survey, participation in focus groups, and teacher self-reflection. 60 percent of the participants taught only science, and 40 percent taught all content areas. Of the ten participants, 50 percent were certified teachers of science and 50 percent were certified as teachers of elementary education. 70 percent of the research participants reflected having obtained a master's, with 60 percent of these degrees being received in areas of education, and 10 percent in the area of science. The research participants have a total of 85 collective years of experience as professional educators, with the average years of experience being 8.5 years. Analysis of data revealed three themes related to research question #1) How do middle-level science teachers conceptualize inquiry-based instruction? and sub-question #1) How do middle-level science teachers characterize effective instruction? The themes that capture the essence of teachers' formulation of inquiry-based instruction that emerged in this study were student centered, problem solving, and hands-on . Analysis of data revealed one theme

  10. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    ERIC Educational Resources Information Center

    Pruitt, Stephen L.

    2010-01-01

    This study analyzed a state department of education's ability to have actual influence over the improvement of science achievement and proficiency by having direct relationships with science teachers in Georgia's lowest performing schools. The study employed a mixed ANOVA analysis of the mean scale scores and proficiency rates of the science…

  11. The ERESE project: Bridging the gap between Digital Science Libraries and Education through Professional Development of Teachers and Database Development

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Helly, M.; Helly, J.; Koppers, A.; Massel-Symons, C.; Miller, S.

    2004-12-01

    The ERESE (Enduring Resources in Earth Science Education) project involves a close collaboration between teachers, librarians, educators, data archive managers and scientists in Earth sciences and information technology, to create a digital library environment for Earth science education. We report here on an ongoing (NSF-NSDL) project involving teachers' professional development in the pedagogy of plate tectonics in middle and high schools. This work included efforts in scientific database development in terms of contents and search tools, the development of an inquiry based learning approach, a two week professional development workshop attended by 15 teachers from across the nation, a classroom implementation of lesson plans developed by the teachers at the workshop and an evaluation/validation process for the success of their pedagogic approaches. This ERESE project offers a novel path for both science teaching and professional outreach for scientists, and includes four key components: (1) A true, long-term research partnership between educators and scientists, guiding each other with respect to the authenticity of the science taught and the educational soundness of a scientists' elaborations on science concepts. (2) Expansion of existing scientific databases through the use of metadata that tie scientific materials to a particular expert level and teaching goal. (3) The design of interfaces that make data accessible to the educational community. (4) The use of an inquiry based teaching approach that integrates the scientist-educator collaboration and the data base developments. Our pedagogic approach includes the development of a central hypotheses by the student in response to an initial general orientation and presentation of a well chosen central provocative phenomenon by the teacher. Then, the student develops a research plan that is devoted to address this hypothesis through the use of the materials provided by a scientific database allowing a students

  12. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    NASA Astrophysics Data System (ADS)

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-06-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own classrooms. The study analyzed the mean scale scores for the science portion of the state's high school graduation test for the years 2004 through 2007 to determine whether schools receiving the intervention scored significantly higher than comparison schools receiving no intervention. The results showed that all schools achieved significant improvement of scale scores between 2004 and 2007, but there were no significant performance differences between intervention and comparison schools, nor were there any significant differences between various subgroups in intervention and comparison schools. However, one subgroup, economically disadvantaged (ED) students, from high-level intervention schools closed the achievement gap with ED students from no-intervention schools across the period of the study. The study provides important information to guide future research on and design of large-scale professional development programs to foster inquiry-based science.

  13. A Self-Study of a Thai Teacher Educator Developing a Better Understanding of PCK for Teaching about Teaching Science

    ERIC Educational Resources Information Center

    Faikhamta, Chatree; Clarke, Anthony

    2013-01-01

    In this study, I, the first author as a Thai teacher educator employed self-study as a research methodology to investigate my own understandings, questions, and curiosities about pedagogical content knowledge (PCK) for teaching science student teachers and the ways I engaged student teachers in a field-based science methods course designed to help…

  14. Introducing Future Teachers to Science beyond the Classroom

    ERIC Educational Resources Information Center

    Kisiel, James

    2013-01-01

    Informal science education institutions (ISEIs), such as museums, aquariums, and nature centers, offer more to teachers than just field trip destinations--they have the potential to provide ideas for pedagogy, as well as support deeper development of teachers' science knowledge. Although there is extensive literature related to teacher/museum…

  15. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    NASA Astrophysics Data System (ADS)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  16. `You Have to Give Them Some Science Facts': Primary Student Teachers' Early Negotiations of Teacher Identities in the Intersections of Discourses About Science Teaching and About Primary Teaching

    NASA Astrophysics Data System (ADS)

    Danielsson, Anna T.; Warwick, Paul

    2014-04-01

    In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on a whole range of interrelated sociocultural factors. This paper aims to explore how intersections between different Discourses about primary teaching and about science teaching are evidenced in primary school student teachers' talk about becoming teachers. The study is founded in a conceptualisation of learning as a process of social participation. The conceptual framework is crafted around two key concepts: Discourse (Gee 2005) and identity (Paechter, Women's Studies International Forum, 26(1):69-77, 2007). Empirically, the paper utilises semi-structured interviews with 11 primary student teachers enrolled in a 1-year Postgraduate Certificate of Education course. The analysis draws on five previously identified teacher Discourses: `Teaching science through inquiry', `Traditional science teacher', `Traditional primary teacher', `Teacher as classroom authority', and `Primary teacher as a role model' (Danielsson and Warwick, International Journal of Science Education, 2013). It explores how the student teachers, at an early stage in their course, are starting to intersect these Discourses to negotiate their emerging identities as primary science teachers.

  17. Preparing K-8 Teachers to Conduct Inquiry Oriented Science Education

    NASA Astrophysics Data System (ADS)

    Gross, N. A.; Garik, P.; Nolan, M. D.; Winrich, C.; Derosa, D.; Duffy, A.; Jariwala, M.; Konjoian, B.

    2010-12-01

    The need for STEM professional development for K-8 teachers is well documented. Such professional development promises broad impact, but it must have a positive effect on teachers’ knowledge and skills: 1) a focus on content knowledge, 2) opportunities for active learning, and 3) coherence with other activities. However, sustained impact is only achieved through intensive professional development. In response to the need for science education courses for K-8 teachers, for the past three years, the School of Education and the Department of Physics have collaborated to offer K-8 teachers science content courses of extended duration (75 contact hours) that emphasize inquiry based learning and investigation. The School of Education graduate courses have consisted of five three-hour meetings during the months of May and June, and a two week intensive period in July when the participants come for six hours per day. The alignment of these courses with inquiry teaching was confirmed using the Reformed Teaching Observation Protocol (RTOP). Courses offered in this format have been: --Immersion in Green Energy (IGE) -alternative sources of energy and how electricity is generated (75 teachers over the last 3 years), --Immersion in Global Energy Distribution (IGED) -understanding global climate as an outcome of insolation, convection, and radiation (27 teachers over the last 2 years) The Immersion courses cover a spectrum for inquiry learning that begins with introduction to equipment and experiments through guided discovery and culminates with students taking responsibility for defining and completing their own investigative projects. As a specific example, we consider here the IGED course. For IGED, the first five sessions are devoted to content and learning to use experimental equipment such as digital data collection probes to measure temperature, CO2 and salinity. Content addressed during these sessions include the differentiation between conduction, convection, and

  18. Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice?

    NASA Astrophysics Data System (ADS)

    Windschitl, Mark

    2003-01-01

    Science education reform documents emphasize the importance of inquiry experiences for young learners. This means that teachers must be prepared with the knowledge, skills, and habits of thinking to mentor their students through authentic investigations. This study examines how preservice teachers' inquiry experiences, in a science methods course, influenced and were influenced by their conceptions of inquiry. The study also assesses how these experiences were associated with eventual classroom practice. Six preservice secondary teachers were observed during a 2-month inquiry project and then followed into the classroom as they began a 9-week teaching practicum. Data revealed that participants' preproject conceptions of the inquiry process were related to the conduct and interpretation of their own inquiry project, and that the project experience modified the inquiry conceptions of those participants who already had sophisticated understandings of scientific investigations. Perhaps most importantly, the participants who eventually used guided and open inquiry during their student teaching were not those who had more authentic views of inquiry or reflected most deeply about their own inquiry projects, but rather they were individuals who had significant undergraduate or professional experiences with authentic science research. Finally, this article advocates that independent science investigations be part of preservice education and that these experiences should be scaffolded to prompt reflection specifically about the nature of inquiry and conceptually linked to ways in which inquiry can be brought into the K-12 classroom.

  19. Understanding the 2012 NSTA Science Standards for Teacher Preparation

    ERIC Educational Resources Information Center

    Veal, William R.; Allan, Elizabeth

    2014-01-01

    The purpose of this article is to present the new National Science Teachers Association-Standards for Science Teacher Preparation (NSTA-SSTP). The Council for the Accreditation of Educator Preparation (CAEP) is the new national accreditation organization for programs of education. NSTA collaborates with CAEP to establish content specific standards…

  20. The Uses of the Term Hypothesis and the Inquiry Emphasis Conflation in Science Teacher Education

    ERIC Educational Resources Information Center

    Gyllenpalm, Jakob; Wickman, Per-Olof

    2011-01-01

    This paper examines the use and role of the term "hypothesis" in science teacher education as described by teacher students. Data were collected through focus group interviews conducted at seven occasions with 32 students from six well-known Swedish universities. The theoretical framework is a sociocultural and pragmatist perspective on…

  1. Shifting Social Science Conceptions of Research: The Possibility of the Practical Argument in Teacher Education.

    ERIC Educational Resources Information Center

    Noel, Jana

    New research programs on teaching have examined teacher thinking, reflective teaching, and the possibility of teachers using practical arguments in their teaching. The changes in educational research have their basis in social science conceptions of research, which have shifted through the years. The shift from logical positivism to a more…

  2. Leadership that promotes teacher empowerment among urban middle school science teachers

    NASA Astrophysics Data System (ADS)

    Howard-Skipper, Joni

    In this study, the focus was on determining leadership strategies that promote teacher empowerment among urban middle school science teachers. The purpose of the paper was to determine if leadership strategies are related to teacher empowerment. The emphasis was on various forms of leadership and the empowerment of teachers in context in restructuring the democratic structure. An effective leadership in science education entails empowering others, especially science teachers. In this regard, no published studies had examined this perspective on empowering teachers and school leadership. Therefore, this study determined if a relationship exists between leadership strategy actions and teacher empowerment. The significance of the study is to determine a relationship between leadership strategies and teacher empowerment as a positive approach toward developing successful schools. Empowerment is essential for implementing serious improvements. Empowering others in schools must form a major component of an effective principal's agenda. It is becoming clearer in research literature that complex changes in education sometimes require active initiation. For this study, a quantitative methodology was used. Primary data enabled the research questions to be answered. The reliability and validity of the research were ensured. The results of this study showed that 40% of the administrators establish program policies with teachers, and 53% of teachers make decisions about new programs in schools. Furthermore, the findings, their implications, and recommendations are discussed.

  3. Using an Inquiry Approach to Teach Science to Secondary School Science Teachers

    ERIC Educational Resources Information Center

    McBride, John W.; Bhatti, Muhammad I.; Hannan, Mohammad A.; Feinberg, Martin

    2004-01-01

    Leaders in science education have actively promoted inquiry science since the 1960s and continue to do so today. The US National Science Education Standards recommend that science instruction and learning should be well grounded in inquiry. In spite of these efforts, however, little has changed in the way science is taught. Teacher-talk and…

  4. Co-teaching Perspectives from Secondary Science Co-teachers and Their Students with Disabilities

    NASA Astrophysics Data System (ADS)

    King-Sears, Margaret E.; Brawand, Anne Eichorn; Jenkins, Melissa C.; Preston-Smith, Shantha

    2014-10-01

    An in-depth case study of one team of co-teachers' practice from multiple perspectives is described. A high school science co-teaching team and their students with disabilities completed surveys about their perceptions of co-teaching. Additionally, observations of the two co-teachers occurred to determine roles and types of interactions for each co-teacher during science instruction. Observational data revealed effective teaching behaviors demonstrated by each co-teacher. Detailed descriptions of the co-teachers' instruction are provided. The science educator was observed interacting with the large group twice as often as the special educator. The science educator also presented new content nearly three times as often as the special educator. The co-teacher surveys were consistent with the observational data. Both educators disagreed that the special educator was primarily the lead for instruction. Both educators strongly agreed they had an effective co-teaching relationship, although the science educator indicated stronger agreement for parity in roles and responsibilities than the special educator noted. Forty-three percent of the students identified the science educator as in charge of lessons, while 43% identified both educators. Most students thought teaching was divided in half, and all students enjoyed having two teachers in science. Eighty-six percent of the students indicated team teaching was the most frequently used co-teaching model, and 14% indicated one teach, one drift. Implications for co-teachers' reflections on their collaboration, including the relevance of student perceptions (i.e., Who is the "real" teacher?), and the extent to which educators are prepared at preservice and inservice levels for co-teaching are discussed.

  5. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    NASA Astrophysics Data System (ADS)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  6. Safety Education and Science.

    ERIC Educational Resources Information Center

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  7. Science Teacher Leaders: Exploring Practices and Potential

    NASA Astrophysics Data System (ADS)

    Stinson, John Kevin

    It has become standard practice for teachers to step into the role of "teacher leaders" and perform a variety of curriculum, instruction and assessment tasks for schools and school districts. The literature regarding these Ohio K-12 teacher leaders, who may perform these tasks in addition to or in lieu of regular teaching assignments, rarely includes a disciplinary focus. In this exploratory, descriptive study the results of a web-based survey containing both closed and open-ended items were used in an inquiry into teacher leaders working with the discipline of science. Data from Ohio teachers responding to the survey were used first to create a standard profile for science teacher leaders. Descriptive statistics and correlations were then performed on quantitative survey data to explore science teacher leader tasks and factors that influence task performance. Analysis of data included descriptions of sense of purpose for their role held by these science teacher leaders. Results indicate that science teacher leaders appear to embrace their role as advocates for science and have great potential for implementing science education reform as well as other science-related school initiatives. Aligning performance, administrative oversight, impact on student achievement and teacher training concerning tasks science teacher leaders are expected to perform would enhance this potential. However, science teacher leaders face challenges to realizing that potential due to ambiguity of their leadership role, the breadth of tasks they tend to perform and lack of alignment between task and outcomes.

  8. Emotional climate of a pre-service science teacher education class in Bhutan

    NASA Astrophysics Data System (ADS)

    Rinchen, Sonam; Ritchie, Stephen M.; Bellocchi, Alberto

    2016-09-01

    This study explored pre-service secondary science teachers' perceptions of classroom emotional climate in the context of the Bhutanese macro-social policy of Gross National Happiness. Drawing upon sociological perspectives of human emotions and using Interaction Ritual Theory this study investigated how pre-service science teachers may be supported in their professional development. It was a multi-method study involving video and audio recordings of teaching episodes supported by interviews and the researcher's diary. Students also registered their perceptions of the emotional climate of their classroom at 3-minute intervals using audience response technology. In this way, emotional events were identified for video analysis. The findings of this study highlighted that the activities pre-service teachers engaged in matter to them. Positive emotional climate was identified in activities involving students' presentations using video clips and models, coteaching, and interactive whole class discussions. Decreases in emotional climate were identified during formal lectures and when unprepared presenters led presentations. Emotions such as frustration and disappointment characterized classes with negative emotional climate. The enabling conditions to sustain a positive emotional climate are identified. Implications for sustaining macro-social policy about Gross National Happiness are considered in light of the climate that develops in science teacher education classes.

  9. Inquiry-based science education: towards a pedagogical framework for primary school teachers

    NASA Astrophysics Data System (ADS)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2016-02-01

    Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open IBSE project, such as formulating a research question and designing and conducting an investigation. The current study aims to meet these challenges by presenting a pedagogical framework in which four domains of scientific knowledge are addressed in seven phases of inquiry. The framework is based on video analyses of pedagogical interventions by primary school teachers participating in open IBSE projects. Our results show that teachers can guide their pupils successfully through the process of open inquiry by explicitly addressing the conceptual, epistemic, social and/or procedural domain of scientific knowledge in the subsequent phases of inquiry. The paper concludes by suggesting further research to validate our framework and to develop a pedagogy for primary school teachers to guide their pupils through the different phases of open inquiry.

  10. Fermilab Science Education Office - Educators/Teachers

    Science.gov Websites

    , university faculty, pre-service students, home school educators, the Teacher Resource Center is a one-stop Pre-K-12 STEM instructional materials and professional development resources you may utilize onsite Standards for Professional Learning to design and guide customized professional development. Through our

  11. Study of Turkish Preschool Teachers' Attitudes toward Science Teaching

    NASA Astrophysics Data System (ADS)

    Erden, Feyza T.; Sönmez, Sema

    2011-05-01

    This study aims to explore preschool teachers' attitudes toward science teaching and its impact on classroom practices through the frequency of science activities provided in the classroom. In addition, the study investigates if their attitudes are related to factors such as educational level, years of teaching experience, and the school type they work in. The present research was conducted with 292 preschool teachers who work in public and private schools in different districts of Ankara, Turkey. The data were collected by administering the Early Childhood Teachers' Attitudes toward Science Teaching Scale. Our analyses indicate that there is a significant but weak link between preschool teachers' attitudes toward science teaching and the frequency of science activities that they provide in the classroom. Further, while teachers' characteristics such as educational level and experience are found to play an insignificant role on the overall measures of the scale, type of school appears to be a major factor in explaining the attitudes toward science teaching.

  12. Teacher Perceptions of Inquiry and STEM Education in Bangladesh

    NASA Astrophysics Data System (ADS)

    Shahidullah, Kazi K.

    This dissertation reports lower secondary science teachers perceptions of current practice in Dhaka, Bangladesh concerning inquiry and STEM Education in order to establish a baseline of data for reform of science education in Bangladesh. Bangladesh has been trying to incorporate inquiry-based science curricula since the 1970s. Over time, the science curricula also aligned with different international science education movements such as Science for All, Scientific Literacy, Science, Technology, and Society. Science, Technology, Engineering, and Mathematics (STEM) is the most recent science education movement in international science education. This study explored current practices and perceptions of lower secondary science teachers in order to establish a baseline of current practice so that future reform recommendations may be pursued and recommendations made for Bangladesh to overcome the inquiry-based challenges and to incorporate new STEM-based science education trends happening in the US and throughout the world. The study explored science teachers perceptions and readiness to transform their science classrooms based on self-reported survey. The survey utilized Likert-type scale with range 1 (very strongly disagree) to 6 (very strongly agree) among four hundred lower secondary science teachers, teacher training college faculty, and university faculty. The data is presented in four different categories: curriculum, instruction, assessment, and professional development. Results indicated that the participants understand and practice a certain level of inquiry in their science classrooms, though they do not have adequate professional development. Participants also stated that they do not have sufficient instructional materials and the curriculum is not articulated enough to support inquiry. On the other hand, the participants reported that they understand and practice a certain degree of inquiry and STEM-based science education, but they also state that the

  13. Multicultural Science Education: Theory, Practice, and Promise

    ERIC Educational Resources Information Center

    Hines, S. Maxwell, Ed.

    2007-01-01

    As a relatively new area of investigation, the study of multicultural education as it relates to science teaching and learning has spawned numerous interpretations by researchers and authors worldwide. The contributors of this international volume--among them are science teacher educators, science teachers, scientists, researchers, program…

  14. Mothers as informal science class teachers

    NASA Astrophysics Data System (ADS)

    Katz, Phyllis

    This study explores the participation of mothers as teachers (termed "Adult Leaders") in the Hands On Science Outreach (HOSO) informal science program for pre-kindergarten through sixth grade children. Since women continue to be underrepresented in the sciences (AAUW, 1992; AAUW 1998), there is a need to probe the nature of mothers' choices in science experiences, in the family context, and as role models. Mothers of school age children who choose to lead informal science activities are in a position to teach and learn not only within this alternative setting, but within their homes where values, attitudes, beliefs and motivations are continually cultivated by daily choices (Gordon, 1972; Tamir, 1990; Gerber, 1997). Policy makers recognize that schools are only one environment from many for learning science (National Science Board, 1983; National Research Council, 1996). Using complementary methodology, this study was conducted in two HOSO sessions that extended over six months. Twelve mothers who were HOSO teachers were case study participants. Primary data collection strategies were interviews, journals, and "draw-a-scientist." A larger sample of HOSO mother-teachers (N = 112) also contributed to a surrey, developed from an analysis of the case studies. Informal learning settings must, by their non-compulsory nature, focus on the affective component of learning as a necessity of participation. The framework for the qualitative analysis was from the affective characteristics described by Simpson et al. (1994). The interpretation is informed by sociobiology, science education and adult education theories. The study finds that the twelve mothers began their HOSO teaching believing in science as a way of knowing and valuing the processes and information from its practice. These women perceive their participation as a likely means to increase the success of their child(ren)'s education and are interested in the potential personal gains of leading an informal science

  15. Primary Connections: Simulating the Classroom in Initial Teacher Education

    ERIC Educational Resources Information Center

    Hume, Anne Christine

    2012-01-01

    The challenge of preparing novice primary teachers for teaching in an educational environment, where science education has low status and many teachers have limited science content knowledge and lack the confidence to teach science, is great. This paper reports on an innovation involving a sustained simulation in an undergraduate science education…

  16. Examining Pedagogical Content Knowledge: The Construct and Its Implications for Science Education. Science & Technology Education Library.

    ERIC Educational Resources Information Center

    Gess-Newsome, Julie, Ed.; Lederman, Norman G., Ed.

    This book presents both historic and current conceptions and practical implications of pedagogical content knowledge (PCK). The content is divided into four sections: (1) introduction; (2) literature; (3) emerging lines of research in science teacher education; and (4) impacts of PCK on the development of science teacher education programs.…

  17. Sharing our successes II: Changing the face of science and mathematics education through teacher-focused partnerships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Industry Initiatives for Science and Math Education (IISME) in the San Francisco Bay Area planned and convened the second national conference for representatives of scientific work experience programs for K-12 teachers (SWEPs) at Lawrence Hall of Science, University of California at Berkeley October 13-14, 1994. The goal of this conference was to further strengthen the growing community of SWEP managers and teacher participants by providing an opportunity for sharing expertise and strategies about the following: (1) How SWEPs can complement and stimulate systemic education reform efforts; (2) Assessment strategies piloted by the ambitious multi-site evaluation project funded by the U.S.more » Department of Energy (DOE) as well as smaller evaluation projects piloted by other SWEPs; (3) Expanding and strengthening the base of teachers served by SWEPs; (4) Ensuring that SWEPs adequately support teachers in affecting classroom transfer and offer {open_quotes}more than just a summerjob{close_quotes}; (5) Sustaining and expanding new programs. A special teacher strand focused on leadership development supporting teachers to become effective change agents in their classrooms and schools, and developing strong teacher communities.« less

  18. Teacher Education and the New Biology

    ERIC Educational Resources Information Center

    Reiss, Michael J.

    2006-01-01

    Recent years have seen a growth not only in biological knowledge but also, and more significantly for teacher education, in the types of knowledge manifested in biology. No longer, therefore, is it adequate for teachers to retain a Mertonian or a Popperian conception of science. Today's teachers of science need also to be able to help their…

  19. Teachers and Marine Education: A Survey.

    ERIC Educational Resources Information Center

    Milkent, Marlene M.; And Others

    A survey of Alabama and Mississippi high school science teachers was conducted in the spring of 1979 as an initial step in the Man and the Gulf of Mexico (MGM) marine education project. Most teachers surveyed had little or no formal coursework pertaining to the marine sciences. The teachers felt they did not have adequate knowledge for teaching…

  20. Identity Discourse in Preservice Teachers' Science Learning Autobiographies and Science Teaching Philosophies

    ERIC Educational Resources Information Center

    Hsu, Pei-Ling; Reis, Giuliano; Monarrez, Angelica

    2017-01-01

    Research in science education has shown that one's identities as science learner and teacher can mediate their pedagogical practices. Grounded in the perspective that language is a resource for identity (re)construction (Gee, 2000), the present study sought to understand how preservice science teachers' identities were manifested in their…

  1. Second-career science teachers' classroom conceptions of science and engineering practices examined through the lens of their professional histories

    NASA Astrophysics Data System (ADS)

    Antink-Meyer, Allison; Brown, Ryan A.

    2017-07-01

    Science standards in the U.S. have shifted to emphasise science and engineering process skills (i.e. specific practices within inquiry) to a greater extent than previous standards' emphases on broad representations of inquiry. This study examined the alignment between second-career science teachers' personal histories with the latter and examined the extent to which they viewed that history as a factor in their teaching. Four, second-career science teachers with professional backgrounds in engineering, environmental, industrial, and research and development careers participated. Through the examination of participants' methodological and contextual histories in science and engineering, little evidence of conflict with teaching was found. They generally exemplified the agency and motivation of a second-career teacher-scientist that has been found elsewhere [Gilbert, A. (2011). There and back again: Exploring teacher attrition and mobility with two transitioning science teachers. Journal of Science Teacher Education, 22(5), 393-415; Grier, J. M., & Johnston, C. C. (2009). An inquiry into the development of teacher identities in STEM career changers. Journal of Science Teacher Education, 20(1), 57-75]. The methodological and pedagogical perspectives of participants are explored and a discussion of the implications of findings for science teacher education are presented.

  2. Higher Education in Sint Maarten: Fostering Growth of Teacher Knowledge in Mathematics and Science

    ERIC Educational Resources Information Center

    Sargeant, Marcel A.; Burton, Larry D.; Bailey, Andel

    2010-01-01

    A needs analysis conducted as part of the foundation-based education (FBE) innovation on the island territory of Sint Maarten indicated the need for additional training of early primary teachers (PK-2) in mathematics and science education. Seven in-service workshops, designed around the Joyce-Showers' Training Model, were implemented over the…

  3. Tech-Savvy Science Education? Understanding Teacher Pedagogical Practices for Integrating Technology in K-12 Classrooms

    ERIC Educational Resources Information Center

    Hechter, Richard; Vermette, Laurie Anne

    2014-01-01

    This paper examines the technology integration practices of Manitoban K-12 inservice science educators based on the Technological, Pedagogical, and Content knowledge (TPACK) framework. Science teachers (n = 433) completed a 10-item online survey regarding pedagogical beliefs about technology integration, types of technology used, and how often…

  4. Providing Authentic Research Experiences for Pre-Service Teachers through UNH's Transforming Earth System Science Education (TESSE) Program

    NASA Astrophysics Data System (ADS)

    Varner, R. K.; Furman, T.; Porter, W.; Darwish, A.; Graham, K.; Bryce, J.; Brown, D.; Finkel, L.; Froburg, E.; Guertin, L.; Hale, S. R.; Johnson, J.; von Damm, K.

    2007-12-01

    The University of New Hampshire's Transforming Earth System Science Education (UNH TESSE) project is designed to enrich the education and professional development of in-service and pre-service teachers, who teach or will teach Earth science curricula. As part of this program, pre-service teachers participated in an eight- week summer Research Immersion Experience (RIE). The main goal of the RIE is to provide authentic research experiences in Earth system science for teachers early in their careers in an effort to increase future teachers` comfort and confidence in bringing research endeavors to their students. Moreover, authentic research experiences for teachers will complement teachers` efforts to enhance inquiry-based instruction in their own classrooms. Eighteen pre-service teachers associated with our four participating institutions - Dillard University (4), Elizabeth City State University (4), Pennsylvania State University (5), and University of New Hampshire (UNH) (5) participated in the research immersion experience. Pre-service teachers were matched with a faculty mentor who advised their independent research activities. Each pre-service teacher was expected to collect and analyze his or her own data to address their research question. Some example topics researched by participants included: processes governing barrier island formation, comparison of formation and track of hurricanes Hugo and Katrina, environmental consequences of Katrina, numerical models of meander formation, climatic impacts on the growth of wetland plants, and the visual estimation of hydrothermal vent properties. Participants culminated their research experience with a public presentation to an audience of scientists and inservice teachers.

  5. Investigating the Relationship between Teachers' Nature of Science Conceptions and Their Practice of Inquiry Science

    ERIC Educational Resources Information Center

    Atar, Hakan Yavuz; Gallard, Alejandro

    2011-01-01

    In addition to recommending inquiry as the primary approach to teaching science, developers of recent reform efforts in science education have also strongly suggested that teachers develop a sound understanding of the nature of science. Most studies on teachers' NOS conceptions and inquiry beliefs investigated these concepts of teachers' NOS…

  6. The development and implementation of a teacher education model in environmental science education for Indian Certificate of Secondary Education (ICSE) schools

    NASA Astrophysics Data System (ADS)

    Patil, Anuradha

    This research study is concerned with the teaching of Environmental Science in the ninth and tenth grades of ICSE schools in Mumbai, India and the development and implementation of a new teacher education model. The instructional strategies practiced by the teachers were investigated using a questionnaire, semi-structured interview schedule and classroom observation. Based on these data, a new model of teacher education was developed with the help of a small cohort of teachers. The rationale for the model was that it should be a non-prescriptive framework that provided a coherently organized, concise guide for environmental education teachers that incorporated modern perspectives on content knowledge, effective pedagogical practices including constructivist approaches and active learning, and a set of guidelines for effectively integrating pedagogy with science content knowledge. The model was in the form of a two-way matrix, with the columns providing the pedagogy and the rows indicating the content knowledge. The intersections of the columns and rows to form individual cells of the matrix yielded a synthesis of pedagogical content knowledge (PCK). The model was discussed with the participating teachers, who prepared revised lesson plans using the model and delivered the lessons, which were observed by the researcher. On using the model, the teaching became more student-centered, as the teachers strove to include constructive and inquiry-based approaches. The use of technology enhanced the effectiveness of the lessons and teachers evaluated the students on all three domains of learning (i.e., affective, cognitive, and psychomotor). Most teachers agreed that it was possible to use the model to plan their lesson and implement it in the classroom; however, they needed to put in more time and effort to get used to a change in their teaching methodology. There is no doubt that teacher professional development is a long process and change does not occur immediately

  7. Realizing a Democratic Community of Teachers: John Dewey and the Idea of a Science of Education

    ERIC Educational Resources Information Center

    Frank, Jeff

    2017-01-01

    In this paper, I make the case that John Dewey's philosophy of education aims to bring about a democratic community of teachers capable of creating a science of teaching. To make this case, I will do a three things. First, I will discuss "Sources of a Science of Education" and argue that this work is deeply connected to a work written at…

  8. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  9. Needs assessment of science teachers in secondary schools in Kumasi, Ghana: A basis for in-service education training programs at the Science Resource Centers

    NASA Astrophysics Data System (ADS)

    Gyamfi, Alexander

    The purpose of this study was twofold. First, it identified the priority needs common to all science teachers in secondary schools in Kumasi, Ghana. Second, it investigated the relationship existing between the identified priority needs and the teacher demographic variables (type of school, teacher qualification, teaching experience, subject discipline, and sex of teacher) to be used as a basis for implementing in-service education training programs at the Science Resource Centers in Kumasi Ghana. An adapted version of the Moore Assessment Profile (MAP) survey instrument and a set of open-ended questions were used to collect data from the science teachers. The researcher handed out one hundred and fifty questionnaire packets, and all one hundred and fifty (100%) were collected within a period of six weeks. The data were analyzed using descriptive statistics, content analysis, and inferential statistics. The descriptive statistics reported the frequency of responses, and it was used to calculate the Need Index (N) of the identified needs of teachers. Sixteen top-priority needs were identified, and the needs were arranged in a hierarchical order according to the magnitude of the Need Index (0.000 ≤ N ≤ 1.000). Content analysis was used to analyze the responses to the open-ended questions. One-way analysis of variance (ANOVA) was used to test the null hypotheses of the study on each of the sixteen identified top-priority needs and the teacher demographic variables. The findings of this study were as follows: (1) The science teachers identified needs related to "more effective use of instructional materials" as a crucial area for in-service training. (2) Host and Satellite schools exhibited significant difference on procuring supplementary science books for students. Subject discipline of teachers exhibited significant differences on utilizing the library and its facilities by students, obtaining information on where to get help on effective science teaching

  10. Rethinking Recruitment: The Comprehensive and Strategic Recruitment of Secondary Science Teachers

    ERIC Educational Resources Information Center

    Luft, Julie A.; Wong, Sissy S.; Semken, Steve

    2011-01-01

    The shortage of science teachers has spurred a discussion about their retention and recruitment. While discussion about retaining science teachers has increased dramatically in just the last few years, science teacher educators have not attended to the recruitment of science teachers with the same tenacity. This paper is our effort to initiate…

  11. PolarTREC-Teachers and Researchers Exploring and Collaborating: Innovative Science Education from the Poles to the World

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Warburton, J.; Breen, K.; Wiggins, H. V.; Larson, A.; Behr, S.

    2006-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that will advance polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. PolarTREC builds on the strengths of the existing TREC program in the Arctic, an NSF supported program managed by the Arctic Research Consortium of the US (ARCUS), to embrace a wide range of activities occurring at both poles during and after IPY. PolarTREC will foster the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science and IPY. PolarTREC will enable thirty-six teachers to spend two to six weeks in the Arctic or Antarctic, working closely with researchers investigating a wide range of IPY science themed topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and teacher peer groups. For further information on PolarTREC, contact Wendy Warnick, ARCUS Executive Director at warnick@arcus.org or 907-474-1600 or visit www.arcus.org/trec/

  12. The Impact of Biology/Geology School Teachers Masters Courses on the Improvement of Science Education Quality in Portugal

    ERIC Educational Resources Information Center

    Pombo, Lucia; Costa, Nilza

    2009-01-01

    In this paper we report a large-scale study designed to evaluate the impact of masters courses on the professional development of science school teachers and, consequently, on the improvement of the quality of science education. The underlying assumption of this study is that masters teachers are widely recognized as assuming a relevant role to…

  13. Predicting Scientific Understanding of Prospective Elementary Teachers: Role of Gender, Education Level, Courses in Science, and Attitudes Toward Science and Mathematics

    NASA Astrophysics Data System (ADS)

    Kumar, David D.; Morris, John D.

    2005-12-01

    A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary science students ( N = 176) in an urban doctoral-level university in the United States participated in this study. The results of this study showed Gender, completion of courses in High School Chemistry and Physics, College Chemistry and Physics, and Attitudes Toward Mathematics and Science significantly correlated with scientific understanding. Based on a regression model, Gender, and College Chemistry and Physics experiences added significant predictive accuracy to scientific understanding among prospective elementary teachers compared to the other variables.

  14. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    ERIC Educational Resources Information Center

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  15. An Analysis of Teachers' Perceptions through Metaphors: Prospective Turkish Teachers of Science, Math and Social Science in Secondary Education

    ERIC Educational Resources Information Center

    Akçay, Süleyman

    2016-01-01

    In this study, teachers' perceptions of prospective Turkish teachers (that is, those who have completed their undergraduate studies) in the fields of Science, Mathematics and Social Sciences are investigated through teacher metaphors. These perceptions were classified in accordance with their answers to two open-ended questions within a metaphoric…

  16. Navigating Rough Waters: Hawaiian Science Teachers Discuss Identity

    ERIC Educational Resources Information Center

    Allaire, Franklin S.

    2013-01-01

    Research with Native Hawaiian science teachers is contributing to a better understanding of issues relating to equity in science education, and toward improving science curriculum to support Native Hawaiian students as well as support systems for Native Hawaiian students interested in pursuing higher education and science-based careers.…

  17. The Level of Utilizing Blended Learning in Teaching Science from the Point of View of Science Teachers in Private Schools of Ajman Educational Zone

    ERIC Educational Resources Information Center

    Al-Derbashi, Khaled Y.; Abed, Osama H.

    2017-01-01

    This study aims to define the level of utilizing blended learning in teaching science from the point of view of science teachers (85 male and female teachers) who are working in private schools of Ajman Educational Zone. The study also aims to find if there are significant differences according to gender, years of experience, or the fact that…

  18. A Tale of Two Courses: Exploring Teacher Candidates' Translation of Science and Special Education Methods Instruction into Inclusive Science Practices

    ERIC Educational Resources Information Center

    Kahn, Sami; Pigman, Ryan; Ottley, Jennifer

    2017-01-01

    Early childhood educators teach science to all students, including students with disabilities. Strategies for accommodating students with disabilities in science, including familiarity with equitable frameworks such as Universal Design for Learning (UDL) are therefore a critical aspect of early childhood teacher candidates' pedagogical content…

  19. The Blame Game in the Science Preparation of Future Teachers

    NASA Astrophysics Data System (ADS)

    Stein, Fredrick

    2003-10-01

    Who is responsible for the general lack of science preparation in our newly certified K-12 teachers? If it is true that teachers "teach as they were taught," then we must look to the college and university departments. The American Physical Society (APS), in partnership with the American Association of Physics Teachers (AAPT) and the American Institute of Physics (AIP), has initiated PhysTEC in concert with national reports calling for the improvement of K-12 science teaching. PhysTEC aims to help physics and education faculty work together to provide an education for future teachers that emphasizes a student-centered, hands-on, inquiry-based approach to learning science. An update of the first two years of the project will be given. Program components include: (1) A long-term, active collaboration between the physics and education departments; (2) A full-time Teacher-in-Residence (TIR) program that provides for a local K-12 science teacher to become a full-time participant in assisting faculty with both team-teaching and course revisions; (3) The redesign of content and pedagogy of targeted physics and education courses; and (4) The establishment of a Induction and mentoring program novice science teachers. This includes the participation of physics faculty in increasing and improving a wide array of school experiences. http://www.phystec.org/

  20. Designing Higher Education Courses and other Professional Development to Engender Science Teachers' Enthusiasm to Embrace the New Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Welstead, C.; Forder, S. E.

    2014-12-01

    This presentation is an overview of best practices in the design of continuing education courses and professional development workshops for Science teachers to enable them to transition to the NGSS; to share their enthusiasm in a way that engages students and leads to increased student achievement; and to become change agents in their educational settings and in their communities, in order to garner widespread support for an inquiry-based, NGSS-based curriculum. Proposed strands for teacher preparation programmes include a focus on higher level conceptual thinking; problem-solving opportunities for learning; inquiry-based learning; experiential learning and fieldwork; the authentic and effective incorporation of technology in teaching and learning; integrated and cross-curricular teaching and learning; learning that supports diversity and equity; and the appropriate, reliable and valid assessment of understanding. A series of three courses has been developed to prepare teachers in a graduate programme for implementing an inquiry-based, standards-based Science curriculum that incorporates the above-mentioned strands.

  1. Pre-Service Science Teacher Preparation in China: Challenges and Promises

    ERIC Educational Resources Information Center

    Liu, Enshan; Liu, Cheng; Wang, Jian

    2015-01-01

    The purpose of this article was to present an overview of pre-service science teacher preparation in China, which is heavily influenced by Chinese tradition, Confucianism, and rapid social and economic development. The policies, science teacher education systems and related programs jointly contribute to producing enough science teachers for…

  2. Exploring Instructional Strategies to Develop Prospective Elementary Teachers' Children's Literature Book Evaluation Skills for Science, Ecology and Environmental Education

    ERIC Educational Resources Information Center

    Hug, J. William

    2010-01-01

    This article is an auto-ethnographic account of the development of a children's literature book critique assignment by a science teacher educator sharing instructional dilemmas and pedagogical responses. Prospective elementary teachers enrolled in an elementary school science teaching methods course in the US selected and evaluated children's…

  3. Proposing an Operational Definition of Science Teacher Beliefs

    NASA Astrophysics Data System (ADS)

    Hutner, Todd L.; Markman, Arthur B.

    2016-10-01

    Much research has shown that a science teacher's beliefs are related to their teaching practice. This line of research has often defined "belief" epistemologically. That is, beliefs are often defined relative to other mental constructs, such as knowledge, dispositions, or attitudes. Left unspecified is the role beliefs play in cognition and how they come to influence science teachers' classroom practice. As such, researchers and science teacher educators have relied on an (at times, implicit) assumption that there is a direct causal relationship between teachers' beliefs and classroom practice. In this paper, we propose an operational, as opposed to epistemological, definition of belief. That is, we are explicit about the role a belief plays in science teachers' cognition and how that leads to classroom practice. We define a belief as a mental representation that influences the practice of a teacher if and only if the belief is active in cognition. We then turn our attention to two limitations in the literature on that have arisen via previous definitions and assumptions regarding science teacher beliefs, showing how defining beliefs operationally helps think about these issues in new ways. The two limitations surround: (1) the difficulty in precisely delineating belief from knowledge; and (2) the interconnectedness of beliefs such that they draw meaning from one another. We then show how our definition of beliefs is congruent with other models of teacher cognition reported in the literature. Finally, we provide implications arising from this definition of belief for both science teacher educators and those who conduct research on the beliefs of both preservice and in-service science teachers.

  4. [Educational science, 'the hardest science of all'].

    PubMed

    van Tartwijk, J; Driessen, E W; van der Vleuten, C P M; Wubbels, T

    2012-06-01

    Educational research not only showed that student characteristics are of major importance for study success, but also that education does make a difference. Essentially, teaching is about stimulating students to invest time in learning and to use that time as effectively as possible. Assessment, goal-orientated work, and feedback have a major effect. The teacher is the key figure. With the aim to better understand teaching and learning, educational researchers usefindingsfrom other disciplines more and more often. A pitfall is to apply the findings of educational research without taking into consideration the context and the specific characteristics of students and teachers. Because of the large number offactors that influence the results ofeducation, educational science is referred as 'the hardest science of all'.

  5. Crowdfunding for Elementary Science Educators

    ERIC Educational Resources Information Center

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  6. Investigating the Views of Pre-Service Science Teachers on STEM Education Practices

    ERIC Educational Resources Information Center

    Erdogan, Ibrahim; Ciftci, Ayse

    2017-01-01

    It has given importance to the development of 21st century skills in every aspect of life. STEM (Science, Technology, Engineering, and Mathematics) education has played an important role to improve these skills and teachers are expected to be able to organize learning environments accordingly. The purpose of this research is to examine the…

  7. Examining the Relationship between Elementary Teachers' Science Self-Efficacy and Science Content Knowledge

    ERIC Educational Resources Information Center

    Wimsatt, Mary Jo

    2012-01-01

    Science, Technology, Engineering, and Math (STEM) education is currently commanding an ever-greater share of our national dialogue about education. Very few STEM initiatives focus on studies involving in-service teachers; most education research involves preservice teacher candidates. This researcher used a 54 question survey to examine in-service…

  8. Catalyzing Effective Science Education: Contributions from the NASA Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Bartolone, L.; Eisenhamer, B.; Lawton, B. L.; Schultz, G. R.; Peticolas, L.; Schwerin, T.; Shipp, S.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team

    2013-06-01

    Advancing scientific literacy and strengthening the Nation’s future workforce through stimulating, informative, and effective learning experiences are core principles of the NASA Science Mission Directorate (SMD) education and public outreach (E/PO) program. To support and coordinate its E/PO community in offering a coherent suite of activities and experiences that effectively meet the needs of the education community, NASA SMD has created four Science Education and Public Outreach Forums (Astrophysics, Planetary Science, Heliophysics, Earth Science). Forum activities include: professional development to raise awareness of the existing body of best practices and educational research; analysis and cataloging of SMD-funded education materials with respect to AAAS Benchmarks for Science Literacy; Working Groups that assemble needs assessment and best practices data relevant to Higher Education, K-12 Formal Education, and Informal Science Education audiences; and community collaborations that enable SMD E/PO community members to develop new partnerships and to learn and share successful strategies and techniques. This presentation will highlight examples of Forum and community-based activities related to astronomy education and teacher professional development, within the context of the principles articulated within the NRC Framework for K-12 Science Education and the Next Generation Science Standards. Among these are an emerging community of practice for K-12 educators and online teacher professional development and resources that incorporate misconception research and authentic experiences with NASA Astrophysics data.

  9. Examining Teachers' Hurdles to `Science for All'

    NASA Astrophysics Data System (ADS)

    Southerland, Sherry; Gallard, Alejandro; Callihan, Laurie

    2011-11-01

    The goal of this research is to identify science teachers' beliefs and conceptions that play an important role in shaping their understandings of and attempts to enact inclusive science teaching practices. We examined the work products, both informal (online discussions, email exchanges) and formal (papers, unit plans, peer reviews), of 14 teachers enrolled in a master's degree course focused on diversity in science teaching and learning. These emerging understandings were member-checked via a series of interviews with a subset of these teachers. Our analysis was conducted in two stages: (1) describing the difficulties the teachers identified for themselves in their attempts to teach science to a wide range of students in their classes and (2) analyzing these self-identified barriers for underlying beliefs and conceptions that serve to prohibit or allow for the teachers' understanding and enactment of equitable science instruction. The teachers' self-identified barriers were grouped into three categories: students, broader social infrastructure, and self. The more fundamental barriers identified included teacher beliefs about the ethnocentrism of the mainstream, essentialism/individualism, and beliefs about the meritocracy of schooling. The implications of these hurdles for science teacher education are discussed.

  10. Science Teachers in Deaf Education: A National Survey of K-8 Teachers

    ERIC Educational Resources Information Center

    Shaw, Cynthia

    2009-01-01

    A survey was conducted with 67 science teachers who taught deaf children at the elementary school level. Teacher background variables, information about teacher preparation and certification, preferred teaching methods, communication methodologies, curriculum, and the use of technology were gathered. A purposeful, convenience sampling technique…

  11. Informing Future Learning Designs in Preservice Teacher Education through Quantitative Research: A Primary Science Example

    ERIC Educational Resources Information Center

    Hudson, Peter

    2005-01-01

    Reform documents have provided a framework for advancing science education (e.g., The Australian National Science Standard Committee, 2002), but omit the need to assess preservice teachers prior knowledge for designing effective learning programs. A pretest-posttest 34-item survey linked to the course outcomes (associated with four constructs)…

  12. Toward Meaningful Interdisciplinary Education: High School Teachers' Views of Mathematics and Science Integration

    ERIC Educational Resources Information Center

    Weinberg, Andrea Elizabeth; Sample McMeeking, Laura Beth

    2017-01-01

    Numerous national initiatives call for interdisciplinary mathematics and science education, but few empirical studies have examined practical considerations for integrated instruction in high school settings. The purpose of this qualitative study was twofold. First, the study sought to describe how and to what extent teachers integrate mathematics…

  13. ERESE Professional Development in Science Education: A collaboration of scientists, teachers, and information technologists

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Helly, M.; Massel Symons, C.; Koppers, A.; Helly, J.; Miller, S.

    2005-12-01

    The Enduring Resources in Earth Science Education (ERESE) project promotes inquiry based teaching of plate tectonics through professional development and distribution of digital library objects in the National Science Digital Library network. The overall ERESE goal is to bridge the gap between the scientists and educators, and our experience has shown that much can be gained by establishing a close collaboration between all parties involved in earth science education, from high school student to teacher -educator, and scientist. These collaborations yield substantial gains in terms of effective educational approaches, contents selection, and to produce an authentic class room research experience. ERESE professional development workshops promote a model of inquiry-based teaching that keeps the educator as far in the background as possible, while empowering the student to carry out a maximally independent inquiry. Key components in this process are: (1) use of a well selected provocative phenomenon to promote student's curiosity and to start the inquiry process, (2) care in the student guidance towards selection and formulation of a researchable question, (3) the involvement of teachers and scientists, in a close collaboration (4) teaching resource development with a strong feed-back from professional development workshops and classroom practice, (5) integration of science inquiry resources on all expert levels providing an environment that allows continuous access to science information from the most basic to the full scale science level. We expanded ERESE resource development into a volcanology field class on Hawaii to produce a website and digital library contents including field reports, exercises and images and field data. We further expanded our resource development through the participation of three high school students in a three-week seagoing expedition to the Samoan Archipelago. The high school seniors maintained a live expedition website and they

  14. The Challenges Faced by New Science Teachers in Saudi Arabia

    ERIC Educational Resources Information Center

    Alsharari, Salman

    2016-01-01

    Growing demand for science teachers in the Kingdom of Saudi Arabia, fed by increasing numbers of public school students, is forcing the Saudi government to attract, recruit and retain well-qualified science teachers. Beginning science teachers enter the educational profession with a massive fullfilment and satisfaction in their roles and positions…

  15. Project science inquiry: An exploration of elementary teachers' beliefs and perceptions about science teaching and learning

    NASA Astrophysics Data System (ADS)

    Wilcox, Dawn Renee

    This dissertation examined elementary teachers' beliefs and perceptions of effective science instruction and documents how these teachers interpret and implement a model for Inquiry-Based (I-B) science in their classrooms. The study chronicles a group of teachers working in a large public school division and documents how these teachers interpret and implement reform-based science methods after participating in a professional development course on I-B science methods administered by the researcher. I-B science teaching and its implementation is discussed as an example of one potential method to address the current call for national education reform to meet the increasing needs of all students to achieve scientific literacy and the role of teachers in that effort. The conviction in science reform efforts is that all students are able to learn science and consequently must be given the crucial opportunities in the right environment that permits optimal science learning in our nation's schools. Following this group of teachers as they attempted to deliver I-B science teaching revealed challenges elementary science teachers face and the professional supports necessary for them to effectively meet science standards. This dissertation serves as partial fulfillment of the requirements for the degree of Doctor of Philosophy in Education at George Mason University.

  16. An examination of key experiences which contribute to a positive change in attitude toward science in two elementary education teacher candidates at the University of Wyoming

    NASA Astrophysics Data System (ADS)

    Cason, Maggie A.

    This investigation utilized life history methodology (Armstrong, 1987; Bogdan & Biklen, 1998; Lawrence-Lightfoot, 1977; Marshall & Rossman, 1995; Patton, 1987; Taylor & Bogdan; 1984) to examine lifelong science experiences of two elementary education teacher candidates at a land grant institution with a large, undergraduate teacher education program. Purposive sampling techniques (Bogdan & Biklen, 1998) led to the selection of two teacher candidates who reported high science anxiety when they began university coursework. The investigation focused on five broad questions: (a) What were key experiences in the elementary teacher education program which contributed to a positive change in attitude toward science? (b) What science experiences, in and out of school, did the teacher candidates encounter while they were in elementary school, junior high school, high school, and college? (c) How did the elementary education program's science course structure, professors, and field experiences contribute to the change in attitude toward science? (d) How much time was involved in the change in attitude toward science? and (e) What were the effects of the change in attitude on the teaching of science in the elementary classroom? Each candidate completed approximately twenty hours of interviews yielding rich descriptions of their lifelong science experiences. Data also included interviews with science and science education professors, journaling, and observations of student teaching experiences. Data analysis revealed four over-arching themes with implications for teacher educators. First, data showed the importance of relationship building between professors and teacher candidates. Professors must know and work with teacher candidates, and provide a structure that encourages question asking. Second, course structure including hands-on teaching strategies and students working in small groups over an extended period of time was vital. Third, integrating language arts with

  17. Toward Understanding the Nature of a Partnership between an Elementary Classroom Teacher and an Informal Science Educator

    ERIC Educational Resources Information Center

    Weiland, Ingrid S.; Akerson, Valarie L.

    2013-01-01

    This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was…

  18. Enlist micros: Training science teachers to use microcomputers

    NASA Astrophysics Data System (ADS)

    Baird, William E.; Ellis, James D.; Kuerbis, Paul J.

    A National Science Foundation grant to the Biological Sciences Curriculum Study (BSCS) at The Colorado College supported the design and production of training materials to encourage literacy of science teachers in the use of microcomputers. ENLIST Micros is based on results of a national needs assessment that identified 22 compentencies needed by K-12 science teachers to use microcomputers for instruction. A writing team developed the 16-hour training program in the summer of 1985, and field-test coordinators tested it with 18 preservice or in-service groups during the 1985-86 academic year at 15 sites within the United States. The training materials consist of video programs, interactive computer disks for the Apple II series microcomputer, a training manual for participants, and a guide for the group leader. The experimental materials address major areas of educational computing: awareness, applications, implementation, evaluation, and resources. Each chapter contains activities developed for this program, such as viewing video segments of science teachers who are using computers effectively and running commercial science and training courseware. Role playing and small-group interaction help the teachers overcome their reluctance to use computers and plan for effective implementation of microcomputers in the school. This study examines the implementation of educational computing among 47 science teachers who completed the ENLIST Micros training at a southern university. We present results of formative evaluation for that site. Results indicate that both elementary and secondary teachers benefit from the training program and demonstrate gains in attitudes toward computer use. Participating teachers said that the program met its stated objectives and helped them obtain needed skills. Only 33 percent of these teachers, however, reported using computers one year after the training. In June 1986, the BSCS initiated a follow up to the ENLIST Micros curriculum to

  19. Supporting Teachers' Use of a Project-Based Learning Environment in Ocean Science: Web-Based Educative Curriculum Materials

    ERIC Educational Resources Information Center

    Duncan, Ravit Golan; El-Moslimany, Hebbah; McDonnell, Janice; Lichtenwalner, Sage

    2011-01-01

    The development of inquiry and project-based materials is challenging in many ways, not the least of which is the design of supports for teachers implementing such materials. We report on the design of educative and just-in-time teacher supports for an online project-based unit in ocean science. The teacher supports were visible as tabs on the…

  20. Nevada Underserved Science Education Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicole Rourke; Jason Marcks

    2004-07-06

    Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.

  1. Survey on Teaching Science to K-12 Students with Disabilities: Teacher Preparedness and Attitudes

    NASA Astrophysics Data System (ADS)

    Kahn, Sami; Lewis, Anna R.

    2014-12-01

    Students with disabilities are increasingly included in general education science classrooms and are expected to demonstrate academic proficiency on standardized assessments. Teacher preparation and attitudes have been cited as major factors contributing to either the success or failure of students with disabilities in science. In order to assess the current state of what could be facilitative or inhibitory influences, a national online survey to which 1,088 K-12 science teachers responded was conducted. Mixed methods' analyses suggest that science teachers receive little formal training and feel underprepared to teach students with disabilities. Results identify specific gaps in science teachers' education, as well as attitudinal and institutional barriers that may inhibit students with disabilities' success. However, science teachers remain highly receptive to training and collaboration. Implications for science teacher education are discussed.

  2. Proceedings of the Annual Meeting of the Association for the Education of Teachers in Science (Akron, OH, January 6-9, 2000).

    ERIC Educational Resources Information Center

    Rubba, Peter A., Ed.; Rye, James A., Ed.; Keig, Patricia F., Ed.; DiBiase, Warren J., Ed.

    Papers from the proceedings of the 2000 Annual Meeting of the Association for the Education of Teachers in Science (AETS) include: (1) "A Quantitative Examination of Teacher Self Efficacy and Knowledge of the Anture of Science" (Chun, Sajin and Oliver, J. Steve); (2) "Investigating Preservice Elementary Teachers' Self-Efficacy Relative to Self…

  3. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    NASA Astrophysics Data System (ADS)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  4. Curriculum Process in Science Education

    NASA Astrophysics Data System (ADS)

    Adamčíková, Veronika; Tarábek, Paul

    2010-07-01

    Physics/science education in the communicative conception is defined as the continuous transfer of the knowledge and methods of physics into the minds of individuals who have not participated in creating them. This process, called the educational communication of physics/science, is performed by various educational agents—teachers, curriculum makers, textbook designers, university teachers and does not mean only a simple transfer of information, but it also involves teaching and instruction at all levels of the school system, the study, learning, and cognition of pupils, students and all other learners, the assessment and evaluation of learning outcomes, curriculum composition and design, the production of textbooks and other means of educational communication and, in addition, university education and the further training of teachers. The educational communication is carried out by the curriculum process of physics/science, which is a sequence of variant forms of curriculum mutually interconnected by curriculum transformations. The variant forms of curriculum are as follows: conceptual curriculum, intended curriculum, project (written) curriculum, operational curriculum, implemented curriculum, and attained curriculum.

  5. Toward Understanding the Nature of a Partnership Between an Elementary Classroom Teacher and an Informal Science Educator

    NASA Astrophysics Data System (ADS)

    Weiland, Ingrid S.; Akerson, Valarie L.

    2013-12-01

    This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was assessed. Prior research has predominately examined relationships and roles of groups of teachers and informal educators in the museum setting (Tal et al. in Sci Educ 89:920-935, 2005; Tal and Steiner in Can J Sci Math Technol Educ 6:25-46, 2006; Tran 2007). The current study utilized case study methodology to examine one relationship (between two educators) in more depth and in a different setting—an elementary classroom. The relationship was defined through a framework of cooperation, coordination, and collaboration (Buck 1998; Intriligator 1986, 1992) containing eight dimensions. Findings suggest a relationship of coordination, which requires moderate commitment, risk, negotiation, and involvement, and examined the roles that each educator played and how they negotiated these roles. Consistent with previous examinations in science education of educator roles, the informal educator's role was to provide the students with expertise and resources not readily available to them. The roles played by the classroom teacher included classroom management, making connections to classroom activities and curricula, and clarifying concepts. Both educators' perceptions suggested they were at ease with their roles and that they felt these roles were critical to the optimization of the short time frames (1 h) the informal educator was in the classroom. Pre and posttest tests demonstrated students learned as a result of the programs.

  6. Why Do They Stay? A Phenomenological Study of Secondary Science Teacher Experiences

    NASA Astrophysics Data System (ADS)

    Lastica, Joelle Ramirez

    In 2004, The U.S. Department of Education reported that 20% of schoolteachers (public and private) leave their classrooms during the first year of teaching, and nearly twice as many leave within the first three years of teaching (Koppich, 2004). According to the 2007 Condition of Education report, the U.S. Department of Education estimated there were nearly 380,000 public school math and science teachers during the 2003-2004 school year, and of those, approximately 23,000 left the teaching profession the following school year. Yet despite these reports, in 2004-2005, approximately 360,000 public school math and science teachers remained in their classrooms. In this phenomenological dissertation study, I sought to discover how eight secondary science teachers (whose years of teaching experience range from five to 30 years) make meaning of their decisions to remain in teaching. Through semi-structured interviews, these teacher participants and I discussed how each of them decided to become a science teacher, how each of them think of themselves as a science teacher, and how each of them decided to remain teaching despite the ever-growing list of challenges (s)he faces in and out of his/her classroom. These teacher participants chose to become science teachers because they loved their subject area and working with secondary students. These teachers enjoyed working with their students and their teaching colleagues. However, they acknowledged there were also tensions and frustrations in their work, including not feeling supported by school and district administrators and being overwhelmed with the demands of their workload and time. These eight science teachers chose to remain classroom teachers because they have a profound love for their students, a deep admiration for their colleagues, and a strong sense of mission in their work. It is my intent that the stories shared by the teacher participants in this study will shed light upon concerns, tensions and experiences

  7. Your Science Classroom: Becoming an Elementary/Middle School Science Teacher

    ERIC Educational Resources Information Center

    Goldston, M. Jenice; Downey, Laura

    2012-01-01

    Designed around a practical "practice-what-you-teach" approach to methods instruction, "Your Science Classroom: Becoming an Elementary/Middle School Science Teacher" is based on current constructivist philosophy, organized around 5E inquiry, and guided by the National Science Education Teaching Standards. Written in a reader-friendly style, the…

  8. Promoting Pre-college Science Education

    NASA Astrophysics Data System (ADS)

    Lee, R. L.

    1999-11-01

    The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.

  9. Delaware Technical & Community College's response to the critical shortage of Delaware secondary science teachers

    NASA Astrophysics Data System (ADS)

    Campbell, Nancy S.

    This executive position paper examines the critical shortage of Delaware high school science teachers and Delaware Technical & Community College's possible role in addressing this shortage. A concise analysis of economic and political implications of the science teacher shortage is presented. The following topics were researched and evaluated: the specific science teacher needs for Delaware school districts; the science teacher education program offerings at Delaware universities and colleges; the Alternative Route to Teacher Certification (ARTC); and the state of Delaware's scholarship response to the need. Recommendations for Delaware Tech's role include the development and implementation of two new Associate of Arts of Teaching programs in physics secondary science education and chemistry secondary science education.

  10. Preservice science teachers' experiences with repeated, guided inquiry

    NASA Astrophysics Data System (ADS)

    Slack, Amy B.

    The purpose of this study was to examine preservice science teachers' experiences with repeated scientific inquiry (SI) activities. The National Science Education Standards (National Research Council, 1996) stress students should understand and possess the abilities to do SI. For students to meet these standards, science teachers must understand and be able to perform SI; however, previous research demonstrated that many teachers have naive understandings in this area. Teacher preparation programs provide an opportunity to facilitate the development of inquiry understandings and abilities. In this study, preservice science teachers had experiences with two inquiry activities that were repeated three times each. The research questions for this study were (a) How do preservice science teachers' describe their experiences with repeated, guided inquiry activities? (b) What are preservice science teachers' understandings and abilities of SI? This study was conducted at a large, urban university in the southeastern United States. The 5 participants had bachelor's degrees in science and were enrolled in a graduate science education methods course. The researcher was one of the course instructors but did not lead the activities. Case study methodology was used. Data was collected from a demographic survey, an open-ended questionnaire with follow-up interviews, the researcher's observations, participants' lab notes, personal interviews, and participants' journals. Data were coded and analyzed through chronological data matrices to identify patterns in participants' experiences. The five domains identified in this study were understandings of SI, abilities to conduct SI, personal feelings about the experience, science content knowledge, and classroom implications. Through analysis of themes identified within each domain, the four conclusions made about these preservice teachers' experiences with SI were that the experience increased their abilities to conduct inquiry

  11. Technology and Early Science Education: Examining Generalist Primary School Teachers' Views on Tacit Knowledge Assessment Tools

    ERIC Educational Resources Information Center

    Hast, Michael

    2017-01-01

    For some time a central issue has occupied early science education discussions--primary student classroom experiences and the resulting attitudes towards science. This has in part been linked to generalist teachers' own knowledge of science topics and pedagogical confidence. Recent research in cognitive development has examined the role of…

  12. Science Education Newsletter, No. 51.

    ERIC Educational Resources Information Center

    British Council, London (England).

    A variety of science and mathematics education activities are reported in two sections. These activities include: conferences (both past and future); innovative projects/programs and initiatives at the primary, secondary, and teacher-education levels; instructional materials development/use; instructional strategies; science education research;…

  13. Who Are the Science Teachers That Seek Professional Development in Research Experience for Teachers (RET's)? Implications for Teacher Professional Development

    ERIC Educational Resources Information Center

    Saka, Yavuz

    2013-01-01

    To address the need to better prepare teachers to enact science education reforms, the National Science Foundation has supported a Research Experience for Teachers (RET's) format for teacher professional development. In these experiences, teachers work closely with practicing scientists to engage in authentic scientific inquiry. Although…

  14. Case-based Long-term Professional Development of Science Teachers

    NASA Astrophysics Data System (ADS)

    Dori, Yehudit J.; Herscovitz, Orit

    2005-10-01

    Reform efforts are often unsuccessful because they failed to understand that teachers play a key role in making educational reforms successful. This paper describes a long-term teacher professional development (PD) program aimed at educating and training teachers to teach interdisciplinary topics using case-based method in science. The research objective was to identify, follow and document the processes that science teachers went through as they assimilated the interdisciplinary, case-based science teaching approach. The research accompanied the PD program throughout its 3-year period. About 50 teachers, who took part in the PD program, were exposed to an interdisciplinary case-based teaching method. The research instruments included teacher portfolios, which contained projects and reflection questionnaires, classroom observations, teacher interviews, and student feedback questionnaires. The portfolios contained the projects that the teachers had carried out during the PD program, which included case studies and accompanying student activities. We found that the teachers gradually moved from exposure to new teaching methods and subject matter, through active learning and preparing case-based team projects, to interdisciplinary, active classroom teaching using the case studies they developed.

  15. Pura Vida: Teacher Experiences in a Science Education Study Abroad Course in Costa Rica

    NASA Astrophysics Data System (ADS)

    Medina, Stephanie Rae

    The purpose of this study was to explore the experiences of classroom teachers who participated in a science-focused study abroad during their time as a preservice teacher and to explore how they are using their study abroad experiences in science curriculum planning and in classroom instruction. This study is guided by two research questions: 1) what are the study abroad experiences that have influenced classroom teachers; and, 2) how do classroom teachers incorporate study abroad experiences into science curriculum planning and instruction in the classroom? Participants were two in-service science teachers from schools located in the Southwestern United States. The participants were enrolled in the course, Environmental Science and Multicultural Experience for K-8 Teachers offered through the Department of Educational Leadership, Curriculum and Instruction during their time as preservice teachers. The course included a two-week study abroad component in Costa Rica. Participants spent their mornings observing a monolingual, Spanish-speaking elementary classroom followed by a faculty-led multicultural seminar. Afternoons during the study abroad experience were dedicated to field science activities such as quantifying plant and animal biodiversity, constructing elevation profiles, determining nutrient storage in soil, and calculating river velocity. Throughout the course students participated in science-focused excursions. A cross case study design was used to answer the two research questions guiding this dissertation study. Data collection included participant-created concept maps of the science experiences during the study abroad experience, in-depth interviews detailing the study abroad experience and classroom instruction, and participant reflective journal entries. Cross-caseanalysis was employed to explore the uniqueness of each participant's experience and commonalities between the cases. Trustworthiness was established by utilizing multiple sources of data

  16. Chance, choice and opportunity: Life history study of two exemplary female elementary science teachers

    NASA Astrophysics Data System (ADS)

    Hitt, Kathleen Milligan

    The purpose of this two-year study was to investigate why two female elementary teachers became exemplary science teachers, despite conditions which do not promote such achievement. Each teachers' progress was examined using life history methodology. The study's theoretical grounding included females' academic and attitudinal success in science education. Purposeful sampling of peers, administrators, and college professors produced two research participants. Both teachers participated in interviews, observations, and member checks lasting over one year. Data were analyzed inductively, resulting in two life histories. Comparing the life stories using confluence theory (Feldman, 1986) indicated four major categories for consideration: risk-taking; life-long learning; gender equity; and mentors. Risk-taking is necessary for female elementary teachers because of their often poor educational background. Few female role models support efforts for achievement. Life-long learning, including extensive reading and graduate-level classes, supports female teachers' personal and professional growth. Exposure to new ideas and teacher practices encourages curricular change and refinement in science education. Gender inequity and the male-packaging of science is an issue to be resolved by female elementary teachers. Mentors can provide interaction and feedback to refine science instructional practices. Professors, peers, and mentor teachers support instructional and content knowledge efforts. Recommendations for science education in classroom practices, preservice teacher education and continuing professional development include female-friendly approaches to science instruction. Decreased competitive practices through cooperative learning and gender inclusive language encourages female participation and achievement in classrooms. Hands-on, inquiry-based instruction and verbalization encourages female students' achievement in science education. Preservice teachers must receive

  17. Addressing Equity within Science Education Courses: Sharing Approaches and Ideas.

    ERIC Educational Resources Information Center

    Wieseman, Katherine C.; Bryan, Lynn; Hammrich, Penny; Lynch, Sharon; McGinnis, Randy; Pyle, Eric

    A discussion session provided opportunities for individuals involved in science teacher education to exchange approaches and ideas on how equity issues in science teaching and learning are being addressed in science teacher education courses. Evaluative questions included: (1) What conceptions of equity in science education underpin individual…

  18. Exploring the Effects of Specific, Hands-On Interventions, on Environmental Science Topics in Teacher Education Programs

    NASA Astrophysics Data System (ADS)

    Bullock, S. M.; Hayhoe, D.

    2012-12-01

    With increased concern over the environment, all Ontario students now study soils, energy conservation, water systems, and climate change & the greenhouse effect in Grades 3, 5, 7, 8 and 10. Unfortunately, many prospective teachers at the elementary and intermediate levels come to teacher education programs with little or no formal science education beyond their own experiences as students in the K-12 system. We devised a series of concept tests (some binary choice, some multiple choice) designed to assess teacher candidates' conceptual understandings of soils, energy, water systems, and climate change and the greenhouse effect - the very content they are expected to teach their future students in the school system. We administered a pre-test to our students at two institutions to establish a baseline of their understanding. Then, we specifically devoted class time to exploring each of these themes in our science curriculum methods courses in order using research-based principles of teaching devoted to promoting conceptual change through the use of hands-on, inquiry approaches in science. After a few months had passed, we again administered the same tests to teacher candidates to measure candidates' conceptual gain. Some teacher candidates also participated in follow-up focus group interviews so that they could have the opportunity to articulate their understandings of concepts in environmental science using their own words. In this poster we will report on data collected for this project over the past two academic years. We have reached two broad conclusions. First, teacher candidates know a considerable amount about the four environmental topics that were selected, despite the fact that most participants in the research did not have post-secondary training in science. For example, participants tended to know that planting different crops on the soil in different years helps to maintain fertile soils and that warmer oceans will cause an increase in the severity of

  19. Case-Based Long-Term Professional Development of Science Teachers

    ERIC Educational Resources Information Center

    Dori, Yehudit J.; Herscovitz, Orit

    2005-01-01

    Reform efforts are often unsuccessful because they failed to understand that teachers play a key role in making educational reforms successful. This paper describes a long-term teacher professional development (PD) program aimed at educating and training teachers to teach interdisciplinary topics using case-based method in science. The research…

  20. Primary Teachers' Attitudes toward Science: A New Theoretical Framework

    ERIC Educational Resources Information Center

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; Asma, Lieke J. F.

    2012-01-01

    Attention to the attitudes of preservice and inservice primary teachers toward science is of fundamental importance to research on primary science education. However, progress in this field of research has been slow due to the poor definition and conceptualization of the construct of primary teachers' attitude toward science. This poor theoretical…

  1. An Analysis of Science Student Teachers' Epistemological Beliefs and Metacognitive Perceptions about the Nature of Science

    ERIC Educational Resources Information Center

    Yenice, Nilgün

    2015-01-01

    This study has been carried out to identify the relationship between the epistemological beliefs of student teachers and their metacognitive perceptions about the nature of science. The participants of the study totaled 336 student teachers enrolled in the elementary science education division of the department of elementary education at the…

  2. Impact of Texas high school science teacher credentials on student performance in high school science

    NASA Astrophysics Data System (ADS)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  3. Sources of Self-efficacy in a Science Methods Course for Primary Teacher Education Students

    NASA Astrophysics Data System (ADS)

    Palmer, D. H.

    2006-12-01

    Self-efficacy has been shown to be an issue of concern for primary teacher education students - many of them have low self-efficacy and this can negatively affect their future teaching of science. Previous research has identified four factors that may contribute towards self-efficacy: enactive mastery experiences, vicarious experiences, verbal persuasion and physiological/affective states. It could also be argued that there are additional sources of self-efficacy that apply to primary teacher education students, namely cognitive content mastery, cognitive pedagogical mastery and simulated modelling. The main purpose of the present paper was to investigate the relative importance of the various sources of self-efficacy in a primary science methods course. Data on changes in self-efficacy and sources of self-efficacy were collected throughout the course using formal and informal surveys. It was found that the main source of self-efficacy was cognitive pedagogical mastery.

  4. American Elementary Education Pre-Service Teachers' Attitudes towards Biotechnology Processes

    ERIC Educational Resources Information Center

    Chabalengula, Vivien Mweene; Mumba, Frackson; Chitiyo, Jonathan

    2011-01-01

    This study examined elementary education pre-service teachers' attitudes towards biotechnology processes. A sample comprised 88 elementary education pre-service teachers at a mid-sized university in the Midwest of the USA. Sixty and 28 of these pre-service teachers were enrolled in Introductory Science Methods course and Advance Science Methods…

  5. Influencing Intended Teaching Practice: Exploring pre-service teachers' perceptions of science teaching resources

    NASA Astrophysics Data System (ADS)

    Cooper, Grant; Kenny, John; Fraser, Sharon

    2012-08-01

    Many researchers have identified and expressed concern over the state of science education internationally, but primary teachers face particular obstacles when teaching science due to their poor science background and low confidence with science. Research has suggested that exemplary resources, or units that work, may be an effective way to support primary teachers. This study explores the effect of one such resource on the intentions of pre-service primary teachers to teach science. The resource in question is Primary Connections, a series of learning resources produced by the Australian Academy of Science specifically designed for primary science. Evaluative studies of Primary Connections have indicated its efficacy with practising primary teachers but there is little evidence of its impact upon pre-service teachers. The purpose of this study was to investigate how effective these quality teaching resources were in influencing the intentions of primary pre-service teachers to teach science after they graduated. The theory of planned behaviour highlighted the linkage between the intentions of the pre-service teachers to teach science, and their awareness of and experiences with using Primary Connections during their education studies. This enabled key factors to be identified which influenced the intentions of the pre-service teachers to use Primary Connections to teach science after they graduate. The study also provided evidence of how quality science teaching resources can be effectively embedded in a teacher education programme as a means of encouraging and supporting pre-service teachers to teach science.

  6. Persisting mathematics and science high school teachers: A Q-methodology study

    NASA Astrophysics Data System (ADS)

    Robbins-Lavicka, Michelle M.

    There is a lack of qualified mathematics and science teachers at all levels of education in Arkansas. Lasting teaching initiative programs are needed to address retention so qualified teachers remain in the classroom. The dearth of studies regarding why mathematics and science teachers persist in the classroom beyond the traditional 5-year attrition period led this Q-methodological study to evaluate the subjective perceptions of persistent mathematics and science teachers to determine what makes them stay. This study sought to understand what factors persisting mathematics and science teachers used to explain their persistence in the classroom beyond 5 years and what educational factors contributed to persisting mathematics and science teachers. Q-methodology combines qualitative and quantitative techniques and provided a systematic means to investigate personal beliefs by collecting a concourse, developing a Q-sample and a person-sample, conducting a Q-sorting process, and analyzing the data. The results indicated that to encourage longevity within mathematics and science classrooms (a) teachers should remain cognizant of their ability to influence student attitudes toward teaching; (b) administrators should provide support for teachers and emphasize the role and importance of professional development; and (c) policy makers should focus their efforts and resources on developing recruitment plans, including mentorship programs, while providing and improving financial compensation. Significantly, the findings indicate that providing mentorship and role models at every level of mathematics and science education will likely encourage qualified teachers to remain in the mathematics and science classrooms, thus increasing the chance of positive social change.

  7. Writing in elementary school science: Factors that influence teacher beliefs and practices

    NASA Astrophysics Data System (ADS)

    Glen, Nicole J.

    Recent calls for scientifically literate citizens have prompted science educators to examine the roles that literacy holds in students' science learning processes. Although many studies have investigated the cognitive gains students acquire when they write in science, these writing-to-learn studies have typically been conducted with only middle and secondary school students. Few studies have explored how teachers, particularly elementary teachers, understand the use of writing in science and the factors that influence their science and writing lessons. This was a qualitative case study conducted in one suburban school with four elementary teachers. The purpose of this study was to understand: (a) how teachers' uses of and purposes for writing in science compared to that in English language arts; (b) the factors that drove teachers' pedagogical decisions to use writing in certain ways; (c) teachers' beliefs about science teaching and learning and its relation to how they used writing; (d) teachers' perceptions of students' writing abilities and its relation to how they used writing; and (e) teachers' views about how writing is used by scientists. Seven main findings resulted from this research. In summary, teachers' main uses of and purposes for writing were similar in science and English language arts. For much of the writing done in both subjects, teachers' expectations of students' writing were typically based on their general literacy writing skills. The teachers believed that scientific writing is factual, for the purpose of communicating about science, and is not as creative or "fun" as other types of writing. The teachers' pedagogical practices in science included teaching by experiences, reading, and the transmission of information. These practices were related to their understanding of scientific writing. Finally, additional factors drove the decisions teachers made regarding the use of writing in science, including time, knowledge of curriculum

  8. Inquiry-Based Instruction in Secondary Science Classrooms: A Survey of Teacher Practice

    ERIC Educational Resources Information Center

    Gejda, Linda M.; LaRocco, Diana J.

    2006-01-01

    Background: For ten years, the National Science Education Standards (National Research Council, 1996) have served as the foundation for Connecticut's teacher certification in science and the expectations of teacher practice secondary science classrooms. Furthermore, beginning science teachers must demonstrate the ability to teach in an…

  9. Negotiating science and engineering: an exploratory case study of a reform-minded science teacher

    NASA Astrophysics Data System (ADS)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-05-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.

  10. Science IA (Agriscience). A Science Credit for Agriculture: Integrating Academic and Vocational Education.

    ERIC Educational Resources Information Center

    Ricketts, Samuel C.

    Because college-bound students often had trouble fitting agricultural education courses into their schedules, and because science teachers rejected the idea of giving a science credit for 2 years of agricultural education, a new integrated course was created in Tennessee. It is now called Science IA (Agriscience). It is taught by a teacher with an…

  11. Science, technology, and pedagogy: Exploring secondary science teachers' effective uses of technology

    NASA Astrophysics Data System (ADS)

    Guzey, Siddika Selcen

    Technology has become a vital part of our professional and personal lives. Today we cannot imagine living without many technological tools such as computers. For the last two decades technology has become inseparable from several areas, such as science. However, it has not been fully integrated into the field of education. The integration of technology in teaching and learning is still challenging even though there has been a historical growth of Internet access and available technology tools in schools (U.S. Department of Education, National Center for Education Statistics, 2006). Most teachers have not incorporated technology into their teaching for various reasons such as lack of knowledge of educational technology tools and having unfavorable beliefs about the effectiveness of technology on student learning. In this study, three beginning science teachers who have achieved successful technology integration were followed to investigate how their beliefs, knowledge, and identity contribute to their uses of technology in their classroom instruction. Extensive classroom observations and interviews were conducted. The findings demonstrate that the participating teachers are all intrinsically motivated to use technology in their teaching and this motivation allows them to enjoy using technology in their instruction and keeps them engaged in technology use. These teachers use a variety of technology tools in their instruction while also allowing students to use them, and they posit a belief set in favor of technology. The major findings of the study are displayed in a model which indicates that teachers' use of technology in classroom instruction was constructed jointly by their technology, pedagogy, and content knowledge; identity; beliefs; and the resources that are available to them and that the internalization of the technology use comes from reflection. The study has implications for teachers, teacher educators, and school administrators for successful technology

  12. Investigating the Self-Perceived Science Teaching Needs of Local Elementary Educators

    NASA Astrophysics Data System (ADS)

    Carver, Cynthia G.

    Elementary teachers in one school system have expressed low self-efficacy teaching science and desire more support teaching science. However, little research has been conducted on how best to meet these teachers' needs. The theories of perceived self-efficacy, social cognition, and behaviorism make up the conceptual framework of this study. The focus of this qualitative project study was on the needs of local elementary educators. These teachers were asked what they felt they needed most to be more effective science educators. The methodology of phenomenology was used in this study in which local elementary teachers were questioned in focus groups regarding their own science teaching efficacy and perceived needs. Using inductive analysis, data were coded for links to discussion questions as well as any additional patterns that emerged. Findings indicated that local elementary teachers desire improved communication among administrators and teachers as well as better science content support and training. Focus group participants agreed that teacher self-efficacy affects the time spent, effort toward, and quality of elementary science education. Using the results of the study, a science mentor program was developed to support the needs of elementary teachers and increase teacher self-efficacy, thus improving local elementary science education. Implications for positive social change include the development and support of elementary science programs in other school systems with the goal of improving science education for elementary students.

  13. Science Teachers' Professional Development and Changes in Science Practical Assessment Practices: What Are the Issues?

    ERIC Educational Resources Information Center

    Towndrow, Phillip A.; Tan, Aik-Ling; Yung, Benny H. W.; Cohen, Libby

    2010-01-01

    This paper considers the circumstances under which science teachers can respond positively and productively to educational policy reforms in the area of science practical assessment. To understand what might be involved in linking science teachers' assessment capacities and their professional development, we present illustrative data from recent…

  14. The Role of University Science Faculty in Promoting Meaningful Educational Change Through Inservice Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Schuster, D. A.

    2005-12-01

    The role of university faculty in promoting meaningful educational change through inservice teacher professional development has long been theorized, but seldom modeled. Cordial relations and clear mutual goals shared between discipline specialists, such as university scientists and the K - 12 staff development communities, have not existed, and dysfunctional relationships between K-12 schools and the university over the past century have inhibited the solidification of these meaningful professional development partnerships. Our research suggest that inservice teachers tend to learn more about scientific processes in settings where they have the opportunity to interact and engage in an environment where opportunities for learning are promoted by participation and work with professionals in the sciences: University scientists that fostered collaborative flexible environments and treated teachers as professionals appear to have had greater impacts on teachers' learning about the creative, imaginative, social, and cultural aspect of science than the university scientists who treated teachers as technicians. Our work challenges many of the seminal studies and in-depth literature reviews of the last 15 years that assert that an explicit/reflective approach is most effective in promoting adequate conceptions of science among both prospective and practicing teachers. It should be noted, however, that all of these previous studies were conducted in the context of preservice elementary and secondary science methods courses and the process of generalizing these findings to practicing teachers appears to have occurred only in literature reviews and is not clearly substantiated in published research reports. Our study recommends that science teacher professional development should involve initiating inservice teachers into the ideas and practices of the scientific community. Teaching is a learning profession and professional development contexts need to assign teachers a

  15. Some Aspects of Science Education in European Context

    ERIC Educational Resources Information Center

    Naumescu, Adrienne Kozan; Pasca, Roxana-Diana

    2008-01-01

    Some up-to-date problems in science education in European context are treated in this paper. The characteristics of science education across Europe are presented. Science teachers' general competencies are underlined. An example of problem-solving as teaching method in chemistry is studied in knowledge based society. Transforming teacher practice…

  16. Teaching Teachers of Science

    NASA Astrophysics Data System (ADS)

    Lockman, F. J.; Heatherly, S. A.

    2001-05-01

    Most K-12 teachers of science have never actually done research, and this creates considerable confusion and misunderstanding about the nature of science. For more than 10 years the NRAO at Green Bank has conducted programs of teacher training, funded by the NSF, which provide a research experience in radio astronomy that can be generalized and applied in the classroom. Our program is under the direction of educators from the NRAO and WVU, but uses the unique facilities of the Observatory and the active participation of its scientific staff. Evaluations have shown that the two-week programs are effective in making significant, positive changes in attitude and understanding of the participants. We are in the process of expanding our educational activities so that every student in the region and the State will be able to participate in at least one program at the Observatory before they graduate from high school.

  17. The Six-Legged Subject: A Survey of Secondary Science Teachers' Incorporation of Insects into U.S. Life Science Instruction.

    PubMed

    Ingram, Erin; Golick, Douglas

    2018-03-14

    To improve students' understanding and appreciation of insects, entomology education efforts have supported insect incorporation in formal education settings. While several studies have explored student ideas about insects and the incorporation of insects in elementary and middle school classrooms, the topic of how and why insects are incorporated in secondary science classrooms remains relatively unexplored. Using survey research methods, this study addresses the gap in the literature by (1) describing in-service secondary science teachers' incorporation of insects in science classrooms; (2) identifying factors that support or deter insect incorporation and (3) identifying teachers' preferred resources to support future entomology education efforts. Findings indicate that our sample of U.S. secondary science teachers commonly incorporate various insects in their classrooms, but that incorporation is infrequent throughout the academic year. Insect-related lesson plans are commonly used and often self-created to meet teachers' need for standards-aligned curriculum materials. Obstacles to insect incorporation include a perceived lack of alignment of insect education materials to state or national science standards and a lack of time and professional training to teach about insects. Recommendations are provided for entomology and science education organizations to support teachers in overcoming these obstacles.

  18. What Changes Occurred?--An In-service Course Focused on Museum Education for Taiwanese Science Teachers.

    ERIC Educational Resources Information Center

    Chin, Chi-Chin; Tuan, Hsiao-lin

    This study investigated the changes that occurred in the knowledge and attitudes of a group of science and mathematics teachers (n=38) who took a museum education course. The course contained lectures and discussions on the rationales and strategies of museum education. The students also learned about the history of museum development in Taiwan…

  19. Working Alongside Scientists: Impacts on Primary Teacher Beliefs and Knowledge about Science and Science Education

    ERIC Educational Resources Information Center

    Anderson, Dayle; Moeed, Azra

    2017-01-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the…

  20. Beginning Secondary Science Teacher Induction: A Two-Year Mixed Methods Study

    ERIC Educational Resources Information Center

    Luft, Julie A.; Firestone, Jonah B.; Wong, Sissy S.; Ortega, Ira; Adams, Krista; Bang, EunJin

    2011-01-01

    Those who study secondary science teachers are often concerned with preservice or in-service teacher development. Science teacher educators have acknowledged that this focus is limited, as the induction years of beginning teachers are an important component of teacher development. This mixed methods study focuses on the induction years of…

  1. Introducing Future Teachers to Science Beyond the Classroom

    NASA Astrophysics Data System (ADS)

    Kisiel, James

    2013-02-01

    Informal science education institutions (ISEIs), such as museums, aquariums, and nature centers, offer more to teachers than just field trip destinations—they have the potential to provide ideas for pedagogy, as well as support deeper development of teachers' science knowledge. Although there is extensive literature related to teacher/museum interactions within the context of the school field trip, there is limited research that examines other ways that such institutions might support classroom teachers. A growing number of studies, however, examine how incorporating such ideas of connections of ISEIs to pre-service teacher education might improve teacher perceptions and awareness. Pre-service elementary teachers enrolled in a science methods class participated in a semester-long assignment which required participation in their choice of activities and events (workshops, field trips, family day activities) conducted at local ISEIs. Students generally saw this embedded assignment as beneficial, despite the additional out-of-class time required for completion. Comparison of pre-/post-class responses suggested that teachers shifted their perceptions of ISEIs as first and foremost as places for field trips or hands-on experiences, to institutions that can help teachers with classroom science instruction. Although basic awareness of the existence of such opportunities was frequently cited, teachers also recognized these sites as places that could enhance their teaching, either by providing materials/resources for the classroom or by helping them learn (content and pedagogy) as teachers. Implications for practice, including the role of ISEIs in teacher preparation and indication, are also discussed.

  2. Master Teachers in Residence: Bringing a Classroom Perspective to Course Reform for NSF's Oklahoma Teacher Education Collaborative (O-TEC).

    ERIC Educational Resources Information Center

    Ramsey, Sarah; Neathery, Faye; Fholer, Gwen; Weger, Elayne; Voth, Bonnie; Townsend, Joyce; Campbell, DeAnn; Boedecker, Martha

    Master teachers can be influential in course revision. The Oklahoma Teacher Education Collaborative (O-TEC) teacher reform effort is a consortium of nine higher education institutions working with the National Science Foundation's (NSF's) reform effort to produce teachers better equipped for teaching science and mathematics. The reform emphasizes…

  3. Earthworks: Educating Teachers in Earth System Sciences

    NASA Technical Reports Server (NTRS)

    Spetzler, H.; Weaver, A.; Buhr, S.

    2000-01-01

    Earthworks is a national community of teachers and scientists. Initiated in 1998 with funding from NASA, our summer workshops in the Rocky Mountains each year provide unique opportunities for teachers to design and conduct field research projects, working closely with scientists. Teachers then develop plans for classroom implementation during the school year, sharing their ideas and experiences with other community members through e-mail and a listserv. Scientists, from graduate students to expert senior researchers, share their knowledge of field methods in environmental science, and learn how to better communicate and teach about their research.

  4. Conducting Science Fair Activities: Reflections of the Prospective Science Teachers on Their Expectations, Opinions, and Suggestions Regarding Science Fairs

    ERIC Educational Resources Information Center

    Durmaz, Hüsnüye; Oguzhan Dinçer, Emrah; Osmanoglu, Ashhan

    2017-01-01

    The aim of this study is to examine the reflections of the prospective science teachers on their expectations, opinions, and suggestions towards science fairs. The study was conducted with 34 prospective science teachers. All participants had education in junior class of Science Teaching Program of a university located in western part of Turkey in…

  5. Experience of the Neophyte Science Teachers: Through Their Eyes

    ERIC Educational Resources Information Center

    Thornton, David

    2017-01-01

    A variety of lenses were used to examine the world of the novice science teacher. A degree of agency was provided by looking through the eyes of the beginning teacher. Previous studies focused on researcher or program's orientation, the successes of various educator preparation programs, or were limited in scope to elementary teachers of science.…

  6. Tailoring Inservice Training in Science to Elementary Teachers' Needs.

    ERIC Educational Resources Information Center

    Bethel, Lowell J.

    1982-01-01

    Elementary school teachers feel inadequately prepared to teach science and spend little class time on science instruction. Until undergraduate science preparation improves, inservice training must take up the slack. An inservice program developed by the Science Education Center at the University of Texas' College of Education shows positive…

  7. A pedagogical framework for developing innovative science teachers with ICT

    NASA Astrophysics Data System (ADS)

    Rogers, Laurence; Twidle, John

    2013-11-01

    Background: The authors have conducted a number of research projects into the use of ICT in science teaching and most recently have collaborated with five European partners in teacher education to develop resources to assist teacher trainers in delivering courses for the professional development of science teachers. Purpose: 1. To describe the main aspects of pedagogy which are relevant to the use of ICT tools which serve practical science teaching. 2. To discuss approaches to teacher education which aim to emphasise the pedagogical aspects of using those ICT tools. Sources of evidence: 1. A review of the research literature on the effectiveness of using ICT in education with a particular focus on pedagogical knowledge and its interaction with associated technical knowledge. 2. Authors' experience as teacher trainers and as researchers in methods of employing ICT in science education. 3. Studies conducted by partners in the ICT for Innovative Science Teachers Project and training materials developed by the project. Main argument: Starting from the premise that it is the pedagogical actions of the teacher which determine successful learning outcomes of using ICT in science lessons, the paper describes the main components of pedagogical knowledge and understanding required by teachers. It examines the role of an understanding of affordances in helping teachers to deploy software tools appropriately and defines some of the skills for exploiting them to benefit learning. Innovation is successful when ICT activities are incorporated in ways that complement non-ICT activities and serve science learning objectives. When teachers are alert to adapt their pedagogical skills, they evolve new ways of working and interacting with students. Training courses need to provide means of helping teachers to examine the professional beliefs which underpin their pedagogical approaches. This is most effectively achieved when a course blends personal hands-on experience with discourse

  8. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    ERIC Educational Resources Information Center

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  9. The Role of Reflection and Collaboration in the Evolution of a Group of Novice Secondary Education Science Teachers

    ERIC Educational Resources Information Center

    Cuesta, Josefa; Azcárate, Pilar; Cardeñoso, José Maria

    2016-01-01

    The present article analyses the changes in practices, ideas, and attitudes proposed by a group of novice science teachers during a further education teacher training program. The research on which it is based is focused on monitoring the training program and its impact on the participating teachers. The training program has as its starting point…

  10. Senior science teachers' experience of teaching in a changing multicultural classroom: A case study

    NASA Astrophysics Data System (ADS)

    Ryan, Mark

    Demographic changes within the US are bringing significant changes in the cultural make-up of the classrooms in our schools. Results from national and state assessments indicate a growing achievement gap between the science scores of white students and students from minority communities. This gap indicates a disconnect somewhere in the science classrooms. This study examines the teacher's perspective of the changing learning environment. The study focuses on senior teachers with traditional Midwestern backgrounds and little multicultural experience assuming these teachers had little or no education in multicultural education. Senior teachers are also more likely to have completed their science education within a traditional Universalist perspective of science and likewise have little or no education in multicultural science. The research method was comparative case studies of a purposeful sample of nine science teachers within a community experiencing significant demographic change, seven core senior teachers and two frame of reference teachers. The interviews examined the teachers' awareness of their own cultural beliefs and the impact of those beliefs on classroom practices, the teachers' understanding of cultural influences on the students' academic performance, and the relationships between the teachers' understanding of the cultural aspects of the nature of science and their classroom practices. Analysis of the interview data revealed that the teachers maintain a strong, traditional Midwestern worldview for classroom expectations and they are generally unaware of the impact of those standards on the classroom environment. The teachers were supportive of minority students within their classroom, changing several practices to accommodate student needs, but they were unaware of the broader cultural influences on student learning. The teachers had a poor understanding of the nature of science and none of them recognized a cultural element of NOS. They maintained a

  11. Reconceptualizing Elementary Teacher Preparation: A case for informal science education

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    2015-01-01

    The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of informal science environments to teaching and learning. In order to address this question, data were collected in a period of an academic semester through the following sources: journal entries for each of the 3 experiences, a personal teaching philosophy statement and a 2-hour long semi-structured interview with each of the 12 participants. Open coding techniques were used to analyze the data in order to construct categories and subcategories and eventually to identify emerging themes. The outcomes of the analysis showed that the inclusion of informal science experiences in the context of teacher preparation has the potential to support beginning elementary teachers' development of contemporary ideas about science teaching and learning related to inquiry-based science, the nature of scientific work and the work of scientists, connecting science with everyday life, and making science fun and personally meaningful. These findings are discussed alongside implications for policy, teacher preparation, and research under these themes: (a) addressing reform recommendations; (b) developing positive orientations toward science and science teaching; and (c) constructing understandings about scientists' work.

  12. How Pre-Service Teachers' Understand and Perform Science Process Skills

    ERIC Educational Resources Information Center

    Chabalengula, Vivien Mweene; Mumba, Frackson; Mbewe, Simeon

    2012-01-01

    This study explored pre-service teachers' conceptual understanding and performance on science process skills. A sample comprised 91 elementary pre-service teachers at a university in the Midwest of the USA. Participants were enrolled in two science education courses; introductory science teaching methods course and advanced science methods course.…

  13. Confidence and Loose Opportunism in the Science Classroom: Towards a pedagogy of investigative science for beginning teachers

    NASA Astrophysics Data System (ADS)

    McNally, Jim

    2006-03-01

    This paper attempts to establish a conceptual basis on which beginning teachers may be introduced to investigative science teaching in a way that accommodates the teacher voice. It draws mainly on preliminary theory from the shared reflections of 20 science teachers, augmented by a more general interview-based study of the experience of early professional learning of 18 new teachers. Internationally, it is situated in the wider concern in the literature with the nature of science, mainly in initial teacher education. Empirically located within the Scottish context, a grounded epistemological base of teacher knowledge is illustrated and presented as components of confidence in a cycle of professional learning that needs to be set in motion during initial teacher education. It is proposed that, given protected experience in their early attempts to teach investigatively, new teachers can begin to develop a confident pedagogy of loose opportunism that comes close to authentic science for the children they teach.

  14. Methodological Issues in Researching Teacher Education in Developing Countries.

    ERIC Educational Resources Information Center

    Sharpes, Donald K.

    Social science concepts have an impact on the study of teacher education in developing countries, and teacher education is a primary social force woven throughout the study of national development. A recommended approach to research on teacher education combines a study of how education influences, and in turn is influenced by, other developmental…

  15. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  16. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    ERIC Educational Resources Information Center

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  17. Life Science Teachers' Discourse on Assessment: A Valuable Insight into the Variable Conceptions of Assessment in Higher Education

    ERIC Educational Resources Information Center

    Halinen, Katrianna; Ruohoniemi, Mirja; Katajavuori, Nina; Virtanen, Viivi

    2014-01-01

    Teachers' conceptions of teaching, including assessment practices, are substantial in directing student learning. Our article refers to assessment at tertiary level biological education. We studied life science (more specifically microbiology-related) teachers' assessment discourse describing how they understood assessment as part of their…

  18. Science teacher’s idea about environmental concepts in science learning as the first step of science teacher training

    NASA Astrophysics Data System (ADS)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-05-01

    To refresh natural environmental concepts in science, science teacher have to attend a teacher training. In teacher training, all participant can have a good sharing and discussion with other science teacher. This study is the first step of science teacher training program held by education foundation in Bandung and attended by 20 science teacher from 18 Junior High School. The major aim of this study is gathering science teacher’s idea of environmental concepts. The core of questions used in this study are basic competencies linked with environmental concepts, environmental concepts that difficult to explain, the action to overcome difficulties and references in teaching environmental concepts. There are four major findings in this study. First finding, most environmental concepts are taught in 7th grade. Second finding, most difficult environmental concepts are found in 7th grade. Third finding, there are five actions to overcome difficulties. Fourth finding, science teacher use at least four references in mastering environmental concepts. After all, teacher training can be a solution to reduce difficulties in teaching environmental concepts.

  19. Primary Teachers' Reflections on Inquiry- and Context-Based Science Education

    NASA Astrophysics Data System (ADS)

    Walan, Susanne; Mc Ewen, Birgitta

    2017-04-01

    Inquiry- and context-based teaching strategies have been proven to stimulate and motivate students' interests in learning science. In this study, 12 teachers reflected on these strategies after using them in primary schools. The teachers participated in a continuous professional development (CPD) programme. During the programme, they were also introduced to a teaching model from a European project, where inquiry- and context-based education (IC-BaSE) strategies were fused. The research question related to teachers' reflections on these teaching strategies, and whether they found the model to be useful in primary schools after testing it with their students. Data collection was performed during the CPD programme and consisted of audio-recorded group discussions, individual portfolios and field notes collected by researchers. Results showed that compared with using only one instructional strategy, teachers found the new teaching model to be a useful complement. However, their discussions also showed that they did not reflect on choices of strategies or purposes and aims relating to students' understanding, or the content to be taught. Before the CPD programme, teachers discussed the use of inquiry mainly from the aspect that students enjoy practical work. After the programme, they identified additional reasons for using inquiry and discussed the importance of knowing why inquiry is performed. However, to develop teachers' knowledge of instructional strategies as well as purposes for using certain strategies, there is need for further investigations among primary school teachers.

  20. Pre-Service Teachers' Perspectives on Using Scenario-Based Virtual Worlds in Science Education

    ERIC Educational Resources Information Center

    Kennedy-Clark, Shannon

    2011-01-01

    This paper presents the findings of a study on the current knowledge and attitudes of pre-service teachers on the use of scenario-based multi-user virtual environments in science education. The 28 participants involved in the study were introduced to "Virtual Singapura," a multi-user virtual environment, and completed an open-ended questionnaire.…

  1. Revolutionizing Climate Science: Using Teachers as Communicators

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Crowley, S.; Wood, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university

  2. Effects of a Long-Term Participatory Action Research Project on Science Teachers' Professional Development

    ERIC Educational Resources Information Center

    Eilks, Ingo; Markic, Silvija

    2011-01-01

    This paper describes the potential of long-term co-operation between science educators and science teachers concerning the teachers' continuous professional development, based on Participatory Action Research in science education. The discussion is based on a six-year case study observing a group of about ten German chemistry teachers by chemistry…

  3. Science Teachers' Perceptions of the Effectiveness of Technology in the Laboratories: Implications for Science Education Leadership

    ERIC Educational Resources Information Center

    Yaseen, Niveen K.

    2011-01-01

    The purpose of this study was to identify science teachers' perceptions concerning the use of technology in science laboratories and identify teachers' concerns and recommendations for improving students' learning. Survey methodology with electronic delivery was used to gather data from 164 science teachers representing Texas public schools. The…

  4. Science Education in the United States.

    ERIC Educational Resources Information Center

    Champagne, Audrey B.

    1997-01-01

    Discusses science education in the United States, which is in the midst of an unprecedented reform movement driven by national standards developed with support from the federal government. These standards are redefining the character of science education from kindergarten to the post-graduate education of scientists and science teachers. The new…

  5. The Emergence and Institutional Co-Determination of Sustainability as a Teaching Topic in Interdisciplinary Science Teacher Education

    ERIC Educational Resources Information Center

    Rasmussen, Klaus

    2017-01-01

    This paper takes an institutional perspective on the topic of sustainability in order to analyse how this "idea" enters science teacher education through an interdisciplinary approach. It shows how the development and implementation of a course for Danish pre-service teachers was conditioned and constrained by a complex web of…

  6. Identifying Tensions around Gender-Responsive Curriculum Practices in Science Teacher Education in Zimbabwe: An Activity Theory Analysis

    ERIC Educational Resources Information Center

    Chikunda, Charles

    2014-01-01

    The physical sciences, mathematics and technology subjects in Zimbabwe, like in most other African countries, are still male dominated. This is despite numerous efforts over the years directed towards gender equality in these disciplines. Many studies point at teacher education as not doing enough to assist future teachers in these disciplines…

  7. NGSS and the Next Generation of Science Teachers

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2014-01-01

    This article centers on the "Next Generation Science Standards" (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts--interconnecting science and engineering…

  8. Science Teachers' Epistemic Cognition in Instructional Decision Making

    ERIC Educational Resources Information Center

    Ponnock, Annette R.

    2017-01-01

    One understudied barrier to science education reform concerns teachers' cognitive processes and how they relate to instructional decision-making. Epistemic cognition--teachers' beliefs about knowledge and knowledge acquisition and goals for their students' knowledge acquisition--could provide important insights into the choices science teachers…

  9. Crossing borders: High school science teachers learning to teach the specialized language of science

    NASA Astrophysics Data System (ADS)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  10. A Course in Earth System Science: Developed for Teachers by Teachers

    NASA Astrophysics Data System (ADS)

    Wong, K.; Read, K.; Charlevoix, D.; Tomkin, J.; Hug, B.; Williams, M.; Pianfetti, E.

    2008-12-01

    ESES 202 is a new general education course in physical science at the University of Illinois's School of Earth, Society and Environment, designed for pre-service K-8 teachers. The goal of the course is to help future classroom teachers become confident with teaching earth science content. The designers of this course include a faculty expert in earth system science, a pre-service teacher and a former middle school science teacher. The goal of the in the curriculum design was to utilize the unique perspectives and experiences of our team. Our poster will highlight the unique nature of the curriculum development outlining the challenges and successes of designing the course. The general format of the class will be a combination of discussions, hands on experiences, and opportunities for students to design their own lessons. Class meetings will be once per week in a three-hour block, allowing students to immediately transfer new content knowledge into classroom activities. The end goal is that they can use these same activities with their students once they are practicing teachers. The content of the course shall be taught using an earth systems approach by showing the relationships among the four spheres: biosphere, hydrosphere, atmospheric, and anthrosphere. There are five units in the course: Introduction to Earth Systems, Carbon Cycle, Water Quality, El Niño and Climate Change. In addition to the science portion of the course, students will spend time reflecting on the classroom activities from the perspective of future educators. Activities will be presented at a late elementary school level; however, time will be devoted to discussing methods to adapt the lesson to different grade levels and differentiation needs within a classroom. Additionally, students in this course will be instructed on how to utilize a multitude of resources from stream tables to science education databases to prepare them for the dynamic nature of the classroom. By the end of the class

  11. Evaluation of Pre-Service Teachers' Images of Science Teaching in Turkey

    ERIC Educational Resources Information Center

    Yilmaz, Hulya; Turkmen, Hakan; Pedersen, Jon E.; Huyuguzel Cavas, Pinar

    2007-01-01

    The purpose of this study is to investigate elementary pre-service teachers' image of science teaching, analyze the gender differences in image of science teaching, and evaluate restructured 2004 education reform by using a Draw-A-Science-Teacher-Test Checklist (DASTT-C). Two hundred thirteen (213) pre-service elementary teachers from three…

  12. The Learning Assistant Model for Science Teacher Recruitment and Preparation

    NASA Astrophysics Data System (ADS)

    Otero, Valerie

    2006-04-01

    There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning

  13. The impact of federal policy on teachers' use of science manipulatives: A survey of teacher philosophy and practices

    NASA Astrophysics Data System (ADS)

    Helgoe, Catherine A.

    Recently, educators in public K-12 schools have added testing of science knowledge to the measures of Adequate Yearly Progress required by the federal No Child Left Behind (NCLB) legislation. Research of the impact of NCLB policy on general teaching practices had credited the policy with improving instruction; however, negative impacts noted included the concern that teachers "teach to the test," narrowing the curriculum. Testing as an assessment strategy was not advocated by the professional educators and scientists responsible for the National Science Education Standards (NSES). Results from previous studies pointed to a potential conflict between the NCLB reforms and the National Science Education Standards science standards, in which teachers might reduce or eliminate hands-on activities and other constructivist practices in order to focus class time on other topics and tasks. Most research on NCLB policy, however, had not evaluated instructional practices regarding science education. This study examined the relationship among teacher beliefs, specifically the strength of their constructivist versus traditional beliefs, teachers' responses to NCLB policy, and teachers' use of constructivist practices in the form of manipulatives. This study showed that national policy did have an impact on teachers; however, that impact was not specific to the hands-on practices in science education. Teachers who responded to this survey had found many benefits in student learning using manipulatives and those positive impacts on their students justified the increased use of manipulatives in the classroom. The strength of teachers' constructivist beliefs showed a weak positive correlation to choices related to curriculum priorities, learning goals and advantages in using manipulatives. However, a relationship to beliefs was not found in the changes teachers made to various instructional practices, or in how they viewed certain manipulative materials, or in how they viewed

  14. Instructional Support and Implementation Structure during Elementary Teachers' Science Education Simulation Use

    ERIC Educational Resources Information Center

    Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.

    2016-01-01

    This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results…

  15. The Professional Development of College Science Professors as Science Teacher Educators.

    ERIC Educational Resources Information Center

    Fedock, Patricia M.; And Others

    Teacher training projects have used university research scientists to conduct workshops for teachers, but because of faculty time constraints and university reward systems, it is unlikely this type of program will be used extensively. This project utilized community college professors whose main focus is teaching science and working with the…

  16. College student perceptions of science teachers and the effect on science teaching as a career path

    NASA Astrophysics Data System (ADS)

    Cost, Michael George

    2000-10-01

    promotion, and the efforts of influential people including science teachers. The study calls for departments of science education to take a more active role in the recruitment of new science teachers and the improvement of undergraduate science education.

  17. Schools of California Online Resources for Education: History-Social Science One Stop Shopping for California's Social Studies Teachers.

    ERIC Educational Resources Information Center

    Hill, Margaret; Benoit, Robert

    1998-01-01

    Reviews the resources available for social studies teachers from the Schools of California Online Resources for Education (SCORE): History Social Science World Wide Web site. Includes curriculum-aligned resources and lessons; standards and assessment information; interactive projects and field trips; teacher chat area; professional development…

  18. Argumentation in Science Teacher Education: The simulated jury as a resource for teaching and learning

    NASA Astrophysics Data System (ADS)

    Drumond Vieira, Rodrigo; da Rocha Bernardo, José Roberto; Evagorou, Maria; Florentino de Melo, Viviane

    2015-05-01

    In this article, we focus on the contributions that a simulated jury-based activity might have for pre-service teachers, especially for their active participation and learning in teacher education. We observed a teacher educator using a series of simulated juries as teaching resources to help pre-service teachers develop their pedagogical knowledge and their argumentation abilities in a physics teacher methods course. For the purposes of this article, we have selected one simulated jury-based activity, comprising two opposed groups of pre-service teachers that presented aspects that hinder the teachers' development of professional knowledge (against group) and aspects that allow this development (favor group). After the groups' presentations, a group of judges was formed to evaluate the discussion. We applied a multi-level method for discourse analysis and the results showed that (1) the simulated jury afforded the pre-service teachers to position themselves as active knowledge producers; (2) the teacher acted as 'animator' of the pre-service teachers' actions, showing responsiveness to the emergence of circumstantial teaching and learning opportunities and (3) the simulated jury culminated in the judges' identification of the pattern 'concrete/obstacles-ideological/possibilities' in the groups' responses, which was elaborated by the teacher for the whole class. Implications from this study include using simulated juries for teaching and learning and for the development of the pre-service teachers' argumentative abilities. The potential of simulated juries to improve teaching and learning needs to be further explored in order to inform the uses and reflections of this resource in science education.

  19. Analysing the Problems of Science Teachers That They Encounter While Teaching Physics Education

    ERIC Educational Resources Information Center

    Demir, Cihat; Sincar, Burhan; Çelik, Ridvan

    2015-01-01

    Even though physical science is very important in our daily lives, it is insufficiently understood by students. In order for students to get a better physical education, the teachers who have given physics lesson should first eliminated the problems that they face during the teaching process. The aim of this survey is to specify the matters…

  20. The Intersection of Inquiry-Based Science and Language: Preparing Teachers for ELL Classrooms

    NASA Astrophysics Data System (ADS)

    Weinburgh, Molly; Silva, Cecilia; Smith, Kathy Horak; Groulx, Judy; Nettles, Jenesta

    2014-08-01

    As teacher educators, we are tasked with preparing prospective teachers to enter a field that has undergone significant changes in student population and policy since we were K-12 teachers. With the emphasis placed on connections, mathematics integration, and communication by the New Generation Science Standards (NGSS) (Achieve in Next generation science standards, 2012), more research is needed on how teachers can accomplish this integration (Bunch in Rev Res Educ 37:298-341, 2013; Lee et al. in Educ Res 42(4):223-233, 2013). Science teacher educators, in response to the NGSS, recognize that it is necessary for pre-service and in-service teachers to know more about how instructional strategies in language and science can complement one another. Our purpose in this study was to explore a model of integration that can be used in classrooms. To do this, we examined the change in science content knowledge and academic vocabulary for English language learners (ELLs) as they engaged in inquiry-based science experience utilizing the 5R Instructional Model. Two units, erosion and wind turbines, were developed using the 5R Instructional Model and taught during two different years in a summer school program for ELLs. We analyzed data from interviews to assess change in conceptual understanding and science academic vocabulary over the 60 h of instruction. The statistics show a clear trend of growth supporting our claim that ELLs did construct more sophisticated understanding of the topics and use more language to communicate their knowledge. As science teacher educators seek ways to prepare elementary teachers to help preK-12 students to learn science and develop the language of science, the 5R Instructional Model is one pathway.